

# Minerals yearbook: Metals, minerals, and fuels 1973. Year 1973, Volume 1 1973

**Bureau of Mines** 

Washington, D. C.: Bureau of Mines : United States Government Printing Office, 1973

https://digital.library.wisc.edu/1711.dl/PPYAWXJZXOESO8L

http://rightsstatements.org/vocab/NoC-US/1.0/

As a work of the United States government, this material is in the public domain.

For information on re-use see: http://digital.library.wisc.edu/1711.dl/Copyright

The libraries provide public access to a wide range of material, including online exhibits, digitized collections, archival finding aids, our catalog, online articles, and a growing range of materials in many media.

When possible, we provide rights information in catalog records, finding aids, and other metadata that accompanies collections or items. However, it is always the user's obligation to evaluate copyright and rights issues in light of their own use.

# Minerals Yearbook 1973

Volume I

METALS, MINERALS, AND FUELS



Prepared by staff of the BUREAU OF MINES

U. S. DEPOSITORY COPY
DO NOT DISCARD

She

## UNITED STATES DEPARTMENT OF THE INTERIOR ● Stanley K. Hathaway, Secretary

BUREAU OF MINES • Thomas V. Falkie, Director

As the Nation's principal conservation agency, the Department of the Interior has basic responsibilities to protect and conserve our land and water, energy and minerals, fish and wildlife, and park and recreation areas, and for the wise use of all those resources. The Department also has a major responsibility for American Indian reservation communities and for the people who live in Island Territories under U.S. administration.

U.S. GOVERNMENT PRINTING OFFICE

**WASHINGTON: 1975** 

Engineerin S ( UN14 MI 1973

### Foreword

The Federal Government, through the medium of the Minerals Yearbook or its predecessor volumes, has for 91 years reported annually on mineral industry activities. This edition of the Minerals Yearbook presents the record on worldwide mineral industry performance during 1973. In addition to statistics, the volumes provide background information to help in interpreting the year's developments. The content of the individual volumes is as follows:

Volume I, Metals, Minerals, and Fuels, contains chapters on virtually all metallic, nonmetallic, and mineral fuel commodities important to the domestic economy. In addition, it includes a general review chapter on the mineral industries, a statistical summary, and a chapter on mining and quarrying trends.

Volume II, Area Reports: Domestic, contains chapters on the mineral industry of each of the 50 States, the U.S. island possessions in the Pacific Ocean and the Caribbean Sea, the Commonwealth of Puerto Rico, and the Canal Zone. This volume also has a statistical summary, identical to that in Volume I.

Volume III, Area Reports: International, contains the latest available mineral data on more than 130 foreign countries and discusses the importance of minerals to the economies of these nations. A separate chapter reviews minerals in general and their relationships to the world economy.

The Bureau of Mines continually strives to improve the value of the Yearbook for its users. Therefore, the constructive comments and suggestions of readers will be welcomed.

THOMAS V. FALKIE, Director.



## Acknowledgments

Volume I, Metals, Minerals, and Fuels, of the Minerals Yearbook summarizes the significant data pertaining to mineral commodities obtained as a result of the mineral intelligence gathering activities of the divisions and offices of the Associate Directorate—Mineral and Materials Supply Demand Analysis.

The collection, compilation, and analysis of data on the domestic minerals and mineral fuel industries were performed by the staffs of the Divisions of Ferrous Metals, Nonferrous Metals, Nonmetallic Minerals, Coal, and Petroleum and Natural Gas. Statistical data were compiled by the statistical staffs of these Divisions from information supplied by mineral producers, processors, and users in response to production and consumption canvasses, and their voluntary response is gratefully acknowledged. The information obtained from individual firms by means of confidential surveys has been grouped to provide statistical aggregates. Data on individual firms are presented only if available from published or other nonconfidential sources or when permission of the companies has been granted. Other material appearing in this volume was obtained from the trade and technical press, industry contacts, and numerous other sources.

Statistics on U.S. imports and exports, world production, and foreign country trade were compiled in the Office of Technical Data Services. The foreign trade data for the United States were obtained from reports of the Bureau of the Census, U.S. Department of Commerce. World production and trade data came from numerous sources, including reports from the Foreign Service, U.S. Department of State.

The Office of Technical Data Services also provided general guidance on the preparation and coordination of the chapters in this volume and reviewed the manuscripts to insure statistical consistency among the tables, figures, and text, between this volume and other volumes, and between this edition and those of former years.

Acknowledgment is also particularly made of the splendid cooperation of the business press, trade associations, scientific journals, international organizations, and other Federal agencies that supplied information.

The Bureau of Mines has been assisted in collecting mine production data and the supporting information appearing in the Minerals Yearbook by numerous cooperating State agencies. These organizations are listed in the acknowledgment to Volume II.

ALBERT E. SCHRECK, Editor-In-Chief



# Contents

| Foreword, by Thomas V. Falkie, Director                                                  |
|------------------------------------------------------------------------------------------|
| Acknowledgments, by Albert E. Schreck                                                    |
| Review of the mineral industries, by Daniel E. Sullivan and Nicholas                     |
| G. Theofilos                                                                             |
| Mining and quarrying trends in the metal and nonmetal industries,                        |
| by John L. Morning                                                                       |
| Statistical summary, by Staff, Office of Technical Data Services                         |
| Abrasive materials, by Robert G. Clarke                                                  |
| Aluminum, by John W. Stamper                                                             |
| Antimony, by Charlie Wyche                                                               |
| Asbestos, by Robert A. Clifton                                                           |
| Barite, by Frank B. Fulkerson                                                            |
| Bauxite, by Horace F. Kurtz                                                              |
| Beryllium, by E. Chin                                                                    |
| Bismuth, by John A. Rathjen                                                              |
| Boron, by K. P. Wang                                                                     |
| Bromine, by Charles L. Klingman                                                          |
| Cadmium, by I. M. Hague                                                                  |
| Calcium and calcium compounds, by Avery H. Reed                                          |
| Carbon black, by John L. Albright                                                        |
| Cement, by Robert E. Ela                                                                 |
| Chromium, by John L. Morning                                                             |
| Clays, by Sarkis G. Ampian                                                               |
| Coal—Bituminous and lignite, by L. Westerstrom                                           |
| Coal—Pennsylvania anthracite, by Dorothy R. Federoff                                     |
| Cobalt, by John D. Corrick                                                               |
| Coke and coal chemicals, by Eugene T. Sheridan                                           |
| Columbium and tantalum, by Joseph A. Sutton                                              |
| Copper, by Harold J. Schroeder                                                           |
| Distamite by Regismin Petkof                                                             |
| Diatomite, by Benjamin PetkofFeldspar, nepheline syenite, and aplite, by J. Robert Wells |
| Ferroalloys, by Norman A. Matthews                                                       |
| Fluorspar and cryolite, by H. B. Wood                                                    |
| Gallium, by E. Chin                                                                      |
| Gem stones, by Robert G. Clarke                                                          |
|                                                                                          |
| Gold, by J. M. West                                                                      |
| Graphite, by David G. Willard                                                            |
| Gypsum, by Avery H. Reed                                                                 |
| Helium, by Gordon W. Koelling                                                            |
| Iron ore, by F. L. Klinger                                                               |
| Iron and steel, by Horace T. Reno                                                        |
| Iron and steel scrap, by D. H. Desy                                                      |
| Iron oxide pigments, by Henry E. Stipp                                                   |
| Kyanite and related minerals, by J. Robert Wells                                         |
| Lead, by J. Patrick Ryan                                                                 |
| Lime, by Avery H. Reed                                                                   |
| Magnesium, by E. Chin                                                                    |
| Magnesium compounds, by E. Chin                                                          |
| Manganese, by Gilbert L. DeHuff                                                          |

#### CONTENTS

| Mercury, by V. Anthony Cammarota, Jr.                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Mica, by Benjamin Petkof                                                                                                                           |
| Molybdenum, by Andrew Kuklis                                                                                                                       |
| Molybdenum, by Andrew KuklisNatural gas, by William B. Harper, Robert J. Jaske, and Leonard L. Fanelli                                             |
| Natural gas liquids, by David A. Carleton and Leonard L. Fanelli                                                                                   |
| Nickel, by John D. Corrick                                                                                                                         |
| Nitrogen, by William F. Keyes                                                                                                                      |
| Peat, by Eugene T. Sheridan and Donald P. Mickelsen<br>Perlite, by Arthur C. Meisinger                                                             |
| Perlite, by Arthur C. MeisingerPetroleum and petroleum products, by David A. Carleton, William B. Harper, Bernadette Michalski, and Betty M. Moore |
| Phosphate rock, by W. F. Stowasser                                                                                                                 |
| Platinum-group metals, by W. C. Butterman                                                                                                          |
| Potash, by William F. Keyes                                                                                                                        |
| Pumice and volcanic cinder, by Arthur C. Meisinger                                                                                                 |
| Rare-earth minerals and metals, by James H. Jolly                                                                                                  |
| Rhenium, by Larry J. Alverson                                                                                                                      |
| Salt, by Charles L. Klingman                                                                                                                       |
| Sand and gravel, by Walter Pajalich                                                                                                                |
| Silicon, by E. Shekarchi                                                                                                                           |
| Silver, by J. R. Welch                                                                                                                             |
| Slag—iron and steel, by Harold J. Drake                                                                                                            |
| Sodium and sodium compounds, by Charles L. Klingman                                                                                                |
| Stone, by Harold J. Drake                                                                                                                          |
| Sulfur and pyrites, by Roland W. Merwin and William F. Keyes                                                                                       |
| Talc, soapstone, and pyrophyllite, by J. Robert Wells                                                                                              |
| Thorium, by Roman V. Sondermayer                                                                                                                   |
| Tin, by Keith L. Harris                                                                                                                            |
| Titanium, by F. W. Wessel                                                                                                                          |
| Tungsten, by Richard F. Stevens, Jr.                                                                                                               |
| Uranium, by Walter C. Woodmansee                                                                                                                   |
| Vanadium, by Harold A. Taylor, Jr.                                                                                                                 |
| Vermiculite, by Frank B. Fulkerson                                                                                                                 |
| Zinc, by Albert D. McMahon, John M. Hague, and Herbert R. Babitzke                                                                                 |
| Zirconium and hafnium, by Sarkis G. Ampian                                                                                                         |
| Minor metals (arsenic, cesium and rubidium, germanium, indium, radium, scandium, tellurium, thallium), by Staff, Division of Nonferrous Metals     |
| Minor nonmetals (greensand, iodine, lithium, meerschaum, quartz                                                                                    |
| crystal, staurolite, strontium, wollastonite), by Staff, Division of                                                                               |
| Nonmetallic Minerals                                                                                                                               |

# Review of the Mineral Industries

By Daniel E. Sullivan 1 and Nicholas G. Theofilos 2

Although monetary and fiscal policies were less expansive in 1973 than in 1972, inflation was the major problem confronting the U.S. economy in 1973. Output expanded in all four quarters of the year, although the expansion was strongest in the first quarter. Income and employment increased and unemployment declined. The inflation was worsened by heavy demand and limited production of some food and fuel commodities.

Total output of the U.S. economy in 1973 as measured by the gross national product (GNP) grew 11.5%. Real GNP measured in 1958 dollars increased 5.9%, and inflation as measured by the implicit price deflator increased 5.3%. Greater inflation during 1973 caused the growth in GNP, in current dollars, to be larger than the 1972 growth of 9.4%, while in real 1958 dollars the growth in GNP was larger for 1972-6.1% as opposed to 5.9%. The increase in the implicit price deflator for 1972 was 3.2%. Gross private domestic investment and State and local purchases increased at a greater rate than did total GNP for 1973 as Federal purchases declined in real terms. The Federal Reserve Board (FRB) index of industrial production increased 9% during 1973.

Employment continued to increase during 1973. The unemployment rate averaged 4.9%, declining from the 5.6% average for 1972. Unemployment was near 5.0% at the beginning of the year, declined to a low of 4.6% in October, and returned to 4.8% in December. The labor force increased as it had during 1972, but in contrast to 1972 it did not dampen the decline in unemployment.

Prices increased more rapidly during 1973 than during any period since the Korean War. The overall consumer price index at 133.1 was 6.2% more than it was in 1972. Inflation in food prices proved to be a major problem area in 1973; the average was 14.5% above that for 1972. All nonfood commodities increased 3.4%. The 1973 wholesale price index increased to 135.5, 13.8% greater than the 1972 index. Farm product prices increased 41% and industrial commodities prices increased 8.5%. The 1973 implicit price deflator was 5.4% more than the 1972 figure, which was 3.2% greater than in 1971.

Monetary policy was much less expansive during 1973 than during the previous year. The FRB pursued a policy of active restraint in order to combat the severe inflation that had developed. During the year the money supply  $M_1$ , defined as currency plus demand deposits, grew 6.1% as opposed to a growth of 7.7% during 1972. M<sub>2</sub>, defined as M<sub>1</sub> plus time deposits, grew at a rate of 8.8% as opposed to a growth of 10.9% during 1972. Both short- and long-term interest rates rose during 1973.

Federal fiscal policy was also less expansive during 1973 than during 1972. The deficit in the unified budget for 1973 was \$14 billion, \$11 billion less than had been projected the previous year. The reason for this was that outlays were slightly lower and receipts were considerably higher than expected. An even less expansive fiscal policy would have had more impact on the strong excess demand.

The present international monetary and trading system, with managed floating exchange rates, makes the measurement of the overall balance of payments less important. When exchange rates were fixed, one of the major functions of overall measures of balance of payments was to signal when an adjustment in the exchange

Economist, Office of Economic Analysis-Mineral Supply.

<sup>2</sup> Statistical assistant, Office of Economic Analysis—Mineral Supply.

rate was necessary. Early in 1973 the official price of gold rose from \$38 to \$42.22 per ounce. The price of gold on the private market was \$112 at the end of 1973. Since the market price of gold has been much higher than the official price, governments have been reluctant to use it in international settlements. The U.S. basic balance during the first quarter of 1973 was in deficit by \$0.9 billion, during the second quarter it was in deficit by \$0.6 billion, and during the third it was in surplus by \$2.5 billion.

Significant Federal actions of interest to the minerals sector included activities to slow inflation and meet the energy crisis in addition to the continuing mineralrelated programs. During 1973 the antiinflationary activities of the Economic Stabilization Act of 1971 were in effect. These activities included phase 2, phase 3, a 60-day freeze, and the implementation of phase 4. The energy crisis became more severe late in the year, leading to the introduction of a number of conservation and allocation programs. Mineral-related legislation approved by Congress and passed by the President during 1973 covered such areas as energy, the environment, water, public lands, the national stockpile, and import duties.

During 1973 research programs of the Bureau of Mines continued to emphasize the effective utilization of our national mineral and fuel resources so as to insure

adequate mineral supplies without objectionable environmental, social, and occupational effects.

During 1973 energy use in the United States continued to rise. Domestic production of coal and crude petroleum declined while marketed production of natural gas increased slightly. Energy consumption increased in all major consuming sectors. This increased demand was met by increased imports and the drawdown of stocks. Fuel imports increased 33.1% over 1972 in spite of the Arab oil embargo in the fourth quarter.

The mining industry faced problems of minerals nationalism and environmental control during 1973. The industry was also affected by the strong inflation and increased demand that were prevalent in the economy as a whole. The industrial minerals continued their growth during 1973, but profits were lower. All mineral industries, and especially the high-energy-consuming industries, felt the effects of the energy shortage.

World trade increased strongly in 1973 despite monetary shifts and shortages in basic supplies. The international monetary system stood fast while allowing governments to make adjustments without discripting international flows. Inflation was the major problem facing the world economy. Continued economic growth occurred in the developed countries.

#### **SOURCES AND USES**

#### ALL MINERALS

Production.—Domestic mineral production in 1973 was valued at \$36.8 billion, a 14% increase from 1972. Production of all mineral groups increased at about the same rate except that of metals, which increased almost 20% during the year. In constant 1967 dollars the value of total mineral output increased only 5% from \$25.7 billion in 1972 to \$27.0 billion in 1973; metals and nonmetals increased about 8%, but mineral fuels increased less than 4%. Exports of primary minerals and mineral fuels increased 12% to \$1.7 billion, and imports increased over 46% to \$6.6 billion.

The Bureau of Mines total index of physical volume of mineral production (1967=100) increased a little more than 1% to 114.2 index points in 1973. The

index for the average of all metals increased over 7% to 136.8. Within the metals group ferrous metals increased almost 18% and nonferrous metals increased less than 2%. In the nonferrous group, the base metals index increased over 2%, that for monetary metals declined almost 8%, and the other nonferrous index increased almost 2%. The index for the average of all nonmetals increased over 7%. The indexes for construction and for other nonmetals both increased at rates close to 9%; that for chemicals increased at a 3% rate. The overall index for fuels declined almost 2%, with the coal index declining less than 1%, and that for crude oil and natural gas declining less than 2%.

The FRB Index of Industrial Production (1967=100) increased almost 9% during 1973, from 115.2 to 125.2 index points. The

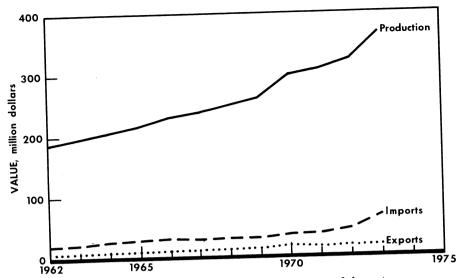



Figure 1.-Value of mineral production, exports, and imports.

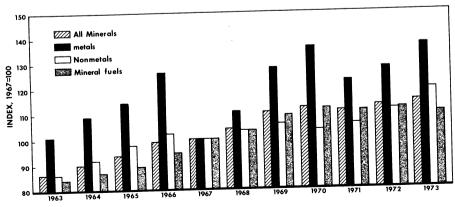



Figure 2.—Indexes of physical volume of mineral production in the United States, by group.

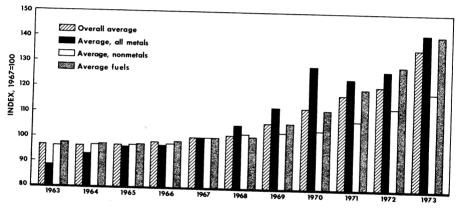



Figure 3.-Indexes of implicit unit value.

average for all mining increased 1.4 index points to 110.2, the metal and the stone and earth minerals indexes increased strongly, while the coal and the oil and gas indexes both decreased moderately. Strong increases in the primary metals, iron and steel, and nonferrous metals and products indexes ranged from 12% to 14%, and the clay, glass, and stone products index increased almost 10%.

The FRB monthly index of mining production (1967=100) was less than 109 index points for January and more than 110 points for February. It stayed between those two points for the next 4 months. In July it was 111 points, and it remained greater than 111 points until December when it was 110.7 points. The coal, oil, and gas index followed the same pattern although the individual coal index tended to be

higher earlier in the year and lower late in the year, and the crude oil and natural gas index was highest both early and in the middle of the year. Metal, stone, and earth minerals remained between 116.0 and 117.0 index points for the first 5 months of the year, except in February when it reached 117.6 points. In June it hit a low of 111.8 index points and then rebounded, remaining above 120.0 index points for the final 5 months of the year.

Total net supply for most of the selected principal metals and nonmetals increased during 1972. The net supply of two-thirds of the selected ferrous metals increased. The largest increase was 50% in the net supply of tungsten, and the smallest was a 7% increase in the net supply of nickel. Iron ore, pig iron, and molybdenum all increased at rates in the teens while cobalt

increased one-third. The net supply of steel ingot declined over 1%, chromite declined over 18%, and manganese declined over 13%. The patterns of change for the net supply of nonferrous metals reflected this same trend, with two commodities showing increases for each one showing a decline in net supply. The largest increase was over 27% for platinum-group metals and the smallest was less than 3% for cadmium. Copper, magnesium and zinc all had rates of increase in net supply at or above 4%. Rutile increased 9%, mercury over 21%, and uranium concentrate increased almost as much as platinum-group metals. The net supply of lead increased only a negligible amount. The net supplies of tin, aluminum, antimony, and ilmenite and slag decreased 11%, 7%, 6%, and 2% respectively. The net supply of all selected nonmetals except salt increased. The increases ranged from 19% for crude barite to 2% for finished fluorspar. Asbestos, bromine, clays, sand and gravel, and sulfur all increased about 8%; gypsum and phosphate rock increased at rates near 5%; all other increases were at rates in the teens. Common salt declined more than 2%.

Stocks and Government Stockpile.-During 1973 stocks of crude nonfuel minerals at primary producers, as reflected by the Bureau of Mines index (1967=100), declined substantially for all the selected metals and nonmetals. The overall index declined 22% to 110 index points and that for all metals declined 34%. The largest decline in the metals sector was a 51% drop in the index for other ferrous metal stocks. The iron ore index declined 26%, and the nonferrous index declined 14%. The nonmetals index declined almost 7%. Stocks of nonfuel minerals held by mineral manufacturers, consumers, and dealers as reflected by the Bureau index also declined, but not so strongly as those held by primary producers. The overall index declined almost 11%, with the index for all metals also declining by the same amount. The largest decline within the metals sector was in the other ferrous metals index which declined 27%, as was the case in the index of crude minerals held by primary producers. The stock index for iron declined 10%; those for base and other nonferrous metals both declined 9%. The index for nonmetals, excluding fuels, declined only 3%.

Producer stocks of bituminous coal and lignite decreased 14% in 1973, a sharp contrast to the large increase of the previous year. Coke stocks declined almost 60%. Stocks of carbon black and natural gasoline, plant condensates, and isopentane increased substantially. Total stocks of crude petroleum and petroleum products increased 5%, although those of most petroleum products except distillate fuel oil and the other products category declined. Distillate fuel oil stocks increased 27%, and the other products category increased 17%. Stocks of natural gas increased almost 11%.

From December 1972 to December 1973, the seasonally adjusted book value of product inventories increased for all selected industries except blast furnaces and steel mills. Petroleum and coal products increased 15.3% to \$2,653 million as of December 1973. Stone, clay, and glass products increased 13.3% to \$2,791 million. Total primary metals inventories decreased 3.6% to \$9,314 because blast furnace and steel mills inventories decreased 11.8% to \$4,645 million, while other primary metals inventories increased only 6.4% to \$4,669 million. Total seasonally adjusted book value of inventories for selected mineral processing industries increased 2.3% to \$14,421 million during 1973.

The national stockpile of strategic materials contained an important component of the Nation's mineral supply during 1973. Stockpile commodities of significant market value included aluminum, chromium, copper, lead, manganese, silver, tin, tungsten, and zinc.

Exports.—The total value of selected minerals and mineral products exported during 1973 increased 41% to \$6,613 million. Exports in all sectors increased: Crude and scrap metals more than doubled; manufactured metals increased almost 60%; chemicals increased 44%; manufactured nonmetallic minerals increased 24%; and crude nonmetallic minerals increased 13%. The lowest rate of expansion occurred in exports of mineral energy resources and related products, which were up only 8% above those of 1972. Exports of only two mineral products declined; they were crude partially refined petroleum, uranium and thorium metals and alloys.

There were many changes in the geographical distribution pattern of selected mineral exports during 1973. Exports of

sulfur and unroasted pyrites to other North American countries comprised 3% of the total exports of these commodities in 1972. in 1973 they increased to 42%. Exports to Asia of coke, coal, and briquets, including peat, declined from 34% to 2%. Exports of crude petroleum to North America increased to 29%, compared with none in 1972. Exports of iron and steel ingots and iron and steel rails shifted from North American to South American countries. Exports of silver, platinum, and platinumgroup metals shifted in emphasis from Europe to Asia. Exports of zinc shifted from North America to South America and Asia. Exports of tin shifted from North America to South America; exports of uranium and thorium and their alloys to Europe remained steady while Asia received a larger share and North America a smaller share.

Imports.—The total value of selected mineral imports increased almost 38% to \$16,047 million in 1973, with increases reported for all major categories. The most important and largest increase was in imports of mineral energy resources and related products, which increased 68% to \$8,091 million. Within this group, coal, coke, and briquets (including peat) increased 2.6 times to \$60 million, crude and partially refined petroleum increased 77% to \$4,584 million, petroleum products except chemicals increased 72% to \$2,954 million, and natural and manufactured gas imports increased 3.4% to \$493 million. Imports of crude nonmetallic minerals increased 18.5% to \$353 million. All imports within the nonmetallic group increased except those of sulfur and unroasted pyrites which decreased 11% to \$15 million. Imports of crude and scrap metals increased 20% to \$1,188 million. Within this group all minerals increased except nonferrous base metal ores and concentrates, which declined 1% to \$466 million. Chemical imports increased 26% to \$682 million. Within this group, only the mineral tar category declined. The manufactured nonmetallic minerals and the manufactured metals categories increased 35% and 14% respectively to \$299 million and \$5,435 million.

The percentage distribution of imports of principal minerals and mineral fuels and related products in 1973 by area of origin was generally stable with a few exceptions. One notable change was in imports of coal, coke, and briquets. In 1972, 92% of these

imports came from North America and 1% from Europe. In 1973 the figures were 26% and 73% respectively. Other changes in import trade patterns were as follows: In 1972, 95% of phosphates came from North America, and none from Europe; in 1973 the figures were 78% and 11%; 14% of copper ores came from North America, 27% from South America, and 56% from Asia in 1972; in 1973 the figures were 48%, 35%, and 16% respectively; the distribution of imports of tantalum, molybdenum, and vanadium ores and concentrates shifted from South America to North America between 1972 and 1973; in 1972, 70% of the tin waste and scrap came from North America and none from South America; in 1973 the figures were 38% and 50% respectively; among platinum-group metals, ores, concentrates and wastes the import distribution pattern showed less from North America and more from Africa in 1973: North America supplied a smaller percent of the natural gas imported and South America a larger percent; some mercury import sources shifted from North America to Africa.

Consumption.—During 1973, consumption of most major mineral products increased substantially. Ferrous metals reflected this trend with the exception of manganese ore, consumption of which declined about 8%. Raw steel and iron ore consumption increased by 13% and 12%, respectively. Consumption of molybdenum increased by 25%. Consumption of all major nonferrous metals increased, with consumption of aluminum increasing less than 2% and that of copper increasing more than 7%. Consumption of antimony and silver increased by 28% and 30%, respectively while that of platinum-group metals increased 17%. Consumption of all other nonferrous metal commodities increased at rates between 2% and 5%.

Consumption of nonmetals increased for all major commodities except salt, which declined over 2%. Potash and crushed stone both increased more than 15%. Asbestos increased over 8% and phosphate rock increased less than 2%. All other major nonmetallic commodities increased at rates between 3% and 8%.

Total energy resource inputs in terms of British thermal units (Btu) increased almost 4% to 74,742 trillion Btu. Consumption of most mineral energy resources increased. That of anthracite coal remained

constant and natural gas consumption declined less than 1%. Bituminous coal consumption increased almost 8%, and petroleum consumption increased over 5%.

Total net electricity generation increased 5% during 1973. Utilities increased almost 6% and industrial production declined almost 7%. Within the utilities, conventional fuel-burning plants increased 5%, hydropower declined less than 1%, and nuclear power consumption increased more than 54%.

#### **ENERGY**

Energy use in 1973 rose above the record high levels of 1972. As in other recent years, domestic energy raw material production did not match this increase; there were declines in the production of key fuels. This demand was met through a combination of increased imports of natural gas, crude oil, and petroleum products, increased production of natural gas, and a drawdown of stocks. This energy crisis was compounded late in the year when several Arab nations cut back crude oil production and curtailed shipments to the United States. However, petroleum imports had increased so strongly before the embargo that total imports of all fuels showed an increase for the year. The energy crises led to intensified efforts to encourage the discovery and development of new domestic sources of energy.

Production.—Total production of mineral energy resources and electricity from hydropower and nuclear power declined less than one-half of a percentage point in 1973 to 61,817 trillion Btu. All sources of energy production decreased except wet natural gas, which increased less than one-half of a percentage point, and nuclear power, which increased over 54% but remained less than 2% of total production. Anthracite declined almost 4%, bituminous coal and lignite and hydropower both declined less than 1%, and crude petroleum declined less than 3%.

Consumption.—U.S. energy consumption increased almost 4% in 1973 to 74,742 trillion Btu. Consumption of anthracite declined 4% in terms of Btu's. Consumption of bituminous coal and lignite increased 8% and that of petroleum 6%. Natural gas consumption declined less than 1% and natural gas liquids declined 1%. Consumption of electricity from hydropower de-

clined less than 1%. Electric consumption from nuclear power increased 54%.

In 1973, the household and commercial sector received 40% of its energy input from natural gas; 38% from petroleum; 20% from electric utilities; and almost 2% from coal. The distribution of the inputs for industrial users was 46%, 25%, 11%, and 18% respectively. The transportation sector received 96% of its energy from petroleum. Energy inputs to electric utilities were from bituminous coal and lignite, 44%; natural gas, 19%; petroleum, 18%; hydropower, 15%; and nuclear power, 4%.

Coal.—The domestic supply of anthracite declined 4% in 1973 to 5.7 million tons; that for bituminous coal and lignite increased almost 8% to 556 million tons. Exports of anthracite declined almost 3%, and those of bituminous coal declined almost 6%. Imports of bituminous coal increased 170% to 127,000 short tons in 1973 after declining 64,000 short tons in 1972. Electric utilities used almost 70% of bituminous coal. The household and commercial sector was the largest user of anthracite.

Natural Gas.—The domestic supply of natural gas in 1973 was 22,245 billion cubic feet, almost 1% less than in 1972. Most supply components increased; the major factor in the decline in supply was the addition of 442 billion cubic feet to stocks. Domestic production increased less than 1%, exports decreased 1%, and imports increased 1%. Demand for natural gas declined in all consuming sectors except the largest, the industrial sector, which increased over 4% in 1973. The total demand for natural gas declined 1% in 1973.

Petroleum.—The domestic crude oil supply increased 6% to 4,537 million barrels in 1973. Domestic production declined almost 3%; exports more than tripled, but remained negligible; and imports increased almost 46% to 1,184 million barrels in spite of the Arab oil embargo. The domestic supply of refined petroleum products increased 5% to 6,298 million barrels. Demand for petroleum increased 5% to 5,578 million barrels. Transportation accounted for almost 53% of total domestic product demand.

Nuclear Energy.—In 1973 nuclear energy consumption was almost 54% greater than in 1972. In terms of Btu's it increased from just under 1% of total energy consumption in 1972 to 1.2% of the total in 1973. Re-

search continued to be devoted to increasing the energy output from nuclear sources.

Hydropower.—Consumption of hydropower during 1973 was slightly less than in 1972. It provided less than 4% of the total energy consumption in the United States.

Other Energy.—The search for new sources of energy included the investigation of those sources which are only theoretical at this time, and others which will be significant only in the long term. Some of the types of energy being investigated were geothermal, oil shale, solar, wind, tidal, and biological (from organic wastes). Geothermal resources have received attention as a possible major source of energy. Geothermal resources are being developed rapidly, but the emphasis has been placed on developing known fields. Full development of geothermal energy will come only with the discovery of new fields and the technology they require.

## EMPLOYMENT AND PRODUCTIVITY

Employment.—Employment in selected mineral industries increased during 1973, with total mining employment increasing over 4%. Employment in most sectors of the mining industries increased except that in other coal, and crude petroleum and natural gas fields each of which declined about 3%. Bituminous coal mining employment increased at a rate exceeding 10%, and oil and gas field services employment increased at a rate of almost 6%.

Minerals manufacturing employment increased 4% to 868,500 during 1972. All categories except total fuels and petroleum refining increased. Petroleum refining represents 78% of total fuels employment.

Hours and Earnings.—The hourly earnings in the mining sector continued to trend upward in 1973 with a 12.7% increase over 1972 earnings, a rate significantly higher than those of recent years. Weekly earnings increased 9.8% to \$198.39 at an average of 44 hours per week. The highest hourly earnings in the mining sector were paid in the bituminous coal category, which increased by 40 cents to \$5.74. The petroleum industry paid \$4.69 per hour, slightly lower than the average for all mining. Hourly earnings for all metal mining increased almost 6.5% to \$4.76, which is slightly more than the average for all mining, while average hours were slightly less than that for all mining. Hourly earnings for copper mining increased 5.6% to \$4.88; for iron ore mining they increased 3.3% to \$4.65. Average weekly hours for both copper and iron ore mining were close to the average for all metal mining. The nonmetallic mining and quarrying category paid the lowest hourly wages in the mining sector and also had the longest workweek with \$4.18 and \$47.1 hours, respectively.

Average weekly earnings in the manufacturing sector were \$224.92, and average hourly earnings were \$5.41, a 39-cent increase from the 1972 rate. The nonfuel manufacturing categories increased in weekly earnings by more than 9%, with the cement industry paying the most per week (\$233.20), but the blast furnaces, and steel and rolling mills had the highest hourly earnings at \$5.56. The fertilizer industry had the lowest weekly earnings (\$156.66) and also the lowest hourly earnings. Average weekly earnings in the nonferrous smelting and refining industry increased 9.6%, and the hourly wage rate was \$4.81.

Wages and Salaries.-In 1973 total wages and salaries for all industries increased substantially. The 10.3% increase was one percentage point above the 1972 increase. In the mining sector total wages and salaries also increased substantially but not as much as in 1972. The increase in manufacturing wages and salaries, which matched the increase in all industries in 1972, exceeded that for all industries in 1973. Average yearly earnings per full-time employee for all industries increased 5.8%, not as great as the 6.8% increase of 1972. In both mining and the manufacturing sectors, earnings increased more than those of all industries but were below the increases recorded in 1972.

Labor Turnover Rates.—The accession rate (hires and rehires) increased in 7 of the 10 selected mineral industries surveyed in 1973. The largest increase was in the copper ore category with seven employees being hired per thousand. The manufacturing, metal mining, and petroleum industries also increased their accession rate by four

employees per thousand. The categories showing a decline in accession rates were the blast furnaces, steel and rolling mills, iron ores, and coal mining. The employee separation rate declined or remained the same in most of the selected mineral industries. Of the three categories showing increased separation rates, copper ores led with an increase of seven employees per thousand, followed by manufacturing, and petroleum refining and related industries. The layoff rate decreased in 1973 for all of the selected mineral industries except petroleum refining and related industries, which remained the same as in 1972.

Productivity.—Changes in labor productivity for selected mineral industries were mixed during 1972 (latest data available)

according to the labor productivity indexes for selected minerals. Although the index for copper ore mined per employee and per production worker man-hour increased, the index per production worker declined slightly. The indexes of recoverable copper metal mined per employee, production worker, and production worker man-hour all declined during 1972. The indexes for crude iron ore mined and usable iron ore mined all increased significantly, as did those for refined petroleum. For bituminous coal and lignite the indexes showed small but mixed changes. The index of output per employee increased slightly and those for output per production worker and production worker man-hour showed small declines.

#### **PRICES AND COSTS**

Index of Average Unit Mine Value.—The index of average unit mine value and the index of implicit unit mine value, discussed below, give similar results but are developed by different methods. A detailed discussion of these indexes can be found in Bureau of Mines Information Circular 8275.3 The total index of average unit mine value (1967=100) increased over 12% to 136.3 during 1973, following the rise in prices in the general economy. The index for ferrous metals increased at more than a third of the rate of increase of the total index, and the average for nonferrous metals increased more strongly than the rate of the total index. The base metals index grew at slightly less than the rate of increase for all nonferrous metals, but the index for monetary metals grew by more than 60%, and that for other nonferrous grew only slightly. Nonmetals increased at less than half the rate of increase in the total index. The construction index grew slightly more slowly than the index for all nonmetals, and the chemical, and other nonmetal indexes both grew at a faster rate. The fuels index grew more strongly than the total index. Coal increased at a slower rate and crude oil and natural gas grew at a faster rate than the total index.

Index of Implicit Unit Value.—The index of implicit unit value (1967=100) increased over 12% to 136.2 during 1973, reflecting the inflation of the economy as a whole. The index for ferrous metals increased at

less than a third of the overall rate. The average for nonferrous increased at a greater rate than the overall index. Base metals reflected this growth, but the monetary metals index grew more than 50% and that for other nonferrous metals grew only slightly. Nonmetals increased at less than half the rate of increase for the overall index. The construction index grew slightly more slowly than the index for all nonmetals, and the chemical and other nonmetal indexes grew at a slightly faster rate. The fuels section increased almost as much as the overall index; within this group, coal grew less than the overall index, and crude oil and natural gas increased more strongly than the overall index.

Prices.—The wholesale price index for all commodities other than farm and food increased 7.7% during 1973. The index for all commodities, which include farm and food, increased at a rate of 13.8%, almost twice the rate of increase of the nonfarm index. The price indexes for various selected metals, minerals, and fuels either increased or remained unchanged. The index for metals and metal products increased 7.5%. Within this group the increases ranged from 2.3% for semifinished steel products to 54.4% for iron and steel scrap. Most other metal indexes increased moderately, with the exception of the nonferrous scrap index, which increased 44.2%; the primary metal refinery shapes, 20.3%; and

<sup>&</sup>lt;sup>3</sup> Johnson, E. E. Index Numbers for the Mineral Industries. BuMines IC 8275, 1965, 85 pp.

nonferrous metals, 15.5%. Prices of nonmetallic mineral products increased 3.3%. Price changes in this group ranged from no change in phosphates and phosphate rock to a 6.5% increase in potassium sulfate. The price index for fuels and related products and power increased 22.7. Changes in this group ranged from a 6.4% increase in the electric power index to a 39.0% increase in the refined petroleum products price index. The coal price index increased 12.5%, and the crude petroleum index increased 10.7%.

Prices of most mineral energy resources increased substantially during 1973. The price of bituminous coal at merchant coke ovens increased almost 12%. Anthracite prices increased at a slower rate. The prices of petroleum and petroleum products all increased except for No. 6 residual fuel oil, maximum 1% sulfur, at Philadelphia, which declined almost 5%. The price of crude petroleum increased almost 15%. The average dealers' price for gasoline increased 10%. The average price for all gulf ports bunker C residual fuel oil increased 67%. The price of No. 2 distillate fuel oil at Philadelphia increased 14%, which is small when compared to the 104% increase in its price at all gulf ports. The average price of natural gas at the well increased 16%, but at the point of consumption it increased

The average cost of electrical energy in 1972 (latest data available) increased 0.1 cent to 1.8 cents per kilowatt-hour. Both residential market and commercial and industrial market costs increased 0.1 cent per kilowatt-hour, the former to 2.3 cents per kilowatt-hour and the latter to 1.5 cents per kilowatt-hour. Costs in all but two geographic areas increased. The exceptions were the East and West South-Central regions in which residential costs increased but the overall cost remained constant. Alaska and Hawaii remained the highest cost areas, and the East South-Central region remained the lowest cost area.

Principal Metal Mining Expenses.—The index of principal metal mining expenses (1967=100) showed the same pattern of increasing prices that was prevalent for the economy as a whole during 1973. The total index increased at a slightly higher rate than it did during 1972. The supply component increased at exactly the same rate as the total index, and the electrical energy and labor components increased at lower rates than the total index. The fuel components of the index increased almost 23%, which is more than three times the rate of increase of the total index.

Costs.—The 1973 index of relative labor costs and productivity generally reflected the inflationary aspects of the economy. For iron ore the index of labor cost per dollar of product was down significantly. This reflected the large increase in the index of value of product per man-period as the index of labor costs per unit of output declined slightly. For copper ore, while the index of labor costs per dollar of product declined slightly, both the index of value of product per man-period and the index of labor costs per unit of output increased significantly. In bituminous coal the index of labor costs per dollar of product increased slightly, and both the index of value of product per man-period and the index of labor costs per unit of output increased significantly. The indexes for petroleum for 1971 (latest data available) showed labor costs per dollar of product remaining unchanged, and the value of product per man-period and labor costs per unit of output both increasing.

The 1973 price indexes for mining construction and material handling machinery and equipment (1967=100) all showed increases over the equivalent 1972 index. The index for portable air compressors, which is the only index that declined in 1972, increased the least in 1973, 1.6%. The index for scrapers and graders increased the most, 9.4%.

#### INCOME AND INVESTMENT

National Income Generated.—In 1973 national income originating in all industries was \$1,066 billion, a 12.6% increase over 1972. The mining industries income increased at a rate slightly above that for all industries to \$9.4 billion. The rate of in-

crease for metal mining income was almost double the rate for all industries. It reached the level of \$1.2 billion. Income in coal mining increased to \$2.4 billion, an 8% advance. The rate of increase in income for the crude petroleum and natural gas indus-

tries was just above the overall rate. It increased to \$4.0 billion. Income originating in the mining and quarrying of nonmetallic minerals increased 15.8% to \$1.8 billion. Income originating in the manufacturing sector increased 13.4% to \$287.2 billion. The figure for the chemical and allied products industries increased 13.7% to \$21.0 billion. The petroleum refining and related industries and the stone, clay, and glass products industries both had 14.3% increases in income, to \$9.4 billion nad \$9.9 billion respectively. Income originating in the primary metals industries increased 19.4% to \$22.0 billion.

Profits and Dividends.-The average annual profit rate on shareholders' equity in all manufacturing industries increased during 1973 to 12.8%. Profit rates for all the selected mineral manufacturing industries increased significantly, and all but two industries (stone, clay, and glass products, and chemicals and allied products) increased at a greater rate than that for all manufacturing. One of these, chemicals and allied products, was the only mineral manufacturing industry with a greater average profit rate than that for all manufacturing. Profit rates in the primary metals industries, which were the lowest among the selected mineral manufacturing industries, increased more than 68%. Within this industry, the rates for primary iron and steel increased 58%, and those for primary nonferrous metals increased 83%. Profit rates in petroleum refining and related industries increased 33% to a rate of return of 11.6%.

Total dividends for primary metals increased in the same pattern as the profit rate, with primary nonferrous metals dividends increasing 46.8% to \$543 million and dividends in the primary iron and steel industry increasing 21.3% to \$559 million. Dividends for the stone, clay, and glass products, and for the chemicals and allied products industries increased at a slower rate than that for all manufacturing, which was 10.3%. Dividends in the petroleum refining and related industries were the largest among the selected mineral industries at almost \$3.5 billion, a 3.8% increase over the previous year. Total dividends for all manufacturing in 1973 were almost \$17.8 billion.

The total number of industrial and commercial failures in 1973 declined for the

third consecutive year, although their current liabilities increased substantially. The total number of failures was 9,345, and the value of their liabilities reached almost \$2.3 billion. There were 32 mining failures reported in 1973, 12 less than the figure for 1972, although current liabilities doubled from 1972 to the 1973 value of \$23.9 million. In the manufacturing sector the number of failures declined in 1973, as did the current liabilities.

New Plant and Equipment.—New plant and equipment expenditures by mining and selected mineral manufacturing industries increased substantially in 1972. The figure for mining firms increased 14.0% to \$2.76 billion; that for all manufacturing firms increased 21.2% to \$38 billion. Expenditures increased for all of the selected mineral manufacturing firms. Primary nonferrous metals expenditures increased 42.4%, the largest increase; the smallest increase was a 3.0% increase in the expenditures of the petroleum and coal products industries.

Estimates of plant and equipment expenditures of foreign affiliates of U.S. companies in mining and smelting were revised back to 1966. Details may be found on page 19 of the December 1973 Survey of Current Business. Expenditures in mining and smelting increased 1% in 1973 to \$1,261 million. Expenditures in Canada and Europe declined substantially, 26% for the former and 40% for the latter. Latin American expenditures increased over 7%, and those for all other areas increased almost 53% to \$537 million. Expenditures in petroleum increased almost 16% to \$6,180 million. All reporting areas except Latin America showed gains. The manufacturing sector showed gains in expenditures of almost 9% to a value of \$7,743, with increases in all geographic areas.

Issues of Mining Securities.—Estimated gross proceeds of new securities offered by extractive industries totaled \$1,073 million in 1973, compared with \$2,010 million in 1972. Common stock accounted for 77.5% of the proceeds, preferred stock for 0.9%, and bonds for 21.6%.

Foreign Investment.—In 1972 direct private investment by U.S. companies abroad increased 9% to \$94.0 billion (latest data available). The increase in the petroleum sector was also 9%; therefore, as a percent of the total, investments in the petroleum sector remained unchanged. The developed

countries received \$14.2 billion of the petroleum industry investment, while the developing countries received \$9.9 billion. The book value of Canadian petroleum affiliates gained \$162 million, compared with \$327 million in 1972. The value of investments in European petroleum industries increased \$800 million to \$7.0 billion, the highest of all categories. Investment in Europe for all U.S. industries also increased. The Latin American countries' share of U.S. investment at the end of 1972 was \$16.6 billion, compared with \$15.8 billion in the beginning of the year. Investment for all industries was the lowest in the Middle East. Japan received the lowest investment in the petroleum sector, \$796 mil-

U.S. direct investments in foreign mining increased \$411 million to \$7.13 billion during 1972 (latest data available). Net capital outflows declined to \$411 million. Reinvested earnings increased from \$26 million in 1971 to \$34 million in 1972. The developed countries again accounted for more than 60% of U.S. direct investments.

The value of foreign direct investments in the United States as a whole and in the U.S. petroleum sector continued to increase through 1972 (latest data available). Total foreign direct investments increased 5% to \$14.4 billion, and in the petroleum sector the figure increased 4% to \$3.2 billion.

### **TRANSPORTATION**

The total quantity of selected minerals and mineral energy products transported by rail and water in the United States increased in 1972 (latest data available) but not at a rate as great as that for all commodities. Rail transportation of mineral products increased 2.2%, and water transportation increased 3.1%. More metals and minerals except fuels were transported by rail than water; however, for mineral energy resources and related products, the reverse was true. Total mineral products accounted for 56.2% of all commodities transported by rail and 83.4% of all commodities transported by water.

The quantity of metals and minerals except fuels transported by rail decreased by 1.1% to 396.5 million short tons. Iron ore and concentrates, iron and steel ingot, plates, rods, bars, tubing and other primary products, sand and gravel, crushed and broken stone, and phosphate rock were the largest users of rail transport in volume terms. Rail transport of most ferrous metals declined during 1972, and that of most non-ferrous metals and nonmetals increased.

The quantity of metals and minerals except fuels transported by water increased 2.5% during 1972. Iron ore and concen-

trates and sand, gravel, and stone continued to be the two largest commodities transported by water in volume terms.

Mineral energy resources transported by rail increased 5.5% to 418 million short tons during 1972. Shipments of bituminous coal and lignite accounted for almost 89% of the total selected mineral energy resources and related products transported by rail.

The total volume of selected mineral energy resources and related products transported by water increased 3.4% to 577 million short tons during 1972. Coal, crude petroleum, and residual fuel oil accounted for almost 62% of this total.

A total of 951,200 miles of gas pipeline existed in 1972 (latest data available), a 1.9% increase above that of 1971. Total petroleum pipeline mileage in 1971 (latest data available) as reported previously was 219,000 miles. The total petroleum pipeline mileage reported was distributed among the following: Crude and gathering systems in field operations, 33%; large size crude trunklines, 34%; and petroleum product pipelines that extend from refineries to extraction terminals, 33%.

## RESEARCH ACTIVITIES

Total expenditures for research and development activities for all industries were \$19.5 billion during 1972 (latest data avail-

able). This was an increase of 6% over the \$18.4 billion expended during 1971. Company expenditures increased almost 5% to

\$11.2 billion, and expenditures by the Government increased almost 8% to \$8.3 billion. Research and development in petroleum refining and extraction continued to decline, reaching \$475 million during 1972. The great bulk of these expenditures was financed by private funds. Research and development expenditures in the chemical and allied products industries increased to \$1.9 billion in 1972. Most of these expenditures also were privately financed.

Bureau of Mines.—Research activities of the Bureau were directed toward facilitating the efficient use of our natural mineral and fuel resources so as to insure adequate mineral supplies without objectionable environmental, social, and occupational effects. Bureau research concentrated on the following areas: Mining, metallurgy, resource recovery and pollution abatement, coal, petroleum, oil shale, economics, health and safety, explosives, and helium.

Bureau of Mines funding obligations for mining and mineral research and development were \$77.50 million during fiscal year 1973, 9.3% more than for fiscal year 1972. Funds for applied research increased to \$34.6 million, 44.6% of the total. Funds for basic research fell to \$6.8 million, 8.9% of the total, and funds for development increased to \$36.1 million, 46.5% of the total. Obligations for fiscal year 1974 were estimated to increase more than 16% to \$90.1 million. Most of this increase was in funds for applied research. Bureau of Mines obligations for total research were \$41.5 million for fiscal year 1973, a 2% increase above that of 1972. Funds for engineering sciences were \$30.5 million; the figure for physical sciences declined almost \$1.3 million to \$9.3 million, the figure for mathematical sciences was almost \$0.6 million, and the figure for environmental sciences increased to \$1.1 million. Bureau of Mines funding obligations for total research for fiscal year 1974 were increased more than 25% to \$52.0 million. Funds for engineering sciences were estimated to increase almost 25%, and those for physical sciences about 15%; those for mathematical and environmental sciences were estimated to almost double. Highlights of the accomplishments of Bureau research programs, including work in progress, are as follows:

Mining.—Bureau research investigations in the area of ground control have successfully tested, under actual mine condi-

tions, both direct-wired and radio frequency models of a gage to monitor deflections of the mine roof. These gages provide early warning of roof sag and sound an alarm when critical deformation is reached. A titanium rock bolt load cell was developed and field tested at four mines in conjunction with other research projects. Several inquiries were received from mines wishing to obtain the cells for their own use. An instrument manufacturer has begun preliminary arrangements to obtain a license to produce the cells commercially.

A study to correlate strength of laboratory and in situ oil shale pillars was conducted as a first step in developing design criteria for underground room-and-pillar mining of oil shale. The conclusions drawn thus far were (1) high-angle joints can severely decrease in situ pillar strength and (2) the strength of jointed oil shale pillars can be determined accurately from laboratory strength tests on model pillars containing joints oriented as in its in situ counterpart.

One of the most promising techniques for mine stabilization is to consolidate the backfill. Laboratory tests using large-scale model stopes demonstrated the feasibility of consolidating mill run tailings by electrokinetics. The technique has an attraction to the operator in that the entire tailings output of the mill can be constructively used underground. Conventional backfill practice requires desliming and disposal of the slime fraction in surface ponds or dams. Increasingly stringent regulations for surface disposal make underground utilization of the tailings an attractive alternative.

A mine test of a flexible tunnel liner was completed. An 8-foot-diameter corrugated aluminum liner was installed with a 2-foot thickness of sand backpacking in extremely heavy ground at the Burgin mine (Utah). After 11 months, the drift is still open and usable. In contrast, a section of the same drift supported by yieldable steel arches was rehabilitated, but the steel arches have now failed a second time and that section of the drift has been abandoned.

An elastic-plastic, finite element analysis showing that a hydraulic backfill can effectively decrease stope closure and reduce pillar stress has been verified by field measurements in operating stopes. This better

quality, higher modulus fill could permit removal of greater quantities of ore from the pillar area before a pillar rock-burst situation develops.

A preliminary experiment on the use of chemical explosives in vertical blast holes to fracture ground for in situ leaching of a shallow copper oxide ore body was successfully completed. The fractures were qualitatively judged adequate from the standpoint of creating permeability for leaching fluids. The encouraging results of this experiment have led to a cooperative agreement for further work at an operating mine in Arizona.

A study to determine the economics of using a large-diameter (12- to 24-inch) void hole in a burn cut and determine the influence of void hole diameter on fragmentation efficiency, depth of round pulled, and placement of the muckpile was begun. The first series of experiments were conducted in an underground copper mine and utilized a specially designed horizontal rotary drill to bore 121/4-inch-diameter holes. Several holes of this diameter were bored to a depth of 14 feet, and adjacent blastholes were fired to determine the correct burden and spacing. Using these results, a 50 footlong, 121/4-inch hole was then bored and a 10- by 20-foot heading driven for this distance with excellent results in terms of blast efficiency and size distribution and placement of the muckpile. An advance of 'pull" of 18 feet per blast round was achieved, which is approximately double the average advance previously attained in this mine using V-cuts.

High-pressure water jet cutting tests were made in conglomerate copper rock blocks over a broad range of pressures, standoff distances, and traverse speeds. Tests were conducted over a pressure range from 10,000 to 30,000 pounds per square inch. Under optimum conditions, depths of cut exceeding 3½ inch were obtained. Supplementary tests have shown that total energy requirements can be substantially reduced when mechanical action is used to augment the action of the water jets.

To eliminate problems of past mining activities, research efforts contained on subsidence control, controlling coal mine fires and burning coal refuse banks, utilizing coal mine refuse, and stabilizing and vegetating areas damaged by various types of past coal mining and processing activities.

During the year four underground and/or outcrop coal mine fires on public and private lands were controlled, resulting in the conservation and protection of about 15 million tons of coal reserves.

Metallurgy.—The general objective of the metallurgy program was to provide, through research and development, the scientific and technical information necessary to encourage and stimulate the nonfuel minerals industry to make advancements in technology. During the year, industry frequently acknowledged its utilization of many of the Bureau's past research accomplishments in areas of metallic and nonmetallic minerals recovery as well as the production of improved metals, alloys, and ceramics.

The Bureau's program to demonstrate and evaluate processes for recovery of alumina from domestic nonbauxitic resources made excellent progress during the year. The first phase of the program, a miniplant for nitric acid leaching, was designed, installed, and successfully operated. Started in August 1973, the facility was capable of treating 60 pounds of calcined clay per hour. Representatives from industry attended the first full-scale demonstration of the miniplant in which the validity of the general flowsheet, and the chemistry of the process was shown. Invitations were also extended to the aluminum industry to participate in a 3-year program on a cost-sharing basis in order to accelerate the effort. To date, eight companies have indicated a willingness to enter the program starting in July 1974. Following the nitric acid evaluation, further evaluations are planned on hydrochloric acid, sulfurous acid, and lime-soda sinter processes. A significant new development in this program was the discovery that aluminum nitrate can be converted to the oxide using a fused-salt bath. The high heat transfer efficiency of the bath over proposed fluid bed schemes offers a significant energy and economic advantage as well as the means for effective recovery of reusable nitric

Because of a pending worldwide shortage of rutile, considerable attention was given to developing methods for using domestic ilmenite to make feed material suitable for pigment-grade titania and titanium. The Bureau demonstrated a method to treat domestic ilmenite, includ-

ing massive rock-type ores, using smelting and mineral synthesis techniques to yield high purity rutile. This method was applied successfully to both Idaho (33% TiO<sub>2</sub>) and New York (45% TiO<sub>2</sub>) ilmenites, to obtain 96% TiO2 material, comparable to natural rutile in size, bulk density, purity, and response to chlorination. In another process, carbiding of calcium titanates and ilmenites after removal of iron was successfully achieved by adding lime and carbon to low-iron slags at elevated temperatures. The furnace product contained up to 70% Ti, 2.4% Fe, 24% C, and 0.7% SiO<sub>2</sub>, which can be successfully converted to titanium tetrachloride with over 95% of the titanium in the feed converted to high purity titanium tetrachloride. Smelting with soda ash, in another process, demonstrated significant cost savings performance improvements, compared with using sodium borate as the flux.

The U.S. imports 90% of the ore needed to produce primary nickel. Research was started on developing the technology needed to utilize submarginal laterite deposits near the California-Oregon border and the nickel-copper deposits in Minnesota. The laterite process involved (1) carbon monoxide reduction, (2) multiple-stage oxidizing leach of reduced material, (3) extraction of nickel from solution, (4) extraction of cobalt from the raffinate, (5) magnesium removal by ion exchange, (6) recycling the solution back to the leach step, (7) stripping nickel from the solvent, and (8) electrolytic recovery of nickel. Recoveries from a laterite containing 1% nickel and 0.2% cobalt were 90% of the nickel and 83% of the cobalt, and no contaminating effluents were produced.

In fundamental flotation studies on galena, significant results were achieved in demonstrating the influence of surface oxidation products on electrochemical behavior. Results agreed with an earlier Bureau theory on the mechanism by which oxygen increases the flotability of sulfides using xanthate collectors, and the importance of semiconductor properties.

In continued research on gold and silver recovery, an improved cell for electrowinning gold from carbon strip solution was developed which promised notable improvements in convenience, cleanout time, and current continuity. Industry has expressed interest in using the Bureau cell,

and adoption appears probable in the near future. In recent research, the carbon-inpulp process was applied to silver ores, by moderately increasing the number of adsorption stages. Another promising low-cost carbon adsorption process was developed for recovering silver from mill tailings, in which 95% of the silver was selectively precipitated with sodium sulfide and removed by filtration. The effluent was passed through an activated-carbon column to collect the gold and residual silver, followed by newly developed alcohol-stripping techniques. An aqueous alkaline cyanide solution and methyl alcohol at ambient temperature, followed by elution with methyl alcohol distillate, stripped essentially all metals from the carbon. As a result of earlier research, pilot studies were initiated by a major gold producer for the recovery of gold from carbonaceous ore using the Bureau's electro-oxidation technique.

Because large reserves of native copper ores are too costly to mine and process by conventional methods, an in-place leaching method using ammonium carbonate was developed. In early leaching tests on 2% copper conglomerate ore with a 12-inch maximum rock size, about 57% of the copper was extracted in 60 days. In other Bureau research on copper heap leaching practices, major improvements in the recovery of copper and byproduct metals such as molybdenum, gold, and silver from some sulfide mine strip wastes were shown to be possible, by floating off the fines and using only the coarse rock. As much as 35% of the copper, 38% of the molybdenum, and 19% of the silver were recovered from the fines, while an additional 33% of the copper was recovered by leaching the coarse fraction. A total copper recovery of 68% was achieved, as compared to only 47% from leaching the ore, as received.

Considerable energy could be conserved and products improved if refractory-lined electric furnaces were used in place of water-wall cupolas for producing mineral wool from slags. A series of evaluation tests were conducted by the Bureau which demonstrated the superior performance of the high-alumina and basic refractories in resisting the molten slags. A demonstration test in a large electric arc furnace is being planned.

A new dicalcium silicate foundry mold

material suitable for both brass and steel castings was developed. This refractory material has the capability of self-decrepitation on cooling, permitting easy removal of the casting, and can also be reused. The mold material is produced by reacting CaCO<sub>3</sub> and SiO<sub>2</sub> at 1,400° C to form the gamma phase dicalcium silicate which changes in volume on cooling, causing the decrepitation. The beta phase portion of the material provides for its hydraulic setting capability in being made into a mold. More extensive foundry tests are planned.

Resource Recovery and Pollution Abatement.—The Bureau continued laboratory and pilot plant work to develop the citrate process for removing sulfur dioxide from waste gas. Construction was completed on phase 1 of the Bureau's citrate pilot plant at the Bunker Hill Co. lead smelter in Kellogg, Idaho. The citrate process is also being tested on stack gas from a coal-fired steam-generating station at the Pfizer, Inc., Vigo chemical plant, Terre Haute, Ind.

Extracting fertilizer from Florida phosphate minerals produces a slime, difficult to dewater, and requiring extensive holding ponds for storage. The Bureau's research, in cooperation with the Florida Phosphate Council, resulted in better characterization of the slime; data needed to develop an economical dewatering process. The amount of attapulgite in the slimes was highly variable and found to be a major factor in preventing easy dewatering. An anionic polyacrylamide was found to be an effective flocculating agent and is being investigated. Additions of tailing sand or use of sand as filter bed media also helped the dewatering. Another settling technique being developed moves screens slowly downward through vertical columns of slime, compacting the solids and collecting clear supernatant water above the screen.

Red muds from the Bayer alumina extraction process also pose a severe mineral waste disposal problem because of dewatering difficulties due to the extreme fineness of the suspended particles. In static settling tests, muds only changed from 14% to 20% solids in 48 hours; pH had no effect. In consolidation tests using vertical wickdrains, 34% solids resulted in 72 hours. The amount of liquid recovered was proportional to the number of drains, and the rate was dependent on the distance between

drains. High-pressure filtration produced a 70% solids filter cake, compared to 50% for low-pressure filtration.

Several techniques for purifying waste waters from mineral- and metal-processing operations were developed. Methods for controlling troublesome calcic scale included an ion-exchange system for removing calcium sulfate and the use of trace quantities of chemical agents for preventing scale formation. Another ion-exchange technique used an inexpensive, naturally occurring zeolite for sorbing ammonia from waste water. Lignite was found to be an inexpensive scavenger for traces of mercury and cadmium remaining in waste water after conventional lime treatment. Selenium was precipitated from waste water using either metallic iron or zinc precipitants; testing on a larger scale is planned at a zinc refinery.

The Bureau's raw refuse pilot plant facility was significantly improved during the past year. High-quality glass was recovered from putrescibles by a multistep froth flotation process. High-quality aluminum was recovered from the glass by screening. Mixed heavy nonferrous metals were accumulated at the bottom of the jig bed. Reshredding and washing of the magnetic product, mostly tin cans, was simplified to prepare this material for detinning. In addition, combustible products obtained from the pilot plant were evaluated as potential fuel. On the average, refuse as received produced 5,000 Btu per pound and total combustibles, as recovered, produced 6,200 Btu per pound. A suitable method for recovery of aluminum from the secondary air classifier heavy product is being developed. Electrostatic separation showed considerable promise, producing concentrates of 80% to 85% aluminum with recoveries as high as 98%. High-frequency inductionrepulsion also appeared promising with recoveries of up to 90%. Bureau-developed technology will be used extensively in constructing a new facility at Berlin, Conn., for the Connecticut Resource Recovery Authority.

The Bureau's incinerator residue recovery pilot plant was operated in support of the demonstration plant to be built at Lowell, Mass., by Raytheon Service Co.

Bureau junk automobile research has produced a new improved incinerator designed for smokeless burning. The proto-

type is capable of burning 10 flattened or 6.5 unflattened cars per hour. Currently, 26 similar junk auto incinerators are planned, under construction, or in operation. A much larger incinerator was built, based on Bureau design and capable of handling 1 railroad car or 20 scrap autos at a time. Equipment was also designed for separating the nonmagnetic reject of junk auto shredders into polyurethane foam, plastic, and metal concentrates. Further separation is possible to recover reusable materials.

The feasibility of preheating beds of ferrous scrap using exhaust gas from a basic oxygen furnace (BOF) was demonstrated. Using this technique, the 28% cold scrap maximum contained in the normal BOF metallic charge could be increased to 40% with heated scrap, a significant increase. This method recovers up to 50% of the energy contained in the offgases.

A new technique was developed for treating aluminum dross that eliminates the need for salt fluxes. Recoveries up to 100% of available metallic aluminum were obtained from samples held in an inert gas atmosphere at 740° C. This technique significantly reduces air contamination, eliminates slag formation, and yields aluminum recoveries equal to or greater than those obtained with salt fluxes. In addition, a hydrometallurgical process was developed for treating high-salt aluminum slags to recover fluxing salt, aluminum metal, and aluminum oxide. The process appears economically adapted to commercial application. A small demonstration plant will be operated for treating 50 to 100 pounds of slag per hour.

Other significant research was concerned with recovering metals and sands from foundry operations, silicon carbide from granite sawing, and metals from flue dust, mill scale, and industrial sludges.

Coal.—Coal research undertaken by the Bureau showed increased emphasis on the conversion of coal to low-ash, low-sulfur fuels through either gasification or lique-faction. At the same time continued effort was expended to improve the quality of the environment.

Work on the SYNTHANE pilot plant has progressed significantly. This Bureau-developed process gasifies any kind of coal with oxygen and steam to produce substitute natural gas. Following completion of pilot plant construction, operation should

provide data essential to demonstrate the commercial feasibility of the process.

Favorable results were obtained in converting high-sulfur coal to low-sulfur oil by the SYNTHOIL process. In this process, coal slurried in recycle oil is propelled by rapid, turbulent flow of hydrogen through a fixed bed catalytic reactor at 840° F (450° C) at pressures up to 4,000 pounds per square inch. Using a cobalt molybdate catalyst, about 95% of the coal is transformed into an oil that is fluid at room temperature and is suitable for boiler plant fuel. Design of an 8-ton-per-day pilot plant is underway. In addition, a feasibility study of the process was completed by an outside engineering firm.

In coal-hydrogasification research, a preliminary test in the 10-pound-per-hour HY-DRANE process developed unit (PDU) resulted in smooth operation of the first stage for 1½ hours. This was followed by a second 1½-hour run in the integrated first and second stages, during which test the moving-bed second stage operated at 1,290° F (700° C) and 1,035 pounds per square inch with a product gas containing 35% methane

Research during the year on the Bureau's COSTEAM process showed that ash recovered from easily liquefied coals can effectively catalyze the liquefaction of more refractory (difficult to liquefy) coals.

During the year the final report on the design to be used in construction of the wood-to-oil pilot plant was completed. This pilot plant is to be erected at the Albany Metallurgy Research Center, and will be capable of converting 3 tons per day of wood chips to about 6 barrels of low-sulfur fuel oil.

In combustion research during the year, the combustion characteristics were determined for low-volatile (5%) chars prepared from Illinois and Utah coals. When the chars were fed to the 500 pound-perhour pulverized-fuel-fired furnace at ambient temperature, supplemental fuel equivalent to 15% of the total thermal input was required to maintain stable flames. Preheating the primary air-char stream to 450°-500° F eliminated the supplemental fuel requirement.

In related coal combustion studies, construction was continued on the three-stage combustor, designed to produce low-ash, high-temperature gas suitable for use in open-cycle MHD power generation. This combustor could also be used as a source of low-Btu gas for firing boilers.

Testing of the stirred-fixed bed gas producer continued during the year, employing both caking and noncaking coals, again illustrating the versatility of this equipment. Preliminary results showed that when limestone chips were added to the coal feed, about one-half of the coal sulfur, which otherwise would appear as H<sub>2</sub>S in the product gas, could be retained in the ash in the bed.

Treatment of dried lignite with oil was found to reduce reactivity of very-low-moisture lignite more effectively than similar treatment of lignite dried to a midmoisture content. The deactivation of dried low-rank coals to permit safe shipment and storage is a major objective in upgrading low-rank coals by drying. Such results may help establish commercial feasibility of the process.

Bureau research in coal preparation has resulted in the development of a two-stage pyrite flotation process, which in laboratory tests removed up to 90% of the pyrite contained in a Lower Freeport bed coal. Recently, the Bureau entered into a cooperative research program with a coal company to study the applicability of this process to a high-sulfur coal now being discarded as waste. Meanwhile, the two-stage pyrite flotation process is also being considered by a major steel company for commercial application to sulfur removal from Pittsburgh-bed coal.

Petroleum.-In what is planned to be a series of cooperative projects for increasing the production of domestic petroleum and natural gas, the Cities Service Oil Co. has signed a contract with the Bureau of Mines to perform a field demonstration of a micellar-polymer recovery method. Cities Service has chosen as the test site the El Dorado field, Butler County, in south-central Kansas. The field is typical of a depleted waterflood project that still contains oil that is unrecoverable by present technology. It is expected that nearly a year will be required to drill the pattern wells and prepare the field for the injection of the micellar fluids, and completion of the demonstration will take about 5 years.

A contract has been negotiated with the Sohio Petroleum Co. and others for use in in situ oil recovery field tests on 10 acres

within a 320-acre tract they own in the Northwest Asphalt Ridge tar sand deposit.

Detailed characterization studies were initiated with the receipt of a sample of Utah Syncrude. This coal-derived oil, produced by the pyrolysis of Utah A-seam coal in the Coal-Oil-Energy Development (COED) process development unit at Princeton, N.J., has been hydrotreated to make a synthetic crude oil. This is the first in a series of samples to be analyzed in cooperation with the Office of Coal. Research. The compositional data to be provided by the Bureau will be used to evaluate the oils in terms of ease of processing into quality fuels and to select the most appropriate plant operating conditions to produce such oils.

The Committee on Data for Science and Technology (CODATA) of the International Council of Scientific Unions (ICSU) recently issued a set of CODATA Recommended Key Values for Thermodynamics of 22 chemical species. The values are based on selections made at the U.S. National Bureau of Standards and the Institute for High Temperatures of the Academy of Sciences, U.S.S.R. Enthalpy-of-formation data provided by the Bureau of Mines were used in selecting the enthalpies of formation values for 6 of the 22 species.

In studies aimed toward developing an understanding of asphalt-aggregate adhesion, sulfoxides have been identified and quantitatively measured in the strongly adsorbed material found at the asphalt-aggregate interface. Sulfoxides are readily formed during the preparation of hot-plant road mixes from the sulfur compounds normally present in petroleum. They account for up to 25% of the strongly adsorbed materials and may be important to the water stability of the asphalt-aggregate bond. Moisture-induced damage in asphalt pavements is a major cause of road failure in many parts of the country.

Information recently has been released from both Government and industry sources showing that fuel economy of late-model autos has been reduced sharply in changing engines to control emissions. With fuel supply in deficit, the question is now asked—"Would economy be improved if emission controls were deactivated?" Although the Bureau has neither proposed nor endorsed such a course of action, its technical staff recognized a need for relevant data. To that end, fuel economy data

were obtained on seven late-model cars, each tested both in standard configuration and with simple modifications that deactivated some emission controls. Results showed an average 9% gain in fuel economy. As expected, taken overall, emissions were increased-hydrocarbon up an average 30%; oxides-of-nitrogen, about 100%. Carbon monoxide emissions were relatively unchanged. It should be noted, however, that these percentage increases were from a low base and that at the higher values the emissions levels were, on the average, far below levels that were typical of precontrol autos. Detailed information on the test procedures and the results have been placed in an open file report.4

Particulate matter in the atmosphere can be a health hazard depending upon its composition, particle size, and other as yet poorly defined characteristics. In underground mines, diesel engines are a source of such airborne solids. Because of the possible health effects, the Bureau's experimental program on diesel exhausts included study of exhaust particulate. Results of experiments completed recently indicated that the mass loading of particulates in the exhaust from typical "clean" diesels may be as great as 100 times the allowable level in the working atmosphere. While ventilation air must be supplied to ensure adequate dilution of other toxic components in the exhaust, the amount required to purge the atmosphere of particulates may be even greater and thereby constitute an additional cost burden. In addition to the particulate matter, sulfuric acid droplets may be formed from the sulfur contained in the fuel. Results to date show that H2SO4 levels are very low except in the case where engines have been outfitted with oxidation catalysts. In this latter case, levels of sulfate have been found to be as great as 100 times the tolerable level. The sulfates are measured as an integral part of any particulate study.

The Higgins-Leighton waterflood prediction mathematical model and associated computer programs have been used extensively by industry since its publication by the Bureau several years ago. Using the model, an oil operator can select the operating conditions that will recover the highest possible percentage of the oil in the ground to meet the Nation's energy requirements. The model can also reveal inadequacies in the existing reservoir data.

Experimental work was recently completed on a study to determine how ambient temperature influences automotive emissions. Results showed that, in general, unburned hydrocarbon and carbon monoxide emissions were lowest when operating a vehicle within the 70°-80° F range. Amounts of those materials in the exhaust tended to increase with either lower or higher temperatures. The inference to be drawn is that measurements of emissions that are at the "normal" ambient test conditions may not provide a true measure of the emissions problem under real-world conditions. The data will provide a basis for judging (1) the need to adjust emissions estimates for existing ambient temperature, (2) the need for certification testing at more than one temperature, and (3) the need for some degree of control on the temperature-related degradation of emission under control system performance.

Oil Shale.—The oil shales of the Western United States represent one of the largest accumulations of hydrocarbon reserves in the world. Efforts have been undertaken to promote the development of these reserves. A new project was initiated on managing wastes and pollutants. The first problem to be undertaken—a study of the migration of fluids in connection with in situ oil shale processing-will utilize the in situ project already underway near Rock Springs, Wyo. An additional site in the northern Green River Basin was chosen at which underground water conditions will be established prior to any processing activity. Automatic data processing techniques are to be used to gather, store, process, and disseminate the mass of data required for a statistically sound project design.

Work continued at the Rock Springs site in preparation for an in situ combustion experiment at moderate depth. The zone to be retorted is being prepared by detonation of explosives injected into horizontal fractures created by hydraulic facturing, in contrast to a previous experiment at similar depth in which explosives were detonated in boreholes to establish the fracture system. A significant advance in fracturing research was obtained during the current site preparation by the creation of a system of three horizontal fractures separated by

<sup>&</sup>lt;sup>4</sup> Eccleston, B. H. Emission Controls and Fuel Economy of Seven 1973 Vehicles. BuMines Open File Report, Feb. 15, 1974, 12 pages.

intervals of only about ten feet of shale at depths of 146 to 172 feet.

Experimentation in laboratory and pilotsize retorts simulating in situ conditions was continued to determine effects of operating variables, A series of six runs was completed in a 10-ton retort to study scalefactors, using operating conditions duplicating previous runs in a 150-ton retort, and a new series was begun involving the addition of steam to the retort atmosphere. A small pressure retort was used to study effects of simulated overburden pressures in an inert atmosphere (nitrogen), and a report was prepared describing the effects on oil yield and quality. A similar series of experiments was begun using hydrogen as the retorting atmosphere. Preliminary results indicated that oil yields are higher than in the experiments with nitrogen.

Major contributions were made to the Department of the Interior Prototype Oil Shale Leasing Program, both through assistance in preparation of the Final Environmental Impact Statement and through rapid and timely assay of additional core samples from lease tracts and other sites in Colorado, Utah, and Wyoming. A report was published describing for the first time the oil shales in the Washakie Basin of Wyoming which includes two of the tracts offered for lease.5 In addition to the Washakie Basin report, other reports on properties of oil shales relevant to their processing included one on shales at the Bureau's site near Green River, Wyo., one on the oil shales in Uintah County, Utah, one on the occurrence of aragonite in oil shale, one on a technique to estimate nahcolite and dawsonite from oil-yield data, and one on the thermal properties of two of the important oil shale minerals, dolomite and shortite.

Work directly concerned with oil shale processing resulted in a report on the kinetics of oil shale pyrolysis and three papers on shale oil processing. These papers covered the subjects of production of a shale oil Syncrude, characterization of this Syncrude, and catalytic denitrification of a shale gas oil.

Bench-scale research was conducted on gasification of shale oil or oil shale as an alternative or supplementary method of obtaining fuel values from oil shale by in situ processing. A series of single-stage hydrogasification experiments with in situ crude shale oil was completed, new equipment

for two-stage hydrogasification was installed, and experiments were begun. Initial experiments obtained higher gas yields than with single-stage hydrogasification, and showed that over 97 weight-percent of the crude shale oil can be converted to gas with a high methane content.

Major progress was made under a lease agreement for an industry-sponsored project to develop and demonstrate a new aboveground retort design at the Bureau's Anvil Points facility in Colorado. The operating company, Development Engineering, Inc., took over the facility and completed construction of a pilot-size retort on which shakedown operations were begun with promising results. Installation of a semi-works-scale retort also neared completion.

Economic Analysis.—The Bureau's economic research program concentrated on analysis of the economic situation within the minerals sector as well as on how the mineral industries affect and are affected by conditions prevalent in the national and international economies. This research was designed to determine and interpret with accuracy the current situation so as to provide decisionmakers with adequate background material for their deliberations. The economic analysis program attempted to pinpoint pertinent data, and to develop the general methodology needed for such analysis. Major long-term research projects undertaken included the study and forecasting of demand, supply, and productivity; projections of economic data; financial analysis; mineral taxation; waste recycling; index numbers; input-output analysis; measures of economic activities stimulated by mineral industries; and the study and reporting of weekly price changes. Short-term projects, responding to the need to deal with rapidly changing economic conditions, were also a major part of the Bureau's economic research program. During 1973, short-term projects undertaken included oil shale leasing, alternatives for natural gas, a short-term energy forecasting model, an environmental impact statement on surface mining of coal, the impact of the Arab oil embargo on U.S. petroleum refineries, the impact of deficits of coal supplies on the U.S. economy, a solid waste

<sup>&</sup>lt;sup>5</sup>Trudell, Lawrence G., Henry W. Roehler, and John Ward Smith. Geology of Eocene Rocks and Oil Yields of Green River Oil shales on Part of Kinney Rim, Washakie Basin, Wyoming. BuMines RI 7775, 1973, 151 pp.

management model for Spain, international mineral resources, minerals futures markets, projections of demand for stone and sand and gravel, energy's contribution to GNP, the value of primary minerals, and the impact of increased cost of gasoline on the demand for minerals.

Health and Safety.—Major efforts have been continued by the Bureau toward improving and securing the health and safety of miners. A portion of the research is summarized below.

The Bureau's pumpable roof bolt was field tested at the White Pine copper mine in Michigan. Because of the White Pine success, a contract was awarded for large-scale field demonstrations of the pumpable bolt. Under this contract a prototype pumpable roof-bolt machine was constructed, which would provide for remote-automatic installation of the bolts and incorporate the latest safety features developed under other program areas. Pumpable bolts will then be extensively tested in direct comparison to conventional bolting systems in at least two operating coal mines.

The Bureau's shortwall mining demonstration was initiated with the signing of a cooperative agreement with a coal operator and subsequent purchase of a shortwall roof support system. The props were delivered and installed, panels laid, and mining begun. The coal operator is to supply all of the remaining equipment. A rock mechanics study has been initiated to provide data from this demonstration which will aid other operators in determining the applicability of shortwall mining to their individual situations.

A comprehensive study of the behavior of the rock mass above an operating longwall was initiated. Fieldwork was conducted in cooperation with an operating coal company over a longwall mine in West Virginia. The data will be used to help operators and to further the understanding of subsidence.

Efforts to develop coatings to replace urethane foams for coal mines continued. A variety of sealants previously applied in the Ireland mine, Moundsville, W. Va., have been evaluated for their durability and effectiveness under severe conditions. Of the sealants tested, urethane foams (applied as a basis for comparison) and vermiculite cement sealants showed the least evidence of a sloughing or deterioration. More recently, about 15,000 square feet of roof and

rib were coated with a magnesium oxsulfate sealant. Laboratory testing of this incombustible sealant indicated that it may be capable of replacing urethane foams in many instances. Field testing at the Ireland mine is designed to provide performance data for comparison with that of the sealants previously tested.

Techniques to strengthen rock in advance of mining by polymeric grouting were tested at a coal mine in West Virginia. Core sampling after mining had advanced showed that the polymeric material was completely cured, and that cracks as fine as 1 mil had been successfully bonded. The test showed that a friable coal mine roof can be successfully bonded into a more competent structure.

An evaluation determined that six brands of currently available wearable audiodo-simeters met required response and overall accuracy requirements. A prototype time-resolved dosimeter, an instrument which records noise exposure as a function of time, was built and gave results that agreed well with data from a concurrent noise survey in a coal mine.

Tests of a trace gas technique that was developed for observing the course of ventilation air in metal and nonmetal mines showed it to be an excellent method for evaluating recirculation and the transit times of air and determining flow volumes and velocities, air exchange rates, and auxiliary fan effects in large airways with velocities too low for standard methods.

Four ignition suppression devices were being tested on continuous miners that are producing coal in gassy mines in West Virginia. The success of this effort will be evaluated after each of these machines has mined at least 20,000 tons of coal. Techniques have been developed for the construction of airtight and watertight seals from the surface through boreholes into the mine where out-of-control mine fires cannot be fought directly. The system was proved by the sealing of various passageways including a massive four-way intersection in a mine in West Virginia.

Work was completed on a contract to select the type of large mobile mining equipment most prone to fire, and to develop and demonstrate a fire sensing and control system for this equipment. The fire control system was successfully field-tested at two mines, each with adverse hot and cold temperatures, on a 100-ton-capa-

city ore truck. Fires set in the engine compartment and brake grid areas were automatically sensed and suppressed. Safety and management personnel at these mines were very interested in this piece of hardware, because it offered protection to the truck driver and protected a very expensive piece of equipment.

Meaningful progress toward acquisition of a multientry fire and explosion underground test facility was made during the year. The conventional mining system portion of the Inherently Safe Mining Systems (ISMS) demonstration phase was being conducted in a new single-section mine in Kentucky. Negotiations to acquire this site on a long-term basis, for fire and explosion research subsequent to the ISMS work, were in progress at yearend.

Preliminary results indicated that direct gas measurement on exploration cores can be used to estimate coalbed gas content and approximately predict methane emissions from a prospective mine. Monitoring of the vertical boreholes that have been drilled far in advance of mining has shown that dewatering of the coal is the key to successful degasification.

Respirable dust research was rapidly shifting to underground evaluation and demonstration. Dust suppression by water infusion was studied in three separate coal mines. In one of the sections significant respirable dust reduction was obtained, and the mining company has decided to modify a longwall section for routine application of the infusion procedure as part of the mining cycle. The remaining two companies have incorporated infusion into their dust control plans. An air curtain respiratory protective device that is part of the miner's hat was designed, developed, tested, and fabricated. Underground tests are to be conducted. A Stanford Research Institute optical particle counter developed under contract was evaluated in the laboratory. It has a linear response in the range of 1 to 40 milligrams per cubic meter and is easily reproducible and very reliable for relative measurements of dust concentrations. A new rapid infrared technique for the evaluation of alpha quartz in an individual field sample was developed. Comparison of this new technique with existing infrared and X-ray techniques showed positive correlation.

Two self-contained personal breathing ap-

paratus have been developed to replace the currently used self-rescuers which are ineffective in atmospheres containing more than 1½% carbon monoxide and less than 16% oxygen. One apparatus has a 10-minute oxygen supply and the other a 1-hour supply. Both will protect the miner regardless of the toxic gases in the mine air. Both units have been tested and approved by the National Institute for Occupational Safety and Health.

Two improved communications methods for rescue teams have been developed to replace the heavy sound-powered telephone system which includes a handset and reel of wire. One method is a versatile, lightweight radio (walkie-talkie) that uses an unattached small-diameter wire between the radios for an antenna. The other method consists of a hand-free conduction microphone and ear speaker mounted on the rescuer's hardhat and a relatively lightweight attached wire between the fresh-air base and the rescue team.

Prototype electromagnetic hardware for locating trapped miners within 40 feet has been developed and tested successfully at four mines in West Virginia and Pennsylvania having overburdens as thick as 900 feet. The system consists of a miniature transmitter packaged inside the miner's cap lamp battery and operates from a small amount of excess energy in the battery. The signal is transmitted through the earth from a loop of wire connected to the transmitter and is detected by equipment carried on the ground surface or suspended from a helicopter.

Equipment and procedures were being developed to warn of unsafe conditions caused by high levels of CO, CO<sub>2</sub>, and NO $_{\times}$  in diesel engine exhaust. Several types of monitors were investigated for each gas. Other efforts were directed specifically at reducing the levels of toxic emissions from diesel engines to the lowest levels practical without sacrificing engine performance.

Thirty-seven coating materials were tested in the laboratory for their ability to stop radon gas. Fifteen were successful in stopping 50% or more of the radon emanation from uranium ore specimens, and five of the best were selected for field testing. An instant working-level meter was developed by adapting and modifying an existing prototype instrument. This improved unit will sample, analyze, and

indicate automatically the working level exposure resulting from the three different radon daughters and their ratios. The Bureau of Mines Dakota Experimental Uranium Mine near Grants, N. Mex., was used extensively for underground evaluation of laboratory-developed control technology and advanced instrumentation. A new experimental mine, located in Uravan, Colo., was leased following expiration of the Dakota mine contract. The new mine is being prepared for extensive use in 1974.

The toxic gases and vapors that may result from mine fires can present a major hazard to miners. A large number of brattice cloths, conveyor beltings, and hydraulic fluids have been approved in the past on the basis that they are fire retardant; however, their potential for toxic gas generation through decomposition has not been determined. Investigations were undertaken to determine and quantitatively analyze the toxic products produced upon thermal decomposition or combustion of these thermally unstable materials. Fourteen different items have been investigated using three different thermal test methods to determine the toxic compounds formed on a weight per weight basis, including gases and vapors.

A mine monitoring system has been developed, installed, and operated in a West Virginia coal mine. The system monitors a variety of environmental parameters at the intake and return of an air split. The data are telemetered to the surface, then sent via a leased telephone line to a remote computer where they are accumulated and analyzed. Results to date indicate that the monitoring system is suitable for use in underground mine environments and can be used to predict problems in the mine. Based upon experience from this and other mine monitoring systems that have been developed and are under evaluation, a new miniaturized mine monitoring and telemetry system has been developed by the Bureau. The system monitors four parameters (methane, ventilation, carbon monoxide, and temperature) and computes temperature rate of rise. The underground monitor station is housed in an enclosure approximately the size of a loud-speaker telephone and displays the results of the monitored parameters underground as well

as telemetering this information to a small surface console.

A "Call Alert" system has been developed which consists of small pocket-sized receivers worn by roving miners that can be selectively activated from remote locations underground and on the surface. This system can be used to alert a specific individual that he is wanted on the loud-speaker telephone. The system is simple and inexpensive and requires only a small modification to the existing mine telephone circuit.

First generation mine lighting systems using circularly polarized, high-pressure sodium lamps were evaluated in high coal in an operating mine. The portable area system in both conventional and continuous miner sections and the machine-mounted system achieved the desired level of illumination in accordance with existing proposed standards, had very low maintenance, and in general were acceptable to mining personnel.

Efforts were continued to develop and test the feasibility of using protective canopies on low-coal electric face equipment. Adjustable canopies have been designed, fabricated, and installed on two shuttle cars, a cutter, a drill loader, and a roof bolter. Installation was made in two mines. The preliminary results appeared promising. Research continued to investigate the feasibility of using remote, semiautomatic or automatic controls on mining machines used in the face area and on shuttle cars. Various facets of these systems have been successfully demonstrated.

A contract was let in fiscal year 1972 to determine the adequacy of available circuit breakers for use on 300- to 600-volt direct current (v.d.c.) circuits. The existence of "molded case breakers" suitable for interrupting 300- and 600-v.d.c. service in underground coal mines has been demonstrated. Permissible quick-opening electrical enclosures with a built-in feature to lock and check the access cover have been developed. This new design will provide more expeditious access to components inside explosion-proof boxes for maintenance and inspection and still maintain the essential explosion-proof provisions of these boxes.

An automated prototype peristaltic conveyor was developed, and a number of coal slurry tests were made. The conveyor consists of air-actuated rubber valves connected in series. A slurry of 1/4-inch by 0 coal with

a concentration of 55% by weight was successfully conveyed; tests using larger coal sizes and greater concentrations have been unsuccessful to date. The peristaltic conveyor has potential for moving high-concentration slurries over short distances and for injecting solids into a pressurized continuous hydraulic transportation pipeline.

The primary technology transfer effort in 1973 was the active dissemination of research accomplishments through the mechanisms of Open Industry Briefings (OIB) and topic seminars. The Bureau held six Open Industry Briefings in conjunction with various mining associations across the United States. These briefings provided status reports to the mining industry on Bureau research programs such as methane control, respirable dust, fire explosion prevention, and others. Four seminars were also held by the Bureau during 1973. Seminars, unlike the OIB, dealt in much finer detail with the specifics of the Bureau's research accomplishments, including the engineering details of applying technologies of oil and gas well plugging, methane control, instrumentation for mine design, mine communications, and ground control aspects of coal mine design. These meetings, attended by representatives from the mining and associated industries, have in fact provided impetus for adoption of Bureau-developed research accomplishments. An additional effort of this type was the technology transfer exhibit at the 1973 coal show at which a large number of Bureaudeveloped devices were displayed. The first of a new publication series, Technology News, was also being prepared for distribution throughout the industry. The series will offer concise, definitive, applicationoriented statements of accomplishments that have resulted from the research program and will provide timely information to potential technology users.

Explosives and Explosions.—The technical feasibility of the major objective of the explosive identification program was accomplished by successfully extracting a seven-element code from phosphor grains surviving detonations. However, raw phosphor grains were found to sensitize some explosives; suitable grain coatings are currently being explored to eliminate this effect.

Various sensitivity tests were conducted on a large number of different blasting agents used in metal and nonmetal min-

i, j

ing. Ammonium nitrate-fuel oil (AN-FO) mixtures using four types of Canadian AN were found to exhibit unusually high sensitivities; the most sensitive mix had a 50% initiation velocity ( $V_{50}$ ) of 640 meters per second and was cap sensitive.

The feasibility of formulating a waterbased explosive without the use of flaked aluminum or explosive sensitizers was demonstrated.

Seven experimental detonators with different casing material were evaluated for incendivity in 8% natural gas-air. The least incendive material was nickel-clad steel, which was found to be slightly less incendive than copper and could serve as a substitute in times of copper scarcity.

In research on hazardous materials, the effort to improve the drop weight, static spark, and friction sensitivity tests was continued. It was found that primary explosives like lead azide could be initiated with the same spark stimulus in an N<sub>2</sub> atmosphere as in air, while substances like powdered tetryl which appear to deflagrate could not be initiated in an N<sub>2</sub> atmosphere at spark energies several orders of magnitude higher than that observed in air trials. Laser ignition of explosives was also demonstrated.

Quantitative luminosity measurements on the light generated by water-based permissible explosives established that they generate a larger amount of visible radiation than conventional permissible explosives; however, this is not reflected in an increase in their relative incendivities in natural gas-coal dust-air mixtures. An empirical ignition probability model which related explosive chemical composition and relative incendivity was developed during extensive computer studies of incendivity test results.

Helium.—The Bureau of Mines has over the years maintained at least a minimum research effort in the areas of helium production and analytical methods and techniques relating to helium in natural gas and the impurities in the purified helium. During 1973, laboratory work continued in this vein with the development of a highly sensitive analytical procedure which accurately detects the helium-3 content in helium-4 in the parts-per-billion range.

In conjunction with this development, the Bureau completed a laboratory project which lowers the helium-3 content of helium-4 from the normal level of about 250 parts per billion to below 20 parts per billion. This special helium-4 has application in the developing field of helium-cooled nuclear reactors. Helium-3 molecules circulating around a reactor core, along with the normal helium-4, are bombarded

with neutrons. As a result, radioactive tritium is formed. When the helium-3 is removed from helium-4, the potentially troublesome radioactive source is removed. Helium-4 leaves no such radioactive product.

## LEGISLATION AND GOVERNMENT PROGRAMS

Significant Federal activities in the minerals sector included special actions to fight inflation and to meet the energy crisis as well as continuing programs dealing with the environment, water, public land, national stockpile, and tariffs.

Actions taken under the Economic Stabilization Act of 1971 included shifting from phase 2 (which was in effect during all of 1972) to phase 3 in January 1973. Phase 3 was intended to be a step toward the eventual end of price controls. It involved the self-administration of a modified version of the general standards of phase 2. Prenotification for price increases was modified and eliminated for wage increases. Fewer firms were required to report, and rents were added to the phase 2 exemptions to the price standards. The rate of inflation during the first 5 months of 1973 remained disappointingly high, with few signs that it would slow later in the year. On June 13 the President announced a new 60-day freeze to be followed by phase 4. Phase 4 combined some aspects of both phase 2 and phase 3 although in some cases it was stricter than phase 2. Phase 4 remained in effect for the remainder of 1973. Inflation continued to be a major problem during 1973 in spite of the price controls.

During 1973 the United States was faced with an energy crisis. Shortages of petroleum late in the year following the decision by several Arab nations to cut back crude oil production and to curtail shipments to the United States impelled the Federal Government to attempt to conserve and allocate energy supplies to insure the availability of fuels for critical uses. A longrange outcome of the energy crisis was "Project Independence" which was designed to ensure an expansion of domestic energy production so that the economy would no longer face disruption or the threat of disruption from sudden curtailment of vital energy supplies.

Legislation affecting the mineral sector and approved during the first session of the 93d Congress covered such areas as energy,

the environment, water, public lands, the national stockpile, and duties. Energy was the concern of a number of laws. P.L. 93-159 gave the President the authority to deal with the energy shortages. Two other laws dealt with energy conservation. P.L. 93-182 put the country on daylight saving time year-round. P.L. 93-239, which was passed during 1973 but not signed by the President until early 1974, established a maximum 55-mph national speed limit. P.L. 93-88 amended the Euratom Cooperation Act to increase the amount of contained uranium 235 which the U.S. Atomic Energy Commission is authorized to transfer to the European Atomic Energy Community. Several laws concerning the environment were passed. A number supplied funding to continuing environmental programs; others were concerned with international environmental agreements. P.L. 93-207 extended and expanded the Federal Water Pollution Control Act. Other measures of interest to the minerals sector included laws for disposing of the zinc, copper, silicon carbide, molybdenum, and aluminum in the national stockpiles, and laws which extended the suspension of duties on certain copper, certain kinds of metal scrap, and manganese ore. A listing of mineral related Federal legislation signed into law during 1973 follows:

| Public Law (P.L.) Description                                                                                                                       | Signed into law |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Energy: P.L. 93-88.—To increase enriched uranium ceiling under Euratom Cooperation                                                                  | Aug. 14         |
| P.L. 93-159.—Proposing more precise<br>and definite authority<br>for the President to<br>deal with emergency<br>shortages of petroleum<br>products. | Nov. 27         |
| P.L. 93-182.—Providing for use of daylight saving time on a year-round basis until April 1975.  Environmental quality:                              | Dec. 15         |
| P.L. 93-14.—Authorizing funds for<br>the administration of<br>the Solid Waste Dis-<br>posal Act for fiscal<br>year 1974.                            | Apr. 9          |

| Public Law (P.L.) Description                                                                                                                                                         | Signed<br>into law |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Environmental quality—Continued<br>P.L. 93-15.—Authorizing funds for<br>the administration of<br>the Clean Air Act for                                                                | Apr. 9             |
| fiscal year 1974. P.L. 93-36.—Authorizing funds for the Office of Environment Quality for fiscal                                                                                      | May 18             |
| years 1974 and 1975. P.L. 93-119.—Implementing the 1969 and 1971 amendments to the International Convention for the Pre-                                                              | Oct. 4             |
| vention of the Pollution<br>of the Sea by oil.<br>P.L. 93-188.—Providing for U.S.<br>participation in the<br>United Nations envir-                                                    | Dec. 15            |
| onmental program. P.L. 93-201.—Proposing removal of certain restrictions on the transportation of dry bulk commodities                                                                | Dec. 27            |
| by water carriers. Water resources:                                                                                                                                                   |                    |
| P.L. 93-51.—Authorizing funds for<br>the saline water con-<br>version program for<br>fiscal year 1974.<br>P.L. 93-207.—Proposed Federal Water<br>Pollution Control Act<br>Amendments. | July 1  Dec. 28    |
| Public lands:                                                                                                                                                                         |                    |
| P.L. 93-153.—To establish a Federal<br>policy granting rights-<br>of-way across Federal                                                                                               | Nov. 16            |
| lands. P.L. 93-184.—Providing for the conveyance of certain mineral rights in and under lands in Onslow County, N.C.                                                                  | Dec. 15            |
| National stockpile:<br>P.L. 93-212.—Authorizing disposal of<br>zinc from the national                                                                                                 | Dec. 28            |
| stockpile. P.L. 93-214.—Authorizing disposal of copper from the national stockpile and                                                                                                | Dec. 28            |
| supplemental stockpile. P.L. 93–216.—Authorizing disposal of silicon carbide from the                                                                                                 | Dec. 28            |
| national stockpile. P.L. 93-219.—Authorizing disposal of molybdenum from the national stockpile.                                                                                      | Dec. 28            |

|                 |                                                                                                                                               |      | Signed<br>into law |  |  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------|--|--|
| P.L. 93–220.—   | -Authorizing disposal of<br>aluminum from the na-<br>tional stockpile.                                                                        | Dec. | 28                 |  |  |
| Tariffs and dut | ies:                                                                                                                                          |      |                    |  |  |
| P.L. 93-77      | -Extending to June 30,<br>1974, the suspension of<br>duty on certain copper.                                                                  | July |                    |  |  |
| P.L. 93-78      | Extending to June 30,<br>1975, exiting suspen-<br>sion of duty on certain<br>kinds of metal scrap.                                            | July | 30                 |  |  |
| P.L. 93-99      | Extending until July 1,<br>1976, the existing sus-<br>pension of duty on<br>manganese ore.                                                    | Aug. | 10                 |  |  |
| Miscellaneous:  |                                                                                                                                               |      |                    |  |  |
| P.L. 93–183.–   | -Naming the Geological<br>Survey National Center<br>under construction in<br>Reston, Va., as the<br>"John Wesley Powell<br>Federal Building." | Dec. | 1                  |  |  |

The acquisition cost of strategic materials in Government inventories totaled \$5.2 billion with a market value of \$7.4 billion as of December 31, 1973. Materials in these Government inventories with a market value of \$6.5 billion, which is 88% of the total market value on hand, were considered in excess of stockpile needs. In calendar year 1973 the Government disposed of \$953 million worth of mineral commodities, a more than threefold increase from the 1972 figure.

Sales of aluminum had a value greater than \$400 million and comprised more than 40% of the total minerals sold. Major mineral stockpile items sold during the year with a sales value of at least \$50 million each included lead, magnesium, metallurgical manganese, ferro-high-carbon manganese, in, and zinc. Cobalt had a value greater than \$20 million, and magnesium sales were greater than \$40 million.

#### WORLD REVIEW

World Economy.—International trade and investment grew significantly during 1973 in spite of the adverse effects of inflation, wide fluctuations in exchange rates, large capital flows, capacity limitations, crop failures, and cutbacks in oil production by major producers. The international monetary system was maintained while allowing governments to deal with their economic problems without disrupting international trade and investment flows. The international economic system was strengthened by mutual efforts to arrive at solutions to common problems.

Inflation was the major problem facing the world economy during 1973. There were large increases in the prices of basic foods and processed materials. Some measures taken by governments in response to the inflation had the effect of shifting the inflation to other countries, but in general tensions created by such policies were eased.

Continuing economic growth was the typical pattern for the developed countries. Industrial production grew at a rate greater than 10% for the countries of the Organization for Economic Co-Operation

and Development, although those located in Europe grew at a rate just over 8%.

World Production.—The United Nations (UN) indexes of world mineral industry production (1963=100) for the extractive industries increased 9 index points to 166 for 1973. The metal mining index increased 8 points to 158, the coal index increased 2 points to 104, and the crude petroleum and natural gas index increased 12 points to 202. The mineral processing industries indexes show a 17-point increase to 182 for base metals, a 15-point increase to 192 for the nonmetallic mineral products index, and a 26-point increase to 250 for the chemicals, petroleum and coal products index. Overall industrial production as measured by the UN index rose 17 points to 194 for 1973.

World Trade.—The value of world trade reached \$412.4 billion in 1972, almost 19% greater than the value for 1971. The value of mineral commodities exports for 1972

was \$83.4 billion, almost 14% greater than the previous year. The value of metals exports increased 11% in 1972 after declining 5% the previous year. Within this group, all ores, concentrate and scrap exports increased almost 7%, iron and steel exports increased almost 13%, and nonferrous metals exports increased almost 12%. Nonmetal exports were \$2.9 billion, almost 14% greater than they were in 1971. World trade in mineral fuels reached \$41.2 billion, 16% greater than it was in 1971.

World Prices.—Mineral commodity export price indexes (1963=100) increased in both the metal ores sector and the fuels sector. In 1973 metal ores increased by 27 index points and fuels by 45 points, reaching 161 and 188, respectively. Total minerals prices increased significantly in both developed and developing areas. Nonferrous base metal prices in developed areas increased by 38% while those of the developing areas increased by 57%.

Table 2.—Value of mineral production by group, 1967 constant dollars 1 (Million dollars)

|                                    | 1969            |                           |                           | 1970            |                           |                           | 1971            |              |                      |
|------------------------------------|-----------------|---------------------------|---------------------------|-----------------|---------------------------|---------------------------|-----------------|--------------|----------------------|
| Mineral group                      | Pro-<br>duction | Ex-<br>ports <sup>2</sup> | Im-<br>ports <sup>2</sup> | Pro-<br>duction | Ex-<br>ports <sup>2</sup> | Im-<br>ports <sup>2</sup> | Pro-<br>duction | Ex-<br>ports | Im-<br>2 ports 2     |
| Metals and nonmetals except fuels: |                 |                           |                           |                 |                           |                           |                 |              |                      |
| Nonmetals                          | 5,624           | 222                       | 491                       | 5,712           | 225                       | 551                       | 6,058           | 226          | 573                  |
| Metals                             | 3,333           | 246                       | 1,094                     | 3,928           | 322                       | 1,249                     | 3,403           | 192          | 1,047                |
| Total 3                            | 8,957           | 467                       | 1.586                     | 9.640           | 547                       | 1.799                     | 9.461           | 418          | 1,620                |
| Mineral fuels                      | 17,965          | 632                       | 1,428                     | 20,152          | 1,120                     | 1,567                     | 21,247          | 1,020        | 2,076                |
| Grand total 3                      | 26,921          | 1,099                     | 3,014                     | 29,792          | 1,667                     | 3,366                     | 30,708          | 1,438        | 3,696                |
|                                    | 1972            |                           |                           |                 | 1973 P                    |                           |                 |              |                      |
| _                                  | Producti        | on I                      | Exports <sup>2</sup>      | Imp             | orts 2 P                  | roduction                 | Expo            | rts 2        | Imports <sup>2</sup> |
| Metals and nonmetals except fuels: |                 |                           |                           |                 |                           |                           |                 |              |                      |
| Nonmetals                          | r 6,48          | 2                         | 152                       | 6               | 46                        | 7.413                     | 2               | 80           | 768                  |
| Metals                             | r 3,64          | 2                         | r 247                     | 9               | 88                        | 4,362                     | 2               | 53           | 1,080                |
| Total 3                            | r 10.12         | 4                         | г 399                     | 1.6             | 34                        | 11.775                    | 5               | 33           | 1.849                |
| Mineral fuels                      | r 22,06         |                           | r 1,108                   | 2,8             |                           | 25,012                    | 1,1             |              | 4,720                |
| Grand total 3                      | r 32,18         | 5                         | r 1,508                   | 4,4             | 90                        | 36,788                    | 1,6             | 88           | 6,569                |

P Preliminary.

Table 2.-Value of mineral production by group, 1967 constant dollars 1 (Million dollars)

| (,     |                                   |                                                            |                                                                                                                                                                          |                                                                                                                                                                                                                                   |  |  |  |  |
|--------|-----------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1969   | 1970                              | 1971                                                       | 1972                                                                                                                                                                     | 1973 P                                                                                                                                                                                                                            |  |  |  |  |
|        |                                   |                                                            |                                                                                                                                                                          |                                                                                                                                                                                                                                   |  |  |  |  |
| 5.498  | 5.535                             | 5.646                                                      | 5.762                                                                                                                                                                    | 6.250                                                                                                                                                                                                                             |  |  |  |  |
| 2,965  | 3,052                             | 2,742                                                      | 2,861                                                                                                                                                                    | 3.074                                                                                                                                                                                                                             |  |  |  |  |
| 8.463  | 8.587                             | 8.388                                                      | 8,623                                                                                                                                                                    | 9,324                                                                                                                                                                                                                             |  |  |  |  |
| 16,948 | 18,074                            | 17,735                                                     | 17,075                                                                                                                                                                   | 17,676                                                                                                                                                                                                                            |  |  |  |  |
| 25,411 | 26,661                            | 26,123                                                     | 25,698                                                                                                                                                                   | 27,000                                                                                                                                                                                                                            |  |  |  |  |
|        | 5,498<br>2,965<br>8,463<br>16,948 | 5,498 5,535<br>2,965 3,052<br>8,463 8,587<br>16,948 18,074 | 5,498         5,535         5,646           2,965         3,052         2,742           8,463         8,587         8,388           16,948         18,074         17,735 | 5,498         5,535         5,646         5,762           2,965         3,052         2,742         2,861           8,463         8,587         8,388         8,623           16,948         18,074         17,735         17,075 |  |  |  |  |

<sup>&</sup>lt;sup>1</sup> For details, see the "Statistical Summary" chapter of this volume. <sup>2</sup> Essentially unprocessed mineral raw material.

<sup>&</sup>lt;sup>3</sup> Data may not add to totals shown because of independent rounding.

 $<sup>^{\</sup>rm p}$  Preliminary.  $^{\rm 1}$  Value deflated by the index of implicit unit value.

Table 3.-Indexes of the physical volume of mineral production, by group and subgroup 1 (1967=100)

|                           | 1969  | 1970  | 1971    | 1972  | 1973 P |
|---------------------------|-------|-------|---------|-------|--------|
| METALS                    |       |       |         |       |        |
| Ferrous                   | 110.9 | 109.3 | 96.9    | 98.4  | 116.0  |
| Nonferrous:               |       |       |         |       |        |
| Base                      | 149.6 | 167.3 | 151.0   | 162.8 | 166.5  |
| Monetary                  | 115.5 | 123.9 | r 110.6 | 102.7 | 94.5   |
| Other                     | 111.0 | 119.5 | 115.5   | 112.6 | 114.8  |
| Average                   | 141.7 | 157.4 | 143.0   | 151.1 | 153.6  |
| Average, all metals       | 127.9 | 135.8 | 122.3   | 127.5 | 136.8  |
| NONMETALS                 |       |       |         |       |        |
| Construction              | 106.6 | 103.1 | 106.2   | 111.7 | 101.0  |
| Chemical                  | 101.4 | 103.1 | 101.9   |       | 121.3  |
| Other                     | 107.3 | 109.1 |         | 108.7 | 112.0  |
|                           |       |       | 105.5   | 112.2 | 122.7  |
| Average                   | 105.5 | 103.4 | 105.2   | 111.0 | 119.3  |
| FUELS                     |       |       |         |       |        |
| Coal                      | 100.9 | 108.3 | 98.9    | 105.9 | 105.1  |
| Crude oil and natural gas | 110.5 | 112.0 | 111.3   | 111.4 | 109.1  |
| Average                   | 109.1 | 111.7 | 109.7   | 111.2 | 109.3  |
| Average, all minerals     | 110.1 | 112.1 | 109.9   | 112.7 | 114.2  |
|                           |       |       |         |       |        |

Table 4.-Federal Reserve Board indexes of industrial production, mining, and selected minerals and mineral fuels related industries

| . (200                          |       |       |       |       |        |
|---------------------------------|-------|-------|-------|-------|--------|
|                                 | 1969  | 1970  | 1971  | 1972  | 1973 P |
| Mining:                         |       |       |       |       |        |
| CoalCrude oil and natural gas:  | 101.1 | 105.7 | 99.8  | 104.2 | 103.6  |
| Crude oil                       | 104.8 | 109.4 | 108.3 | 107.3 | 104.5  |
| Gas and gas liquids: Average 1  | 106.9 | 109.7 | 111.3 | 110.0 | 108.5  |
| Average coal, oil, and gas      | 106.1 | 109.2 | 107.6 | 109.2 | 108.3  |
| Metal                           | 124.8 | 131.3 | 121.4 | 120.9 | 130.8  |
| Stone and earth minerals        | 102.8 | 98.8  | 93.2  | 98.1  | 109.5  |
| Average                         | 111.7 | 112.0 | 104.6 | 107.3 | 118.1  |
| Average mining                  | 107.2 | 109.7 | 107.0 | 108.8 | 110.2  |
| Industrial production:          |       |       |       |       |        |
| Primary metals                  | 114.1 | 106.9 | 100.9 | 113.1 | 127.1  |
| Iron and steel                  | 113.0 | 105.3 | 96.6  | 107.1 | 121.6  |
| Nonferrous metals and products  | 116.0 | 109.7 | 108.7 | 123.9 | 139.7  |
| Clay, glass, and stone products | 112.5 | 106.3 | 110.0 | 118.6 | 129.9  |
| , g, and stone products         | 112.0 | 100.0 | 110.0 | 110.0 | 129.9  |
| Average industrial production   | 110.7 | 106.7 | 106.8 | 115.2 | 125.2  |
|                                 |       |       |       |       |        |

 $<sup>^{\</sup>rm p}$  Preliminary.  $^{\rm r}$  Revised.  $^{\rm 1}$  Historical table of this series in Bureau of Mines Minerals Yearbook of 1971.

P Preliminary.

1 Includes oil and gas drilling.

Source: Federal Reserve System. Federal Reserve Bulletin. V. 59, No. 12, December 1973, pp. A60-61; Dec. 14, 1973 and Feb. 15, 1974.

Table 5.-Federal Reserve Board monthly indexes of mining production, seasonally adjusted

|                                                              |                                                                                        |                                                                                        | Cos                                                                  | lioil                                                                |                                                                               |                                                                              | ည်                                                                                     | Crude oil and                                                                 | i natural gas                                                                 | ças                                                                           | Metal, stone                                                                           | stone,                                                                        |                                                                                 |                                                                                                          | Stone and                                                                       | and                                                                           |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Month                                                        | Total                                                                                  | mining 1                                                                               | )                                                                    | gas                                                                  | ರ                                                                             | Coal                                                                         | Tot                                                                                    | Total 2                                                                       | Crude oil                                                                     | e oil                                                                         | min                                                                                    | erals                                                                         | Metal 1                                                                         | mining                                                                                                   | eartn m                                                                         | inerais                                                                       |
|                                                              | 1972                                                                                   | 1973                                                                                   | 1972                                                                 | 1973                                                                 | 1972                                                                          | 1973                                                                         | 1972                                                                                   | 1973                                                                          | 1972                                                                          | 1973                                                                          | 1972                                                                                   | 1973                                                                          | 1972                                                                            | 1973                                                                                                     | 1972                                                                            | 1973                                                                          |
| January February March April May June July September October | 100.2<br>100.2<br>100.2<br>100.2<br>100.3<br>100.8<br>110.8<br>110.2<br>110.2<br>110.2 | 108.5<br>109.5<br>109.5<br>109.5<br>111.0<br>111.0<br>111.0<br>111.0<br>111.0<br>111.0 | 106.5<br>106.5<br>109.2<br>110.4<br>110.8<br>110.8<br>110.8<br>110.8 | 106.5<br>107.4<br>107.1<br>107.1<br>109.5<br>109.5<br>109.7<br>109.7 | 106.3<br>199.6<br>111.9<br>103.8<br>103.8<br>105.2<br>100.8<br>100.8<br>100.8 | 99.1<br>108.9<br>108.9<br>100.9<br>100.9<br>109.0<br>109.8<br>109.8<br>109.8 | 107.1<br>107.4<br>109.6<br>110.8<br>112.3<br>112.3<br>112.3<br>112.3<br>113.1<br>113.1 | 108.4<br>109.9<br>107.1<br>107.1<br>108.5<br>110.0<br>108.9<br>108.9<br>108.9 | 104.0<br>104.2<br>106.9<br>106.6<br>109.5<br>108.8<br>108.4<br>107.9<br>107.0 | 105.5<br>106.7<br>108.6<br>108.6<br>104.6<br>104.6<br>105.4<br>108.9<br>108.9 | 108.0<br>109.8<br>105.6<br>106.4<br>101.2<br>101.2<br>106.8<br>110.6<br>112.6<br>113.6 | 116.4<br>117.6<br>117.0<br>116.0<br>111.8<br>111.8<br>120.6<br>120.4<br>120.9 | 128.9<br>128.1<br>128.1<br>118.5<br>1109.8<br>118.6<br>1124.8<br>122.8<br>124.7 | 130.3<br>131.9<br>127.8<br>127.8<br>127.6<br>127.6<br>127.6<br>138.4<br>138.3<br>138.3<br>135.2<br>135.2 | 93.8<br>93.5<br>93.7<br>95.0<br>96.6<br>96.8<br>98.5<br>101.1<br>102.0<br>104.4 | 106.9<br>107.8<br>108.8<br>108.8<br>105.2<br>105.2<br>109.5<br>113.1<br>113.1 |
| December                                                     | 108.8                                                                                  | p 110.2                                                                                | 109.2                                                                | p 108.3                                                              | 104.2                                                                         | р 103.6                                                                      | 110.9                                                                                  | р 108.4                                                                       | 107.3                                                                         | р 104.5                                                                       | 107.3                                                                                  | р 118.1                                                                       | 120.9                                                                           | р 130.8                                                                                                  | 98.1                                                                            | ь 109.5                                                                       |
|                                                              |                                                                                        |                                                                                        |                                                                      |                                                                      |                                                                               |                                                                              |                                                                                        |                                                                               |                                                                               |                                                                               |                                                                                        |                                                                               |                                                                                 |                                                                                                          |                                                                                 |                                                                               |

P Preliminary.

1 Including fuels.

2 Total includes oil and gas drilling.

Source: Federal Reserve System. Federal Reserve Bulletin. V. 60, No. 3, March 1974, pp. A60-61. Federal Reserve Monthly Statistical Release, Apr. 15, 1974. Federal Reserve System, Industrial Production Indexes, 1972. August 1973, 12 pp.

Table 6.—Net supply of principal minerals by components <sup>1</sup> (Thousand short tons of mineral content, unless otherwise stated)

|                                                                                                                |                |                  |                                                           | သိ            | mponents             | Components as percent of total before                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | at of tots | d. before      |                         |                            |                |
|----------------------------------------------------------------------------------------------------------------|----------------|------------------|-----------------------------------------------------------|---------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|-------------------------|----------------------------|----------------|
| Commodity and mineral content measured                                                                         | Total ne       | Total net supply | Porcont                                                   |               | ns                   | subtracting exports                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | exports    |                |                         | Exports as                 | ts as          |
|                                                                                                                |                |                  | change                                                    | Prir<br>shipr | Primary<br>shipments | Old scrap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rap        | Imp            | Imports                 | percent of<br>gross supply | nt of<br>upply |
|                                                                                                                | 1972 r         | 1973 р           |                                                           | 1972 r        | 1973                 | 1972 r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1973       | 1972 r         | 1973                    | 1972 r                     | 1973           |
| us n                                                                                                           |                |                  |                                                           |               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                |                         |                            |                |
| Pig iron Pig iron Pig iron                                                                                     | 111,550        | 131,203          | +17.6                                                     | 69            | 89                   | ł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ł          | 31             | 32                      | 67                         | 21             |
| ≍                                                                                                              | 147,853        | 145.837          | +13.4<br>1.4                                              | 50 X          | 90<br>6              | ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1          | <u>-</u> -     | (Z)                     | ( <u>s</u> )               | 2              |
| Chromite (Cr2O3)                                                                                               | 479            | 391              | -18.4                                                     | 3             | 5 ;                  | : ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | i          | 35             | 901                     | 21 4                       | oo u           |
| Manganese                                                                                                      | 12             | 16               | +33.3                                                     | 925           | 49                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ! !        | 48             | 516                     | # <b>∞</b>                 | 13             |
| Molybdenum                                                                                                     | 78<br>78<br>78 | 32               | +<br>14.3                                                 | <u>,</u> 66   | <u>,</u> 6           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | i          | 100            | 100                     | လ ကို                      | ∞ <u>'</u>     |
| Tingsten                                                                                                       | 200            | 214              | + 7.0                                                     | œ             | 00                   | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | II         | - 8 <u>2</u>   | 81                      | <b>4</b> C                 | 9.4<br>0.0     |
| OTHER METALS                                                                                                   | 9              | 6                | +20.0                                                     | 32            | 40                   | ł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ;          | 45             | 9                       | ; <del></del>              | · –            |
| Aluminum                                                                                                       | 4,845          | 4,524            | 9.9 —                                                     | 81            | 06                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4          | ï              |                         | ď                          | =              |
| Beryl (BeO)                                                                                                    | 47<br>W        | 44               | - 6.4                                                     | T #           | ";                   | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 51         | 32             | 8                       | °E)                        |                |
|                                                                                                                | 5.942          | 6.097            | +                                                         | > ₹           | ≥ હૈ                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1          | ≱Ş             | ≱ä                      | 19                         | !              |
| Copper                                                                                                         | 2,433          | 2,536            | +                                                         | 67            | 67                   | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19         | 14             | 181                     | <b>~</b>                   | 210            |
| Magnesium                                                                                                      | 1,492          | 1,493            | ( <sub>3</sub> )                                          | 40            | 68                   | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43         | 20             | 18                      | (6)                        | 100            |
|                                                                                                                | 47,918         | 105<br>58,184    | $^{+}_{21.4}$                                             | 15            | 35<br>4              | 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | න <u>ර</u> | 46             | <b>67</b> 6             | 12                         | 27             |
| Flatinum groupthousand troy ounces                                                                             | 1,555          | 1,981            | +27.4                                                     | (a)           | (e)                  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10         | 88             | 88                      | 7<br>7<br>8                | 24             |
| ntrate (TiO                                                                                                    | 1)             | 63               | -11.3                                                     | A<br>A        | NA                   | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30         | 75             | 40                      | 1                          | χĢ             |
| Ilmenite and slag                                                                                              | 718            | 703              | - 2.1                                                     | 59            | 99                   | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ł          | 41             | 34                      | (2)                        | (3)            |
| Uranium concentrate (U <sub>3</sub> O <sub>8</sub> )                                                           | 221<br>15      | 241<br>19        | ++<br>9.6<br>7                                            | 16            | 100                  | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ;          | 100            | 100                     | )                          | )              |
| Zinc                                                                                                           | 1,257          | 1,308            | + 4.1                                                     | 88            | 98                   | ۰ ا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12         | 202            | 82<br>24<br>24          | g                          | !-             |
| Asbestos                                                                                                       | 7              | 844              | 4                                                         | ¥             | •                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                |                         | `                          | •              |
| Barite, crude                                                                                                  | 1,530          | 1,820            | ++<br>19.0                                                | 50            | 61                   | ł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ŀ          | æ <del>-</del> | 48                      | ဖ                          | 7              |
| Glavs Clavs                                                                                                    | 193            | 209              | ***<br>***                                                | 100           | 100                  | ; ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | ; ;            | e !                     | ; }                        |                |
| Fluorspar, finished                                                                                            | 1.429          | 1.458            | o.ĕ<br>× 6<br>++                                          | 100           | 100                  | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ;          | @<br>8         | (N)                     | eo (                       | ං ද            |
| Gypsum                                                                                                         | 32,050         | 33,748           | +                                                         | 76            | 77                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 ;        | 24             | 288                     | De                         | <u> </u>       |
| Phosphate rock (Poff.)                                                                                         | 119            | 133              | +11.8                                                     | 96            | 96                   | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1          | 4              | 4                       | , re                       | 9              |
| Potash (K20 equivalent)                                                                                        | 4.815          | 8,670            | ++                                                        | 100           | 9<br>1<br>1<br>1     | ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1          | €;             | @`                      | 98                         | 34             |
|                                                                                                                | 47,616         | 46,488           |                                                           | 93            | ‡ 86                 | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ľ          | 50             | 96                      | 14                         | 14             |
| noillim                                                                                                        | 914            | 984              | + 7.7                                                     | 100           | 100                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ; ;        | ·(2)           | · (3)                   | <sup>7</sup> @             | (2)            |
| Sulfur, all forms                                                                                              | 919            | 10.266           | + I+ I+ Z = Z = Z = Z = Z = Z = Z = Z = Z = Z             | 96            | 99                   | ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1          | e ;            | €,                      | €<br>(                     | <b>e</b>       |
| 0                                                                                                              | 965            | 1,090            | +13.0                                                     | 92            | 86                   | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 9<br>8         | 20                      | 15                         | 15             |
| Preliminary. r Revised. NA Not available.                                                                      | W With         | eld to avo       | W Withheld to avoid disclosing company confidential data. | company       | confiden             | ial data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Figure is  | s not inc      | not included in net and | net and                    | OTOGG          |
| supply.<br><sup>1</sup> Net supply is sum of primary shipments, secondary production and imports minus exposts | ary product    | ion. and ir      | nnorts min                                                | or some       |                      | Stockett alternation of the state of the sta | 1000       | 1.1            |                         |                            |                |

\* ree supply is sum of primary shipments, secondary production, and imports minus exports. Stockpile disposals are included in primary shipments. Gross supply is the total before subtraction of exports.

2 Less than ½ unit.

Table 7.-Shipments, net new orders, and yearend unfilled orders for selected mineral processing industries

(Million dollars)

|                |                                                                                                                                                            | Shipment                                                                                                                                                   | :S <sup>1</sup>                                                                                                                                            | Ne                                                                                                                                                         | t new ord                                                                                                                                | ers <sup>1</sup>                                                                                                                         |                                                                                                                                                                 | lled order<br>l of perio                                                                                                                                  |                                                |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Year and month | Primary<br>metals                                                                                                                                          | Blast<br>furnaces                                                                                                                                          | All<br>other<br>primary<br>metals <sup>2</sup>                                                                                                             |                                                                                                                                                            | Blast<br>furnaces                                                                                                                        | All<br>other<br>primary<br>metals <sup>2</sup>                                                                                           | Primary<br>metals                                                                                                                                               | Blast<br>furnaces                                                                                                                                         | All<br>other<br>primary<br>metals <sup>2</sup> |
| 1969           | 57,137<br>53,242<br>55,083<br>57,941<br>72,027<br>5,449<br>5,652<br>5,634<br>5,471<br>5,710<br>5,789<br>6,023<br>6,165<br>6,226<br>6,730<br>6,792<br>6,687 | 26,493<br>25,032<br>26,656<br>28,109<br>35,260<br>2,751<br>2,820<br>2,784<br>2,595<br>2,704<br>2,753<br>2,924<br>3,030<br>3,149<br>3,149<br>3,367<br>3,181 | 30,644<br>28,210<br>28,427<br>29,832<br>36,767<br>2,698<br>2,832<br>2,850<br>2,876<br>3,006<br>3,036<br>3,099<br>3,135<br>3,077<br>3,271<br>3,425<br>3,530 | 58,491<br>52,413<br>54,587<br>60,143<br>78,642<br>5,694<br>6,015<br>6,500<br>6,656<br>7,042<br>7,015<br>6,658<br>7,150<br>6,325<br>6,868<br>6,730<br>6,597 | 27,821<br>24,910<br>26,362<br>29,813<br>39,913<br>2,819<br>3,061<br>3,459<br>3,604<br>3,729<br>3,493<br>3,912<br>3,068<br>3,309<br>3,000 | 31,210<br>27,503<br>28,175<br>30,336<br>38,729<br>2,875<br>2,954<br>3,041<br>3,052<br>3,198<br>3,165<br>3,238<br>3,257<br>3,559<br>3,597 | 7,657<br>6,599<br>6,043<br>7,964<br>14,844<br>8,209<br>8,572<br>9,438<br>10,623<br>11,954<br>13,181<br>13,815<br>14,798<br>14,857<br>14,996<br>14,934<br>14,844 | 3,896<br>3,734<br>3,432<br>5,008<br>9,884<br>5,076<br>5,317<br>5,992<br>7,000<br>8,025<br>9,089<br>9,658<br>10,540<br>10,459<br>10,309<br>10,051<br>9,894 | 4,157<br>4,258<br>4,398<br>4,687<br>4,883      |

Table 8.-Index of stocks of crude minerals at mines or in hands of primary producers at yearend

(1967 = 100)

|                                        | Metals                                  |                                | N                              | <b>letals</b>                 |                              | _                               |
|----------------------------------------|-----------------------------------------|--------------------------------|--------------------------------|-------------------------------|------------------------------|---------------------------------|
| Yearend                                | and<br>non-<br>met-<br>als <sup>1</sup> | Total                          | Iron<br>ore                    | Other<br>fer-<br>rous         | fer-                         | Non-<br>met-<br>als 1           |
| 1969<br>1970<br>1971<br>1972<br>1973 P | 118<br>131<br>148<br>141<br>110         | 104<br>113<br>147<br>143<br>95 | 106<br>118<br>136<br>113<br>84 | 83<br>93<br>275<br>428<br>208 | 107<br>99<br>101<br>78<br>67 | 136<br>154<br>149<br>138<br>129 |

Preliminary.
 Excludes fuels.

Table 9.-Index of stocks of mineral manufacturers, consumers, and dealers at yearend

|                | Metal                                   | s     |      | Me                    | tals                         |                               |                                  |
|----------------|-----------------------------------------|-------|------|-----------------------|------------------------------|-------------------------------|----------------------------------|
| Year-<br>end   | and<br>non-<br>met-<br>als <sup>1</sup> | Total | Iron | Other<br>fer-<br>rous | Base<br>non-<br>fer-<br>rous | Other<br>non-<br>fer-<br>rous | Non-<br>met-<br>als <sup>1</sup> |
| 1969           | 93                                      | 93    | 85   | 103                   | 110                          | 74                            | 91                               |
| 1970           | 106                                     | 106   | 93   | 113                   | 126                          | 93                            | 101                              |
| 1971           | _ 103                                   | 104   | 99   | 135                   | 109                          | 96                            | 88                               |
| 1972           | _ 95                                    | 95    | 88   | 135                   | 101                          | 87                            | 94                               |
| 1972<br>1973 P | _ 85                                    | 85    | 79   | 99                    | 92                           | 79                            | 91                               |

r Revised.

1 Monthly figures are seasonally adjusted and may not add to totals.

2 "All other primary metals" obtained by subtracting blast furnace from primary metals figures.

Source: U.S. Department of Commerce, Office of Business Economics. Survey of Current Business. V. 51-54, No. 2, February 1971-74, pp. S-5, S-6, S-7; v. 54, No. 6, June 1974, p. S-6.

Preliminary.
 Excludes fuels.

Table 10.-Physical stocks of mineral energy resources and related products at yearend (Producers' stocks, unless otherwise indicated)

|                                 |            |            | -arcarca,  |                 |                  |
|---------------------------------|------------|------------|------------|-----------------|------------------|
| Fuels                           | 1969       | 1970       | 1971       | 1972            | 1973 р           |
| Coal and related products:      |            |            |            |                 |                  |
| Bituminous coal and lignite 1   |            |            |            |                 |                  |
| short tons                      | 80,482,000 | 92,275,000 | 89,985,000 | 115 950 000     |                  |
| Cokedo                          | 3,120,000  | 4,113,000  | 3,510,000  | 115,372,000     | 99,022,000       |
| Petroleum and related products: | -,,        | -,-10,000  | 9,910,000  | 2,941,000       | 1,184,000        |
| Carbon black _thousand pounds   | 208,020    | 296,087    | 296,028    | 005.005         |                  |
| Natural gasoline, plant         | ,          | 200,001    | 490,040    | 237,695         | 320,325          |
| condensates, and isopentane     |            |            |            |                 |                  |
| thousand barrels                | 5,704      | 7.046      | 6,176      | C 055           |                  |
| Crude petroleum and petroleum   | •          | 1,010      | 0,110      | 6,075           | 7,835            |
| products 2do                    | 974,419    | 1,010,815  | 1,037,771  | 952,904         | 1 000 450        |
| Crude petroleumdo               | 265,227    | 276,367    | 259,648    | 246,395         | 1,000,472        |
| Gasolinedo                      | 217,392    | 214,348    | 223,771    | 217,149         | 242,478          |
| Special naphthasdo              | 6,292      | 6.193      | 5,384      |                 | 209,395          |
| Liquefied gases 3do             | 59,602     | 67.043     | 94,713     | 5,232<br>85,717 | 4,514            |
| Distillate fuel oildo           | 171,714    | 195,271    | 190,622    | 154.319         | 83,086           |
| Residual fuel oildo             | 58,395     | 53,994     | 59.681     | 55,216          | 196,421          |
| Petroleum asphaltdo             | 16,753     | 15,779     | 21,202     | 21,636          | 53,480           |
| Other productsdo                | 179,044    | 181,820    | 182,750    | 167,240         | 15,024           |
| Vatural gas 4billion cubic feet | 2,852      | 3,207      | 3,523      | 3,523           | 196,074<br>3,906 |

Table 11.-Seasonally adjusted book value of product inventories for selected mineral processing industries

(Million dollars)

| End of year                                                                           | Petroleum                                                                                                | Stone, clay,                                                                                             | Prima                                                                                           | ary metals                                                                                               |                                                                                                          |
|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| or month                                                                              | and coal<br>products                                                                                     | and glass<br>products                                                                                    | Blast fur-<br>nace and<br>steel mills                                                           | Other<br>primary<br>metals <sup>1</sup>                                                                  | Total                                                                                                    |
| 1969: December r<br>1970: December r<br>1971: December r<br>1972: December r<br>1973: | 2,150<br>2,418<br>2,367<br>2,300                                                                         | 2,126<br>2,278<br>2,362<br>2,463                                                                         | 4,419<br>4,854<br>4,913<br>5,268                                                                | 3,862<br>4,285<br>4,306<br>4,390                                                                         | 8,281<br>9,139<br>9,219<br>9,658                                                                         |
| December January February March April May June July August September October November | 2,653<br>2,262<br>2,280<br>2,268<br>2,345<br>2,321<br>2,335<br>2,412<br>2,388<br>2,391<br>2,474<br>2,548 | 2,791<br>2,468<br>2,446<br>2,495<br>2,477<br>2,524<br>2,593<br>2,669<br>2,679<br>2,702<br>2,720<br>2,737 | 4,645<br>5,161<br>5,043<br>4,915<br>4,925<br>4,940<br>4,830<br>4,869<br>4,820<br>4,791<br>4,617 | 4,669<br>4,414<br>4,440<br>4,450<br>4,550<br>4,561<br>4,583<br>4,526<br>4,532<br>4,532<br>4,545<br>4,609 | 9,314<br>9,575<br>9,483<br>9,365<br>9,425<br>9,425<br>9,391<br>9,452<br>9,346<br>9,323<br>9,222<br>9,226 |

P Preliminary.

Stocks at industrial, consumer, and retail yards and on upper lake docks.

Includes natural gas liquids.

Includes ethane.

American Gas Association.

r Revised.

1 "Other primary metals" obtained by subtracting blast furnace from primary metal figures.

Source: U.S. Department of Commerce, Office of Business Economics. Survey of Current Business. V. 51, October 1971 p. S-6; v. 54, January and February 1974, p. S-6.

Table 12.-Value of selected minerals and mineral products imported and exported by the United States in 1973, by commodity group and commodity 1

(Thousand dollars)

| SITC       |                                                                                      | Exports       | Imports           |
|------------|--------------------------------------------------------------------------------------|---------------|-------------------|
|            | Minerals, nonmetallic (crude):                                                       |               |                   |
| 271        | Fertilizers, crude                                                                   | 114,340       | 7,301             |
| 273        | Stone, sand, and gravel                                                              | 23,194        | 29,733            |
| 274        | Sulfur and unroasted iron pyrites                                                    | 34,488        | 14,855            |
| 275        | Natural abrasives (including industrial diamonds)                                    | 48,693        | 79,856            |
| 276        | Other crude minerals                                                                 | 167,621       | 221,221           |
|            | Total 3                                                                              | 388,335       | 352,966           |
|            | Metals (crude and scrap):                                                            |               |                   |
| 281        | Iron ore and concentrates                                                            | 37,921        | 533,836           |
| 282        | Iron and steel scrap                                                                 | 598,498       | 21,542            |
| 283        | Ores and concentrates of nonferrous base metals                                      | 183,949       | 465,699           |
| 284        | Nonferrous metal scrap                                                               | 242,727       | 84,358            |
| 285        | Platinum and platinum-group metal ores and concentrates                              | 16,975        | 82,653            |
| 286        | Uranium and thorium ores and concentrates                                            | 750           | 254               |
|            | Total                                                                                | 1,080,820     | 1,188,342         |
|            |                                                                                      |               |                   |
|            | Mineral energy resources and related products:                                       | 1,051,985     | 59,754            |
| 321        | Coal, coke, and briquets (including peat)                                            | 2,621         | 4,584,326         |
| 331        | Petroleum, crude and partly refinedPetroleum products, except chemicals              | 515,403       | 2,954,298         |
| 332<br>341 | Gas. natural and manufactured                                                        |               | 492,832           |
| 941        |                                                                                      |               | 8,091,210         |
|            | Total                                                                                | 1,010,000     | 8,031,210         |
|            | Chemicals:                                                                           |               |                   |
|            | Inorganic chemicals:                                                                 |               |                   |
| 513        | Elements, oxides, and halogen salts                                                  | 337,888       | 429,024           |
| 514        | Other inorganic chemicals                                                            | 205,990       | 95,745            |
| 515        | Radioactive and associated materials except uranium and thorium                      | 283,560       | 150,747           |
| 521        | Mineral tar, crude chemicals from coal, petroleum, and natural gas -                 |               | 6,025             |
|            | Total                                                                                | 899,907       | 681,541           |
|            | Minerals, nonmetallic (manufactured):                                                |               |                   |
| 661        | Lime, cement, and fabricated building material, except glass and                     |               |                   |
| 001        | clay                                                                                 | 23,129        | 150,803           |
| 662        | Clay and refractory construction materials                                           | 78,585        | 78,436            |
| 663        | Mineral manufactures, not elsewhere specified                                        | 114,130       | 68,616            |
|            | Total                                                                                | 215,844       | 297,855           |
|            |                                                                                      |               |                   |
|            | Metals (manufactured):                                                               |               |                   |
| 671        | Pig iron, spiegeleisen, sponge iron, iron and steel powder and shot, and ferroalloys | 42,545        | 240,199           |
| 672        | Iron or steel ingots and other primary forms                                         | 74,168        | 30,886            |
| 673        | Iron or steel bars, rods, angles, shapes, and sections                               | 174,167       | 761,251           |
| 674        | Iron or steel universals, plates, or sheets                                          | 381.880       | 1,326,935         |
| 675        | Iron or steel hoops and strips                                                       | 83,076        | 64,309            |
| 676        | Iron or steel rails and railway track construction materials                         | 24,895        | 7,603             |
| 677        | Iron or steel wire (excluding wire rod)                                              | 20,615        | 164,845           |
| 678        | Iron or steel tubes, pipes, and fittings                                             | 344,738       | 395,632           |
| 679        | Iron or steel castings or forgings, unworked                                         | 154,713       | 16,896            |
| 681        | Silver, platinum, and platinum-group metals                                          | 106,475       | 455,029           |
| 682        | Copper and copper alloys                                                             | 383,468       | 655,131           |
| 683        | Nickel and nickel alloys                                                             | 61,573        | 374,270           |
| 684        | Aluminum and aluminum alloys                                                         | 345,513       | 286,442           |
| 685        | Lead and lead alloys                                                                 | 27,097        | 53,252<br>274,740 |
| 686        | Zinc and zinc alloys                                                                 | 20,924        |                   |
| 687        | Tin and tin alloys                                                                   | 13,379<br>270 | 198,758           |
| 688        | Uranium and thorium metals and alloysMiscellaneous nonferrous base metals            | 98,355        | 128,901           |
| 689        |                                                                                      |               |                   |
|            | Total                                                                                | 2,357,851     | 5,435,082         |
|            |                                                                                      |               |                   |

<sup>&</sup>lt;sup>1</sup> Data in this table are for the indicated SITC numbers only, and therefore may not correspond to the figures classified by commodity in the "Statistical Summary" chapter of this volume.

<sup>2</sup> Standard Industrial Trade Classification.

<sup>3</sup> Data may not add to totals shown because of independent rounding.

Source: U.S. Department of Commerce, Bureau of the Census. U.S. Imports General and Consumption. FT 135, December 1973, table 1. U.S. Exports Commodity and Country. FT 410, December 1973, table 1.

Table 13.-Percentage distribution of exports of selected minerals and mineral fuels and related products in 1973, by area of destination

|                |                                                                       |                    |                  | •            |          |                | •        |                  |                             |  |
|----------------|-----------------------------------------------------------------------|--------------------|------------------|--------------|----------|----------------|----------|------------------|-----------------------------|--|
| SITC<br>code 1 | Commodity                                                             | North<br>America 2 | South<br>America | Europe       | Asia     | Africa Oceania | ceania   | Soviet<br>bloc 3 | Undesig-<br>nated<br>area 4 |  |
| 271            | Fertilizers, crude                                                    | 35                 | 9                | 27.          | 30       | :              | :        | 2                | (ē)                         |  |
| 273            | Stone, sand and gravel                                                | 8.4                | es 4             | o 2          | 9 %      | <b>1</b> 6     | <b>-</b> | ļ°               | .∾.<br>€                    |  |
| 275            | Natural abrasives, including industrial diamonds                      | 6                  | 10               | 64           | 3 ∝      | C              | ۳        | ٦-               | 5,                          |  |
| 276            | ot elsewhere specified                                                | 29                 | 10               | 38           | 23       | ٠.             | • ••     | <b>1</b> @       | -                           |  |
| 281            | Iron ore and concentrates                                             | 87                 | 19               | වේ           | 13       | l,             | 1        | ; l              | (g)                         |  |
| 787            | Iron and steel scrap                                                  | 61                 | no e             | 17           | 61       | ೦              | <u></u>  | Ę                | ව                           |  |
| 283            | Ures and concentrates of nonierrous base metal                        | - 8                | 70 ex            | 90           | %<br>4.0 | e [            | ಲಿ       | © {              | <u></u>                     |  |
| 286            | - 14                                                                  | 100                | •                | <b>P</b>     | 0#       | 1              | E        | Σ                | Σ                           |  |
| 321            | Coke, coal, and briquets, including peat                              | 65                 | 12               | 25           | 107      | le             | ļ        | !-               | 16                          |  |
| 331            | Petroleum, crude and partly refined                                   | i                  | ;                | 41           | 49       | ) l            | : :      | ۱ ;              | <u> </u>                    |  |
| 332            | 73                                                                    | 27                 | 2                | 29           | 34       | 1              |          | -                | ( <u>(</u>                  |  |
| 341            | ∺.                                                                    | <b>64</b>          | 10               | ( <u>2</u> ) | 36       | <u>@</u>       | £        | ;                | (e)                         |  |
| 513            | Inorganic chemical elements, oxides, and halogen salts                | 35                 | e :              | 27           | 14       | 4              | 4        | 01               |                             |  |
| 514            | Other morganic chemicals                                              | 33                 | 71               | 83           | 25       | 4              | 4        | -                | -                           |  |
| 510            | Radioactive and associated materials                                  | 14                 | Đ;               | 4.7          | 24;      | ©<br>(         | ©        | Jį               | ©                           |  |
| 170            |                                                                       | # C                | 10               | 90           | 97       | , co           | €,       | <u>ء</u>         | <u>@</u>                    |  |
| 100            | Cley and refrestory construction meterials except glass and clay      | 2 6                | 40               | 6.<br>9.0    | o c      | <b>⊣</b> c     | ۰.       | €,               | 4 0                         |  |
| 700            | Minoral manufactures not alsouthous amongson                          | 43                 | , LC             | 100          |          | 4 6            | 9 6      | ٦.               | N (                         |  |
| 671            | Pio iron, snonge iron, iron or steel nowders or shot, and ferroallows | 24.5               | 9 4              | 84           | 7 7      | ٦-             | n        | e.               | × -                         |  |
| 672            | and                                                                   | 23                 | 42               | 18           | 16       |                | [9]      | 3                | <b>1</b> 6                  |  |
| 673            | steel bars, rods,                                                     | 59                 | 16               | 9            | 12       | 1 87           | ,        | او               | )                           |  |
| 674            | and steel plates and sheets                                           | 32                 | 26               | 16           | 20       | ı 60           | ۱ ¦      | , ec             | <b>'</b> ©                  |  |
| 675            | and steel hoop                                                        | 37                 | 10               | 43           | က        | 67             | 4        | (g)              | ,                           |  |
| 919            | and steel rail                                                        | 82                 | 28               | 9            | ro i     | -              | -        | <b>©</b>         | H                           |  |
| 677            |                                                                       | 949                | 9;               | 27           | 12       |                | 63       | : 1              | က                           |  |
| 8/0            | es, pipes, and nttii                                                  | 000                | ≓°               | 14           | 23       | ×              | N :      | <b>oo</b>        | -                           |  |
| 67.0           | Iron and steel castings and lorgings (rough)                          | 90                 | 71 C             | ٥٥           | 4.7      | e<br>E         |          | -                | <u></u>                     |  |
| 100            | Ė,                                                                    | 10                 | N ;              | 67           | 90       | <u>و</u>       | т,       | ij               | 9                           |  |
| 289            | Copper and copper alloys                                              | 11                 | 11               | 44           | 87,      | <u>و</u>       | ල ි      | (g)              | €                           |  |
| 684            | Aluminum and aluminum allows                                          | 67                 | <b>5</b> 00      | 44<br>74     | 110      | €"             | N -      | lé               | H (                         |  |
| 685            |                                                                       | 90                 | 7                | 160          | 42       | ٠ <u>٠</u>     | T (9)    | Ξ                | ⊙"                          |  |
| 989            | Zine and zine alloy                                                   | 22                 | 27               | 20           | 53       | <u>-</u>       | િહ       | ļ                |                             |  |
| 687            | -                                                                     | 33                 | 59               | 47           | 13       | <u>၂</u>       | )        | ¦ —              | 1                           |  |
| 889            | Uranium and thorium and t                                             | 10                 | ;                | 61           | 27       | ; l'           | 1        | ۱ ا              | 01                          |  |
| 689            | Base metals and alloys not elsewhere specified                        | 77                 | 9                | 52           | 18       | -              | -        | <u>@</u>         | -                           |  |
| 1 07.          | 1 Standard Industrial Mand. Ola 12                                    |                    |                  |              |          |                |          |                  |                             |  |

Standard Industrial Trade Classification.
 Includes Trinidad and Netherlands Antilles.
 U.S.S.R. Bulgaria, East Germany, Albania, Czechoslovakia, Hungary, Poland, Romania, People's Republic of China, North Korea, North Vietnam, and Aspecial category exports.
 Special category exports.
 Less than \(\frac{\gamma}{\gamma}\) unit.

Source: U.S. Department of Commerce, Bureau of the Census. U.S. Export Schedule B, Commodity and Country. FT 410, December 1973, table 2.

į

| *       | ) O                                         | North          | South      | Europe                                                     | Asia       | Africa   | Oceania      | Soviet  | Uniden-<br>tified | . 1  |
|---------|---------------------------------------------|----------------|------------|------------------------------------------------------------|------------|----------|--------------|---------|-------------------|------|
| SITC    | Commodity                                   | Piliterica     |            | =                                                          |            | Ħ        | 1            | ;       | 1                 |      |
| - anno  | 1                                           | 28             | ļ          | -                                                          | <u>ا</u> ژ | 1        | !            | 1       | ŀ                 |      |
| 2713000 | Phosphates, crude and apacite               | 6 G            | 1          | ı <del>, -</del> 1                                         | ;          | €        | !            | i       | ! !               |      |
| 2732100 | Gypsum                                      | 201            | 1 1        | 91                                                         | ים יי      | 24 12    | ١æ           | ; ;     | . !               |      |
| 2752400 | l abrasives                                 | ee ,           | (3)        | 35                                                         | 27         | 1        | , <b>-</b> 1 | 1       | i                 |      |
| 2762200 | Graphite, natural                           | - 6            | ļra        |                                                            | (S)        | ľ        | ł            | 1       | 1 1               |      |
| 2762500 | . :                                         | 94             | · ¦        | (3)                                                        | 13         | စ္       | 1 1          | ; ;     | 1                 |      |
| 2763000 | Ashestos                                    | 1              | 36         | 10                                                         | 40         | . 4      |              | 1       | ł                 |      |
| 2765200 | ~                                           | 64             | 21 0       | 0<br>4<br>4                                                | ု က        | œ        | 1            | 1       | 1                 |      |
| 2765420 | Fluorspar                                   | 26             | ٩ <b>ا</b> | 54                                                         | 34         | 1 2      | 1            | ; ;     | <b>!</b>          |      |
| 2769300 | Barite, crude                               | 28             | 36         | щ,                                                         | <u></u>    | G        | ۱,           | ; ;     | 1                 |      |
| 2769500 | Iton ore and concentrates                   | 94             | <b></b> }  | 3.5                                                        | و<br>ع     | C T      | <u> </u>     | \$<br>1 | i                 |      |
| 2820000 | Iron and steel scrap                        | 48             | 300        | ಄಄                                                         | 1          | -        | တ္           | ł       | 1                 |      |
| 2831100 | Copper ores and concentrates                | 94             | 36         | <u></u>                                                    | . 1        | 1        | 27           | 1       | ! !               |      |
| 2833000 | Bauxite                                     | 68             | , œ        | .01                                                        | !          | !-       | - I          | 1 1     | 1                 |      |
| 2834000 | Zing ores and concentrates                  | : 1            | 66         | (E)                                                        | 1          | 44       | C-           | 13      | 1                 |      |
| 9836000 | Tin ores and concentrates                   | <b>2</b> (     | <b>4</b> € | 16                                                         | 31         | 40       | 1            | 29      | 1                 |      |
| 2837000 |                                             | (e)            | £          | ,<br>10                                                    | 18         | ₹;       | e 5          | ¦       | 1                 |      |
| 2839100 |                                             | 843            | 17         | က                                                          | 1          | =        | 97           | 1       | İ                 |      |
| 2839200 | Tungsten ofes and<br>Tantalum, molybden     | 66             | 1          | Н                                                          | <b>∞</b>   | 1        | 69           | 1       | !                 |      |
| 2839320 |                                             | 77             | l @        | co                                                         | (3)        | 13       | 88           | -       | 1                 |      |
| 3218000 | Timenium one                                | 4 00           | 37         | -                                                          | 6          | 40       | ļ∝           | ; ;     | 1                 |      |
| 2839340 | Antimony ores and                           | 1              | 62         |                                                            | ۱۳         | 3 5      | )            | 1       | ł                 |      |
| 9839920 | •                                           | ල <sup>°</sup> | 77         | 4+ cx                                                      | ີ €        | 1        | }            | 1       | !                 |      |
| 2839930 | Columbium ores and con                      | 200            | ಄          | 42                                                         |            | <b>∞</b> |              | 1       | 1                 |      |
| 2840200 | Copper waste and scrap                      | 98             | <b>,</b>   | ō.                                                         | €          | 0        | 1-           | : :     | 1 1               |      |
| 2840300 | Aliminim waste                              | 15             | 1          | 40                                                         | 9          | 0        | 4 1          | 1 1     | ł                 |      |
| 2840400 | Magnesium waste                             | 28             | !          | 13                                                         | ;          | : :      | 1            | 1       | 1                 |      |
| 2840600 |                                             | 866            | 100        | 10                                                         | က          | 1        | 1            | 1       | 1                 |      |
| 2840700 | Zinc waste and scrap                        | 00 ;           | 3 "        | ъ<br>Ф                                                     | (8)        | 24       | -            | ;       | 1                 |      |
| 2840900 | _                                           | . 11           | 0          | 3                                                          | 5          |          | 1            | ;       | 1                 |      |
| 2850240 |                                             | 1              | 1          | <b>¦</b>                                                   | 207        | 1        | 3            | •       |                   |      |
| 2860000 | ) Thorium ores and concentrates             | 96             |            | 73                                                         | 1          | ;        | <u>e</u>     | -       | 1                 | 1    |
| 3214000 | Cost coke and briquets                      | 1              | . :        | 6                                                          | -          | -        | (3)          | (3)     | 21                | _    |
| 3219000 | , court, court,                             | 29             | 222        | ©\*                                                        | 2 ∞        | 67       | <u></u>      | 61      | ì                 | 1    |
| 3310000 | Petroleum, crude                            | 1.045          | 22         | 2                                                          | ,—         | -        | ေ            | ļ°      | 1                 |      |
| 3320000 | Petroleum products,                         | 45             | -          | 18                                                         | 67.6       | 26       | 19           | ° હ     | 1 1               |      |
| 3410000 | Gases, natural waste and scrap              |                | 10         | -                                                          | 73         | 1        | ř            | 2       |                   |      |
| 5136500 |                                             |                |            | 82                                                         | (3)        | 19       | ;            | 1       | 1                 | , 1  |
| 5210000 | Mineral tar and                             | 96             | (E)        | ಣ                                                          | -          | ©        | :            | •       |                   |      |
| 5613000 | Rassic fertilizers and fertilizer materials |                |            |                                                            |            |          |              | :       |                   |      |
| 000100  | - 1                                         | ,              | Doonlo     | Dowle's Remiblic of China, North Korea, North Vietnam, and | of Chi     | na, Nort | h Korea,     | North V | ietnam,           | 1111 |

Standard Industrial Trade Classification.
 U.S.S.R., Bulgaria, East Germany, Albania, Czechoslovakia, Hungary, Poland, Romania, People's Republic of China, North Korea, North Vietnam, and Yungoslavia.
 Less than ½ unit.

Source: U.S. Department of Commerce, Bureau of the Census. U.S. Imports. FT 135, December 1973, table 2.

Table 15.-Consumption of major mineral products, mineral fuels, and electricity 1972, 1973, and projections

| Commodity                                                                                 | 1972      | 1973 р         | 9000                   |
|-------------------------------------------------------------------------------------------|-----------|----------------|------------------------|
| MINERAL PRODUCTS                                                                          |           | 10107          | 2000                   |
| refrous metals:                                                                           |           |                |                        |
| Iron ore (including agglomerates) -thousand long tons-                                    |           |                |                        |
| Raw steel (production)housand long tons<br>Chromite ores (gross weight)housand short tons | 126,943   | 146,92         | 2 N.                   |
| Chromite ores (gross weight):                                                             | 133,241   | 150,79         |                        |
| metalluryical grada                                                                       |           | ,              |                        |
| Refractory gradedodo                                                                      | 727       | 920            | ) N                    |
| Chemical gradedododododo                                                                  | 224       | 261            |                        |
| Manganese ore (35% or more Mn)do<br>Molybdenum (Mo content)do                             | 189       | 206            |                        |
| Molybdenum (Mo content)do<br>Tungsten (W content)                                         | 2,331     | 2.140          |                        |
| Tungsten (W content)thousand pounds_<br>Nonferrous metals:                                | 45,558    | 57,049         |                        |
| Nonferrous metals:                                                                        | 14.107    | 15,386         |                        |
| Aluminum (apparent consumption) _thousand short tons                                      | ,         | 10,000         | 76,40                  |
| Antimony, primaryshort tons                                                               | 5,588     | 5,685          | 90.40                  |
| Connon week. 1                                                                            | 16,124    | 20,613         |                        |
| Lead, primary and secondthousand short tons                                               | 2,239     | 2,402          | ,_,                    |
| Zinc. all classes                                                                         | 1,485     | 2,402<br>1,541 |                        |
|                                                                                           | 1,844     |                |                        |
| Platinum-group motel                                                                      | 52,907    | 1,932          | 0,000                  |
| Silver (industrial consumer industrial troy ounces                                        | 1,562     | 54,283         | ,000                   |
| Ilmenite and titanium alamption)                                                          | 151,063   | 1,831          | 0,101                  |
| Ilmenite and titanium slag (estimated TiO <sub>2</sub> content)                           | 101,000   | 195,941        | 420,000                |
| Uranium (II-O stilled short tons                                                          | 649,030   | 450            |                        |
| Uranium (U <sub>3</sub> O <sub>8</sub> , estimated purchases by private industry)         | 049,030   | 678,518        | 1,840,000              |
| onmetals: do                                                                              | 11 600    |                |                        |
| Ashestes (ennember                                                                        | 11,600    | 12,100         | 73,113                 |
| Asbestos (apparent consumption)thousand short tons                                        | 000       |                | •                      |
| Cement (apparent consumption)thousand short tonsClays (apparent consumption)              | 809       | 876            | 2,430                  |
| Clays (apparent consumption)do<br>Lime (sold or used)do                                   | 85        | 90             | NA                     |
| Lime (sold or used) Phosphate rock (P <sub>2</sub> O <sub>5</sub> content appears         | 59,456    | 61,520         | 174,000                |
| Phosphate rock (P <sub>2</sub> O <sub>5</sub> content, apparent consumption)              | 20,290    | 21,090         | NA                     |
| Detect (Tr. o.                                                                            |           |                |                        |
| Potash (K2O content, apparent consumption) doSalt (apparent consumption)                  | 13,753    | 13,972         | NA                     |
| Salt (apparent consumption)do<br>Sand and gravel                                          | 4,815     | 5,570          | 14,455                 |
| Sand and graveldo<br>Stone, crushed (sold or used)                                        | 47,616    | 46.488         | 158,900                |
| Stone, crushed (sold or used)million short tons                                           | 914       | 984            | 3,200                  |
| Sulfur, all forms (apparent consumption)                                                  | 920       | 1,060          | 3,400                  |
| thouse 1.1                                                                                |           | -,             | 0,400                  |
| MINERAL ENERGY RESOURCES AND ELECTRICITY                                                  | 9,584     | 10,234         | 30,000                 |
| tuminous coal                                                                             | -         | ,201           | 50,000                 |
| tuminous coal RESOURCES AND ELECTRICITY  Coal carbonized for coke 1million short tons     | 517       | 556            | 1 000                  |
| ithracitedo                                                                               | (87)      | (94)           | 1,000                  |
| nthracitedo<br>troleum production and natural gas liquids                                 | 6         | (94)           | (115)                  |
| and and an area of the second                                                             | •         | v              | 2                      |
| atural gas, dry 2 million barrels_ectricity generation, net                               | 5,990     | 6 900          |                        |
| ectricity generation not metallion cubic feet                                             | 22,429    | 6,298          | 14,500                 |
| ectricity generation, netmillion cubic feet_<br>Utilitiesdo                               | 1,853,390 | 22,245         | 49,000                 |
| Hydronoword                                                                               | 1,747,323 | 1,948,070      | NA.                    |
| Hydropower 4do<br>Nuclear power                                                           | 280,478   | 1,849,260      | 3 9,010,000            |
| Nuclear powerdododododo                                                                   |           | 279,053        | 3 700,000              |
| Conventional fuel-burning plantsdo<br>Industrial                                          | 54,031    | 83,292         | 3 5.470.000            |
| Industrialdodo                                                                            | 1,420,558 | 1,494,914      | <sup>3</sup> 2,840,000 |
| tal energy resources inputstrillion Btu_                                                  | 106,067   | 98,810         | NA                     |
| Preliminary. NA Not available                                                             | 71,946    | 74,742         | <sup>3</sup> 191,900   |

p Preliminary. NA Not available.

1 Figures in parentheses are not added to totals.

2 Residual gas excludes extraction loss but includes transmission loss.

3 Dupree, W. G., Jr., and J. A. West. U.S. Energy Through Year 2000. U.S. Department of the Interior, December 1972, tables 1 and 8.

4 Net generations adjusted for net imports or exports. The bulk of net trade is hydropower with an undetermined amount of steam plant power.

Table 16.-Production of mineral energy resources and electricity from hydropower and nuclear power

(Trillion Btu)

|                                        |                                 |                                                | Natural                                        | Crude                                          | Elect                                     | tricity <sup>3</sup>            |                                                |
|----------------------------------------|---------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|-------------------------------------------|---------------------------------|------------------------------------------------|
| Year                                   | Anthracite                      |                                                | gas, wet<br>(un-<br>processed)                 | petro-<br>leum <sup>2</sup>                    | Hydro-<br>power                           | Nuclear<br>power                | Total                                          |
| 1969<br>1970<br>1971<br>1972<br>1973 P | 266<br>247<br>222<br>181<br>174 | 13,957<br>14,820<br>13,385<br>14,319<br>14,214 | 22,838<br>24,154<br>24,805<br>24,792<br>24,876 | 18,886<br>19,772<br>19,322<br>19,344<br>18,818 | 2,648<br>2,630<br>2,825<br>2,866<br>2,847 | 146<br>229<br>404<br>576<br>888 | 58,741<br>61,852<br>60,963<br>62,078<br>61,817 |

P Preliminary.

1 Heat values employed for bituminous coal and lignite are 1969, 12,450 Btu per pound; 1970, 12,290 Btu; 1971, 12,120 Btu; 1972, 12,025 Btu; and 1973, 12,025 Btu.

2 Heat values employed for crude petroleum are 1969, 5,601,070 Btu per barrel; 1970, 5,620,900 Btu; 1971, 5,594,100; 1972, 5,598,100; and 1973, 5,598,900 Btu.

3 Hydropower and nuclear power include installations owned by manufacturing plants and mines as well as government and privately owned public utilities. The fuel equivalent of hydropower and nuclear power is calculated from the kilowatt-hours produced, converted to theoretical energy and nuclear power is calculated from the kilowatt-hours produced, converted to theoretical energy resources inputs calculated from national average heat rates for fossil-fueled steam electric plants resources inputs calculated from national average heat rates for fossil-fueled steam electric plants provided by the Federal Power Commission using 10,398 Btu per net kilowatt-hour in 1968, 10,447 Btu in 1969, and 10,494 Btu in 1970. The heat rate used for hydropower in 1971 is 10,478 Btu per net kilowatt-hour generated and 10,379 Btu in 1972 and 1973. Energy inputs for nuclear power from 1971 through 1973 are converted at an average heat rate of 10,660 Btu per net kilowatt-hour based on information from the Atomic Energy Commission.

Table 17.-Calculated gross consumption of mineral energy resources, and electricity from hydropower and nuclear power in British thermal units (Btu) and percent contributed by each 1

|                                        |                          |                                                |                                                | Petroleum                                      | Natural                                   | Elec                                      | tricity                         |                                                |
|----------------------------------------|--------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|-------------------------------------------|-------------------------------------------|---------------------------------|------------------------------------------------|
| Year                                   | Anthracite               | Bituminous<br>coal and<br>lignite              | Natural<br>gas, dry                            | (excluding<br>natural<br>gas<br>liquids)       | gas<br>liquids                            | Hydro-<br>power                           | Nuclear<br>power                | Total                                          |
|                                        |                          |                                                | т                                              | RILLION BTU                                    |                                           |                                           |                                 |                                                |
| 1969<br>1970<br>1971<br>1972<br>1973 P | 224<br>210<br>186<br>150 | 12,509<br>12,488<br>11,857<br>12,273<br>13,206 | 21,020<br>22,029<br>22,819<br>23,035<br>22,846 | 26,029<br>27,049<br>28,045<br>30,382<br>32,170 | 2,392<br>2,488<br>2,525<br>2,584<br>2,558 | 2,659<br>2,650<br>2,862<br>2,946<br>2,930 | 146<br>229<br>404<br>576<br>888 | 64,979<br>67,143<br>68,698<br>71,946<br>74,742 |
|                                        |                          |                                                |                                                | PERCENT                                        |                                           |                                           |                                 |                                                |
| 1969<br>1970<br>1971<br>1972<br>1973 p | 3<br>3<br>3<br>2<br>2    | 19.3<br>18.6<br>17.3<br>17.1<br>17.7           | 32.3<br>32.8<br>33.2<br>32.0<br>30.6           | 40.1<br>40.3<br>40.8<br>42.2<br>43.0           | 3.7<br>3.7<br>3.7<br>3.6<br>3.4           | 4.1<br>4.0<br>4.1<br>4.1<br>3.9           | .2<br>.3<br>.6<br>.8<br>1.2     | 100.0<br>100.0<br>100.0<br>100.0               |

P Preliminary.

1 Heat values employed are anthracite, 12,700 Btu per pound, and bituminous coal and lignite, weighted average British thermal units provided by the Division of Fossil Fuels, Branch of Coal, 12,330 Btu per pound in 1969; 12,110 Btu per pound in 1972 and 1973. Weighted average Btu for petroleum products obtained by 11,875 Btu per pound in 1972 and 1973. Weighted average Btu for petroleum products obtained by using 5,248,000 Btu per barrel for gasoline and naphtha-type jet fuel, 5,670,000 for kerosine and using 5,248,000 Btu per barrel for gasoline and naphtha-type jet fuel, 5,680,000 for asphalt, and 5,796,000 for residual, 6,064,800 for lubricants, kerosine-type jet fuel, 5,825,000 for asphalt, and 5,796,000 for miscellaneous. Natural gas dry, 1,031 Btu per cubic foot in 1969-71; 1,027 Btu in 1972-73; natural gas liquids, weighted average British thermal units: natural gasoline and cycle products. 110,000 Btu per gallon; LP-gases, 95,500 Btu per gallon; and ethane, 73,390 Btu per gallon. Hydropower (adjusted for net imports or net energy resources inputs calculated from net leetricity generated, converted to theoretical exports) and nuclear power are derived from net electricity generated, converted to theoretical energy resources inputs calculated from national average heat rates for fossil-fueled steam-electric plants provided by the Federal Power Commission, using 10,447 Btu per net kilowatt-hour generated, and 10,494 Btu in 1970. The heat rate used for hydropower in 1971 is 10,478 Btu per net kilowatt-hour generated, and 10,379 Btu in 1972 and 1973. Energy inputs for nuclear power 1971-73 kilowatt-hour generated an average heat rate of 10,660 Btu per net kilowatt-hour based on information from the Atomic Energy Commission.

Table 18.—Gross consumption of energy resources, by major sources and consuming sector <sup>1</sup>

Total energy inputs 6 16,357 16,988 17,421 18,066 22,172 22,468 22,294 23,020 24,042 15,925 16,489 17,075 18,072 18,756 **X** | | | | 229 207 233 229 54,683 56,161 56,997 59,391 61,439 Utility electricity distributed 5 2,752 3,000 3,209 3,478 3,696 119 117 117 118 4,924 5,226 5,519 6,337 11111 X : : : : gross energy inputs 4 13,605 13,988 14,212 14,588 14,716 Total 20,017 20,258 20,001 20,527 21,417 15,908 16,473 17,058 18,055 15,220 16,208 17,222 18,543 223 207 233 229 64,979 67,143 68,698 71,946 74,742 Nuclear power 3 11111 11111 11111 146 229 404 576 888 11111 146 229 404 576 388 Hydro-power 3 1111 X 1111 2,625 2,616 2,828 2,911 2,896 11111 2,659 2,650 2,862 2,946 2,930 FOR ELECTRICITY GENERATION, UTILITIES HOUSEHOLD AND COMMERCIAL MISCELLANEOUS AND UNACCOUNTED Petroleum (Trillion Btu) 6,268 6,453 6,440 6,667 7,060 5,047 5,061 5,094 5,986 15,249 15,720 16,286 17,264 17,989 1,628 2,087 2,543 3,134 3,465 TRANSPORTATION 7 229 216 207 233 229 28,421 29,537 30,570 32,966 34,728 INDUSTRIAL ENERGY Natural gas dry 1 6,890 7,108 7,366 7,613 7,361 9,885 10,161 10,570 10,549 11,034 651 745 766 787 748 11111 21,020 22,029 22,819 23,035 22,846 TOTAL Bituminous coal and lignite 340 324 308 233 221 4,981 4,943 4,256 1,330 ∞ ∞ **∘** 4 ∾ 7,180 7,213 7,288 7,796 8,652 12,509 12,488 11,857 12,273 13,206 1111 Anthracite 107 103 98 75 74 70 47 33 AAAAA AAAAA 484 45 34 34 34 34 11111 224 210 186 150 144 Year 1969 -1970 -1971 -1972 -1969 -1970 -1971 -1972 -

XX Not applicable. NA Not available.

p Preliminary.

s Represents outputs of hydropower (adjusted for net imports or net exports) and nuclear power converted to theoretical energy inputs calculated from the respective of the property of the per net kilowatt-hour tional average heat rates for fossil-fueled steam-electric plants provided by the Federal Power Commission using 10,447 Btu per net kilowatt-hour genting 10,449 Btu in 1970. Energy inputs for hydropower in 1971 are converted at an average heat rate of 10,478 Btu per net kilowatt-hour generated, and in 1972-73 at 10,379 Btu. Energy inputs for nuclear power in 1971-73 are converted at an average heat rate 10,660 Btu per net kilowatt-hour based on information from the Atomic Energy Commission. Excludes inputs for power generated by nonutility fuel-burning plants which are included based on information from the Atomic Energy Commission.

4 Gross energy is that contained in all types of commercial energy at the time it is incorporated in the economy, whether energy is produced domestically or imported. Gross energy comprises inputs of primary fuels (or for derivatives) and outputs of hydropower and nuclear power energy converted to theoretical inputs. Gross energy includes energy used for production, processing, and transportation of energy proper. Utility electricity, generated and imported, distributed to the other consuming sectors as energy resource inputs. Distribution to sectors is based as Utility electricity to energy equivalent by sectors was made sales reported in the annual issues of the Edison Electric Institute Yearbook. Conversion of electricity to energy equivalent by sectors was made the value of contained energy corresponding to 100% efficiency using a theoretical rate of 3,412 Btu per kilowatt-hour.

<sup>9</sup> Energy resource inputs by sector, including direct fuels and electricity distributed. 7 Includes bunkers and military transportation.

BData may not add to totals shown because of independent rounding.

Table 19.-Domestic supply and demand for coal

|                                                                             |    |                        | 01 COUI   |                        |              |
|-----------------------------------------------------------------------------|----|------------------------|-----------|------------------------|--------------|
|                                                                             |    |                        | 972       | 1:                     | 973 P        |
|                                                                             |    | Thousand<br>short tons |           | Thousand<br>short tons |              |
| Supply:                                                                     |    |                        |           |                        |              |
| Production 1                                                                |    |                        |           |                        |              |
|                                                                             |    | 7,106                  | 180.5     | 6.830                  | 173.5        |
| Imports Stock change: Withdraw 1// 1                                        |    | 1,191                  | -30.3     | -1,159                 | -29.5        |
|                                                                             |    | 37.4                   |           |                        |              |
| anaccounted 10k                                                             |    | NA                     | NA.       | NA                     | NA           |
| Total                                                                       |    |                        |           |                        |              |
| Demand by major                                                             |    | 5,915                  | 150.2     | 5,671                  | 144.0        |
| Demand by major consuming sectors:                                          |    |                        |           |                        |              |
| Household and commercial 4                                                  |    | 2,960                  | 75.2      | 2,917                  | 741          |
| Industrial 5 Electricity generation, utilities                              |    | 1,371                  | 34.8      | 1.312                  | 74.1<br>33.3 |
|                                                                             |    | 1,584                  | 40.2      | 1,442                  | 36.6         |
|                                                                             |    | 5,915                  | 150.2     | 5.671                  |              |
| BITUMINOUS COAL AND LIGNITE                                                 | == |                        | 100.2     | 3,071                  | 144.0        |
|                                                                             |    |                        |           |                        |              |
| Production <sup>1</sup> Exports                                             |    | EOE 000                |           |                        |              |
| ExportsImports                                                              |    | 55 060                 | 14,319.0  | 591,000                | 14,213.6     |
| Imports Stock change: Withdrawal-(1)                                        |    | 55,560<br>47           | -1,514.3  | -52,870                | -1,430.7     |
| Stock change: Withdrawals (+), additions (-) Losses, gains, unaccounted for |    | -25,121                | -604.2    | 127                    | 3.0          |
|                                                                             |    | 2.424                  | 71.8      | 16,437                 | 388.2        |
|                                                                             |    | 516,776                |           | 1,328                  | 31.4         |
| emand by major consuming and                                                |    | 510,776                | 12,273.4  | 556,022                | 13,205.5     |
| ruer and power:                                                             |    |                        |           |                        |              |
| Household and commonsial 4                                                  |    |                        |           |                        |              |
|                                                                             |    | 8,748                  | 232.9     | 8,200                  | 220.7        |
| Coal carbonized for coke 6  Transportation 7                                |    | 154,658                | 4,117.5   | 156,448                | 4,211.5      |
| Transportation 7                                                            |    | (87,272)               | (2,323.4) | (93,634)               | (2,520,6)    |
|                                                                             |    | 163                    | 4.3       | 116                    | 3.1          |
| Total 6                                                                     |    | 348,612                | 7,796.4   | 386,879                | 8,652.2      |
| Raw material T                                                              |    | 512,181                | 12,151.1  | 551,643                | 13,087.5     |
| Raw material: Industrial: 8                                                 |    |                        |           |                        | 20,001.0     |
| Crude light oil                                                             |    | 1.071                  | 28.5      | 1 101                  |              |
|                                                                             |    | 3,524                  | 93.8      | 1,131<br>3,248         | 30.5         |
|                                                                             |    | 4,595                  | 122.3     |                        | 87.5         |
| Grand total                                                                 |    |                        |           | 4,379                  | 118.0        |
|                                                                             |    | 516,776                | 12,273.4  | 556,022                | 13,205.5     |

P Preliminary. NA Not available.

1 Includes use by producers for power and heat.
2 Includes shipments to U.S. Armed Forces in West Germany.
3 Except for small quantities used as raw material for coal chemicals, all anthracite is used for fuel and power.
4 Data represent "retail deliveries to other consumers." These are mainly household and commercial users, with some unknown portion of use by small industries.
5 Includes consumption by coke plants, steel and rolling mills, and other industrial uses.
6 Figures in parentheses are not added into totals.
7 Includes bunkers and military transportation.
8 Coal equivalent based on British thermal unit value of raw material consumption of coal chemicals listed.

Table 20.-Domestic supply and demand for natural gas

|                                                                                                                                                       | 197                                                                       | 2                                                               | 197                                                                          | 3 P                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------|
|                                                                                                                                                       | Million                                                                   | Trillion                                                        | Million                                                                      | Trillion                                                    |
|                                                                                                                                                       | cubic feet                                                                | Btu                                                             | cubic feet                                                                   | Btu                                                         |
| Supply: Production  Exports Imports Stock change: Withdrawals(+), additions(-) Transfers out, extraction loss  Losses, gains, unaccounted for Total   | 22,531,698<br>78,013<br>1,019,496<br>135,734<br>907,993<br><br>22,429,454 | 24,791.8<br>-80.1<br>1,047.0<br>-139.4<br>-2,584.3<br>-23,035.0 | 22,647,549<br>-77,169<br>1,032,901<br>-441,504<br>-916,551<br><br>22,245,226 | 24,876.0<br>79.3<br>1,060.8<br>453.4<br>2,558.3<br>22,845.8 |
| Demand by major consuming sectors:  Fuel and power:  Household and commercial  Industrial 3  Transportation  Electricity generation, utilities  Total | 7,412,543                                                                 | 7,612.7                                                         | 7,167,428                                                                    | 7,360.1                                                     |
|                                                                                                                                                       | 9,618,143                                                                 | 9,877.8                                                         | 10,044,606                                                                   | 10,315.                                                     |
|                                                                                                                                                       | 766,156                                                                   | 786.8                                                           | 728,177                                                                      | 747.                                                        |
|                                                                                                                                                       | 3,978,673                                                                 | 4,086.1                                                         | 3,605,333                                                                    | 3,702.                                                      |
|                                                                                                                                                       | 21,775,515                                                                | 22,363.4                                                        | 21,545,544                                                                   | 22,127.                                                     |
| Raw material: Industrial: 4 Carbon black Other chemicals 5 Total                                                                                      | 53,939                                                                    | 55.4                                                            | 49,682                                                                       | 51.                                                         |
|                                                                                                                                                       | 600,000                                                                   | 616.2                                                           | 650,000                                                                      | 667.                                                        |
|                                                                                                                                                       | 653,939                                                                   | 671.6                                                           | 699,682                                                                      | 718.                                                        |
| Grand total                                                                                                                                           | 22,429,454                                                                | 23,035.0                                                        | 22,245,226                                                                   | 22,845                                                      |

NOTE.—Conversion factor for dry gas is 1,027 Btu per cubic foot.

P Preliminary.

¹ Marketed production includes wet gas sold or consumed by producers, losses in transmission, producers' additions to storage, and increases in gas pipeline fill: excludes repressuring and quantities vented and flared. British thermal unit value of production is for wet gas prior to extraction of natural gas liquids. Higher Btu values assigned to extraction loss are reflected in value of natural gas liquids production for each year.

² Extraction loss from eycling plants represents offtake of natural gas for natural gas liquids as reported to the Bureau of Mines. Energy equivalent of extraction loss is based on annual outputs of natural gasoline and associated products at 110,000 Btu per gallon, annual outputs of LPG at 95,500 Btu per gallon, and annual outputs of ethane at 93,390 Btu per gallon. (Prior to 1967, ethane production was included with LPG in converting to Btu values.)

³ Includes transmission losses and unaccounted for of 328,002 million cubic feet in 1972 and 195,863 million cubic feet in 1973.

⁴ Includes some fuel and power used by raw material industries.

• Estimated from partial data.

NOTE—Conversion factor for dry gas is 1,027 Btu per cubic foot.

Table 21.-Domestic supply and demand for petroleum 1

| _                                                           | 1                  | .972                  | 19                 | 73 P             |
|-------------------------------------------------------------|--------------------|-----------------------|--------------------|------------------|
|                                                             | Million<br>barrels | Trillion<br>Btu       | Million<br>barrels | Trillion<br>Btu  |
| Supply:                                                     |                    |                       |                    |                  |
| Crude oil:2                                                 |                    |                       |                    |                  |
| Production                                                  | 3,455,4            | 19.343.6              | 3,360.9            | 18,817.          |
| Exports                                                     | 2                  | -1.1                  | -0.7               | -3.9             |
| Imports 3 Stock change: Withdrawals (+), additions (-)      | 811.1              | 4,540.5               | 1,184.0            | 6,629.           |
| Losses, transfers for use as fuel, and un-<br>accounted for | 13.3               | 74.5                  | 3.9                | 21.8             |
| Total                                                       |                    | 7.2                   | -10.8              | <u> </u>         |
|                                                             | 4,280.9            | 23,964.7              | 4,537.3            | 25,404.0         |
| Refinery input:                                             |                    |                       |                    |                  |
| Transfers in, natural gas liquids 4                         | 4,280.9            | 23,964.7              | 4,537.3            | 25,404.0         |
| Other hydrocarbons                                          | 302.4              | 1,345.4               | 297.5              | 1,325.5          |
| Total                                                       | 10.1               | 55.8                  | 10.7               | 64.2             |
|                                                             | 4,593.4            | 25,365.9              | 4,845.5            | 26,793.7         |
| Refined products:                                           |                    |                       |                    |                  |
| Refinery output<br>Unfinished oil reruns, net               | 4,593.4            | 25,365.9              | 4,845.5            | 26,793,7         |
| Processing gain, net                                        | 51.5               | 323.8                 | 45.8               | 287.9            |
| Total                                                       | 142.2              | 785.3                 | 165.5              | 915.2            |
|                                                             | 4,787.1            | 26,475.0              | 5,056.8            | 27,996.8         |
| Exports                                                     | -81.2              | -462.9                | -83.5              | -480.2           |
| Imports Stocks change, including natural gas liquids        | 924.2              | 5,571.4               | 1,079.5            | 6.448.8          |
|                                                             | 71.7               | 403.1                 | -53.2              | -284.9           |
| Losses, gains, and unaccounted for                          | 335.8              | 1,238.9               | 336.9              | 1,232.8          |
| Total supply                                                | <u>-47.3</u>       | -259.8                | -39.0              | -185.1           |
| Jaman J. Land                                               | 5,990.3            | 32,965.7              | 6,297.5            | 34,728.2         |
| Demand by major consuming sectors: Fuel and power:          |                    |                       |                    |                  |
| Household and commercial Industrial Transportation 6        | 997.6              | 5,530.7               | 1,042.3            | 5,796.1          |
|                                                             | 595.5              | 3,533.1               | 640.3              | 3,802.7          |
| Dieculicity Peneration intilities                           | 3,187.2<br>503.7   | $17,107.4 \\ 3,133.8$ | 3,316.6            | 17,807.2         |
| other, not specified                                        | 27.2               | 149.0                 | $556.9 \\ 22.0$    | 3,464.6<br>124.3 |
| Total                                                       | 5.311.2            | 29,454.0              | 5.578.1            | 30,994.9         |
| Raw material:                                               | 0,011.2            | 23,404.0              | 9,916.1            | 30,994.9         |
| Petrochemical feedstock offtobo                             | 070.0              |                       |                    |                  |
| Other nonfuel use                                           | $370.3 \\ 293.5$   | 1,580.4<br>1,847.7    | 383.1              | 1,626.4          |
| Total                                                       | 663.8              |                       | 317.3              | 2,002.1          |
| Miscellaneous and unaccounted for                           | 663.8<br>15.3      | 3,428.1<br>83.6       | 700.4              | 3,628.5          |
| Grand total                                                 | 5,990.3            | 32,965.7              | 19.0<br>6,297.5    | 34.728.2         |

P Preliminary.

Supply and demand for crude oil and petroleum products. Petroleum products include products refined and processed from crude oil, including still gas and LRG; also natural gas liquids transferred from natural gas.

Btu value for crude oil for each year shown is based on average Btu value of total output of petroleum products (including refinery fuel and losses) adjusted to exclude natural gas liquids inputs and their implicitly derived values. Value for imports of crude is based on the average value of crude runs to stills.

Includes some Athabasca hydrocarbons.

Btu values for natural gas liquids for each year shown are implicitly derived from weighted averages of production of major natural gas liquids, derived by converting natural gasoline and cycle products at 110,000 Btu per gallon, LPG at 95,500 Btu per gallon, and ethane at 73,390 Btu per gallon.

btu per gallon.

SIncludes natural gas liquids other than those channeled into refinery input as follows:

Petrochemical feedstocks, direct uses for fuel and power, and other uses.

GIncludes bunkers and military transportation.

Tincludes some fuel and power used by raw materials industries.

Table 22.-Petroleum consumption, by major product and major consuming sector 1

|                                                                                          | Househ                 | Household and      | Industrial             | trial                     | Transportation 2   | rtation 2       | Electricity gener- | y gener-        | Miscellaneous and  | eous and        | Total domestic                | mestic                             |
|------------------------------------------------------------------------------------------|------------------------|--------------------|------------------------|---------------------------|--------------------|-----------------|--------------------|-----------------|--------------------|-----------------|-------------------------------|------------------------------------|
| 1                                                                                        | Million                | Trillion<br>Btu    | Million<br>barrels     | Trillion<br>Btu           | Million<br>barrels | Trillion<br>Btu | Million<br>barrels | Trillion<br>Btu | Million<br>barrels | Trillion<br>Btu | Million<br>barrels            | Trillion<br>Btu                    |
| 1972<br>Fuel and power:<br>Liquefied gases                                               | 196.5                  | 788.1              | 34.0                   | 136.4                     | 35.2               | 141.2           | ľ                  | 1               | 7.5                | 30.1            | 273.2                         | 1,095.8                            |
| Jet fuels: Naphtha type Kerosine type                                                    | 11                     | !!                 | 11                     | 11                        | 88.5<br>285.2      | 473.9           | 180                | 49.9            | : :                | : :             | 88.5<br>294.0                 | 478.9                              |
| Total                                                                                    | 1                      | 1                  | 1                      | 1                         | 373.7              | 2,091.0         | 8.8                | 49.9            | 1 1                | 11              | 382.5<br>2.350.7              | 2,140.9<br>12,336.5                |
| Kersine<br>Distillate fuel<br>Residual fuel                                              | 66.2<br>547.8<br>187.1 | 3,190.9<br>1,176.3 | 19.7<br>124.0<br>190.6 | 111.6<br>722.3<br>1,198.8 | 323.9<br>103.7     | 1,886.7         | 59.6<br>435.3      | 347.2           | 10.8               | 62.9<br>56.0    | 85.9<br>1,066.1<br>925.6      | 487.0<br>6,210.0<br>5,819.3        |
| Still gas<br>Petroleum coke                                                              |                        | 11                 | 171.0<br>56.2          | 1,026.0<br>338.5          | 1 1                | ; ;             | 11                 | 1 1             | 11                 | 11              | 171.0 $56.2$                  | 1,026.0<br>338.5                   |
| Total                                                                                    | 9.766                  | 5,530.7            | 595.5                  | 3,533.1                   | 3,187.2            | 17,107.4        | 503.7              | 3,133.8         | 27.2               | 149.0           | 5,311.2                       | 29,454.0                           |
| Raw material: 3 Special naphthas Lubes 4 and waxes Petroleum coke 6 Raphalt and road oil | 171.3                  | 1,136.7            | 31.9<br>32.4<br>32.1   | 167.4<br>193.7<br>193.4   | 25.8               | 156.5           | 1111               | 1111            | 1111               | 1111            | 31.9<br>58.2<br>32.1<br>171.3 | 167.4<br>350.2<br>193.4<br>1,186.7 |
| retrochemical recusions<br>offtake:<br>Liquefied refinery gas <sup>6</sup>               | !                      | ŀ                  | 45.9                   | 165.8                     | 1                  | 1               | 1                  | ;               | 1                  | ;               | 45.9                          | 165.8                              |
| Liquefied petroleum                                                                      | 1                      | 1                  | 200.7                  | 724.8                     | ;                  | ł               | !                  | ł               | 1                  | 1               | 200.7                         | 724.8                              |
| Naphtha (400<br>degrees)<br>Still gas                                                    | 11                     | 11                 | 58.1<br>14.7           | 304.9<br>88.2             | 11                 | 11              | 11                 | 11              | 11                 | 11              | 58.1<br>14.7                  | 304.9<br>88.2                      |
| Miscellaneous (+400 degrees)                                                             | 171.3                  | 1.136.7            | 50.9                   | 2.134.9                   | 25.8               | 156.5           | ; ;                | 1 1             | 1 1                | 1               | 50.9                          | 3,428.1                            |
| Miscellaneous and unaccounted                                                            | 1                      | 1                  | 1                      | ;                         | ì                  | 1               | 1                  | 1               | 15.8               | 83.6            | 15.3                          | 83.6                               |
| Grand total, domestic product demand                                                     | 1,168.9                | 6,667.4            | 1,062.2                | 5,668.0                   | 3,213.0            | 17,263.9        | 503.7              | 3,133.8         | 42.5               | 232.6           | 5,990.3                       | 32,965.7                           |

See footnotes at end of table.

Table 22.—Petroleum consumption, by major product and major consuming sector<sup>1</sup>—Continued

|                                                                                                               | Househ                 | Household and      | Industrial             | ıtrial                    | Transpo            | Transportation 2   | Electricity generation. | y gener-         | Miscellaneous and  | eous and        | Total domestic                | mestic                                      |
|---------------------------------------------------------------------------------------------------------------|------------------------|--------------------|------------------------|---------------------------|--------------------|--------------------|-------------------------|------------------|--------------------|-----------------|-------------------------------|---------------------------------------------|
|                                                                                                               | Million<br>barrels     | Trillion<br>Btu    | Million<br>barrels     | Trillion<br>Btu           | Million<br>barrels | Trillion<br>Btu    | Million<br>barrels      | Trillion<br>Btu  | Million<br>barrels | Trillion<br>Btu | Million<br>barrels            | Trillion<br>Btu                             |
| 1973 P<br>Fuel and power:<br>Liquefied gases                                                                  | 199.0                  | 798.2              | 36.0                   | 144.4                     | 37.0               | 148.4              | }                       | # 1              | 4.4                | 17.6            | 276.4                         | 1,108.6                                     |
| Jet fuels: Naphtha type Kerosine type                                                                         | 11                     |                    | 11                     | 11                        | 79.2<br>294.7      | 424.1<br>1,670.9   | 9.6                     | 53.9             | 11                 | 11              | 79.2<br>304.2                 | 424.1<br>1,724.8                            |
| Total Gasoline                                                                                                | 11                     | 11                 | 11                     | 11                        | 373.9<br>2,452.0   | 2,095.0 $12,868.1$ | 9.5                     | 53.9             | 11                 | 1 1             | 383.4<br>2,452.0              | 2,148.9                                     |
| Kerosine Distillate fuel Residual fuel                                                                        | 60.4<br>577.2<br>205.7 | 3,862.5<br>1,293.2 | 18.5<br>132.8<br>209.8 | 104.9<br>773.6<br>1,319.0 | 339.2<br>114.5     | 1,975.8 $719.9$    | 66.7                    | 388.5<br>3,022.2 | 8.8<br>14.2        | 48.9            | 78.9<br>1,124.8<br>1,019.9    | <b>44</b> 7.4<br><b>6,</b> 549.0<br>6,412.1 |
| Still gas                                                                                                     | !!                     | 1 1                | 176.8<br>66.4          | 1,060.8<br>400.0          | 11                 | 1 1                | 1 1                     | 11               | 1 1                | 11              | 176.8<br>66.4                 | 1,060.8                                     |
| Total                                                                                                         | 1,042.3                | 5,796.1            | 640.3                  | 3,802.7                   | 3,316.6            | 17,807.2           | 556.9                   | 3,464.6          | 22.0               | 124.3           | 5,578.1                       | 30,994.9                                    |
| Raw material: 3 Special mapthas Lubes and waxes Petrolean coke 6 Asphalt and road oil Petrochemical feedstock | 190.4                  | 1,263.5            | 88.0<br>86.0<br>28.1   | 169.0<br>214.7<br>172.9   | 80.0               | 182.0              | 1111                    | 1111             | 1111               | 1111            | 32.2<br>66.0<br>28.7<br>190.4 | 169.0<br>396.7<br>172.9<br>1,263.5          |
| ied refinery                                                                                                  | ł                      | 1                  | 47.2                   | 167.4                     | 1                  | ł                  | 1                       | ł                | 1                  | ;               | 47.2                          | 167.4                                       |
| gas 6 /                                                                                                       | ;                      | 1                  | 205.0                  | 727.1                     | 1                  | 1                  | 1                       | }                | 1                  | ;               | 205.0                         | 727.1                                       |
| Still gas                                                                                                     | 11                     | 11                 | 56.8<br>12.4           | 298.1<br>74.4             | ĻI                 |                    | 1.1                     | 11               | 11                 | 1 1             | 56.8<br>12.4                  | 298.1<br>74.4                               |
|                                                                                                               | 1,232.7                | 7,059.6            | 1,120.3                | 5,985.7                   | 3,346.6            | 1000               | 1                       | 1                | 1                  | 1               | 61.7                          | 359.4                                       |
| Miscellaneous and unaccounted                                                                                 | 190.4                  | 1,203.0            | 400.0                  | 2,103.0                   | 0.00               | 105.0              | : :                     | 1 1              | 19.0               | 104.8           | 19.0                          | 104.8                                       |
| Grand total, domestic<br>product demand                                                                       | 1,232.7                | 7,059.6            | 1,120.3                | 5,985.7                   | 3,346.6            | 17,989.2           | 556.9                   | 3,464.6          | 41.0               | 229.1           | 6,297.5                       | 34,728.2                                    |
|                                                                                                               |                        |                    |                        |                           |                    |                    |                         |                  |                    |                 |                               |                                             |

Preliminary.
Includes hiquefled refinery gas and natural gas liquids.
Includes bunkers and military transportation.
Includes bunkers and military transportation.
Includes some fuel and power used by raw materials industries.
Includes some fuel and power used by raw materials industries.
Includes are distributed on basis of data from Bureau of the Census survey.
Includes portions of petroleum coke estimated to be consumed in nonfuel uses.
Includes Ehane.

Table 23.-Electrical energy sales to ultimate consumers (Million kilowatt hours)

| Region                                   | Total<br>consumption            | Residential | Industrial<br>and<br>com-<br>mercial | Total<br>consumption | Residential | Indus-<br>trial<br>and<br>com-<br>mercial |
|------------------------------------------|---------------------------------|-------------|--------------------------------------|----------------------|-------------|-------------------------------------------|
|                                          |                                 | 1969        |                                      |                      | 1970        |                                           |
| _                                        | 51,373                          | 18,789      | 31,040                               | 55,255               | 20,900      | 32,804                                    |
| New England                              | 190,582                         | 54,405      | 124,633                              | 201,230              | 59,709      | 129,328                                   |
| Middle Atlantic                          |                                 | 73,409      | 172,953                              | 267,228              | 79,687      | 177,306                                   |
| East North-Central                       | 256,212<br>84,125               | 32,436      | 48,909                               | 90,414               | 35,339      | 52,109                                    |
| West North-Central                       |                                 | 72,253      | 118,360                              | 218,715              | 81,493      | 128,261                                   |
| South Atlantic                           | $\substack{199,257 \\ 129,601}$ | 39,331      | 88,308                               | 136,728              | 43,788      | 90,760                                    |
| East South-Central                       |                                 | 43,068      | 92,037                               | 154,136              | 47,997      | 99,380                                    |
| West South-Central                       | 141,610                         | 15,700      | 40,638                               | 62,592               | 16,977      | 42,654                                    |
| Mountain                                 | 59,067                          | 56,940      | 124,373                              | 200,260              | 60,171      | 129,739                                   |
| Pacific                                  | 190,979                         | 1,591       | 2,655                                | 4,801                | 1,734       | 2,931                                     |
| Alaska and Hawaii                        | 4,372                           |             |                                      | 1,391,359            | 447,795     | 885,272                                   |
| Total United States                      | 1,307,178                       | 407,922     | 843,906                              | 1,551,555            |             |                                           |
| =======================================  |                                 | 1971        |                                      |                      | 1972        |                                           |
|                                          | 59,072                          | 22,870      | 34,645                               | 63,782               | 24,614      | 37,509                                    |
| New England                              | 208,567                         | 62.878      | 133,086                              | 219,861              | 65,978      | 140,639                                   |
| Middle Atlantic                          | 281,393                         | 84,629      | 186,011                              | 304,297              | 89,736      | 203,268                                   |
| East North-Central                       | 94,872                          | 37,372      | 54,395                               | 100,687              | 39,074      | 58,316                                    |
| West North-Central                       | 234,920                         | 87,559      | 137,798                              | 252,811              | 93,563      | 149,062                                   |
| South Atlantic                           | 142,057                         | 45,905      | 93,823                               | 153,430              | 48,404      | 102,441                                   |
| East South-Central                       | 164,047                         | 51,497      | 105,361                              | 181,902              | 57,952      | 116,218                                   |
| West South-Central                       | 66,168                          | 18,641      | 44,427                               | 71,805               | 20,609      | 47,719                                    |
| Mountain                                 | 209,980                         | 65,814      | 133,615                              | 223,309              | 69,441      | 142,551                                   |
| Pacific                                  | 5,365                           | 1,915       | 3,291                                | 5,830                | 2,052       | 3,603                                     |
| Alaska and Hawaii<br>Total United States | 1,466,441                       | 479,080     | 926,452                              | 1,577,714            | 511,423     | 1,001,326                                 |

Source: Edison Electric Institute. Statistical Yearbook of the Electric Utility Industry, 1969-1972.

Table 24.—Total employment in selected mineral industries

(Thousands) 1972 1973 1971 1969 1970 MINING 21,3 Metals: 24.5 20.1 26,2 25.6 -----42.3 Tron ores 34.7 38.9 37.0 33.7 Copper ores \_\_\_\_\_ 90.5 86.1 94.8 89.0 89.4 Total 1 112.1 115.8 113.0 115.6 116.0 Nonmetal mining and quarrying 158.0 143.2 3.7 Fuels: 129.5 138.8 132.3 \_\_\_\_\_ Bituminous 3.6 5.4 141.0 5.6 5.7 133.5 Other coal
Crude petroleum and natural gasfields 137.8 141.7 124.1 131.0 120.3 125.2 133.9 Oil and gasfield services \_\_\_\_\_ 426.1 411.3 399.0 408.8 414.1 607.0 632.4 r 619.1 622.1 601.0 Total mining -----MANUFACTURING Minerals: 35.8 38.5 39.6 40.5 38.2 Fertilizers, complete and mixing only \_\_ 33.6 33.8 32.0 34.1 Cement, hydraulic \_\_\_\_\_ Blast furnaces, steelworks, and rolling 521.8 492.2 549.6 506.3 561.1 86.3 83.6 83.9 86.3 Nonferrous smelting and refining \_\_\_\_\_ 86.2 660.4 645.2 680.4 721.8 710.5 Total \_\_\_\_\_ 147.3 Fuels: 150.8 153.1 144.7 153.4 Petroleum refining 40.8 38.8 38.2 38.5 36.7 Other petroleum and coal products 188.1 189.6 189.8 182.9 191.9 Total 2 868.5 902.4 850.2 834.8 904.7 Total manufacturing -----

<sup>&</sup>lt;sup>1</sup> Includes other metal mining not shown separately.
<sup>2</sup> Standard Industrial Classification 295, paving and roofing materials, included in total.

Source: U.S. Department of Labor, Bureau of Labor Statistics. Employment and Earnings. V. 16-20, No. 9, March issue 1970—1974, table B-2.

Table 25.-Average hours and gross earnings of production and related workers in the mineral and mineral fuels industries

|                                                    | 1969                    | 1970                     | 1971                  | 1972                | 1973                |
|----------------------------------------------------|-------------------------|--------------------------|-----------------------|---------------------|---------------------|
| MINING Metal:                                      |                         |                          |                       |                     |                     |
| Metal:<br>Iron ores:                               |                         |                          |                       |                     |                     |
| Weekly earnings                                    | 8150 10                 |                          |                       |                     |                     |
| Weekly earnings Weekly hours Hourly earnings       | \$153.18<br>41.4        | \$162.99<br>41.9         | \$169.70              | \$185.40            | \$198.56            |
|                                                    | \$3.70                  | \$3.89                   | 40.5<br>\$4.19        | 41.2                | 42.7                |
|                                                    |                         | 40.00                    | φ <del>4</del> .19    | \$4.50              | \$4.65              |
| Weekly earnings Weekly hours                       | \$169.00                | \$175.67                 | <sup>1</sup> \$178.46 | \$192.19            | \$206.52            |
| riourly earnings                                   | 46.3<br>\$3.65          | 44.7                     | 42.9                  | 41.6                | 42.3                |
|                                                    | фо.00                   | <b>\$3.93</b>            | \$4.16                | \$4.62              | \$4.88              |
| Weekly earnings                                    | \$157.32                | \$165.68                 | \$171.39              | \$185.51            | 8000 40             |
| Weekly hours                                       | 43.1                    | 42.7                     | 41.6                  | 41.5                | \$200.40<br>42.1    |
| Numeranic mining and dispressing.                  | \$3.65                  | \$3.88                   | \$4.12                | \$4.47              | \$4.76              |
| Weekly earnings                                    | \$149.11                | 0155 50                  |                       | •                   | -                   |
| weekly hours                                       | 45.6                    | \$155.56<br>44.7         | \$165.23              | \$176.96            | \$196.88            |
| Hourly earnings                                    | \$3.27                  | \$3.48                   | 44.9<br>\$3.68        | 44.8                | 47.1                |
| All coal mining:                                   | •                       | 40.40                    | φυ.υο                 | \$3.95              | \$4.18              |
| Weekly earnings                                    |                         |                          |                       |                     |                     |
| Weekly earnings  Hourly earnings                   | \$166.74                | \$183.96                 | \$194.00              | \$215.83            | \$226.86            |
| Hourly earnings                                    | 39.7<br>\$4.20          | 40.7                     | <sup>3</sup> 40.6     | <sup>3</sup> 41.0   | 39.9                |
|                                                    | <b>#4.20</b>            | \$4.52                   | <sup>3</sup> \$4.79   | <sup>3</sup> \$5.30 | <sup>3</sup> \$5.69 |
| Weekly earnings                                    | \$169.18                | \$186.46                 | \$196.02              | \$217.46            | \$228.45            |
| weekiv nours                                       | 39.9                    | 40.8                     | <sup>3</sup> 40.6     | 3 41.0              | \$228.45<br>39.8    |
| Hourly earnings  Crude petroleum and natural gas:  | \$4.24                  | \$4.57                   | 3 \$4.85              | 3 \$5.34            | \$5.74              |
| Weekly earnings                                    | \$147.19                | #1FF 00                  |                       |                     | 402                 |
| Weekly hours                                       | 41.0                    | \$155.88<br>40.7         | \$159.75              | \$169.92            | \$191.82            |
| Hourly earningsAll fuels: 4                        | \$3.59                  | \$3.83                   | 42.6<br>\$3.75        | 42.8                | 40.9                |
| Wookly comings                                     |                         | 40.00                    | φυ. τυ                | \$3.97              | \$4.69              |
| Weekly earnings                                    | \$156.55                | \$166.35                 | \$173.59              | \$191.27            | \$207.22            |
|                                                    | 42.2                    | 42.1                     | 41.8                  | 41.8                | 40.8                |
| 11 111111111111111111111111111111111111            | \$3.73                  | \$3.97                   | \$4.22                | \$4.53              | \$4.90              |
| Weekly earnings                                    | \$152.67                | \$160.07                 | \$167.89              | 0100.01             |                     |
|                                                    | 44.6                    | 43.8                     | 43.5                  | \$180.61<br>43.4    | \$198.39            |
| Hourly earnings                                    | \$3.43                  | \$3.66                   | \$3.87                | \$4.17              | 44.0<br>\$4.70      |
| rtilizers complete and minima                      |                         |                          |                       | ¥                   | Ψ2.10               |
| Weekly earnings                                    | \$116.14                | <b>8100.0</b> 0          | 0400 ==               |                     |                     |
| Weekly hours                                       | 42.7                    | \$123.68<br><b>42.</b> 5 | \$132.71              | \$143.14            | \$156.66            |
|                                                    | \$2.72                  | \$2.91                   | 42.4<br>\$3.13        | 42.6<br>\$3.36      | 43.0                |
|                                                    |                         | <del>+</del>             | ψ0.10                 | <b>\$0.00</b>       | \$3.62              |
| Weekly earnings Weekly hours                       | \$155.87                | \$176.81                 | \$194.37              | \$215.04            | \$233.20            |
|                                                    | 41.9<br>\$3.72          | 41.8                     | 41.8                  | 42.0                | 42.4                |
| last lufliaces, steel and rolling mills.           | <b>\$5.12</b>           | <b>\$4.23</b>            | \$4.65                | \$5.12              | \$5.50              |
|                                                    | \$168.51                | \$168.38                 | \$181.43              | \$210.12            | \$230.74            |
|                                                    | 41.2                    | 39.9                     | 39.7                  | 40.8                | \$230.74<br>41.8    |
| Hourly earnings onferrous smelting and refining:   | \$4.09                  | \$4.22                   | \$4.57                | \$5.15              | \$5.56              |
| Weekly earnings                                    | \$152.64                | 0155.00                  |                       | •                   |                     |
| Weekly hours                                       | φ152. <b>04</b><br>42.4 | \$157.63<br>41.7         | \$166.83              | \$185.59            | \$203.46            |
| Weekly hours Hourly earnings                       | \$3.60                  | \$3.78                   | 41.5<br>\$4.02        | 41.8<br>\$4.44      | 42.3                |
|                                                    |                         | Ψ0.10                    | φ <del>1</del> .02    | \$4.44              | \$4.81              |
| Weekly earnings                                    | \$170.40                | \$182.33                 | \$194.19              | \$208.89            | \$220.28            |
| Weekly hours  Hourly earnings  Petroleum refisions | 42.6                    | 42.7                     | 42.4                  | 42.2                | 42.2                |
|                                                    | \$4.00                  | \$4.27                   | <b>\$4.58</b>         | \$4.95              | \$5.22              |
| Weekly earnings                                    | \$178.08                | \$189.93                 | \$202.44              | 8010.45             |                     |
| Weekly Hours                                       | 42.1                    | 42.3                     | 42.0                  | \$219.45<br>41.8    | \$231.02<br>41.7    |
|                                                    | \$4.23                  | \$4.49                   | \$4.82                | \$5.25              | \$5.54              |
| Other petroleum and coal products:                 | 01.45.50                | ****                     |                       | Ŧ                   | 40.04               |
| Weekly earnings Weekly hours Hourly earnings       | \$147.52                | \$157.52                 | \$166.44              | \$175.34            | \$187.91            |
|                                                    | 44.3<br>\$3.33          | 44.0<br>\$3.58           | 43.8                  | 43.4                | 43.7                |
| manuaccuring • •                                   | <b>40.00</b>            | <b>90.00</b>             | <b>\$</b> 3.80        | \$4.04              | \$4.30              |
| Weekly earnings                                    | \$165.47                | \$168.76                 | \$181.46              | \$206.52            | \$224.92            |
|                                                    |                         |                          |                       | 4400.04             | 9444.JZ             |
| Weekly hours Hourly earnings                       | 41.7<br>\$3.99          | 40.5<br>\$4.16           | 40.4                  | 41.1                | 41.7                |

Corrected figure.
 Includes other metal mining not shown.
 Includes other metal mining not shown.
 Il-month average.
 Weighted average of data computed using figures for production workers as weights.

Source: U.S. Department of Labor, Bureau of Labor Statistics. Employment and Earnings, United States, 1909-70. Bull. 1312-7, September 1971, 602 pp. U.S. Department of Labor, Bureau of Labor Statistics. Employment and Earnings. V. 17-20, No. 9, March issue 1971, 1972, 1973, 1974, table C-2.

Table 26.-Wages, salaries, and average annual earnings in the United States

|                                                                                     |                               |                               |                               | Percent                     | change                    |
|-------------------------------------------------------------------------------------|-------------------------------|-------------------------------|-------------------------------|-----------------------------|---------------------------|
|                                                                                     | 1971 r                        | 1972                          | 1973 р -                      | 1971–72                     | 1972-73                   |
| Wages and salaries: All industries, totalmillions_ Miningdo Manufacturingdo         | \$573,590<br>6,056<br>160,635 | \$626,781<br>6,708<br>175,644 | \$691,620<br>7,361<br>196,585 | $^{+ 9.3}_{+ 10.8}_{+ 9.3}$ | $^{+10.3}_{+9.7}_{+11.9}$ |
| Average earnings per full-time employee: All industries, total Mining Manufacturing | 8,059<br>9,831<br>8,640       | 8,610<br>10,665<br>9,201      | 9,106<br>11,448<br>9,758      | +6.8<br>+8.5<br>+6.5        | $^{+5.8}_{+7.3}_{+6.1}$   |

r Revised. P Preliminary.

Table 27.—Average labor-turnover rates in selected mineral industries 1 (Per thousand employees)

| Rates and year                       | Manu-<br>factur-<br>ing   | Cement,<br>hy-<br>draulic | Blast<br>fur-<br>naces,<br>steel<br>and<br>rolling<br>mills | Non-<br>ferrous<br>smelt-<br>ing<br>and<br>refin-<br>ing | Metal<br>mining | Iron<br>ores   | Copper         | Petro-<br>leum<br>refining<br>and<br>related<br>indus-<br>tries <sup>2</sup> | Petro-<br>leum<br>refining | Coal<br>min-<br>ing |
|--------------------------------------|---------------------------|---------------------------|-------------------------------------------------------------|----------------------------------------------------------|-----------------|----------------|----------------|------------------------------------------------------------------------------|----------------------------|---------------------|
| Total accession rate 1971 1972 1973  | :<br>. 39<br>. 44<br>. 48 | 20<br>16<br>17            | 35<br>31<br>25                                              | 23<br>25<br>26                                           | 29<br>34<br>38  | 23<br>29<br>27 | 28<br>32<br>39 | 18<br>18<br>22                                                               | 13<br>13<br>16             | 19<br>18<br>17      |
| Total separation rate 1971 1972 1973 | 42                        | 19                        | 46                                                          | 31                                                       | 33              | 31             | 28             | 20                                                                           | 16                         | 17                  |
|                                      | 42                        | 16                        | 22                                                          | 25                                                       | 35              | 33             | 27             | 20                                                                           | 16                         | 19                  |
|                                      | 46                        | 16                        | 21                                                          | 25                                                       | 34              | 21             | 34             | 22                                                                           | 15                         | 16                  |
| Layoff rate: 1971 1972 1973          | 16                        | 7                         | 30                                                          | 11                                                       | 7               | 14             | 4              | 6                                                                            | 5                          | 3                   |
|                                      | 11                        | 5                         | 8                                                           | 5                                                        | 8               | 18             | 2              | 6                                                                            | 5                          | 6                   |
|                                      | 9                         | 3                         | 4                                                           | 4                                                        | 3               | 5              | 1              | 5                                                                            | 5                          | 3                   |

Source: U.S. Department of Commerce, Office of Business Economics. Survey of Current Business. V. 53, No. 7, July 1974, p. 36, table 6.2; p. 37, table 6.5.

<sup>&</sup>lt;sup>1</sup> Monthly rates are available in Employment and Earnings as indicated in source. <sup>2</sup> Standard Industrial Classification 295, paving and roofing materials, included in total.

Source: U.S. Department of Labor, Bureau of Labor Statistics. Employment and Earnings. V. 18-20, No. 9, March issue 1972, 1973, and 1974, table D-2.

Table 28.—Labor productivity indexes for selected minerals (1967=100)

| Employee     | Production<br>worker                                                                                           | Production<br>worker             | E1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Des des et           | Production                       |
|--------------|----------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------|
| 191 1        |                                                                                                                | man-hour                         | Employee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Production<br>worker | worker<br>man-hour               |
| 141.1        | 119.8                                                                                                          | 109.6                            | 108.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 109.2                | 110.0                            |
| 133.1        | 125.2                                                                                                          | 116.2                            | 113.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 116.2                | 110.0                            |
| 140.3        | 131.9                                                                                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | 117.8                            |
| 140.5        |                                                                                                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | r 118.0                          |
| 143.1        | 136.6                                                                                                          | 141.1                            | 131.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 119.0<br>136.4       | 123.4<br>139.1                   |
| Copper, reco | verable meta                                                                                                   | l mined per                      | - Iron, u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sable ore mir        | ed per—                          |
| Employee     | Production<br>worker                                                                                           | Production<br>worker<br>man-hour | Employee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Production<br>worker | Production<br>worker<br>man-hour |
| 114.3        | 113.1                                                                                                          | 103.4                            | 103.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 104.4                | 105.1                            |
|              |                                                                                                                | 106.9                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | 109.6                            |
|              | 117.2                                                                                                          | 112.8                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | r 108.7                          |
|              | 114.3                                                                                                          | 114.6                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | 110.6                            |
| 112.4        | 107.3                                                                                                          | 110.9                            | 114.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 119.0                | 121.5                            |
| Petrole      | um, refined p                                                                                                  | er—                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                                  |
| Employee     | Production<br>worker                                                                                           | Production<br>worker<br>man-hour | Employee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Production<br>worker | Production<br>worker<br>man-hour |
| 103.8        | 104.5                                                                                                          | 103.7                            | 103.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 102 0                | 105 1                            |
| 110.7        | 113.1                                                                                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | 105.1                            |
| 108.4        | 109.7                                                                                                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | 105.4                            |
| 113.1        |                                                                                                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | 103.2                            |
| 119.7        |                                                                                                                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | 101.6<br>100.1                   |
|              | 140.5 143.1  Copper, reco  Employee  114.3 122.4 124.7 117.4 112.4  Petrole  Employee  103.8 110.7 108.4 113.1 | 140.5                            | 140.5         136.9         137.2           143.1         136.6         141.1           Copper, recoverable metal mined permovorker           Employee         Production worker         Production worker man-hour           114.3         113.1         103.4           122.4         115.1         106.9           124.7         117.2         112.8           117.4         114.3         114.6           112.4         107.3         110.9           Petroleum, refined per—           Employee         Production worker man-hour           103.8         104.5         103.7           110.7         113.1         110.6           108.4         109.7         108.6           113.1         115.1         115.3           119.7         121.0         121.8 | 140.5                | 140.5                            |

Preliminary. r Revised.

Source: U.S. Department of Labor, Bureau of Labor Statistics. Index of Output per Man-hour Selected Industries, 1973 edition. BLS Bull. 1780, 1973, tables 2, 4, 6, 8, 12, and 42.

Table 29.—Index of average unit mine value of minerals produced
(1967=100)

| (1                                   | 967 = 100)                      |                         |                         |                         |                         |
|--------------------------------------|---------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
|                                      | 1969                            | 1970                    | 1971                    | 1972                    | 1973                    |
| METALS                               |                                 |                         |                         |                         |                         |
| Ferrous                              | 104.1                           | 109.4                   | 115.9                   | 120.2                   | 125.5                   |
| Nonferrous:  Base Monetary Other     | 120.0<br>118.0                  | 141.9<br>109.1          | 129.9<br>108.8          | 130.7<br>138.1          | 151.1<br>222.3          |
| Average                              | 95.4<br>115.3                   | 129.1<br>136.4          | 130.0                   | 131.2<br>131.5          | 134.5<br>155.1          |
| Average all metals                   | 109.4                           | 122.1                   | 121.5                   | 125.5                   | 139.4                   |
| NONMETALS                            |                                 |                         |                         |                         |                         |
| Construction Chemical Other Average  | 103.5<br>97.9<br>111.2<br>102.6 | 107.8<br>87.2<br>108.5  | 112.7<br>86.2<br>115.7  | 120.8<br>85.2<br>123.4  | 126.2<br>91.1<br>132.6  |
| FUELS                                | 102.0                           | 100.2                   | 100.9                   | 113.0                   | 118.6                   |
| CoalCrude oil and natural gasAverage | 108.0<br>107.9<br>106.1         | 135.4<br>108.5<br>111.8 | 152.9<br>115.6<br>120.6 | 165.2<br>116.4<br>123.4 | 183.3<br>133.8<br>141.6 |
| Overall average                      | 105.6                           | 110.7                   | 117.6                   | 121.2                   | 136.3                   |
| -                                    |                                 |                         |                         |                         |                         |

Preliminary.

Table 30.-Index of implicit unit value of minerals produced

(1967 = 100)1972 1973 P 1971 1969 1970 METALS 109.1 115.6 119.5 123.7 104.1 Ferrous \_\_\_\_\_\_\_\_\_\_ Nonferrous: 143.4 109.5 130.1 130.6 151.0 Monetary 120.4 r 107.9 136.2 212.2 118.0 129.7 132.0 136.4 138.9 95.6 153.1 117.7 139.8 128.7 131.4 124.1 127.3 141.9 128.7 112.4 Average all metals \_\_\_\_\_\_ 120.6 103.0 107.7 112.8 126.0 Construction \_\_\_\_\_ 84.6 119.8 90.3 87.4 108.8 86.9 Chemical \_\_\_\_\_ 115.2 128.0 111.0 Other \_\_ \_\_\_\_\_\_ 107.3 112.5 118,6 102.3 103.2 Average \_\_\_\_\_ FUELS 135.4 108.5 152.9 165.5 183.5 108.0 Coal \_\_\_\_\_\_Crude oil and natural gas \_\_\_\_\_\_ 115.5 116.4 134.0 107.9 141.5 111.5 119.8 129.2 106.0 Average \_\_\_\_\_ 117.6 121.2 136.2 111.8 Overall average \_\_\_\_\_ 105.9

Table 31.—Price indexes for selected metals, minerals, and fuels
(1967=100)

|                                                           | Annual          | average | Percent             |
|-----------------------------------------------------------|-----------------|---------|---------------------|
| Commodity                                                 | 1972            | 1973    | change<br>from 1972 |
| Metals and metal products                                 | 123.5           | 132.8   | +7.5                |
| Iron and steel                                            | 128.4           | 136.2   | +6.1                |
| Iron ore                                                  | 103.0           | 106.7   | +3.6                |
| Iron and steel scrap                                      | 121.8           | 188.0   | +54.4               |
| Semifinished steel products                               | 130.9           | 133.9   | +2.3                |
| Finished steel products                                   | 130.4           | 134.1   | +2.8                |
| Foundry and forge shop products                           | 124.3           | 131.5   | +5.8                |
| Pig iron and ferroalloys                                  | 125.4           | 129.4   | +3.2                |
| Nonferrous metals                                         | 116.9           | 135.0   | +15.5               |
| Primary metal refinery shapes                             | 115.6           | 139.1   | +20.3               |
| Aluminum ingot                                            | . 96 <b>.</b> 9 | 101.5   | +4.7                |
| Lead, pig, common                                         | 109.6           | 117.0   | +6.8                |
| Zinc, slab, prime western                                 | 123.4           | 146.7   | +18.9               |
| Nonferrous scrap                                          | r 102.9         | 148.4   | +44.2               |
| Nonmetallic mineral products                              | . 126.1         | 130.2   | +3.3                |
| Concrete ingredients                                      | . 126.9         | 131.2   | +3.4                |
| Sand, gravel, and crushed stone                           | 121.7           | 125.0   | +2.7                |
| Structural clay products                                  |                 | 123.3   | +5.1                |
| Gypsum products                                           | 114.7           | 120.9   | +5.4                |
| Other nonmetallic minerals                                | . 127.0         | 128.4   | +1.1                |
| Building lime                                             | 121.9           | 126.9   | +4.1                |
| Insulation materials                                      | 136.9           | 137.4   | +.4                 |
| Bituminous binders                                        |                 | 126.2   | +1.9                |
| Fertilizer materials                                      |                 | 77.1    | +3.6                |
| Nitrogenates                                              |                 | 75.5    | +5.9                |
| Phosphates                                                | 75.0            | 75.0    | ·                   |
| Phosphate rock                                            |                 | 79.8    |                     |
| Potash                                                    |                 | 105.7   | +5.3                |
| Muriate, domestic                                         | 99.7            | 104.7   | +5.0                |
| Sulfate                                                   | 104.1           | 110.9   | +6.5                |
| Fuels and related products and power                      | 118.6           | 145.5   | +22.7               |
| Coal                                                      |                 | 218.1   | +12.5               |
| Anthracite                                                |                 | 166.9   | +10.5               |
| Bituminous                                                |                 | 222.5   | +12.7               |
| Coke                                                      |                 | 166.6   | +7.1                |
| Gas fuels                                                 |                 | 126.7   | +11.0               |
| Electric power                                            |                 | 129.3   | +6.4                |
| Petroleum products, refined                               |                 | 151.4   | +39.0               |
| Canda natural and 1                                       |                 | 126.0   | +10.7               |
| Crude petroleum 1All commodities other than farm and food | 117.9           | 127.0   | +7.7                |
| All commodities other than larm and loodAll commodities   | 119.1           | 135.5   | +13.8               |

r Revised.

Source: U.S. Department of Labor, Bureau of Labor Statistics, Wholesale Prices and Price Indexes. January-December 1972, table 6; July 1974, table 4.

P Preliminary. r Revised.

<sup>&</sup>lt;sup>1</sup> Includes only domestic production.

Table 32.-Comparative mineral energy resource prices

| Fuel                                                                                                  |                               | 1971  | 1972              | 1973  |
|-------------------------------------------------------------------------------------------------------|-------------------------------|-------|-------------------|-------|
| Bituminous coal: Average prices: Cost of coal at merchant coke ovens                                  | dollows now wet to            |       |                   |       |
| Anthracite, average sales realization<br>per net ton at preparation plants,<br>excluding dredge coal: |                               |       |                   |       |
| Chestnut                                                                                              | dollars                       | 16 79 | 17 66             | 10.90 |
| Pea                                                                                                   |                               |       |                   | 16.98 |
| Petroleum and petroleum products:                                                                     | do                            | 14.83 | 15.38             | 16.61 |
| per barrel at wellGasoline, average dealers' net price (excluding taxes) of gaso-                     | do                            | 3.39  | 3.39              | 3.89  |
| line in 55 U.S. cities 1                                                                              | cents per gallon              | 18.11 | 17.72             | 19.48 |
| No. 6 fuel, maximum 1% sulfur, at Philadelphia 1 Bunker C, average price for                          | (                             |       | <sup>2</sup> 4.08 | 3.89  |
| Distillate fuel oil:  No. 2 distillate, average of                                                    | do                            | 2.81  | 2.05              | 3.42  |
| high and low prices at                                                                                |                               |       |                   |       |
| Philadelphia 1 No. 2 distillate average price                                                         | cents per gallon (refinery)   |       |                   |       |
| for all gulf ports 1                                                                                  | do                            | 0.00  |                   |       |
|                                                                                                       |                               |       |                   | 20.65 |
|                                                                                                       | cents per thousand cubic feet |       | 18.6              | 21.6  |
| consumption                                                                                           | do                            | 57 7  | 62.1              | 66.5  |

Table 33.-Cost of fuel in steam-electrical power generation

(Cents per million Btu)

| Region -                                                                                                                                                   | 1970                                                         |                                                                      |                                                                      |                                                              | 1971                                                                 |                                                                      |                                                              | 1972                                                                 |                                                                      |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|--|
|                                                                                                                                                            | Coal                                                         | Oil                                                                  | Gas                                                                  | Coal                                                         | Oil                                                                  | Gas                                                                  | Coal                                                         | Oil                                                                  | Gas                                                                  |  |
| New England Middle Atlantic East North-Central West North-Central South Atlantic East South-Central West South-Central West South-Central Mountain Pacific | 41.9<br>36.1<br>30.4<br>28.2<br>36.1<br>23.6<br>40.1<br>19.8 | 32.8<br>40.2<br>56.7<br>59.0<br>31.9<br>54.1<br>44.6<br>28.2<br>36.8 | 35.3<br>38.3<br>37.1<br>25.6<br>34.7<br>25.3<br>21.1<br>29.3<br>32.4 | 48.8<br>40.9<br>35.5<br>31.6<br>41.8<br>29.2<br>17.8<br>20.9 | 47.6<br>57.1<br>63.2<br>70.3<br>43.3<br>49.6<br>59.8<br>40.4<br>55.4 | 45.5<br>44.9<br>42.9<br>28.3<br>39.7<br>27.9<br>22.2<br>32.4<br>34.6 | 49.7<br>42.1<br>38.9<br>34.0<br>42.6<br>32.5<br>21.0<br>22.7 | 55.5<br>62.3<br>68.0<br>69.9<br>49.6<br>72.4<br>67.2<br>58.2<br>73.9 | 46.1<br>53.1<br>51.6<br>29.9<br>39.9<br>29.9<br>24.2<br>35.1<br>37.5 |  |
| United States                                                                                                                                              | 31.1                                                         | 36.6                                                                 | 27.0                                                                 | 36.0                                                         | 51.5                                                                 | 28.8                                                                 | 38.2                                                         | 58.8                                                                 | 30.3                                                                 |  |

Source: National Coal Association. Steam-Electric Plant Factors. 1971, 1972, and 1973, table 2.

Table 34.-Cost of electrical energy

(Cents per kilowatt-hour)

|                                                                                                                                                                                            |                                                             | 1970                                                               |                                                                   | 1971                                                               |                                                             |                                                                    |                                                                    | 1972                                                               |                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|
| Region                                                                                                                                                                                     | Total                                                       | Resi-<br>dential                                                   | Com-<br>mercial<br>and<br>indus-<br>trial                         | Total                                                              | Resi-<br>dential                                            | Com-<br>mercial<br>and<br>indus-<br>trial                          | Total                                                              | Resi-<br>dential                                                   | Com-<br>mercial<br>and<br>indus-<br>trial                          |
| New England Middle Atlantic East North-Central West North-Central South Atlantic East South-Central West South-Central West South-Central Mountain Pacific Alaska and Hawaii United States | 2.2<br>1.9<br>1.7<br>2.0<br>1.6<br>1.0<br>1.5<br>1.2<br>2.4 | 2.6<br>2.6<br>2.3<br>2.4<br>1.9<br>1.4<br>2.1<br>2.1<br>1.7<br>2.8 | 1.9<br>1.6<br>1.4<br>1.7<br>1.3<br>.9<br>1.2<br>1.2<br>1.1<br>2.1 | 2.3<br>2.2<br>1.8<br>2.0<br>1.6<br>1.2<br>1.5<br>1.5<br>1.3<br>2.5 | 2.7<br>2.9<br>2.4<br>2.5<br>2.0<br>1.5<br>2.1<br>1.7<br>2.9 | 2.0<br>1.9<br>1.5<br>1.7<br>1.4<br>1.0<br>1.2<br>1.3<br>1.1<br>2.2 | 2.5<br>2.4<br>1.9<br>2.1<br>1.8<br>1.2<br>1.5<br>1.6<br>1.4<br>2.6 | 2.9<br>3.0<br>2.5<br>2.5<br>2.1<br>1.6<br>2.2<br>2.2<br>1.8<br>3.0 | 2.2<br>2.0<br>1.7<br>1.9<br>1.5<br>1.0<br>1.2<br>1.4<br>1.2<br>2.3 |

Source: Edison Electric Institute. Statistical Yearbook of the Electric Utilities Industry. 1970, 1971, and 1972, based on tables 22-S and 36-S.

Platt's Oil Price Handbook.
 Erroneously reported in 1972 table.

Table 35.-Price index of principal metal mining expenses 1 (1967 = 100)

| Year | Total | Labor | Supplies | Fuel | Electrical<br>energy |
|------|-------|-------|----------|------|----------------------|
| 1969 | 104   | 104   | 106      | 101  | 102                  |
|      | 109   | 108   | 111      | 106  | 105                  |
|      | 114   | 113   | 116      | 114  | 114                  |
|      | 120   | 120   | 120      | 119  | 122                  |
|      | 128   | 126   | 128      | 146  | 129                  |

P Preliminary.

Indexes constructed using the following weights derived from the 1967 Census of Mineral Industries: Labor, 50.04; explosives, 3.18; steel mill shapes and forms, 7.32; all other supplies, 26.89; fuels, 5.88; electric energy, 6.69; and data from U.S. Department of Labor, Bureau of Labor Statistics, Wholesale Prices and Price Indexes. The index is computed for iron and copper ores only because sufficient data are not available for other mining sectors.

Table 36.-Index of major input expenses for bituminous coal and crude petroleum and natural gas mining 1

| Year   | Bituminous<br>coal | Crude<br>petroleum<br>and<br>natural gas |
|--------|--------------------|------------------------------------------|
| 1969   | 108                | 105                                      |
| 1970   | r 119              | 108                                      |
| 1971   | r 129              | 114                                      |
| 1972   | 141                | NA                                       |
| 1973 p | 158                | NA                                       |

Preliminary. r Revised. NA Not avail-

P Preliminary. F Revised. NA Not available.

1 Indexes constructed by using data from the U.S. Department of Labor, Bureau of Labor Statistics, Wholesale Prices and Price Indexes, annual and monthly, and weights derived from data shown in the 1967 Census of Mineral Industries, U.S. Department of Commerce, Bureau of the Census. Weights used are as follows: Bituminous coal—labor, 61.55; explosives, 2.70; steel mill shapes and forms, 5.08; all other supplies, 24.58; feels, 1.74; electric energy, 4.35; crude petroleum and natural gas—labor, 44.65; supplies, 48.79; fuel, 2.07; and electric energy, 4.49. 4.49.

Table 37.-Indexes of relative costs and productivity for iron ore, copper, bituminous coal, and petroleum mining 1

(1967 = 100)

| Year                | Iron<br>ore <sup>2</sup> | Copper 2   | Bituminous coal | Petroleum |
|---------------------|--------------------------|------------|-----------------|-----------|
| INDEX OF LABOR CO   | STS PER UNIT             | OF OUTPUT  |                 |           |
| 1969                | 102                      | 105        | 109             | 105       |
| 1970                | 109                      | 107        | r 125           | 107       |
| 1971                | 115                      | 111        | r 138           | 114       |
| 1972                | 112                      | 126        | 154             | ÑĀ        |
| 1973 P              | 111                      | 144        | 175             | NA        |
| INDEX OF VALUE OF   | PRODUCT PER              | MAN-PERIOD |                 |           |
| 1969                | 110                      | 135        | 112             | 114       |
| 1970                | 111                      | 170        | 133             | 124       |
| .971                | 115                      | 155        | 144             | 132       |
| 972                 | 129                      | 149        | 153             | ŇĀ        |
| 1973 P              | 142                      | 161        | 161             | NA        |
| INDEX OF LABOR COST | S PER DOLLAR             | OF PRODUCT |                 |           |
| 969                 | 102                      | 83         | 101             | 99        |
| 970                 | 107                      | 71         | 92              | 99        |
| 971                 | 110                      | 82         | r 90            | 99        |
| 972                 | 106                      | 95         | 93              | NA        |
| .973 р              | 99                       | 93         | 95              | NA        |

Table 38.-Price indexes for selected cost items in minerals and mineral fuels production (1967 = 100)

| Commodity -                                                                                                       |                                                             | 973                                                         | Change<br>from<br>January                                                              | Annual                                                      | average                                                     | Change<br>from<br>1972                                                                |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------|
| -                                                                                                                 | January                                                     | December                                                    | per-<br>cent                                                                           | 1972                                                        | 1973                                                        | per-<br>cent                                                                          |
| Coal Coke Gas fuels Petroleum products, refined Industrial chemicals Lumber Explosives Construction machinery and | 205.5<br>162.5<br>118.4<br>112.3<br>101.4<br>169.0<br>117.9 | 240.7<br>170.0<br>137.6<br>252.0<br>105.9<br>214.8<br>129.0 | $egin{array}{c} +17.1 \\ +4.6 \\ +16.2 \\ +124.4 \\ +4.4 \\ +27.1 \\ +9.4 \end{array}$ | 193.8<br>155.5<br>114.1<br>108.9<br>101.2<br>159.4<br>115.2 | 218.1<br>166.6<br>126.7<br>151.4<br>103.4<br>205.2<br>120.1 | $egin{array}{c} +12.5 \\ +7.1 \\ +11.0 \\ +39.0 \\ +2.2 \\ +28.7 \\ +4.3 \end{array}$ |
| equipment                                                                                                         | 126.6                                                       | 134.1                                                       | +5.9                                                                                   | 125.7                                                       | 130.7                                                       | +4.0                                                                                  |

Source: U.S. Department of Labor, Bureau of Labor Statistics. Wholesale Prices and Price Indexes. January and December 1973, Supplement 1973 and 1974, table 5.

P Preliminary. 
Revised. NA Not available.

Index of labor costs per unit of output: Iron ore and copper indexes are computed from data found in U.S. Department of Labor, Employment and Earnings and Wholesale Price Indexes. Bituminous coal index based upon net tons per man per day (see chapter on Bituminous Coal) and index of average earnings derived from Bureau of Labor Statistics data on hourly earnings; petroleum index based on barrels per year (see chapter on Petroleum) and Bureau of Employment Security data on total wages in petroleum production.

Index of value of product per man-period: Iron ore and copper indexes are computed from data found in U.S. Department of Labor, Employment and Earnings and Wholesale Price Indexes. Bituminous coal index based on net tons per man per day and mine value of production; petroleum index based on average employment and total value of production.

Index of labor costs per dollar of product: Iron ore and copper indexes are computed from data found in U.S. Department of Labor, Employment and Earnings and Wholesale Price Indexes. Bituminous coal index based on index of value per man per day and index of average earnings; petroleum index based on total value of production and total wages.

Indexes are for recoverable metal.

Table 39.-Price indexes for mining construction and material handling machinery and equipment

(1967 = 100)

| Year | Con-<br>struction<br>machin-<br>ery and<br>equip- | Mining<br>machin-<br>ery and<br>equip-<br>ment | Oilfield<br>machin-<br>ery and<br>tools | Power cranes, drag-<br>lines, shovels, etc. | Special-<br>ized<br>con-<br>struction<br>machin-<br>ery | Portable<br>air com-<br>pressors | Scrapers<br>and<br>graders | pavers, | Tractors<br>other<br>than<br>farm |
|------|---------------------------------------------------|------------------------------------------------|-----------------------------------------|---------------------------------------------|---------------------------------------------------------|----------------------------------|----------------------------|---------|-----------------------------------|
| 1969 | 110.4                                             | 106.6                                          | 112.7                                   | 109.0                                       | 110.2                                                   | 91.8                             | 110.1                      | 109.1   | 112.5                             |
| 1970 | 115.5                                             | 110.5                                          | 118.4                                   | 114.0                                       | 117.4                                                   | 93.7                             | 115.2                      | 116.0   | 116.7                             |
| 1971 | 121.4                                             | 113.8                                          | 122.6                                   | 120.6                                       | 125.1                                                   | 93.8                             | 120.6                      | 122.9   | 122.3                             |
| 1972 | 125.7                                             | 117.2                                          | 127.3                                   | 126.0                                       | 129.0                                                   | 92.0                             | 124.4                      | 126.3   | 127.3                             |
| 1973 | 130.7                                             | 121.1                                          | 133.2                                   | 130.5                                       | 134.1                                                   | 93.5                             | 136.1                      | 130.4   | 131.5                             |

Source: U.S. Department of Labor, Bureau of Labor Statistics. Wholesale Prices and Price Indexes. January 1970-71, table 2-A; January-December 1972 and 1973, table 6.

Table 40.-National income originated in the mineral industries

|                                                                                                                                                                                                                                                                               | Ince                                                                                                | ome, millio                                                                                         | n dollars                                                                                               | Change<br>from                                                                                 |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|
| Industry                                                                                                                                                                                                                                                                      | 1971 r                                                                                              | 1972                                                                                                | 1973 р                                                                                                  | 1972<br>percent                                                                                |  |
| Mining  Metal mining Coal mining Crude petroleum and natural gas Mining and quarrying of nonmetallic minerals  Manufacturing Chemicals and allied products Petroleum refining and related industries Stone, clay, and glass products Primary metal industries  All industries | 7,056<br>932<br>2,074<br>2,613<br>1,437<br>226,470<br>17,021<br>7,729<br>7,561<br>15,078<br>857,683 | 8,253<br>983<br>2,233<br>3,508<br>1,529<br>253,352<br>18,503<br>8,196<br>8,629<br>18,453<br>946,534 | 9,397<br>1,210<br>2,411<br>4,006<br>1,770<br>287,237<br>21,032<br>9,364<br>9,867<br>22,025<br>1,065,590 | +13.9<br>+23.1<br>+8.0<br>+14.2<br>+15.8<br>+13.4<br>+13.7<br>+14.3<br>+14.3<br>+19.4<br>+12.6 |  |

P Preliminary. r Revised.

Source: U.S. Department of Commerce, Office of Business Economics. Survey of Current Business. V. 54, No. 7, July 1974, p. 17, table 1.12.

Table 41.-Annual average profit rates on shareholders' equity, after taxes, and total dividends, selected mineral manufacturing corporations

|                                                                                                                                                                                                              | Ann                                                           | ual prof                                                    | it rate                                                                                   | Total dividends<br>(million dollars)                                    |                                                                 |                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|
| Industry                                                                                                                                                                                                     | 1972                                                          | 1973                                                        | Change<br>from<br>1972                                                                    | 1972                                                                    | 1973                                                            | Change<br>from<br>1972<br>percent                                |
| All manufacturing Primary metals Primary iron and steel Primary nonferrous metals Stone, clay, and glass products Chemicals and allied products Petroleum refining and related industries Petroleum refining | 10.6<br>6.0<br>r 6.0<br>5.9<br>10.1<br>r 12.8<br>8.7<br>r 8.7 | 12.8<br>10.1<br>9.5<br>10.8<br>11.2<br>14.8<br>11.6<br>11.6 | $egin{array}{c} +2.2 \\ +4.1 \\ +3.5 \\ +4.9 \\ +1.1 \\ +2.0 \\ +2.9 \\ +2.9 \end{array}$ | r 16,110<br>r 832<br>r 461<br>370<br>415<br>r 2,152<br>3,325<br>r 3,317 | 17,767<br>1,101<br>559<br>543<br>447<br>2,354<br>3,452<br>3,445 | +10.3<br>+32.3<br>+21.3<br>+46.8<br>+7.7<br>+9.4<br>+3.8<br>+3.9 |

r Revised.

Source: Federal Trade Commission. Quarterly Financial Report for Manufacturing Corporations. 1st and 4th Quarter 1973, tables 4 and 8.

Table 42.-Industrial and commercial failures and liabilities in mining and manufacturing

| Industry                                                                  | 1971                  | 1972                 | 1973                 |
|---------------------------------------------------------------------------|-----------------------|----------------------|----------------------|
| Mining: 1 Number of failuresthousands                                     | 38                    | 44                   | 32                   |
| Manufacturing: Number of failures                                         | \$15,463              | \$11,907             | \$23,866             |
| Current liabilitiesthousands<br>All industrial and commercial industries: | 1,894<br>\$697,148    | 1,532<br>\$755,084   | 1,431<br>\$733,624   |
| Number of failures  Current liabilitiesthousands                          | 10,326<br>\$1,916,929 | 9,566<br>\$2,000,244 | 9,345<br>\$2,298,606 |

<sup>1</sup> Including fuels.

Source: Dun and Bradstreet, Inc. Business Economics Department. Monthly Failure Report, K-15, No. 12, Jan. 30, 1973; K-15, No. 12, Feb. 14, 1974.

Table 43.-Expenditures for new plant and equipment by firms in mining and selected mineral manufacturing industries

(Billion dollars)

| Industry                    | 1971                                         | 1972                                          | 1973 p                                        |
|-----------------------------|----------------------------------------------|-----------------------------------------------|-----------------------------------------------|
| Mining 1<br>Manufacturing : | 2.16                                         | 2.42                                          | 2.76                                          |
| Primary iron and steel      | 1.37<br>1.08<br>.85<br>3.44<br>5.85<br>29.99 | 1.24<br>1.18<br>1.20<br>3.45<br>5.25<br>31.35 | 1.41<br>1.68<br>1.50<br>4.32<br>5.41<br>38.00 |

Preliminary.
 Including fuels.

Table 44.—Plant and equipment expenditures of foreign affiliates of U.S. companies, by area and industry 1 (Million dollars)

| _                                                 | 1971                            |                                       |                                         | 1972                            |                                       |                                       | 1973                           |                                       |                                  |
|---------------------------------------------------|---------------------------------|---------------------------------------|-----------------------------------------|---------------------------------|---------------------------------------|---------------------------------------|--------------------------------|---------------------------------------|----------------------------------|
| Area or country                                   | Mining<br>and<br>smelt-<br>ing  | Petro-<br>leum                        | Manu-<br>factur-<br>ing                 | Mining<br>and<br>smelt-<br>ing  | Petro-<br>leum                        | Manu-<br>factur-<br>ing               | Mining<br>and<br>smelt-<br>ing | Petro-<br>leum                        | Manu-<br>factur-<br>ing          |
| Canada Latin America Europe All other areas Total | 827<br>209<br>5<br>424<br>1,465 | 698<br>667<br>1,406<br>2,188<br>4,959 | 1,153<br>648<br>4,260<br>1,045<br>7,106 | 719<br>174<br>5<br>351<br>1,249 | 804<br>624<br>1,365<br>2,557<br>5,350 | 1,452<br>880<br>3,830<br>961<br>7,123 | 534<br>187<br>3<br>537         | 878<br>610<br>1,506<br>3,186<br>6,180 | 1,659<br>1,007<br>4,071<br>1,006 |

<sup>&</sup>lt;sup>1</sup> Series revised back to 1966; see source for details.

Source: U.S. Department of Commerce, Office of Business Economics. Survey of Current Business. V. 53, No. 12, December 1973, pp. 29-31.

Table 45.—Estimated gross proceeds of new corporate securities offered for cash in 1973 <sup>1</sup>

| m • • • •                                | Total corpo              | rate                 | Manufactu           | ring                | Extractive 2       |                    |
|------------------------------------------|--------------------------|----------------------|---------------------|---------------------|--------------------|--------------------|
| Type of security                         | Million<br>dollars       | Per-<br>cent         | Million<br>dollars  | Per-<br>cent        | Million<br>dollars | Per-               |
| Bonds Preferred stock Common stock Total | 22,251<br>3,383<br>7,800 | 66.6<br>10.1<br>23.3 | 4,241<br>107<br>537 | 86.8<br>2.2<br>11.0 | 232<br>10<br>831   | 21.6<br>.9<br>77.5 |
|                                          | 33,434                   | 100.0                | 4,885               | 100.0               | 1,073              | 100.0              |

<sup>&</sup>lt;sup>1</sup> Substantially all new issues of securities offered for cash sale in the United States in amounts over \$100,000 and with terms of maturity of more than 1 year are covered in these data.

Source: U.S. Department of Commerce, Office of Business Economics. Survey of Current Business. V. 52, No. 3, March 1972, p. 20, table 8; v. 54, No. 1, January 1974, p. 11, table 1.

Source: U.S. Securities and Exchange Commission. Statistical Bulletin. V. 33, No. 9, Feb. 27, 1974, pp. 253-254.

Table 46.-Direct private investment of U.S. companies in foreign petroleum industries in 1972 p

(Million dollars; net inflows to the United States designated by---)

| (111111011                                                                                         | dollars; net                       | Petrol                        |                                                        |                                           |                                     | All indus                       | tries                                                  |                                                      |
|----------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------|--------------------------------------------------------|-------------------------------------------|-------------------------------------|---------------------------------|--------------------------------------------------------|------------------------------------------------------|
|                                                                                                    | Book value<br>beginning<br>of year | Net<br>capital<br>outflows    | Undis-<br>tributed<br>earnings<br>of sub-<br>sidiaries | Book<br>value<br>end of<br>year           | Book value<br>beginning<br>of year  | Net<br>capital<br>outflows      | Undis-<br>tributed<br>earnings<br>of sub-<br>sidiaries | Book<br>value<br>end of<br>year                      |
| Developed countries 1 Canada Europe Japan Australia, New                                           |                                    | 701<br>— 92<br>627<br>89      | 571<br>314<br>165<br>47                                | 14,200<br>5,311<br>6,992<br>796           | 58,571<br>24,105<br>27,740<br>1,821 | 1,897<br>380<br>1,074<br>200    | .3,668<br>1,367<br>1,885<br>171                        | 64,114<br>25,784<br>30,714<br>2,222                  |
| Zealand, and South Africa, Republic of                                                             | - 980<br>- 9,148                   | 77<br>682                     | <b>45</b><br>69                                        | 1,1 <b>02</b><br>9,878                    |                                     | 244<br>1,117                    | 245<br>749                                             | 5,393<br>25,186                                      |
| Latin American Republics and other Western Hemispher Other Africa Middle East Other Asia and Pacif | _ 1,464<br>ic 1,396                | 28<br>88<br>371<br>195<br>251 | 46<br>74<br>—27<br>—25<br>28                           | 4,267<br>2,254<br>1,807<br>1,550<br>2,321 | 2,871<br>1,661<br>3,036<br>4,270    | 279<br>123<br>399<br>316<br>391 | 600<br>96<br>8<br>61<br>104<br>4,521                   | 16,644<br>3,086<br>2,053<br>3,402<br>4,733<br>94,031 |
| International, unallocated  Total 1                                                                | 24,152                             | 1,635                         | 668                                                    | 26,399                                    | 86,198                              | 3,404                           | 4,521                                                  | 0 2,00 2                                             |

Table 47.—Direct private investments of the United States in foreign mining and smelting industries in 1972 p (Million dollars)

| (Million dol                                                                                                                                                                        | lars)                                     |                                                             |                                                        |                                                          |                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|
|                                                                                                                                                                                     | Book<br>value at<br>yearend               | Net<br>capital<br>outflows                                  | Undis-<br>tributed<br>earnings<br>of sub-<br>sidiaries | Earn-<br>ings <sup>1</sup>                               | Income 2                                             |
| Developed countries 3Canada                                                                                                                                                         | 4,420<br>3,490<br>79                      | 354<br>240<br>—2                                            | 25<br>6<br>(4)                                         | 235<br>139<br>(4)                                        | 213<br>131<br>(4)                                    |
| Canada Europe Australia, New Zealand, South Africa, Republic of Australia South Africa, Republic of Developing countries Latin American Republics, total Mexico Panama Brazil Chile | 2,712<br>1,300<br>124<br>19<br>136<br>359 | 117<br>94<br>22<br>57<br>-46<br>-11<br><br>(4)<br>-92<br>12 | 18<br>13<br>5<br>9<br>-1<br>7<br>(4)<br>(4)            | 94<br>68<br>26<br>182<br>64<br>9<br><br>(4)<br>(4)<br>26 | 80<br>61<br>18<br>186<br>74<br>2<br>(4)<br>(4)<br>25 |
| Peru Other Western Hemisphere Other Africa Middle East Other Asia and Pacific                                                                                                       | 782<br>425<br>5                           | 31<br>24<br>3<br>45                                         | (4)<br>10<br>(4)<br>(4)<br>(4)<br>34                   | 94<br>24<br>( <sup>4</sup> )<br>( <sup>4</sup> )<br>418  | 98<br>13<br>(4)<br>1<br>399                          |
| Total 3                                                                                                                                                                             |                                           |                                                             |                                                        |                                                          | - C1-                                                |

Preliminary.

1 Earnings is the sum of the U.S. share in net earnings of subsidiaries and branch profits.

2 Income is the sum of dividends, interest, and branch profits.

3 Data may not add to totals shown because of independent rounding.

4 Combined in "other industries" in source reference.

Table 48.-Value of foreign direct investments in the United States

| 2220               | _               |                 |                 |                 |                 |
|--------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                    | (Milli          | on dolla        | ars)            |                 |                 |
| Industry           | 1968            | 1969            | 1970            | 1971            | 1972 Р          |
| Total<br>Petroleum | 10,815<br>2,261 | 11,818<br>2,493 | 13,270<br>2,992 | 13,655<br>3,113 | 14,363<br>3,243 |

P Preliminary.

Preliminary.
1 Data may not add to totals shown because of independent rounding.

Source: U.S. Department of Commerce, Office of Business Economics, Survey of Current Business, V. 53, No. 9, September 1973, pp. 24-28.

Source: U.S. Department of Commerce, Office of Business Economics. Survey of Current Business. V. 53, No. 9, September 1973, p. 26.

Source: U.S. Department of Commerce, Bureau of Economic Analysis. Survey of Current Business. V. 53, No. 2, February 1973, p. 30; v. 53, No. 8, August 1973, p. 50.

Table 49.-Railroad and water transportation of selected minerals and mineral energy products in the United States

(Thousand short tons)

|                                                        |                                      | Rail 1             |                                     |                  | Water   | - 9                                    |
|--------------------------------------------------------|--------------------------------------|--------------------|-------------------------------------|------------------|---------|----------------------------------------|
| Products  Metals and minus                             | 197                                  | 1 1972             | Char<br>from<br>197<br>Per-<br>cent | n<br>1 197:<br>- |         | Change<br>from<br>1971<br>per-<br>cent |
| Metals and minerals except fuels:                      |                                      |                    |                                     |                  |         | Cent                                   |
| Iron ore and concentrates Iron and steel screp         | 91,267                               | 90,150             |                                     |                  |         |                                        |
| Iron and steel scrap                                   | 26,609                               |                    |                                     |                  |         | +8.0                                   |
| Pig iron Iron and steel ingot plates and               | 3,534                                |                    |                                     |                  |         | +14.9                                  |
| ing, and other primers, roos, bars, tub-               |                                      | 2,400              | 32.0                                | 39               | 5 339   | -14.2                                  |
| Bauxite and other aluminum ores and con-               | 42,356                               | 38,932             | -8.1                                | 8,29             |         |                                        |
| Other nonferrous over                                  | <sup>3</sup> 4.552                   | 422                | -90.7                               |                  |         |                                        |
| Nonferrous metals and concentrates                     | 14.584                               | 15,281             | +4.8                                |                  |         | -81.1                                  |
| Nonferrous metal cares                                 | 9.619                                | 10,580             | +10.0                               |                  | -,01.   | -30.4                                  |
| Slag                                                   | 2.305                                | 2,660              | +15.4                               |                  |         | -2.9                                   |
| Sand and grand                                         | 2 222                                | 2,082              | -6.7                                | 93               |         | -31.2                                  |
| Stone, crushed and bush                                | 50.156                               | 52,521             |                                     | 75               | 1,165   | +55.1                                  |
| Limestone flux and salar                               | 57.273                               | 58,031             | +4.8                                | 82,649           |         |                                        |
| Cement, building                                       | ,                                    | 9,889              | +1.3                                | , .              | ,       | -2.8                                   |
| Lime                                                   | 20.781                               | 21,387             | XX                                  | 30,819           |         | +2.6                                   |
| Phosphate rockClays, ceramic and refractory            | 6,094                                | 6,600              | +2.9                                | 10,793           |         | -1.5                                   |
| Clays ceremic and                                      | 33,267                               | 36,442             | +8.3                                | 749              |         | +32.4                                  |
| Clays, ceramic and refractory materials<br>Sulfur, dry | 2,961                                |                    | +9.5                                | 7,209            | 8,762   | +21.5                                  |
| Sulfur, drySulfur, liquid                              | 2,001                                | 3,257              | +10.0                               | 1,757            | 1.489   | -153                                   |
| Sulfur, liquid                                         | 2,883                                | 3,894              | +35.1                               | ∫ 44             | 50      | +34.1                                  |
| Gypsum and plaster rock Other nonmetallic minerals     | 648                                  | 704                |                                     | (8,300           | 9,028   | +8.8                                   |
| Other nonmetallic minerals except fuels                | 10.647                               | 704                | +8.6                                | 864              |         | +11.5                                  |
|                                                        | 19,134                               | 4,378              | -58.9                               | 7,692            | 7,075   | -8.0                                   |
| 10001                                                  |                                      | 19,284             | +.8                                 | 6,538            | 6,943   | +6.2                                   |
| Mineral energy resources and related products:         | 400,902                              | 396,514            | -1.1                                | 239,719          | 245,769 | +2.5                                   |
| Coal: Coal:                                            |                                      |                    |                                     |                  |         | - 4.0                                  |
| Anthracito                                             |                                      |                    |                                     |                  |         |                                        |
| Bituminous and limit                                   | 5.601                                | 3,835              | 91 53                               |                  |         |                                        |
| Coke                                                   | 354,954                              | 371,135            | -31.5)                              | 140.053          | 148,994 | 104                                    |
| Crude netroloum                                        | 1,528                                | 1,231              | +4.65                               |                  |         | +6.4                                   |
| Gasoline                                               | 457                                  |                    | -19.4                               | 1,034            | 1,186   | +14.7                                  |
| Jet fuel                                               |                                      |                    | +124.9                              | 114,721          | 103,673 | -9.6                                   |
| Kerosino                                               | 1,660                                | 214                | -87.1                               | ∫93,514          | 93,615  | +.1                                    |
| Distillate fuel oil                                    | 132                                  | 51                 | -61.4                               | 13,682           | 13,173  | -3.7                                   |
| Residual fuel est                                      | 1,316                                | 355                | -61.4 $-73.0$                       | 5,963            | 6,089   | +2.1                                   |
| Asphalt tar and -thi                                   | 4.797                                | 3,027              |                                     | 78,216           | 85,328  | +9.1                                   |
| Liquefied netrology                                    | 2,048                                | 2,985              | -36.9                               | 89,083           | 102,209 | +14.7                                  |
| Other petroleum and coal products 4                    | 7,201                                | 7,001              | +45.8                               | 8,414            | 9,176   | +9.1                                   |
|                                                        | 16,523                               |                    | -2.8                                | 1,083            | 1,537 - | -41.9                                  |
|                                                        |                                      |                    | +26.8                               | 12,116           | 11,805  | -2.6                                   |
| Total mineral products                                 | 707 110                              | 411,812<br>808,326 |                                     | 557,879          |         | +3.4                                   |
| Grand total, all commodition =                         | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 000,020            | +1.4                                | 797,598          | 822,554 | +3.1                                   |
| Grand total, all commodities                           | ,390,960 1.                          | 447.864            | +4.1                                | 046 FOO          | 000.010 |                                        |
| ineral products, percent of grand total:               |                                      | -,,,               | 7 7.1                               | 946,598          | 986,812 | +4.2                                   |
| Mineral energy resources fuels                         | 28.8                                 | 27.4               | -4.9                                | 25.3             | 24.9    | -1.6                                   |
|                                                        | 00.4                                 |                    | _                                   |                  |         |                                        |
| Total                                                  |                                      |                    |                                     |                  |         |                                        |
| products  Total mineral products 5                     | 28.4<br>57.3                         | 55.8<br>56.2       | $\frac{+1.4}{-1.9}$                 | 58.9             | 58.4    | 8                                      |

XX Not applicable.

Revenue freight originated on respondent's road and terminated on line by originating carrier or delivered to connecting rail carrier.

Domestic traffic includes all commercial movements between points in the United States, a Corrected figure.

Includes lubricants, naphtha, and other petroleum solvents, and miscellaneous petroleum and coal products. 5 Data may not add to totals shown because of independent rounding.

Source: Interstate Commerce Commission. Bureau of Accounts. Freight Commodity Statistics. Class I Railroads in the United States for the Years Ended December 31, 1971 and 1972, Department of the Army, Corps of Engineers, Waterborne Commerce of the United States, Part 5. National Summaries, Calendar Years 1971 and 1972, table 2.

Table 50.—Percentage distribution of mine shipments of bituminous coal and lignite by method of shipment and mine use

|                                      | Year | Shipped by<br>rail and<br>trucked to<br>rail | Shipped by<br>water and<br>trucked to<br>water | final                               | Used at<br>mines <sup>1</sup>     | Total<br>pro-<br>duction                  |
|--------------------------------------|------|----------------------------------------------|------------------------------------------------|-------------------------------------|-----------------------------------|-------------------------------------------|
| 1969<br>1970<br>1971<br>1972<br>1973 |      | 71.0<br>68.1<br>69.2<br>66.2<br>67.1         | 12.7<br>13.5<br>10.7<br>11.7<br>11.5           | 11.8<br>12.0<br>10.9<br>11.0<br>9.8 | 4.5<br>6.4<br>9.2<br>11.1<br>11.6 | 100.0<br>100.0<br>100.0<br>100.0<br>100.0 |
| 1310                                 |      |                                              |                                                |                                     |                                   | 1 1                                       |

<sup>&</sup>lt;sup>1</sup> Includes coal used at mine for power and heat, made into beehive coke at mine, used by mine employees, used for all other purposes at mine, and transported from mine to point of use by conveyor, tram, or pipeline.

Table 51.-Miles of utility gas main, by type of main 1

| (Thousands)                                         |                                 |                                 |                                 |                                       |                                 |
|-----------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------------|---------------------------------|
| Type of main                                        | 1968                            | 1969                            | 1970                            | 1971                                  | 1972                            |
| Field and gathering Transmission Distribution Total | 64.4<br>234.5<br>562.7<br>861.6 | 64.9<br>248.1<br>578.6<br>891.6 | 66.6<br>252.6<br>595.6<br>914.8 | 66.5<br>r 256.5<br>r 610.7<br>r 933.7 | 67.1<br>260.2<br>623.9<br>951.2 |

<sup>1</sup> Excludes service pipe. Data not adjusted to common diameter equivalent. Mileage shown as of end of each year.

Source: American Gas Association. Gas Facts, a Statistical Record of the Gas Utility Industry in 1972, p. 50.

Table 52.—Petroleum pipelines, selected years (Miles)

|      | Trur                                           | klines                                         | Gathering                                      | Total                                               |
|------|------------------------------------------------|------------------------------------------------|------------------------------------------------|-----------------------------------------------------|
| Year | Crude                                          | Products                                       | lines                                          |                                                     |
| 1959 | 70,317<br>70,355<br>72,383<br>70,825<br>75,066 | 44,483<br>53,200<br>61,443<br>64,529<br>72,406 | 75,182<br>76,988<br>77,041<br>74,124<br>71,132 | 189,982<br>200,543<br>210,867<br>209,478<br>218,604 |

Table 53.-Research and development activity

(Million dollars)

|                                   |                                       |                                      |                                      |                                       |                                       | Funds ex                              | pended                           |                                  |                                  |
|-----------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|----------------------------------|----------------------------------|----------------------------------|
|                                   |                                       | m-1-1                                | Company                              |                                       |                                       |                                       | Federa                           | d Gover                          | nment                            |
| -                                 | 1970                                  | Total<br>1971                        | 1972                                 | 1970                                  | 1971                                  | 1972                                  | 1970                             | 1971                             | 1972                             |
| Petroleum refining and extraction | 608<br>3.4<br>1,812<br>10.1<br>17,858 | 505<br>2.7<br>1,822<br>9.9<br>18,420 | 475<br>2.4<br>1,913<br>9.8<br>19,521 | 565<br>5.6<br>1,624<br>16.1<br>10,073 | 488<br>4.5<br>1,639<br>15.2<br>10,749 | 462<br>4.1<br>1,719<br>15.3<br>11,247 | 43<br>0.6<br>188<br>2.4<br>7,785 | 17<br>0.2<br>183<br>2.4<br>7,671 | 15<br>0.2<br>196<br>2.4<br>8,274 |

Source: National Science Foundation. Research and Development in Industry. NSF 72-309, April 1972, table 2. National Science Foundation. Science Resources Studies Highlights. NSF 73-317, Dec. 31, 1973, p. 3.

Table 54.-Federal obligated funds for metallurgy and materials research (Thousand dollars)

| Federal agency                                                                                                | Fis                          | cal year 19                                        | 73 •                                                 | Total 1                      |                                           |                                              |  |
|---------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------|------------------------------------------------------|------------------------------|-------------------------------------------|----------------------------------------------|--|
| - Julian agency                                                                                               | Basic<br>research            | Applied research                                   | Total                                                | Basic                        | Applied                                   | 74 •<br>Total                                |  |
| Department of Defense                                                                                         |                              | research                                           | research                                             | research                     | research                                  | research                                     |  |
| National Aeronautic and Space Administration                                                                  | 33,158<br>10,982             | 68,750<br>15,600                                   | 101,908<br>26,582                                    | 33,734<br>12,129             | 73,080<br>15,900                          | 106,814<br>28,029                            |  |
| Bureau of Mines National Science Foundation Department of Commerce Pederal Highway Administration Other Total | 6,863<br>324<br>9,210<br>705 | 45,926<br>17,406<br>520<br>1,582<br>1,738<br>1,387 | 52,789<br>17,730<br>9,730<br>2,287<br>1,738<br>1,398 | 6,535<br>298<br>9,590<br>714 | 44,570<br>16,145<br>890<br>1,535<br>2,289 | 51,108<br>16,448<br>10,480<br>2,249<br>2,289 |  |
| * Estimate.                                                                                                   | 61,253                       | 152,909                                            | 214,162                                              | 63,000                       | 1,122<br>155,531                          | 1,122<br>281,531                             |  |

Source: National Science Foundation. Federal Funds for Research Development, and Other Scientific Activities, Fiscal Years 1972, 1973, and 1974. Detailed Statistical Tables C-24, C-25, C-43, C-44, C-62, C-63.

Table 55.-Bureau of Mines obligations for mining and mineral research and development

(Thousand dollars)

| Fiscal year Appli                                                    | ed Basic<br>ch research       | Develop-<br>ment                               | Total                                          |
|----------------------------------------------------------------------|-------------------------------|------------------------------------------------|------------------------------------------------|
| 1970 27,64<br>1971 32,21<br>1972 32,80<br>1973 34,59<br>1974 • 44,41 | 4 6,525<br>5 7,846<br>1 6,863 | 12,563<br>21,561<br>30,237<br>36,053<br>38,160 | 46,457<br>60,300<br>70,888<br>77,507<br>90,129 |

e Estimate.

Table 56.-Bureau of Mines obligations for total research by field of science

(Thousand dollars)

|                                                                                                       | Fiscal year                              |                                           |                                              |  |  |
|-------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------|----------------------------------------------|--|--|
|                                                                                                       | 1972                                     | 1973                                      | 1974 €                                       |  |  |
| Engineering sciences<br>Physical sciences<br>Mathematical sciences<br>Environmental sciences<br>Total | 28,733<br>10,525<br>529<br>864<br>40,651 | 30,490<br>9,263<br>555<br>1,146<br>41,454 | 38,050<br>10,661<br>1,092<br>2,166<br>51,969 |  |  |

e Estimate.

Table 57.—Summary of Government inventories of strategic and critical materials, December 31, 1973

| Total inventories in storage:                                                                                                                                                                               | Acquisition cost                                                                                 | Market value 1                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| National stockpile Supplemental stockpile Defense Production Act Total on hand Inventories within objective: Total on hand Inventories excess to objective: Total on hand  1 Market values are computed for | \$3,420,829,900<br>1,288,714,100<br>510,142,400<br>5,219,686,400<br>525,818,000<br>4,693,868,400 | \$5,612,408,700<br>1,502,197,400<br>285,499,200<br>7,400,105,300<br>868,632,000<br>6,531,473,300 |

<sup>&</sup>lt;sup>1</sup> Market values are computed from prices at which similar materials are being traded, or in the absence of current trading, at an estimate of the price which would prevail in commercial markets. Prices used are unadjusted for normal premiums and indecounts relating to contained the amount that would be realized at time of sale. The uncommitted excess excludes the unshipped sales; the inventories in storage include quantities that have been sold but not shipped.

Source: General Services Administration, Office of Preparedness. Stockpile Report to the Congress. July-December 1973, p. 2.

Table 58.-U.S. Government stockpile disposal of mineral commodities, 1973

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sales comm         |                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------|
| Commodity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Quantity           | Sales<br>value             |
| NATIONAL AND SUPPLEMENTAL STOCKPILE INVENTORIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                            |
| short tons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 570,374            | \$287,074,032<br>6,030,143 |
| uminumdo<br>uminum oxidedo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 57,193<br>5,973    | 7,698,604                  |
| uminum oxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109                | 23,030                     |
| uminim oxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 107                | 18,800                     |
| bestos, amositedodo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6,927              | 1.454.670                  |
| bestos, chrysotiledo<br>bestos, crocidolitepounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 770,405            | 2,486,284                  |
| bestos, crocidontepounds_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12,062             | 423,014                    |
| dmiumshort dry tons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19                 | 20,360                     |
| elestite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 39,931             | 304,414<br>4,149,800       |
| hromite, cnemicaldo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 191,000            | 4,149,800                  |
| promite, metalurgical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,056              | 2,382,864                  |
| hromite, refractoryshort tolks-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7,435,592          | 20,358,824                 |
| hromium metalpounds_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 822,486            | 1 385,202                  |
| obaitdo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 457,515            | 1,054,744                  |
| olumbium ores and concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 85,826             | 207,031                    |
| olumbium, terro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,489,500          | 5,756,791                  |
| definium short dry tons- elestite do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 830,000            | 9,089,749                  |
| namona, maustrial stones                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,004              | 160,320                    |
| iamond, industrial stonesshort dry tons-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 248,539            | 75,013,685                 |
| yanite—mullitesnort tolls_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 66,638             | 41,670,507                 |
| ead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 681                | 195,033                    |
| lagnesiumshort dry tons-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 600                | 38,430                     |
| Manganese, planting grade, system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,242,413          | 52,459,946                 |
| Aanganese, chemical-type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 342,148            | 50,739,754                 |
| langanese, metalitigical solution and tous solutions are solutions and tous solutions are solutions and tous solutions and tous solutions are solutions are solutions and tous solutions are solutions are solutions are solutions are solutions and the solutions are solutions are solutions are solutions and the solutions are solutions and the solutions are solutions are solutions are solutions.                                                                                                                                                                                                      | 1,942              | 1,082,984                  |
| Manganese, retro-ingli-cutton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 960 974          | 761,203                    |
| Manganese metal, electricity and angular manganese metal, electricity and angular metal, electricity and el | 7,385              | 9,800                      |
| Mica, muscovite blockdo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.319.372          | 526,342                    |
| Mica, muscovite indo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 506.748            | 403,720                    |
| Mica, muscovite splittings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -1.668.000         | 1 - 3,578,984              |
| Mica, philogophic springs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,521,000          | 4,961,140                  |
| Molybdenum distincedo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,399,000          | 4,016,140                  |
| Molybdenum, 1erido                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 645,532            | 1,804,711                  |
| Molybdenum, oxidetong                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,529              | 1,170,475                  |
| Quartz, crystaisshort dry unds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 329,790            | 3,195,819                  |
| Rare earths buttus_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 510                | 4,930                      |
| Seleniumsnort winds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 54.944             | 108,419                    |
| Tale, Steatile, ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19,511             | 105,554,35                 |
| Thorium nitrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.497,804          | 4,520,89                   |
| Tin and concentrates short tons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,200              | 8,503,75                   |
| Tungsten ofes and consensus to the state of  | 266,315            | 98,021,82                  |
| Vanadium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15,999             | 43,99                      |
| Zincsnort dry tons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | 801,307,55                 |
| Anganese metal, electrolyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                            |
| DEFENSE PRODUCTION ACT (DPA) INVENTORY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |                            |
| short tons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 236,741<br>614,927 | 1,668,17                   |
| Aluminumshort tonsshort tons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 228,063            | 420,97                     |
| Aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,000              |                            |
| Columbium ores and concentratesshort dry tons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 479,588            |                            |
| Manganese, battery grade, synthetic dioxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5,409              |                            |
| Manganese, metallurgicalshort tons_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 470,82             |                            |
| Manganese metal, electrolyticpounds_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13,75              |                            |
| Mica, muscovite blockshort dry tons_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 217,20             | 2,121.8                    |
| Rutilepounds_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3,70               |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 149,641,2                  |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                            |
| OTHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | 0 500,0                    |
| Bauxitelong dry tonspounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110,00             |                            |
| Rauxitepounds_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,900,00           | 910.                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                            |
| Mercurypounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                            |
| Litenum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | 2,144,2                    |
| Zirconium metal powder  Total  Grand total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | 953,092,                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 200.074.                   |

<sup>&</sup>lt;sup>1</sup>Negative figure represents adjustment of sales contract in a previous report period.

Source: General Services Administration, Office of Preparedness. Stockpile Report to the Congress. January-June 1973, pp. 16-17; July-December 1973, pp. 14-15.

Table 59.—United Nations' indexes of world <sup>1</sup> mineral industry production (1963=100)

| Industry sector and geographic area                                                                                                  | 1          | 071            | 1050              |                   |                   | 1079              | h          |                                           |                                           |
|--------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------------------------------|-------------------------------------------|
|                                                                                                                                      |            | 971            | 1972              | 19                |                   |                   | by qua     |                                           |                                           |
| Metals: EXTRACTIVE INDUSTRIES                                                                                                        |            |                |                   |                   |                   |                   |            | 3d                                        | 41                                        |
| Non-Communicat                                                                                                                       |            |                |                   |                   |                   |                   |            |                                           |                                           |
|                                                                                                                                      | 1          | 34             | 132               | 13                |                   | 34 1              | 40         | 197                                       |                                           |
| United States and Canada                                                                                                             | 1          | 33<br>29       | $\frac{129}{126}$ | 13                | 6 18              | 31 1              | 40         | $\begin{array}{c} 137 \\ 135 \end{array}$ | 14<br>18                                  |
| European Fearest                                                                                                                     |            | 26             | 126               | 13:<br>12'        |                   | 7 1               | .44        | 140                                       | 14                                        |
| European Free Trade                                                                                                                  | , 3        | 86             | 83                | 7                 |                   |                   | 31         | 116                                       | 18                                        |
| * ************************************                                                                                               | . 1.       | 49             | 140               |                   | •                 | .0                | 76         | 68                                        | 7                                         |
| Australia and New Zealand Less industrialized countries <sup>5</sup> Latin America <sup>6</sup> Asia <sup>7</sup> Communist F        | 20         |                | $\frac{146}{214}$ | 158<br>222        |                   |                   | 62         | 127                                       | 16                                        |
| Latin America 6                                                                                                                      | 18         |                | 136               | 141               |                   |                   |            | 220                                       | 24                                        |
| Asia 7 Communist Europe 8                                                                                                            | 14<br>14   |                | 143               | 147               | 14                | -                 |            | 139<br>146                                | 14                                        |
| World                                                                                                                                | - 20       |                | $\frac{143}{213}$ | 147<br>229        |                   | 9 1               | 47         | 143                                       | 15<br>15                                  |
| Coal:                                                                                                                                | 14         | 9              | 150               | 158               |                   |                   |            | 229                                       | 22                                        |
| Non-Communist world Industrialized countries 2 United States and Canada                                                              | - 8        | 7              |                   |                   | 100               | 5 16              | י טע       | 157                                       | 15                                        |
| United States and G                                                                                                                  | - 8<br>- 8 |                | 82<br>79          | 82                | 87                |                   | 32         | 77                                        | 81                                        |
| Europe                                                                                                                               | - 11'      |                | 123               | 78<br>123         | 88                |                   | 9          | 74                                        | 78                                        |
|                                                                                                                                      | - 7        | 3              | 62                | 62                | 122<br>69         |                   |            | 22                                        | 128                                       |
| European Free Trade                                                                                                                  | 3 7        | L <sub>.</sub> | 60                | 60                | 68                |                   |            | 56<br>54                                  | 60                                        |
| Australia                                                                                                                            | - 61       | L              | 61                | 59                |                   |                   |            | J-2                                       | 58                                        |
| Less industrialized                                                                                                                  | . 159      |                | 172               | 177               | 64<br>159         | 180               |            | 59                                        | 57                                        |
|                                                                                                                                      |            |                | 126               | 129               | 134               | 130               |            | 95<br>26                                  | 172                                       |
| Asia 7 Communist Europe 8 World                                                                                                      | 121        |                | 150<br>122        | 151               | NA                | NA.               | N          | Ā                                         | 127<br>NA                                 |
| WorldCrude petroleum and natural                                                                                                     |            | j              | 30                | $\frac{126}{135}$ | 130<br>137        | 123               |            | 23                                        | 125                                       |
| Crude petroleum and natural gas: Non-Communist world                                                                                 | 104        |                | .02               | 104               | 108               | 132<br>103        |            | 32<br>00                                  | 137                                       |
| Industrialized countries                                                                                                             | 175        | 1              | 88                | 100               |                   |                   |            | ,,,                                       | 105                                       |
| United States and G                                                                                                                  | 141        |                | 51                | 199<br>151        | 197<br>158        | 196               |            |                                           | 201                                       |
| European Economic Com-                                                                                                               | 131        |                | 36                | 136               | 137               | 148<br>134        |            |                                           | 154                                       |
| European Economic Community 3                                                                                                        | 276<br>318 |                | 21<br>76          | 342               | 395               | 324               |            |                                           | 138<br>357                                |
| Association                                                                                                                          | 010        | 0              | 10                | 398               | 469               | 376               | 33         |                                           | 416                                       |
| Association 4 Australia and New Zealand 9 Less industrialized countries                                                              | NA         | N              | A                 | NA                | NA                | NA                | NT.        |                                           |                                           |
| Australia and New Zealand  Less industrialized countries  Latin America  Asia 7  Communist Europe  World  votal extractive industry: | 210        | 9              | 26                | 075               |                   |                   | N.         | <b>1</b>                                  | NA                                        |
| Asia 7                                                                                                                               | 118        |                | 2                 | 248<br>116        | 239<br>113        | 246               | 25         |                                           | 249                                       |
| Communist Europe 8                                                                                                                   | 225        | 28             | 54                | 294               | 281               | 116<br>287        | 118        |                                           | 118                                       |
| otal extractive industry:                                                                                                            | 187<br>178 | 19<br>19       |                   | 212               | 215               | 214               | 31:<br>21: |                                           | $\begin{array}{c} 295 \\ 208 \end{array}$ |
| Non-Communist world                                                                                                                  | -10        | 1.             |                   | 202               | 201               | 200               | 204        |                                           | 203                                       |
| Non-Communist world Industrialized countries 2 United States and Canada                                                              | 144        | 14             |                   | 157               | 155               | 157               | 157        | ,                                         |                                           |
| United States and CanadaEurope                                                                                                       | 122<br>127 | 12<br>13       | _                 | 127               | 127               | 127               | 124        |                                           | 159<br>129                                |
| European Economica                                                                                                                   | 108        | 10             |                   | 135<br>109        | 132               | 135               | 135        | 5                                         | 138                                       |
|                                                                                                                                      | 104        | 10             |                   | 104               | 116<br>113        | 110<br>105        | 101        |                                           | 110                                       |
|                                                                                                                                      | 128        | 10             |                   |                   |                   | 100               | 96         |                                           | 104                                       |
| Less industrialized New Zealand                                                                                                      | 176        | 12:<br>18:     |                   | 131<br>190        | 134               | 135               | 119        |                                           | 137                                       |
| Latin America 6                                                                                                                      | 190        | 202            |                   | 221               | $\frac{172}{214}$ | $\frac{192}{219}$ | 197        | - 2                                       | 200                                       |
| Asia 7 Communist Europe 8                                                                                                            | 125<br>211 | 122            | 2 1               | 126               | 121               | 125               | 227<br>126 |                                           | 223                                       |
| Communist Europe 8 World                                                                                                             | 165        | 237<br>174     | _                 | 272               | 263               | 267               | 285        |                                           | NA<br>274                                 |
| PROCESSIVE                                                                                                                           | 150        | 157            |                   | .85<br>.66        | 189<br>166        | 186               | 183        | 1                                         | 84                                        |
|                                                                                                                                      |            |                |                   |                   | 100               | 166               | 166        | 1                                         | 67                                        |
| Non-Communist world Industrialized countries 2                                                                                       | 144        | 157            |                   |                   |                   |                   |            |                                           |                                           |
| United States and Com-                                                                                                               | 142        | 155            |                   | 78<br>75          | 174<br>173        | 180               | 173        | 1                                         | 83                                        |
|                                                                                                                                      | 120        | 133            |                   | 50                | 150               | 178<br>154        | 171        |                                           | 80                                        |
|                                                                                                                                      | 141<br>135 | 150            |                   | 65                | 162               | 167               | 144<br>159 |                                           | 49<br>72                                  |
| European Free Trade Association 4                                                                                                    | 100        | 141            | 1:                | 54                | 152               | 156               | 149        |                                           | 60                                        |
| Association 4  Australia and New Zealand Less industrialized countries 5                                                             | 151        | 160            | 10                | 69                | 170               | 174               | 150        |                                           |                                           |
| Less industrialized countries 5 Latin America 6                                                                                      | 139        | 153            | 17                | 72                | 162               | 174<br>160        | 152<br>181 |                                           | 82                                        |
| Acio 7                                                                                                                               | 175<br>190 | 193<br>208     | 20                | 9                 | 199               | 198               | 209        |                                           | 84<br>29                                  |
| Communist Function                                                                                                                   | 152        | 171            | 22<br>19          |                   | 205               | 214               | 225        | 25                                        | 51                                        |
| World                                                                                                                                | 173        | 183            | 19                |                   | 196<br>196        | 177<br>194        | 190        | 20                                        | 00                                        |
| Non-Communicat                                                                                                                       | 153        | 165            | 18                |                   | 181               | 184               | 194<br>179 | 19<br>18                                  |                                           |
| Non-Communist world                                                                                                                  | 147        | 158            | 1 ~               |                   |                   |                   |            | 10                                        | 0                                         |
| United States and Canada                                                                                                             | 142        | 152            | 17<br>16          |                   |                   | 176               | 175        | 17                                        | 4                                         |
| ee footnotes at end of table.                                                                                                        | 123        |                |                   |                   | 152               | 171               | 168        | 16                                        |                                           |

Table 59.—United Nations' indexes of world mineral industry production—Continued (1963 = 100)

|                                     |      |      |      | 1973 by quarters |     |     |     |
|-------------------------------------|------|------|------|------------------|-----|-----|-----|
| Industry sector and geographic area | 1971 | 1972 | 1973 | 1st              | 2nd | 3d  | 4th |
| PROCESSING INDUSTRIES—Continued     |      |      |      |                  |     |     |     |
| r                                   |      |      |      |                  |     |     |     |
|                                     |      |      |      |                  |     |     |     |
| Industrialized countries—Continued  | 150  | 160  | 170  | 157              | 178 | 172 | 176 |
|                                     | 152  | 153  | 161  | 149              | 161 | 163 | 163 |
| European Economic Community 3       | 145  | 199  | 101  |                  |     |     |     |
| Furonean Free Trade                 | 150  | 165  | 173  | 163              | 179 | 169 | 181 |
| Association 4                       | 157  | 150  | 163  | 147              | 159 | 172 | 175 |
| Atuelie and New Zealand             | 143  | 203  | 223  | 200              | 224 | 230 | 229 |
| T agg industrialized countries "    | 188  |      | 233  | 225              | 228 | 238 | 239 |
| Latin America                       | 195  | 210  | 214  | 196              | 221 | 221 | 217 |
| Acia 7                              | 184  | 195  | 226  | 224              | 231 | 222 | 228 |
| G Funono 8                          | 196  | 210  | 192  | 183              | 197 | 192 | 194 |
| Communist Europe World              | 166  | 177  | 192  | 100              | 10. |     |     |
| world and coal products:            |      |      | 005  | 229              | 237 | 235 | 245 |
|                                     | 196  | 214  | 237  | 230              | 239 | 235 | 24  |
|                                     | 196  | 214  | 237  | 209              | 219 | 220 | 22  |
| United States and Canada            | 180  | 200  | 217  | 243              | 248 | 234 | 25  |
| T                                   | 203  | 219  | 246  | 245<br>237       | 241 | 229 | 25  |
| European Economic Community 3       | 200  | 212  | 240  | 237              | 241 | 220 |     |
| European Free Trade                 |      |      |      | 005              | 231 | 211 | 243 |
| Association 4                       | 199  | 213  | 228  | 225              | 239 | 253 | 23  |
| Australia and New Zealand           | 193  | 208  | 234  | 211              | 225 | 235 | 24  |
| Less industrialized countries 5     | 191  | 210  | 232  | 222              | NA  | ŇA  | Ñ   |
| Latin America 6                     | 198  | 215  | 239  | NA               |     | 227 | 24  |
| Asia 7                              | 188  | 210  | 229  | 226              | 216 | 301 | 30  |
| Asia '                              | 240  | 265  | 301  | 298              | 305 | 248 | 25  |
| Communist Europe 8                  | 205  | 224  | 250  | 243              | 251 | 248 | 20  |
|                                     |      |      |      |                  | 100 | 179 | 19  |
| OVERALL INDUSTRIAL PRODUCTION       | 155  | 166  | 182  | 178              | 182 |     | 18  |
| Non-Communist world                 | 152  | 163  | 179  | 175              | 179 | 175 | 17  |
| Industrialized collntries =         | 142  | 153  | 168  | 164              | 169 | 169 | 18  |
| United States and Canada            | 152  | 159  | 172  | 172              | 173 | 160 | 17  |
| Europe                              | 147  | 153  | 166  | 166              | 166 | 154 | 18  |
| European Economic Community 3       | 156  | 164  | 172  | 169              | 174 | 158 |     |
| European Free Trade Association 4   | 150  | 159  | 173  | 161              | 171 | 183 | 11  |
| Atuelie and New Zealand             | 178  | 193  | 211  | 200              | 209 | 214 | 25  |
| T industrialized countries          | 172  | 185  | 200  | NA               | NA  | NA  | N   |
| Tatin Amorica 6                     | 178  | 196  | 219  | 213              | 212 | 222 | 2:  |
|                                     | 191  | 206  | 225  | 227              | 227 | 221 | 2   |
| G                                   | 165  | 177  | 194  | 191              | 195 | 191 | 19  |
| World                               | 109  | 111  | 101  |                  |     |     |     |

NA Not available.

1 Excludes Albania, People's Republic of China, Mongolia, North Korea, and North Vietnam.

2 Canada, the United States, all countries of Europe except those listed in footnotes 1 and 8, the Republic of South Africa, Israel, Japan, Australia, and New Zealand.

3 Belgium, Denmark, France, West Germany, Ireland, Italy, Luxembourg, the Netherlands, and the United Kingdom.

4 Austria, Norway, Portugal, Sweden, and Switzerland.

5 Countries not indicated in footnotes 1, 2, and 8.

6 Corresponds to the United Nations classification "Caribbean, Central and South America."

7 Corresponds to the United Nations classification "Asia, excluding Israel and Japan."

8 Bulgaria, Czechoslovakia, East Germany, Hungary, Poland, Romania, and the U.S.S.R.

8 Reported as zero in source, but both Australia and New Zealand produce natural gas; insufficient data available to calculate index number.

Source: United Nations. Monthly Bulletin of Statistics, August 1974, pp. xii-xxv.

Source: United Nations. Monthly Bulletin of Statistics, August 1974, pp. xii-xxv.

Table 60.—Comparisons of world and U.S. production and U.S. imports of principal minerals and mineral fuels in 1973

| Mineral                                                                               | World<br>production<br>(thousand<br>short tons<br>unless<br>otherwise<br>stated) p | U.S. pro-<br>duction<br>(percent<br>of world<br>production) | U.S.<br>imports<br>(per-<br>cent of<br>world<br>pro-<br>duction) | Total U.S. production and imports (percent of world production) 1973 | Total U.; production and imports (percent of world production) 1972 |
|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------|
| METALLIC ORES AND CONCENTRATES                                                        |                                                                                    |                                                             |                                                                  |                                                                      | 1011) 1312                                                          |
| Bauxite thousand land                                                                 | 69,910                                                                             |                                                             |                                                                  |                                                                      |                                                                     |
|                                                                                       | 7,507                                                                              | 2.7                                                         | 16.1                                                             | 18.8                                                                 | 20.7                                                                |
| Copper (content of ore and                                                            | 1,001                                                                              |                                                             | 25.7                                                             | 25.7                                                                 | 15.1                                                                |
| concentrate) Iron orethousand long tons                                               | 7,857                                                                              | 21.9                                                        | 1.9                                                              | 99.0                                                                 |                                                                     |
| Lead (content of ore and                                                              | 850,477                                                                            | 10.3                                                        | 5.1                                                              | 23.8<br>15.4                                                         | 24.9                                                                |
| Concentrate                                                                           | 0.050                                                                              |                                                             | 0.1                                                              | 10.4                                                                 | 14.7                                                                |
| Mercury thousand 50                                                                   | 3,852                                                                              | 15.7                                                        | 2.4                                                              | 18.1                                                                 | 17.6                                                                |
| Molybdenum (content of ore and concentrate)thousand pounds Nickel (content of ore and | 276,203                                                                            | .8                                                          | 16.7                                                             | 17.4                                                                 | 13.0                                                                |
| concentrate)thousand pounds                                                           | 181,152                                                                            | 64.0                                                        |                                                                  |                                                                      | -0.0                                                                |
|                                                                                       | 101,102                                                                            | 04.0                                                        |                                                                  | 64.0                                                                 | 64.0                                                                |
| concentrate) Platinum group (Pt, Pd, etc.)                                            | 726                                                                                | 2.5                                                         | 26.3                                                             | 00.0                                                                 |                                                                     |
|                                                                                       |                                                                                    |                                                             | 20.0                                                             | 28.8                                                                 | 28.0                                                                |
| Silverdo                                                                              | 4,314                                                                              | .5                                                          | 54.2                                                             | 54.7                                                                 | 40.4                                                                |
|                                                                                       | 307,314                                                                            | 12.3                                                        | 42.5                                                             | 54.8                                                                 | 43.4<br>35.2                                                        |
| Ilmenite 1                                                                            | 3.887                                                                              |                                                             |                                                                  | 04.0                                                                 | 00.2                                                                |
|                                                                                       | 368                                                                                | 20.9                                                        | 6.1                                                              | 27.0                                                                 | 29.0                                                                |
| ungsten concentrate (60%                                                              | 000                                                                                |                                                             | 65.5                                                             | 65.5                                                                 | 62.0                                                                |
| tungsten dioxide)                                                                     |                                                                                    |                                                             |                                                                  |                                                                      |                                                                     |
| thousand pounds                                                                       | 85,320                                                                             | 8.9                                                         | 12.4                                                             | 01.0                                                                 |                                                                     |
| concentrate)                                                                          |                                                                                    |                                                             | 14.4                                                             | 21.3                                                                 | 16.4                                                                |
|                                                                                       | 6,377                                                                              | 7.5                                                         | 2.4                                                              | 9.9                                                                  | 10.5                                                                |
| METALS, SMELTER BASIS                                                                 |                                                                                    |                                                             |                                                                  | 0.0                                                                  | 10.5                                                                |
| luminum                                                                               | 13,349                                                                             | 33.9                                                        | 4.0                                                              |                                                                      |                                                                     |
| opper<br>ron, pig                                                                     | 7,838                                                                              | 22.3                                                        | 4.6<br>2.6                                                       | 38.5                                                                 | 40.6                                                                |
|                                                                                       | 552,852                                                                            | 18.2                                                        | ( <sup>2</sup> )                                                 | 24.9<br>18.3                                                         | 25.2                                                                |
|                                                                                       | 3,801                                                                              | 18.1                                                        | 4.8                                                              | 22.9                                                                 | $17.8 \\ 25.0$                                                      |
|                                                                                       | 261                                                                                | 46.9                                                        | 1.3                                                              | 48.2                                                                 | 48.9                                                                |
|                                                                                       | 766,000<br>227                                                                     | 19.7                                                        | 2.0                                                              | 21.7                                                                 | 21.8                                                                |
|                                                                                       | 25,486                                                                             | 2.2                                                         | 20.3                                                             | 22.5                                                                 | 23.7                                                                |
| ineshort tons                                                                         | 5,795                                                                              | 51.9<br>9.3                                                 | 22.0                                                             | 73.9                                                                 | 59.1                                                                |
| NONMETALS                                                                             | 0,100                                                                              | <b>7.</b> 0                                                 | 10.1                                                             | 19.5                                                                 | 20.4                                                                |
| sbestos                                                                               | 4 500                                                                              |                                                             |                                                                  |                                                                      |                                                                     |
|                                                                                       | 4,598<br>764,303                                                                   | 3.3                                                         | 17.2                                                             | 20.5                                                                 | 21.2                                                                |
|                                                                                       | 43,489                                                                             | 11.2                                                        | 1.0                                                              | 12.0                                                                 | 12.3                                                                |
|                                                                                       | 2,794                                                                              | 28.3                                                        | 56.0                                                             | 56.0                                                                 | 47.1                                                                |
|                                                                                       | 4,962                                                                              | 5.0                                                         | $\binom{2}{24.4}$                                                | 28.3                                                                 | 26.1                                                                |
| ica (including cores)                                                                 | 67,032                                                                             | 20.2                                                        | 11.4                                                             | 29.4<br>31.7                                                         | 27.9                                                                |
| itrogen, agricultural 3                                                               | 289                                                                                | 61.2                                                        | 2.1                                                              | 63.3                                                                 | 30.3                                                                |
| osphate rock                                                                          | 42,202                                                                             | 30.5                                                        | 2.3                                                              | 32.8                                                                 | $75.0 \\ 35.1$                                                      |
|                                                                                       | 108,000                                                                            | 39.0                                                        | (2)                                                              | 39.1                                                                 | 37.6                                                                |
|                                                                                       | 24,212<br>165,526                                                                  | 10.8                                                        | 14.8                                                             | 25.6                                                                 | 25.0                                                                |
| illur, elemental                                                                      | 100,020                                                                            | 26.8                                                        | 2.0                                                              | 28.8                                                                 | 29.2                                                                |
| thousand long tons                                                                    | 31,555                                                                             | 34.6                                                        | 3.9                                                              | 00 =                                                                 |                                                                     |
| MINERAL ENERGY RESOURCES                                                              |                                                                                    | 32.0                                                        | 0.9                                                              | 38.5                                                                 | 40.7                                                                |
| ude petroleum thousand beaut                                                          | 20,357,175                                                                         | 10.5                                                        |                                                                  |                                                                      |                                                                     |
|                                                                                       | 45,917,032                                                                         | 16.5<br>49.3                                                | 5.8                                                              | 22.3                                                                 | 23.0                                                                |
|                                                                                       | 3,288,578                                                                          | 49.3<br>18.0                                                | 2.2                                                              | 51.5                                                                 | 55.3                                                                |
|                                                                                       | 191.919                                                                            | 3.6                                                         |                                                                  | 18.0<br>3.6                                                          | 18.4                                                                |
| thracite                                                                              |                                                                                    |                                                             |                                                                  |                                                                      | 3.7                                                                 |

Table 61.—Value of world export trade in major mineral commodity groups <sup>1</sup>
(Million U.S. dollars)

| (=====                                                                                                                                                  |                                                                              |                                                                               |                                                                                         |                                                                             |                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Commodity group <sup>1</sup>                                                                                                                            | 1968                                                                         | 1969                                                                          | 1970                                                                                    | 1971 r                                                                      | 1972                                                                        |
| Metals: All ores, concentrates and scrap Iron and steel Nonferrous metals Total metals Nonmetals (crude only) Mineral fuels Grand total All commodities | 5,590<br>11,420<br>9,440<br>26,450<br>2,170<br>23,020<br>51,640<br>r 238,220 | 6,340<br>13,700<br>10,870<br>30,910<br>2,260<br>24,860<br>58,030<br>r 272,020 | 8,010<br>r 17,070<br>r 12,210<br>r 37,290<br>2,390<br>r 28,670<br>r 68,350<br>r 317,070 | 7,200<br>17,770<br>10,350<br>35,320<br>2,570<br>35,490<br>73,380<br>347,290 | 7,670<br>20,040<br>11,550<br>39,260<br>2,926<br>41,220<br>83,400<br>412,360 |

<sup>\*</sup>Revised.

1 Data presented are for selected major commodity groups of the Standard International Trade Classification—Revised (SITC—R) and as such exclude some mineral commodities classified in that data array together with other (nonmineral) commodities. SITC—R categories included are as data array together with other series and scrap—SITC Division 28; iron and steel—SITC Division 67; follows: Ores, concentrates and scrap—SITC Division 28; iron and steel—SITC Division 68; nonmetals (crude only)—SITC Division 27; mineral fuels—nonferrous metals—SITC Division 68; nonmetals (crude only)—SITC Division 27; mineral fuels—fueld are the metals, metalloids, and metal oxides of SITC Group 513; mineral tar and crude chemicals from coal, petroleum, and natural gas of SITC Division 52; manufactured fertilizers of SITC Division 56; and nonmetallic mineral manufactures of SITC Groups 661, 662, 663, and 667.

Table 62.-Mineral commodity export price indexes

 $(1963 \pm 100)$ 

|                                                                                                       | Metal ores               | Fuels                           | All crude minerals              |
|-------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------|---------------------------------|
| Year and quarter                                                                                      | 126<br>134               | 127<br>143                      | 127<br>141                      |
| 1972 = 1973:  First quarter Second quarter Third quarter Fourth quarter Fourth quarter Annual average | 139<br>154<br>166<br>184 | 153<br>163<br>179<br>258<br>188 | 150<br>160<br>175<br>241<br>181 |

Source: United Nations, Monthly Bureau of Statistics, New York, September 1974, p. xv.

Table 63.—Analysis of export price indexes

(1963=100)

|                                    | Develor                  | ed areas                  | Developi                 |                           |
|------------------------------------|--------------------------|---------------------------|--------------------------|---------------------------|
| Year and quarter                   | Total                    | Nonferrous<br>base metals | Total<br>minerals        | Nonferrous<br>base metals |
| 1971                               | 145<br>154               | 151<br>150                | 119<br>135               | 161<br>161                |
| 1973: First quarter Second quarter | 170<br>180<br>197<br>216 | 167<br>193<br>223<br>245  | 142<br>152<br>166<br>250 | 189<br>231<br>281<br>309  |
| Fourth quarter                     | 191                      | 207                       | 178                      | 252                       |

Source: United Nations, Monthly Bureau of Statistics, New York, September 1974, p. xv.



## Mining and Quarrying Trends in the Metal and Nonmetal Industries<sup>1</sup>

## By John L. Morning<sup>2</sup>

Growing concern for environmental considerations, health and safety standards, price controls, inflation, material shortages, and increased dependence on imports created problems for the mineral industries in 1973. Although productivity increased for most mineral commodities, the annual rate of increase has slowed in recent years, indicating a maturing technological situation.

Despite these problems, the mineral industry buoyed by strong demand in 1973 continued to expand and established new record highs for crude ore production and total material handled. Crude ore production rose 11% while total quantity of material handled increased 12% compared with that of 1972. Increased production of metallic crude ores outpaced that of nonmetals as metals increased 14% and nonmetals 10%. Along with the increase in quantity of crude ore produced, value of metallic and nonmetallic mineral output increased nearly 15% compared with that of 1972. Over the past decade, total value of metal and nonmetal crude ore output increased from \$6,638 million in 1964 to \$11,607 million in 1973.

Materials Handled.—Producers of metal and nonmetallic minerals (excluding fuels) handled nearly 4.7 billion tons of crude ore and waste, 12% more than in 1972 and 56% more than in 1964. Material handled at metal mines accounted for nearly 42% of the total material handled compared with 40% in 1972 and 31% in 1964.

Total tonnage of crude ore produced increased 11% and tonnage of waste material removed rose 13% compared with 1972 figures. Continuing a trend that was observed a decade ago, the percentage of crude ore to total material handled fell to 63% in 1973 compared with 66% in 1969 and 75% in 1964. Most of the growth in

crude ore production and material handled in the mineral industry since 1960 (table 1) has been from the development of new surface mining operations and expansion of existing surface operations.

Fourteen States each reported handling over 100 million tons of material, an increase of three States over those reported in 1972. In 1964, only six States handled over 100 million tons of material. Three States reported handling over 200 million tons of crude ore while six other States each moved over 100 million tons of waste. The leading States in crude ore output were Florida (primarily phosphate rock and titanium minerals); Minnesota (primarily iron ore); and Arizona (primarily copper ore). The same three States were also leaders in waste material handled. Arizona reported moving 429 million tons of waste and accounted for 25% of the Nation's total. Arizona and Florida continued to lead the Nation in total material handled as they have since 1965.

Magnitude of the Mining Industry.—Output of crude ore in 1973 was reported from 14,437 mines and quarries, a 5% increase over the number of mines reporting in 1972. However, owing to an incomplete uranium canvass, many small uranium operations were not counted, and reporting uranium mines dropped to 75 from 189 for the previous year. In addition to the above mines, there were 109 wells, ponds, or pumping operations which produced sulfur, salt, lithium, boron, and magnesium. Output of crude ore from individual mines ranged from 1 to nearly 44 million tons

<sup>&</sup>lt;sup>1</sup> Formerly Technologic Trends in the Mineral Industries.

ndustries.

2 Supervisory physical scientist, Division of Ferrous Metals—Mineral Supply.

3 Staff, Bureau of Mines. Technologic and Related Trends in the Mineral Industries, 1973. BuMines I.C. 8643, 1974, 52 pp.

and total material handled ranged from 1 to 138 million tons.

Twenty-one mines each reported over 10 million tons of crude ore production, five more mines than in 1972. Copper and phosphate rock accounted for the increase, as copper mines rose from 8 to 11 and phosphate rock mines from 2 to 4 mines. In 1966, 14 mines each had output of over 10 million tons of crude ore.

The 25 leading metal mines produced nearly 448 million tons of crude ore, 17% more than in 1973, and accounted for 68% of the total output of crude ore from metal mines. In terms of total material handled, the 25 leading metal mines moved 1,366 million tons of material, 19% more than in 1972.

The Minntac mine of United States Steel Corp. replaced the Utah Copper mine of Kennecott Copper Corp. as the leader in crude metal ore production. The Utah Copper mine had ranked first since 1968. Utah Copper, however, retained its leadership in total material handled for metal mines for the sixth successive year.

Various phosphate rock mines have been leaders in output of crude nonmetal ore during the past 10 years, but in 1973 the limestone producing Calcite mine of United States Steel Corp. ranked first in output of crude ore. The Kingsford mine of International Minerals and Chemical Corp. retained its leadership in total material handled.

The 25 leading nonmetal mines, in terms of crude ore output, produced 187 million tons of crude ore, 11% more than in 1972, and accounted for 8% of the total crude ore output from nonmetal mines. The 25 leading nonmetal mines, in terms of total material handled, moved 399 million tons of material, a decrease of 2%.

Copper mines (15) and iron mines (7) dominated the list for crude ore output at metal mines while phosphate rock mines (13) dominated the list for nonmetal mines. The same commodities topped the listings for total material handled. Arizona with 10 mines and Florida with 15 mines, had the most large mines in the top 25 metal and nonmetal mines, for output of crude ore.

Value of Principal Mineral Products.— When possible, the value measurement used in table 4 is for mine output, the form in which the minerals are extracted from the ground. For some commodities, the value is of beneficiated products. Values for some metals are assigned according to the average selling price of refined metal.

Average value for all commodities increased 4% compared with that of 1972. Compared with a decade earlier, average value rose 20%. For most mineral commodities, values continued to increase. Among the metals, only titanium (ilmenite) failed to increase significantly; for the nonmetals, diatomite, fluorspar, scrap mica, and dimension stone indicated decreased value per ton of ore mined.

Byproducts contributed to the value of nearly two-thirds of the mineral commodities listed in table 4. The value of byproducts was a significant part of the total value for the metals such as bauxite, 9%; copper, 8%; lead, 34%; silver, 19%; and zinc, 20%; and for the nonmetals such as feldspar, 9%; fluorspar, 9%; and salt, 15%. In general, values of products produced at underground mines were substantially higher than at surface mines. Byproducts accounted for 8% of the value for metal ores and 1% for nonmetal ores. Excluding the large volume commodities of sand and gravel and stone, byproducts contributed nearly 7% to the combined value of metal and nonmetal ores, and nearly 3% to nonmetal ores. Percentages for metal and nonmetal ore values were unchanged from those of 1972.

Comparison of Production From Surface and Underground Mines.-Crude ore production from surface mines continued to increase while that from underground mines remained relatively stable. Owing to the dominance of the large volume nonmetallic minerals-sand and gravel, stone, and clay-all of which are primarily mined by surface methods, little annual change was noted in the percentages of crude ore production from surface and underground operations. However, over the past decade surface crude ore production of copper increased from 84% to 89%; iron ore from 90% to nearly 96%; molybdenum from 0% to 29%; and talc, soapstone, and pyrophyllite from 43% to 64%. For all metal commodities, surface crude ore production increased from 81% in 1964 to 88% in 1973.

Three metal commodities, antimony, lead, and zinc, and three nonmetal commodities, potassium salts, sodium carbonate, and wollastonite were mined entirely by underground methods. Over 99% of the crude

ore of tungsten was produced from underground operations. Crude ore production of 8 metals and 18 nonmetals came entirely from surface mines.

Ratio of Ore Treated to Marketable Product.—The ratio of ore treated to marketable product, the amount of ore processed to produce one unit of marketable product, varies with the type of mineral commodity. The ratio ultimately depends on the grade of ore treated and type of valuable mineral content. For many of the nonmetal commodities, the ratio is essentially one to one. Ratios are significantly lower for underground mines than for surface mines for a specific commodity because of higher mining costs.

Ratios for many of the mineral commodities increased in 1973 compared with those of 1972, continuing the trend that has persisted for more than a decade. Notable exceptions were lead and barite, both of which showed lower ratios.

Exploration and Development.-The reported 20.8 million feet in exploration and development work in 1973 continued the annual trend of reduced activity that has persisted in the minerals industry since 1969. All of the decreased activity compared with that of 1972 was for metals; nonmetal footage was about the same as in the previous year. Among the metals, only silver and tungsten indicated increased footage while copper footage decreased significantly. Although the overall total for nonmetallic minerals remained unchanged, footage for asbestos and gypsum decreased significantly and increased for all other nonmetals.

Exploration drilling including trenching decreased 17% compared with that of 1972. With the exception of churn drilling and other drilling methods, both of which indicated increased footage, other types of exploration methods showed reduced activity. In particular, percussion drilling was down 43% compared with that of 1972.

Underground development work was 19% lower than in 1972. Most of the decrease was in drifting and crosscutting, primarily for metals.

Four States, two less than in 1972, reported over 1 million feet of exploration and development work. Wyoming led the nation with 25% of the total, followed by South Dakota, 20%; New Mexico, 18%; and Texas, 15%. Exploration and development

activity in Wyoming was primarily for uranium; in South Dakota, for gold and uranium; in New Mexico, for copper and uranium; and in Texas, for iron-ore and uranium.

Data presented in table 16 on total material handled from development work is not directly comparable with that of previous years because of a change in statistical reporting. Stripping data includes only that related to development work in preparing a proved ore body for mining. Stripped material from producing operations is included in table 2.

Explosives.—Total consumption of explosives in the United States in 1973 continued to increase and set a new record high for the fifth consecutive year. The average growth rate for the past 5 years has been 4.4% annually. Of the total industrial consumption, the minerals industry accounted for 84%. Although explosive usage decreased in coal mining, this loss was more than offset by increased consumption in metal and nonmetal mining including quarrying. The increase in consumption was due to continued growth in the use of blasting agents.

Of the 2.3 billion pounds of explosives used in the minerals industry, coal mining accounted for 51%, metal mining 21%, and quarrying and nonmetal mining 28%. Kentucky, Pennsylvania, and Alabama were the leading States in explosive consumption for coal mining, accounting for 52% of the total. Arizona, Minnesota, and New Mexico were leading States in explosive consumption for metal mining, accounting for 65% of the total. For nonmetal mining and quarrying, Kentucky, Ohio, and Pennsylvania were leading States accounting for 20% of total explosives used in this category.

Blasting agents and unprocessed ammonium nitrate were the leading explosives used, accounting for 70% of the total explosives used in the minerals industry.

Beginning in 1972, the Institute of Makers of Explosives (IME) adopted new product classifications for industrial explosives and blasting agents. As a result, detailed data are not directly comparable with previous years.

More detailed explosives information is published in the Annual Explosive issue, Mineral Industry Surveys, prepared by the Division of Nonmetallic Minerals, Bureau of Mines.

Table 1.-Material handled at surface and underground mines in the United States, by type (Million short tons)

| Tune on I -    |              | Surface |         | 7     | Indergro | und   |       | A 11      |       |
|----------------|--------------|---------|---------|-------|----------|-------|-------|-----------|-------|
| Type and year  | Crude<br>ore | Waste   | Total 1 | Crude | Waste    |       | ~ -   | All mines |       |
| Metals:        |              |         |         | ore   |          | 20001 | ore   | Waste     | Tota  |
| 1960           |              |         |         |       |          |       |       |           |       |
|                | 336          | 508     | 844     | 86    | •        |       |       |           |       |
| 1961           | 340          | 415     | 755     | 83    | 8        | 94    | 421   | 516       | 93    |
| 1962           | 346          | 434     | 780     |       | 7        | 91    | 423   | 422       | 84    |
| 1963           | 354          | 463     |         | 76    | 7        | 83    | 422   | 441       | 86    |
| 1964           | 376          |         | 817     | 76    | 7        | 83    | 430   |           |       |
| 1965           | 390          | 455     | 830     | 83    | 7        | 90    | 458   | 470       | 90    |
| 1966           |              | 505     | 895     | 87    | 6        | 94    | 477   | 462       | 92    |
| 1967           | 412          | 634     | 1,050   | 88    | ž        | 95    |       | 511       | 98    |
| 1000           | 353          | 619     | 972     | 74    | ż        |       | 500   | 641       | 1.14  |
| 1968           | 402          | 717     | 1,120   | 79    |          | 81    | 427   | 626       | 1.05  |
|                | 455          | 941     | 1,400   | 85    | 13       | 92    | 481   | 730       | 1,21  |
| 1970           | 499          | 968     | 1,470   |       | 13       | 98    | 540   | 954       | 1,49  |
| 1971           | 480          | 1.020   | 1,500   | 87    | 7        | 94    | 586   | 975       | 1.56  |
| 1972           | 491          | 1,080   |         | 80    | 6        | 86    | 560   | 1,020     |       |
| 1973           | 574          | 1,280   | 1,570   | 86    | 5        | 91    | 576   | 1,020     | 1,58  |
| onmetals:      | 017          | 1,400   | 1,860   | 82    | 9        | 91    | 655   |           | 1,66  |
| 1960           | 1,550        | 000     |         |       | -        | -     | บบบ   | 1,290     | 1,95  |
| 1961           |              | 236     | 1,790   | 57    | 1        | 58    | 1 610 |           |       |
| 1962           | 1,590        | 188     | 1,780   | 65    | ī        | 66    | 1,610 | 236       | 1,850 |
| 1000           | 1,590        | 224     | 1,810   | 62    | i        |       | 1,660 | 190       | 1,850 |
| 1004           | 1,640        | 261     | 1,900   | 67    |          | 63    | 1,650 | 225       | 1,88  |
| 1000           | 1,740        | 277     | 2,010   | 69    | 2        | 69    | 1,710 | 263       | 1,970 |
| 1000           | 1,850        | 296     | 2,140   | 78    | 2        | 71    | 1,800 | 279       | 2,080 |
| 1966           | 1,930        | 368     | 2,300   |       | ន        | 81    | 1,930 | 299       | 2,220 |
| 1967           | 1,910        | 399     | 2,310   | 77    | 2        | 79    | 2,010 | 370       | 2,380 |
| 1968           | 1,870        | 413     |         | 78    | 3        | 81    | 1,990 | 402       |       |
| 1969           | 2,000        | 375     | 2,280   | 78    | 3        | 81    | 1,950 | 416       | 2,390 |
| 1970           | 2,010        |         | 2,380   | 80    | 2        | 82    | 2,080 |           | 2,360 |
| 1971           | 1,980        | 431     | 2,440   | 80    | 4        | 84    |       | 377       | 2,460 |
| 1972           |              | 442     | 2,420   | 73    | 5        | 78    | 2,090 | 435       | 2,530 |
| 1973           | 2,020        | 415     | 2,430   | 77    | 5        |       | 2,050 | 447       | 2,500 |
| tal metals and | 2,240        | 418     | 2,650   | 82    | i        | 82    | 2,100 | 420       | 2,520 |
| normatala and  |              |         |         | - L   |          | 83    | 2,320 | 419       | 2,740 |
| nonmetals:1    |              |         |         |       |          |       |       |           | _,.20 |
| 1001           | 1,890        | 744     | 2,630   | 143   | •        |       |       |           |       |
| 1961           | 1,930        | 603     | 2,540   |       | 9        | 152   | 2,030 | 753       | 2.780 |
| 1962           | 1,940        | 658     | 2,590   | 148   | 9        | 156   | 2,080 |           | 2,690 |
| 1963           | 1.990        | 724     |         | 138   | 8        | 146   | 2,070 |           |       |
| 1964           | 2,110        | 731     | 2,720   | 142   | 9        |       | 2,140 |           | 2,740 |
| 1965           | 2,240        |         | 2,840   | 152   | 9        |       | 2,260 |           | 2,870 |
| 1966           |              | 801     | 3,040   | 165   | ğ        |       |       |           | 3,000 |
| 1967           | 0.000        | 1,000   | 3,340   | 165   | ğ        |       | 2,400 | 810       | 3,210 |
| 1968           |              | 1,020   | 3,280   | 152   | 10       |       | 2,510 | 1,010     | 3,520 |
| 1969           |              | 1,130   | 3,400   | 157   | 16       |       | 2,410 | 1,030     | 3,440 |
| 1000           | 2,460        |         | 3,770   | 165   |          |       | 2,430 |           | 3,580 |
| 1970           |              |         | 3,910   | 167   | 15       | 180   | 2,620 |           | 3,950 |
| 1971           |              |         | 3,920   |       | 11       | 178   | 2,680 |           | 1.090 |
| 1972           |              |         | 4 000   | 153   | 11       |       |       |           |       |
| 1973           |              |         | 4,000   | 163   | 10       |       |       | · ·       | 1,080 |
|                | _,           |         | 4,510   | 163   | 11       |       | 970   | 1.UIU 4   | .180  |

<sup>&</sup>lt;sup>1</sup> Data may not add to totals shown because of independent rounding.

Table 2.-Material handled at surface and underground mines, by commodity,1 in 1973 (Thousand short tons)

|                                         |              | Thousand short will | IOL COMB)     |              |             |         |                   |                 |           |
|-----------------------------------------|--------------|---------------------|---------------|--------------|-------------|---------|-------------------|-----------------|-----------|
|                                         |              | 60.00               |               | ū            | Underground |         |                   | All mines *     |           |
| *************************************** | -            | Surrace             | Total 2       | Crude ore    | Waste       | Total 2 | Crude ore         | Waste           | Total     |
| Commonity                               | Crude ore    | Waste               | 1001          |              |             |         |                   |                 |           |
| WBTA1.8                                 | 1            | 901                 | 3 15 900      | W            | i           | ×       | 2,780             | 12,400          | 15,200    |
| Bauxite                                 | 32,780       | 757,000             | 1.040,000     | 34,900       | 1,270       | 36,100  | 320,000           | 758,000         | 1,080,000 |
| •                                       | 200,007      |                     |               | ,            | 906         | 1 860   | 4.240             | 8,960           | 13,200    |
| Gold:                                   | 2,590        | 8,760               | 11,300        | 1,650        | 8≱          | ×.      | 1,500             | 468             | 1,970     |
| Placer Placer                           | 1,500        | 255 000             | 488.000       | 10,800       | 1,830       | 12,700  | 244,000           | 257,000         | 11.200    |
|                                         | (4)          | 4                   | 4             | 9,300        | 1,880       | 11,200  | 30                | 404             | 434       |
| Lead                                    | , 16         | 402                 | 418           | 14<br>620    | 444         | 1,060   | 649               | 482             | 1,130     |
| Mercury                                 | 50 50        | 7.450               | 39.800        | }            | 1           | 19      | 32,300            | 7,450           | 1 560     |
| Titanium: Ilmenite                      | 32,300<br>4  | 650                 | 654           | 744          | 158         | 902     | 748<br>5 970      | 202.000         | 208,000   |
| Tungsten                                | 4,190        | 201,000             | 205,000       | 1,780        | 1,050       | 8,440   | 6,730             | 1,720           | 8,450     |
| Cranium                                 | 10           | 28 KOO              | 50.000        | 15,000       | 820         | 15,800  | 26,500            | 39,300          | 000,000   |
| Other 5                                 | 11,500       | 1 980 000           | 1 860.000     | 81,600       | 9,360       | 91,000  | 655,000           | 1,290,000       | 1,950,000 |
| ~                                       | 574,000      | 1,400,000           | 1,000         |              |             |         |                   | 001             | c<br>T    |
| NONMETALS                               | 9            | 123                 | 183           | 89           | 1           | 89      | 128               | 123<br>2.260    | 4.960     |
| Abrasives 6                             | 3 2,700      | 2,260               | 34,960        | 85           | 188         | 190     | 4,520             | 3,790           | 8,310     |
| Asbestos                                | 4,360        | 8,760<br>• 50,300   | 108,000       | 817          | • 12        | 829     | 58,700            | 50,800<br>4.290 | 4.990     |
| Clays                                   | 869          | 4,290               | 4,990         | lþ           | B           | Ä       | 1.900             | 573             | 2,470     |
| Diatomite                               | 3 1,900      | 3 573               | 3 2,470       | 607          | 92          | 683     | 705               | 87              | 791       |
| Fluorapar                               | 11 200       | 14.300              | 25,500        | 2,740        | 108         | 2,850   | 14,000            | 14,400<br>2,160 | 3,950     |
|                                         | 1,500        | 2,160               | 3,950         | 1            | ;           | !₿      | 759               | 115             | 874       |
| Mica (scrap)                            | 3,759        | 115                 | 3874          | 826<br>826   | 181         | 255     | 138,000           | 234,000         | 372,000   |
| Perlite                                 | 138,000      | 234,000             | 914,000       | 17,100       | 275         | 17,400  | 17,100            | Z76<br>475      | 4.290     |
| Potassium salta                         | 3,820        | 475                 | 4,290         | 19 500       | 415         | 12.900  | 12,900            | 486             | 13,400    |
| Pumice Salt                             | 472          | 1).                 | 984,000       | 1            | į           | . A .   | 984,000<br>6 420  | 121             | 6,540     |
| Sand and gravel                         | 11           | !                   | 1             | 6,420        | 121         | 0,040   |                   | 0               | 1110 000  |
| Sodium carbonate (natural)              | 1 010 000    | • 83,400            | 1,100,000     | 40,500       | e 326       | 40,800  | 1,050,000 $2,670$ | 1,410           | 4,080     |
| Crushed and broken                      | 0 2,670      | e 1,410             | 4,080         | 481          | 79          | 299     | 1,320             | 2,170           | 3,490     |
| Tale sometone, and pyrophyllite         | 10.400       | 18,600              | 29,000        | 128          | 1           | 128     | 10,500            | 110,000         | 9 740 000 |
| Other 7                                 | 2 240.000    | 418,000             | 2,650,000     | 81,700       | 1,470       | 83,200  | 2,320,000         | 419,000         | 000,000   |
| Total nonmetals 2                       | 2 810.000    | 1,700,000           | 4,510,000     | 163,000      | 10,800      | 174,000 | 2,970,000         | 1,710,000       | *,000,*   |
| Grand total a                           | vidual compa | ny confider         | ntial data, i | ncluded with | "Surface."  |         |                   |                 |           |

• Estimate. W Withheld to avoid disclosing individual company confidential data, included with "Surface."

1 Excludes material from wells, ponds, or pumping stations.

2 Data may not add to totals shown because of independent rounding.

3 Includes underground; the Bureau of Mines is not at liberty to publish separately.

4 Less than Me underground; the Bureau of Mines is not at liberty to publish separately.

5 Antimony, beryllium, manganiferrous ore, molybdenum, nickel, platinum-group metals, rare-earth metals, tin, and vanadium.

6 Emery, garnet, and tripoli.

7 Abrasive store, aplite, boron minerals, graphite, greensand marl, iron oxide pigments (crude), kyanite, lithium minerals, magnesite, mica (sheet), millstones, olivine, vermiculite, and wollastonite.

Table 3.—Material handled at surface and underground mines, by State, in 1973 1 (including sand and gravel and stone)

(Thousand short tons)

| State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | Surface |         |            | Theloremona |            |           |             |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|---------|------------|-------------|------------|-----------|-------------|---------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Crude ore | Waste   | Total 2 | Cando      | mark round  |            |           | All mines 2 |         |
| Alabama                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | 1       |         | alo ann to | waste       | Total 2    | Crude ore | Waste       | Total   |
| Alaska                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32,400    | 6,000   | 38,400  | M          |             | Ē          |           | 1           |         |
| Arizona                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24,500    |         | 25,100  | : }        | ¦≱          | ≱ <b>≜</b> | 32,400    | _           | 38,400  |
| Arkansas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 196,000   | 428,000 | 624,000 | 23.300     | 1 130       | A 76       | 24,500    |             | 25,100  |
| California                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 33,000    | _       | 45,400  | 845        | 26          | 004,47     | 219,000   | _           | 649,000 |
| Colorado                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 183,000   | 66,400  | 249,000 | 1.720      | 187         | 7000       | 33,800    | 12,400      | 46,200  |
| Connecticut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 41,500    | _       | 47,100  | 16,900     | 1.600       | 18,500     | 184,000   | _           | 251,000 |
| Delaware                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17,800    |         | 17,800  | : !        | 2001        | 10,000     | 58,400    | _           | 65,600  |
| Florida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3,420     |         | 3,420   | 1          | 1           | 1          | 17,800    |             | 17,800  |
| Georgia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 230,000   | _       | 413,000 | !          | !           | i          | 3,420     |             | 3,420   |
| Hawaii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27,000    | 1,860   | 58,800  | 110        | ŀ           | ! ?        | 230,000   |             | 413,000 |
| Idaho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8,260     |         | 8.260   | 2116       | 1           | 1,110      | 58,100    |             | 59,900  |
| Illinois                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16,500    | 20,600  | 37,000  | 1 690      | 1 6         | 19         | 8,260     |             | 8.260   |
| Indiana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 108,000   |         | 108,000 | 3,690      | 071         | 2,420      | 18,100    |             | 39,500  |
| Iowa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 61,000    |         | 61,000  | 1,000      | 4. r        | 3,740      | 112,000   |             | 112,000 |
| Kansas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 51,400    | 2.470   | 53,800  | 9,140      |             | 1,100      | 62,100    |             | 62,100  |
| i.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29,800    |         | 20,800  | 0,140      | 11          | 2,140      | 53,500    |             | 56,100  |
| Loniciana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 41,500    | !       | 12,000  | 0,010      | 37          | 3,840      | 33,600    |             | 99,00   |
| Mains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26,000    | 1       | 96,000  | 9,120      | -           | 8,120      | 49,600    |             | 000,000 |
| Mosestander J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.800    |         | 000,07  | 9,450      | 49          | 5.500      | 31,400    |             | 43,000  |
| Transfer of the contract of th | 000666    |         | 14,800  | ×          | ×           | M          | 14 800    |             | 31,500  |
| Massachusetts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 004,40    |         | 32,200  | ×          | ·           | M          | 90 900    |             | 14,800  |
| Michigan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 000,72    |         | 27,500  |            | ł           | \$         | 32,200    |             | 32,200  |
| Minnesota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 189,000   | 34,100  | 173,000 | 12,700     | 101         | 10 000     | 006,12    |             | 27,500  |
| Mississippi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 220,000   |         | 377,000 |            | 011         | 17,000     | 151,000   |             | 185,000 |
| Missouri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17,400    |         | 17,400  |            | !           | !          | 220,000   |             | 377,000 |
| Montana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 008,90    | 2,610   | 59,400  | 22.000     | 9 250       | 1000       | 17,400    |             | 17,400  |
| Nebraska                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 39,800    |         | 113,000 | 861        | 4,000       | 24,300     | 78,800    |             | 88,800  |
| Nevada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20,400    |         | 20,400  | 1.080      | 711         | 973        | 40,700    |             | 114,000 |
| New Hampshire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 43,500    | _       | 104,000 | 43         | 10          | 1,080      | 21,400    |             | 21,400  |
| New Jersey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9,670     |         | 9,670   | ?          | 8           | 181        | 43,500    | _           | 104,000 |
| New Mexico                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40,000    |         | 40,200  | M          | ł           | 1          | 9,670     |             | 9.670   |
| York                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 65,200    |         | 218,000 | 19.000     | 100         | A 6        | 40,000    |             | 40,200  |
| Carol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 81,000    |         | 84,000  | 5,160      | 9 1         | 20,000     | 84,200    | _           | 238,000 |
| Dakota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 64,500    |         | 81,100  | 2046       | 001         | 0,810      | 86,100    | _           | 89,400  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6,070     |         | 6,070   | !          | !           | !          | 64,500    |             | 81,100  |
| Oklahoma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 108,000   |         | 108,000 | 3.670      | 976         | 0          | 6,070     |             | 6,070   |
| Oregon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 90,100    |         | 45,800  | ×          | ;           | 0,300      | 111,000   |             | 112,000 |
| Pennsylvania                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 98,800    | 689     | 40,500  | -          | l re        | ۶ ۳        | 36,100    |             | 45,800  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,900     |         | 98,900  | 6,460      | 832         | 7.300      | 108,800   | 694         | 40,500  |
| South Carolina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25,700    |         | 2,900   | 1          |             | 20.        | 9,000     |             | 106,000 |
| South Dakota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17.200    | 100     | 25,700  | ł          | 1           | !          | 95,300    |             | 2,900   |
| Tonnessee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 78,600    |         | 17,300  | M          | M           | ¦≱         | 17,000    |             | 25,700  |
| Tret                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 119,000   | _       | 67,400  | 5,650      | 182         | 5 840      | 17,200    | 96          | 17,300  |
| Transfer of the second  | 2000      |         | 149,000 | 274        | !           | 0400       | 04,200    |             | 73,200  |
| vermont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 09,000    |         | 175,000 | 512        | 281         | 417        | 112,000   |             | 149,000 |
| virginia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50,010    |         | 7,060   | 217        | 6           | 966        | 08,500    |             | 176,000 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000,00    |         | 59,400  | 1,850      | 673         | 2 530      | 61,080    |             | 7,280   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         |         |            | ,           | ì          | 01,200    |             | 62,000  |

| 40,500<br>18,200<br>72,300<br>189,000<br>142,000<br>4,680,000 |   |
|---------------------------------------------------------------|---|
| 516<br>5,090<br>163,000<br>136,000<br>1,710,000               |   |
| 40,000<br>18,200<br>67,200<br>26,600<br>6,230<br>2,970,000    |   |
| 414<br>2,380<br>481<br>7,490<br>4,240<br>174,000              |   |
| 135<br><br>138<br>683<br>10,800                               | : |
| 279<br>2,380<br>481<br>7,350<br>3,560<br>163,000              |   |
| 40,100<br>15,800<br>71,800<br>182,000<br>138,000<br>4,510,000 |   |
| 381<br>5,090<br>162,000<br>135,000<br>1,700,000               |   |
| 39,700<br>15,800<br>66,700<br>19,300<br>2,670<br>2,810,000    |   |
| Washington West Viginis Wisconsin Wyoming Undistributed 3     |   |
| Washington West Virginis Wisconsin Wyoming Undistributed 3    |   |

W Withheld to avoid disclosing individual company confidential data; included with "Undistributed." I Excludes material from wells, ponds or pumping operations.

1 Data may not add to totals shown because of independent rounding.

2 Includes estimated data in table 2.

Table 4.-Value of principal mineral products and byproducts of surface and underground ores mined in the United States, in 1973

(Value per ton)

|                               |                                 | d on the       | te ber mil |                      |            |          |                      |               |         |
|-------------------------------|---------------------------------|----------------|------------|----------------------|------------|----------|----------------------|---------------|---------|
|                               |                                 | Surface        |            |                      | Tindomen   |          |                      |               |         |
| Ore                           | Principal<br>mineral<br>product | By-<br>product | Total      | Principal<br>mineral | By-        | Total    | Principal<br>mineral | All mines By- | 1       |
| METALS                        |                                 |                |            | product              | produce    |          | product              | product       | Local   |
|                               |                                 |                |            |                      |            |          |                      |               |         |
| Copper                        | 1 \$9.59                        | \$0.93         | 1 \$10.52  | ×                    |            | 18       | 6                    | ;             |         |
| Gold:                         | 0.30                            | .59            | 6.95       | \$9.83               | \$0.87     | \$10.70  | \$9.59<br>6.77       | \$0.93        | \$10.52 |
| Placer                        | 7.39                            | 119            | 7.58       | 99 00                | 9          |          | ;                    | <b>7</b> 0.   | 68.7    |
| Iron ore                      | .78                             | .01            | .79        | 20:01                | .43        | 23.52    | 13.02                | .28           | 13.30   |
| Mead                          | 4.58                            | .01            | 4.59       | 8.63                 | 18         | 8.67     | .78                  | 5.5           | .79     |
| Silver                        | 9.75                            | 80.45          | 199.20     | 20.50                | 10.64      | 31.14    | 20.50                | 10.01         | 4.78    |
| Titanium: Ilmenite            | 9.11                            | 2.27           | 11.38      | 32.44                | 100        | 32.44    | 20.44                | #0.04         | 20.44   |
| Tungsten                      | .61                             | .25            | 98.        | 1 1                  | 10.10      | 53.44    | 41.87                | 9.80          | 51.67   |
| Uranium 7:30                  | 2.34<br>NA                      | 1              | 2.34       | 21.02                | 3.11       | 24.13    | 19.61                | .25           | 98.     |
|                               | M                               | Y M            | ¥₽         | NA<br>S              | NA         | NA       | NA<br>NA             | 7.84<br>VA    | 22.25   |
| Average value                 | 5.19                            | 06             | ¥   4      | - z0.z6              | 2 4.96     | 2 25.22  | 20.26                | 4.96          | 25.22   |
|                               | 21.5                            | ve.            | 5.49       | 11.63                | 2.09       | 13.72    | 6.02                 | .54           | 6 56    |
|                               |                                 |                |            |                      |            |          |                      |               |         |
| Asbestos                      |                                 |                |            |                      |            |          |                      |               |         |
| Barite                        | 1 6.00                          | .02            | 16.02      | 447                  |            | İ        |                      |               |         |
| Clays                         | 3.63                            | 90.            | 3.69       | 23 88                | ;          | A S      | 6.00                 | 20.           | 6.02    |
| Diatomite                     | 5.80                            | ;              | 5.80       | 9.01                 | ł          | 23.88    | 4.49                 | 90:           | 4.55    |
| Figure                        | 6 59                            | 11             | 59.26      | ! !                  | <b>:</b> ; | 3.01     | 50.85                | !             | 5.85    |
| Cynamy                        | 11.30                           | .0.            | 7.19       | 3.37                 | ;          | 3,37     | 6.50                 | 10            | 59.26   |
| Mica (scrap)                  | 3.66                            | 18             | 11.30      | 26.02                | 2.64       | 28.66    | 23.71                | 2.00          | 91.7    |
| Perlite                       | 12.80                           | 2              | 12.80      | 0.65                 | !          | 5.65     | 4.05                 | 90            | 4 11    |
| Phosphate rock                | 1 9.28                          | 1              | 1 9.28     | ŀβ                   | !          | 1        | 12.80                | : !           | 12.80   |
| Potassium salts               | 1.71                            | .05            | 1.76       | 11.17                | !          | , 1<br>1 | 9.58                 | 13            | 9.28    |
| Salt.                         | 2.33                            | !              | 10         | 5.38                 | 60.        | 5.47     | 2.73                 | 9.6           | 1.78    |
| Sand and gravel               | 2.13                            | 22.            | 2.70       | 100                  | 19         | 13       | 2.33                 | ? !           | 2.33    |
| Sodium carbonate (natural)    | 1.38                            | 1              | 1.38       | 97.0                 | 1.12       | 7.38     | 6.11                 | 1.10          | 7.21    |
| Stone:                        | !                               | !              | ;          | 13.18                | ;          | 19 10    | 1.38                 | ;             | 1.38    |
| Dimension                     | 1.79                            | 5              | ,          | ,                    | !          | 01.01    | 19.18                | !             | 13.18   |
| Tale, soapstone, nyronhallite | 54.12                           | 10:            | 1.80       | 2.23                 | .01        | 2.24     | 1.81                 | 10            | 1 89    |
| Vermiculite                   | 6.69                            | 1 1            | 6.69       | 7.57                 | ¦          | 390.69   | 54.66                | : !           | 54.66   |
| Average value 3               | 2.03                            | :              | 2.03       | -                    | ! ;        | <u> </u> | 7.01<br>2.03         | !             | 7.01    |
|                               | 1.00                            | 10.            | 1.84       | 4.87                 | .21        | 5.08     | 1 04                 | 1 8           | 2.03    |
|                               |                                 |                |            |                      |            |          | 1.34                 | 20.           | 1.96    |

| Average value—metals and nonmetals 3                                        | 2.49 | .00 | 2.56 | 8.54  | 1.19 | 9.73  | 2.81 | .13 | 2.94 |
|-----------------------------------------------------------------------------|------|-----|------|-------|------|-------|------|-----|------|
| coars (excitating stone, and                                                | 3.63 | .05 | 3.68 | 7.45  | .41  | 7.86  | 4.20 | 11. | 4.31 |
| Average Value—metals and nonmetals (excluding stone, and sand and gravel) 3 | 4.72 | .23 | 4.95 | 10.24 | 1.53 | 11.77 | 5.47 | .41 | 5.88 |

NA Not available. W Withheld to avoid disclosing individual company confidential data; included with "Surface or Underground." Includes underground; the Bureau of Mines is not at liberty to publish separately.

Includes surface; the Bureau of Mines is not at liberty to publish separately.

Includes unpublished data.

Table 5.—Crude ore and total material handled at surface and underground mines, by commodity, in 1973

(Percent)

| Commodity                     |                    | ide ore         |                    | l material          |
|-------------------------------|--------------------|-----------------|--------------------|---------------------|
| Commodity                     | Surface            | Underground     | Surface            | Underground         |
| METALS                        |                    |                 |                    |                     |
| Antimony                      |                    | 100.0           |                    | 100.0               |
| Bauxite                       | <sup>1</sup> 100.0 | W               | <sup>1</sup> 100.0 | w                   |
| Beryllium                     | 100.0              |                 | 100.0              |                     |
| Copper                        | 89.1               | 10.9            | 96.7               | 3.3                 |
| Gold:                         |                    |                 |                    |                     |
| Lode                          | 61.1               | 38.9            | 85.9               | 14.1                |
| Placer                        | 100.0              | ,- <del>,</del> | 99.7               | .3                  |
| Iron ore                      | 95.6               | 4.4             | 97.5               | 2.5                 |
| Lead                          | 52.8               | 100.0           | 0.00               | 100.0               |
| Mercury                       |                    | 47.2            | 96.2               | 3.8<br><b>26.</b> 8 |
| Molybdenum                    | $29.1 \\ 100.0$    | 70.9            | $73.2 \\ 100.0$    | 20.8                |
| Nickel                        | 100.0              |                 | 100.0              |                     |
| Platinum-group metals         | 100.0              |                 | 100.0              |                     |
| Rare-earth metals             | 4.4                | 95.6            | 5.8                | 94.2                |
| Silver<br>Tin                 | 100.0              |                 | 100.0              | 34.4                |
| Fitanium                      | 100.0              |                 | 100.0              |                     |
| rungsten                      | .6                 | 99.4            | 42.0               | 58.0                |
| Uranium                       | 70.1               | 29.9            | 98.6               | 1.4                 |
| Vanadium                      | 100.0              | 20.0            | 100.0              |                     |
| Zine                          | 100.0              | 100.0           | .2                 | 99.8                |
| Total metals                  | 87.5               | 12.5            | 95.3               | 4.7                 |
| NONMETALS                     |                    |                 |                    |                     |
| Abrasives:                    |                    |                 |                    |                     |
| Emery                         | 100.0              |                 | 100.0              |                     |
| Garnet                        | 100.0              |                 | 100.0              |                     |
| Tripoli                       | 33.1               | 66.9            | 33.1               | 66.9                |
| Abrasive stone                | 100.0              |                 | 100.0              |                     |
| Aplite                        | 100.0              |                 | 100.0              |                     |
| Asbestos                      | 99.4               | .6              | 99.7               | .3                  |
| Barite                        | 96.4               | 3.6             | 97.7               | 2.3                 |
| Boron minerals                | 100.0              |                 | 100.0              |                     |
| Clays                         | 98.6               | 1.4             | 98.6               | 1.4                 |
| Diatomite                     | 100.0              |                 | 100.0              |                     |
| Feldspar                      | 99.1               | .9              | 99.3               | 7                   |
| Fluorspar                     | 13.9               | 86.1            | 13.7               | 86.3                |
| Graphite                      | 100.0              |                 | 100.0              |                     |
| Greensand marl                | 100.0              | 10.7            | 100.0              | 101                 |
| Gypsum                        | 80.3               | 19.7            | 89.9               | $10.1 \\ 29.4$      |
| Iron oxide pigments (crude)   | 41.8               | 58.2            | $70.6 \\ 100.0$    | 29.4                |
| Kyanite                       | 100.0              |                 | 100.0              | '                   |
| Lithium minerals              | $100.0 \\ 100.0$   |                 | 100.0              |                     |
| Magnesite                     | 100.0              |                 | 100.0              |                     |
| Mica (scrap)<br>Mica (sheet)  | 100.0              |                 | 100.0              |                     |
|                               | 100.0              |                 | 100.0              |                     |
| Millstone                     | 100.0              |                 | 100.0              |                     |
| Olivine                       | 99.4               | .6              | 99.5               | .5                  |
| Perlite<br>Phosphate rock     | 99.8               | .2              | 99.9               | .1                  |
| Potassium salts               | 33.0               | 100.0           | 00.0               | 100.0               |
| Pumice                        | 100.0              | 100.0           | 100.0              | 100.0               |
| Salt                          | 3.6                | 96.4            | 4.0                | 96.0                |
| Sand and gravel               | 100.0              | JV.3            | 100.0              |                     |
| Sodium carbonate (natural)    |                    | 100.0           |                    | 100.0               |
| Stone:                        |                    |                 | 00.0               | 0.0                 |
| Crushed and broken            | 96.2               | 3.8             | 96.2<br>99.8       | 3.8<br>.2           |
| Dimension                     | 99.8               | .2              |                    |                     |
| Talc, soapstone, pyrophyllite | 63.5               | 36.5            | 83.9               | 16.1                |
| Vermiculite                   | 100.0              | 100.0           | 100.0              | 100.0               |
|                               |                    | 100.0           |                    | 100.0               |
| Wollastonite                  |                    |                 | 00.0               | 9.0                 |
| Wollastonite Total nonmetals  | 96.5               | 3.5<br>5.5      | 96.8<br>96.2       | 3.2                 |

W Withheld to avoid disclosing individual company confidential data; included with "Surface." <sup>1</sup> Includes underground; the Bureau of Mines is not at liberty to publish separately.

Table 6.-Crude ore and total material handled at surface and underground mines, by State, in 1973

(Percent)

|                              | Cr      | ude ore     | Total    | material    |
|------------------------------|---------|-------------|----------|-------------|
| State                        | Surface | Underground | Surface  | Underground |
|                              |         | 0           | 98       | 2           |
|                              | 98      | 2           | 100      |             |
| labama                       | 100     |             | 96       | 4           |
| labamalabamalabamalabama     | 89      | 11          | 98       | 2           |
| AlaskaArizona                | 97      | 3           | 99       | 1           |
| ArizonaArizonaArizonaArizona | 99      | 1           | 72       | 28          |
|                              | 71      | 29          | 100      |             |
|                              | 100     |             | 100      |             |
| Connecticut                  | 100     |             |          |             |
|                              | 100     |             | 100      | 2           |
|                              | 98      | 2           | 98       | _           |
|                              | 100     |             | 100      | -6          |
|                              | 91      | 9           | 94       | 3           |
|                              | 97      | 3           | 97       | 2           |
|                              | 98      | 2           | 98       | 4           |
|                              | 96      | 4           | 96       | 11          |
|                              | 89      | 11          | 89       | 16          |
|                              | 84      | 16          | 84       |             |
|                              | 83      | 17          | 83       | 17          |
|                              | 99      | 1           | 98       | 2           |
|                              | 99      | 1           | 99       | 1           |
|                              | 100     |             | 100      | -=          |
|                              | 92      | 8           | 93       | 7           |
|                              | 100     | •           | 100      |             |
|                              | 100     |             | 100      | ==          |
|                              | 72      | 28          | 71       | 29          |
|                              | 98      | 2           | 99       | 1           |
|                              |         | 5           | 95       | 5           |
|                              | 95      | U           | 100      |             |
|                              | 100     |             | 100      |             |
|                              | 100     | -1          | 99       | 1           |
| New Jersey                   | 99      | <b>23</b>   | 92       | 8           |
|                              | 77      | 6           | 94       | 6           |
| New York                     | 94      | U           | 100      |             |
| New YorkNorth Carolina       | 100     |             | 100      |             |
| North Carolina               | 100     | 3           | 96       | 4           |
| North Dakota                 | 97      |             | 98       | 2           |
| North DakotaOhio             | 98      | 2           | 100      |             |
| Oklahoma                     | 100     |             | 93       | 7           |
| OklahomaOregon               | 94      | 6           | 100      |             |
|                              | 100     |             | 100      |             |
|                              | 100     |             | 91       | 9           |
|                              | 92      | 8           | 91       | 8           |
|                              | 91      | 9           | 100      | U           |
|                              | 100     |             | 99       | - <u>ī</u>  |
|                              | 99      | 1           | 99<br>97 | 3           |
|                              | 97      | 3           | 96       | 4           |
|                              | 97      | 3           |          | ī           |
|                              | 99      | 1           | 99       | 13          |
|                              | 87      | 13          | 87       | 13          |
|                              | . 99    | 1           | 99       | 4           |
|                              | 72      | 28          | 96       |             |
| Wyoming                      | 94      | 6           | 96       | 4           |

Table 7.-Number of domestic metal and nonmetal mines in 1973, by commodity and magnitude of crude ore production 1

| Commodity                    | Total<br>number<br>of<br>mines | Less<br>than<br>1,000<br>tons | to         | to              | 100,000<br>to<br>1,000,000<br>tons | 1,000,000<br>to<br>10,000,000<br>tons | More<br>than<br>10,000,000<br>tons |
|------------------------------|--------------------------------|-------------------------------|------------|-----------------|------------------------------------|---------------------------------------|------------------------------------|
| METALS                       |                                |                               |            |                 |                                    |                                       | wns                                |
| Bauxite<br>Copper            | 16                             |                               | 3          | 8               | _                                  |                                       |                                    |
| Gold:                        | 64                             | 14                            | š          | 4               | _5                                 |                                       |                                    |
|                              |                                |                               | •          | *               | 15                                 | 17                                    | 11                                 |
| Lode Placer                  | 29                             | 19                            | 5          | 1               |                                    | _                                     |                                    |
| Iron ore                     | 50                             | 29                            | 10         | 9               | 2<br>2                             | 2                                     |                                    |
| Lead                         |                                |                               | 9          | ğ               | 22                                 | ==                                    |                                    |
| Lead<br>Mercury              | 36                             | 19                            | ĭ          | ž               | 22<br>11                           | 25                                    | 4                                  |
| Silver                       |                                | 13                            | 8          | -               | 11                                 | 3                                     |                                    |
| Silver<br>Titanium: Ilmenite | - 41                           | 20                            | 11         |                 | 2                                  |                                       |                                    |
| Tungsten                     |                                |                               |            | Ü               | Z                                  | -=                                    |                                    |
|                              |                                | 22                            | 1          | ī               |                                    | 7                                     |                                    |
| Uranium <sup>2</sup> Zinc    | - 75                           | 18                            | $1\bar{5}$ | $2\overline{5}$ | 1<br>16                            |                                       |                                    |
| Other 3                      |                                | 2                             | 2          | 4               |                                    | 1                                     |                                    |
|                              | 12                             |                               | 2          | 3               | 20<br>2                            |                                       |                                    |
| Total metals                 | - 473                          | 156                           | 70         |                 |                                    | 4                                     | 1                                  |
| NONMETALS                    |                                | 100                           | 10         | 74              | 98                                 | 59                                    | 16                                 |
|                              |                                |                               |            |                 |                                    |                                       |                                    |
| Asbestos                     | - 9                            |                               | 5          | 4               |                                    |                                       |                                    |
| Barite                       | - 6                            |                               | 1          | î               | -2                                 | -=                                    |                                    |
| Boron minerals               | - 41                           | 1                             | 8          | 16              | 16                                 | 2                                     |                                    |
| Clays                        |                                |                               |            | ĭ               | 10                                 |                                       |                                    |
| Diatomite                    | . 1,420                        | 112                           | 406        | 750             | $1\overline{52}$                   | 1                                     |                                    |
| eldspar                      | . 13                           | 1                             | 5          | 5               |                                    |                                       |                                    |
| luorspar                     | - 21                           | 1                             | 2          | 10              | 2<br>8                             |                                       |                                    |
| ypsum                        | . 16                           | 1                             | 10         | 2               | 3                                  |                                       |                                    |
| ypsum<br>lica (scrap)        | 75                             |                               | 3          | 30              | 42                                 |                                       |                                    |
| erlite                       |                                | 1                             | 3          | 4               | 42<br>7                            |                                       |                                    |
| erlite<br>hosphate rock      | 12                             | 1                             | 4          | 5               | 2                                  |                                       |                                    |
| otassium salts               | 42                             | 1                             | ē          |                 |                                    | 77                                    |                                    |
| umice                        |                                |                               |            |                 | 13<br>1                            | 18                                    | 4                                  |
| olt                          |                                | 9                             | 52         | $\overline{91}$ | 6                                  | 6                                     |                                    |
| and and gravel               |                                |                               | 2          | ī               |                                    |                                       |                                    |
| odium combonet               | 6,995                          | 140                           | 1,014      | 3,483           | 9                                  | 6                                     |                                    |
| odium carbonate (natural)    | 3                              |                               |            | ,               | 2,240                              | 118                                   |                                    |
| Canabad and I                |                                |                               |            |                 |                                    | 3                                     |                                    |
| Crushed and broken           | 4,623                          | 231                           | 699        | 1,770           | 1 717                              |                                       |                                    |
| Dimensionalc, soapstone,     | 405                            | 207                           | 170        | 28              | 1,717                              | 205                                   | 1                                  |
| nyronhyllit.                 |                                |                               |            | 20              |                                    |                                       |                                    |
| pyrophyllite                 | 51                             | 6                             | 22         | 20              | •                                  |                                       |                                    |
| ermiculite                   | 3                              |                               | - <u>ī</u> |                 | 3                                  | -=                                    |                                    |
|                              | 29                             | 10                            | 7          | 3               | 1                                  | 1                                     |                                    |
| Total nonmetals              | 13,964                         | 722                           |            |                 | 9                                  |                                       |                                    |
| Grand total                  |                                |                               | 4,440      | 6,224           | 4,233                              | 360                                   | 5                                  |
| TRIO DIE                     | 14 497                         | 878                           | 2,490      | 6,298           | 4,331                              |                                       |                                    |

<sup>&</sup>lt;sup>1</sup> Excludes wells, ponds, or pumping operations.

<sup>2</sup> Data incomplete.

<sup>3</sup> Antimony, beryllium, manganiferrous ore, molybdenum, nickel, platinum-group metals, rare-earth metals, tin, and vanadium.

<sup>4</sup> Emery, garnet, and tripoli.

<sup>5</sup> Abrasive stone, aplite, graphite, greensand marl, iron oxide pigments (crude), kyanite, lithium minerals, magnesite, mica (sheet), millstones, olivine, and wollastonite.

Table 8.—Twenty-five leading metal and nonmetal mines in the United States in 1973, in order of output of crude ore

| Mine                         | State        | Operator                              | Commodity      | Mining method         |
|------------------------------|--------------|---------------------------------------|----------------|-----------------------|
|                              |              | METALS                                |                |                       |
|                              | Minn         | United States Steel Corp -            | Iron ore       | Open_pit.             |
| linntac                      | Titoh        | Kennecott Copper Corp                 | Copper         | Do.<br>Do.            |
| tah Copper<br>rie Commercial | Minn         | Pickands Mather & Co                  | Iron ore       |                       |
| (Hoyt Lake).                 | 37 35        | Phelps Dodge Corp                     | Copper         |                       |
| yrone                        |              |                                       | Iron ore       | Do.                   |
| eter Mitchell                |              | Duval Sierrita Corp                   | Copper         | Do.                   |
| ierrita                      |              | Magma Copper Co                       | Copper         | Caving.               |
| an Manuel                    | do           | Pima Mining Co                        | do             | Open_pro              |
| ima                          |              | Phelps Dodge Corp                     | do             | Do.                   |
| Iorenci                      |              | The Anaconda Company                  | do             | Do.                   |
| Berkeley Pit                 | MOHU         | Anomay Mining Co                      | do             | Do.                   |
| Win Buttes                   |              | American Metal Climax,                | Molybdenum _   | Caving.               |
| limax                        | C010         | Inc.                                  |                | 0 mit                 |
|                              | Nev          | The Anaconda Company -                | Copper         | Do.                   |
| Terington                    |              | Cleveland-Cliffs Iron Co              | Iron ore       |                       |
| Empire                       |              | Kaiser Steel Corp                     | do             |                       |
| Eagle Mountain               |              | Kennecott Copper Corp                 | Copper         | Do.                   |
| Ray Pit                      | •            | Phelps Dodge Corp                     | do             |                       |
| New Cornelia                 |              | The Hanna Mining CO                   | Iron ore       |                       |
| Butler Project               |              | Cleveland-Cliffs Iron Co              | do             | Do.                   |
| Republic                     |              | White Pine Copper Co                  | Copper         | Open stopes.          |
| White Pine                   |              | American Smelting &                   | do             | Open pit.             |
| Mission                      | Ariz         | Refining Co.                          | _              | Do.                   |
| Inspiration                  | do           | Inspiration Consolidated              | do             |                       |
|                              |              | Copper Co.<br>E. I. duPont de Nemours | Ilmenite       | Dredging.             |
| Highland                     | . Fla        | & Co                                  |                | _                     |
|                              |              | & Co.                                 | do             | Do                    |
| Trail Ridge<br>Mineral Park  | do<br>_ Ariz | Duval Corp                            | Copper         | Open pit.             |
|                              |              | NONMETALS                             |                |                       |
|                              |              | United States Steel Corp              | Stone          | Open quarry.          |
| Calcite                      | _ Mich       |                                       | Phosphate rocl | kOpen pit.            |
| Cumannaa                     | Fia          |                                       | do             | Do.                   |
| Kingsford                    | do           | Chemical Corp.                        |                |                       |
|                              |              | Oncinion, our                         | do             | Do.                   |
| Ft. Meade                    | do           |                                       | do             | Do.                   |
| TIommorrowth                 |              | Aincreas of                           | do             | Do.                   |
|                              |              |                                       |                | Do.                   |
| Noralyn                      | do           | Chemical Corp.                        |                | _                     |
|                              |              | G. 1 G                                | do             | <u>D</u> o.           |
| Rockland                     | do           |                                       | do             | Do.                   |
| The loss atta                | 00           | . Continuent                          | _ Stone        | Open_quarry           |
| Thornton                     |              |                                       | 1.             | Do.                   |
| Ctomonort                    | W11CH        |                                       |                | kOpen pit.            |
| Clear Spring                 | _ Fla        | Chemical Corp.                        |                | -                     |
|                              |              | Mobil Oil Corp                        | do             | Do.                   |
| Nichols                      | do           |                                       | 1.             | 110                   |
| Bonny Lake                   | do           | The Cauched Stone Co                  | _ Stone        | Open_quarry           |
| 77-13                        | Tex          | _ Texas or and _                      | do             |                       |
| Demmana                      | F'IA         | Vulcan Materials Co                   | do             | Do.                   |
| McCook 378                   | III·         | - ~                                   | Phosphate roo  | kOpen pit.            |
| Silver City                  | Fla          | Chemical Corp.                        | Stone          | Open quarry           |
| Clinton                      | _ N. Y       | Lone Star Industries, Inc             | . Cand and ors | ivel Open bio         |
| Dt Charlet                   | Fla.         | General Development Corp              | Dotoggium sa   | lts _Open stopes.     |
| International                | N. Mex       | Chemical Corp.                        |                |                       |
|                              | Mont         | W. R. Grace & Co                      |                | Open pit.             |
| Zonolite                     | Fla          | Continental Oil Co                    | _ Phosphate ro | ck Do.<br>Open quarry |
| Saddle Creek<br>Hi Calcium   | rız          | Inland Steel Co                       | Stone          | Open quarry<br>Do.    |
|                              | WIICH        |                                       | do             |                       |
| Beckman                      | Tex          | McDonough Bros., Inc                  |                |                       |

<sup>&</sup>lt;sup>1</sup> Brines and materials from wells excepted.

Table 9.—Twenty-five leading metal and nonmetal 1 mines in the United States in 1973, in order of output of total materials handled

| Mine                                                                                                       | State                       | Operator                                                                                                                                           | Commodity                                                                                                                                                                                                | Mining metho                                    |
|------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
|                                                                                                            |                             | METALS                                                                                                                                             |                                                                                                                                                                                                          |                                                 |
| Utah Copper                                                                                                | _ Utah                      | Kennecott Copper Corp                                                                                                                              | Conner                                                                                                                                                                                                   | 0                                               |
| Twin Buttes                                                                                                |                             | . Anamax Mining Co                                                                                                                                 | do                                                                                                                                                                                                       | - Open pit.                                     |
| Tyrone                                                                                                     | _ N. Mex                    | Phelps Dodge Corp                                                                                                                                  |                                                                                                                                                                                                          |                                                 |
| Minntac                                                                                                    | _ Minn                      | United States Steel Com                                                                                                                            | T                                                                                                                                                                                                        | - Do.                                           |
| Berkeley Pit                                                                                               | _ Mont                      | . I De Anaconda Company                                                                                                                            | Connau                                                                                                                                                                                                   | - <b>D</b> o.                                   |
| Erie Commercial                                                                                            | Minn                        | Pickands Mather & Co                                                                                                                               | Iron ore                                                                                                                                                                                                 |                                                 |
| (Hoyt Lake).                                                                                               |                             |                                                                                                                                                    |                                                                                                                                                                                                          | - <b>Do.</b>                                    |
| Sierrita                                                                                                   | - Ariz                      | Duval Sierrita Corp                                                                                                                                | Connec                                                                                                                                                                                                   | _                                               |
| Eagle Mountain _                                                                                           | _ Calif                     | Kaiser Steel Corn                                                                                                                                  | Two-                                                                                                                                                                                                     | Do.                                             |
| Morenci                                                                                                    | Ariz                        | Phelps Dodge Corp                                                                                                                                  | Iron ore                                                                                                                                                                                                 | Do.                                             |
| Lucky Mc                                                                                                   | Wyo                         | Utah International, Inc                                                                                                                            | Copper                                                                                                                                                                                                   | Do.                                             |
|                                                                                                            |                             | ,,                                                                                                                                                 | Uranium                                                                                                                                                                                                  |                                                 |
| Pima                                                                                                       | Ariz                        | Pima Mining Co                                                                                                                                     | ~                                                                                                                                                                                                        | stopes.                                         |
| Mitchell Pit                                                                                               | Minn                        | Posonyo Mining Co                                                                                                                                  | Copper                                                                                                                                                                                                   | Open pit.                                       |
| Pima<br>Mitchell Pit<br>Ruth                                                                               | Nev                         | Reserve Mining Co                                                                                                                                  | Iron ore                                                                                                                                                                                                 | Do                                              |
| nav fil                                                                                                    | A min                       | Kennecott Copper Corp                                                                                                                              | Copper                                                                                                                                                                                                   | . Do.                                           |
| Questa                                                                                                     | N Morr                      | do                                                                                                                                                 | do                                                                                                                                                                                                       | Dο                                              |
|                                                                                                            | . N. Mex                    | Molybdenum Corp. of                                                                                                                                | Molybdenum                                                                                                                                                                                               | Do.                                             |
| Shirley Basin                                                                                              | 337                         | America.                                                                                                                                           |                                                                                                                                                                                                          | 20.                                             |
| Pinto Vallor                                                                                               | . wyo                       | Utah International, Inc                                                                                                                            | Uranium                                                                                                                                                                                                  | Do.                                             |
| Pinto Valley                                                                                               | Arız,                       | Cities Service Co                                                                                                                                  | Copper                                                                                                                                                                                                   | Do.                                             |
| Mission                                                                                                    | do                          | American Smolting &                                                                                                                                | do                                                                                                                                                                                                       | Do.                                             |
| 71                                                                                                         |                             | Refining Co.<br>Kennecott Copper Corp                                                                                                              |                                                                                                                                                                                                          | D0.                                             |
| Chino                                                                                                      | N. Mex                      | Kennecott Copper Corp                                                                                                                              | do                                                                                                                                                                                                       | n.                                              |
| new Cornelia                                                                                               | A riz                       | Phelps Dodge Corn                                                                                                                                  | do                                                                                                                                                                                                       | Do.                                             |
|                                                                                                            |                             | The Anaconda Company                                                                                                                               | do                                                                                                                                                                                                       | Do.                                             |
| nspiration                                                                                                 | Ariz                        | Inspiration Consolidated                                                                                                                           | do                                                                                                                                                                                                       | Do.                                             |
|                                                                                                            |                             | Copper Corp.                                                                                                                                       | do                                                                                                                                                                                                       | Do.                                             |
| Highland                                                                                                   | Wvo                         | Exxon Corp                                                                                                                                         | ** .                                                                                                                                                                                                     |                                                 |
| an Manuel                                                                                                  | A win                       | Magma Conner Co                                                                                                                                    | Uranium                                                                                                                                                                                                  | Do.                                             |
| Empire                                                                                                     | Mich                        | Magma Copper Co<br>Cleveland-Cliffs Iron Co _                                                                                                      | Copper                                                                                                                                                                                                   | Caving.                                         |
|                                                                                                            |                             | Cleveland-Clins Iron Co _                                                                                                                          | Iron ore                                                                                                                                                                                                 | Open pit.                                       |
|                                                                                                            |                             | NONMETALS                                                                                                                                          |                                                                                                                                                                                                          |                                                 |
| Kingsford                                                                                                  | Fla                         | International Minerals &                                                                                                                           | D1                                                                                                                                                                                                       |                                                 |
|                                                                                                            |                             | Chemical Corp.                                                                                                                                     | Phosphate rock                                                                                                                                                                                           | Open pit.                                       |
| uwannee                                                                                                    | do                          | Occidential Petroleum                                                                                                                              | _                                                                                                                                                                                                        |                                                 |
|                                                                                                            |                             | Com Petroleum                                                                                                                                      | do                                                                                                                                                                                                       | Do.                                             |
| laynsworth                                                                                                 | do                          | Corp.                                                                                                                                              |                                                                                                                                                                                                          |                                                 |
| onny Lake                                                                                                  | do                          | American Cyanamid Co                                                                                                                               | do                                                                                                                                                                                                       | Do.                                             |
| Ioralyn                                                                                                    | do                          | W. R. Grace & Co                                                                                                                                   | do                                                                                                                                                                                                       | Do.                                             |
|                                                                                                            | uo                          | International Minerals &                                                                                                                           | do                                                                                                                                                                                                       | Do.                                             |
| ockland                                                                                                    | J.,                         | Chemical Corp.                                                                                                                                     |                                                                                                                                                                                                          |                                                 |
| t. Meade                                                                                                   | do                          | United States Steel Corp _                                                                                                                         | do                                                                                                                                                                                                       | Do.                                             |
| lear Spring                                                                                                | qo                          | Mobil Oil Corp                                                                                                                                     | do                                                                                                                                                                                                       | Do.                                             |
| lear Spring                                                                                                | do                          | international Minerals &                                                                                                                           | do                                                                                                                                                                                                       | Do.                                             |
| oo Cwaala                                                                                                  | ~                           | Chemical Corp.                                                                                                                                     |                                                                                                                                                                                                          | ъ.                                              |
| ee Creek                                                                                                   | N. Car                      | Texasgulf, Inc  Mobil Oil Corp  United States Steel Com                                                                                            | do                                                                                                                                                                                                       | Do.                                             |
| ichols                                                                                                     | rla                         | Mobil Oil Corp                                                                                                                                     | do                                                                                                                                                                                                       | Do.<br>Do.                                      |
| aicite                                                                                                     | Mich                        | Children Boates Breef Corp                                                                                                                         | Stone                                                                                                                                                                                                    |                                                 |
| oron                                                                                                       | Calif                       | U.S. Borax & Chemical                                                                                                                              | Boron                                                                                                                                                                                                    | Open quarry                                     |
|                                                                                                            |                             | Corp.                                                                                                                                              | 201011                                                                                                                                                                                                   | Open pit.                                       |
| atson                                                                                                      | Fla                         | Swift Agricultural                                                                                                                                 | Phosphote                                                                                                                                                                                                | -                                               |
|                                                                                                            |                             | Chemicals Corp.                                                                                                                                    | Phosphate rock _                                                                                                                                                                                         | Do.                                             |
|                                                                                                            | do                          | do -                                                                                                                                               | a.                                                                                                                                                                                                       | _                                               |
| iver City                                                                                                  |                             |                                                                                                                                                    | do                                                                                                                                                                                                       | Do.                                             |
|                                                                                                            |                             | J. R. Simplet Co.                                                                                                                                  | 1                                                                                                                                                                                                        |                                                 |
|                                                                                                            | Idaho                       | J. R. Simplot Co                                                                                                                                   | do                                                                                                                                                                                                       | Do.                                             |
| ampa Agricultural<br>Chemical                                                                              | Idaho                       | J. R. Simplot Co<br>Gardinier, Inc                                                                                                                 | do                                                                                                                                                                                                       | Do.<br>Do.                                      |
| ampa Agricultural<br>Chemical<br>Operations.                                                               | Idaho<br>Fla                | J. R. Simplot Co                                                                                                                                   | do                                                                                                                                                                                                       |                                                 |
| ay                                                                                                         | Fla                         | J. R. Simplot Co<br>Gardinier, Inc                                                                                                                 | do                                                                                                                                                                                                       |                                                 |
| ampa Agricultural<br>Chemical<br>Operations.                                                               | Fla                         | J. R. Simplot Co Gardinier, Inc Continental Oil Co                                                                                                 | do                                                                                                                                                                                                       | Do.                                             |
| ay Agricultural Chemical Operations.  ayne Creek                                                           | Flado                       | J. R. Simplot Co Gardinier, Inc Continental Oil Co                                                                                                 | do                                                                                                                                                                                                       | Do.                                             |
| ay Agricultural Chemical Operations. syne Creek                                                            | Idaho<br>Flado<br>do<br>Ill | J. R. Simplot Co Gardinier, Inc Continental Oil Codo General Dynamics Corp.                                                                        | do<br>do<br>Stone                                                                                                                                                                                        | Do.<br>Do.<br>Do.                               |
| ay ampa Agricultural Chemical Operations. syne Creek elmetto onernton oneport                              | do<br>Ill                   | J. R. Simplot Co  Gardinier, Inc  Continental Oil Co do  General Dynamics Corp  Presque Isle Corp                                                  | do<br>do<br>Stone                                                                                                                                                                                        | Do. Do. Do. Open quarry.                        |
| ay ay ay ay ay ay ay ay ay ay ay ay ay a                                                                   | rlado                       | Gardinier, Inc  Continental Oil Co  General Dynamics Corp  Presque Isle Corp  W. R. Grace & Co                                                     | do<br>do<br>Stone                                                                                                                                                                                        | Do. Do. Do. Open quarry. Do.                    |
| ampa Agricultural Chemical Operations. ayne Creek almetto ornton oneport molite awford                     | dodododododoUtahUtah        | J. R. Simplot Co Gardinier, Inc  Continental Oil Codo General Dynamics Corp Presque Isle Corp W. R. Grace & Co Stauffer Chemical Co                | do do do do do do do do do Vermiculite                                                                                                                                                                   | Do. Do. Do. Open quarry. Do. Open pit.          |
| lver City ay ampa Agricultural Chemical Operations. ayne Creek almetto nornton oneport nolite awford armal | Idaho                       | Gardinier, Inc  Continental Oil Co  General Dynamics Corp  Presque Isle Corp  W. R. Grace & Co  Stauffer Chemical Co                               | do do do do do do do do do Vermiculite                                                                                                                                                                   | Do.  Do. Do. Open quarry. Do. Open pit. Do.     |
| ampa Agricultural Chemical Operations, ayne Creek almetto nornton oneport molite rawford                   | Idaho                       | Continental Oil Co  do.  General Dynamics Corp  Presque Isle Corp  W. R. Grace & Co  Stauffer Chemical Co  do.  Texas Crushed Stone Co             | dodododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododo | Do.  Do. Do. Open quarry. Do. Open pit. Do. Do. |
| ay ampa Agricultural Chemical Operations, syne Creek slmetto oornton oneport nolite awford awford armal    | Idaho                       | Gardinier, Inc  Continental Oil Co do  General Dynamics Corp  Presque Isle Corp  W. R. Grace & Co  Stauffer Chemical Co do  Texas Crushed Stone Co | dodododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododo | Do.  Do. Do. Open quarry. Do. Open pit. Do.     |

<sup>&</sup>lt;sup>1</sup> Brines and materials from wells excepted.

Table 10.-Ore treated or sold per unit of marketable product at surface and underground mines in the United States, by commodity, in 1973

|                                                                          |                                                                        |                                                            |                                               | Surface                                   |                                                                          | D                                                 | Underground                                    | 70                                                                       |                                               | Total 1                                      |                                                                             |
|--------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------|
|                                                                          | Commodity                                                              | Unit of<br>marketable<br>product                           | Ore treated<br>(thousand<br>short tons)       | Market-<br>able<br>product<br>(units)     | Ratio of<br>units of<br>ore to<br>units of<br>market-<br>able<br>product | Ore treated<br>(thousand<br>short tons)           | Market-<br>able<br>product<br>(units)          | Ratio of<br>units of<br>ore to<br>units of<br>market-<br>able<br>product | Ore treated<br>(thousand<br>short tons)       | Market-<br>able<br>product<br>(units)        | Ratio of<br>units of<br>ore to<br>units of<br>market-<br>able<br>product    |
| Bauxite -                                                                | METALS                                                                 | thousand long tonsthousand short tons                      | <sup>2</sup> 2,780<br>263,000                 | 2 1,880<br>1,410                          | 2 1.5:1<br>187.0:1                                                       | W<br>84,900                                       | ₩<br>288                                       | W<br>121.0:1                                                             | 2,780<br>298,000                              | 1,880                                        | 1.5:1                                                                       |
| Lode<br>Placer                                                           | <i>x</i>                                                               | thousand troy ounces                                       | 2,940<br>1,500<br>232,000                     | 222<br>12<br>83.500                       | 13.2:1<br>125.3:1<br>2.8:1                                               | 1,640                                             | 387                                            | 4.2:1                                                                    | 4,580<br>1,500                                | 609<br>12<br>90 500                          | 7.5:1                                                                       |
| Lead Mercury Silver Titanium: I                                          | Lead<br>Mercury<br>Silver<br>Titanium: Ilmenite<br>Uranium             | thousand short tonsthousand tray ouncesthousand short tons | (3) 16<br>29<br>32,300<br>3.810               | (3) 102<br>102<br>804<br>NA               | 2.9.2<br>2.9.4<br>0.8.1<br>2.0.2<br>2.1<br>1.1<br>1.1                    | 652<br>14<br>1890                                 | 553<br>11,000<br>NA                            | 15.9:1<br>8.8:1<br>0.1:1<br>A                                            | 8,780<br>8,780<br>82,300<br>7,690             | 553<br>553<br>11,100<br>804<br>NA            | 115.9<br>14.0<br>12.0<br>11.1<br>11.1<br>11.1<br>11.1<br>11.1<br>11.1<br>11 |
| Zinc                                                                     |                                                                        | op                                                         | M                                             | M                                         | M                                                                        | 4 6,670                                           | 4 327                                          | <b>4</b> 20.4 :1                                                         | 6,670                                         | 327                                          | 20.4:1                                                                      |
| Asbestos Barite Clays                                                    | NONMENTED                                                              |                                                            | 22,720<br>3,560<br>57,900                     | 2 150<br>946<br>57,900                    | 2 18.1:1<br>3.8:1<br>1.0:1                                               | W<br>158<br>817                                   | W<br>158<br>817                                | W<br>1.0:1<br>1.0:1                                                      | 2,720<br>3,720<br>58,700                      | 150<br>1,100<br>58,700                       | 18.1:1<br>3.4:1<br>1.0:1                                                    |
| Distomite<br>Feldspar<br>Fluorspar<br>Gypsum                             |                                                                        | op-                                                        | $^{609}_{1,900}$                              | 609<br>2 773<br>24<br>10 700              | 2.5:1<br>4.8:1                                                           | ₩<br>627<br>2 740                                 | 228<br>860                                     | 2.8.1                                                                    | 609<br>1,900<br>744<br>14 000                 | 609<br>773<br>252<br>13                      | 1.828.<br>2.038.<br>1.111.                                                  |
| Mica (scrap) Perlite Phosphate rock                                      | scrap)                                                                 | op                                                         | 392<br>2602<br>138,000                        | 2 544<br>41,900                           | 2.7.1<br>2.1.1.1<br>3.3.1                                                |                                                   | ₩<br>226                                       | 1.0.1                                                                    | 392<br>602<br>138,000                         | 144<br>544<br>42,100                         | 22.1.8.<br>27.1.8.<br>37.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1              |
| Potassium salts<br>Pumice<br>Salt<br>Sand and gravel<br>Sodium carbonate | Potassium salta Pumice Salt Sand and gravel Sodium carbonate (natural) | op<br>                                                     | 3,770<br>468<br>984,000                       | 3,770<br>271<br>984,000                   | 1.0:1<br>1.7:1<br>1.0:1                                                  | $17,100 \\ 12,2\overline{00} \\ 6,4\overline{60}$ | $2,170$ $11,9\overline{00}$ $3,4\overline{40}$ | 7.9:1<br>1.0:1<br>1.9:1                                                  | 17,100<br>3,770<br>12,600<br>984,000<br>6,460 | 2,170<br>3,770<br>12,200<br>984,000<br>3,440 | 7.9<br>1.0<br>1.0<br>1.1<br>1.1<br>1.1<br>1.1<br>1.1<br>1.1<br>1.1<br>1.1   |
| Crushed Crushed Dimensi Talc, soapst Tripoli                             | Crushed and broken Dimension Talc, sospstone, pyrophyllite Tripoli     |                                                            | 1,020,000<br>• 2,670<br>831<br>2 102<br>4,670 | 1,020,000<br>1,230<br>713<br>2 102<br>365 | 1.0:1<br>2.2:1<br>1.2:1<br>2.1.0:1<br>12.8:1                             | 40,500<br>2<br>474<br>W                           | 40,200<br>2<br>533<br>W                        | 1.0:1<br>1.0:1<br>1.0:1<br>W                                             | 1,060,000<br>2,670<br>1,310<br>4,670          | 1,060,000<br>1,230<br>1,250<br>1,250<br>365  | 1.0:1<br>2:2:1<br>1:1:1<br>1:0:1<br>12:8:1                                  |
|                                                                          |                                                                        |                                                            |                                               |                                           |                                                                          |                                                   |                                                |                                                                          |                                               |                                              |                                                                             |

• Estimate. NA Not available. W Withheld to avoid disclosing individual company confidential data; included with "Surface or Underground."

1 Data may not add to totals shown because of independent rounding.

2 Includes may not add to totals shown because of Mines is not at liberty to publish separately.

2 Less than 14 unit.

4 Includes surface data; the Bureau of Mines is not at liberty to publish separately.

Table 11.-Material handled per unit of marketable product at surface and underground mines in the United States, by commodity, in 1973

|                                                     |                                             |                                                          | Surface                                   |                                                                                     |                                                          | Underground                      | 70                                                                                  |                                              | Total 1                                   |                                                                                     |
|-----------------------------------------------------|---------------------------------------------|----------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------|
| Commodity                                           | Unit of<br>marketable<br>product            | Total<br>material<br>handled<br>(thousand<br>short tons) | Market-<br>able<br>product<br>(units)     | Ratio of<br>units of<br>material<br>handled to<br>units of<br>marketable<br>product | Total<br>material<br>handled<br>(thousand<br>short tons) | Marketable<br>product<br>(units) | Ratio of<br>units of<br>material<br>handled to<br>units of<br>marketable<br>product | Total material handled (thousand short tons) | + + -                                     | Ratio of<br>units of<br>material<br>handled to<br>units of<br>marketable<br>product |
| Bauxite Copper Copper Gold:                         | thousand long tonsthousand short tons       | 2 15,200<br>1,040,000                                    | 2 1,880<br>1,410                          | 2 6.9:1<br>681.4:1                                                                  | W<br>36,100                                              | W<br>288                         | W<br>121.3:1                                                                        | 15,200<br>1,080,000                          | 1,880                                     | 6.9:1<br>586.2:1                                                                    |
| Lode Placer                                         | thousand troy ounces.                       | 11,300<br>2 1,970                                        | 222<br>2 12                               | 48.2:1<br>2 147.0:1                                                                 | 1,860<br>W                                               | 387<br>W                         | 4.3:1<br>W                                                                          | 13,200                                       | 609                                       | 20.3:1                                                                              |
| Lead                                                | thousand long tons                          | 488,000                                                  | 83,500<br>(3)                             | 5.2:1<br>2.9:1                                                                      | 12,700<br>11,200                                         | 7,070                            | 1.6:1                                                                               | 501,000<br>11,200                            | 90,500                                    | 18.1:1                                                                              |
| Ilmonito                                            | thousand troy ounces                        | 418<br>66                                                | 102                                       | 404.8:1<br>0.3:1                                                                    | 16<br>1,060                                              | $\frac{2}{11,000}$               | 8.9:1<br>0.1:1                                                                      | 434<br>1,130                                 | $\frac{2}{11,100}$                        | 108.7:1<br>0.1:1                                                                    |
| Uranium<br>Zinc NONMETALS                           | doustand short tons                         | 39,800<br>205,000<br>13                                  | 808<br><b>N</b><br><b>S</b> (5)           | 49.2:1<br>NA<br>0.1:1                                                               | 2,820<br>8,440                                           | NA<br>327                        | NA<br>23.5:1                                                                        | 39,800 $208,000$ $8,450$                     | 804<br>NA<br>327                          | 49.2:1<br>NA<br>23.5:1                                                              |
| 1 1 1                                               | op                                          | 24,960<br>8,120<br>e 108,000                             | 2 150<br>946<br>57,900                    | 2 33.0:1<br>8.4:1<br>1.9:1                                                          | W<br>190<br>817                                          | W<br>158<br>817                  | W<br>1.1:1<br>1.0:1                                                                 | 4,960<br>8,310<br>109,000                    | 150<br>1,100<br>58,700                    | 33.0:1<br>7.4:1<br>1.9:1                                                            |
| Piacomite<br>Feldspar<br>Fluorspar<br>Gypsum        |                                             | $^{2}_{2,470}$ $^{2}_{108}$ $^{2}_{5,500}$               | $^{609}_{^{2}773}_{773}_{10.700}$         | 2 3.1 :1<br>4.1 :1<br>1.4 :1                                                        | W<br>683<br>2.850                                        | W 228                            | 2.7:1                                                                               | 4,990<br>2,470<br>791<br>28 400              | 609<br>773<br>252<br>13 600               | 28.1.0.2                                                                            |
| Mica (scrap) Perlite Phosphate rock Potassium salts |                                             | 3,950<br>2,874<br>372,000                                | 144<br>2 544<br>41,900                    | 27.0:1<br>2 1.6:1<br>8.7:1                                                          | 255<br>17,400                                            | 226<br>226<br>2.170              | 1.0 %                                                                               | 3,950<br>3,950<br>874<br>372,000             | 144<br>544<br>42,100                      | 27.0<br>1.6:1<br>8.7:1                                                              |
| Salt Sand and gravel Sodium carbonate (natural)     |                                             | 4,290<br>543<br>984,000                                  | 3,770<br>271<br>984,000                   | 2.0:1<br>1.0:1<br>1.0:1                                                             | 12,900                                                   | 11,900<br>3,440                  | 1.111                                                                               | 13,400<br>13,400<br>984,000<br>6,540         | 3,770<br>12,200<br>984,000<br>3,440       |                                                                                     |
| ished and broken<br>nension<br>oapstone, pyrophy    | 1ite do do do do do do do do do do do do do | 2,930<br>2,930<br>2,930<br>2,030<br>7,460                | 1,020,000<br>1,230<br>713<br>2 102<br>365 | 1.1:1<br>3.3:1<br>2.3:1<br>21.0:1<br>20.4:1                                         | • 40,800<br>2<br>560<br>W                                | 40,200<br>2<br>533<br>W          | 1.0:1<br>1.0:1<br>0.9:1<br>W                                                        | 1,140,000<br>4,080<br>3,490<br>1,02<br>7,460 | 1,060,000<br>1,230<br>1,250<br>102<br>365 | 20.4:1                                                                              |

• Estimate. NA Not available. W Withheld to avoid disclosing individual company confidential data; included with "Surface."

1 Data may not add to totals shown because of independent rounding.

2 Includes underground data; the Bureau of Mines is not at liberty to publish separately.

3 Less than ½ unit.

Table 12.-Mining methods used in open-pit mining, by commodity, in 1973 (Percent)

|                               |                                      | aterial handled                            |
|-------------------------------|--------------------------------------|--------------------------------------------|
| Commodity                     | Preceded by drilling<br>and blasting | Not preceded by drilling<br>and blasting 1 |
| METALS                        |                                      |                                            |
| Bauxite                       | 5 <b>6</b>                           | 44                                         |
| Beryllium                     |                                      | 100<br>15                                  |
| Copper                        | 85                                   | 19                                         |
| Gold:                         | 98                                   | 2                                          |
| Lode                          | 30                                   | 100                                        |
| Placer                        | $\bar{8}\bar{4}$                     | 16                                         |
| Lead                          | -                                    | 100                                        |
| Mercury                       | 30                                   | 70                                         |
| Molybdenum                    | 100                                  |                                            |
| Nickel                        | 12                                   | 88                                         |
| Platinum-group metals         |                                      | 100                                        |
| Rare-earth metals             | 100                                  | <del></del>                                |
| Silver                        | 99                                   | 1                                          |
| Tin                           | 77                                   | 100                                        |
| Titanium: Ilmenite            | 10                                   | 90                                         |
| Tungsten                      | 100                                  | 89                                         |
| Uranium                       | 11<br>50                             | 59<br>50                                   |
| Vanadium                      | ĐŪ                                   | 90                                         |
| NONMETALS                     |                                      |                                            |
| Abrasives:                    | 66                                   | 34                                         |
| Abrasive stone                | 100                                  |                                            |
| EmeryGarnet                   | 59                                   | 41                                         |
| Tripoli                       | 92                                   | 8                                          |
| Aplite                        | 41                                   | 59                                         |
| Asbestos                      | 91                                   | 9                                          |
| Barite                        | 15                                   | 85                                         |
| Boron                         | 100                                  | . ==                                       |
| Clays                         |                                      | 100                                        |
| Diatomite                     | ==                                   | 100                                        |
| Feldspar                      | 77                                   | 23                                         |
| Fluorspar                     | 100                                  |                                            |
| Graphite                      | 100                                  | 100                                        |
| Greensand marl                | 85                                   | 15                                         |
| Gypsum                        | 89                                   | 100                                        |
| Iron oxide pigments (crude)   | 79                                   | 21                                         |
| Kyanite<br>Magnesite          | 100                                  |                                            |
| Mica (scrap)                  | 48                                   | 52                                         |
| Mica (scrap)                  |                                      | 100                                        |
| Millstone                     | 98                                   | 2                                          |
| Olivine                       | 59                                   | 41                                         |
| Perlite                       | 45                                   | 55                                         |
| Phosphate rock                | 4                                    | 96                                         |
| Pumice                        |                                      | 100                                        |
| Salt                          | 4                                    | 96<br>100                                  |
| Sand and gravel               |                                      | 100                                        |
| Stone:                        | 98                                   | 2                                          |
| Crushed and broken            | 30                                   | 100                                        |
| Dimension                     | <b>6</b> 8                           | 32                                         |
| Talc, soapstone, pyrophyllite | 62                                   | 38                                         |
| Vermiculite                   | 04                                   | 45                                         |

<sup>&</sup>lt;sup>1</sup> Includes drilling or cutting without blasting, dredging, mechanical excavation and nonfloat washing, and other surface mining methods.

Table 13.-Exploration and development activity in the United States, by method, in 1973

|                                       | Me         | tals                             | Non     | metals                           | r          | otal 1                |
|---------------------------------------|------------|----------------------------------|---------|----------------------------------|------------|-----------------------|
| Method                                | Feet       | Percent<br>of total <sup>2</sup> | Feet    | Percent<br>of total <sup>2</sup> |            | Percent<br>of total 2 |
| DEVELOPMENT                           |            |                                  |         |                                  |            |                       |
| Shaft and winze sinking               | 8.450      | 1.2                              | 850     | 1.7                              | 9,290      | 1.2                   |
| Raising                               | 126,000    | 17.2                             | 7.580   | 15.0                             | 133,000    | 17.0                  |
| Drifting, crosscutting or tunneling - | 597,000    | 81.6                             | 42,000  | 83.3                             | 639,000    |                       |
| Total 1                               | 731,000    | 100.0                            | 50,400  | 100.0                            | 782,000    |                       |
| EXPLORATION                           |            |                                  |         |                                  |            |                       |
| Diamond drilling                      | 1,490,000  | 7.6                              | 133,000 | 25.6                             | 1,620,000  | 8.1                   |
| Churn drilling                        | 109,000    | .6                               | 5.000   | 1.0                              | 114.000    | .6                    |
| Rotary drilling                       | 12.400.000 | 63.6                             | 278,000 |                                  | 12,700,000 | 63.3                  |
| Percussion drilling                   | 4,670,000  | 23.9                             | 65,500  | 12.7                             | 4,730,000  | 23.6                  |
| Other drilling                        | 794,000    | 4.1                              | 28,200  | 5.4                              | 822,000    | 4.1                   |
| Trenching                             | 49,600     | .2                               | 8,020   | 1.5                              | 57,600     | .3                    |
| Total 1                               | 19,500,000 | 100.0                            | 517,000 |                                  | 20,000,000 | 100.0                 |
| Grand total 1                         | 20,300,000 |                                  | 568,000 |                                  | 20,800,000 |                       |

 $<sup>^{\</sup>rm 1}$  Data may not add to totals show  $^{\rm 1}$  because of independent rounding.  $^{\rm 2}$  Based on unrounded footage.

Table 14.-Exploration and development by method and selected metals and nonmetals, in 1973 (Feet)

|                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Develo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Development                                                                                                             |                                                                                                                                                   |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 白                                                                                                                                 | Exploration                             |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Commodity                                                                                                                                                                                   | Shaft and<br>winze<br>sinking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Raising                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Drifting,<br>cross-<br>cutting or<br>tunneling                                                                          | Total 1                                                                                                                                           | Diamond<br>drilling                                                                                                                                                                        | Churn<br>drilling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rotary<br>drilling                                                                                                                | Percussion<br>drilling                  | Other<br>drilling                                                                                                                         | Trenching Total <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                    | Total 1                                                                                                                                                                                                        |
| Copper Copper Copper Iron ore Licad Mereury Silver Tungsten Dynnim Zinc Other <sup>2</sup> Total <sup>1</sup> NonMetals Ruorspar Gypsum Phosphate rock Talc, soapstone, pyrophyllite Copper | 1,360<br>610<br>100<br>100<br>1,000<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150<br>1,150 | 73,700<br>9,110<br>2,040<br>8,790<br>1,410<br>1,560<br>13,500<br>126,000<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,490<br>1,40<br>1,40<br>1,40<br>1,40<br>1,40<br>1,40<br>1,40<br>1,4 | 144,000<br>44,800<br>66,100<br>67,800<br>67,800<br>128,000<br>179,600<br>79,600<br>19,600<br>10,000<br>11,000<br>42,000 | 219,000<br>62,200<br>61,800<br>61,800<br>30,000<br>140,090<br>140,000<br>61,600<br>731,000<br>731,000<br>731,000<br>731,000<br>731,000<br>731,000 | 603,000<br>72,500<br>97,800<br>172,000<br>172,000<br>24,000<br>28,400<br>28,400<br>1,490,000<br>1,490,000<br>1,287,000<br>1,287,000<br>1,287,000<br>1,870<br>8,600<br>1,83,000<br>1,83,000 | 4,200 181,000 1,700 72,000 88,300 88,300 88,300 64,000 427,000 109,000 12,400,000 60,000 60,000 12,400,000 60,000 60,000 60,000 12,400,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60,000 60, | 181,000<br>172,100<br>172,100<br>185,000<br>1,600<br>1,600<br>1,600<br>2,400,000<br>6,960<br>6,960<br>6,960<br>119,000<br>119,000 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 60,500<br>18,400<br>862<br>53,600<br>45,900<br>1,610<br>175,000<br>794,000<br>794,000<br>794,000<br>794,000<br>794,000<br>8,850<br>28,200 | 13.900 988.000<br>16.900 4,289.000<br>1,000 1,1590 274.000<br>1,000 1,000 1,000<br>4,000 12,400,100<br>1,000 12,400,100<br>4,000 12,400,000<br>1,000 10,500,000<br>1,000 10,500,000 | 988,000<br>1,229,000<br>274,000<br>1,050<br>94,000<br>376,000<br>888,000<br>9,500,000<br>121,000<br>121,000<br>181,000<br>181,000<br>181,000<br>181,000<br>181,000<br>181,000<br>181,000<br>181,000<br>181,000 |
| Grand total                                                                                                                                                                                 | 9,290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 183,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 689,000                                                                                                                 | 7.82,000                                                                                                                                          | 1,620,000                                                                                                                                                                                  | 114,000 12,700,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,700,000                                                                                                                         | 4,780,000                               | 822,000                                                                                                                                   | 67,600 20,000,000                                                                                                                                                                                                                                                                                                                                                                                               | 0,000,000                                                                                                                                                                                                      |

<sup>&</sup>lt;sup>1</sup> Data may not add to totals shown because of independent rounding.

<sup>2</sup> Bauxite, columbium and tantalum, molybdenum, tin, and vanadium.

<sup>3</sup> Boron, bromine, diatomizant, into oxide pigments (crude), lithium, mica (scrap), millstones, olivine, potassium salt, pumice, salts, sodium carbonate (natural), stone (dimension), tripoli, and wollastonite.

2,400 296,000 3,720,000

448,000 46,200 543,000 25,100 125,000 539,000 116,000 33,000 66,800

Arkansas

Arizona

Alaska

ouisiana

Kentucky

ndiana

OWB

llinois

Montana

Nevada

Missouri

Trenching Total 1

Table 15.-Exploration and development by method and State, in 1973

(Feet)

Other drilling 36,400 419,000 1,200 822,000 Percussion drilling 4,000,000 75,200  $\frac{117,000}{303,000}$ 4,730,000 Exploration Rotary drilling 122,000 967 5,190,000 93,500 141,000 3,000 1,120,000 122,000 114,000 12,700,000 Churn drilling Diamond drilling 70,900 1,210 49,700 115,000 107,000 1,620,000 Total 1  $\frac{12,200}{4,780}$ 10,900 114,000 31,000 782,000 cutting or tunneling Drifting, Development 539,000 Raising 2,970 3,840 5,970 133,000 Shaft and winze sinking 465 2,640 1 1 82 0.290 New Mexico
New York
Worth Carolina
North Dakota
Ohio Jolorado ....-Michigan Minnesota Wisconsin ..... California Florida Georgia Idabo laine ..... Oklahoma \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* lennessee exas Washington .... Vebraska State South Dakota ennsylvania

<sup>1</sup> Data may not add to totals shown because of independent rounding

Wyoming

/ermont Virginia

Jregon

20,000,000

57,600

Table 16.-Total material (ore and waste) produced by mine development in the United States, by commodity and State, in 1973

(Thousand short tons)

|                               | Shaft and<br>winze<br>sinking | Raising                                      | Drifting,<br>crosscutting,<br>or<br>tunneling    | Stripping                                         | Total <sup>1</sup> |
|-------------------------------|-------------------------------|----------------------------------------------|--------------------------------------------------|---------------------------------------------------|--------------------|
|                               | COMMODI                       | TY                                           |                                                  |                                                   |                    |
| METALS                        |                               | 105                                          | 061                                              | 84,500                                            | 85,700             |
| pper                          | 30                            | 185                                          | 961                                              | 84,800                                            | 00,100             |
| old:<br>Lode                  | 2                             | 33                                           | 172                                              | 648                                               | 855                |
| Placer                        |                               | $\bar{3}\bar{1}$                             | $\begin{smallmatrix}&&5\\1.360\end{smallmatrix}$ | 206<br>51,600                                     | 211<br>53,000      |
| on ore                        | 1<br>4                        | 31<br>37                                     | 1,130                                            | 51,000<br>4                                       | 1,170              |
| eadercury                     |                               |                                              | 2                                                | 200                                               | 202                |
| lver                          | 4                             | 27                                           | 342<br>83                                        | 36                                                | 410<br>81          |
| unggton                       | 36                            | $\begin{array}{c} 4 \\ 74 \end{array}$       | 522                                              | 45,100                                            | 45,70              |
| raniuminc                     | 15                            | 48                                           | 707                                              | 13                                                | 78                 |
| ther 2                        | 5                             | 26                                           | 789                                              | 18,500                                            | 19,30              |
| Total metals 1                | 97                            | 466                                          | 6,070                                            | 201,000                                           | 207,00             |
| NONMETALS                     |                               |                                              | 15                                               | 170                                               | 18                 |
| arite                         |                               |                                              | 15<br>                                           | 1,940                                             | 1,94               |
| iatomiteeldspar               |                               |                                              | 1                                                | 100                                               | 10                 |
| luorspar                      | 3                             | 22                                           | 51<br>64                                         | $\begin{smallmatrix} 10\\10.900\end{smallmatrix}$ | 10,90              |
| vnsiim                        | 7                             |                                              | 04                                               | 77                                                | . 7                |
| lica (scrap)<br>hosphate rock |                               | - <del>-</del> 7                             | 22                                               | 6,890                                             | 6,92               |
|                               |                               |                                              | $\bar{6}\bar{6}$                                 | 22<br>1,290                                       | 1,35               |
| alc, soapstone, pyrophyllite  | - <u>ī</u>                    | 3                                            | 78                                               | 1,600                                             | 1,68               |
| ther <sup>3</sup>             | 11                            | 32                                           | 297                                              | 22,900                                            | 23,3               |
| Total nonmetals 1             | 108                           | 498                                          | 6,370                                            | 224,000                                           | 231,0              |
| Grand total 1                 |                               |                                              |                                                  |                                                   |                    |
|                               | STAT                          | <u>.                                    </u> |                                                  | w                                                 |                    |
| Alabama                       |                               |                                              | - <u>-</u> 2                                     | 189                                               | 19                 |
| llaska<br>Arizona             | 28                            | $1\overline{53}$                             | 861                                              | 45,900                                            | 47,0               |
| wireness                      |                               | (4)<br>3                                     | 15                                               | 2,710                                             | 2,7<br>3,3         |
| California                    | 1                             | 3<br>58                                      | $106 \\ 1,240$                                   | 3,260<br>2,770                                    | 3,3<br>4,0         |
| oloredo                       | 2                             | 56                                           | 1,240                                            | 2,w                                               | -,                 |
| Connecticut                   |                               |                                              |                                                  | $\mathbf{w}$                                      |                    |
| Penroia                       |                               |                                              | 268                                              | W<br>10                                           | 3                  |
| daho                          | 13<br>3                       | 66<br>12                                     | 39                                               |                                                   |                    |
| Illinois<br>Indiana           | w                             |                                              |                                                  | ==                                                |                    |
| OW9                           |                               | ==                                           |                                                  | w                                                 |                    |
| Kontucky                      |                               | $\mathbf{w}$                                 | w<br>w                                           |                                                   |                    |
| Waine                         |                               |                                              | 21                                               | 13,200                                            | 13,2               |
| Michigan<br>Minnesota         |                               |                                              | 4 00-                                            | 39,900<br>78                                      | 39,9<br>1.9        |
| Missouri                      | 1                             | 17                                           | 1,890<br>81                                      | 602                                               | 1,                 |
| Viontana                      | 2<br>3                        | 33<br>11                                     | 74                                               | 4,360                                             | 4,4                |
| Nevada<br>New Mexico          | 34                            | 44                                           | 450                                              | 51,800                                            | 52,                |
| New York                      |                               | 9                                            | 145                                              | 226<br>42                                         | :                  |
| North Carolina                |                               |                                              | (4)                                              | W W                                               |                    |
| Oklahoma                      |                               | - <u>ī</u>                                   | - <u>-</u>                                       | 1                                                 |                    |
| Oregon<br>Pennsylvania        | $\bar{\mathbf{w}}$            | $\mathbf{w}$                                 | W                                                | W                                                 |                    |
| South Dakota                  | (4)                           | 30                                           | 138<br>153                                       | (4)                                               |                    |
| Tonnocco                      | 3                             | 1                                            |                                                  | 2,350                                             | 2,                 |
| Texas                         | - <u>-</u>                    | 35                                           | 108                                              | 5,660                                             | 5,                 |
| 17m.ont                       |                               | $\mathbf{w}$                                 | W                                                | - <u>-</u> 7                                      |                    |
| Vincinia                      |                               | 1 3                                          | 69<br>82                                         | 28                                                |                    |
| Weshington                    | - <u>-</u> 2                  | (4)                                          | 86                                               | 46,500                                            | 46,                |
| Washington                    |                               |                                              |                                                  |                                                   |                    |
| Wyoming<br>Undistributed      | 12                            | 22                                           | 531                                              | 4,170<br>224,000                                  | 231,               |

W Withheld to avoid disclosing individual company confidential data; included with "Undistributed."

¹ Data may not add to totals shown because of independent rounding.

² Bauxite, beryllium, molybdenum, titanium (ilmenite) and vanadium.

³ Abrasive stone, asbestos, boron minerals, garnet, magnesite, mica (sheet), potassium salts, salt, and sodium carbonate (natural).

⁴ Less than ½ unit.

Table 17.-U.S. consumption of explosives

(Thousand pounds)

| Year | Coal<br>mining | Metal<br>mining | Quarrying<br>and<br>nonmetal<br>mining | Total<br>mineral<br>industry | Other   | Total<br>industrial |
|------|----------------|-----------------|----------------------------------------|------------------------------|---------|---------------------|
| 1969 | 820,114        | 470,791         | 438,789                                | 1,729,694                    | 496,783 | 2,226,477           |
|      | 962,331        | 479,508         | 455,424                                | 1,897,263                    | 496,228 | 2,393,491           |
|      | 1,071,305      | 457,286         | 489,572                                | 2,018,163                    | 535,851 | 2,554,014           |
|      | 1,212,585      | 430,686         | 493,677                                | 2,136,948                    | 532,841 | 2,669,789           |
|      | 1,177,062      | 495,879         | 643,292                                | 2,316,233                    | 438,713 | 2,754,946           |

Table 18.-U.S. consumption of explosives in the minerals industry

(Thousand pounds)

| Year                        | Coal<br>mining         | Metal<br>mining    | Quarrying<br>and nonmet<br>mining | g<br>al Total          |
|-----------------------------|------------------------|--------------------|-----------------------------------|------------------------|
| PERM                        | IISSIBLE EX            | PLOSIVES           |                                   |                        |
| 1972<br>1973                | 42,232<br>39,307       | 99<br>115          | 865<br>957                        | 43,196<br>40,379       |
| ОТНЕ                        | R HIGH EX              | PLOSIVES           |                                   |                        |
| 1972<br>1973                | 16,297<br>20,198       | 27,648<br>28,295   | 100,600<br>107,675                | 144,545<br>156,168     |
| CYLINDRICALI                | Y-PACKED               | BLASTING AGE       | NTS                               |                        |
| 1972<br>1973                | 201,820<br>222,797     | 7,542<br>6,265     | 30,064<br>32,228                  | 239,426<br>261,290     |
| PACKAGED AND B              | ULK WATER              | GELS AND SL        | URRIES                            |                        |
| 972973                      | 9,212<br>11,622        | 156,618<br>173,530 | 41,305<br>54,154                  | 207,135<br>239,306     |
| OTHER PROCESSED BLASTING AC | GENTS AND              | UNPROCESSED        | AMMONIUM                          | NITRATE                |
| 1972<br>1973                | 943,024<br>883,138     | 238,779<br>287,674 | 320,843<br>448,278                | 1,502,646<br>1,619,090 |
| TO                          | TAL EXPLO              | SIVES              |                                   |                        |
| 972<br>973                  | 1,212,585<br>1,177,062 | 430,686<br>495,879 | 493,677<br>643,292                | 2,136,948<br>2,316,233 |

## Statistical Summary

## By Staff, Office of Technical Data Services-Mineral Supply

This chapter summarizes mineral production data for the United States, its island possessions, and the Commonwealth of Puerto Rico. Tables are also included that show the principal mineral commodities exported from and imported into the United States, and that compare world and U.S. mineral production. The detailed data from which these tables were derived are contained in the commodity chapters of volume I and in the State chapters of volume II of this edition of the Minerals Yearbook.

Mineral production may be measured at any of several stages of extraction and processing. The stage of measurement used in this chapter is what is normally termed "mine output." It usually refers to minerals or ores in the form in which they are first extracted from the ground, but customarily

includes the product of auxiliary processing at or near the mines.

Because of inadequacies in the statistics available, some series deviate from the foregoing definition. In the case of gold, silver, copper, lead, zinc, and tin, the quantities are recorded on a mine basis (as the recoverable content of ore sold or treated). However, the values assigned to these quantities are based on the average selling price of refined metal, not the mine value. Mercury is measured as recovered metal and valued at the average New York price for the metal.

The weight of volume units shown are those customarily used in the particular industries producing the commodities. Values shown are in current dollars, with no adjustment made to compensate for changes in the purchasing power of the dollar.

Table 1.—Value of mineral production 1 in the United States, by mineral group (Millions)

|      | (                                                |                                             |                                             |                                                  |
|------|--------------------------------------------------|---------------------------------------------|---------------------------------------------|--------------------------------------------------|
| Year | Mineral fuels                                    | Nonmetals<br>(except fuels)                 | Metals                                      | Total <sup>2</sup>                               |
| 1969 | \$17,965<br>20,152<br>21,247<br>22,061<br>25,012 | \$5,624<br>5,712<br>6,058<br>6,482<br>7,413 | \$3,333<br>3,928<br>3,403<br>3,642<br>4,362 | \$26,921<br>29,792<br>30,708<br>32,185<br>36,788 |

Neviseu.
 Production as measured by mine shipments, sales, or marketable production (including consumption by producers).
 Data may not add to totals shown because of independent rounding.

Table 2.-Mineral production 1 in the United States

| Minorel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19                                                     | 1970                                                   |                                                        | 1971                                                   |                                                          | 1079                                                                  |                                                          |                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------|
| Teramore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Quantity                                               | Value                                                  |                                                        | Value                                                  | 1                                                        | 3                                                                     | 1978                                                     | - 1                                                          |
| MINERAL FUELS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        | (thousands)                                            | Augure)                                                | Đ                                                      | Quantity                                                 | (thousands)                                                           | Quantity                                                 | Value<br>(thousands)                                         |
| limestone, sandstone, gilsoniteshort tons. Carbon dioxide, naturalthousand cubic feet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,980,562<br>1,109,530                                 | \$8,879<br>191                                         | 1,668,928                                              | \$8,291                                                | 1,995,374                                                | \$10,303                                                              | 2,088,657                                                | \$8.464                                                      |
| Bituminous and lignite 2thousand short tons<br>Pennsylvania anthracite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 602,932<br>9,729                                       | 3,772,662<br>105,341                                   | 552,192<br>8,727                                       | 8,9                                                    | 1,228,741<br>595,386<br>7,106                            | 4,                                                                    | 1,134,986<br>591,738<br>6,830                            | 5,049,612                                                    |
| and cyc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3,953<br>647<br>21,920,642                             | 46,820<br>17,405<br>3,745,680                          | $^{3,988}_{577}$                                       | 47,856<br>14,539<br>4,085,482                          | r 3,467<br>r 629<br>22,531,698                           | r 41,604<br>r 15,673<br>r 4,180,462                                   | 2,558<br>647<br>22,647,549                               | 30,696<br>30,696<br>16,121<br>4,894,072                      |
| Peat Petroleum (crude)thousand 42-gallon barrels Petroleum (crude)thousand 42-gallon barrels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 206,305<br>399,611<br>526<br>3,517,450<br>XX           | 603,024<br>672,088<br>5,986<br>11,173,726              | 200,181<br>417,634<br>600<br>3,453,914                 | 616,657<br>769,397<br>7,011<br>11,692,998              | 193,480<br>444,736<br>607<br>3,455,368                   | 604,423<br>847,810<br>7,112<br>11,706,510                             | 187,390<br>447,033<br>621<br>3,360,903                   | 668,784<br>1,188,289<br>7,547<br>13,057,905                  |
| Abrosing NONMETALS (EXCEPT FUELS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        |                                                        | 44                                                     | 000,1\$2,12                                            | XX                                                       | r 22,061,000                                                          | XX                                                       | 25,012,000                                                   |
| Asbestos sources Asbestos sources Barite Broin minerals Bromine Calcium-magnesium chloride Carlona-thousand pounds Carlona-thousand pounds Carlona-thousand pounds Carlona-thousand pounds Carlona-thousand pounds Carlona-thousand pounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3,055<br>125,314<br>854<br>1,041<br>349,748<br>632,500 | 635<br>10,696<br>12,800<br>86,827<br>60,560            | 2,349<br>130,882<br>825<br>1,047<br>355,946            | 563<br>12,174<br>13,491<br>89,856<br>61,750            | 3,241<br>131,663<br>906<br>1,121<br>386,864              | 670<br>13,408<br>14,883<br>95,882<br>63,689                           | 3,466<br>150,036<br>1,104<br>1,225<br>418,250<br>609,300 | 16,288<br>16,288<br>16,688<br>113,648<br>67,131              |
| ıry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 71,629<br>2,978<br>54,853<br>597,636<br>W              | 1,268,718<br>67,537<br>267,912<br>32,649               | 75,881<br>3,341<br>56,666<br>535,318                   | 1,421,388<br>84,556<br>274,431<br>34,392<br>W          | 77,973<br>3,777<br>59,456<br>576,089<br>2.883            | 1,588,290<br>100,269<br>303,022<br>37,554                             | 82,718<br>4,057<br>64,351<br>608,906                     | 1,810,292<br>119,547<br>354,058<br>36,083                    |
| thousand shor the from sea water and brin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 269,221<br>18,837<br>NA<br>9,436<br>19,747             | 9,638<br>13,923<br>1,936<br>2,396<br>35,132<br>286,155 | 742,810<br>272,071<br>18,984<br>NA<br>10,418<br>19,591 | 9,969<br>17,263<br>1,934<br>2,589<br>39,067<br>308,100 | r 746,212<br>250,347<br>18,916<br>NA<br>12,328<br>20,290 | 10,623<br>17,315<br>1,957<br>2,728<br>48,504                          | 2,884<br>791,900<br>248,601<br>22,772<br>NA<br>13,558    | W<br>12,830<br>17,337<br>2,381<br>2,739<br>56,650            |
| Mica: Scrap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 707,874                                                | 62,434                                                 | 668,649                                                | 62,322                                                 | 729,472                                                  | 63,915                                                                | 21,090<br>853,907                                        | 365,849<br>77,733                                            |
| te rock thousan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 119<br>456,134<br>38,739                               | 2,527 $4,904$ $203,218$                                | 127<br>17,005<br>432,208<br>38,886                     | 2,917<br>7<br>4,941                                    | 14,280<br>544,594                                        | 4,353<br>7<br>6,231                                                   | 177<br>543,683                                           | 6,082                                                        |
| Funice Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Transfer Trans | 2,729<br>3,036<br>W<br>45,896<br>943,941               | 98,123<br>4,671<br>W<br>304,759<br>1,115,705           | 2,587<br>3,391<br>808<br>44,077<br>919,593             | 100,527<br>5,214<br>7,137<br>303,687<br>1,148,969      | 40,831<br>2,659<br>3,813<br>741<br>45,022<br>r 914,324   | 207,910<br>106,680<br>6,539<br>6,652<br>6,652<br>296,772<br>1,200,701 | 42,137<br>2,603<br>3,772<br>559<br>43,910<br>983,629     | 238,667<br>112,613<br>8,770<br>4,961<br>306,103<br>1,359,370 |

| 94,385<br>11,597<br>1,990,463<br>138,578<br>9,144<br>9,464          | 28,926                                                                                                                                                                                                                                    | 688<br>26,635<br>2,044,346<br>115,000                                                                                        | 1,163,710<br>196,465                                  | W<br>W<br>621<br>217,701                                                                                                                      | 13,780                 | 96,762<br>19,829              | 19,154 $167,830$                                                                                                   | 26,611<br>197,861                  | 55.216                                   | 4,362,000                                                | 36,788,000                                         | items that                  |
|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------|----------------------------------------------------------|----------------------------------------------------|-----------------------------|
| 3,722<br>672<br>1,060,124<br>7,438<br>1,246,534<br>10,519<br>365    | XX                                                                                                                                                                                                                                        | 545<br>1,879<br>1,717,940<br>1,175,750                                                                                       | 90,654<br>603,024                                     | 239<br>203,055<br>2,171<br>135,097                                                                                                            | 31,278                 | 87,827<br>804,355             | 7,059<br>25,820                                                                                                    | 4,377<br>478,850                   | *                                        | XX                                                       | XX                                                 | th "Value of                |
| 71,689<br>11,396<br>1,672,293<br>132,385<br>r 7,828<br>797<br>8,092 | 39,730<br>r 6,482,000                                                                                                                                                                                                                     | 386<br>23,238<br>1,704,796<br>84,967                                                                                         | 950,365<br>186,046                                    | W<br>W<br>r 1,601<br>170,530                                                                                                                  | 8,479                  | 62,737<br>r 16,739            | 18,104<br>162,272                                                                                                  | 30,867<br>169,803                  | 0<br>0<br>1                              | r 8.642,000                                              | XX r 32,185,000                                    | included wi                 |
| 3,218<br>701<br>r 920,423<br>7,613<br>1,107,404<br>87,864<br>87,864 | XX                                                                                                                                                                                                                                        | 489<br>1,812<br>1,664,840<br>1,449,943                                                                                       | 77,884<br>618,915                                     | 578<br>147,161<br>r 7,333<br>102,197                                                                                                          | 16,864 $19,520$        | 37,233<br>r 739,801           | r 7,045<br>25,758                                                                                                  | 4,887<br>478,318                   |                                          | XX                                                       | XX                                                 | dential data                |
| 60,774<br>11,008<br>1,594,065<br>117,894<br>7,634<br>7,198          | 47,358                                                                                                                                                                                                                                    | 933<br>28,543<br>1,583,071<br>61.673                                                                                         | 891,002<br>159,679                                    | W<br>W<br>5,229<br>164.917                                                                                                                    | W<br>7,538             | 64,258<br>15,936              | 20,184<br>151,996                                                                                                  | 37,690<br>158,234                  |                                          | 51,690                                                   | 90 708 000                                         | XX 29,792,000 AA 05,703,000 |
| 2,878<br>688<br>876,123<br>6,738<br>1,037,297<br>75,134             | XX                                                                                                                                                                                                                                        | 1,025<br>1,988<br>1,522,183                                                                                                  | 77,106                                                | 142<br>198,334<br>17,883<br>97,882                                                                                                            | 17,036<br>17,194       | 41,564<br>713,610             | r 6,827<br>24,515                                                                                                  | 5,252<br>491,407                   |                                          | XX                                                       | YY                                                 | individual c                |
| 56,320<br>10,932<br>1,474,917<br>151,779<br>520<br>6,501            | 34,401<br>5,712,000                                                                                                                                                                                                                       | 30,070<br>30,070<br>1,984,484                                                                                                | 941,739                                               | W<br>W<br>W<br>11,130                                                                                                                         | 190,081<br>W<br>W      | 79,697<br>18,626              | 23,790<br>149,464                                                                                                  | 34,923<br>163,650                  |                                          | 58,430                                                   | 3,928,000                                          | 29,792,000                  |
| 2,688<br>602<br>874,512<br>6,419<br>1,027,929<br>68,105             | XX                                                                                                                                                                                                                                        | 1,130<br>2,082<br>1,719,657                                                                                                  | 1,743,322                                             | 4,737<br>368,802<br>27,296                                                                                                                    | 110,381<br>15,933<br>W | 45,006                        | r9,312                                                                                                             | 5,319<br>5,319<br>534,136          |                                          | XX                                                       | XX                                                 | XX X                        |
| Sodium carbonate (natural) ————————————————————————————————————     | Value of items that Cannot be measured. (1970-71), natural and slag cement, graphite, iodine, kyanite, lithium minerals, magnesite, greensand marl, kyanite, staurolite, wollastonite, and values of nonmetal items indicated by symbol W | Antimony ore and concentrate Short tons, antimony content.  Bauxitethousand long tons, dried equivalent.  Bauxiteshort tons. | Copper (recoverance content of ores, etc.)troy ounces | Lead (recoverable content of ores, etc.)short tons  Manganese ore (35% or more Mn) short tons, gross weight  Manganiferous ore (5% to 35% Mn) | concent                | Rare-earth metal concentrates | Titanium concentrate, ilmeniteshort tons, gross Weignt<br>Tungsten ore and concentrate thousand pounds contained W | thousand pou<br>centrate)<br>short | Zinc (recoverable content of ores, etc.) | centrate (rutile 1972-73), zircon concentrate, and value | of metal items indicated by symbol of Total metals | nineral production          |

e Estimate. r Revised. NA Not available. W Withheld to avoid disclosing individual company confidential data; included with "Value of items that cannot be disclosed." XX Not applicable. The subjective of a subjective sales, or marketable production including consumption by producers).

Includes a small quantity of anthracine mined in States other than Pennsylvania. In 1971, value excluded that of Arizona, which is withheld to avoid disclosing anthracine mined in States other than "Nonmeral items that cannot be disclosed."

ignorable and producers of anthracine stones, sharpening stones, and tube mill liners.

i Grindstones, pulpstones, grinding pebbles, sharpening stones, and tube mill liners.

Excludes abrasive stone, bituminous limestone, bituminous sandstone, and soapstone, all included elsewhere in table.

Table 3.—Minerals produced in the United States and principal producing States in 1973

| Mineral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Principal producing States,<br>in order of quantity                   | Other producing States                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Antimony ore and concentrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Idaho, Mont., Nev.                                                    |                                                                                                                                     |
| Aplite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Va.                                                                   |                                                                                                                                     |
| Ashestos Asphalt (native) Barite Bauxite Beryllium concentrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Calif., Vt., Ariz., N.C.                                              |                                                                                                                                     |
| Remite (native)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tex., Utah. Ala., Mo                                                  |                                                                                                                                     |
| Ranvita                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Nev., Mo., Ark., Alaska                                               | Colif C. m                                                                                                                          |
| Bauxite<br>Beryllium concentrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ark., Ala., Ga.                                                       | - Calli., Ga., Tenn.                                                                                                                |
| Beryllium concentrate Boron minerals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Utah.                                                                 |                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                                                                     |
| Bromine Calcium-magnesium chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ark., Mich., Calif.                                                   |                                                                                                                                     |
| C , messessam chioride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mich. Calif                                                           |                                                                                                                                     |
| Carbon dioxide (natural)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N. Mex., Calif., Colo., Utah.                                         |                                                                                                                                     |
| Carbon dioxide (natural)Cement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cam., Fa., Tex., Mich                                                 | - Ala., Ariz., Ark., Colo., Fla                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | Ga., Hawaii, Idaho, Ill., Ind.                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | lowa, Kans., Ky., La., Maine                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | Md., Minn., Miss., Mo., Mont.                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | N.C. Ohio C. Mex., N.Y.                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | S. Dak To Trees, S.C.                                                                                                               |
| Clavs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a -                                                                   | Wash W Vo Will W                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ga., Tex., Ohio, N.C.                                                 | All other States areas Wyo.                                                                                                         |
| Clays                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V W                                                                   | R.I. Vt.                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ny., W. Va., Pa., Ill                                                 | Ala., Alaska Ariz Ark Col-                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | Okla., Tenn., Tex., Utah, Va.,                                                                                                      |
| Copper (mine)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ariz. Utah N Mor M                                                    | Wash., Wyo.                                                                                                                         |
| Copper (mine)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | , Ctan, N. Mex., Mont                                                 | Calif., Colo., Idaho, Maine, Mich                                                                                                   |
| Diatamit-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                       | Mo., Nev., Okla., Oreg., Pa.,                                                                                                       |
| Diatomite Emery Feldspar Fluorspar arnet, abrasive Jold (mine)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Calif., Nev., Wash                                                    | Orog.                                                                                                                               |
| Teldspar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N.Y                                                                   | Oreg                                                                                                                                |
| luorspar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N.C., Calif., Conn., Ga                                               | Ariz. Colo S Date W                                                                                                                 |
| arnet, abrasive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | III., Colo., Mont., Nev                                               | Ariz., Ky., Tex III-ah                                                                                                              |
| fold (mine)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N.1., Idaho.                                                          | ,, , can, Otali.                                                                                                                    |
| fold (mine)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | J. Dak., Utan, Nev., Ariz                                             |                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | Mont., N. Mex., Oreg Tenn                                                                                                           |
| raphite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Гех.                                                                  |                                                                                                                                     |
| ypsum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mich., Calif., Tex Iowa                                               | Ariz Ark Col                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                                                                     | Kans L. Mant M., Ind.,                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | Kans., La., Mont., Nev., N.<br>Mex., N.Y. Ohio Okla                                                                                 |
| elium k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cane Tow Olds 4 4                                                     | Mex., N.Y., Ohio, Okla., S.<br>Dak., Utah. Va., Wash., Wyo.                                                                         |
| odine N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | fich.                                                                 | , waiii, W yo.                                                                                                                      |
| on ore N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Inn., Mich., Calif Mo                                                 | Alo A                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                                                                     | Ala., Ariz., Ark., Colo., Ga.,                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | N V N C P Nev., N. Mex.,                                                                                                            |
| vanite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . ~ _                                                                 | Idaho, Mont., Nev., N. Mex.,<br>N.Y., N.C., Pa., Tex., Utah,<br>Wis., Wyo.                                                          |
| yanite y ead (mine) M me O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | a., Ga., Fla.                                                         | 11 10., 11 yu.                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | io., Idaho, Colo., Utah                                               | Alaska, Ariz., Calif III Main                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | Mont., N. Mex. N V Va                                                                                                               |
| me O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | hio Pa Toy Ma                                                         | Wash., Wis.                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , 1ex., MO                                                            | Ala., Ariz., Ark., Calif., Colo.,                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | III., Ind., Iowa, Kans., Ky.,                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | Ill., Ind., Iowa, Kans., Ky.,<br>La., Md., Mass., Mich., Minn.,<br>Miss Mont Nich., Minn.,                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | Miss., Mont., Nebr., Nev.,<br>N.J., N. Mex., N.Y., N. Dak.,<br>Okla Oros, S. D. J.                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | Okla Orog C D. J                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | Okla., Oreg., S. Dak., Tenn.,<br>Utah, Va., Wash., W. Va.,                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | Wis., Wyo.                                                                                                                          |
| thium minerals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C 37 C 114                                                            |                                                                                                                                     |
| thium minerals N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .C., Nev., Calif.                                                     |                                                                                                                                     |
| thium minerals N<br>agnesite No<br>agnesium chloride Te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .C., Nev., Calif.<br>ev.<br>ex.                                       |                                                                                                                                     |
| thium minerals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .C., Nev., Calif.<br>ev.<br>ex.<br>ich., Calif., N.J. Flo             |                                                                                                                                     |
| agnesium chloride Te<br>agnesium compounds Manganese ore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ex.<br>ich., Calif., N.J., Fla]                                       |                                                                                                                                     |
| agnesium chloride Te<br>genesium compounds M<br>anganese ore M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ev.<br>ich., Calif., N.J., Fla]<br>ont.                               |                                                                                                                                     |
| agnesium chloride Tegnesium compounds Munganese ore Munganiferous ore Minganiferous residuum Munganiferous Residuum Residuum Munganiferous Residuum Munganiferous Residuum Munganiferous Residuum Munganiferous Residuum Residuum Residuum Residuum Residuum Residuum Residuum Residuum Residuum Residuum Residuum Residuum Residuum Residuum Residuum Residuum Residuum Residu | ev.<br>ich., Calif., N.J., Fla ]<br>ont.<br>inn., N. Mex.<br>J.       |                                                                                                                                     |
| graesium chloride Te<br>ignesium compounds M<br>langanese ore M<br>langaniferous ore M<br>langaniferous residuum N<br>rl, greensand N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ev. ich., Calif., N.J., Fla ] ont. inn., N. Mex. J. J.                | Del., Miss., Tex., Utah.                                                                                                            |
| graesium chloride Te<br>ignesium compounds M<br>langanese ore M<br>langaniferous ore M<br>langaniferous residuum N<br>rl, greensand N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ev. ich., Calif., N.J., Fla ] ont. inn., N. Mex. J. J.                | Del., Miss., Tex., Utah.                                                                                                            |
| graesium chloride Te<br>ignesium compounds M<br>langanese ore M<br>langaniferous ore M<br>langaniferous residuum N<br>rl, greensand N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ev. ich., Calif., N.J., Fla ] ont. inn., N. Mex. J. J.                | Del., Miss., Tex., Utah.                                                                                                            |
| graesium chloride Te<br>ignesium compounds M<br>langanese ore M<br>langaniferous ore M<br>langaniferous residuum N<br>rl, greensand N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ev. ich., Calif., N.J., Fla ] ont. inn., N. Mex. J. J.                | Del., Miss., Tex., Utah.                                                                                                            |
| graesium chloride Te<br>ignesium compounds M<br>langanese ore M<br>langaniferous ore M<br>langaniferous residuum N<br>rl, greensand N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ev. ich., Calif., N.J., Fla ] ont. inn., N. Mex. J. J.                | Del., Miss., Tex., Utah.  Dreg. Ariz., Conn., N. Mex. alif., Nev.                                                                   |
| ngnesium chloride Te<br>ggnesium compounds M<br>unganese ore M<br>unganiferous ore Mi<br>unganiferous residuum N.<br>rl, greensand N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ev. ich., Calif., N.J., Fla ] ont. inn., N. Mex. J. J.                | Del., Miss., Tex., Utah.  Dreg. Ariz., Conn., N. Mex. alif., Nev. Ala., Alaska, Ariz., Ark., Calif.,                                |
| graesium chloride Te<br>ignesium compounds M<br>langanese ore M<br>langaniferous ore M<br>langaniferous residuum N<br>rl, greensand N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ev. ich., Calif., N.J., Fla ] ont. inn., N. Mex. J. J.                | Del., Miss., Tex., Utah.  Dreg. Ariz., Conn., N. Mex. Alif., Nev. Ala., Alaska, Ariz., Ark., Calif., Colo., Fla., Ill., Ind., Kans. |
| graesium chloride Te<br>ignesium compounds M<br>langanese ore M<br>langaniferous ore M<br>langaniferous residuum N<br>rl, greensand N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ev.<br>ich., Calif., N.J., Fla ]<br>ont.<br>inn., N. Mex.<br>J.<br>J. | Del., Miss., Tex., Utah.  Dreg. Ariz., Conn., N. Mex. Alif., Nev. Ala., Alaska, Ariz., Ark., Calif., Colo., Fla., Ill., Ind., Kans. |
| graesium chloride Te<br>ignesium compounds M<br>langanese ore M<br>langaniferous ore M<br>langaniferous residuum N<br>rl, greensand N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ev.<br>ich., Calif., N.J., Fla ]<br>ont.<br>inn., N. Mex.<br>J.<br>J. | Del., Miss., Tex., Utah.  Dreg. Ariz., Conn., N. Mex. alif., Nev. Ala., Alaska, Ariz., Ark., Calif.,                                |

Table 3.—Minerals produced in the United States and principal producing States in 1973—Continued

| Mineral                                                                | Principal producing States,<br>in order of quantity                                       | Other producing States                                                                                                                                                                          |
|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Natural gas liquids                                                    | Tex., La., Okla., N. Mex                                                                  | Ala., Alaska, Ark., Calif., Colo.,<br>Fla., Ill., Kans., Ky., Mich.,<br>Miss., Mont., Nebr., N. Dak.,<br>Pa., Utah, W. Va., Wyo.                                                                |
| Nickel                                                                 | Oreg.                                                                                     | , ,                                                                                                                                                                                             |
| Olivine                                                                | Wash., N.C.<br>Mich., Ill., Ind., N.J.                                                    | Calif., Colo., Fla., Ga., Iowa,                                                                                                                                                                 |
| reat                                                                   | Mich., 111., 114., 11.0                                                                   | Maine, Md., Mass., Minn.,<br>Mont., N. Mex., N.Y., Ohio,<br>Pa., S.C., Vt., Wash., Wis.                                                                                                         |
| Petroleum, crude                                                       | N. Mex., Ariz., Calif., Nev<br>Tex., La., Calif., Okla                                    | Colo., Idaho, Tex. Ala., Alaska, Ariz., Ark., Colo., Fla., Ill., Ind., Kans., Ky., Mich., Miss., Mo., Mont., Nebr., Nev., N. Mex., N.Y., N. Dak., Ohio, Pa., S. Dak., Tenn., Utah, W. Va., Wyo. |
| Phosphate rock                                                         | Fla., Idaho, Tenn., N.C                                                                   | Mo., Mont., Utah, Wyo.                                                                                                                                                                          |
| Platinum-group metals<br>Potassium salts                               | Alaska.<br>N Mey IItah Calif                                                              |                                                                                                                                                                                                 |
| Pumice                                                                 | Oreg., Ariz., Calif., Hawaii                                                              | Colo., Idaho, Kans., Nev., N.<br>Mex., Okla., Utah, Wash.,<br>Wyo.                                                                                                                              |
| Pyrites ore and concentrate                                            |                                                                                           |                                                                                                                                                                                                 |
| Rare-earth metal concentrate<br>Salt                                   | La., Tex., N.Y., Mich                                                                     | Ala., Calif., Colo., Hawaii,<br>Kans., Nev., N. Mex., N.<br>Dak., Ohio, Okla., Utah, Va.,<br>W. Va.                                                                                             |
| Sand and gravel<br>Silver (mine)                                       | Calif., Mich., Ohio, IllIdaho, Ariz., Mont., Colo                                         | All other States.                                                                                                                                                                               |
| Sodium carbonate (natural)<br>Sodium sulfate (natural)                 |                                                                                           |                                                                                                                                                                                                 |
| StauroliteStone                                                        | Pa., Ill., Fla., Tex                                                                      | All other States except Del.                                                                                                                                                                    |
| Sulfur (Frasch)<br>Talc, soapstone, pyrophyllite                       | Tex., La.<br>Vt., N.Y., Tex., Mont                                                        | Ala., Ark., Calif., Ga., Md.,<br>Nev., N.C., Oreg., Va., Wash.                                                                                                                                  |
| TinTitanium concentrate                                                | Colo., N. Mex<br>N.Y., Fla., N.J., Ga.                                                    |                                                                                                                                                                                                 |
| Tripoli Tungsten concentrate Uranium Vanadium Verniculite Wollastonite | Calif, Colo., Nev<br>Wyo., N. Mex., Tex., Utah<br>Ark., Idaho, Colo., Utah<br>Mont., S.C. | Ariz., Idaho, Mont., Utah, Wash.<br>Alaska, Colo., Wash.<br>N. Mex.                                                                                                                             |
| Zinc (mine)                                                            |                                                                                           | Ariz., Calif., Idaho, Ill., Ky.,<br>Maine, Mont., N.J., N. Mex.,<br>Pa., Utah. Va., Wash., Wis.                                                                                                 |
| Zircon concentrate                                                     | Fla., Ga.                                                                                 | La., Utali, va., viasili, Wisi                                                                                                                                                                  |

Table 4.—Value of mineral production in the United States and principal minerals produced in 1973

|                              |                      |          |                             | · •                                                                                       |
|------------------------------|----------------------|----------|-----------------------------|-------------------------------------------------------------------------------------------|
| State                        | Value<br>(thousands) | Rank     | Percent<br>of U.S.<br>total | Principal minerals, in order of value                                                     |
| Alabama                      | . \$413,056          | 21       | 1.12                        | Coal, cement, petroleum, stone.                                                           |
| Alaska                       | 328,789              | 25       | .89                         | Potroloum condendation, stone.                                                            |
| Arizona                      | . 1,304,988          | 8        | 3.55                        | Petroleum, sand and gravel, natural gas, stone.                                           |
| Arkansas                     | 273,705              | 29       | .75                         | Copper, molybdenum, sand and gravel, cement.                                              |
| California                   | 2.041.686            | 3        | 5.55                        | Petroleum, bromine, natural gas, cement.                                                  |
| Colorado                     | 532,776              | 19       | 1.45                        | Petroleum, cement, sand and gravel, natural gas                                           |
| Connecticut                  | 36,804               | 44       | .10                         | Petroleum, molybdenum, coal, sand and grave                                               |
| Delaware                     | 3,889                | 50       | .01                         |                                                                                           |
| Florida                      |                      | 17       | 1.63                        | Sand and gravel, magnesium compounds, clays.                                              |
| Georgia                      |                      | 26       | .83                         | Phosphate rock, petroleum, stone, cement.                                                 |
| Hawaii                       | 35,147               | 45       | .10                         | Clays, stone, cement, sand and gravel.                                                    |
| Idaho                        |                      | 33       | .37                         | Stone, cement, sand and gravel, pumice.                                                   |
| Illinois                     | 825,608              | 12       | 2.24                        | Silver, phosphate rock, lead, zinc.                                                       |
| Indiana                      | 351,405              | 24       | .96                         | Coal, petroleum, stone, sand and gravel.                                                  |
| Iowa                         |                      | 31       | .43                         | Coal, cement, stone, sand and gravel.                                                     |
| Kansas                       | 646,299              | 16       | 1.76                        | Cement, stone, sand and gravel, gypsum.                                                   |
|                              | 0.20,200             | 10       | 1.10                        | Petroleum, natural gas, natural gas liquids, ce ment.                                     |
| Kentucky                     | 1,164,762            | 9        | 3.17                        |                                                                                           |
| Louisiana                    | 5,819,610            | 2        | 15.82                       | Coal, stone, petroleum, natural gas.<br>Petroleum, natural gas, natural gas liquids, sul  |
| Maine                        | 33,493               | 46       |                             | iur.                                                                                      |
| Maryland                     | 131.907              | 34       | .09                         | Sand and gravel, cement, zinc, stone.                                                     |
| Massachusetts                | 59,682               | 43       | .36                         | Stone, cement, sand and gravel, coal                                                      |
| Michigan                     | 789,022              | 43<br>14 | .16                         | Stone, sand and gravel, lime, clays.                                                      |
| Minnesota                    | 852,785              | 11       | 2.14                        | Iron ore, cement conner gond and assess!                                                  |
| Minnesota<br>Mississippi     | 281,738              | 27       | 2.32                        | IfOn Ore, sand and gravel stone coment                                                    |
| Missouri                     | 512,634              | 20       | .77                         | retroleum, natural gas, sand and gravel demont                                            |
| Montana                      | 385,285              | 22       | 1.39                        | Leau, cement, stone iron oro                                                              |
| Nebraska                     |                      | 42       | $1.05 \\ .22$               | Copper, petroleum, coal, sand and gravel.                                                 |
| Nevada                       | 201,813              | 30       |                             | retroleum, cement, sand and gravel stone                                                  |
| New Hampshire                | 14,119               | 48       | .55                         | CODDER, 201d, sand and gravel distants                                                    |
| New Jersey                   | 114.016              | 37       | .04                         | Sand and gravel stone clave come stones                                                   |
|                              | 111,010              | 91       | .31                         | Stone, said and gravel, zinc, titanium concen                                             |
| New Mexico                   | 1,305,644            | 7        | 3.55                        | trate. Petroleum, natural gas, copper, natural ga                                         |
| Mann 371-                    |                      |          |                             | liquids.                                                                                  |
| New York                     | 375,866              | 23       | 1.02                        | Cement, stone, salt, sand and gravel.                                                     |
| North Carolina               | 146,930              | 32       | .40                         | Stone, sand and gravel, cement foldeness                                                  |
| North Dakota                 | 111,853              | 38       | .30                         | retroleum, coal, sand and gravel natural gas                                              |
| Ohio                         | 806,979              | 13       | 2.19                        | Coal, Stone, cement, lime                                                                 |
| Oklahoma                     | 1,323,626            | 6        | 3.60                        | Petroleum, natural gas, natural gas liquide etomo                                         |
| Oregon                       | 81,466               | 40       | ,22                         | Salid alid gravel, Stone, cement nickel                                                   |
| Pennsylvania<br>Rhode Island | 1,401,900            | 5        | 3.81                        | Coal, cement, stone, sand and gravel                                                      |
| Routh Courtie                | 4,340                | 49       | .01                         | Sand and gravel, stone, gem stones                                                        |
| South Carolina               |                      | 39       | .24                         | Cement, Stone, clave, sand and gravel                                                     |
| South Dakota                 |                      | 41       | .22                         | Gold. Sand and gravel gement stone                                                        |
| Cennessee                    |                      | 28       | .75                         | Stone, coal, cement, zinc.                                                                |
| Texas                        | 8,442,494            | 1        | 22.95                       | Petroleum, natural gas, natural gas liquids cement.                                       |
| Jtah                         | 674,210              | 15       | 1.83                        | Copper, petroleum, coal, gold.                                                            |
| Vermont                      | 29,366               | 47       | .08                         | Stone, asbestos, sand and gravel, talc.                                                   |
| irginia                      | 540,595              | 18       | 1.47                        | Coal stone sand and gravel, talc.                                                         |
| Washington                   | 114,329              | 36       | .31                         | Coal, stone, sand and gravel, cement.                                                     |
| Vest Virginia                | 1,503,045            | 4        | 4.09                        | Sand and gravel, cement, coal, stone.                                                     |
| Wisconsin                    | 114,339              | 35       | .31                         | Coal, natural gas, stone, cement.                                                         |
| Wyoming                      | 928,105              | 10       | 2.52                        | Sand and gravel, stone, iron ore, cement.<br>Petroleum, sodium compounds, uranium, natura |
| Total                        | 36,788,000           |          | 100.00                      | gas.                                                                                      |
| -                            |                      |          |                             |                                                                                           |

Table 5.-Value of mineral production per capita and per square mile in 1973, by State

|                |                 | 1970             |                  | Value of mi    | neral produ | ction       |      |
|----------------|-----------------|------------------|------------------|----------------|-------------|-------------|------|
| State          | Area<br>(square | population       | Total            | Per squa       | are mile    | Per ca      | pita |
| 2              | miles)          | (thou-<br>sands) | (thou-<br>sands) | Dollars        | Rank        | Dollars     | Rank |
| Alabama        | 51,609          | 3,444            | \$413,056        | \$8,004        | 20          | \$120       | 21   |
| Alaska         | 586,412         | 300              | 328,789          | 561            | 50          | 1,096       | 4    |
| Arizona        | 113,909         | 1,771            | 1,304,988        | 11,456         | 14          | 737         | 7    |
| Arkansas       | 53,104          | 1,923            | 273,705          | 5,154          | 31          | 142         | 18   |
| California     | 158,693         | 19,953           | 2,041,686        | 12,866         | 12          | 102         | 28   |
| Colorado       | 104,247         | 2,207            | 532,776          | 5,111          | 32          | 241         | 14   |
| Connecticut    | 5,009           | 3,032            | 36,804           | 7,348          | 25          | 12          | 4    |
| Delaware       | 2,057           | 548              | 3,889            | 1,891          | 40          | 7           | 49   |
| Florida        | 58,560          | 6,789            | 601,100          | 10,265         | 16          | 89          | 2′   |
| Georgia        | 58,876          | 4,590            | 305,479          | 5,189          | 30          | 67          | 32   |
| Hawaii         | 6,450           | 769              | 35,147           | 5,449          | 29          | 46          | 36   |
| Idaho          | 83,557          | 713              | 136,081          | 1,629          | 43          | 191         | 10   |
| Illinois       | 56,400          | 11,114           | 825,608          | <b>14,63</b> 8 | 8           | 74          | 29   |
| Indiana        | 36,291          | 5,194            | 351,405          | 9,681          | 18          | 68          | 31   |
| Iowa           | 56,290          | 2,824            | 158,800          | 2,821          | 36          | 56          | 34   |
| Kansas         | 82,264          | 2,247            | 646,299          | 7,856          | 22          | <b>2</b> 88 | 18   |
| Kentucky       | 40,395          | 3,219            | 1,164,762        | 28,834         | 5           | 362         | 12   |
| Louisiana      | 48,523          | 3,641            | 5,819,610        | 119,935        | 1           | 1,598       | 2    |
| Maine          | 33,215          | 992              | 33,493           | 1,008          | 48          | 34          | 39   |
| Maryland       | 10.577          | 3.922            | 131,907          | 12,471         | 13          | 34          | 40   |
| Massachusetts  | 8,257           | 5,689            | 59,682           | 7,228          | 26          | 1,0         | 4    |
| Michigan       | 58,216          | 8,875            | 789,022          | 13,553         | 10          | 89          | 20   |
| Minnesota      | 84,068          | 3.805            | 852,785          | 10,144         | 17          | 224         | 1.   |
| Mississppi     | 47,716          | 2.217            | 281,738          | 5,904          | 28          | 127         | 19   |
| Missouri       | 69,686          | 4,677            | 512,634          | 7,356          | 24          | 110         | 2    |
| Montana        | 147,138         | 694              | 385,285          | 2,619          | 38          | 555         | :    |
| Nebraska       | 77,227          | 1,483            | 80,821           | 1,047          | 47          | 54          | 3.   |
| Nevada         | 110,540         | 489              | 201.813          | 1.826          | 41          | 413         | 1    |
| New Hampshire  | 9.304           | 738              | 14,119           | 1,518          | 45          | 19          | 4    |
| New Jersey     | 7.836           | 7,168            | 114,016          | 14,550         | 9           | 16          | 4    |
| New Mexico     | 121,666         | 1,016            | 1,305,644        | 10,731         | 15          | 1,285       | :    |
| New York       | 49,576          | 18,237           | 375,866          | 7.582          | 23          | 21          | 4    |
| North Carolina | 52,586          | 5,082            | 146,930          | 2,794          | 37          | 29          | 4:   |
| North Dakota   | 70,665          | 618              | 111,853          | 1,583          | 44          | 181         | 1'   |
| Ohio           | 41.222          | 10,652           | 806,979          | 19,576         | 6           | 76          | 2    |
| Oklahoma       | 69,919          | 2,559            | 1,323,626        | 18,931         | 7           | 517         | 1    |
| Oregon         | 96,981          | 2,091            | 81,466           | 840            | 49          | 39          | 3    |
| Pennsylvania   | 45.333          | 11.794           | 1,401,900        | 30,924         | 4           | 119         | 2:   |
| Rhode Island   | 1,214           | 947              | 4,340            | 3,575          | 33          | 5           | 5    |
| South Carolina | 31,055          | 2.591            | 88,361           | 2,845          | 35          | 34          | 3    |
| South Dakota   | 77.047          | 666              | 81,139           | 1.053          | 46          | 122         | 2    |
| Tennessee      | 42,244          | 3,924            | 275,690          | 6,526          | 27          | 70          | 3    |
|                | 267.338         | 11.197           | 8,442,494        | 31,580         | 3           | 754         |      |
| TexasUtah      | 84,916          | 1,059            | 674,210          | 7,940          | 21          | 637         |      |
|                | 9,609           | 444              | 29,366           | 3,056          | 34          | 66          | 3    |
| Vermont        | 40.817          | 4.648            | 540.595          | 13.244         | 11          | 116         | ž    |
| Virginia       | 68.192          | 3,409            | 114,329          | 1,677          | 42          | 34          | 4    |
| Washington     |                 | 1,744            | 1,503,045        | 62,158         | 2           | 862         | -    |
| West Virginia  | 24,181          | 4.418            | 114,339          | 2,036          | 39          | 26          | 4    |
| Wisconsin      | 56,154          | 4,418<br>332     | 928,105          | 9,479          | 19          | 2,795       | -    |
| Wyoming        | 97,914          |                  |                  |                |             |             |      |
| Total          | 3,615,055       | 202,455          | 36,788,000       | 10,176         |             | 182         | -    |

Table 6.-Mineral production 1 in the United States, by State

|                                                                                                                                                              | 1                                      | 1970                                            |                                                | 1971                                                       |                                             | 1972                                             | 21                                             | 1973                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------|------------------------------------------------|------------------------------------------------------------|---------------------------------------------|--------------------------------------------------|------------------------------------------------|---------------------------------------------------|
| Mineral                                                                                                                                                      | Quan-<br>tity                          | Value<br>(thousands)                            | Quan-                                          | Value<br>(thousands)                                       | Quan-                                       | Value<br>(thousands)                             | Quan-                                          | Value<br>(thousands)                              |
|                                                                                                                                                              |                                        | ALABAMA                                         |                                                |                                                            |                                             |                                                  |                                                |                                                   |
| Cement: 2 Masonry                                                                                                                                            | 3,018<br>2,748<br>20,560<br>W          | \$7,601<br>51,114<br>8,213<br>166,308<br>10,286 | 349<br>2,284<br>32,915<br>17,944<br>415<br>761 | \$8,657<br>42,281<br>8,6,913<br>146,180<br>2,773<br>11,454 | 2,360<br>32,850<br>r 20,814<br>r 327<br>739 | \$11,221<br>48,577<br>37,512<br>200,430<br>1,912 | 425<br>2,396<br>3,2934<br>19,230<br>271<br>881 | \$13,074<br>55,820<br>38,788<br>211,695<br>14,080 |
| thou<br>cannot be dis                                                                                                                                        | 627<br>7,263<br>6,725<br>19,982        | 20,627<br>8,144<br>37,166                       | 355<br>7,832<br>6,674<br>17,773                | 54<br>23,496<br>7,513<br>84,413                            | 3,644<br>9,934<br>6,352<br>18,485           | 1,282<br>30,466<br>8,530<br>42,027               | 11,271<br>11,677<br>9,805<br>20,043            | 4,307<br>41,772<br>113,870<br>40,117              |
| symbol W                                                                                                                                                     | XX                                     | 13,699                                          | XX                                             | 7,758                                                      | XX                                          | 7,533                                            | XX                                             | 8,155                                             |
| Total                                                                                                                                                        | XX                                     | 323,245                                         | XX                                             | 291,492                                                    | XX                                          | 371,241                                          | XX                                             | 413,056                                           |
|                                                                                                                                                              |                                        | ALASKA                                          |                                                |                                                            |                                             |                                                  |                                                |                                                   |
| Antimony ore and concentrate short tons, antimony content.  Barite coal (bituminous) coal (bituminous) coal (bituminous) coal (bituminous) coal coar stones. | 63<br>134<br>549<br>NA<br>34,776       | 109<br>835<br>4,059<br>W<br>1,265               | 102<br>698<br>NA<br>13,012                     | 1,075<br>5,710<br>W<br>537                                 | <br>W<br>668<br>NA<br>NA<br>8.639           |                                                  | W<br>694<br>NA                                 | W W 87                                            |
| Lead (recoverable content of ores, etc.)short tons. Natural gas                                                                                              | 111,576<br>83,616<br>25,825            | 27,448<br>251,684<br>41,092                     | $121,6\overline{18} \\ 79,494 \\ 23,617$       | 17,878<br>257,562<br>32,806                                | 125,596<br>72,893<br>14,187                 | 18,463<br>235,444<br>15,214                      | 131,007<br>72,323<br>14,999                    | 19,483<br>261,877<br>19,913                       |
|                                                                                                                                                              | 6,470<br>W                             | 10,014<br>W                                     | 2,658<br>17                                    | 5,066<br>47                                                | (5)<br>652<br>W                             | (5) 3,012 W                                      | 5,967<br>5                                     | 2<br>12,741<br>12                                 |
| turil gas liquids (1971-78), platinum-group metals, uranium (1971-73), and values indicated by symbol W.  Total                                              | XX                                     | 1,761                                           | XX                                             | 2,141                                                      | XX                                          | 18,442                                           | XX                                             | 14,007                                            |
|                                                                                                                                                              |                                        | ARIZONA                                         |                                                |                                                            |                                             |                                                  |                                                |                                                   |
| Colays Colays Cola (bituminous) Colay Colay Colay Colay Colay Colay Colay Stones Colay Stones Colay (conversable content of ores, etc.) _troy ounces_        | 199<br>132<br>917,918<br>NA<br>109,853 | 454<br>W<br>1,059,277<br>1,059,277<br>3,998     | 3 119<br>1,146<br>820,171<br>NA<br>94,038      | 3 84<br>W<br>852,978<br>160<br>3,879                       | 3 134<br>W<br>908,612<br>NA<br>102,996      | 3 355<br>W<br>930,419<br>168<br>6,036            | 3,247<br>927,271<br>NA<br>102,848              | 8 459<br>W<br>1,103,453<br>170<br>10,060          |

| 669<br>W<br>W<br>248<br>7,019<br>59,372<br>3,108<br>7,15<br>38,503                                                                                                                                                                                                                                                                                                                                             | 9,469<br>3,482<br>49,827          |                                                                                    | 23,884      | 2,742<br>28.985                |                                | 861<br>1,688<br>70,618<br>20,625<br>26,209                                                       | 90,825                                                                                                                                                                                                                                                                            |            | I !        | 10,886<br>152<br>113,648 | 201,032<br>6,853<br>220<br>220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------|-------------|--------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 158<br>W<br>W<br>W<br>T<br>T<br>T<br>T<br>T<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S                                                                                                                                                                                                                                                                                                        | 4,265<br>8,427<br>XX              | 4                                                                                  | W<br>1,686  | 434<br>NA<br>177               | 101,040                        | 204<br>449<br>18,016<br>12,465<br>16,223                                                         | XX                                                                                                                                                                                                                                                                                | 4          | :          | 105,663 $11$ $1,225$     | 9,395<br>2,723<br>369<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| W W W 6,024 46,024 46,791 722 32,420 32,420                                                                                                                                                                                                                                                                                                                                                                    | 3,589<br>3,589<br>r 41,416        | 1,091,004                                                                          | W<br>21,010 | 2,456                          | 28,8U8                         | 854<br>1,420<br>58,335<br>16,558<br>25,020                                                       | 81,020                                                                                                                                                                                                                                                                            | 241,179    |            | 8,673<br>34<br>95,882    | 182,308<br>7,387<br>612<br>215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| W W W W 1,763 356 27,216 r 442 993 915 915 24,842                                                                                                                                                                                                                                                                                                                                                              | 5,655<br>4,638<br>10,111<br>XX    | XX                                                                                 | W<br>1.634  | . 885<br>428<br>NA<br>150      | 166,522                        | 261<br>546<br>18,519<br>11,574<br>16,317                                                         | XX                                                                                                                                                                                                                                                                                | XX         |            | 90,967                   | 2,706<br>2,706<br>598<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| W W W 237 2474 39,872 3,918 625 24,391                                                                                                                                                                                                                                                                                                                                                                         | 9,538<br>5,848<br>2,499<br>32,364 | 981,020                                                                            | W<br>94 979 | 2,848<br>2,848<br>30<br>2,313  | 29,426                         | 1,686<br>2,650<br>56,805<br>15,603<br>28,776                                                     | 79,703                                                                                                                                                                                                                                                                            | 246,318    |            | 7,806<br>W               | 169,921<br>169,921<br>37,103<br>536<br>205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| W<br>W<br>16<br>859<br>22,684<br>1,286<br>1,286<br>1,286                                                                                                                                                                                                                                                                                                                                                       | 6,170<br>2,873<br>7,761<br>X      | XX                                                                                 | M.          | 2,181<br>2,936<br>276<br>NA    | 172,154                        | 517<br>1,035<br>18,263<br>11,630                                                                 | ×                                                                                                                                                                                                                                                                                 | XX         |            | 87,144<br>W              | 1,047<br>9,117<br>3,2,822<br>515<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 358<br>1,186<br>4,523<br>26,700<br>188<br>5,281<br>6,281<br>19,804                                                                                                                                                                                                                                                                                                                                             | 12,981<br>7,094<br>2,947          | 1,166,767                                                                          | 8,721       | 26,293<br>2,902<br>2,225<br>25 | 29,560                         | 1,824<br>2,482<br>51,760<br>16,036                                                               | 63 331                                                                                                                                                                                                                                                                            | 225,625    | CALIFORNIA | 10<br>6,332<br>W         | 86,827<br>173,126<br>6,506<br>2,663<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 98<br>62<br>W<br>285<br>309<br>15,672<br>1,101<br>1,101<br>1,784<br>824                                                                                                                                                                                                                                                                                                                                        | 7,330<br>3,511<br>9,618           | XX                                                                                 | 168         | 1,869<br>1,014<br>NA           | 186<br>181,351                 | 643<br>1,205<br>18,035                                                                           | 15,284                                                                                                                                                                                                                                                                            | X X        |            | 4<br>78,966<br>W         | 1,041<br>9,306<br>2,824<br>2,308<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Gypsum igh purity million cubic feet.— Iron ore (usable) — thousand long tons, gross weight.— Lead (recoverable content of ores, etc.) — short tons.— Molybdenum (content of concentrate) — thousand abort tons.— Molybdenum (content of concentrate) — thousand pounds.— Petroleum (crude) — thousand abort fors.— Petroleum (crude) — thousand abort fors.— Petroleum (crude) — thousand short tons.— Punice | Since and gravel                  | 72), feldspar, nuorspar (1997) pyrites, tungsten, and values indicated by symbol W |             | long tons, dried               | Gem stonesthousand short tons- | Natural gas inquids: Natural gas liquids: Thousand 42-gallon barrels. LP gases Letroleum (crude) | Sand and gravel do Sand and gravel do Stone Stone of items that cannot be disclosed: Abrasive stones, Value of items that cannot be disclosed: Abrasive stones, Value cement, clays (Raolin, 1971–73), gypsum, iron bromine, cement, clays (Raolin, 1971–71), soabstone, tripoli, | dicated by | LOGAL      |                          | Barteness Charles Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construction of the Construc |

See footnotes at end of table.

Table 6.-Mineral production 1 in the United States, by State-Continued

|                                                                                                                                                                                                                                                                                                  |                                |                           | `                              |                                       | Danmano                    |                          |                     |                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------|--------------------------------|---------------------------------------|----------------------------|--------------------------|---------------------|-----------------------|
| Mineral                                                                                                                                                                                                                                                                                          |                                | 1970                      |                                | 1971                                  |                            |                          |                     |                       |
|                                                                                                                                                                                                                                                                                                  | Quan-<br>tity                  | Value<br>(thousands)      | Quantity                       | Value<br>(thousands)                  | Quan-                      | Value                    | 1                   | 1973<br>Value         |
| erable content of one                                                                                                                                                                                                                                                                            | CAJ                            | CALIFORNIA—Continued      | tinued                         |                                       |                            | (spussnom)               | tity                | (thousands)           |
| ntent of                                                                                                                                                                                                                                                                                         | 4,999                          | \$182                     | 2,966                          | \$122                                 | 3,974                      | \$233                    | 3.647               | 9                     |
| om seawater and bitterns                                                                                                                                                                                                                                                                         | 1,172<br>572                   | 553<br>9,911              | 2,284                          | 0,834<br>10,846                       | 1,525<br>1,153<br>608      | 4,965<br>347<br>13.059   | 1,778               | 5,834                 |
|                                                                                                                                                                                                                                                                                                  | 73,726<br>18,593<br>649,117    | 7,489<br>7,582<br>208,367 | $152,918 \\ 13,489 \\ 612,629$ | 16,836<br>3,944<br>199,717            | 175,654<br>r 5,835         | 18,421<br>r 1,274        | 184,105 $1.219$     | 13,602<br>19,233      |
| ne and cycle products<br>thousand 42-gallon                                                                                                                                                                                                                                                      | 11,993                         | 38,478                    | 11.045                         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 917,104                    | 179,318                  | 449,369             | 167,615               |
| 13                                                                                                                                                                                                                                                                                               | 7,051 $10$ $372.191$           | 16,006<br>W               | 6,755                          | 30,545<br>16,482<br>W                 | 8,468<br>5,847<br>29       | 27,664<br>15,962         | 6,865               | 23,475 $19,824$       |
| Salt sand graye do graye                                                                                                                                                                                                                                                                         | 1.656                          | 345,365<br>832<br>15,059  | 358,484<br>699                 | 975,076<br>1,179                      | 347,022                    | 940,430<br>1 507         | 21<br>336,075       | 373<br>1,045,193      |
| t of ores, etc.)                                                                                                                                                                                                                                                                                 | 140,259                        | 174,221                   | 1,887 $115,468$                | 21,142<br>157,683                     | 1,621                      | 14,860<br>162,619        | 768<br>1,507        | 3,237                 |
| Tale, soapstone, pyrophyllite                                                                                                                                                                                                                                                                    | 46,399                         | 799<br>66,950             | 444                            | 989                                   | 175                        | 296                      | 56                  | 176,286               |
| of ores, etc.)                                                                                                                                                                                                                                                                                   | 184,660<br>3,514               | 2,545<br>1,077            | 153,227<br>3,003               | 2,084<br>967                          | 37,213<br>155,155<br>1 909 | 65,811<br>1,186          | 43,838<br>179,191   | 77,175<br>1,501       |
| cum-magnesium chloride, carbon dioxide, coment, carsonry 1971-73), coal (lignite, 1970-72), diatomite, feldspar, iron ore, lithium minerals moly-1, diatomite,                                                                                                                                   |                                |                           |                                |                                       | 1                          | ,7Z4                     | 20                  | <b>∞</b>              |
| lite, phosphate rock (1970), potassium salis, rare-earth metal concentrates, sodium carbonate and sulfate, ungsten concentrate, and values indicated to the concentrate and values indicated to the concentrate and values indicated to the concentrate and values indicated to the concentrate. |                                |                           |                                |                                       |                            |                          |                     |                       |
| Total                                                                                                                                                                                                                                                                                            | XX                             | 125,337                   | XX                             | 112.218                               | AA                         | 000                      | 1                   |                       |
|                                                                                                                                                                                                                                                                                                  | XX                             | 1,899,682                 | XX                             | 1,920,723                             | 1                          | r 1,851,376              | XX                  | 137,843               |
|                                                                                                                                                                                                                                                                                                  |                                | COLORADO                  |                                |                                       |                            |                          |                     | 7,041,000             |
| Coal (bituminous) thousand short tons.—dopper (recoverable content of ores, etc.) short tons.—Gen stones                                                                                                                                                                                         | 3 637<br>6,025<br>3,749<br>477 | 31,503<br>35,243<br>4,326 | 625<br>5,337<br>3,938          | 1,334<br>33,813<br>4,096              | 747<br>5,522<br>3,944      | 1,533<br>35,637<br>4.039 | 794<br>6,233<br>199 | 1,710                 |
| f ores,                                                                                                                                                                                                                                                                                          | NA<br>87,114<br>W              | 120<br>1,351              | NA<br>42,031                   | $\frac{4}{125}$                       | MA<br>NA<br>61.100         | W<br>131<br>550          | MAN S               | 6,716<br>W<br>131     |
| ores, etc.)short tonsshort tonsshort tons                                                                                                                                                                                                                                                        | 21,855<br>119                  | 6,827<br>1,613            | 25,746<br>193                  | 7,106<br>3,039                        | W<br>31,346<br>187         | 9,423                    | 28,112              | 6,203<br>568<br>9,159 |
|                                                                                                                                                                                                                                                                                                  | 105,804                        | 15,553                    | 8,300<br>108,537               | 16,932                                | 14,280<br>116,949          |                          | 178 $137,725$       | 3,371                 |

| 4,295<br>6,488<br>163<br>155,507<br>W<br>45,498                                                                                                                                                            | 10,083<br>14,003<br>12,480<br>24,106 | 164,806             |             | 320<br>W<br>16<br>W<br>12,788<br>21,305                                    | 2,375<br>36,804 |          | 9<br>W<br>3,678           | 3,889            | 8,706<br>72,666<br>13,718<br>4,026<br>11,613<br>150,070 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------|-------------|----------------------------------------------------------------------------|-----------------|----------|---------------------------|------------------|---------------------------------------------------------|
| 1,424<br>1,978<br>28<br>36,590<br>W<br>33,767                                                                                                                                                              | 3,942<br>6,357<br>1,920<br>58,339    | XX                  |             | 162<br>77,206<br>NA<br>3<br>7,806<br>9,682                                 | XX              |          | 15<br>NA<br>3,408<br>XX   | XX               | 256<br>2,726<br>1,139<br>187<br>33,857<br>32,695        |
| 3,349<br>3,673<br>210<br>109,171<br>W<br>34,631                                                                                                                                                            | 6,174<br>9,599<br>11,825<br>22,649   | 146,843             |             | 292<br>W<br>16<br>W<br>11,270<br>19,695                                    | 1,850           |          | 9<br>W<br>2,660           | 2,871            | 6,901<br>59,773<br>8,10,336<br>8,527<br>4,967<br>W      |
| 1,245<br>1,749<br>39<br>32,015<br>59<br>28,318                                                                                                                                                             | 3,664<br>4,507<br>1,877<br>63,801    | XX                  |             | 157<br>W<br>NA<br>2<br>2<br>6,763<br>8,719                                 | XX              |          | 15<br>NA<br>2,257<br>XX   | XX               | 213<br>2,425<br>3 922<br>180<br>15,521<br>16,897        |
| 2,462<br>3,190<br>156<br>92,855<br>W                                                                                                                                                                       | 5,241<br>7,988<br>15,725<br>19,700   | 392,721             |             | 322<br>W<br>15<br>W<br>10,262<br>15,649                                    | 1,713           |          | 2,231                     | 2,241            | 4.877<br>48.970<br>8.12,834<br>2,968<br>270<br>412<br>W |
| 929<br>1,653<br>28<br>27,391<br>62<br>27,000                                                                                                                                                               | 3,390<br>3,785<br>2,536<br>61,181    | XX                  |             | 174<br>W<br>NA<br>3<br>6,921<br>7,193                                      | XX              |          | 14<br>NA<br>2,205         | XX               | 180<br>2,177<br>3,993<br>159<br>903<br>67<br>5,347      |
| 1,937<br>2,529<br>210<br>78,619<br>268<br>24,190                                                                                                                                                           | 5,194<br>8,076<br>15,832<br>17,370   | 169,060<br>389,824  | CONNECTICUT | 386<br>W<br>8<br>W<br>W<br>9,202<br>16,915                                 | 1,872           | DELAWARE | 11 1,603                  | 1,615<br>FLORIDA | W<br>W<br>12,661<br>2,810<br>304<br>W                   |
| 745<br>1,542<br>34<br>24,723<br>50<br>22,261                                                                                                                                                               | 2,933<br>3,552<br>2,727<br>56,694    | XX                  |             | 171<br>W<br>NA<br>W<br>6,765<br>8,338                                      | XX              |          | 11<br>NA<br>1,565         | XX               | W<br>W<br>872<br>167<br>2,999                           |
| Natural gas liquids:  Natural gasoline and cycle products  LP gases  Peat Petroleum (crude) Petroleum (crude) Petroleum (crude) Petroleum (crude) Sand and gravel Silver (recoverable content of one etc.) | 1,00 a 0, ii                         | dicated by symbol W |             | Clays  Feldspar  Feldspar  Gem stones  Mica scrap  Sand and gravel  Volume |                 |          | Clays thousand short tons | Total            | Masonry                                                 |

See footnotes at end of table.

Table 6.-Mineral production 1 in the United States, by State-Continued

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | 1970                                   |                           | 1971                               |                                         | 1972                              | Ī                                | 1973                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------|---------------------------|------------------------------------|-----------------------------------------|-----------------------------------|----------------------------------|-----------------------------------|
| Mineral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Quan-<br>tity                         | Value<br>(thousands)                   | Quan-                     | Value<br>(thousands)               | Quan-<br>tity                           | Value<br>(thousands)              | Quan-<br>tity                    | Value<br>(thousands)              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E                                     | FLORIDA—Continued                      | pen                       |                                    |                                         |                                   |                                  |                                   |
| Sand and gravelthousand short tonsStone 4tiens that cannot be disclosed: (Glay (kaolin 1971–72), kyanite, magnesium compounds, natural gas liquids, phosphate rock, rate-cart metal concentrate (1972–73) stannolite stone (dimension) titanium con-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12,482<br>43,089                      | \$12,254<br>61,302                     | 23,228<br>42,816          | \$18,836<br>64,332                 | r 22,363<br>53,093                      | r \$17,009<br>81,621              | 20,167<br>61,735                 | \$21,415<br>103,595               |
| centrate, zircon concentrate, and values indicated by symbol W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | XX                                    | 210,711<br>300,042                     | XX                        | 190,242                            | XX                                      | r 242,136<br>r 426,632            | XX                               | 214,907                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | GEORGIA                                |                           | -                                  |                                         |                                   |                                  |                                   |
| Cement:  Masonry tons.  Portland do  Glays  Feldspar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5,684<br>W<br>W<br>W                  | W<br>W<br>110,149<br>W                 | 63<br>1,214<br>° 5,791    | 1,470<br>22,470<br>3 119,096<br>W  | 68<br>1,260<br>s 6,227                  | 1,569<br>27,286<br>3 132,322<br>W | 67<br>1,201<br>3 7,721<br>51,523 | 2,126<br>28,124<br>3 160,419<br>W |
| _ {         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 245<br>W<br>3,667<br>26,635<br>45,900 | 1,401<br>W W<br>4,437<br>59,200<br>289 | 3,697<br>30,669<br>53,000 | 78<br>13<br>5,310<br>69,897<br>334 | W<br>3,816<br>37,074<br>45,842          | W<br>4,729<br>82,484<br>338       | (5)<br>4,976<br>40,841<br>38,000 | 6,781<br>97,506<br>114            |
| metal concentrate, titanium concentrate, zircon concentrate, and values indicated by symbol W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | XX                                    | 27,683                                 | XX                        | 10,895                             | XX                                      | r 9,589<br>r 258,317              | XX                               | 10,405                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | нажап                                  |                           |                                    |                                         |                                   |                                  |                                   |
| Cement:   Masonry   Line   Cement tons   Clays   Cla | 396<br>2<br>2<br><b>W</b>             | 366<br>9,968<br>11<br>W                | 11<br>375<br>W<br>NA<br>8 | 431<br>10,196<br>W<br>54<br>228    | 13<br>402<br>W<br><b>W</b><br><b>NA</b> | 384<br>10,732<br>W<br>57<br>266   | 16<br>453<br>W<br>NA<br>NA       | 537<br>13,213<br>W<br>W<br>238    |
| ite, volcanic ash                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 350<br>514<br>4 6,332                 | 933<br>1,679<br>4 15,538               | 289<br>836<br>4 6,056     | 1,967<br>4 14,357                  | 379<br>609<br>4 5,005                   | 1,893<br>4 13,494                 | 354<br>753<br>7,180              | 611<br>2,012<br>18,466            |
| mension, 1970–72), and values indicated by symbol W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | XX                                    | 28,965                                 | XX                        | 28,107                             | X                                       | 28,074                            | XX                               | 35,147                            |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | IDAH0                        |                                |                                     |                                 |                                               |                                            |                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------|--------------------------------|-------------------------------------|---------------------------------|-----------------------------------------------|--------------------------------------------|-----------------------------------------------|
| Antimony ore and concentrate short tons, antimony content-short tons.—thousand short tons.—Clays                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 993<br>* 13<br>3,612           | W<br>328<br>4,168            | 857<br>W<br>8,776<br>NA        | 817<br>W<br>3,927<br>100            | 345<br>57<br>2,942<br>NA        | 303<br>415<br>3,013<br>105                    | 322<br>42<br>3,625<br>NA<br>2,696          | 406<br>227<br>4,314<br>110<br>264             |
| Copper (recoverable content of ores, ev., content of ores, ev., content of ores, etc.)troy ounces-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3,128                          | 114                          | 3,596                          | 148                                 | 2,884                           | 18,459                                        | 2,70<br>W<br>61,744                        | W<br>20,116                                   |
| 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 61,211<br>1,038                | 19,121<br>423<br>W           | 66,610<br>1,057<br>W           | 18,384<br>309<br>W                  | 161                             | 35<br>W                                       | 18                                         | 110                                           |
| [7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 53<br>12.953                   | 94<br>10,022                 | W<br>11,279                    | W<br>11,437                         | 7,696                           | 10,294                                        | 8,393                                      | 10,246                                        |
| Sand and gravel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19,115                         | 33,849<br>4 6,368            | 19,140<br>4,149                | 29,590<br>6,118<br>66               | 14,251<br>3,094<br>W            | 24,012<br>7,042<br>W                          | 2,972<br>2,972<br>W                        | 8,096<br>W<br>19,052                          |
| Stone Tungsten concentratethousand pounds contained W<br>Tungsten concentratethousand pounds contained W<br>Zinc (recoverable content of ores, etc.)short tons-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W<br>41,052                    | 72,578                       | 45,078                         | 14,515                              | 38,647                          | 13,720                                        |                                            | •                                             |
| Value of items that cannot be a fine perlift, fluorspar (1971), (fire clay and kaolin, 1970-71), fluorspar (1971), abrasive garnet, fron ore, lime, perlifte, phosphate rock, abrasive garnet, floor, variatium, and values indi-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>*</b>                       | 32,904                       | X                              | 26,869                              | XX                              | 28,639                                        | XX                                         | 38,300                                        |
| mension, 1910),<br>ymbol W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | XX                             | 119,759                      | XX                             | 112,280                             | XX                              | 100,200                                       |                                            |                                               |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                | ILLINOIS                     |                                |                                     |                                 |                                               |                                            |                                               |
| Cement: Masonrythousand short tons Portlanddo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,494                          | 1,874<br>25,252<br>3 3,862   | 73<br>1,425<br>1,788<br>58,402 | 2,336<br>25,975<br>4,294<br>318,878 | 80<br>1,571<br>31,716<br>65,523 | 2,483<br>33,124<br>33,314<br>402,481<br>9,961 | 88<br>1,572<br>31,758<br>61,572<br>160,305 | 2,901<br>36,064<br>3,618<br>413,809<br>11,871 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 148,208<br>NA                  | 8,637<br>W                   | 138,051<br>NA<br>1 238         | 9,883<br>3,23                       | 1,335                           | 401                                           | NA<br>541<br>1.638                         | 2<br>176<br>573                               |
| yverable content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,532<br>4,850<br>63<br>43.747 | 479<br>761<br>711<br>141,994 | 498<br>72<br>39,084            | 139<br>W<br>135,621                 | 1,194 $74$ $34,874$ $39,929$    | 935<br>121,013<br>61,696                      | 30,669<br>43,649                           | 1,037<br>132,490<br>62,029                    |
| thousand 42.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 43,926<br>55,776               | 60,155 $86,502$ $5.146$      | 45,354<br>4 61,991<br>12,706   | 4 106,084<br>4,091                  | 4 56,260<br>11,378              | 4 94,225<br>4,039                             | 5,250                                      | 2,169                                         |
| Zione (recoverable content of ores, etc.) —short tons—Zinc (recoverable content of disclosed: Clay (fuller's Value of items that cannot be disclosed: Clay (fuller's value, 1970, 1972-73), lime, natural gas liquids, silver earth, 1970, 1972-73), lime, natural gas liquids, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21,01                          | 29 610                       | XX                             | r 33,828                            | XX                              | 35,729                                        | XX                                         | 45,306                                        |
| (1971-73), stone (dimension, 1971-73), values indicated by symbol W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | XX                             | 688,697                      | XX                             | 700,870                             | XX                              | 769,737                                       |                                            |                                               |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                | INDIANA                      |                                |                                     | ŀ                               | B                                             | A                                          | A                                             |
| Cementthousand short tons.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 2,151<br>1,335               | 2 41,810<br>2,139            | W<br>3 1,324                   | 3 2,308                             | 3 1,419                         | 2,465                                         | 1,436                                      | 2,568                                         |
| of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of th |                                |                              |                                |                                     |                                 |                                               |                                            |                                               |
| See footnotes at end or table.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |                              |                                |                                     |                                 |                                               |                                            |                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                              |                                |                                     |                                 |                                               |                                            |                                               |

Table 6.-Mineral production 1 in the United States, by State-Continued

|                                                           |                  |                   | •            |                      | Danmar           |                   |                   |                         |
|-----------------------------------------------------------|------------------|-------------------|--------------|----------------------|------------------|-------------------|-------------------|-------------------------|
| Mineral                                                   |                  | 1970              |              | 1071                 |                  |                   |                   |                         |
|                                                           | Quan-            | Value             | Onsu-        |                      |                  | 1972              |                   | 1973                    |
|                                                           | tity             | (thousands)       | tity         | value<br>(thousands) | Quan-<br>tity    | Value             | Quan-             | Value                   |
|                                                           | ä                | INDIANA—Continued | nued         |                      |                  | (SDII Den OTO)    | city              | (thousands)             |
| .as                                                       | 22,263           | \$102.371         | 91 906       | 4                    |                  |                   |                   |                         |
| Petroleum (crude)thousand short tons                      | 153<br>W         | 36<br>W           | 537          | \$110,796<br>89      | 25,949<br>355    | \$144,688         | 25,253            | \$153,136               |
| Stone Stone                                               | 7,487            | 23,958            | 6.658        |                      | 45               | 478               | 5.2               | 38                      |
| items that cannot be dis                                  | 25,818<br>25,818 | 25,796<br>45,215  | 24,982       | 29,094               | 6,130<br>27,978  | 20,964 $33,290$   | 5,312             | 20,823                  |
| and values indicated by symbol W                          | i                |                   |              |                      | 27,511           | 50,919            | 4 32,288          | 95,015<br>4 57,652      |
| Total                                                     | XX               | 14,461            | XX           | 68,246               | XX               | 60 740            | 1                 |                         |
|                                                           | 44               | 255,786           | XX           | 281,521              | XX               | 322.608           | XX                | 81,698                  |
| Cement:                                                   |                  | IOWA              |              |                      |                  |                   | 44                | 351,405                 |
| Masonrythousand short tons                                | 40               |                   |              |                      |                  |                   |                   |                         |
|                                                           | 2,396            |                   | 99           | 1,719                | 99               | 1.916             | 0                 |                         |
| Gem stones                                                | 1,181 $987$      | 1,823             | 3 1,028      | $^{47,925}_{31,702}$ | 2,458            | 49,635            | 2,688             | 2,351<br>59,574         |
| thousand                                                  | <b>A</b>         |                   | 986<br>M     | 4,609                | 851              | 2,643<br>4,138    | 967               | 2,028                   |
| Stone Stone                                               | 1,136            |                   | 1,154        | 4.460                | NA<br>1 980      | -                 | NA                | 8,279<br>W              |
| annot be disc                                             | 25,305           |                   | 18,279       | 20,530               | 17,107           | 5.714 $20.140$    | 1,470             | 6,324                   |
| dicated by symbol W and values in-                        |                  |                   |              | 116,44               | 27,457           | 48,642            | 31,541            | 25,541<br>56,918        |
| Total                                                     | XX               | 1,766             | XX           | 1.899                | AA               |                   |                   |                         |
|                                                           | ΨΨ               | 120,822           | XX           | 127,821              | AX               | 1,007             | XX                | 2,785                   |
| Comont .                                                  |                  | KANSAS            |              |                      |                  | 104,496           | XX                | 158,800                 |
| thousand short                                            | 46               | 1 090             | 1            |                      |                  |                   |                   |                         |
|                                                           | 1,729            | 28,177            | 1.731        | 1,232                | 29               | 1,452             | 73                | 0                       |
| Helium:                                                   | 1,627            | $^{3}_{946}$      | 879          | 1,151                | 1,889            | 35,432 $1.457$    | 2,026             | 42,172                  |
| million cubic                                             | 2,250            | 30,600            | ייין היי     | 6,679                | 1,227            | 7,835             | 1,086             | 1,490<br>7,979          |
| Lead (recoverable content of ores, etc.) —short tons. Not | 354<br>80        | 8,137<br>25       | 2,510<br>342 | 30,120 $7,182$       | r 2,278<br>384   | r 27,336<br>8,064 | 1,539             | 18,468                  |
| million cubic                                             | 899 955          | M o               | œ            | -M                   | ļ                |                   | <b>;</b> ;        | 8,736                   |
| thousand 42-gallo                                         | 6.549            | 140,994           | 885,144      | 127,267              | 889,268          | 172<br>127,859    | $^{10}_{893,118}$ | 138.521                 |
| 1 (crude)                                                 | 20,814           | 30.597            | 5,387        | 12,253               | 5,505            |                   | 200               |                         |
|                                                           | 84,853 $1,230$   | 277,469           | 78,532       | 39,001<br>276,433    | 25,099<br>73.744 | 43,170            | 24,463            | 17,685<br><b>53,819</b> |
|                                                           |                  | 10,200            | 1,240        | 18,712               | 1,369            |                   | 66,227 $1,397$    | 281,465<br>23,460       |

| 12,663<br>4 33,601        | 3,973                                           |          | 1,961<br>986,654<br>21,839<br>34,515<br>14,627<br>70,912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 34,141                                                                                                                                                                                     |           | 1,329 $16,801$ $1,846,303$   | 167,037<br>253,671<br>3,327,702<br>66,211<br>21,165<br>21,309                                   | 98,082           |       | 1,317<br>W<br>W<br>W<br>66<br>177<br>10,804<br>W<br>8,329<br>8,115                                                                                                                                                                                                       |
|---------------------------|-------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------|-------------------------------------------------------------------------------------------------|------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13,261<br>4 18,334<br>    | XX                                              |          | 1,083<br>127,645<br>62,396<br>8,687<br>10,331<br>38,205<br>273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | XX                                                                                                                                                                                         |           | 979<br>897<br>8,242,423      | 47,906<br>102,701<br>831,524<br>13,152<br>13,748<br>10,802<br>3,829                             | XX               |       | 11,107<br>NA<br>NA<br>204<br>204<br>13,588<br>13,588<br>1,212<br>1,212                                                                                                                                                                                                   |
| 10,920                    | 3,741<br>r 584,597                              |          | 1,406<br>824,691<br>15,976<br>32,599<br>11,967<br>59,690<br>632                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29.949<br>976,910                                                                                                                                                                          |           | 1,454<br>19,614<br>1,626,426 | 167,768<br>185,660<br>3,201,659<br>67,464<br>26,996<br>14,836                                   | 99,666           |       | 27<br>1,249<br>26<br>26<br>1,535<br>7,535<br>2,996<br>2,966                                                                                                                                                                                                              |
| 11,591<br>4 14,547        | XX                                              |          | 920<br>121,188<br>63,648<br>9,702<br>8,485<br>34,279<br>1,780                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | XX                                                                                                                                                                                         |           | 1,000 $908$ $7,972,678$      | 52,842<br>98,233<br>891,827<br>13,514<br>18,920<br>9,190<br>3,765                               | XX               |       | 40<br>1,220<br>NA<br>NA<br>2<br>11,818<br>1,1618<br>1,078<br>5,820                                                                                                                                                                                                       |
| 11,351<br>23,697          | 4,505                                           |          | 1,377<br>774,735<br>18,253<br>35,925<br>11,061<br>52,296<br>1,696                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30,542<br>925,885                                                                                                                                                                          |           | 1,606<br>17,625<br>1,632,545 | 173,425<br>166,099<br>3,359,710<br>24,492<br>14,139                                             | 94,739           |       | 3 5 6<br>2,610<br>40<br>40<br>WW<br>5,881<br>2,918<br>1,884                                                                                                                                                                                                              |
| 11,862<br>4 14,908<br>    | XX                                              |          | 956<br>119,389<br>72,723<br>10,692<br>8,202<br>32,514<br>5,268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | XX                                                                                                                                                                                         |           | 1,078<br>940<br>8,081,907    | 54,424<br>990,271<br>985,243<br>13,282<br>19,288<br>9,688<br>3,646                              | XX               |       | 2,510<br>NA<br>NA<br>-2<br>-2<br>8,292<br>8,292<br>1,133<br>5,850                                                                                                                                                                                                        |
| 12,351<br>22,406<br>364   | 3,969                                           | KENTUCKY | 1,793<br>711,163<br>19,161<br>36,461<br>10,474<br>45,208<br>1,283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21,922                                                                                                                                                                                     | LOUISIANA | 1,575<br>12,811<br>1,503,137 | 174,632<br>138,262<br>3,061,558<br>64,854<br>22,363<br>11,945<br>89,489                         | 21,695 5,102,321 | MAINE | 3,120<br>3,120<br>3,55<br>W<br>W<br>6,888<br>112<br>112<br>2,792                                                                                                                                                                                                         |
| 12,968<br>15,161<br>1,186 | XX                                              |          | 1,020<br>125,305<br>77,892<br>11,575<br>8,760<br>29,310<br>4,189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | XX                                                                                                                                                                                         |           | 1,080<br>1,025<br>7,788,276  | 56,526<br>80,385<br>906,907<br>13,584<br>18,155<br>9,183                                        | XX               |       | 2,703<br>NA<br>NA<br>12,971<br>0,114                                                                                                                                                                                                                                     |
|                           | be disclosed:<br>ne), stone (din<br>by symbol W | Total    | Clays 3 thousand short tons  Clay (bituminous) the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the class of the cla | Linc (recoverance concernor be disclosed: Cement, clay Value of items that cannot be disclosed: Cement, clay (ball), fluorspar, lime (1971–73), natural gas liquids, and stone (quartzite) | Total     | thousand short tonsdodo      | d cycle products thousand 42-gallon barrels—do— thousand short tons—do— thousand short tons—do— | (\$ G;           | Total | Clays — thousand short tons—Copper Gen stones — short tons—Lead — thousand short tons—Peet — thousand short tons—Sand and gravel — thousand troy ounces—Skilver — thousand troy ounces—Skine — thousand short tons—Zine (recoverable content of ore, etc.) — short tons— |

See footnotes at end of table.

Table 6.-Mineral production 1 in the United States, by State-Continued

|                                                                                                              |                          |                   |                          |                            |                        | •                          |                       |                           |
|--------------------------------------------------------------------------------------------------------------|--------------------------|-------------------|--------------------------|----------------------------|------------------------|----------------------------|-----------------------|---------------------------|
| Mineral                                                                                                      |                          | 1970              |                          | 1971                       |                        | 1972                       | -                     | 1                         |
|                                                                                                              | Quan-<br>tity            | (thousands)       | Quantity                 | Value<br>(thousands)       | Quan-                  | Value (thousands)          | Quan-                 | Value                     |
|                                                                                                              | -                        | MAINE—Continued   | ned                      |                            |                        | (graman)                   |                       | (cnousands)               |
| Value of items that cannot be disclosed: Beryllium con-<br>centrate (1970), cement, clays (1970-71) folders. |                          |                   |                          |                            |                        |                            |                       |                           |
| ರ                                                                                                            | XX                       | \$10,778          | XX                       | \$8.450                    | ××                     | 0000                       | ļ                     | . :                       |
|                                                                                                              | XX                       | 23,780            | XX                       | 21,898                     | XX                     | 22,922                     | XX                    | \$10,111                  |
|                                                                                                              |                          | MARYLAND          |                          |                            |                        |                            |                       | 00,400                    |
| Coal (bituminous)tonsdo                                                                                      | 1,129                    | 1,433             | 1,027                    | 1,558                      | 1.104                  | 9 191                      | 200                   |                           |
| al gas                                                                                                       | NA<br>813                | 6,008<br>3        | 1,644<br>NA              | 10,274                     | 1,640<br>NA            | 8,961<br>8                 | 1,789<br>NA           | 13,644                    |
| Sand and graveltonsdo                                                                                        | 4 20 61                  | 47                | 414<br>3                 | 24.83<br>99.93             | 244                    | 51                         | 298                   | °69                       |
| of items that cannot be disclosed: Cement,                                                                   | 16,015                   | 20,434<br>32,783  | 12,842 $15,912$          | 23,201<br>34,770           | 12,594<br>19,431       | 26,557<br>41,973           | 12,845<br>18,585      | 29,625<br>46,732          |
| (1970), and tale and soapstoneT, total                                                                       | XX                       | 25,231            | XX                       | 99 597                     | À                      |                            |                       |                           |
|                                                                                                              | XX                       | 88,216            | XX                       | 00 490                     | VV                     | 35,801                     | XX                    | 39,827                    |
|                                                                                                              |                          |                   |                          | 00,400                     | 44                     | 115,501                    | XX                    | 131,907                   |
|                                                                                                              | 4                        | MASSACHUSETTS     | 70                       |                            |                        |                            |                       |                           |
| Gem stonesthousand short tons                                                                                | 284                      | 582               | 186                      | 200                        | 3                      |                            |                       |                           |
| and gravel thousand short                                                                                    | ¥¤                       | 85                | NA                       | 200                        | ZIS<br>NA              | 416<br>5                   | 217<br>NA             | 404                       |
| Stone                                                                                                        | 17,925                   | 22,244            | 17,343                   | 32<br>23.058               | 18 883                 | M <sup>2</sup>             | 107                   | 78                        |
| value of items that cannot be disclosed: Nonmetals and                                                       | 8,136                    | 24,349            | 7,816                    | 23,582                     | 7,990                  | 25,655<br>23,500           | 18,743<br>8,580       | 26,910                    |
| Total                                                                                                        | XX                       | 3,183             | XX                       | 3,145                      | XX                     | 2,852                      | X                     | 3 547                     |
|                                                                                                              |                          | 000,00            | 44                       | 50,199                     | XX                     | 52,428                     | XX                    | 59,682                    |
| Cement                                                                                                       |                          | MICHIGAN          |                          |                            |                        |                            |                       |                           |
| Masonry ————————————————————————————————————                                                                 | 213                      | 5,253             | 239                      | 5,872                      | 250                    | o<br>M                     | 1                     |                           |
| overable content of ores, etc.)s                                                                             | 2,480<br>2,480<br>67,543 | 2,887<br>77.945   | 6,108<br>2,458<br>56,005 | 104,665                    | 5,901<br>2,514         | 0,959<br>111,410<br>3,715  | 247<br>6,242<br>2.151 | 6,185<br>123,442<br>3,204 |
| Gypsum Tron ore (hearly)                                                                                     | NA<br>1.312              | W 0 2             | NA<br>NA                 | 98,245<br>8                | 67,260<br>NA           | 68,874                     | 72,221                | 85,943                    |
| Lime Magnesium compounds from seawater and brine force.                                                      | 13,100<br>1,538          | 168,958<br>21,355 | 11,833                   | 5,585<br>159,854<br>20,549 | 1,650 $12,692$ $1.509$ | 7,267<br>177,461<br>29,759 | 1,882<br>12,389       | 8,538<br>180,194          |
| Natural gasshort tons, MgO equivalent.                                                                       | 411,911                  | 38,050            | 272.918                  | 97 777                     | 110 110                |                            | 1,040                 | 26,055                    |
|                                                                                                              | 38,851                   | 10,873            | 25,662                   | 6,776                      | 34,221                 | 81,484 $10,506$            | 455,501<br>44.579     | 41,790                    |

| 1,189<br>2,529<br>2,172<br>59,413<br>53,732<br>73,972<br>2,175<br>60,494 | 40,392                                                                                                                                                                    | 3 233<br>14<br>782,197<br>W      | W<br>39,438<br>20,411                                                                                                                          | 10,492                                       | 9,082                | W<br>W<br>213,747<br>17,383               | 17,871<br>281,738                                                                                                                                                                           | 3,395    | 2,400<br>99,858           |
|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------|
| 372<br>691<br>14,614<br>4,818<br>62,407<br>850<br>45,886                 | XX                                                                                                                                                                        | 3 156<br>NA<br>62,614            | 37,935<br>7,581                                                                                                                                | XX                                           | 2,075<br>99,706      | W<br>W<br>56,102<br>14,251                | XX                                                                                                                                                                                          | 196      | 84<br>4,582               |
| 1,097<br>2,274<br>2,190<br>41,556<br>60,761<br>65,445<br>1,323<br>50,817 | 40,367                                                                                                                                                                    | 3 251<br>14<br>601,869           | W<br>33,454<br>16,318                                                                                                                          | 7,763                                        | 7,837<br>r 22,670    | W<br>W<br>192,465<br>16,133<br>1,199      | 14,970<br>r 255,274                                                                                                                                                                         | 3,637    | 1,859<br>80,898           |
| 395<br>833<br>219<br>12,990<br>4,358<br>59,467<br>785<br>39,754          | XX                                                                                                                                                                        | 3 167<br>NA<br>50,595            | 119,324<br>W<br>86,792<br>5,757                                                                                                                | XX                                           | 1,919                | W<br>W<br>61,100<br>13,419<br>1,135       | XX                                                                                                                                                                                          | 213      | 80<br>4,277               |
| 1,513<br>2,623<br>2,497<br>38,859<br>49,007<br>62,898<br>1,036           | 40,266                                                                                                                                                                    | 335<br>13<br>547,607             | W<br>W<br>37,645<br>14,346                                                                                                                     | 8,830                                        | 8,501                | W<br>W<br>201,808<br>13,526<br>709        | 12,790                                                                                                                                                                                      | 3 606    | 1,629                     |
| 553<br>975<br>202<br>11,898<br>4,458<br>56,613<br>670<br>40,705          | XX                                                                                                                                                                        | 223<br>NA<br>49,054              | 169,732<br>W<br>44,916<br>5,838                                                                                                                | XX                                           | 2,278                | W<br>W<br>64,066<br>11,289                | XX                                                                                                                                                                                          | 000      | 73<br>73<br>4,515         |
| 1,611<br>2,764<br>1,896<br>49,963<br>54,646<br>1,579                     | 41,622 670,729                                                                                                                                                            | MINNESOTA<br>335<br>W<br>571,488 | W<br>385<br>38,802<br>12,311                                                                                                                   | 9,735<br>633,006                             | MISSISSIPPI<br>8,062 | 1,465<br>194,706<br>11,950<br>W           | 9,636                                                                                                                                                                                       | MISSOURI | 3,555<br>1,234<br>64,261  |
| 599<br>1,176<br>167<br>11,693<br>4,899<br>53,092                         | XX XX                                                                                                                                                                     | 227<br>W<br>54,791               | 321,436<br>14<br>46,851<br>4,579                                                                                                               | XX                                           | 1,553                | 126,031<br>544<br>428<br>65,119<br>10,859 | XX                                                                                                                                                                                          |          | 230<br>56<br>3,990        |
| Natural gas liquids:                                                     | Stone that cannot be disclosed: Bromine, cal-<br>Value of items that cannot be disclosed: Bromine, cal-<br>cium-magnesium chloride, iodine, and potassium salts<br>(1970) | Clays tones tones tones weight.  | Iron ore (usable) thousant one and arabet for thousand short tons. Prest thousand short tons. Sand and gravel and gravel and gravel and gravel | be disclosed: Abrasive -73), lime, and value | 10041                | ycle products thousand 42-gall thousand   | Stone Value of items that cannot be disclosed: Cement, lime, Value of items that cannot be disclosed: Cement, lime, magnesium compounds, limestone (1973), and values indicated by symbol W |          | Baritethousand short tons |

See footnotes at end of table.

Table 6.-Mineral production 1 in the United States, by State-Continued

| 1970<br>(th                                   |
|-----------------------------------------------|
| 3 \$6,480                                     |
| 2,612 38,100 9,526 4,036 2,612 38,100 9,757   |
| 131,751                                       |
| 87 21<br>66 W                                 |
| 12,446                                        |
|                                               |
| 39,726 457,285 41,099<br>50,721 15,540 48,215 |
| XX 22.643                                     |
| XX 392,996                                    |
| MONTANA                                       |
|                                               |
|                                               |
|                                               |
| 22,456 817                                    |
| 14 W                                          |
| 208 WW                                        |
| 512 W                                         |
| 42,705 4,399<br>W                             |
| 37,879 105,403                                |
|                                               |
| 4,304 7,622<br>4 6,501 4 6,896                |
| 00 H                                          |
| 1,457 446                                     |
|                                               |
|                                               |
| XX 313,016                                    |
|                                               |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | NEBRASKA                                  |                                             |                                       |                                   |                           |                                   |                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|---------------------------------------------|---------------------------------------|-----------------------------------|---------------------------|-----------------------------------|-----------------------------------|
| 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 90<br>NA<br>27                            | 147<br>5<br>W                             | 09<br>NA<br>29                              | #¥10<br>#¥                            | 115<br>NA<br>34                   | 143<br>11<br>685<br>W     | 158<br>NA<br>31                   | 286<br>11<br>651                  |
| Liquefied petroleum gasesthousand 42-gallon barrels Natural gas (marketed)million cubic feet Petroleum (crude)thousand 42-gallon barrels Sand and gravelthousand short tons Stonethousand short tonsthousand short tons | 365<br>5,991<br>11,451<br>12,232<br>4,265 | 858<br>1,024<br>35,384<br>12,974<br>7,378 | 8,496<br>10,062<br>13,224<br>4,174          | %<br>612<br>34,010<br>13,626<br>7,892 | 3,478<br>8,705<br>13,720<br>4,251 | 29,423<br>15,063<br>7,645 | 3,836<br>7,240<br>15,906<br>5,368 | 698<br>28,035<br>18,366<br>10,958 |
| value of terms that cannot be discussed; centerly gasoline, pumper (1970-72), and values indicated by symbol W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | XX                                        | 14,887                                    | XX                                          | 17,847                                | XX                                | 20,086                    | XX                                | 21,816                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | NEVADA                                    |                                             |                                       |                                   |                           |                                   |                                   |
| Barite thousand short tons. Clays                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 192<br>W                                  | 1,455<br>W                                | 192<br>W                                    | 1,490<br>W                            | 317                               | 2,659                     | 549<br>36                         | 4,691                             |
| Copper (recoverable content of ores, etc.) _short tons<br>Gem stones                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 106,688<br>NA                             | 123,118                                   | 96,928<br>NA                                | 100,806                               | 101,119<br>NA                     | _                         | 93,702<br>NA                      | 142                               |
| Gold (recoverable content of ores, etc.)troy ounces<br>Gypsumhourself between the content tons<br>Iron ore [usable]thousand long tons, gross weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 480,144<br>451<br>575                     | 17,472<br>1,457<br>W                      | 374,878<br>695<br>W                         | 15,464<br>2,372<br>W                  | 419,748<br>860<br>W               | 24,597<br>2,871<br>W      | 260,437<br>1,154<br>119           | 25,473<br>3,662<br>W              |
| Lead (recoverable content of ores, etc.)short tons<br>Mercury(6.2) flasks<br>piis.p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 364<br>4,909<br>8,470                     | 2,001                                     | 111<br>1,589<br>9,600                       | 30<br>465<br>114                      | ( <sup>5</sup> )<br>810<br>W      | <u>@</u>                  | 969<br>M                          | 200<br>W                          |
| thousand 42-thouse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 149<br>80                                 | W<br>191                                  | 113                                         |                                       | 100<br>W                          | **                        | 96<br>M                           | <b>*</b>                          |
| Sand and gravel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8,574                                     | 9,819                                     | 9,379                                       | 12,225                                | 10,081                            | 12,636                    | 12,448                            | 14,614                            |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $^{718}_{1,860}$                          | 1,271<br>2,722                            | $\begin{array}{c} 601 \\ 2,531 \end{array}$ | 930<br>3,800                          | 595<br>3,329                      | $\frac{1,003}{5,926}$     | 624<br>3,595                      | 1,595<br>5,429                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | r 115<br>127                              | 306<br>39                                 | r 31                                        | 88<br>23<br>3                         | r 157                             | ≱ ¦                       | 150                               | 377                               |
| Value of items that cannot be disclosed: Antimony, brucite (1970-71), cement, diatomite, fluorspar, lime, lithium minerals, magnesite, molybdenum, pyrites (1970-77), and values indi-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           |                                           |                                             |                                       |                                   |                           |                                   |                                   |
| cated by symbol W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | XX                                        | 26,207                                    | XX                                          | 26,630                                | XX                                | 27,995                    | XX                                | 33,949                            |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | X N                                       | 186,345<br>NEW HAMPSHIRE                  | YY I                                        | 164,774                               | **                                | 181,702                   | *                                 | 201,016                           |
| Clays tones thousand short tons.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40<br>W                                   | 32<br>W                                   | 37<br>NA                                    | 34<br>40                              | 51<br>NA                          | 70                        | 43<br>NA                          | 64                                |
| and gravelthousand short                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6,529<br>W                                | 4,753<br>845                              | 8,404<br>429                                | 6,777<br>3,433                        | 6,020<br>528                      | 6,256<br>3,743            | 7,795<br>1,836                    | 8,597<br>5,416                    |
| Value of items that cannot be disclosed: Mica (scrap, 1970) and values indicated by symbol W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | XX                                        | 3,100                                     | ;                                           | i                                     | 1                                 | :                         | !                                 | !                                 |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | XX                                        | 8,730                                     | XX                                          | 10,284                                | XX                                | 10,111                    | XX                                | 14,119                            |

Table 6.-Mineral production 1 in the United States, by State-Continued

|                                                                                                                                         |                        | 1970                       |                          | 1971                       |                          | 1972                               | 151                      | 1973                       |
|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------|--------------------------|----------------------------|--------------------------|------------------------------------|--------------------------|----------------------------|
| Mineral                                                                                                                                 | Quantity               | Value<br>(thousands)       | Quan-<br>tity            | Value<br>(thousands)       | Quan-                    | Value<br>(thousands)               | Quan-<br>tity            | Value<br>(thousands)       |
|                                                                                                                                         |                        | NEW JERSEY                 |                          |                            |                          |                                    |                          |                            |
| Claysthousand short tons                                                                                                                | 262<br>NA              | \$990                      | 201<br>NA                | \$864                      | 212<br>NA                | \$856                              | 183<br>NA                | \$666                      |
| Sand and gravel                                                                                                                         | 16,732                 | 81,571<br>40 567           | 46<br>18,511             | 526<br>38,279              | W<br>17,679              | 38,020                             | 19,040                   | 514<br>43,098              |
| ores, etc.)short<br>be disclosed: Lime,                                                                                                 | 28,683                 | 8,788                      | 29,977                   | 9,653                      | 38,096<br>38,096         | 13,524                             | 15,902<br>38,027         | 45,585<br>13,647           |
| meaning compounds, mangamerous residum, greensand<br>marl, stone (dimension), titaning concentrate, and<br>values indicated by symbol W | XX                     | 6,798                      | X                        | 8,178                      | XX                       | 8,261                              | XX                       | 10,490                     |
| Total                                                                                                                                   | XX                     | 89,281                     | XX                       | 93,572                     | XX                       | r 102,721                          | XX                       | 114,016                    |
|                                                                                                                                         |                        | NEW MEXICO                 |                          |                            |                          |                                    |                          |                            |
| Coal (bituminous)                                                                                                                       | 67<br>7,361<br>166,278 | 21,249 191,885             | 3.76<br>8,175<br>157,419 | 3 114<br>26,657<br>163.716 | 3 65<br>8,248<br>168.034 | 3 108<br>29,794<br>172.067         | 3 88<br>9,069<br>204,742 | 31,862<br>31,862           |
| Gem stones Gold (recoverable content of ores, etc.)troy ounces_ Gypsumthousand short tons_                                              | 8,719<br>W             | 317<br>W                   | NA<br>10,681<br>W        | 65<br>441<br>W             | 14,897<br>W              | 873<br>873<br>W                    | 13,864                   | 1,356                      |
|                                                                                                                                         | 1                      | 18                         | ; <b> </b>               | :  }                       | ;                        | : ¦                                | 1<br>5<br>1              | 1                          |
| le)thousand long tons, gross we he content of ores, etc.)short                                                                          | (°)<br>W<br>8,550      | W<br>1,109                 | 2,971                    | 820<br>820<br>830          | 3,582                    | $\widetilde{\overline{W}}_{1,077}$ | 2,556                    | 1114                       |
| Manganese ore (35% or more Mn)                                                                                                          | 78<br>7                | ≥ i                        | 22<br>22<br>22           | <b>*</b>                   | 78                       | ×                                  | 44                       | 193                        |
| Manganiferous ore (5% to 35% Mn)doss weight Mica. scrapthousand short tone                                                              | 4,225<br>46,166<br>W   | ≱≱∌                        | 28,490                   | ¦M#                        | 27,837                   | <u> </u>                           | 32,084                   | i <sub>M</sub> S           |
| million cubic                                                                                                                           | 1,138,980              | 162,874                    | 1,167,577                | 175,137                    | 1,216,061                | 225,420                            | 1,218,749                | 287,889                    |
| Natural gasoline and cycle products thousand 42-gallon barrels                                                                          | 9,606                  | 25,548                     | 9,952                    | 28,465                     | 10,338                   | 29,970                             | 9,848                    | 32,449                     |
| thousand short                                                                                                                          | (b)                    | 7 7                        | 100,14                   | *6,691<br>W                | 21,809                   | 45,689                             | 29,652                   | 74,427                     |
| Petroleum (crude)                                                                                                                       | 128,184<br>2.390       | 4,321<br>410,320<br>85,877 | 385<br>118,412<br>2.291  | 4,559<br>402,602<br>86,689 | $\frac{476}{110,525}$    | 5,698<br>376,778<br>91 115         | 478<br>100,986           | 5,024<br>414,041<br>01,006 |
| thousand                                                                                                                                | 203<br>W               | 442<br>W                   | 287                      | 601                        | 311<br>W                 | 808<br>809                         | 339                      | 1,001                      |
| ent of ores, etc.)                                                                                                                      | 10,666                 | 10,516                     | 8,869                    | 7,975                      | 7,600                    | 8,553                              | 10,641                   | 15,753                     |
|                                                                                                                                         | 782<br>4 3,110         | 1,385<br>4 4,030           | 782<br>4 2,913           | 1,210<br>4 5,337           | 1,017 2,768              | 1,713<br>5,499                     | $\frac{1,111}{2,830}$    | 2,843 5,894                |

Gem stones See footnotes at end of table.

Table 6.-Mineral production 1 in the United States, by State-Continued

|           | 1973<br>Value        | (thousands)            |         | \$5,457            | W           | W<br>78.916                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6,021<br>W                                              |       | 7,129  | 111,000 |                      | 5,641          | 73,362<br>12,456 | 338,792         | 77,028           | 39,786<br>64   | 44,690<br>41,643 | 69,982                                  | , n   | 806,979  |                         | 1,871                    | 6,33K                          | 1,380              | $334,1\overline{10}$                | 49.070                                | 95,264 |
|-----------|----------------------|------------------------|---------|--------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------|--------|---------|----------------------|----------------|------------------|-----------------|------------------|----------------|------------------|-----------------------------------------|-------|----------|-------------------------|--------------------------|--------------------------------|--------------------|-------------------------------------|---------------------------------------|--------|
| ,         | Quan-                | 1                      |         | 27,703             | ≱i          | w<br>20,235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6,011<br>W                                              |       | XX     |         |                      | 176            | 4,732            | 45,783<br>NA    | 4,389            | 00,000         | 4,657            | 48,987                                  | ×     | XX       |                         | 1,298<br>2,183<br>1,499  | 181                            | 115                | $1,770,98\overline{0}$              | 14,674                                | 29,044 |
| 1979      | Value                | (entinencia)           |         | \$5,455            | M           | 67,647                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 76),'6<br>                                              | 3     | 98,086 |         |                      | 4,684          | 11,273           | 303,819<br>8    | 75,569<br>35.271 | 67             | 47,710           | 90,821                                  | 2,462 | 724,748  |                         | 1,398<br>19,112<br>3,888 | r 6,160                        |                    | 294,523                             | 42,709                                | 67,011 |
|           | Quan-                |                        | 0077 00 | 32,472             | ≱≱          | 20,624                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100,0                                                   | 4     | XX     |         |                      | 2,968          | 4,125            | NA<br>NA        | 4,413<br>89,995  | 9,358          | 6,147            | 48,498                                  | XX    | XX       |                         | 938<br>2,624<br>1,196    | r 176                          | 103                | 1,806,887                           | 14,559                                | 041,11 |
| 1971      | Value<br>(thousands) |                        | S. GR.  | 200,004            | ≱≱          | 70,805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M                                                       | 5.649 | 99,901 |         | 9 911                | 54,338         | 11,380 $269,601$ | 8 9 9           | 27,007           | 29,801         | 46,651<br>54,044 | 88,372                                  | 1,796 | 652,151  | 10.                     | 15,004<br>3,073          | 4,305                          |                    |                                     | 40,856                                |        |
| 1 1       | Quan-<br>tity        | ntinued                | 33.864  | į                  | <b>*</b> ≱} | 21,653<br>8,196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>B</b>                                                | XX    | XX     |         | 142                  | 2,897          | 5,973            | NA<br>4 007     | 79,903           | 8,286          | 40,797           | 46,891                                  | XX    | **       | 848                     | 2,234<br>1,022           | 123<br>270                     | 1.684 960          | 007,500,                            | 14,197 $27,540$                       |        |
| 1970      | Value<br>(thousands) | NORTH DAKOTA—Continued | \$5,722 | 1 376              | 2,944       | 6,336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 126                                                     | 1,426 | 96,047 | 0HI0    | 3,116                | 39,997         | 262,390          | 8<br>61,197     | 14,123<br>95     | 32,914         | 57,506           | 906,18                                  | 1,721 | OKLAHOMA | 1.120                   | 15,211<br>2,616          | 5,214<br>2,940                 |                    |                                     | 39,933<br>52,975                      |        |
|           | tity                 | NORTE                  | 34,889  | 504                | 1,840       | 8,090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 709                                                     | XX    | XX     |         | 121                  | 2,209<br>3,920 | 55,351<br>NA     | 3,951           | 52,113<br>6      | 9,864<br>5,329 | 42,069           | # #<br># #                              | XX    |          | 169                     | 2,427<br>874             | 149<br>245                     | 1,594,943          |                                     | 14,813<br>28,029                      |        |
| Mineral - |                      |                        | ;       | thousand 42-gallon | um (crude)  | Stone Stone Value of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of its of it | (1970-71), pumice (1972), salt, and values indicated by | Total |        | Gement: | asonrythousand short | sno)           |                  | sthousand short |                  | and gravel     |                  | or be disclosed: Abrasiv lension, 1973) | Total | 5        | tuminous)thousand short | High purity              | atent of ores, etc.)short tone | million cubic feet | Natural gasoline and cycle products | L.P gasesdurantu 42-ganon barrelsdodo |        |

| 723,273<br>W<br>36<br>14,941<br>34,999<br>               | 1,323,626                     | 291<br><b>W</b><br>700<br>W | 2,552<br>W<br>W<br>1,902<br>82,751                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21,843                                  | 21,424                                                                                                                                                       | 14,443<br>171,663<br>8 16,664<br>90,260<br>786,792<br>2,195<br>9 40,949<br>82,976<br>W<br>W<br>W<br>118,440<br>12,830<br>150,346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------|-------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 191,204<br>1<br>1<br>5<br>12,154<br>22,316<br>           | XX                            | 168<br>W W W<br>W A         | 106<br>W<br>W<br>18,272<br>1,006<br>22,802                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1<br>13,411                             | XX                                                                                                                                                           | 2,266<br>8,856<br>8,830<br>76,483<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845<br>1,845                         |
| 709,033<br>W<br>W<br>11,138<br>26,574<br>W<br>37,296     | r 1,210,798                   | 238<br>W<br>W<br>793<br>W   | 2,129<br><br>W<br>34,981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4<br>18,380                             | 19,991                                                                                                                                                       | 12,401<br>156,008<br>15,829<br>85,251<br>2,673<br>2,673<br>22,880<br>W<br>W<br>W<br>W<br>320<br>16,414<br>36,804                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 207,633<br>W<br>W<br>7,901<br>19,448<br>XX               | 1                             | 151<br>W<br>W<br>NA         | 16,864<br>W<br>24,489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 2\\10,915\end{array}$ | XX                                                                                                                                                           | 451<br>8,5214<br>2,682<br>7,106<br>75,939<br>2,611<br>NA<br>1,891<br>W<br>W<br>W<br>W<br>W<br>W<br>W<br>W<br>W<br>W<br>W<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805<br>1,805 |
| 725,611<br>W<br>W<br>8,259<br>27,125<br>( <sup>5</sup> ) | 1,189,516                     | 255<br>3<br>1<br>755        | 1,989<br>W<br>W<br>W<br>1,389<br>28,707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6<br>26,708                             | 18,212                                                                                                                                                       | 11,247<br>140,460<br>8,940<br>103,469<br>620,196<br>8,483<br>9,008<br>80,008<br>W<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 213,313<br>W<br>W<br>E,713<br>(5)                        | XX                            | 157<br>3<br>70<br>NA        | 17,036<br>17,036<br>943<br>20,230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4<br>13,794                             | XX                                                                                                                                                           | 559<br>1,850<br>1,850<br>1,850<br>1,850<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,750<br>1,75                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 712,419<br>7.78<br>7,258<br>23,701<br>812                | 24,935<br>1,138,272<br>OREGON | 3 180<br>W<br>W<br>750      | $\begin{array}{c} (5) \\ 1,777 \\ 112 \\ \mathbf{W} \\ 1,221 \\ 25,978 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20,948                                  | 17,095                                                                                                                                                       | 8,324<br>121,100<br>15,845<br>105,841<br>105,841<br>105,841<br>2,930<br>2,930<br>2,930<br>21,439<br>50<br>87<br>18,500<br>38,915<br>120,187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 223,574<br>                                              | XXX                           | 3 134<br>W<br>500<br>NA     | (5) $96$ $274$ $15,933$ $17$ $639$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13,439                                  | XX                                                                                                                                                           | 2,665<br>3,2,665<br>9,729<br>80,491<br>2,539<br>NA<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887<br>1,887                          |
| Petroleum (crude) ————————————————————————————————————   | 1 11                          | thousa                      | ble content of ores, etc.) troy of the content of ores, etc.) thousand short the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the | Sand and gravel                         | Value of items that cannot be disclosed: Bauxite (1970), cement, clay (fire, 1970), talc and soapstone, tungsten (1971-72), and values indicated by symbol W | Cement:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Table 6.-Mineral production 1 in the United States, by State-Continued

| Mineral . —                                                                                                                                                                                                                | - 1               | 1970                       |                     | 1971                 |                     | 1972                 | ī                                                       | 1973                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------|---------------------|----------------------|---------------------|----------------------|---------------------------------------------------------|----------------------|
|                                                                                                                                                                                                                            | tity              | (thousands)                | Quan-<br>tity       | Value<br>(thousands) | Quan-<br>tity       | Value<br>(thousands) | Quan-<br>tity                                           | Value<br>(thousands) |
|                                                                                                                                                                                                                            | PENN              | PENNSYLVANIA—Continued     | ntinued             |                      |                     |                      |                                                         |                      |
| Line (recoverable content of ores, etc.)short tons Value of items that cannot be disclosed: Clay (kaolin 1970-71, 1973), cobalt (1970-71), gold (1970-71), iron ore, pyrites (1970-71), pyrobhyllite (1970), silvae, flora | 29,554            | \$9,055                    | 27,438              | \$8,835              | 18,344              | \$6,512              | 18,857                                                  | \$7,792              |
| 71), tripoli, and values indicated by symbol W                                                                                                                                                                             | XX                | 24,053                     | XX                  | 28,899               | XX                  | 24.466               | ×                                                       | 96 140               |
|                                                                                                                                                                                                                            | XX                | 1,095,743                  | XX                  | 1,149,107            | XX                  | 1,231,485            | XX                                                      | 1,401,900            |
|                                                                                                                                                                                                                            |                   | RHODE ISLAND               |                     |                      |                     |                      |                                                         |                      |
|                                                                                                                                                                                                                            | 2,387<br>W        | 2,913<br>W                 | 2,252               | 3,052<br>422         | 2,079               | 3,336                | 2,429<br>W                                              | 3,095<br>W           |
| and values indicated by symbol WTotal                                                                                                                                                                                      | XX                | 1,473                      | XX                  | 825                  | XX                  | 932                  | XX                                                      | 1 245                |
|                                                                                                                                                                                                                            | XX                | 4,386                      | XX                  | 4,299                | XX                  | 4,291                | XX                                                      | 4,340                |
|                                                                                                                                                                                                                            | 02                | SOUTH CAROLINA             |                     |                      |                     |                      |                                                         |                      |
| Claysthousand short tons-                                                                                                                                                                                                  | 1,974             | 9,878                      | 3 2,049             | 3 10,201             | 2,221               | 11.268               | 3 2.250                                                 | 3 19 877             |
| Sand and care.                                                                                                                                                                                                             | ŀΜ                | !≱                         | !≱                  | ij                   | I                   |                      | NA                                                      | 20,21                |
| Stone Stone                                                                                                                                                                                                                | 5,864             | 7,766                      | 6,438               | 9,119                | 7,916               | W<br>12,121          | 14<br>8.179                                             | W<br>12.628          |
| Cemen                                                                                                                                                                                                                      | 0116              | - 14,104                   | 11,047              | 17,852               | 12,482              | 21,819               | 14,985                                                  | 24,280               |
| certain stone (1970), remained and values indicated by symbol W                                                                                                                                                            |                   |                            |                     |                      |                     |                      |                                                         |                      |
| Total                                                                                                                                                                                                                      | XX                | 23,987                     | XX                  | 29,716               | XX                  | 37,105               | XX                                                      | 38.571               |
|                                                                                                                                                                                                                            | VV.               | 56,365                     | XX                  | 66,888               | XX                  | 82,313               | XX                                                      | 88,361               |
|                                                                                                                                                                                                                            |                   | <b>ЗО</b> ТН <b>DAKOTA</b> |                     |                      |                     |                      |                                                         |                      |
| Felaspar Felaspar Gen stones                                                                                                                                                                                               | 165<br>19,276     | 946<br>114                 | 3 150<br>24,640     | 3 128<br>539         | 3 185<br>r 25,000   | 3 156<br>r 400       | 3 201<br>W                                              | 3 181<br>W           |
| Gold (recoverable content of ores, etc.)troy ounces<br>Gypsum                                                                                                                                                              | 578,716<br>15     | 21,059 $61$                | NA<br>513,427<br>21 | $^{40}_{21,179}$     | NA<br>407,430<br>24 | 23,875<br>43         | NA<br>375,575<br>W                                      | 42<br>34,974<br>W    |
|                                                                                                                                                                                                                            | °E) W             | 34<br>84                   | ¦≱≱                 | ¦≱≱                  | ia:                 | ¦≱:                  | :  89                                                   | $\frac{1}{1,206}$    |
| content of ore                                                                                                                                                                                                             | 16,556            | 374<br>16,656              | 233<br>16,727       | 604<br>18,392        | 219<br>12,748       |                      | $\begin{array}{c} 2\overline{75} \\ 13,963 \end{array}$ | 988<br>16,587        |
| Stonethousand troy ounces. Zinc (recoverable content of ores, etc.)short tons.                                                                                                                                             | 120<br>1,979<br>1 | 212<br>13,375              | $^{107}_{2,199}$    | 165<br>8,874         | $^{100}_{2,665}$    | 168<br>10,864        | 72<br>2.745                                             | 184                  |
|                                                                                                                                                                                                                            | ı                 |                            | ľ                   | !                    | 1                   | 1                    | ŀ                                                       |                      |

| Value of items that cannot be disclosed: Beryllium concentrate (1970-72), cement, clays (bentonite 1971-73), uranium (1970-72), vanadium (1970, 1972), and values |         |           |         |          |         |          |        |         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|---------|----------|---------|----------|--------|---------|
| indicated by symbol W                                                                                                                                             | XX      | 8,709     | XX      | 12,984   | XX      | 14,535   | XX     | 15,370  |
| Total                                                                                                                                                             | XX      | 61,576    | XX      | 62,988   | ХХ      | r 65,450 | XX     | 81,139  |
|                                                                                                                                                                   |         | TENNESSEE |         |          |         |          |        |         |
| Baritethousand short tons                                                                                                                                         | 19      | 286       | 21      | 342      | W       | W        | W      | M       |
| Cement:                                                                                                                                                           | 136     | 2.749     | 159     | 3.649    | 176     | 4.104    | 201    | 7,908   |
|                                                                                                                                                                   | 1,669   | 29,832    | 1,713   | 33,733   | 1,695   | 37,176   | 1,711  | 42,402  |
| Clays 3                                                                                                                                                           | 1,401   | 7,123     | 1,537   | 6,595    | 1,718   | 7,719    | 1,719  | 9,083   |
| Coal (bituminous)                                                                                                                                                 | 8,237   | 40,372    | 9,271   | 59,368   | 11,260  | 81,386   | 8,219  | 66,827  |
| Copper (recoverable content of ores, etc.)short tons                                                                                                              | 15,535  | 17,928    | 13,916  | 14,473   | 11,310  | 11,581   | 8,500  | 10,115  |
| Gold (recoverable content of ores, etc.)troy ounces                                                                                                               | 124     | ro        | 192     | <b>∞</b> | 176     | 10       | 89     | 2       |
| Natural gas feet                                                                                                                                                  | 64      | 13        | 68      | 20       | 25      | × 1      | 20     | 9       |
| Petroleum (crude)thousand 42-gallon barrels                                                                                                                       | 309     | ×         | 338     | ×        | 198     | <b>×</b> | 201    | ≱       |
| Phosphate rockthousand short tons                                                                                                                                 | 3,073   | 15,005    | 2,571   | 12,151   | 2,154   | 10,732   | 2,512  | 12,799  |
| Sand and gravel                                                                                                                                                   | 6,715   | 10,639    | 8,018   | 11,845   | 10,839  | 15,328   | 12,010 | 20,145  |
| Silver (recoverable content of ores, etc.)                                                                                                                        | 95      | 168       | 131     | 203      | 88      | 141      | 73     | 187     |
| Stone thousand short tons.                                                                                                                                        | 35,374  | 50,013    | 32,369  | 48,665   | 35,942  | 55,512   | 42,742 | 71,116  |
| Zinc (recoverable content of ores, etc.)short tons                                                                                                                | 118,260 | 36,233    | 119,295 | 38,413   | 101,722 | 36,111   | 64,172 | 26,516  |
| value of items that cannot be disclosed: Clay (fuller's earth), lime, pyrites, and values indicated by symbol W.                                                  | XX      | 10.099    | XX      | 10.197   | XX      | 10,006   | XX     | 8,579   |
| Total                                                                                                                                                             | XX      | 220,465   | XX      | 239,662  | XX      | 269,814  | XX     | 275,690 |
|                                                                                                                                                                   |         | TEXAS     |         |          |         |          |        |         |

| Cement.                        |                            |           |           |           |           |           |           |           |           |
|--------------------------------|----------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Masonry                        | thousand short tons        | 141       | 3,769     | 169       | 4,514     | 217       | 5.812     | 234       | 909'9     |
| Portland                       | op                         | 6,386     | 122,960   | 7.198     | 140,206   | 7,813     | 171,642   | 8,320     | 189,368   |
| Clays                          | op                         | 4.148     | 9,587     | 4.615     | 10,432    | 5,175     | 11,554    | 5,667     | 13,115    |
| Coal (lignite)                 | qp                         | ×         | A         | A         | ×         | 4,045     | M         | 6,944     | M         |
| Gem stones                     |                            | NA        | 150       | NA        | 155       | NA        | 163       | NA        | 163       |
| Gypsum                         | thousand short tons        | 1,220     | 4,252     | 1,303     | 4,806     | 1,542     | 5,284     | 1,616     | 6,469     |
| Helium:                        |                            |           |           | •         |           |           |           |           |           |
| Crude                          | million cubic feet         | 1,157     | 13,262    | 1,208     | 14,496    | 1,026     | 12,312    | 904       | 10,848    |
| High purity                    | op-                        | 82        | 2.862     | 20        | 1,750     |           |           | 1         |           |
| Lime                           | thousand short tons        | 1,673     | 24,427    | 1,612     | 24.583    | 1,631     | 22,181    | 1.677     | 26,887    |
| Natural gas                    | million cubic feet         | 8.357,716 | 1.203,511 | 8.550,705 | 1.376,664 | 8.657.840 | 1.419.886 | 8.513.850 | 1.735,221 |
| Natural gas liquids:           |                            |           |           |           |           |           |           |           |           |
| Natural gasoline and cycle     | products                   | •         |           |           |           |           |           |           |           |
| thon                           | isand 42-gallon barrels    | 97,511    | 284,871   | 96,286    | 299,981   | 92,437    | 294,163   | 92,743    | 347,393   |
| LP gases                       | qp                         | 204,177   | 334,850   | 210,435   | 380,887   | 226,624   | 428,319   | 221,686   | 589,685   |
| Perlite                        | short tons.                |           |           |           |           | 2,391     | 24        | 602       | ×         |
| Petroleum (crude)thou          | thousand 42-gallon barrels | 1,249,607 | 4,104,005 | 1,222,926 | 4,261,775 | 1,301,685 | 4,536,077 | 1,294,671 | 5,157,623 |
| Pumice                         | _thousand short tons       | ≱         | M         | 4         | 4         | M         | A         |           |           |
| Salt                           | op                         | 10,184    | 45,000    | 9,217     | 40,838    | 9.744     | 36.544    | 10,354    | 45,350    |
| Sand and gravel                | op                         | 31,438    | 46,362    | 32,788    | 51,814    | 35,151    | 56,328    | 38,546    | 60,706    |
| Stone                          | op                         | 45,557    | 64,422    | 41,168    | 4 62,144  | 49,314    | 4 66,573  | 62.574    | 91,379    |
| Sulfur (Frasch process)        | thousand long tons         | 2,801     | 62,290    | 3,092     | M         | 3,847     | ×         | 4,109     | M         |
| See footnotes at end of table. |                            |           |           |           |           |           |           |           |           |
|                                |                            |           |           |           |           |           |           |           |           |

Table 6.-Mineral production 1 in the United States, by State-Continued

|                                                                                                                                                                                                                                                                                               | 1              | 1970                 |               | 1971                 |                  | 1972                 | 1              | 1973                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------|---------------|----------------------|------------------|----------------------|----------------|----------------------|
| Mineral                                                                                                                                                                                                                                                                                       | Quan-<br>tity  | Value<br>(thousands) | Quan-<br>tity | Value<br>(thousands) | Quantity         | Value<br>(thousands) | Quan-<br>tity  | Value<br>(thousands) |
|                                                                                                                                                                                                                                                                                               | F              | rexas—Continued      | ed            |                      |                  |                      |                |                      |
| Talc and soapstoneshort tonstive, where of items that cannot be disclosed: Asphalt (native), fluorspar (1972-73), graphite, iron ore, magnesium chloride (for metal), magnesium compounds (except for metal), mercury, sodium sulfate, stone (dimension 1971-72) uranium and values indicated | 171,420        | \$818                | 193,830       | \$1,024              | 221,022          | \$1,262              | 232,514        | \$1,246              |
|                                                                                                                                                                                                                                                                                               | XX             | 74,541               | XX            | 132,210              | XX               | 143,427              | XX             | 160,435              |
| Total                                                                                                                                                                                                                                                                                         | XX             | 6,401,999            | XX            | 6,808,283            | XX               | 7,211,551            | XX             | 8,442,494            |
|                                                                                                                                                                                                                                                                                               |                | UTAH                 |               |                      |                  |                      |                |                      |
| a dioxide, naturalthousand cubic                                                                                                                                                                                                                                                              | 60,754         | 4.0                  | 55,178        | 4.                   | 61,103           | 4                    | 80,490         | 9                    |
| Coal (bituminous)dodo                                                                                                                                                                                                                                                                         | 4,733          | 1,237                | 198           | 1,064 $34,082$       | 3 266<br>4.802   | 3 790<br>42.868      | 3 243<br>5.500 | 3 771<br>61.566      |
| coverable content of ores, etc.)short                                                                                                                                                                                                                                                         | 295,738        | 341,282              | 263,451       | 273,989              | 259,507          | 265,735              | 256,589        | 305,341              |
| Gem stones                                                                                                                                                                                                                                                                                    | P,Z,E1         | 9<br>8<br>90<br>90   | NA<br>NA      | 341<br>90            | ZY.<br>ZYZ       | 20 00<br>4 70        | 4,778<br>NA    | 144<br>95            |
| Gold (recoverable content of ores, etc.)troy ounces                                                                                                                                                                                                                                           | 408,029        | 14,848               | 368,996       | 15,221               | 362,413          | 21,237               | 307,080        | 30,035               |
| Iron ore (usable)thousand long tons, gross weight<br>Lead (recoverable content of ores, etc.)short tons_                                                                                                                                                                                      | 1,990          | 13,837               | 38.270        | 11,886               | 1,788            | W<br>6 224           | 13,733         | 13,581               |
| Lime thousand short tons                                                                                                                                                                                                                                                                      | 186            | 3,756                | 172           | 3,569                | 171              | 4,216                | 185            | 3,804                |
| Mangannerous ore (5% to 35% ann)snort tons<br>Natural cas                                                                                                                                                                                                                                     | 42.781         | 6 460                | 42.418        | 7 0 X                | 39 474           | 6 711                | 717 61         | 9 1 20               |
| Natural gas liquids:<br>Natural gasoline and evele products                                                                                                                                                                                                                                   |                |                      |               | *                    | ¥<br>•<br>•<br>• | 6                    | 42,110         | 601'0                |
| thousand 42-gallon                                                                                                                                                                                                                                                                            | M              | <b>≱</b> i           | ≱i            | M                    | 458              | 1,406                | M              | W                    |
| Lr gasesdo                                                                                                                                                                                                                                                                                    | 23.370         | 65 603               | W 830         | W 47                 | 1,742            | 2,787                | 89 65 W        | W W117 741           |
| thousand s                                                                                                                                                                                                                                                                                    | W              | 18                   | 9             | 10                   | 14               | 29                   | 42             | 57                   |
| Saltdododo                                                                                                                                                                                                                                                                                    | 450            | 4,192<br>10 439      | 614           | 5,213                | 660              | 4,955                | 717            | 6,913                |
| le content of or                                                                                                                                                                                                                                                                              |                |                      |               | 1 1                  |                  |                      |                | 200                  |
| Stonethousand troy ounces                                                                                                                                                                                                                                                                     | 6,030<br>1,650 | 10,678               | 2,556         | 8,185                | 4,300<br>3,384   | 7,245<br>6.005       | 2,619          | 9,257                |
| Uranium (recoverable content (U <sub>3</sub> O <sub>8</sub> )thousand pounds<br>Vanadium (recoverable in one and concentrate)                                                                                                                                                                 | 1,635          | 10,023               | 1,445         | 8,959                | 1,496            | 9,425                | 1,940          | 12,610               |
| short tons                                                                                                                                                                                                                                                                                    | 257            | M                    | 226           | M                    | 188              | M                    | 142            | M                    |
| Zinc (recoverable content of ores, etc.)do                                                                                                                                                                                                                                                    | 34,085         | 10,628               | 79,701        | 8,276                | 21,853           | 7,758                | 16,800         | 6,942                |
| sonite), beryl concentrate, cement, clays (kaolin, 1972-                                                                                                                                                                                                                                      |                |                      |               |                      |                  |                      |                |                      |
|                                                                                                                                                                                                                                                                                               |                |                      |               |                      |                  |                      |                |                      |
| phate rock, potassium salts, sodium sulfate, tungsten, and values indicated by symbol W                                                                                                                                                                                                       | XX             | 55,899               | XX            | 49,754               | XX               | 57,391               | XX             | 70,408               |
| Total                                                                                                                                                                                                                                                                                         | XX             | 602,551              | XX            | 525,700              | XX               | 542,809              | XX             | 674,210              |

|                                                                                                                                                                                                                        |                              | VERMONT                     |                       |                                                              |                                  |                                |                                  |                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------|-----------------------|--------------------------------------------------------------|----------------------------------|--------------------------------|----------------------------------|--------------------------------|
| Peat tons the savel tons tons tons tons tons tons tons tons                                                                                                                                                            | (5)<br>4.046<br>1,514<br>W   | 4,122<br>19,088<br>W        | 3,761<br>2,496<br>W   | 3,518<br>27,940<br>W                                         | (5)<br>3,302<br>3,300<br>180,239 | 3,214<br>26,170<br>1,326       | (5)<br>4,041<br>1,871<br>251,087 | 3,581<br>19,523<br>1,497       |
| gene of hems that cannot be unknown. Abbeston, crays, gen stones, and values indicated by symbol W                                                                                                                     | XX                           | 4,627                       | XX                    | 4,631                                                        | XX                               | 4,157                          | XX                               | 4,763                          |
|                                                                                                                                                                                                                        |                              | VIRGINIA                    |                       |                                                              |                                  |                                |                                  |                                |
| Claysthousand short tons                                                                                                                                                                                               | 1,633                        | 1,672<br>246,18 <u>1</u>    | 30,628                | 1,800                                                        | 1,634                            | 1,783                          | 1,646                            | 1,886                          |
| able content                                                                                                                                                                                                           | 3,356<br>1,046<br>2,805      | 1,048<br>14,090<br>864      | 3,386<br>759<br>2,619 | $\begin{array}{c} 12 \\ 934 \\ 11,049 \\ 822 \\ \end{array}$ | 3,441<br>3,441<br>758<br>2,787   | 1,034<br>11,739<br>892         | 2,637<br>782<br>5,101            | 13,859<br>12,205<br>1,688      |
| thousand 42-gallon bar<br>thousand short                                                                                                                                                                               | 11,126                       | W<br>15,229                 | 12,796                | 20,201                                                       | $^{(5)}_{14,085}$                | (5)<br>21,696                  | 14,511                           | 26,246                         |
| and short                                                                                                                                                                                                              | 35,415<br>18,063             | 60,477<br>5,534             | 34,643<br>16,829      | 63,482<br>5,419                                              | 39,986<br>16,789                 | 74,090<br>5,960                | 43,895<br>16,683                 | 82,719<br>6,894                |
| Value of items that cannot be disclosed: Aplite, cement, feldspar (1970–72), titanium concentrate (1970–71), and values indicated by symbol W                                                                          | XX                           | 29,210                      | XX                    | 26,564                                                       | XX                               | 28,523                         | XX                               | 30,394                         |
| Total                                                                                                                                                                                                                  | XX                           | 374,321                     | XX                    | 385,161                                                      | XX                               | 489,791                        | XX                               | 540,595                        |
|                                                                                                                                                                                                                        |                              | WASHINGTON                  |                       |                                                              |                                  |                                |                                  |                                |
| thousan                                                                                                                                                                                                                | $^{6}_{1,221}$ $^{240}_{37}$ | 158<br>24,832<br>436<br>470 | 1,149<br>255<br>1,134 | 145<br>23,735<br>549<br>7,614                                | 6<br>1,239<br>264<br>2,635       | 170<br>26,848<br>584<br>17,424 | 6<br>1,194<br>287<br>3,270       | 169<br>26,651<br>664<br>21,440 |
| Copper (recoverable content of ores, etc.) _short tons<br>Gem stones                                                                                                                                                   | °AN ¦                        | 150                         | ≱g≽                   | 155<br>W                                                     | N<br>Aγ°                         | 163<br>13                      | ≥ <b>∜</b> ≥                     | 160<br>W                       |
| of ores, etc.)short                                                                                                                                                                                                    | 6,784<br>17                  | 2,119<br>71<br>W            | 5,117<br>17           | 1,429<br>72                                                  | 2,567<br>18<br>w                 | 772<br>89<br>W                 | 2,217<br>21                      | 722<br>110                     |
| Sand and gravel Sland and gravel Sliver (recoverable content of ores. etc.)                                                                                                                                            | 25,089                       | 27,902                      | 22,702                | 26,658                                                       | 23,065                           | 26,069                         | 27,935                           | 30,132                         |
| th<br>t<br>of ores, e                                                                                                                                                                                                  | W<br>13,701<br>11,956        | W<br>19,100<br>3,663        | W<br>12,436<br>5,782  | W<br>20,489<br>1,862                                         | 221<br>14,712<br>6,483           | 372<br>4 23,764<br>2,301       | W<br>11,384<br>6,378             | W<br>19,284<br>2,635           |
| value or nerms that cannot be disclosed: Abrasives (1971), bauxite (1970), clays (fire), distomite, gold, lime, olivine, stone (dimension, 1972), talc, tungsten (1972-78), uranium, and values indicated by symbol W. | XX                           | 12,010                      | XX                    | 11,898                                                       | ХХ                               | 11,287                         | XX                               | 12,861                         |
|                                                                                                                                                                                                                        | XX                           | 90,922                      | XX                    | 94,601                                                       | ХХ                               | 109,806                        | xx                               | 114,829                        |

See footnotes at end of table.

Table 6.-Mineral production 1 in the United States, by State-Continued

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 1970                      |                           | 1971                      |                             | 1972                       | 1                         | 1973                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|-----------------------------|----------------------------|---------------------------|----------------------------|
| Mineral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Quan-<br>tity             | Value<br>(thousands)      | Quan-<br>tity             | Value<br>(thousands)      | Quan-<br>tity               | Value<br>(thousands)       | Quan-<br>tity             | Value<br>(thousands)       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | WEST VIRGINIA             |                           |                           |                             |                            |                           |                            |
| Clays 3thousand short tons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 191<br>144,072            | \$238<br>1,142,245        | 232<br>118,258            | \$336<br>1,128,282        | 274<br>123,743              | \$403<br>1,275,813         | 348<br>115,448            | \$516<br>1,340,338         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 242,452                   | 3,757<br>61,583           | 197<br>197<br>234,027     | 3,073<br>60,613           | 214,951                     | W<br>64,485                | M<br>W<br>208,676         | W<br>W<br>64,481           |
| ım (crude)thousand 4£                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3,124<br>1,190<br>4,396   | 11,871<br>5,171<br>11,473 | 2,969<br>1,174<br>7,107   | 11,609<br>4,778<br>16,756 | 2,677<br>1,232<br>5,765     | 12,047<br>5,963<br>15,031  | 2,385<br>1,217<br>5,893   | 11,965<br>6,082<br>16,257  |
| Stone value of items that cannot be disclosed: Gement, clays (fire), natural gas liquids, stone (dimension), and values indicated by symbol W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9,740<br>XX               | 16,722                    | 9,880<br>XX               | 18,066<br>30,445          | 11,649<br>XX                | 21,293<br>35,595           | 11,732<br>XX              | 22,821                     |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | XX                        | 1,285,364                 | XX                        | 1,273,960                 | XX                          | 1,430,632                  | XX                        | 1,503,045                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | WISCONSIN                 |                           |                           |                             |                            |                           |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NA 8                      | 14<br>W                   | NA A                      | <sup>∞</sup> ≱            | AN<br>NA                    | 7                          | NA<br>NA                  | e 1                        |
| Iron ore (usable)thousand long tons, gross weight<br>Lead (recoverable content of ores, etc.)short tons<br>Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 806<br>761                | 238<br>7 503              | 824<br>752<br>946         | 207<br>7.570              | 887<br>757<br>963           | 228<br>7                   | 956<br>844                | 275<br>8 904               |
| THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SHOP OF THE SH | 77 103                    | 4,500<br>W<br>35 107      | 25.2                      | 153                       | 22 730                      | 179                        | 22                        | 208                        |
| Stand and gravel Stand (recoverable content of ores, etc.)short tons_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17,577                    | 25,167<br>6,322           | 15,568<br>16,645          | 25,145<br>25,105<br>3,428 | 19,394<br>6,873             | 29,681<br>29,440           | 23,818<br>23,818<br>8,672 | 3,583<br>3,583             |
| •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | XX                        | 16,319                    | XX                        | 17,817                    | XX                          | 20,484                     | XX                        | 23,701                     |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | XX                        | 87,670                    | XX                        | 84,036                    | XX                          | 89,353                     | XX                        | 114,339                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | WYOMING                   |                           |                           |                             |                            |                           |                            |
| Clays (diuminous) thousand short tons. Coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) coal (diuminous) c | 1,950<br>7,222<br>W       | 18,829<br>24,423<br>W     | 1,798<br>8,052<br>W       | 17,378<br>27,335<br>W     | 1,873<br>10,928<br>W        | 18,509<br>40,898<br>W      | 2,343<br>14,886<br>2,588  | 24,043<br>60,939<br>56     |
| Gem stones Gypsumthousand short tons. Iron ore (usable)thousand long tons, gross weight.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA<br>216<br>W            | 130<br>868<br>W           | NA<br>232<br>1,808        | 135<br>918<br>W           | NA<br>W<br>₩                | 142<br>W                   | NA<br>312<br>2.070        | 142<br>1,348<br>W          |
| Lime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{22}{338,520}$      | W<br>49,762               | 27<br>380,105             | W<br>58,156               | W<br>375,059                | W<br>60,760                | 30<br>357,731             | 548<br>64,749              |
| Natural gas inquids: Natural gasolinethousand 42-gallon barrels LP gasesdo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2,597                     | 7,085                     | 2,514                     | 7,415                     | 3,015<br>7,691              | 8,951<br>15,536            | 3,351                     | 10,647                     |
| thousand sk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 160,345<br>9,447<br>1,266 | 469,811<br>9,298<br>2,758 | 148,114<br>9,820<br>2,894 | 459,079<br>8,750<br>4,789 | $140,011 \\ 9,098 \\ 3,549$ | 432,071<br>14,916<br>5,768 | 141,914<br>6,201<br>3,191 | 541,820<br>11,635<br>6,716 |

| 65,390                                                                                                      | 117,565                                                                                                 | 928,105 |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------|
| 10,060                                                                                                      | XX                                                                                                      | XX      |
| 53,827                                                                                                      | 95,365                                                                                                  | 746,743 |
| 8,544                                                                                                       | XX                                                                                                      | XX      |
| 43,311                                                                                                      | 80,544                                                                                                  | 717,937 |
| 986'9                                                                                                       | XX                                                                                                      | XX      |
| 38,768                                                                                                      | 76,329                                                                                                  | 705,533 |
| 6,346                                                                                                       | XX                                                                                                      | XX      |
| Uranium (recoverable content UsOs)thousand pounds<br>Value of items that cannot be disclosed: Cement, phos- | phate rock, pumice (1972-73), sodium carbonate, sodium sulfate (1970), and values indicated by symbol W | Total   |

r Revised. NA Not available. W Withheld to avoid disclosing individual company confidential data. XX Not applicable. Production as measured by mine shipments, sales, or marketable production (including consumption by producers).

\*\*Excludes certain cement, included with "Value of items that cannot be disclosed."

\*\*Excludes certain stones, included with "Value of items that cannot be disclosed."

\*\*Excludes certain stones, included with "Value of items that cannot be disclosed."

\*\*Excludes salt in brine, included with "Value of items that cannot be disclosed."

Table 7.-Mineral production 1 in the Canal Zone and islands administered by the United States

|                                                         |               | 1970                 |                 | 1971                 |               | 1972                 |                 | 1973                 |
|---------------------------------------------------------|---------------|----------------------|-----------------|----------------------|---------------|----------------------|-----------------|----------------------|
| Area and mineral                                        | Quan-<br>tity | Value<br>(thousands) |                 | Value<br>(thousands) | Quan-<br>tity | Value<br>(thousands) | Quan-<br>tity   | Value<br>(thousands) |
| American Samoa:<br>Pumice                               |               |                      |                 |                      |               |                      |                 |                      |
| thousand short tons<br>Sand and gravel_do               |               | \$6<br>25            | 10              | \$35                 |               |                      | 37              | \$214                |
| Stonedo                                                 | 49            | 69                   | $\overline{33}$ | 30                   | 49            | \$414                | $\overline{63}$ | $1\overline{52}$     |
| Total                                                   | XX            | 100                  | XX              | 65                   | XX            | 414                  | XX              | 366                  |
| Canal Zone: Sand and gravel thousand short tons Stonedo | 60<br>85      | 97<br>265            |                 |                      |               |                      |                 |                      |
| TotalGuam: Stone                                        | XX            | 362                  | XX              |                      | XX            |                      | XX              |                      |
| thousand short tons<br>Virgin Islands:                  | 636           | 1,289                | 718             | 1,705                | 831           | 1,983                | 1,246           | 3,139                |
| Stonedo<br>Wake: Stonedo                                | 514<br>4      | 2,226<br>18          | 543<br>3        | W<br>16              | 726           | 2,255                | 664             | 2,860                |

W Withheld to avoid disclosing individual company confidential data. XX Not applicable.

1 Production as measured by mine shipments, sales, or marketable production (including consumption by producers).

Table 8.-Mineral production 1 in the Commonwealth of Puerto Rico

|                     |               | 1970     |               | 1971       |               | 1972                 |               | 1973                 |
|---------------------|---------------|----------|---------------|------------|---------------|----------------------|---------------|----------------------|
| Mineral             | Quan-<br>tity |          | Quan-<br>tity |            | Quan-<br>tity | Value<br>(thousands) | Quan-<br>tity | Value<br>(thousands) |
| Cement              |               |          |               |            |               |                      |               |                      |
| thousand short tons |               |          | 2,00          | 1 \$38,413 | 1.946         | \$31,756             | 2,062         | \$41,203             |
| Claysdo             | 42            |          | 34            | 2 358      | 361           |                      | 464           | 473                  |
| Limedo              | 4             |          | 44            |            | 42            | 1,776                | 42            | 2,215                |
| Saltdo              | 32            |          | 29            | 9 570      | 29            | 580                  | 29            | 580                  |
| Sand and graveldo   | 11,50         | 6 28,001 | 12,998        | 8 34,980   | 7.478         | 3 21.237             | 7.480         | 21,243               |
| Stonedo             | 7,29          | 6 13,947 | 12,130        | 0 29,847   | 13,504        |                      | 15,647        | 41,857               |
| Total               | XX            | 2 72,344 | XX            | 2 104,168  | XX            | 88.524               | XX            | 107.571              |

W Withheld to avoid disclosing individual company confidential data. XX Not applicable.

Production as measured by mine shipments, sales, or marketable production (including consumption by producers).

<sup>2</sup> Total does not include value of items withheld.

Table 9.-U.S. exports of principal minerals and products

| -                                                                                                      | 1                      | 1972                 |                      | 973                  |
|--------------------------------------------------------------------------------------------------------|------------------------|----------------------|----------------------|----------------------|
| Mineral                                                                                                | Quantity               | Value<br>(thousands) | Quantity             | Value<br>(thousands) |
| METALS                                                                                                 |                        |                      |                      |                      |
| Aluminum:                                                                                              |                        |                      |                      |                      |
| Ingots, slabs, crudeshort tons_                                                                        | 108,319                | \$51,879             | 229,578              | \$121,951            |
| Scrapdo<br>Plates, sheets, bars, etcdo                                                                 | 66,039<br>144,987      | $21,072 \\ 115,279$  | $115,120 \\ 202,371$ | 39,936<br>178,482    |
| Castings and forgingsdo                                                                                | 4,467                  | 11,681               | 5,277                | 14,613               |
| Aluminum sulfate do                                                                                    | 4,968                  | 181                  | 21,134               | 642                  |
| Other aluminum compoundsdo                                                                             | 942.084                | 83,490               | 836,659              | 92,643               |
| Other aluminum compoundsdo Antimony: Metals and alloys crudedo Bauxite, including bauxite concentrates | 121                    | 85                   | 515                  | 469                  |
| thousand long tons                                                                                     | 29                     | 1,299                | 12                   | 811                  |
| berylliumpounds                                                                                        | 95,492                 | 839                  | 109,199              | 1,220                |
| Bismuth: Metals and alloysdo                                                                           | 264,276                | 493                  | 151,053              | 446                  |
| Cadmiumthousand pounds_<br>Chrome:                                                                     | 1,017                  | 2,363                | 305                  | 598                  |
| Ore and concentrates:<br>Exportsthousand short tons                                                    | 20                     | 824                  | 21                   | 789                  |
| Reexportsdo                                                                                            | 57                     | 1,946                | 34                   | 989                  |
| Ferrochromedo                                                                                          | 13                     | 4,342                | 15                   | 5,091                |
| Cobaltthousand pounds                                                                                  | 2,597                  | 5,005                | 3,890                | 8,932                |
| Columbium metals, alloys and other forms                                                               | 29                     | 453                  | 96                   | 790                  |
| Copper:                                                                                                |                        |                      |                      |                      |
| Ore, concentrate, composition metal and                                                                | - 05 010               | 00.740               | 45 055               | 40.550               |
| unrefined (copper content)short tons                                                                   | r 35,612               | 26,548               | 45,957 $242,856$     | 48,559<br>386,993    |
| Refined copper and semimanufactures _do                                                                | $215,591 \\ 6,299$     | 278,059<br>7,400     | 7,431                | 12,160               |
| Other copper manufacturesdo<br>Copper sulfate or blue vitrioldo                                        | 2,646                  | 1,767                | 1,716                | 2.043                |
| Copper-base alloysdo                                                                                   | 90,377                 | 105,586              | 149,888              | 205,249              |
| Ferroalloys:                                                                                           | ,                      |                      | -                    | -                    |
| Ferrosilicondodo                                                                                       | 7,367                  | 2,196                | 15,984               | 4,051                |
| Ferrophosphorusdo                                                                                      | 1,179                  | 111                  | 19,030               | 773                  |
| Gold:                                                                                                  | 965 789                | 14,531               | 334,255              | 29,692               |
| Ore and base bulliontroy ounces<br>Bullion, refineddo                                                  | $265,783 \\ 1,206,386$ | 48,522               | 2,650,962            | 116,273              |
| Iron orethousand long tons_                                                                            | 2,095                  | 26,776               | 2,747                | 37,922               |
| Iron and steel:                                                                                        | _,,                    | ,,                   | _,                   |                      |
| Pig ironshort tons_                                                                                    | 15,018                 | 931                  | 15,160               | 882                  |
| Iron and steel products (major):                                                                       |                        | 100.000              | 0.015.110            | #10 000              |
| Semimanufacturesdo                                                                                     | 2,309,583              | 400,820              | 3,317,118            | 713,292<br>867,594   |
| Manufactured steel mill products _do<br>Iron and steel scrap: Ferrous scrap,                           | 1,236,897              | 605,600              | 1,644,412            | 001,004              |
| including rerolling materials                                                                          |                        |                      |                      |                      |
| thousand short tons                                                                                    | 7,683                  | 252,617              | 11,412               | 606,556              |
| Lead:                                                                                                  |                        |                      |                      |                      |
| Pigs, bars, anodesshort tons_                                                                          | 8,376                  | 4,500                | 66,576               | 27,097               |
| Scrapdo                                                                                                | 35,233                 | 4,264                | 59,873               | 12,227               |
| Magnesium: Metal and alloys and                                                                        | 17,556                 | 11,702               | 39,585               | 28,242               |
| semimanufactured forms, n.e.cdo<br>Manganese:                                                          | 17,000                 | 11,102               | 00,000               | 20,242               |
| Ore and concentratedo                                                                                  | 25,108                 | 3,137                | 57,448               | 4,535                |
| Ferromanganesedodo                                                                                     | 6,842                  | 1,512                | 8,574                | 2,137                |
| Mercury:                                                                                               |                        | 100                  | 0.40                 | 150                  |
| Exports76-pound flasks                                                                                 | 400                    | 129                  | 342                  | 170                  |
| Reexportsdo                                                                                            | 563                    | 121                  |                      |                      |
| Molybdenum: Ore and concentrates (molybdenum                                                           |                        |                      |                      |                      |
| content)thousand pounds                                                                                | 45,362                 | 73,039               | 73,958               | 120,387              |
| Metals and alloys, crude and scrapdo                                                                   | 89                     | 199                  | 148                  | 252                  |
| Wiredodo                                                                                               | 173                    | 1,551                | 357                  | 3,105                |
| Semifabricated forms, n.e.cdo                                                                          | 181                    | 987                  | 209                  | 1,216                |
| Powderdodo                                                                                             | 50                     | 192                  | 195                  | 672                  |
| Ferromolybdenumdo                                                                                      | r 909                  | 1,163                | 2,224                | 3,151                |
| Nickel: Allows and seven (including Monel metal)                                                       |                        |                      |                      |                      |
| Alloys and scrap (including Monel metal), ingots, bars, sheets, etcshort tons_                         | 16,694                 | 42,677               | 16,545               | 50,712               |
| Catalystsdo                                                                                            | 2,573                  | 6,794                | 2,478                | 6,584                |
| Nickel-chrome electric resistance wire_do                                                              | 553                    | 2,638                | 697                  | 3,818                |
| Semifabricated forms, n.e.cdo                                                                          | 1,851                  | 11,659               | 2,350                | 14,689               |
| Platinum:                                                                                              |                        |                      |                      |                      |
| Ore, concentrate, metal and alloys in ingots,                                                          |                        |                      |                      |                      |
| bars, sheets, anodes, and other forms,                                                                 | 417,037                | r 44,258             | 439,452              | 61,379               |
| including scraptroy ounces<br>Palladium, rhodium, iridium, osmiridium,                                 | 411,001                | 11,400               | 400,402              | 01,010               |
| ruthenium, and osmium (metal and                                                                       |                        |                      |                      |                      |
| alloys including scrap)do                                                                              | r 121,957              | r 7,518              | 188,074              | 16,246               |
| Platinum-group manufactures, except jewelry                                                            | NA                     | 4,255                | NA                   | 4,282                |
|                                                                                                        |                        |                      |                      |                      |
| See footnotes at end of table.                                                                         |                        |                      |                      |                      |

Table 9.-U.S. exports of principal minerals and products-Continued

|                     | 1.0                   |                    | 1070               |
|---------------------|-----------------------|--------------------|--------------------|
| Value               | 19                    |                    | 1973<br>Value      |
| ousands             | Quantity              | ) Quantity         | (thousands         |
|                     |                       |                    |                    |
| \$610               | 202,206               | 109,766            | <b>\$00</b> 0      |
| φυτο                | 202,200               | 109,700            | \$286              |
|                     |                       |                    |                    |
| 4,899<br>44,361     | 2,964<br>26,693       | 3,007<br>8,208     | 7,322              |
| 44,501              | 20,000                | 0,200              | 20,316             |
| r 2,310             | r 165                 | 360                | 3,962              |
| 3,572               | 171                   | 202                | 5,312              |
|                     |                       |                    |                    |
| 2,915               | 857                   | 2,540              | 12,099             |
| 1,055               | 277                   | 866                | 3,236              |
| 3,392               | 8,548                 | 4,862              | 3,262              |
| 004                 | 1 000                 | 1 101              |                    |
| 394                 | 1,802                 | 1,494              | 353                |
| 2,165               | 3,510                 | 4,142              | 3,601              |
| cocr                | F.CO                  | 5.45               | 0.740              |
| 6,265<br>4,882      | 562<br>r 10,335       | 745<br>20,769      | 8,748<br>14,021    |
| •                   |                       |                    |                    |
| 211                 | 95                    | 90                 | 239                |
|                     |                       |                    |                    |
| 756                 | 351                   | 464                | 1,157              |
| 714                 | 4,324                 | 14,566             | 8,259              |
| 117                 | 4,024                 | 14,000             | 0,200              |
| 2,138               | 2,419                 | 2,480              | 2,100              |
| $\frac{431}{3,076}$ | $\frac{1,446}{6,052}$ | 7,032 $15,077$     | 2,717<br>10,565    |
| 0,010               |                       | 10,011             |                    |
| 940                 | 17,360                | 28,921             | 2,288              |
| 11,509              | 1,314,219             | 1,016,437          | 12,425             |
|                     |                       |                    |                    |
|                     |                       |                    |                    |
|                     |                       |                    |                    |
| $21,986 \\ 305$     | 8,263<br>55           | 9,928<br>40        | $25,071 \\ 138$    |
| 1,899               | 484                   | 516                | 4,208              |
| 3,073               | 554                   | 746                | 4,223              |
| 36,956              | NA                    | NA                 | 49,329             |
| •                   |                       |                    | •                  |
| $7,621 \\ 1,430$    | 51,792<br>6,832       | 65,900<br>542      | 9,251<br>91        |
| 1,400               | 0,082                 | 544                | 31                 |
| 22,530              | 189,778               | 210,233            | 26,216             |
| 3,712               | 100,889               | 324,740            | 8,980              |
| 26,332              | 667,519               | 731,798            | 30,528             |
| 2,905               | 124,307               | 196,337            | 3,820              |
| $36,979 \\ 184$     | 1,053,892<br>2,764    | 1,168,495<br>2,478 | 45,426<br>196      |
| 888                 | 7,289                 | 7,953              | 992                |
|                     |                       |                    |                    |
| 2,582               | 51                    | 63                 | 3,135              |
| 2.694               | NA                    | NA                 | 4,225              |
| 3,737<br>1,242      | $73,911 \\ 37,659$    | 93,714<br>36,914   | 5,552<br>1,208     |
|                     |                       |                    |                    |
| 1,842               | 3,957,313             | 14,588,464         | 2,201              |
| 2.910               | 1,001,639             | 1,155,852          | 3,064              |
| 5,087               | 8,194                 | 14,363             | 6,702              |
|                     | 4.004                 |                    | 910 490            |
| 22,441<br>07,438    | $4,004 \\ 13,992$     | 4,538 $13,932$     | 318,436<br>113,295 |
| 52,465              | 967                   | 967                | 70,990             |
|                     |                       |                    |                    |
| 02,                 | 967                   | .465               | ,465 967           |

Table 9.-U.S. exports of principal minerals and products-Continued

|                                               | 1          | 972                  | 19         | 973                  |
|-----------------------------------------------|------------|----------------------|------------|----------------------|
| Mineral                                       | Quantity   | Value<br>(thousands) | Quantity   | Value<br>(thousands) |
| NONMETALS—Continued                           |            |                      |            |                      |
| Diaments and compounds (lead and zinc):       |            | 0010                 | 2,240      | \$1,025              |
| T - al nigmentsSNOTE LOUS                     | 1,867      | \$818                | 8,624      | 3,440                |
| Zinc pigmentsdo                               | 7,567      | 2,764                | 0,044      | 0,110                |
|                                               |            | 45,858               | 1,578,716  | 57,997               |
| Fortilizon                                    | 1,353,471  |                      | 39,229     | 10,660               |
| Chemical00                                    | 31,435     | 6,890                | 00,220     | 20,000               |
| Occupate notural quartaite cryolite.          | 055        | 130                  | 724        | 134                  |
| chiolitedodo                                  | 677        | 190                  | 121        |                      |
| O-14.                                         | 000        | E E 4.4              | 609        | 4,400                |
| Crude and refinedthousand short tons          | 869        | 5,544                | 005        | -,                   |
| Chimmonta to noncontiguous                    |            | 0.000                | 18         | 1,585                |
| Territoriesdo                                 | 21         | 2,303                | 10         | 1,000                |
| a 1' I as direm compounds:                    |            | 000                  | 45         | 2.049                |
|                                               | 29         | 926                  | 425        | 16,064               |
| Sodium suitatedodo                            | 480        | r 18,911             | 420        | 10,001               |
| Chamas                                        |            | 4 005                | 59         | 652                  |
| Delemite block                                | 77         | 1,025                |            | 5,400                |
| Limestone, crushed, ground, brokendo          | 1,730      | 3,802                | 2,316      | 0,400                |
| Marble and other building and monumental      |            |                      | TAT A      | 1,244                |
| thousand cubic feet                           | NA         | 755                  | NA         | 1,244                |
| Ctore emished ground broken                   |            |                      | nce.       | 4,819                |
| thousand short tons                           | 1,035      | 4,298                | 765        | 948                  |
| Manufactures of stone                         | NA         | 1,227                | NA         | 940                  |
| a 14                                          |            |                      | 1 001      | 34,330               |
| Sulfur: Crudethousand long tons-              | 1,847      | 32,409               | 1,771      | 1,461                |
| Crushed, ground, flowers ofdo                 | 5          | 1,278                | 400.400    | 6,618                |
| Tale, crude and groundshort tons_             | 171,007    | 5,791                | 180,102    | 0,010                |
| Talc, crude and ground                        | -          |                      |            |                      |
| MINERAL FUELS                                 |            |                      | 100 005    | 24,056               |
| Carbon blackthousand pounds                   | r 111,238  | r 14,856             | 192,665    | 24,000               |
|                                               |            |                      | 717        | 11,240               |
| Coal: Anthracitethousand short tons           | 743        | 10,922               | 717        |                      |
| D't                                           | r 55,997   | r 973,189            | 52,903     |                      |
| Briquetsdo                                    | r 73       | r 4,264              | 92         |                      |
| Cokedo                                        | 1,232      | 30,720               | 1,395      |                      |
| Natural gasthousand cubic feet                | 89,499,088 | 42,176               | 84,805,211 | 45,104               |
|                                               |            |                      | 207        | 2,620                |
| Petroleum: Crudethousand barrels              | 192        | 565                  | 697        | ~~~=~=               |
| Gasolinedo                                    | 493        | 4,396                | 1,692      |                      |
| Jet fueldo                                    | 258        | r 1,113              | 824        |                      |
| Naphthado                                     | 1,438      | r 16,397             | 1,561      |                      |
| Kerosinedo                                    | 84         | 778                  | 81         |                      |
| Distillate fuel oildo                         | 755        | 3,055                | 2,526      |                      |
| Residual fuel oildo                           | 11,576     | 34,349               | 8,388      |                      |
| Lubricating oildo                             | 12,149     | 169,424              | 10,728     |                      |
|                                               | r 331      | 3,572                | 338        |                      |
| Asphaltdodododo                               | 11,475     | 46,581               | 9,92       |                      |
| Waxdo                                         | 1,105      | 25,840               | 942        |                      |
|                                               | 30,667     | 111,950              | 34,66      |                      |
| Waxdo<br>Cokedo<br>Petrochemical feedstocksdo |            | r 23,215             | 6,81       |                      |
| Petrochemical feedstocksdo                    | 1,042      | r 21,310             | 1,16       |                      |
| Miscellaneousdo  Total                        | · XX       | r 4.634,224          | XX         | 6,535,79             |
| m + 3                                         |            | ,00,                 |            |                      |

r Revised. NA Not available. XX Not applicable.

Table 10.-U.S. imports for consumption of principal minerals and products

| 171                                                                                      |                     | 1972                          |                     | 1973                                              |
|------------------------------------------------------------------------------------------|---------------------|-------------------------------|---------------------|---------------------------------------------------|
| Mineral                                                                                  | Quantit             | Value<br>(thou-<br>sands)     | Quantity            | Value<br>(thou-                                   |
| Aluminum:                                                                                |                     |                               |                     | sands)                                            |
| Metal                                                                                    | 661 040             |                               |                     |                                                   |
| Scrapshort tonsdo                                                                        | 661,042<br>52,301   | \$304,536                     | 000,020             | \$225,250                                         |
| Aluminum and dars, etc                                                                   | r 81,142            | 17,747<br><sup>r</sup> 52,451 |                     | 16,740                                            |
| Aluminum oxide (alumina)do<br>Antimony:                                                  | 2,849,995           | 173,413                       |                     | 43,222                                            |
| Ore (antimony content)                                                                   |                     | 0,110                         | 3,375,488           | 209,329                                           |
| Needle or liquateddo                                                                     | 17,212              | 9,437                         | 16,679              | 10,903                                            |
|                                                                                          |                     | 75                            | 51                  | 73                                                |
| Oxidedodo                                                                                | 5,032               | 2,092<br>5,766                | 692                 | 745                                               |
| Bauxite: Crude (As2O3 content)do                                                         | 13,613              | 1,956                         | 4,651<br>11,496     | 6,095                                             |
| Beryllium oreshort tons<br>Bismuth                                                       | 11,428              | 151,012                       | 11,240              | 1,714<br>143,075                                  |
| Bismuthshort tons<br>Boron carbide                                                       | 3,345               | 1,101                         | 1,586               | 481                                               |
| Boron carbideounds_<br>Cadmium:                                                          | 1,562,934<br>11,622 | 5,235                         | 2,676,271           | 9,655                                             |
| Oadmium:                                                                                 | 11,022              | 61                            | 322,236             | 395                                               |
| Metalshort tons<br>Flue dust (cadmium contentdo                                          | r 1,211             | 4,886                         | 1,946               | 10 700                                            |
| Calcium:                                                                                 | r 370               | 685                           | 82                  | 12,799<br>243                                     |
| Metal                                                                                    | 940 000             |                               |                     | 440                                               |
|                                                                                          | $248,080 \\ 6,128$  | r 181                         | 110,407             | 78                                                |
|                                                                                          | 0,148               | 225                           | 7,357               | 317                                               |
| Ore and concentrates (Cr2O3 content)                                                     |                     |                               |                     |                                                   |
| Ferrochrome thousand short tonsdo                                                        | r 499               | r 27,605                      | 412                 | 21,028                                            |
|                                                                                          | 90                  | 34,588                        | 100                 | 35,175                                            |
|                                                                                          | 2                   | 3,791                         | 3                   | 6,080                                             |
| Metalthousand pounds_                                                                    | 13,082              | 30,650                        | 10.000              |                                                   |
|                                                                                          | 1,134               | 2,330                         | $18,360 \\ 1,150$   | 53,625                                            |
| olumbium ore (gross weight)do                                                            | 82                  | 44                            | r 62                | 2,714<br>r 51                                     |
| opper: (copper content)                                                                  | 3,227               | 1,927                         | 2,826               | 2,201                                             |
| Ore and concentratesshort tons_<br>Regulus, black, coarsedo<br>Unrefined, black, blister | 80,740              | 01.0==                        |                     | -,                                                |
| Regulus, black, coarse                                                                   | 1,453               | 81,055 $1,134$                | 19,582              | 16,029                                            |
| Unrefined, black, blisterdo<br>Refined in ingots at                                      | 77,162              | 72,514                        | $139 \\ 128,166$    | 106                                               |
| Old and scrap                                                                            | 175,703             | 172,772                       | 206,297             | 159,922<br>262,706                                |
|                                                                                          | 10,787              | 9,766                         | 18,266              | 21,967                                            |
| (silicon content)dodo                                                                    | 23,154              | 0.015                         |                     | •                                                 |
|                                                                                          | 20,104              | 8,815                         | 63,388              | 21,087                                            |
| Ore and base bulliontroy ounces_Bulliondo                                                | 265,453             | 14,023                        | 234,692             | 19,388                                            |
| on oredo                                                                                 | 5,860,749           | 343,666                       | 3,610,073           | 336,762                                           |
| on oredo<br>on and steel:                                                                | 35,761              | 415,934                       | 43,296              | 533,488                                           |
|                                                                                          | 636,932             | 99 510                        | 445 000             | •                                                 |
| and steel products (major).                                                              | 000,552             | 33,518                        | 445,626             | 28,925                                            |
| Iron productsdo<br>Steel productsdo                                                      | 41,428              | 18,158                        | 38,043              | 10 119                                            |
|                                                                                          | 18,117,041          | 2,974,072                     | 15,571,833          | 19,113<br>3,026,099                               |
| implace _                                                                                | 295,000             | 14,304                        | 336,693             | 18,716                                            |
|                                                                                          | 17,040              | 437                           | 11,940              | 384                                               |
| Ore, flue dust, matte (lead content)do                                                   | 51,642              | 10,554                        | 04 955              | 15 100                                            |
|                                                                                          | 895                 | 238                           | 94,355<br>4         | 17,409                                            |
| Reclaimed scrap, etc (lead content)                                                      | 245,598             | 64,096                        | 178,095             | $\begin{smallmatrix}&&1\\52,927\end{smallmatrix}$ |
| Sheet, pipe, shot                                                                        | 1,753               | 450                           | 2,745               | 522                                               |
|                                                                                          | r 179               | r 69                          | 38                  | 18                                                |
| Metallic and scrapdo Alloys (magnesium content)do Sheets tubing ribbons                  | 4,298               | 1,990                         | 0.074               |                                                   |
| Sheets tubing withdo                                                                     | 168                 | 464                           | $\frac{2,874}{389}$ | 1,404                                             |
| Sheets, tubing, ribbons, wire and other forms (magnesium content)do                      |                     | 101                           | 909                 | 1,104                                             |
| ing aniese:                                                                              | 13                  | 103                           | 20                  | 129                                               |
| Ore (35% or more manganese)                                                              |                     |                               |                     |                                                   |
| (Manganese contont)                                                                      | 792,695             | 34,315                        | 700 605             | 05 / 0-                                           |
| Ferromanganese (manganese content)_do                                                    | 274,717             | 49,846                        | 722,635<br>303,867  | 37,403                                            |
| Compoundspounds_                                                                         | •                   | ,510                          | 000,001             | 53,308                                            |
|                                                                                          | 9,028               | 45                            | 3,543               | 30                                                |
| or metals: Selenium and calls nound                                                      | 28,834<br>448,964   | r 5,881                       | 46,026              | 12,151                                            |
|                                                                                          | 330,304             | 4,362                         | 590,173             | 6,023                                             |
| Pigs, ingots, shot, cathodesshort tons                                                   | 125,364             | r 330,825                     | 120,083             | 242 404                                           |
| Scrapdo                                                                                  | 2,306               | 3,517                         | 2,642               | 343,494<br>3,906                                  |
| Oxide                                                                                    | 5,988               | 12,038                        | 6,301               | 13,466                                            |
| tinum group:                                                                             | ,                   |                               |                     |                                                   |
| Unwrought:                                                                               | ,                   |                               |                     | ,100                                              |
| tinum group:                                                                             | ,                   |                               |                     | ,200                                              |
| Unwrought:                                                                               | 58,284              | 7,254                         | 19,146              | 2,396                                             |

Table 10.-U.S. imports for consumption of principal minerals and products-Continued

| <u> </u>                                                             | 1972             |                           | 1978                 | Value            |
|----------------------------------------------------------------------|------------------|---------------------------|----------------------|------------------|
| Mineral                                                              | Quantity         | Value<br>(thou-<br>sands) | Quantity             | (thou-<br>sands) |
| METALS—Continued                                                     |                  |                           |                      |                  |
| atinum group—Continued                                               |                  |                           |                      |                  |
|                                                                      |                  | 0.40, 000                 | 499,271              | \$73,108         |
| Sponge (platinum) troy ounces                                        | 350,143          | \$42,622<br>7,600         | 84,534               | 10,229           |
|                                                                      | 75,210<br>24,827 | $7,600 \\ 4,038$          | 19,701               | 4,816            |
|                                                                      | 289,055          | 12,929                    | 496,065              | 36,613           |
| DellediumQU                                                          | 47,378           | 8,735                     | 72,856               | 15,587           |
| Rhodiumdo                                                            | 61,191           | 2,602                     | 67,218               | 3,37             |
| Rutheniumdo<br>Other platinum-group metalsdo                         | r 103,419        | r 12,134                  | 243,584              | 33,87            |
| Semimanufactured:                                                    |                  |                           | 122 815              | 22,949           |
| Distinum                                                             | 207,960          | 22,869<br>22,488          | 155,715<br>658,240   | 43,50            |
| Delle dium                                                           | 613,174          | 22,488<br>543             | 20,355               | 1,76             |
| Th 12 (10                                                            | 3,426<br>r 2,282 | r 278                     | 3,806                | 62               |
| Other platinum-group metalsuo                                        | NA               | 4,444                     | NA                   | 5,53             |
| adium: Radioactive substitutes                                       | 1111             | -,                        |                      |                  |
| are earths: Ferrocerium and other cerium alloyspounds                | 27,867           | 94                        | 38,206               | 12               |
| other cerium alloyspounds_                                           |                  |                           |                      | 74.00            |
| ore and base bullion_thousand troy ounces                            | 33,768           | 49,979                    | 33,990               | 74,92<br>215,69  |
| Rullion                                                              | 25,680           | 41,579                    | 81,219               | 215,69           |
| Bulliondo<br>antalum orethousand pounds_                             | 1,229            | 2,663                     | 1,097                | ۵,00             |
|                                                                      | 4.01.0           | 19 475                    | 4,480                | 17,08            |
| Ore (tin content)long tons                                           | 4,216<br>52,451  | 12,475 $195,421$          | 45,845               | 195,24           |
| Ore (tin content)long tons<br>Blocks, pigs, grains, etcdo            | 52,451           | 100,721                   |                      |                  |
|                                                                      | 1,304            | 2,140                     | 1,281                | 1,32             |
| and tin alloys, n.s.p.f                                              | NA.              | 6,501                     | NA                   | 6,98             |
| Tin foil, powder, flitters, etc                                      |                  |                           | 450.050              | 16,98            |
| itanium: Ilmenite 1short tons                                        | 395,218          | 14,237                    | 453,650              | 23,78            |
| D-4:1-                                                               | 195,068          | 21,733                    | 174,180 $13,648,385$ | 11,38            |
| 76-4-1DOUNUS                                                         | 8,769,356        | 8,041<br>76               | 512,547              | 17,00            |
|                                                                      | 181,326          | 33,908                    | 121,789,426          | 28,0             |
| Compounds and mixturesdo                                             | 173,597,069      | 33,300                    | 121,100,121          |                  |
|                                                                      | 5,739            | 12,139                    | 10,552               | 23,03            |
|                                                                      | r 122            | 342                       | 93                   | 27               |
| Metaldo<br>Other alloysdo                                            | r 1,091          | r 3,541                   | 1,433                | 4,9              |
|                                                                      | •                |                           | 450 000              | 24,6             |
| Ore (zinc content)                                                   | 174,063          | 24,275                    | 153,898<br>587,429   | 270,2            |
| Placks pigs slabsdo                                                  | 516,643          | 176,707                   | 236                  | 2.0,2            |
| Shoetsdodo                                                           | 485              | 310<br>r 592              | 4,052                | 1,0              |
| Old, dross, skimmingsdo                                              | 2,882<br>9,197   | 3,822                     | 4,671                | 2,2              |
| D4                                                                   | NA<br>NA         | 2,040                     | NA                   | 3,4              |
|                                                                      | 67,537           | 3,291                     | 98,023               | 5,4              |
| Airconium: Ore, including zirconium sand_do                          | 01,001           |                           |                      |                  |
| NONMETALS                                                            |                  |                           |                      |                  |
| Abrasives: Diamonds (industrial)                                     | 15,134           | 52,619                    | 19,154               | 65,5             |
|                                                                      | 735,515          | 87,732                    | 792,473              | 98,9             |
| Asbestosshort tons_                                                  | 100,010          | J.,.J=                    |                      |                  |
|                                                                      | 624,634          | 5,658                     | 724,813              | 7,7              |
| Crude and grounddo                                                   | 1,311            | 169                       | 4,611                | 7<br>6,7         |
| Witheritedo                                                          | 23,592           | 3,959                     | 32,780               | 104,0            |
| Chemicalsdododo                                                      | r 4,911          | r 71,757                  | 6,683                | 104,0            |
|                                                                      |                  | 1,095                     | 46,044               | 1,8              |
| Clays:                                                               | 62,576           | 214                       | 6,598                | -,               |
|                                                                      | 4,138            | 3,451                     | 38,276               | 5,1              |
| Manufactureddodo                                                     | 25,642<br>167    | 23                        | 264                  | -                |
| Cryolitelong tons<br>Feldspar: Crudelong tons<br>Fluorsparshort tons | 1,181,533        | 47,851                    | 1,212,347            | 52,6             |
| Fluorsparshort tons                                                  | 1,101,000        |                           |                      | 0.001            |
| Gem stones: thousand carats                                          | 5,506            | 626,679                   | <sup>2</sup> 5,181   | 2 821,           |
|                                                                      | 573              | 22,176                    | 749                  | 32,0<br>83,9     |
| Emeralds                                                             | NA               | 67,281                    | NA                   | 4,               |
| Othershort tons_                                                     | 64,135           | 3,847                     | 77,376               | ₹,               |
|                                                                      |                  |                           |                      |                  |
| Gypsum: Crude, ground, calcined                                      | E 500            | 18,494                    | 7,663                | 17,              |
|                                                                      | 7,720            | 3,548                     |                      | 4,               |
|                                                                      | INA              | 10,184                    | 6,118                | 10,              |
|                                                                      |                  | 6                         |                      |                  |
| Iodine, crudeshort tons_                                             | . 124            | v                         |                      |                  |
|                                                                      |                  | 724                       | 47,309               |                  |
|                                                                      |                  | 3,224                     |                      | 4,               |
| Otheruo                                                              |                  | -                         |                      |                  |
| Magnesium compounds: Crude magnesiteshort tons_                      |                  |                           |                      |                  |
| Could magnesite                                                      |                  |                           |                      |                  |

Table 10.-U.S. imports for consumption of principal minerals and products-Continued

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | 1972                      |                          | 1973                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------|--------------------------|---------------------------|
| Mineral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Quantity                         | Value<br>(thou-<br>sands) | Quantit                  | Value                     |
| Magnesium NONMETALS—Continued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                  |                           |                          |                           |
| Lump, ground caustic coloined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                  |                           |                          |                           |
| magnesiashort tons_<br>Refractory magnesia, dead-burned fused<br>magnesite, dead-burned delemite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10,376                           | <b>\$67</b> 5             | 10,967                   | \$73                      |
| Compoundsdodo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $133,734 \\ 25,301$              | 9,695<br>1,111            |                          | 13,87<br>1,88             |
| Uncut sheet and punchthousand pounds<br>Scrapdodo<br>Manufactures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,494                            | 1,162                     | ,                        | 1,26                      |
| Scrap do do Manufactures do do Manufactures do do Mineral-earth pigments: Iron oxide pigments: Natural short tons Synthetic do Ocher, crude and refined do Siennas, crude and refined do Umber, crude and refined do Vandyke brown do do do do do Vandyke brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,641<br>5,644                   | 62<br>3,183               | 5.072                    | 11<br>4,32                |
| Naturalshort tons<br>Syntheticshort do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,777                            | _ 236                     | 1,858                    | 37                        |
| Ocher, crude and refineddo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 34,274<br>93                     | 7,602<br>6                | 37,436<br>66             | 10,70                     |
| Umber, crude and refined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,272                            | 196                       | 1,192                    | 20                        |
| Vandyke browndodo<br>Nitrogen compounds (major), including urea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8,234<br>621                     | 412<br>77                 | 9,665<br>966             | 56                        |
| Phosphate, crudedodo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,683                            |                           |                          | 14                        |
| Phosphatic fertilizana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <sup>2</sup> 55                  | $125,037$ $^{2}$ 1,416    | 2,837<br><sup>2</sup> 65 | 146,45                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70                               | 3,184                     | 68                       | <sup>2</sup> 1,28<br>3,04 |
| Lead pigments and compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00                               |                           |                          |                           |
| Zinc pigments and compounds do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26,550<br>25,934                 | 9,244<br>6,891            | 20,515                   | 8,60<br>13,79             |
| Pumice:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4,996,415                        | 128,548                   | 36,479 $6,082,444$       | 13,79<br>157,80           |
| Crude or unmanufactureddo<br>Wholly or partly manufactureddo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9,094                            | 149                       | 5,026                    | 9                         |
| Manufactures, n.s.p.fdo<br>Manufactures, n.s.p.fdo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 589,758                          | 1,351                     | 305,400                  | 1,03                      |
| uartz crystal (Brazilan pebble)pounds_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NA<br>r 762,740                  | 24<br>331                 | NA<br>1,064,774          | 19                        |
| and and gravel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,463                            | 11,979                    | 3,187                    | 364<br>12,45              |
| Glass sanddodododium sulfatedodo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\frac{49}{712}$                 | $\frac{201}{1,178}$       | 48                       | 340                       |
| tone and whiting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 299                              | 5,358                     | 752<br>320               | 1,236<br>5,658            |
| trontium · Mineral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA<br>30,677                     | г 43,436                  | NA                       | 48,678                    |
| Sulfur ore and other forms nos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30,677                           | 830                       | 27,040                   | 657                       |
| Pyritesdo<br>alc: Unmanufacturedshort tons_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,138                            | 16,288                    | 1,222                    | 14 749                    |
| alc: Unmanufactured chart to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 125                              | 472                       | 20                       | 14,742<br>113             |
| MINERAL FUELS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29,085                           | 1,669                     | 22,993                   | 1,658                     |
| arbon black:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  |                           |                          |                           |
| Acetylenepounds_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6,022,118                        | 1,581                     | 7,268,499                | 2,030                     |
| Gas black and carbon blackdo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,149,099                        | 176                       | 8,669,196                | 991                       |
| Bituminous, slack, culm and lignite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47.000                           | •••                       |                          |                           |
| Briquets short tons_Coke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>47,09</b> 8<br>5,8 <b>4</b> 9 | 691<br>96                 | 126,641                  | 1,607                     |
| atural gas ethane methans and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 185,023                          | 4,649                     | 7,425 $1,077,737$        | 123<br>39,263             |
| eat:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 307,774,412                      | r 403,151                 | 995,329,121              | 341,470                   |
| Fertilizer gradeshort tons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 307,233                          |                           | · -                      |                           |
| Fertilizer gradeshort tons_<br>Poultry and stable gradedo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | r 3,288                          | 16,951<br>222             | $317,639 \\ 5,862$       | $18,390 \\ 372$           |
| Crude petroleum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 896,991                          | 2,369,176                 | 1,295,719                | 4,231,682                 |
| Residual fuel oildo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 107,905<br>r 480,031             | 254,529<br>1,170,366      | 188,553                  | 716,651                   |
| Casoline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,812                            | 5,324                     | 548,265<br>3,103         | 1,860,279<br>34,365       |
| Jet fueldo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,744                            | 8,730                     | 17,330                   | 139,528                   |
| do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | r 65,572<br>171                  | r 222,891                 | 71.819                   | 294,951                   |
| Kerosinedo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 270                              | 669<br>1,299              | 1,303<br>1,078           | 7,672                     |
| Wax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | r 970                            | r 988                     | 2,023                    | 6,946<br>1,516            |
| Naphthado                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 73                               | 1.342                     | 380                      | 8,899                     |
| Liquefied petroleum gases do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 86,279<br>32,485                 | 213,857                   | 97,469                   | 334,939                   |
| Asphaltdo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 32,485<br>9,653                  | $73,340 \\ 23,852$        | 47,873<br>8,669          | 151,259                   |
| Wax do Naphtha do Liquefied petroleum gases do Miscellaneous do Miscellane | 10,573                           | 36,810                    | 13,339                   | 20,868<br>51,596          |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  | 2,498,581                 | XX                       | 01,000                    |

r Revised. NA Not available. XX Not applicable.

1 Includes titanium slag averaging about 70% TiO<sub>2</sub>. For detail see Titanium Chapter, table 5.

2 Adjusted by Bureau of Mines.

Table 11.—Comparison of world and United States production of principal mineral commodities

(Thousand short tons unless otherwise specified)

|                                                                                                                                      |                       | 1972                |                     |                  | 1973 р                                                    |                     |
|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------|---------------------|------------------|-----------------------------------------------------------|---------------------|
|                                                                                                                                      |                       | 1314                | U.S.                |                  | TIC                                                       | U.S.<br>percent     |
| Minerals                                                                                                                             | World<br>produc-      | U.S.<br>produc-     | percent<br>of world | World<br>produc- | U.S.<br>produc-<br>tion                                   | of world<br>produc- |
|                                                                                                                                      | tion 1                | tion                | produc-<br>tion     | tion 1           |                                                           | tion                |
| MINERAL FUELS                                                                                                                        | 7,059                 | 3,201               | 45                  | 7,721            | 3,500                                                     | 45                  |
| arbon blackmillion pounds                                                                                                            | -                     |                     | 25                  | 2 2,385,506      | 577,574                                                   | 24                  |
| oal:                                                                                                                                 | 2 2,343,848           | 584,387<br>10,999   |                     | 903.072          | 14,164                                                    | 2                   |
| Lignite                                                                                                                              | 192,612               | 7,106               | 4                   | 191,919          | 6,830                                                     | 4                   |
|                                                                                                                                      |                       |                     |                     | 20,787           |                                                           |                     |
| oke (excluding breeze):  Gashouse 3                                                                                                  | 21,671                | 60,507              | $\overline{16}$     | 401,849          | 64,325                                                    | 16                  |
| Oven and beehive                                                                                                                     | 381,315               |                     |                     | 45 017 022       | 22,647,549                                                | 49                  |
| atural gas (marketable) million cubic feet                                                                                           | 42,568,899<br>116,029 | 22,531,698<br>577   | 53<br>(4)           | 106,481          | 635                                                       | 1                   |
| eatetroleum (crude)<br>thousand barrels_                                                                                             |                       | 3,455,368           | 3 19                | 20,560,852       |                                                           | 16                  |
| STORT METALS                                                                                                                         |                       |                     | 2 3                 | 4,606            | 150<br>1,104                                              | 3<br>23             |
| Asbestos                                                                                                                             | 4,362                 | 90                  |                     | 4,761<br>780,349 |                                                           | 11                  |
| Barite<br>Dement                                                                                                                     | 728,601               | 5 84,55             | 6 12<br>8 35        | 16,39            | 6 5,993                                                   | 37                  |
| China clay                                                                                                                           | _ 15,352<br>8         |                     | _                   | N A              | ·                                                         |                     |
| ement                                                                                                                                | 43,810                | _                   |                     | 43,48            | 9 609                                                     | 35                  |
| Diamondthousand carats                                                                                                               | 1,700                 | 57                  |                     |                  |                                                           | 28                  |
| Diatomite                                                                                                                            | 2,805                 | 78<br>25            |                     |                  | 8 249                                                     | 5                   |
| Fluorspar                                                                                                                            | - 4,974<br>- 398      |                     | Ň NA                | N.               | 4 W                                                       | NA<br>20            |
| Diatomite Feldspar Fluorspar Graphite                                                                                                | 66,142                | 12,32               | 8 19                | 67,03<br>118,82  | $\begin{bmatrix} 2 & 13,558 \\ 0 & 521,132 \end{bmatrix}$ | 18                  |
| Graphite Gypsum Lime (sold or used) Magnesite                                                                                        | _ 113,560             | 5 20,38             | 32 18<br>W NA       | 9,86             | 4 W                                                       | NA                  |
| Miss (including scrap)                                                                                                               |                       |                     | 36 61               | 577,27           | 6 354,152                                                 | 61                  |
| thousand pounds                                                                                                                      |                       | 5 °8,9              | 19 4                | 42,20            | $\begin{array}{cccccccccccccccccccccccccccccccccccc$      |                     |
| Nitrogen, agricultural 7                                                                                                             | 98,98                 | 1 40,8              | 31 41<br>59 12      |                  | 2 2,603                                                   | 1                   |
| Phosphate rock Potash ( $K_2O$ equivalent) Pumice Pumice Pumice Pyrites thousand long tons                                           | 22,49                 | 7 2,0               |                     | 15,69            | 98 3,772                                                  | 2                   |
| Pumice 8                                                                                                                             | 17,46<br>22,78        |                     | 41 3                | 3 22,0           | 38 555                                                    |                     |
| Pyritesthousand long tons.                                                                                                           | 162,94                |                     | 50 2                | 1.               | 26 ° 45,540<br>03                                         |                     |
| Salt                                                                                                                                 | 11                    | 0                   |                     |                  |                                                           |                     |
|                                                                                                                                      |                       | 9 9,2               | 40 3                |                  | 55 10,021<br>66 1,24                                      | L 3                 |
| thousand long tons                                                                                                                   |                       | 1,1                 | .07 2               | 5,6<br>6 5       | 51 36                                                     | 5 6                 |
| Talc, pyrophyllite, soapstone Vermiculite 8                                                                                          |                       | 2                   | 337 6               |                  | 01                                                        |                     |
| METALS, MINE BASIS                                                                                                                   |                       |                     |                     |                  |                                                           | _                   |
| Antimony, (content of ore                                                                                                            | 73,2                  | 59 4                |                     | 1 76,4           |                                                           |                     |
| and concentrate)short tons                                                                                                           | 46,3                  | 38                  | N                   |                  |                                                           |                     |
| Antimony, (content of ore and concentrate)short tons Arsenic, whitedo_Bauxitethousand long tons Berylshort tons Berylthousand pounds | 64,0                  | 21 <sup>9</sup> 1,  | 812<br>W N          |                  | .91 <b>V</b>                                              | V N                 |
| Bauxiteshort tons                                                                                                                    | 4,6<br>8,3            | 34<br>20            | w n                 | Δ 8.             | 798 V                                                     |                     |
| Bismuththousand pounds                                                                                                               | 6,9                   | 50<br>77            |                     | 7.               |                                                           | -                   |
| Chromite short tons                                                                                                                  | <sub>3</sub> 25,9     | 25                  |                     | 28,              | - 662                                                     | -                   |
|                                                                                                                                      | 1                     |                     |                     | 53,              | 001 -                                                     |                     |
|                                                                                                                                      |                       |                     |                     | 23 7,            | 857 10 1,7                                                | 18                  |
| Copper (content of ore and concentrate)                                                                                              | 7,5                   | 329 <sup>10</sup> 1 | ,000                | 3 43,            | 070 1,1                                                   | 76                  |
|                                                                                                                                      | s 44,7                |                     | ,450<br>.434        | 10 850,          | 477 11 87,6                                               | 69                  |
|                                                                                                                                      | s 101,                |                     |                     | 10 9             | ,806 <sup>10</sup> 6                                      | 03                  |
| Lead (content of ore and                                                                                                             | 3,                    |                     | 619                 | 16 3<br>(4) 24   |                                                           | (4)<br>2            |
| Manganese ore (35% or more Mn                                                                                                        | ) 22,                 | 990                 | 1<br>7              | 3                | 276                                                       | 2                   |
| concentrate)  Concentrate)  Manganese ore (35% or more Mn Mercury thousand 76-pound flask                                            | s                     | 278                 | •                   | - 04             | 152 115,8                                                 | 59                  |
| Mercury_thousand 70-pound hash Molybdenum (content of ore and concentrate)thousand pound                                             | ls 174,               | 418 112             | ,138                | 64 181           | •                                                         |                     |
| Nickel (content of ore and concentrate)                                                                                              |                       | 683                 | 17                  | 2                | 726                                                       | 18                  |
| Platinum group                                                                                                                       | es 4,                 | 269                 | 17<br>7,233         |                  | ,174<br>5,916 37,5                                        | 20<br>827           |
| Silverdo                                                                                                                             |                       | ,200                |                     | AT A 999         | ,404                                                      | w                   |
| Tin (content of ofe and long to                                                                                                      | ns 239                | ,610                | W                   |                  |                                                           | 804                 |
| Titanium concentrates:  Ilmenite 8  Rutile 8  Rutile 8                                                                               | 2                     | ,668<br>357         | 682                 | 26 2             | 2,939<br>368                                              |                     |

Table 11.-Comparison of world and United States production of principal mineral commodities-Continued

(Thousand short tons unless otherwise specified)

| -                                                                                                                                                                                                                                                                                                                                  |                                                                                                     | 1972                                                                                                 | TYO                                                     |                                                                                                     | 1973 P                                                                    |                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------|
| Minerals                                                                                                                                                                                                                                                                                                                           | World<br>produc-<br>tion <sup>1</sup>                                                               |                                                                                                      | U.S. percent of world produc- tion                      | World<br>produc-<br>tion <sup>1</sup>                                                               | U.S.<br>produc-<br>tion                                                   | U.S.<br>percent<br>of world<br>produc-<br>tion          |
| METALS, MINE BASIS—Continued<br>Tungsten concentrate (contained                                                                                                                                                                                                                                                                    |                                                                                                     |                                                                                                      |                                                         |                                                                                                     |                                                                           |                                                         |
| Uranium oxide $(U_3O_8)^{-8}$                                                                                                                                                                                                                                                                                                      | 84,470                                                                                              | 8,150                                                                                                | 10                                                      | 85,320                                                                                              | 7,575                                                                     | 9                                                       |
| Vanadium (content of ore and                                                                                                                                                                                                                                                                                                       | 25,625                                                                                              | 12,900                                                                                               | 50                                                      | 25,486                                                                                              | 13,235                                                                    | 52                                                      |
| concentrate)short tons                                                                                                                                                                                                                                                                                                             | 20,679                                                                                              | 4,887                                                                                                | 24                                                      | 21,285                                                                                              | 4,377                                                                     | 21                                                      |
| concentrate)                                                                                                                                                                                                                                                                                                                       | 6,221                                                                                               | 478                                                                                                  | 8                                                       | 6,377                                                                                               | 479                                                                       | 8                                                       |
| Aluminum  Sadmium Short tons  Sadmium Short tons  Lagnesium  Lagnesium Short tons  Lagnesium Short tons  Lagnesium Short tons  Lagnesium Short  Lagnesium Short  Lagnesium Short  Lagnesium Short  Lagnesium Short  Lousand pounds   12,115<br>18,388<br>7,340<br>502,768<br>3,745<br>256<br>2,687<br>692,557<br>384<br>236,473<br>5,646 | 4,122<br>12 4,145<br>13 1,690<br>88,876<br>14 689<br>121<br>739<br>133,241<br>257<br>16 4,300<br>633 | 34<br>23<br>23<br>18<br>18<br>47<br>28<br>19<br>67<br>2 | 13,359<br>18,747<br>7,838<br>555,852<br>3,801<br>261<br>2,458<br>765,832<br>420<br>227,251<br>5,795 | 4,529 12 3,714 13 1,744 100,929 14 688 122 627 5 150,799 241 16 4,500 541 | 34<br>20<br>22<br>18<br>18<br>47<br>26<br>20<br>57<br>2 |

3 Includes low- and medium-temperature and gashouse coke. 3 Includes low- and medium-temperature and gasnouse 4 Less than ½ unit.
5 Includes Puerto Rico.
6 Kaolin sold or used by producers.
7 Year ended June 30 of year stated (United Nations).
8 World total exclusive of the U.S.S.R.
9 Dry bauxite equivalent of crude ore.

11 Includes byproduct ore. 12 Includes secondary.

13 Includes secondary.

13 Smelter output from domestic and foreign ores, exclusive of scrap.

14 Lead refined from domestic and foreign ores; excludes lead refined from imported base bullion.

15 Data from American Iron and Steel Institute. Excludes production of castings by companies that do not produce steel ingot.

16 Includes tin content of alloys made directly from ore.

P Preliminary. r Revised. NA Not available. W Withheld to avoid disclosing individual company confidential data.

1 May not represent total world production because confidential U.S. data are excluded for some commodities. World totals include reported figures and reasonable estimates; however, for some commodities where data were not available, no reasonable estimates could be made and none have been included.

been included.

2 Included.

2 Includes small quantities of lignite for People's Republic of China, and Pakistan, and anthracite

# Abrasive Materials

### By Robert G. Clarke 1

The output of natural abrasives increased 16% in both quantity and value compared with that of 1972, excluding the value of emery. Production of tripoli-type crudes increased 16% in quantity and 17% in value. The output of silica stone products increased 7% in quantity and 1% in value. The production of garnet increased 20% in quantity and 22% in value. The production of emery was essentially unchanged in quantity.

Overall, the production of artificial abrasives increased 10% in quantity and 17% in value. A new abrasive, fused aluminum zirconium oxide, was added to the canvass by the Bureau of Mines for 1973.

#### **FOREIGN TRADE**

Imports of abrasive materials were 28% more in value than in 1972, and exports plus reexports increased 24%. Net imports, the excess of imports over exports and reexports, were \$24.2 million, a 55% increase over 1972 net imports. The volume as well as the unit value of nearly all abrasive materials imported increased.

The trade in industrial diamond continued to have a major influence on the total value. Industrial diamond imports totaled 19.2 million carats valued at \$65.6 million, an increase of 27% in quantity, and 25% in value above those of 1972. The exports of industrial diamond amounted to 10.5 million carats, an increase of 19%, and the value was \$29.4 million, an increase of 22%. Reexports of industrial diamond amounted to 4.5 million carats, a decrease of 1%, and the value was \$29.2 million, an increase of 10%. Dust and powder accounted for 95% of the carats and 85% of the value of exports, whereas other diamond, or stones, accounted for 80% of the carats and 88% of the value of reexports of industrial diamond.

Table 1.-Salient abrasive statistics in the United States

| Kind                                      | 1969             | 1970     | 1971     | 1972             | 1973            |
|-------------------------------------------|------------------|----------|----------|------------------|-----------------|
| Natural abrasives (domestic) sold or used |                  |          |          |                  |                 |
| by producers:                             |                  |          |          |                  |                 |
| Tripoli (crude)short tons                 | 84,673           | 68,105   | 75,134   | 87,864           | 101,519         |
| Valuethousands                            | \$734            | \$520    | \$569    | \$797            | \$929           |
| Special silica-stone products 1           | •                | •        | •        |                  |                 |
| short tons                                | 3,311            | 3.134    | 2,349    | 3,241            | 3,466           |
| Valuethousands_                           | \$600            | \$665    | \$563    | \$670            | \$677           |
| Garnetshort tons_                         | 20.458           | 18,837   | 18,984   | 18,916           | 22,772          |
| Valuethousands                            | \$1,874          | \$1,936  | \$1,934  | \$1,957          | \$2,380         |
| Emeryshort tons_                          | w                | w        | 1,586    | 2,883            | 2,884           |
| Valuethousands_                           | ŵ                | ŵ        | w        | w                | w               |
| Artificial abrasives 2short tons_         | 608.622          | 561.107  | 472,299  | 584,680          | 3 645.813       |
| Valuethousands_                           | \$92,589         | \$85,772 | \$79,027 | \$92,958         | 3 \$108,808     |
| Foreign trade (natural and artificial     | ψ <i>52</i> ,000 | 400,112  | 4.0,02.  | 402,000          | <b>4200,000</b> |
|                                           |                  |          |          |                  |                 |
| abrasives)                                | \$70.687         | \$64,338 | \$60,685 | \$64.219         | \$82,969        |
| Exports (value)do                         |                  |          | \$21,711 | \$26,746         | \$29,413        |
| Reexports (value)do                       | \$20,373         | \$28,085 | ΦΔ1,(11  | φ <u>4</u> 0,740 | \$45,410        |
| Imports for consumption                   | 9100 510         | 000 405  | 900 005  | #100 F10         | 019C E9C        |
| (value)dodo                               | \$100,748        | \$96,467 | \$89,085 | \$106,512        | \$136,536       |

<sup>&</sup>lt;sup>1</sup> Physical scientist, Division of Nonmetallic Minerals-Mineral Supply.

W Withheld to avoid disclosing individual company confidential data.

1 Includes grinding pebbles, grindstones, oilstones, tube-mill liners, and whetstones.

2 Production of silicon carbide and aluminum oxide (United States and Canada); shipments of metallic abrasives (United States).

3 Includes production of aluminum zirconium oxide (United States and Canada).

Table 2.-U.S. exports of abrasive materials, by kind (Thousands)

|                                                                                                      | 1             | 972      | 1                      | 973      |
|------------------------------------------------------------------------------------------------------|---------------|----------|------------------------|----------|
| Kind                                                                                                 | Quan-<br>tity | Value    | Quan-<br>tity          | Value    |
| NATURAL ABRASIVES                                                                                    |               |          |                        |          |
| Dust and powder of natural and synthetic precious or semiprecious stones, including diamond dust and |               |          |                        |          |
| powdercarats_                                                                                        | 8,263         | \$21,986 | 0.000                  | 00F 051  |
| Crushing bort, except dust and powderdo                                                              | 55            | 305      | 9,928<br>40            | \$25,071 |
| Industrial diamonddo                                                                                 | 484           | 1.899    | 516                    | 138      |
| Emery, natural corundum, and other natural                                                           | 404           | 1,099    | 910                    | 4,208    |
| abrasives, n.e.cpounds_                                                                              | 21.850        | 2,797    | 35,625                 | 9.070    |
| MANUFACTURED ARRASIVES                                                                               | 21,000        | 4,101    | 55,625                 | 3,979    |
| Artificial corundum (fused aluminum oxide) do                                                        | 36,386        | 7,251    | 59,157                 | 11,470   |
| 5111COR Carbide, crude or in grains do                                                               | 10,014        | 2.194    | 15.445                 | 3.413    |
| Carbide abrasives, n.e.cdo                                                                           | 1.963         | 4.157    | 1.964                  |          |
| Grinding and polishing wheels and stones:                                                            | 1,000         | 4,101    | 1,904                  | 4,006    |
| Diamondcarats                                                                                        | 554           | 3.073    | 746                    | 4,223    |
| Pulpstonespounds                                                                                     | 2,185         | 702      | 2,450                  |          |
| Polishing stones, whetstones, oilstones, hones, and                                                  | 2,100         | 102      | 2,450                  | 833      |
| similar stonesdo                                                                                     | 873           | 981      | 787                    | 1.050    |
| wheels and stones, n.e.c. do                                                                         | 4,361         | 8,238    | 5.204                  | 9,776    |
| Abrasive paper and cloth, coated with natural or                                                     | 4,001         | 0,200    | 0,204                  | 9,110    |
| artificial abrasive materials rooms                                                                  | 322           | 8,240    | 360                    | 12,067   |
| Coated abrasives, n.e.c                                                                              | NA            | 2,396    | NA                     | 2,735    |
| Total                                                                                                | XX            |          |                        |          |
|                                                                                                      | AA            | 64,219   | $\mathbf{x}\mathbf{x}$ | 82,969   |

NA Not available. XX Not applicable.

Table 3.-U.S. reexports of abrasive materials, by kind (Thousands)

|                                                                                                                                | 1             | 972    | 19            | 973     |
|--------------------------------------------------------------------------------------------------------------------------------|---------------|--------|---------------|---------|
| Kind                                                                                                                           | Quan-<br>tity | Value  | Quan-<br>tity | Value   |
| NATURAL ABRASIVES  Dust and powder of natural and synthetic precious or semiprecious stones, including diamond dust and powder |               |        |               |         |
| Carats                                                                                                                         | 336           | \$790  | 488           | \$1,206 |
| Crushing bort except dust and powderdo                                                                                         | 329           | 1,925  | 418           | 2,372   |
| Industrial diamond                                                                                                             | 3,852         | 23,867 | 3,579         | 25,596  |
| MANUFACTURED ABRASIVES                                                                                                         | 295           | 60     | 167           | 39      |
| Carbide abrasivesdododododododo                                                                                                |               |        | (1)           | 9       |
| Diamondcarats_<br>Polishing stones, whetstones, oilstones, hones, and                                                          | 1             | 10     | 1             | 9       |
| similar stones pounds                                                                                                          |               |        | 1             | 3       |
| wheels and stones, n.e.cdo                                                                                                     | 35            | 40     | 103           | 132     |
| Abrasive paper and cloth, coated with natural or artificial                                                                    |               |        |               |         |
| abrasive materialsreams_                                                                                                       | 5             | 37     | (1)           | (1)     |
| Coated abrasives, n.e.c                                                                                                        | NA            | 17     | ŇÁ            | 47      |
| Total                                                                                                                          | XX            | 26,746 | XX            | 29,413  |

NA Not available. XX Not applicable.  $^1$  Less than  $\frac{1}{2}$  unit.

Table 4.-U.S. imports for consumption of abrasive materials (natural and artificial), by kind

(Thousands)

|                                                                                                                                                    | 197                                 | 2                                         | 1973                               |                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------|------------------------------------|------------------------------------|
| Kind                                                                                                                                               | Quan-<br>tity                       | Value                                     | Quan-<br>tity                      | Value                              |
| Corundum, crudeshort tons                                                                                                                          | (1)                                 | \$2                                       | 1                                  | \$34                               |
|                                                                                                                                                    | 4                                   | 222                                       | 13                                 | 403                                |
| Emery, flint, rottensione, and origin, do                                                                                                          | 105                                 | 15,053                                    | 113                                | 16,762                             |
| ilicon carbide, crudedo                                                                                                                            | 173                                 | 22,308                                    | 188                                | 29,190                             |
| Aluminum oxide, crudedodododododododo                                                                                                              | (¹)                                 | 107                                       | 1                                  | 210                                |
| Abrasives, ground grains, pulverized or refined: Silicon carbidedo                                                                                 | 2<br>7                              | 906<br>2,154                              | 4<br>7                             | 1,510<br>2,156                     |
| Aluminum oxidedodododo                                                                                                                             | 1                                   | 188                                       | (1)                                | 166                                |
| artificial abrasives  Papers, cloths, and other materials wholly or partly coated with natural or artificial abrasivesdo                           | (2)                                 | 9,944                                     | (2)                                | 14,682                             |
| coated with natural of artificial coated with natural of artificial polishing stones  Hones, whetstones, oilstones, and polishing stones  number   | 380                                 | 109                                       | 367                                | 118                                |
| Abrasives wheels and millstones:  Burrstones manufactured or bound up into millstonesshort tons_ Solid natural stone wheelsnumber_ Diamonddo Other | (1)<br>1<br>53<br>(2)               | 11<br>10<br>562<br>1,789                  | (1)<br>9<br>93<br>(2)              | 17<br>1,037<br>3,698               |
| Articles not especially provided for:  Emery or garnet Natural corundum or artificial abrasive materials Other                                     | (2)<br>(2)<br>(2)                   | 24<br>183<br>133                          | (2)<br>(2)<br>(2)                  | 5<br>26<br>24                      |
| Diamond:         number           Diamond dies                                                                                                     | 9<br>590<br>4,506<br>1,024<br>9,014 | 188<br>1,385<br>27,343<br>4,712<br>19,179 | 13<br>74<br>5,555<br>973<br>12,552 | 39<br>16<br>34,37<br>4,65<br>26,40 |
| Miners' diamonddodo<br>Dust and powderdo                                                                                                           | XX                                  | 106,512                                   | XX                                 | 136,5                              |

XX Not applicable.

#### **TRIPOLI**

Fine-grained, porous, silica materials are discussed as a group because they have similar properties and end uses. Commercially the term "tripoli" is applied to material from Arkansas, Missouri, and Oklahoma; and the term "amorphous" or "soft" silica is applied to the material from the Southern Illinois area. Rottenstone mined in Pennsylvania is more earthy but its properties render it suitable for end uses similar to those of tripoli and amorphous silica. Production of crude tripoli (table 1) increased 16% in quantity and 17% in value. Processed tripoli (table 5) for abrasive use was 62% of the total, and material for

filler use was 36%, compared with 63% and 35%, respectively, in 1972.

Tripoli producers in 1973 were Malvern Minerals Co., Garland County, Ark., which produced crude and finished material, and The Carborundum Co., which produced crude in Ottawa County, Okla., and finished material in Newton County, Mo. Amorphous silica producers were Illinois Minerals Co. and Tammsco, Inc., both in Alexander County, Ill. Keystone Filler and Manufacturing Co., in Lycoming County, Pa., mined and processed rottenstone. The largest amounts of amorphous silica and rottenstone were used for abrasive purposes; there was minor use as a filler.

<sup>&</sup>lt;sup>1</sup> Less than ½ unit.

<sup>&</sup>lt;sup>2</sup> Quantity not reported.

Prices quoted in Engineering and Mining Journal, December 1973 for tripoli and amorphous silica were as follows:

Tripoli, paper bags, carload lots, f.o.b., cents per pound:

| White, Elco, Ill.: Air floated through 200-mesh  | 1.35 |
|--------------------------------------------------|------|
| Rose and cream, Seneca, Mo. and<br>Rogers, Ark.: | 1.00 |
| Once ground<br>Double ground                     | 2.90 |
| Air float                                        | 2.90 |
| 1111 11040                                       | 3.15 |

Amorphous silica, bags, f.o.b., dollars per ton: Elco, Ill.:

| Through 200 mesh, 90 to 95% | 27<br>28<br>29<br>31.50<br>32.50<br>46.50<br>68<br>75<br>95 |
|-----------------------------|-------------------------------------------------------------|
| 325 mesh                    | 30                                                          |
| old mesi                    | 40                                                          |

Table 5.-Processed tripoli 1 sold or used by producers in the United States, by use 2

| Kind                                                                                                                                                                                                                                                                                            |                                                        |                                                       |                                                       | reaces, Dy                                            | 450                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                 | 1969                                                   | 1970                                                  | 1971                                                  | 1972                                                  | 1973                                                    |
| Abrasives         -short tons.           Value         -thousands.           Filler         -short tons.           Value         -thousands.           Other         -short tons.           Value         -thousands.           Total         -short tons.           Value         -short tons. | 50,337<br>\$2,013<br>14,352<br>\$413<br>5,487<br>\$157 | 41,703<br>\$1,583<br>18,093<br>\$545<br>1,134<br>\$28 | 44,899<br>\$1,692<br>20,457<br>\$681<br>1,327<br>\$32 | 47,321<br>\$1,918<br>25,973<br>\$747<br>1,584<br>\$43 | 55,420<br>\$2,233<br>32,407<br>\$1,158<br>2,105<br>\$62 |
| Value 3thousands_                                                                                                                                                                                                                                                                               | \$2,584                                                | 60,930<br>\$2,156                                     | 66,683<br>\$2,406                                     | 74,878<br>\$2,807                                     | 89,932<br>\$3,453                                       |

<sup>&</sup>lt;sup>1</sup> Includes amorphous silica and Pennsylvania rottenstone.

# SPECIAL SILICA STONE PRODUCTS

Special silica stone products include the following: Oilstones from Arkansas, whetstones from Arkansas and Indiana, grindstones from Ohio, grinding pebbles and deburring media from Minnesota and Wisconsin, and tube-mill liners from Minnesota. Production increased overall in both quantity and value.

Novaculite for oilstones, all from operations in Garland County, Ark., was produced by John O. Glassford, Cleve Milroy, M. V. Smith, and Norton Pike Division of Norton Co. Whetstones were produced by Arkansas Abrasives, Inc., and Hiram A. Smith Whetstone Co., both in Garland County, Ark., and by Hindostan Whetstone Co. in Orange County, Ind. Cleveland Quarries Co. produced grindstones at its Amherst

quarry, Amherst County, Ohio. Jasper Stone Co. produced grinding pebbles and tube-mill liners from its quarry in Jasper County, Minn. Baraboo Quartzite Co., Inc., produced deburring media at its quarry in Sauk County, Wis.

Table 6.-Special silica-stone products sold or used in the United States 1

|      | Year | Quantity<br>(Short tons) | Value<br>(Thousands) |
|------|------|--------------------------|----------------------|
| 1969 |      | 3,311                    | \$600                |
| 1970 |      | 3,134                    | 4000<br>665          |
| 1971 |      | 2,349                    | 563                  |
| 1972 |      | 3,241                    | 670                  |
| 1973 |      | 3,466                    | 677                  |

<sup>&</sup>lt;sup>1</sup> Includes grinding pebbles, grindstones, oilstones, tube-mill liners, and whetstones.

## NATURAL SILICATE ABRASIVES

Garnet.—Sales of domestic garnet increased 20% in quantity and 22% in value. Normal processing included crushing, grinding, and screening to produce specified particle sizes and grits. However, further processing was performed on some material to meet specifications for special end uses. There were four active producers-two in

New York and two in Idaho. Barton Mines Corp., Warren County, N.Y., the largest producer, processed the garnet for use in coated abrasives, glass grinding and polishing, and metal lapping. Also in New York, Interpace Corp., Essex County, recovered garnet as a byproduct of wollastonite ore. Idaho Garnet Abrasive Co. and Emerald

<sup>2</sup> Partly estimated.
3 Data may not add to totals shown because of independent rounding.

Creek Garnet Milling Co. produced garnet from placer deposits in Benewah County, Idaho. The latter three producers reported the use of garnet for a variety of purposes, such as sandblasting, water filtration, nonskid paints, and miscellaneous abrasive applications.

Prices for New York garnet, f.o.b. North Creek, N.Y., 2.000-pound release, in 330 to 370 pound containers; in cents per pound were as follows:

Untreated for manufacturing of coated abrasives:

| Grades | 16 through 36   | 18 |
|--------|-----------------|----|
| Grades | 40 through 220  | 20 |
| Grades | 240 through 280 | 28 |
| Grades | 320 through 600 | 95 |

#### Untreated for technical grinding lapping:

| Mesh sizes 20 to 240  | 1  |
|-----------------------|----|
| Mesh sizes 280 to 360 | 20 |
| Micron sizes 27 to 23 | 2  |
| Micron sizes 20 to 8  | 2  |
| Micron sizes 6 to 5   | 19 |
| Micron sizes 4 to 2   | 34 |

Prices for Idaho garnet, f.o.b. Seattle, ranged from 5.5 to 9 cents per pound.

Table 7.-Abrasive garnet sold or used by producers in the United States

| Year | Quantity<br>(Short tons)( | Value<br>Thousands) |
|------|---------------------------|---------------------|
| 1969 | <br>20,458                | \$1,874             |
| 1970 | <br>18,837                | 1.936               |
| 1971 | <br>18,984                | 1,934               |
| 1972 | <br>18,916                | 1,957               |
| 1973 | <br>22,772                | 2,380               |

#### **NATURAL ALUMINA ABRASIVES**

Corundum.—Domestic production abrasive-grade corundum on a commercial scale was last reported in 1918. In recent years nearly all of the corundum used by domestic industry was imported from Southern Rhodesia, but this trade was halted by the sanctions imposed in 1968 by the United Nations. The Office of Emergency Preparedness in 1969 dropped corundum from the list of strategic and critical materials for stockpiling. In 1971, Bendix Abrasives Division, Westfield Facility, of Westfield, Mass., acquired 1,964 short tons of corundum from Government stockpiles after Congressional approval was granted. Domestic industry completed the consumption of accumulated stocks in 1973.

Emery.—Domestic production of emery in 1973 was by two producers, De Luca

Emery Mine, Inc., near Peekskill in Westchester County, N. Y., and Oregon Emery Co. near Sweethome in Linn County, Oreg. Data on value of production were withheld to avoid disclosing individual company confidential data. The quantity of production. 2,884 tons, was slightly more than that of 1972. Emery use was mostly in aggregate for heavy-duty nonslip floors, pavements, and stair treads. In lesser amounts it was used in coated abrasives and tumbling abrasives.

World production data, in short tons, are mainly for two countries. In 1971, production of emery in Turkey was 87,353 tons; and in 1972, production was 87,998 tons. Production of emery in Greece was estimated to be 7,716 tons for each year, 1971 and 1972.

Table 8.-Natural corundum: World production by country (Short tons)

| Country 1                        | 1971                    | 1972      | 1973 Р      |
|----------------------------------|-------------------------|-----------|-------------|
| India                            | r 351                   | 422       | e 440       |
| Kenya<br>Malagasy Republic       | (2)<br>1                | (2)<br>3  | ΝĀ          |
| Malawi South Africa, Republic of | ( <sup>3</sup> )<br>266 | NA<br>324 | NA<br>e 300 |
| U.S.S.R.e                        | r 7,165                 | 7,700     | 7,700       |
| Total                            | r 7,783                 | 8,449     | NA          |

<sup>&</sup>lt;sup>e</sup> Estimate. <sup>p</sup> Preliminary. <sup>r</sup> Revised. NA Not available.

<sup>1</sup> In addition to the countries listed, Southern Rhodesia may have continued to produce natural corundum at a significant level (several thousand tons annually), but available information is inadequate to make reliable estimates of output levels.

<sup>2</sup> Revised to zero.

<sup>3</sup> Less than ½ unit.

#### INDUSTRIAL DIAMOND

Domestic production of synthetic industrial diamond in 1973 was estimated to be 17 million carats, up 2 million carats from that of 1972. Secondary production comprising salvage from used diamond tools and from wet and dry diamond-containing wastes was estimated to be 2 million carats.

The Government stockpile inventory as of December 31, 1973, was 38.8 million carats of crushing bort and 22.6 million carats of stones. The objectives for both categories were reduced to zero and the inventories were considered excess. Prior enabing legislation for disposal was for bort, 15.1 million carats, and for stones, 2.6 million carats. Legislation was requested for disposal of the remaining 23.7 million carats of bort; and, 20.0 million carats of stones. The inventory of small diamond dies was 25,473 of which the objective was 7,900, and 17.573 were excess.

Exports and reexports of industrial diamond dust and powder, which included synthetics, were 10.4 million carats valued at \$26.3 million. Crushing bort, except dust and powder, exported amounted to 0.5 million carats valued at \$2.5 million. Exports and reexports of stones were 4.1 million carats valued at \$29.8 million. The total of exports and reexports of dust and powder, bort, and stones was 15 million carats valued at \$58.6 million.

Imports of industrial diamond in 1973 increased 27% in number of carats and 25% in value over 1972 figures. Receipts from Ireland were 9.4 million carats valued at \$21.1 million, increases of 26% in quantity and 18% in value, respectively, in 1973 over the 1972 figures. The share of imports from Ireland was 49% of quantity and 32% of value. Of the industrial diamond listed as powder or dust, synthetic diamond was 5.2 million carats valued at \$10.6 million, and natural diamond was 7.3 million carats valued at \$15.8 million.

Table 9.—U.S. imports for consumption of industrial diamond (excluding diamond dies)

(Thousand carats and thousand dollars)

|              | Year | Quantity         | Value            |
|--------------|------|------------------|------------------|
| 1971<br>1972 |      | 12,910<br>15.134 | 46,023<br>52,619 |
| 1973         |      | 19,154           | 65,594           |

#### WORLD REVIEW

Angola.-Exports of the Companhia de Diamantes de Angola (DIAMANG), Angola's only diamond producer in 1972, dropped by 6% to 2,199,860 carats during 1972.2 All diamond exports are destined for metropolitan Portugal. However, export income rose by 4% to \$63.4 million in 1972, as the percentage of gem stones increased. The percentage of gems was expected to increase to about 70% in 1973. Diamonds accounted for 11% of Angola's export income in 1972. Several promising deposits of kimberlite were found in 1972 and 1973 by the Consorcio de Diamantes de Angola (CONDIAMA), the consortium of DIAMANG and De Beers Consolidated Mines Ltd.'s interests which inherited all but 50,000 square kilometers of DIAMANG's former concession area. None of the three small firms prospecting for diamond in the coastal area had announced any significant finds during the past year.

Botswana.—The Government and De-Beers Botswana Mining Co. (Pty) Ltd. discussed development of the Dk 1 kimberlite pipe 25 miles southeast of the existing Orapa mine, which currently produces 2.4 million carats worth about \$30 million a year.<sup>3</sup> Dk 1 is an extensive primary diamondiferous deposit which can probably be worked initially as an open pit and could be operating by 1975.

Central African Republic.—Cominco, Ltd., of Canada, held majority interest in a new company, Société Centrafricaine d'Exploitation Diamantifère (SCED), formed with Diamond Distributors Inc. of New York to conduct diamond mining and exploration in the Central African Republic.<sup>4</sup> The new project resulted from meetings with Government officials in Bangui, the capital. Cominco will manage the company and provide technical direction for field work. Diamond Distributors will market the production.

<sup>&</sup>lt;sup>2</sup> U.S. Bureau of Mines, Angola. Developments and Outlook for Angola's Minerals Industries. Nonmetallic Minerals. Mineral Trade Notes, v. 70, No. 8, August 1973, p. 9.

<sup>&</sup>lt;sup>3</sup> Engineering and Mining Journal. In Africa, Botswana. V. 174, No. 12, December 1973, p. 127.

<sup>&</sup>lt;sup>4</sup> The Northern Miner. Cominco to Mine Diamonds in Central African Republic. V. 59, No. 37, Nov. 29, 1973, p. 32.

Table 10.-U.S. imports for consumption of industrial diamond, by country

(Thousand carats and thousand dollars)

| d dust                                          | 1973                                     | Quan-<br>tity Value | - 1           | 315 551<br>316 253<br>317 253<br>318 253<br>13 30<br>14 8<br>9,864 20,914<br>703 1,398<br>58 96 232<br>110 110<br>12,652 10,054<br>12,652 26,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------|------------------------------------------|---------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Powder and dust                                 | 72                                       | Value               | A gine        | 192<br>192<br>193<br>115,165<br>116,165<br>117<br>118<br>118<br>118<br>118<br>118<br>119,179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Po                                              | 1972                                     | Quan.               | circy         | 110<br>110<br>110<br>110<br>110<br>1115<br>1115<br>1115<br>1115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                 | 73                                       |                     | Value         | 118<br>141<br>146<br>16<br>16<br>17<br>18<br>18<br>18<br>19<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| puom                                            | 1973                                     | Quan-               | tity          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Miners' diamond                                 | 1979                                     |                     | Value         | 189<br>111<br>111<br>126<br>127<br>123<br>125<br>125<br>115<br>15<br>15<br>15<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mir                                             | 1                                        | Quan-               | tity          | 433<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,024<br>1,02     |
| pu pi                                           | set)                                     | 9                   | Value         | 7,714<br>7,714<br>59<br>60<br>869<br>840<br>889<br>889<br>1187<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,429<br>1,4 |
| diamo<br>zers' ar                               | and, un                                  | L978                | tity          | 1,689<br>4<br>4<br>7<br>7<br>7<br>60<br>109<br>109<br>109<br>109<br>109<br>109<br>109<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Other industral diamond (including glazers' and | engravers' diamond, unset)               |                     | Value         | 6,131<br>2,1<br>2,1<br>1,4<br>1,37<br>1,195<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,109<br>1,   |
| Other<br>(includ                                | ngraver                                  | 1972                | tity          | 1,475<br>1,475<br>1,475<br>1,475<br>1,475<br>1,475<br>1,143<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,040<br>1,     |
|                                                 | i                                        | İ                   | Value         | (1)   (1)   (1)   (1)   (2)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)   (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (includi                                        | rt suluan<br>hing)                       | 1973                | Quan-         | 161   161   162   163   164   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165   165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Crushing bort (including                        | all types of port suitable for crushing) | 1972                | Value         | 489<br>889<br>820<br>820<br>820<br>9 9 9 1<br>1,385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Crushi                                          | all tyr                                  |                     | Quan-<br>tity | 231<br>1127<br>1127<br>1127<br>1127<br>1127<br>1127<br>1127<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                 |                                          | Country             | •             | Australia Beizum-Luxembourg Beize Brazil Brazil Brazil Britan Canada Canada Congo (Brazaville) Cyprus Cyprus Chana Ireland Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isrel Isr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

r Revised.

1 Less than 1% un

China, People's Republic of .- The New China News Agency reported the production of synthetic industrial diamond by subjecting carbon substances to "dynamic high pressure," an explosive process. It was accomplished by the Institute of Physics of the Chinese Academy of Sciences in cooperation with the Peking Grinding-Wheel Works.<sup>5</sup> China became independent of other countries for industrial diamonds in fine sizes by this accomplishment.

Lesotho.—The Lesotho National Development Corp. (LNDC) continued efforts to interest commercial developers in diamond mining areas.6 Rio Tinto Zinc Corp. (RTZ) abandoned the Letseng-la-Terai diamond pipe in the Mokhotlong District in 1972. The LNDC granted De Beers permission in July to conduct a 6-month evaluation of the Letseng pipe. Newmont Mining Corp. cancelled further exploration and development of the Kao pipe in Butha Buthe District early in 1973 after investing \$5.6 million. Nord Resources Corp. of the United States and the Anglo American Corp. of South Africa Ltd. indicated an interest in the areas abandoned by RTZ and Newmont.

Sierra Leone.—Although diamond production in 1972 decreased from that of 1971, higher world diamond prices in 1972 resulted in greater revenue to Sierra Leone. The first 6 months of 1973 were well ahead of the comparable period of 1972 in both the number of carats produced and in value. Diamond exports continued to be the backbone of the Sierra Leone economy.

South Africa, Republic of.-The Central Selling Organization of the De Beers group announced record diamond sales of R920.7 million in 1973, an increase of 40.5%over sales in 1972.7 Following the U.S. dollar devaluation, rand price increases were announced in succession thus: February, 11%; March, 7%; May, a selective 10% for certain categories of larger gem stones; and August, 10.2%. No breakdown was given for industrial or for gem stones but the price increases were applied to industrial stones as well as to gem stones.

U.S.S.R.—Natural diamond production in Siberia was estimated to exceed that of the Republic of South Africa. However, the proportion of gem stones actually mined in Siberia was less than that of South Africa making the value of South African production greater.

Zaire.—Although Zaire remains the

number one producer of diamond, the proportion of industrial diamond (98% in Zaire) reduces the value of production there to a low rank.

#### **TECHNOLOGY**

Theories to explain the occurrences or formations of diamond pipes continued to interest scientists. Chemical analyses of minerals in the rock of the pipes, called kimberlite, and of diamond, have yielded new evidence about the eruptions.8 Garnet peridotite, which is composed of garnet, enstatite, diopside, and olivine, is typically found in kimberlite. The amount of mixing of the materials or minerals indicates the depth, of pressure, and the temperature of formation. Analyses of South African kimberlite samples indicated formation depths from 145,000 yards to 200,000 yards and temperatures from 950° C to 1370° C. From the depths, water and liquefied gases in the earth's mantle forced a passage upwards. The fluid mixture of water and liquefied gases moved slowly at first, but as the fluid neared the surface, it was vaporized by reduced pressure. The resulting expansion drove the eruption with increased velocity, creating a shape much like the crater left by a meteor. Erosion destroyed the crater, leaving behind a column of cooled and hardened material as a pipe in the earth's crust. Kimberlite pipes have pierced coal seams without buring the coal. The rapid decompression, according to the expanding gas theory, would have had a tremendous chilling effect.

British diamond lapping specialists marketed microscopic-sized gelatin capsules containing wetted diamond particles.9 Microencapsulation is designed to provide individual abrasive particles at the workface free from agglomeration and surrounded and wetted by lubricant in a pressure-rupturable wall. Potentially toxic or carcinogenic materials needed to assist the abrasive action are controlled and present no health hazards.

Alternative abrasive materials such as natural or synthetic ruby, sapphire, fused

<sup>&</sup>lt;sup>5</sup> New China News Agency (International Services in English; Peiping). Oct. 5, 1973.

<sup>6</sup> Bureau of Mines. Mineral Trade Notes, v. 70, No. 9, September 1973, p. 5.

<sup>7</sup> Mining Journal. Diamonds, CSO Sales Sparkle. V. 282, No. 7222, Jan. 18, 1974, p. 36.

<sup>8</sup> Chemistry. Diamond Pipes. V. 46. No. 5, May 1973, pp. 23-24.

<sup>9</sup> Industrial Diamond Review. Another Lapping Revolution on the Way? January 1973, p. 14.

Table 11.-Diamond (natural): World production by country 1 (Thousand carats)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                 |          |              | 950             |        |        | 1973 p       |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|----------|--------------|-----------------|--------|--------|--------------|--------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1971            |          |              | 1972            |        |        | Ladina       |        |
| Country                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mos      | Indus-<br>trial | Total    | Gem          | Indus-<br>trial | Total  | Gem    | trial        | Total  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1135     |                 |          |              |                 |        |        | i            | 9      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 010      | 603             | 9.413    | 1,616        | 539             | 2,155  | 1,594  | 531<br>9 054 | 2,125  |
| Africa:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,010    | 740             | 822      | 360          | 2,043           | 2,403  | 302    | 199          | 380    |
| Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | r 304    | r 164           | r 468    | 346          | 178             | 524    | 686    | 2.085        | 2,317  |
| Central African Republic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 256      | 2,306           | 2,562    | 266          | 2,393           | 80,2   | 25     | 55           | 80     |
| Ghana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22       | 25              | 74       | 134          | 200             | 334    | 120    | 180          | 300    |
| Guinea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 130      | 180             | 970      | -            |                 | 6      |        | 5 6          | 0000   |
| Ivory Coast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10010    | 3 977           | 3 809    | 3 414        | 3 350           | 3 764  | 450    | 3.40         | 670    |
| Lesotho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3 532    | 1168            | r 1.946  | 720          | 1,080           | 1,800  | 4 670  | 4 1,000      | 1,010  |
| Liberia Loons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 011.     | 20.7.1          |          |              |                 |        |        |              |        |
| Sierra Leonic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                 |          |              | 1 841           | 2.454  | 625    | 1,876        | 2,501  |
| South Africa, Republic of:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 609      | 1,828           | 2,437    | 610          | 1,041           | 4.161  | 2.368  | 1,938        | 4,306  |
| Premier mine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,162    | 1,769           | 3,931    | 2,289<br>468 | 312             | 780    | 455    | 303          | 758    |
| Other de Deers Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 990      | 000             | 1007     | 9 870        | 4.025           | 7,395  | 3,448  | 4,117        | 696,7  |
| Contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of th | 3,169    | 3,862           | 1,001    | 1,516        | 80              | 1,596  | 1,520  | 080          | 1,000  |
| Total Africa Territory of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,566    | 718             | 837      | 4 326        | 4 325           | 4 651  | 290    | 290          | 12.940 |
| Tanzania                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r 1 974  | r 11.469        | r 12,743 | 1,339        | 12,051          | 13,390 | 1,294  | 040,11       | 1      |
| Zaire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | i<br>i   |                 |          | 1            | ì               | 910    | 160    | 160          | 320    |
| Other areas:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 150      | 150             | 300      | 155          | 199             | 49     | 21     | 31           | e 52   |
| Brazil e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19       | 29              | 848      | 02.          | 6 G             | 20     | 18     | က            | 21     |
| Guyana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16       | တ               | 13       | - 6          |                 | 15     | 12     | က            | 15     |
| India                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12       | က               | 15       | 7            | 7 250           | 0066   | 1.900  | 1,600        | 9,500  |
| Indonesia e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,800    | 7,000           | 8,800    | 1,850        | 315             | 456    | 241    | 537          | 418    |
| U.S.S.R.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 114      | 385             | 433      | 74.7         | 9               | 49 010 | 19,609 | 30.880       | 43,489 |
| Venezuela                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | r 12.454 | r 28,913        | r 41,367 | 12,628       | 31,182          | 40,010 | 20011  |              |        |
| World total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | .               |          |              |                 |        |        |              |        |

• Estimate. P Preliminary. r Revised. to each country is actually reported except where indicated to be an estimate by footnote. In contrast, the detailed separate reporting of gem diamond output for each country is actually reported except where indicated to be an estimate by footnote. In countries except Lesotho the detailed separate reporting of gem diamond and industrial diamond represents Bureau of Mines estimates in the estimated distribution (1971 and 1972), Liberia (1971 and 1972), and 1972), where sources give both total output and detail. The estimated distribution of total output between gem and industrial diamond is conjectural in the case of a number of countries, based on unofficial information of varying reliability. 2 Exports of diamond originating in Lesotho; excludes stones imported for cutting and subsequently reexported.
5 Exports for year ending August 31 of that stated.
6 Exports.
7 Exports.
7 All company output from the Republic of South Africa except for that from the Premier mine; also excludes company output from the Territory of South West Africa and from Botswana.

aluminum oxide, silicon carbide, cubic boron nitride, and others can be used in conjunction with lubricants and chemical agents. As an alternate to gelatin, polyethylene oxide, styrene maleic anhydride, cellulose acetate phthalate and numerous others may be used as wall materials.

Polished 0.2-carat natural diamonds were shaped in the form of precision gaging points to monitor coin thickness at the Bavarian main mint in Munich, West Germany.10 The increasing use of vending machines required tighter tolerances on the dimensions, weights, and composition of coins to counteract the growing use of low value substitutes for official coins. The diamond measuring tips improved the consistency in dimensional accuracy.

About 230 tons of diamond have been

mined in history and to get this quantity, miners have had to handle 5 billion tons of rock, sand, and gravel for which the diamond content was only one part in 20 million. Of this total of 230 tons, 100 tons of diamond has been produced between 1960 and 1972. The new techniques, which have been added to already highly developed mining, quarrying, earth moving, and sophisticated recovery processes, were described in a well-illustrated publication.<sup>11</sup>

Abstracts relative to properties of diamond, hard materials, machines, and patents were published monthly in the periodical Industrial Diamond Review.

Each monthly issue, January to December 1973, contained from 14 to 18 pages of abstracts and patent information.

### ARTIFICIAL ABRASIVES

Crude fused aluminum oxide was produced in 1973 by five firms in the United States and in Canada. The Carborundum Co., Norton Co., and General Abrasive Co., Inc., each operated plants in both countries. The Exolon Co. and Simonds Canada Abrasive Co., Ltd., operated plants in Canada. Output of white, high-purity material was 28,146 tons and of regular grade was 168,159 tons. Twelve percent of the combined output of white and regular was used for nonabrasive applications, principally in the manufacture of refractories. Output was 69% of the rated capacity of the furnaces assigned to fused aluminum oxide.

Crude fused alumina zirconia abrasive was produced in 1973 by four firms in the United States and in Canada. The Carborundum Co., Exolon Co., General Abrasive Co., Inc., and Norton Co. reported production from their plants for the first time. All production was reportedly used for abrasive applications. Output was 82% of the rated capacity of the furnaces marked for production of fused alumina zirconia.

Silicon carbide was produced in 1973 by six firms in the United States and Canada. The Carborundum Co. operated plants in both countries and Electro-Refractories & Abrasives Ltd., the Exolon Co., Norton Co., and General Abrasive Co., Inc. operated in Canada; all produced crude for abrasive, refractory, and miscellaneous uses. Satellite Alloy Corp. operated in the United States

and produced crude for nonabrasive applications. Production by the six firms was 86% of capacity and 48% was reportedly used for abrasive applications. Nonabrasive use was 52% of the output and was mostly for refractory and metallurgical applications.

In the Stockpile Report to the Congress by the General Services Administration crude fused aluminum oxide in calendar year 1973 was reduced in inventory by 61,038 tons to 312,431 tons as of December 31; aluminum oxide abrasive grain was unchanged at 50,905 tons, and silicon carbide crude was unchanged at 196,453.

The manufacture of metallic abrasives in 1973 increased 6% in quantity and 21% in value. Of the total quantity sold or used, steel shot and grit comprised 78%; chilled iron shot and grit, 17%; annealed iron shot and grit, 4%. Other metallic abrasives sold or used included aluminum, copper, stainless steel, and zinc. Production from Ohio was 32% of the total quantity, the highest of the producing States. Michigan, Indiana, and Pennsylvania followed in rank of quantity and their combined output was 61% of the total. The remaining 7% was produced at plants in Alabama, New York, and Connecticut. Three companies reworked ma-

<sup>10</sup> Industrial Diamond Review. Diamonds He'p Keep the Deutschmark Stable. July 1973, pp. 266-268.

pp. 266-268.

11 Linari-Linholm, A. A. Occurrence, Mining and Recovery of Diamonds. De Beers Consolidated Mines Ltd., Kenion Press Ltd., England, 1973, pp. 1-40.

terial for other producers: Copperweld Steel Co. of Glassport, Pa.; Industeel Corp. of Pittsburgh, Pa.; and Kohler Co. of Sheboygan, Wis.

#### **TECHNOLOGY**

Vibratory or tumbling barrels may be used for finish grinding or polishing of objects. Media are the abrasive materials used to deburr, descale, grind, and burnish. Compounds enhance these actions, as well as provide other operational benefits. The fundamentals of media selection and compounds, what they are, what they do, and how to use them were described.12

As in previous years, the number of patents describing the use of abrasive materials in abrasive and refractory products was large, but most of the patents described improvements in the materials, products, and machines. Trade journals and magazines furnished many articles describing new processes, new products, and new applications.

A need exists for education in the technology of metalworking processes and products. Many abrasive materials producers sponsor training in the use of abrasives for personnel of consuming industries to supplement the courses offered by technical schools. An example was described.13

Table 12.-Crude artificial abrasives produced in the United States and Canada (Thousand short tons and thousand dollars)

| (Thousand short tons and | , thousand                                                    |                                                                      |                                                                      |                                                                      |                                                                                  |
|--------------------------|---------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------|
|                          | 1969                                                          | 1970                                                                 | 1971                                                                 | 1972                                                                 | 1973                                                                             |
| Kind  Silicon carbide 1  | 161<br>23,945<br>217<br>31,276<br><br>230<br>37,369<br>92,589 | 167<br>24,038<br>195<br>27,402<br><br>199<br>34,332<br>561<br>85,772 | 180<br>21,123<br>149<br>24,514<br><br>193<br>33,390<br>472<br>79,027 | 166<br>24,690<br>184<br>28,590<br><br>235<br>39,678<br>585<br>92,958 | 162<br>25,471<br>196<br>27,339<br>22<br>6,223<br>266<br>49,775<br>646<br>108,808 |
| Value 3                  |                                                               |                                                                      |                                                                      | -magag                                                               |                                                                                  |

<sup>&</sup>lt;sup>1</sup> Figures include material used for refractories and other nonabrasive purposes.
<sup>2</sup> Shipments for U.S. plants only.
<sup>3</sup> Data may not add to totals shown because of independent rounding.

Table 13.-Production, shipments, and annual capacities of metallic abrasives in the United States, by product

|                                                                                                       | Manuf                            | actured                   | Sold or                          | used                      | Annual          |
|-------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------|----------------------------------|---------------------------|-----------------|
| Year and product                                                                                      | Quan-<br>tity<br>(short<br>tons) | Value<br>(thou-<br>sands) | Quan-<br>tity<br>(short<br>tons) | Value<br>(thou-<br>sands) | capac-<br>ity 1 |
| 1972: Chilled iron shot and grit Annealed iron shot and grit Steel shot and grit Other 3              | 31,531                           | \$4,048                   | 37,300                           | \$4,679                   | 129,000         |
|                                                                                                       | 18,615                           | 2,110                     | 20,868                           | 2,713                     | (2)             |
|                                                                                                       | 175,938                          | 25,860                    | 175,799                          | 31,844                    | 228,650         |
|                                                                                                       | 766                              | 356                       | 833                              | 442                       | 4,500           |
|                                                                                                       | 226,850                          | 32,374                    | 234,800                          | 39,678                    | 362,150         |
| Total  1973: Chilled iron shot and grit Annealed iron shot and grit Steel shot and grit Other 3 Total | 35,024                           | 3,992                     | 45,196                           | 6,295                     | 61,400          |
|                                                                                                       | 7,739                            | 712                       | 9,984                            | 1,405                     | 29,48           |
|                                                                                                       | 194,580                          | 33,679                    | 206,918                          | 41,104                    | 243,37          |
|                                                                                                       | 3,575                            | 903                       | 3,792                            | 972                       | 10,76           |
|                                                                                                       | 240,918                          | 39,286                    | 265,890                          | 49,776                    | 345,01          |

<sup>&</sup>lt;sup>1</sup>The total quantity of the various types of metallic abrasives that a plant could have produced during the year, working three 8-hour shifts per day, 7 days per week, allowing for usual interruptions, and assuming adequate fuel, labor, and transportation.

\*\*Included in capacity of chilled into that and crit

lection. Abrasive Eng., November December 19/3, pp. 16-21. 12 Brandt, J. N. Fundamentals of Media Se-

Abrasive Engineering. Practical Borazon
 Education. November-December 1973, p. 23.

<sup>3</sup> Included in capacity of chilled iron shot and grit.
3 Includes cut wire shot.

Table 14.-Stocks of crude artificial abrasives and capacity of manufacturing plants in the United States and Canada

(Thousand short tons)

| - V  | Silicon ca                        | carbide Aluminum oxido Alumi              |                                      | Aluminum oxide                            |                                         |        |
|------|-----------------------------------|-------------------------------------------|--------------------------------------|-------------------------------------------|-----------------------------------------|--------|
| Year | Stocks<br>December 31             | Annual capacity                           | Stocks<br>December 31                | Annual                                    | Aluminum zirco<br>Stocks<br>December 31 | Annual |
| 1969 | 9.1<br>18.7<br>14.2<br>5.2<br>5.4 | 181.7<br>179.1<br>198.1<br>195.7<br>189.1 | 33.2<br>30.8<br>25.6<br>16.3<br>19.3 | 358.2<br>359.2<br>293.2<br>291.2<br>284.6 | <br><br><br>0.7                         | 26.9   |

| Producers follows: | of | metallic | abrasives | were | as |
|--------------------|----|----------|-----------|------|----|
|--------------------|----|----------|-----------|------|----|

| Company                                                                                                    |
|------------------------------------------------------------------------------------------------------------|
| Abbott Ball Co Abrasive Materials, Inc Abrasive Metals Co The Carborundum Co Cleveland Metal Abrasive Co.: |

Plants Hartford, Conn. Hillsdale, Mich. Pittsburgh, Pa. Butler, Pa.

Birmingham, Ala. Howell, Mich. Springville, N.Y. Cleveland, Ohio Toledo, Ohio

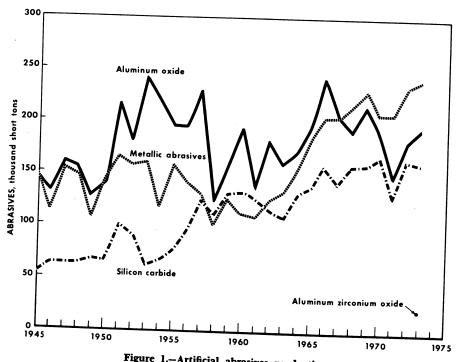



Figure 1.-Artificial abrasives production.

# **Aluminum**

By John W. Stamper 1

Estimated world demand for primary aluminum surged ahead by about 12% over that of the previous year. Shortages of electric energy held output growth significantly below potential in the United States and Japan and caused a decline in production in India. As a result, world production of primary aluminum was up only 10%, and although sales from government-held stocks in the United States helped avert a drastic shortage in that country, supply was tight in all major consuming areas during most of the year. Some 10% to 15% of the electric energy used to produce primary aluminum in many countries was believed to be provided by oil-fired thermal generating plants and the sharp increase in world oil prices during the latter part of 1973 compounded energy supply problems and accelerated industry interest in locating aluminum plants close to sources of low-cost thermal or hydroelectric power, most of which are outside the major consuming areas.

Legislation and Government Programs.— During 1973, 698,800 short tons of primary aluminum was shipped from government inventories. The total quantity shipped by the government from December 1965, when the disposal program was initially implemented, to the end of 1973, was 1,322,298 tons. Late in December 1972, the stockpile objective for aluminum was reduced from 450,000 tons to none and Public Law 93-220, which authorized the disposal of the 450,000 tons of primary aluminum held in the national stockpile against the objective, was signed by the President.

The U.S. Tariff Commission determined that imports of aluminum ingot from Canada, which had been the object of an investigation under the Antidumping Act of 1921 during part of 1972 and 1973, was neither injuring or nor likely to injure a domestic industry. As a result, aluminum ingot imported from Canada during that period was not subject to special dumping duties.

Table 1.—Salient aluminum statistics (Thousand short tons and thousand dollars)

|                                                                                                                                            | 1969                                     | 1970                                     | 1971                                     | 1972                                       | 1973                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|--------------------------------------------|--------------------------------------------|
| United States: Primary production Value Price: Ingot, average cents per pound                                                              | 3,793<br>2,013,403<br>27.2<br>901<br>575 | 3,976<br>2,190,087<br>28.7<br>781<br>612 | 3,925<br>2,154,446<br>29.0<br>816<br>293 | 4,122<br>7 2,084,946<br>25.0<br>946<br>329 | 4,529<br>2,206,440<br>29.0<br>1,038<br>561 |
| Secondary recovery  Exports (crude and semicrude)  Imports for consumption (crude and semicrude)  Consumption, apparent  World: Production | 558<br>4,710<br>9,885                    | 468<br>4,519<br>10,641                   | 690<br>5,099<br>r 11,373                 | 794<br>5,588<br>r 12,115                   | 5,688<br>13,359                            |

r Revised.

# DOMESTIC PRODUCTION

Primary.—Production of primary aluminum increased 10% over that of 1972, despite a serious shortage of electric energy in the Pacific Northwest, which normally ac-

counts for about one-third of total output. The power shortage was caused by low water conditions, and resulted in the closure of one or more potlines at some plants in

<sup>&</sup>lt;sup>1</sup> Physical scientist, Division of Nonferrous Metals—Mineral Supply.

the area for several months during the year. However, industry was able to obtain some alternate supplies of electric power albeit at higher costs. Water conditions improved at the end of the year and total production in the area was slightly higher in 1973 than that in the previous year.

Because of the stringent supply of petroleum products, which developed in the latter part of 1973 as a result of the oil producers embargo, domestic steel companies were considering burning coke oven tars, as a source of energy. Coke oven tar from the steel industry is the principal source of coal tar pitch used as a binder for carbon anodes used in the electrolytic reduction of alumina to aluminum metal. About 40 gallons of coal tar pitch is required per ton of primary aluminum produced and there was no known substitute for pitch binder for making aluminum anodes. Witco Chemical Co. announced plans to produce a suitable pitch binder from petroleum at a semicommercial plant at Perth Amboy, N. J. Silicon, a principal alloying element in aluminum also was in short supply during the year.

The Anaconda Aluminum Co. started production of primary aluminum from its new 120,000-ton-per-year plant at Sebree, Ky., and the Aluminum Company of America (Alcoa) increased its total primary aluminum capacity to 1,570,000 tons per year. Alcoa also began construction of a large new potline to expand its primary aluminum capacity at Massena, N.Y., to 190,000 tons per year by 1976, and began site preparation for construction of a 15,000ton-per-year primary aluminum plant at Palestine, Tex. This new plant will use an experimental process involving electrolysis of aluminum chloride. The plant was expected to begin operations in 1975 and could eventually be expanded to 300,000 tons if the new technique, which requires 30% less electric energy than the present process, proves out.

American Metal Climax, Inc. (AMAX) and Howmet Corp. (Howmet), announced plans to expand annual production capacity of Howmet's Eastalco alumina reduction plant at Frederick, Md., by 86,700 short tons. A new company was expected to be formed to operate the Frederick facility, which would be owned 50% each by Howmet and AMAX. Mitsui & Co., Ltd., a primary aluminum producer in Japan also announced an agreement in principle to purchase half interest in AMAX's aluminum operations for \$125 million.

Consolidated Aluminum Corp. (Conalco), 60% of which is owned by Swiss Aluminium Ltd. (Alusuisse) of Zurich, Switzerland, and the remainder by Phelps Dodge Corp., purchased the aluminum operations of Olin Corp. for \$126 million. The Olin operations which were put up for sale in November 1972 included half interest in the primary aluminum plant at Hannibal, Ohio, plus a sheet and plate mill, two electrical conductor plants, and six other fabricating facilities.

Kaiser Industries Corp. and principal affiliates including Kaiser Aluminum & Chemical Corp., were discussing a broad technology exchange agreement with representatives of the U.S.S.R., which could result in the construction of primary aluminum plants utilizing the large hydroelectric power potential in Siberia.

Secondary.—Recovery of secondary aluminum, calculated from reports to the Bureau of Mines, was 1,038,480 short tons, 10.0% above the 1972 level. Calculated recovery of all metallic constituents from aluminum-base scrap increased 9.63% to 1,106,041 tons.

The Bureau estimated that full coverage of the industry would indicate a total scrap consumption of 1,472,000 short tons in 1973. Using this estimate, aluminum recovery totaled 1,147,000 short tons and metallic recovery was estimated at 1,235,000 tons.

Vulcan Materials Corp., a producer of secondary aluminum alloys, announced

Table 2.—Production and shipments of primary aluminum in the United States (Short tons)

| Quarter                         |                                                | 72                                               | 10                                               | 73                                               |
|---------------------------------|------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
| First                           | Production                                     | Shipments                                        | Production                                       | Shipments                                        |
| First Second Phird Fourth Total | 975,842<br>1,017,181<br>1,044,857<br>1,084,571 | 1,000,381<br>1,052,884<br>1,032,915<br>1,091,010 | 1,111,655<br>1,123,450<br>1,127,223<br>1,166,788 | 1,155,124<br>1,139,421<br>1,130,202<br>1,162,601 |
|                                 | 4,122,451                                      | 4,177,190                                        | 4,529,116                                        | 4,587,348                                        |

Table 3.—Primary aluminum production capacity in the United States, by company (Thousand short tons)

| - l mlont                                              | Capaci<br>year |       | Ownership                                         |
|--------------------------------------------------------|----------------|-------|---------------------------------------------------|
| Company and plant                                      | 1972           | 1973  |                                                   |
| (41)                                                   |                |       | Self 100%.                                        |
| Aluminum Company of America (Alcoa):                   | 270 )          |       |                                                   |
| Alcoa, TennBadin, N.C                                  | 115            |       |                                                   |
| Badin, N.CEvansville, (Warrick), Ind                   | 275            |       |                                                   |
| Evansville, (Warrick), Ind<br>Massena, N.Y             | 130            | 1,570 |                                                   |
|                                                        | 185 🥇          | 1,010 |                                                   |
| Rockdale, Tex                                          | 280            |       |                                                   |
| Rockdale, Tex<br>Vancouver, Wash<br>Wenatchee, Wash    | 115            |       |                                                   |
| Wancouver, Wash                                        | 175            |       | _                                                 |
| Total                                                  | 1,545          | 1,570 | _                                                 |
| Total                                                  |                |       | Self 100%.                                        |
| Anaconda Aluminum Co.:                                 | 180            | 180   | <del></del> · · · · ·                             |
|                                                        | 190            | 120   |                                                   |
| Schree KV                                              |                |       | =                                                 |
| Total                                                  | 180            | 300   | =                                                 |
| Total (C-males) t                                      |                |       | Swiss Aluminum Ltd. 60%;                          |
| Consolidated Aluminum Corp. (Conalco):                 | 35             | 36    | Phelps Dodge Corp. 40%.                           |
| Lake Charles, La                                       | 140            | 141   |                                                   |
| New Johnsonville, Tenn                                 | 175            | 177   | -                                                 |
| Total                                                  | 110            |       |                                                   |
| m toler Aluminum Co.                                   | 87             | 88    | Howmet Corp. 100%.                                |
| Frederick, Md                                          |                |       | Martin Marietta Corp. 87.2%.                      |
| as at Maniate Aluminum Inc.:                           |                |       | Martin Marietta Corp. 5.12 /6.                    |
| Martin Marietta Aluminum, Inc.: The Dalles, Oreg       | 90             | 90    |                                                   |
| Goldendale, Wash                                       | 110            | 111   | _                                                 |
|                                                        | 200            | 201   | American Metal Climax, Inc. 50%                   |
| Total Corn                                             |                |       | Howmet Corp., 50%.                                |
| Intalco Aluminum Corp.:<br>Ferndale (Bellingham), Wash | 260            | 260   | Howmet Corp., 50 76.                              |
| Ferndale (Bellingham), Wash                            |                |       | Self 100%.                                        |
| Kaiser Aluminum & Chemical Corp.:                      | 260            | 260   |                                                   |
|                                                        |                | 206   |                                                   |
|                                                        |                | 163   |                                                   |
|                                                        |                | 81    |                                                   |
| Tagoma Wash                                            |                | 710   |                                                   |
| m +-1                                                  | 710            | 110   | National Steel Corp. 50%;                         |
|                                                        |                | 180   | Southwire Co., 50%.                               |
| Horrogrillo KV                                         | . 100          | 100   | Southwire Co., 50%.<br>Noranda Mines, Ltd., 100%. |
| Noranda Aluminum Inc.:                                 | 70             | 70    |                                                   |
| Noranda Aluminum Inc.:<br>New Madrid, Mo               |                |       | Conalco. 66%; Revere Copper                       |
| Ormet Corp.:                                           | 250            | 250   | & Brass, Inc. 34%.                                |
| Hannibal Ohio                                          |                |       | Self $100\%$ .                                    |
|                                                        |                | 112   |                                                   |
| Scottsboro, Ala                                        |                |       | Self 100%.                                        |
| Reynolds Metals Co.:                                   |                | 68    |                                                   |
|                                                        | _ 63           | 114   |                                                   |
|                                                        |                | 125   |                                                   |
|                                                        |                | 202   |                                                   |
|                                                        |                | 210   |                                                   |
|                                                        |                | 126   |                                                   |
| Massena, N.Y                                           | 130            | 130   |                                                   |
|                                                        | _ 100          |       |                                                   |
| Twontdele ()reg                                        | 055            | 0.77  |                                                   |
| Massena, N.YTroutdale, OregTotal                       | _ 975          | 975   | <u>=</u>                                          |

plans to spend \$6.5 million during the year to expand capacity. About \$4.5 million of the total was expected to be used for pollution control equipment.

The Ohio Valley Aluminum Co. was expected to expand its secondary aluminum extrusion billet capacity at Shelbyville, Ohio, from 2,000 tons per month to 2,500 tons per month by the end of 1973. The Hall Aluminum Co. also was increasing capacity for producing secondary foundrygrade aluminum alloys and fluxes at its Chicago Heights, Ill., facility.

Apex Smelting Co., Inc., a subsidiary of AMAX, and a member of the AMAX Aluminum Group, announced plans to construct a new secondary aluminum and alloyed zinc production facility in Checotah, Okla. The \$2.6 million facility, scheduled to go onstream in late 1974, will employ about 100 people and have an annual production capacity of up to 20,000 tons of secondary aluminum and 12,000 tons of alloyed zinc. The new facility will give Apex a total capacity of 92,000 tons of secondary aluminum when added to capacities of existing plants

Table 4.-Aluminum recovered from scrap processed in the United States, by kind of scrap and form of recovery

(Short tons)

| Kind of scrap                                                       | 1972                                     | 1973 Р                                    | Form of recovery                                                                                           | 1972                                                  | 1973 р                                            |
|---------------------------------------------------------------------|------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------|
| New scrap: Aluminum-base Copper-base Zinc-base Magnesium-base Total | 1 755,762<br>99<br>118<br>376<br>756,355 | 2 841,966<br>132<br>108<br>382<br>842,588 | As metal Aluminum alloys In brass and bronze In zinc-base alloys In magnesium alloys In chemical compounds | 79,535<br>849,778<br>1,068<br>8,073<br>2,042<br>5,231 | 121,02<br>890,69<br>4,63<br>11,16<br>3,52<br>8,76 |
| Old scrap: Aluminum-base Copper-base Zinc-base Magnesium-base Total | 1 188,594<br>51<br>636<br>91<br>189,372  | 2 196,514<br>68<br>536<br>102<br>197,220  | Total                                                                                                      | 945,727                                               | 1,039,80                                          |
| Grand total                                                         | 945,727                                  | 1,039,808                                 |                                                                                                            |                                                       |                                                   |

Table 5.-Consumption of and recovery from purchased new and old aluminum scrap in 1973 1

(Short tons)

| Class                                 | Consump   |               | Calculated recovery |  |  |  |
|---------------------------------------|-----------|---------------|---------------------|--|--|--|
|                                       | tion      | Alumi-<br>num | Metal-<br>lic       |  |  |  |
| Secondary smelter _                   | 736,819   | 578,148       | 622,755             |  |  |  |
| Primary producers_                    | 212,545   | 187,227       | 197.531             |  |  |  |
| Fabricators                           | 170,823   | 152,446       | 157,835             |  |  |  |
| Foundries                             | 133,483   | 113,793       | 120,736             |  |  |  |
| Chemical producers                    | 8,769     | 6,866         | 7,184               |  |  |  |
| Total                                 | 1,262,439 | 1,038,480     | 1,106,041           |  |  |  |
| Estimated full in-<br>dustry coverage | 1,472,000 | 1,147,000     | 1,235,000           |  |  |  |

<sup>&</sup>lt;sup>1</sup> Excludes recovery from other than aluminum-

in Chicago, Ill., Cleveland, Ohio, and Long Beach, Calif.

Alcoa undertook a multimillion dollar ex-

pansion at its Warrick operations near Evansville, Ind., to enable it to recycle an additional 30,000 tons per year of aluminum beer and soft drink cans. The company's Warrick plant reportedly had a capacity to recycle about 110,000 tons of aluminum scrap per year, including container scrap.

American Can Co., formed a new company to market a recycling system for recovering aluminum, steel, and other materials from household wastes. The new firm, Americology, Inc., announced that the basic model of its system, costing about \$2 to \$3 million each, will process 500 tons of garbage per day (equivalent to the output of a typical city of 150,000 people). The firm also planned to provide continuing marketing and technical management counselling to purchasers of its system, and offered a guaranteed market for the ferrous scrap.

P Preliminary.
 Aluminum alloys recovered from aluminum-base scrap in 1972, including all constituents, were
 795,649 tons from new scrap and 213,255 tons from old scrap and sweated pig, a total of 1,008,904

<sup>&</sup>lt;sup>2</sup> Aluminum alloys recovered from aluminum-base scrap in 1973, including all constituents, were 886,461 tons from new scrap and 219,580 tons from old scrap and sweated pig, a total of 1,106,041 tons.

Table 6.—Stocks, receipts, and consumption of new and old aluminum scrap and sweated pig in the United States in 1973 <sup>1</sup>

(Short tons)

| (Short tons)                                                                   |                               |                     |                  |                   |
|--------------------------------------------------------------------------------|-------------------------------|---------------------|------------------|-------------------|
| Class of consumer and type of scrap                                            | Stocks<br>Jan. 1 <sup>r</sup> | Receipts            | Consump-<br>tion | Stocks<br>Dec. 31 |
|                                                                                |                               |                     |                  |                   |
| econdary smelters: 2<br>New scrap:                                             |                               |                     |                  |                   |
| Solids: (Common 0.4%)                                                          | 5.065                         | 151,086             | 150,814          | 5,337             |
|                                                                                | 525                           | 10 434              | 9,617            | 1,342             |
|                                                                                | 2,594                         | 96,774              | 97,158           | 2,210             |
|                                                                                | 468                           | 6,399               | 6,690            | 177               |
| Mixed low copper (Cd mixed lips<br>High zinc (7000 series type)<br>Mixed clips | 2,634                         | 83,727              | 81,650           | 4,711             |
|                                                                                | 786                           | 28,467              | 28,418           | 835               |
|                                                                                | 334                           | 11,455              | 11,226           | 563               |
|                                                                                | 4,694                         | 72,994              | 75,131           | 2,557             |
|                                                                                | 7,157                         | 83,799              | 86,126           | 4,830             |
|                                                                                |                               | 22,291              | 22,368           | 1,258             |
|                                                                                | 1,000                         | 567,426             | 569,198          | 23,820            |
|                                                                                |                               | 112,576             | 111,801          | 7,865             |
| Old scrap (solids)                                                             | 7,090                         | 55,494              | 55,820           | 3,688             |
| Old scrap (solids)<br>Sweated pig (purchased for own use)                      | 4,014                         |                     |                  | 35,373            |
|                                                                                | 36,696                        | 735,496             | 736,819          | 55,515            |
| Total all classes                                                              |                               |                     |                  |                   |
| Primary producers, foundries, fabricators, and chemical plants:                |                               |                     |                  |                   |
| New scrap:                                                                     |                               |                     |                  |                   |
| Solids: (Govimum 0.4%)                                                         | 4.512                         | 195,271             | 194,920          | 4,863             |
|                                                                                | 142                           | 7,893               | 8,007            | 28                |
|                                                                                |                               | 132,433             | 135,035          | 13,755            |
|                                                                                | 16,357                        | 1,398               | 1,416            |                   |
|                                                                                |                               | 5,152               | 4,979            | 286               |
| Mixed clips                                                                    | 113                           | 0,102               | 2,               |                   |
|                                                                                |                               | w                   | w                | w                 |
|                                                                                |                               | ŵ                   | w                | w                 |
| Zinc, under 0.5%                                                               | w                             | ŵ                   | w                | w                 |
|                                                                                |                               | 5,947               | 6,279            | 407               |
|                                                                                |                               | 79,024              |                  | 542               |
|                                                                                |                               |                     |                  | 19.947            |
| Other new scrap                                                                | 23,444                        | 427,667             |                  | 1,260             |
| Total new scrap 3                                                              | 4,407                         | 61,454              |                  | 3,480             |
| Old scrap (solids)                                                             | 4,838                         | 28,497              |                  |                   |
|                                                                                | 32,689                        | 517,618             | 525,620          | 24,687            |
| Total all classes                                                              |                               |                     |                  |                   |
| Total of all scrap consumed:                                                   |                               |                     |                  |                   |
| New scrap:                                                                     | 0.555                         | 346,357             | 345,734          | 10,20             |
| Solids:<br>Segregated low copper (Cu maximum, 0.4%)                            | 9,577<br>667                  |                     |                  | 1,370             |
|                                                                                |                               |                     |                  | 15,96             |
|                                                                                |                               |                     |                  | 17                |
|                                                                                |                               |                     |                  | 4.99              |
| Mixed clips                                                                    | 2,747                         | 00,01               | 00,020           |                   |
| Mixed cubs                                                                     | =0.0                          | 28,47               | 8 28,429         | 83                |
| Borings and turnings: Low copper (Cu maximum, 0.4%)                            | _ 786                         |                     |                  | 56                |
| Zinc, under 0.5%                                                               | _ 334                         |                     |                  | 2,62              |
|                                                                                |                               |                     |                  | 5,23              |
| Zinc, 0.5% to 1.0%Foil, dross, skimmings                                       | 7,896                         |                     |                  | 1,80              |
|                                                                                |                               |                     |                  | 43,76             |
|                                                                                | 40.00                         | 6 995,09            |                  | 9,12              |
|                                                                                | 49,03                         |                     |                  |                   |
| Total new scrap Total new scrap 3                                              | 11,49                         | 7 174,03            |                  |                   |
| Total new scrap Total new scrap 3                                              | 11,49                         | 7 174,03            |                  | 7,16              |
|                                                                                | 11,49<br>8,85                 | 7 174,03<br>2 83,99 | 1 85,675         | 7,16<br>60,06     |

<sup>&</sup>lt;sup>7</sup> Revised. W Withheld to avoid disclosing individual company confidential data.

<sup>1</sup> Includes imported scrap.

<sup>2</sup> Excludes secondary smelters owned by primary aluminum companies.

<sup>3</sup> Includes data withheld.

Table 7.-Production and shipments of secondary aluminum alloys by independent smelters

(Short tons) 1

| _                                                                                                                                                                                                                                      |                                                                                      | 72 <sup>2</sup>                                                               | 1973 2                                                                           |                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------|
|                                                                                                                                                                                                                                        | Production                                                                           | Shipments                                                                     | Production                                                                       | Shipment                                                         |
| Pure aluminum (Al minimum, 97.0%)<br>Aluminum-silicon:                                                                                                                                                                                 | 79,535                                                                               | 77,455                                                                        | 121,020                                                                          | 123,097                                                          |
| 95/5 Al-Si, 356, etc. (Cu maximum 0.6%) 13% Si, 360, etc. (Cu maximum 0.6%) —Aluminum-silicon (Cu 0.6% to 2%) No. 12 and variations No. 12 and variations No. 319 and variations Nos. 122 and 138 ———————————————————————————————————— | 18,769<br>56,738<br>3,874<br>9,029<br>1,068<br>50,681<br>1<br>18<br>380,103<br>8,576 | 18,907<br>57,184<br>4,106<br>8,658<br>952<br>50,815<br>43<br>382,781<br>9,824 | 19,579<br>56,899<br>3,981<br>10,407<br>4,630<br>62,347<br>53<br>405,585<br>4,672 | 19,977 58,182 4,029 11,037 4,577 62,739 49 410,442 4,985         |
| Grades 1 and 2 Grades 3 and 4                                                                                                                                                                                                          | 15,811<br>6,062<br>5,732<br>2,042<br>8,073<br>33,953<br>680,064                      | 15,841<br>6,322<br>5,704<br>1,985<br>8,059<br>34,256<br>682,892               | 23,580<br>6,491<br>7,351<br>3,526<br>11,166<br>20,809<br>762,096                 | 24,006<br>5,924<br>7,487<br>3,476<br>11,530<br>20,661<br>772,198 |

<sup>&</sup>lt;sup>1</sup> Gross weight, including copper, silicon, and other alloying elements. Secondary smelters used 16,300 and 34,797 tons of primary aluminum in 1972 and 1973, respectively, in producing secondary aluminum-based alloys.

<sup>2</sup> No allowance was made for consumption or receipts by producing plants.

### CONSUMPTION

Aluminum demand continued strong in 1973, and consumption, as measured by shipments of aluminum ingot and mill products to domestic users, surged upward by 18.6%. Total shipments including exports increased by 20.8%.

The transportation market, representing the second largest market for aluminum products, gained about 26% over that of the previous year, and had the largest

quantity increase of any of the major markets. The estimated average use of aluminum in 1974 model cars was about 80 pounds per unit compared with about 78 pounds in 1973 models. The increase was attributed to greater use of aluminum in the General Motors Corp. Vega engine, in bumpers, air conditioning, and some body sheet, especially for hoods.

Table 8.-Distribution of end-use shipments of aluminum products

| _                                                                                                                                                                                   | 19'                                                        | 72 r                                                       | 1973                                                         |                                                            |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------|--|
| Industry                                                                                                                                                                            | Quantity<br>(thousand<br>short tons)                       | Percent of total                                           | Quantity<br>(thousand<br>short tons)                         | Percent of total                                           |  |
| Building and construction Transportation Containers and packaging Electrical Consumer durables Machinery and equipment Other markets Statistical adjustment Total to domestic users | 1,597<br>1,112<br>906<br>768<br>564<br>375<br>414<br>6,023 | 26.5<br>18.5<br>15.0<br>12.8<br>9.3<br>6.2<br>6.9<br>100.0 | 1,799<br>1,405<br>1,029<br>927<br>669<br>475<br>435<br>7,228 | 25.0<br>19.3<br>14.1<br>13.0<br>9.1<br>6.5<br>6.0<br>100.0 |  |
| Exports<br>Total                                                                                                                                                                    | 281<br>6,023                                               | 95.3<br>4.7<br>100.0                                       | 1 6,808<br>420<br>7,228                                      | 94.0<br>6.0<br>100.0                                       |  |

Data may not add to totals shown because of independent rounding.

Source: The Aluminum Association.

143 ALUMINUM

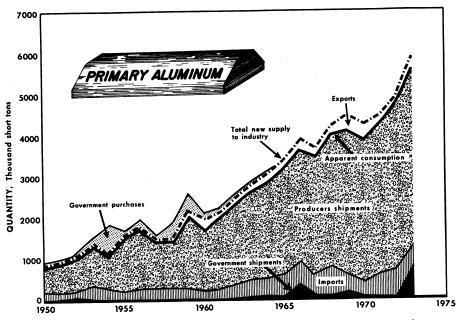



Figure 1.-Components of domestic supply and distribution of primary aluminum.

Table 9.-Apparent consumption of aluminum in the United States (Short tons)

|                                      | Year | Primary sold<br>or used by<br>producers                       | Imports (net) 1                                                                       | Recovery<br>from old<br>scrap <sup>2</sup>          | Recovery<br>from new<br>scrap <sup>2</sup>          | Total<br>apparent<br>consumption                              |
|--------------------------------------|------|---------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------|
| 1969<br>1970<br>1971<br>1972<br>1973 |      | 3,821,001<br>3,878,920<br>3,887,429<br>4,177,190<br>4,587,348 | $\begin{array}{l} -11,419 \\ -141,796 \\ +396,408 \\ +466,765 \\ +59,484 \end{array}$ | 148,205<br>145,576<br>167,030<br>188,594<br>196,514 | 752,625<br>635,843<br>648,138<br>755,762<br>841,966 | 4,710,412<br>4,518,543<br>5,099,005<br>5,588,311<br>5,685,312 |

<sup>&</sup>lt;sup>1</sup> Crude and semicrude. Includes ingot equivalent of scrap imports and exports (weight multiplied by 0.9).
2 Aluminum content.

An Alcoa study, described in a report,2 showed that about 52 pounds of aluminum (about 75% of which was in engine parts such as pistons, carburetors, fuel pumps, etc.) was used in light trucks weighing about 6,000 to 10,000 pounds per unit. Remaining uses of aluminum in light trucks included body, hardware and trim applications (about 18% of the total), and air conditioners (5%). Alcoa estimated that the average large truck tractor with a gross weight (including the trailer) of over 33,000 pounds used 785 pounds of aluminum mainly in the cab, frame, radiator, fuel tanks, wheels, battery boxes, bumpers, and air conditioners. The average use of aluminum in all trucks increased 31/2 pounds per unit to an estimated 99 pounds per unit in 1974 models.

Shipments for machinery and equipment applications, which include special industrial machinery, chemical processing and material handling equipment, irrigation pipe, and service equipment and supplies, had the largest percentage gain, reaching 475,000 tons, 26.7% above that of the pre-

Shipments to the electrical industry also increased sharply to 1,029,000 tons, 21%

<sup>&</sup>lt;sup>2</sup> Rakowski, Leo R. Trucks Go Light With luminum. Mod. Metals, v. 29, No. 5, June Aluminum. Mod 1973, pp. 49-62.

higher than in 1972. Part of this increase was attributed to the expansion of the use of copper-clad aluminum conductors, which can be satisfactorily joined with a good electrical connection. Shipments of copperclad aluminum conductors for wiring houses reportedly exceeded shipments of solid aluminum conductors for that purpose and continued to gain on solid copper conductors for houses.3

Consumption of aluminum for air conditioners, cooking utensils, refrigerators, and other consumer durables increased about 19% to 669,000 tons. The increases in aluminum shipments for building and construction and the container and packaging markets of 13% and 14%, respectively, were below the overall average increase for consuming industries.

The use of aluminum coatings to improve the corrosion resistance of steel roof-

ing and structural components was expected to triple by 1976.4 About 0.8 ounce of aluminum per square foot of steel surface was said to reflect up to 80% of the radiant heat that strikes it and does not need any initial or maintenance painting. The aluminized steel could be fabricated into a variety of shapes, only one coating of porcelain enamel was required on the outside of aluminized steel compared with a double coating of porcelain required on the outside of untreated steel, and was available in strengths up to 50,000 pounds per square inch. A porcelain coating was not required on interior surfaces protected with aluminum.

Table 10.-Net shipments of aluminum wrought 1 and cast products by producers (Short tons)

|                                                                                                                                    | 1972                 | 1973 Р                 |
|------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------|
| Wrought products:                                                                                                                  |                      |                        |
| Sheet, plate, and foil Rolled and continuous cast rod and bar, wire Extruded rod, bar, pipe, tube, shapes; drawn and welded tubing | 2,993,850<br>690,144 | 3,257,856<br>675,221   |
| Powder, flake, and nasta                                                                                                           | 1,188,081            | 1,317,781              |
| Powder, flake, and paste Forgings (including impacts)                                                                              | 113,185              | 128,698                |
| Total                                                                                                                              | 61,383               | 71,186                 |
| Total                                                                                                                              | 5,046,643            | 5,450,742              |
| 0-1                                                                                                                                |                      |                        |
| Sand Permanent mold Die                                                                                                            | 114,820              | 129,825                |
| Die                                                                                                                                | 209,888              | 220.100                |
| DieOthers                                                                                                                          | 596,086              | 652.184                |
| Others Total                                                                                                                       | 7,042                | 10,918                 |
|                                                                                                                                    | 927,836              | <sup>2</sup> 1,013,027 |
| Grand total                                                                                                                        | 5,974,479            | 6,463,769              |

Preliminary.

<sup>&</sup>lt;sup>3</sup> Polleys, William. Copper-Clad Aluminum: A Wire Success Story. Am. Metal Market, v. 80, No. 206, Oct. 24, 1973, pp. 2A-3A.

<sup>4</sup> Light Metal Age. Aluminized Steel, Booming Growth Seen In The Construction Industry. V. 31, No. 7/8, August 1973, pp. 19-20.

<sup>1</sup> Net shipments derived by subtracting the sum of producers' domestic receipts of each mill shape from the domestic industry's gross shipment of that shape.

2 Subject to possible upward revision of approximately 10% to 15%.

Table 11.-Distribution of wrought products

(Percent)

| (Fercent)                      |                 |        |
|--------------------------------|-----------------|--------|
|                                | 1972            | 1973 р |
| Sheet, plate, and foil:        | -0.1            | 49.7   |
| Non-heat-treatable             | 50.1            | 2.9    |
| Heat-treatable                 | 2.6             | 7.1    |
| 73 '1                          | 6.7             | 1.1    |
| Rolled and continuous cast rod |                 |        |
| and har: wire:                 | 4.3             | 2.7    |
| D-1 how ofe                    | 4.3             | 2.1    |
| Dare wire conductor and        | 1.1             | 1.1    |
| nonconductor                   | 1.1             | 1.1    |
| Bare cable (including          | 4.6             | 4.5    |
|                                | 4.0             | 7.0    |
| Wire and cable, insulated      | 3.7             | 4.1    |
| or covered                     | 0.1             | ***    |
| Extruded products:             | .8              | .6     |
| Pod and har                    | 1.9             | 2.1    |
| Pipe and tubing                | 18.7            | 19.4   |
| Shapes 1                       | 10.1            | 10     |
| Tubing:                        | .9              | 1.0    |
| Drawn2                         | 1.2             | 1.1    |
| Welded, non-heat-treatable 2_  | 1.2             |        |
| Dowder fiske and Daste:        | 1.8             | 1.9    |
| Atomized                       | (3)             | (3)    |
| Flaked                         |                 | ``´.8  |
| Paste                          | .2              | .2     |
| Powder, n.e.c                  | .2<br>.2<br>1.2 | 1.8    |
| Forgings (including impacts)   |                 | 100.0  |
| Total                          | 100.0           | 100.   |

#### **STOCKS**

Reflecting the strong upturn in demand, industry stocks of primary aluminum ingot at reduction plants declined from 120,465 tons (revised) at the beginning of the year to 62,234 tons at yearend. Although all producers do not report stocks of aluminum at reduction plants to the Bureau of Mines, the Bureau of Domestic Commerce (BDC) reported that the total metal inventory held by the aluminum industry, which includes stocks of all metal forms at reduction and other processing plants, also declined. Total industry stocks of aluminum metal, including scrap, dropped from 2,430,584 tons (revised) at the beginning of the year to 2, 183,031 tons at yearend.

#### **PRICES**

The major domestic producers price for primary aluminum, quoted in the American Metal Market at the beginning of 1973, was 25 cents per pound, and was raised to 29 cents per pound at yearend. By the end of estimated the market price for primary aluminum at about 20 cents per pound in January, 23 to 23.5 cents per pound in March, 25 cents per pound in May, and 33 cents per pound at yearend. By the end of the year the estimated world market price for primary aluminum was 36 to 38 cents per pound, compared to an estimated 28 to 30 cents per pound at the beginning of the year.

In the middle of the year requests by two leading domestic aluminum companies to increase the aluminum base or ceiling price for primary aluminum to 29 cents per pound, which prevailed in May 1970 when market prices were believed to be about 26 to 27 cents per pound, was rejected by the Cost of Living Council (CLC). Anaconda

p Preliminary.

<sup>1</sup> Includes a small amount of rolled structural

shapes.  $^2$  Includes a small amount of heat-treatable welded tube.

3 Less than 0.1%.

and Alcan were permitted under price regulations to raise their price for primary aluminum to 27.5 cents per pound in October. On December 6, the CLC restored the May 1970 base price for aluminum of 29 cents per pound and, after subsequent clarifications by the CLC, all major domestic producers raised their quoted prices to that level by the end of the year.

Prices (in cents per pound) quoted by the American Metal Market for aluminumbase scrap and secondary alloy ingot, also increased markedly during the year, as follows:

|                                                                                        | Jan. 2,<br>1973           | Dec. 31,<br>1973           |
|----------------------------------------------------------------------------------------|---------------------------|----------------------------|
| Aluminum clippings (new scrap) Old cast scrap Smelter's alloys (secondary alloy ingot, | 11.5 -15.5<br>11.5 -12.25 | 19.00-24.00<br>17.00-18.00 |
| excluding deoxidizing ingot)                                                           | 26.75-32.00               | 34.00-40.00                |

Increased costs for silicon, a major alloying ingredient in secondary aluminum alloyingot was credited with causing part of the increase in the price of secondary aluminum alloys, as well as the increase in aluminum-base scrap prices.

# FOREIGN TRADE

Despite strong domestic demand, exports of crude and semicrude aluminum metal, including scrap, were 70% higher than those in 1972. Most of the increase was in the form of aluminum ingot, slabs and crude, the total quantity of which was more than double that in 1972. Aluminum scrap exports also were more than double those of 1972. Canada was the principal destination of U.S. aluminum exports, receiving 24% of the crude and semicrude aluminum shipped, chiefly in the form of ingot and scrap. Of the ingot, slabs, and other crude forms exported, Japan, Canada, Argentina, West Germany and Mexico, in that order, were the principal recipients.

U.S. imports for consumption of crude and semicrude aluminum decreased to 613, 606 short tons, 29% less than 1972 imports. Aluminum in the form of metal and alloys, ingots, and other crude forms, as in past years dominated imports, accounting for 83% of the total. Scrap imports declined 12% during the year to 46,808 tons. As in past years, Canada was the principal source of U.S. aluminum imports, accounting for 85% of the ingot and other crude forms and for 85% of the scrap imports. Other principal sources of imported ingot and other crude forms were Ghana, Norway, Surinam, and the United Kingdom.

Table 12.-U.S. exports of aluminum, by class

|                                                                           | 19                          | 72                         | 197                         | 3                         |
|---------------------------------------------------------------------------|-----------------------------|----------------------------|-----------------------------|---------------------------|
| Class                                                                     | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands)  | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands) |
| Crude and semicrude:                                                      |                             |                            |                             |                           |
| Ingots, slabs, crude Scrap Plates, sheets, bars, etc Castings and foreign | 108,319<br>66,039           | \$51,879<br>21,072         | 229,578<br>115,120          | \$121,951<br>39,930       |
| Semifabricated forms, n.e.c                                               | 144,987<br>4,467<br>5,282   | 115,279<br>11,681<br>9,329 | 202,371<br>5,277<br>8,637   | 178,48<br>14,61           |
| Manufactures :                                                            | 329,094                     | 209,240                    | 560,983                     | 15,38<br>370,370          |
| Foil and leaf<br>Powders and pastes<br>Wire and cable                     | 7,459<br>2,757              | 11,828<br>2,110            | 11,090<br>5,954             | 17,406<br>4.50            |
| Total                                                                     | 10,229                      | 9,050                      | 9,194                       | 9,457                     |
| Total                                                                     | 20,445                      | 22,988                     | 26,238                      | 31,366                    |
| Grand total                                                               | 349,539                     | 232,228                    | 587,221                     | 401,736                   |

Table 13.-U.S. exports of aluminum, by class and country

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                           | 1972                                       |                           |                             |                       |                             |                         | 1973                        |                                |                             |                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------|--------------------------------------------|---------------------------|-----------------------------|-----------------------|-----------------------------|-------------------------|-----------------------------|--------------------------------|-----------------------------|-----------------------|
| I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ingots, slabs,<br>crude     | slabs,                    | Plates, sheets,<br>bars, etc. <sup>1</sup> | sheets,<br>etc.1          | Scrap                       | ap                    | Ingots                      | Ingots, slabs,<br>crude | Plates,<br>bars,            | Plates, sheets,<br>bars, etc.1 | Scrap                       | e.                    |
| Country                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands) | Quantity<br>(short<br>tons)                | Value<br>(thou-<br>sands) | Quantity<br>(short<br>tons) | Value<br>(thou-sands) | Quantity<br>(short<br>tons) | Value<br>(thou-sands)   | Quantity<br>(short<br>tons) | Value<br>(thou-sands)          | Quantity<br>(short<br>tons) | Value<br>(thou-sands) |
| Argentina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16,222                      | \$6,405                   | 1,799                                      | \$873                     | 10                          | (2)                   | 23,441                      | \$11,639                | 379                         | \$637                          | - 5                         | (3)                   |
| AustraliaBelgium_Tuvombourg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11 497                      | 35<br>4 056               | 1,058                                      | 1,251                     | 70 c                        | 164                   | 1,513                       | 91.0                    | 2,042                       | 2,492                          | 976                         | 22.5                  |
| Brazil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.506                       | 1.089                     | 1.632                                      | 1.705                     | 1.187                       | 104<br>323            | 6.585                       | 3,048                   | 2.384                       | 823<br>9.347                   | 340<br>5.293                | 2.013                 |
| æ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19,058                      | 10,186                    | 91,589                                     | 72,876                    | 4,312                       | 1,528                 | 34,141                      | 18,471                  | 91,822                      | 83,674                         | 9,193                       | 2,977                 |
| Chile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 407                         | 224                       | 10                                         | 19                        | 12                          | 4                     | 240                         | 127                     | 13                          | 20                             | 5 <u>0</u>                  | 10                    |
| Colombia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.5                         | 92                        | 281                                        | 301                       | G                           | 21                    | 1,137                       | 597                     | 667                         | 492                            | 81                          | 81                    |
| El Salvador                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.429                       | 669                       | 5,404                                      | 2,048                     | 1                           | 1                     | 1 414                       | 688                     | 5,014<br>760                | 4,287                          | 1                           | 1                     |
| France                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,647                       | 938                       | 821                                        | 1.099                     | 386                         | 155                   | 1,869                       | 1,041                   | 1,705                       | 1.946                          | 1.456                       | 447                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8,887                       | 4,344                     | 5,264                                      | 7,533                     | 12,873                      | 3,659                 | 21,484                      | 11,980                  | 606,6                       | 15,593                         | 14,337                      | 4,925                 |
| Ghana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 301                         | 223                       | 105                                        | 95                        | 1                           | !                     | 22                          | 32                      | 1,274                       | 903                            | }                           | 1                     |
| Hong Kong                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.742                       | 877                       | 474                                        | 900<br>475                | 1                           | !                     | 1.291                       | 188                     | 1,305                       | 1,108                          | ١٥                          | 100                   |
| Iran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3,272                       | 1,489                     | 214                                        | 196                       | ļ                           | ¦۵۹                   | 34                          | 17                      | 778                         | 792                            | ן מ                         | ٠ ;                   |
| Israel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22                          | 13                        | 720                                        | 979                       | i                           | ;                     | 101                         | 83                      | 1,233                       | 1,602                          | ;                           | }                     |
| Italy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 88                          | 576                       | 2,783                                      | 4,083                     | 1,854                       | 494                   | 6,892                       | 3,926                   | 4,708                       | 7,134                          | 960'9                       | 2,135                 |
| Janan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13 956                      | 6 583                     | 4 466                                      | 270                       | 21 40K                      | 10.956                | 48 239                      | 96 459                  | 16 010                      | 000                            | 181 34                      | 190.01                |
| Korea, Republic of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 519                         | 240                       | 161                                        | 201                       | 6.794                       | 2.392                 | 1.490                       | 751                     | 276                         | 423                            | 10.307                      | 2.888                 |
| Mexico                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 524                         | 286                       | 10,162                                     | 6,607                     | 287                         | 32                    | 12,652                      | 7,150                   | 22,996                      | 14,304                         | 164                         | 45                    |
| Netherlands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,575                       | 996                       | 3,043                                      | 3,156                     | 294                         | 91                    | 5,487                       | 2,702                   | 7,321                       | 7,722                          | 252                         | 100                   |
| New Zealand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 878                         | 473<br>67                 | 307                                        | 310                       | !                           | ł                     | 196                         | 020                     | 1,021                       | 1,162                          | 1                           | !                     |
| Pakistan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 665                         | 330                       | 581                                        | 363                       | 749                         | 906                   | 3.914                       | 1 852                   | 1,100                       | 1,039                          | 1 094                       | 231                   |
| Panama                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 545                         | 257                       | 69                                         | 104                       | . 67                        | -                     | 968                         | 435                     | 280                         | 427                            |                             | 100                   |
| Peru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 93                          | 49                        | 86                                         | 166                       | 799                         | 403                   | 218                         | 107                     | 24                          | 55                             | 692                         | 351                   |
| Philippines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5,013                       | 2,512                     | 153                                        | 217                       | 99                          | 37                    | 8,921                       | 4,742                   | 298                         | 449                            | 139                         | 48                    |
| South Africa,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                           | d                         |                                            |                           |                             |                       | ć                           | 3                       |                             | ,                              |                             |                       |
| republic of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ٦ د                         | N =                       | 482,7                                      | 2,074                     | 110                         | 100                   | 35                          | 127                     | 4,418                       | 4,196                          | 100                         | 10                    |
| Sweden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 [~                        | ⊣ rc                      | 911                                        | 1 0422                    | 1,627                       | 321                   | 463                         | 446<br>194              | 608<br>581                  | 120                            | 1,826                       | 309                   |
| Switzerland                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 917                       | 043                       | 698                                        | 000                       | !                           | ;                     | 9 195                       | 1 022                   | 360                         | 27.0                           | 0                           | 9                     |
| Taiwan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6,146                       | 2.549                     | 200<br>200                                 | 319                       | 991                         | 420                   | 10.208                      | 4.684                   | 267                         | 350                            | 15.409                      | 2.736                 |
| Thailand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4,818                       | 2,221                     | 25                                         | 43                        | :                           | Ì                     | 8,611                       | 4.693                   | 159                         | 170                            | 365                         | 247                   |
| United Kingdom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,241                       | 722                       | 13,703                                     | 13,007                    | 1,266                       | 368                   | 3,733                       | 1,847                   | 22,032                      | 21,350                         | 2,606                       | 935                   |
| Venezuela                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 97                          | 102                       | 1,583                                      | 1,599                     | 100                         |                       | 2,147                       | 1,123                   | 4,239                       | 4,056                          | 1000                        | ۳3                    |
| The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | 100,1                       | 7                         | 0,010                                      | 2000                      | 900                         | 607                   | 14,400                      | 1,000                   | 0,400                       | *00°,                          | 007                         | 34                    |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 108,319                     | 51,879                    | 154,736                                    | 136,289                   | 66,039                      | 21,072                | 229,578                     | 121,951                 | 216,285                     | 208,483                        | 115,120                     | 39,936                |

 $^1$  Includes plates, sheets, bars, extrusions, forgings, and unclassified semifabricated forms.  $^2$  Less than  $^{1\!/2}$  unit.

Table 14.-U.S. imports for consumption of aluminum, by class

|                             | 19                          | 72                        | 19                          | 73                        |
|-----------------------------|-----------------------------|---------------------------|-----------------------------|---------------------------|
| Class                       | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands) | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands) |
| Crude and semicrude:        |                             |                           |                             |                           |
| Metals and alloys, crude    | 661,042                     | \$304,536                 | 508,025                     | \$225,256                 |
| Circles and disks           | 9.907                       | 6.597                     | 7.752                       | 5,663                     |
| Plates, sheets, etc., n.e.c | 59,616                      | 36,941                    | 42,262                      | 29,982                    |
| Rods and bars               | 9,428                       | 6.671                     | 7.293                       | 5,731                     |
| Pipes, tubes, etc           | 2,191                       | 2,242                     | 1,466                       | 1,846                     |
| Scrap                       | 52,301                      | 17,747                    | 46,808                      | 16,740                    |
| Total                       | 794,485                     | 374,734                   | 613,606                     | 285,218                   |
| Manufactures:               |                             |                           |                             |                           |
| Foil                        | 12.266                      | 14.851                    | 9.184                       | 14,610                    |
| Leaf (5.5 by 5.5 inches)    | (1)                         | 84                        | (1)                         | 82                        |
| Flakes and powders          | 225                         | 298                       | 219                         | 416                       |
| Wire                        | 743                         | 542                       | 602                         | 730                       |
| Total                       | 13,234                      | 15,775                    | 10,005                      | 15,838                    |
| Grand total                 | 807,719                     | 390,509                   | 623,611                     | 301,056                   |

 $<sup>^{1}</sup>$ 1972: 7,959,116 leaves and 167,764,497 square inches; 1973: 2,269,800 leaves, and 132,057,391 square inches.

Table 15.-U.S. imports for consumption of aluminum, by class and country

|                    |                    |                 |                    |                 |                    |        |              |              | 1973         |        |              |          |
|--------------------|--------------------|-----------------|--------------------|-----------------|--------------------|--------|--------------|--------------|--------------|--------|--------------|----------|
|                    |                    |                 | 1972               |                 |                    |        |              |              | Plates s     | hopts. | 2            | ,        |
|                    | Metals             | and             | மீ                 | sheets,         | Scrap              | ą      | Metals and   | and          | bars, etc.   | tc.1   | Scrap        |          |
| -                  | alloys, crude      | crude           |                    | 됐1              |                    | 1.     | Onentity     | Value        | Quantity     | Value  | Quantity     | Value    |
| Country            | Quantity<br>(short | Value<br>(thou- | Quantity<br>(short | Value<br>(thou- | Quantity<br>(short | (thou- | (short tons) | (thou-sands) | (short tons) | (thou- | (short tons) | sands)   |
|                    | tons)              | sands)          | tons)              | Salius)         | ( area             |        |              |              |              | 5      |              |          |
|                    |                    |                 | G*                 | 88              | 1                  | ;      | 1            | !            | 42.5         | 1 799  | 1            |          |
| Australia          | 1                  | 16              | 9 276              | 1.699           | 1                  | :      | 1            | 1            | 2,119        | 14.266 | 1            | !        |
| Belgium-Luxembourg | a                  | 9               | 35,299             | 20,551          | 31                 | 88     | 211 007      | 6100 058     | 5,129        | 4.504  | 39,804       | \$14,022 |
| Austria            | 508.231            | 230,211         | 5,522              | 4,777           | 44,452             | 15,399 | 450,116      | 481          | 9,705        | 908'9  | 10           | 110      |
| Ushsaga            | 17,220             | 8,408           | 14,225             | 9,374           | 1 049              | 112    | 103          | 57           | 1,408        | 1,674  | 630          | 1237     |
| Germany. West      | œ                  | 00              | 1,033              | 1,047           | 133                | 89     | 40,561       | 19,513       | 10           | 100    | 321          | 701      |
| Ghana              | 40,613             | 19,467          | 9 075              | 9.734           | (E)                | (2)    | 19           | 13           | 2,433        | 1,781  | 170          | 20       |
| Italy              | 022                | 13.1            | 8.950              | 5,902           | ; }                | 1      | 166          | 124<br>660   | 0,001        | 9      | 1,114        | 214      |
| Japan              | 4 967              | 9.829           | 17                 | 24              | 775                | 124    | 1990         | 6 477        | 622          | 399    | 546          | 232      |
| Mexico             | 63,909             | 31,077          | 293                | 157             | 25                 | 6      | 01*,61       | 59           |              | 1      | !            | !        |
| Norway             | 551                | 193             | 1                  | 10              | 1                  | 1      | 3 67         | 4            | 1,174        | 823    | 1            | !        |
| Chain              | ;                  | 1               | 1,013              | 648             | 1                  | ! !    | 12,258       | 4,754        | 16           | 15     | 144          | 669      |
| Surinam            | }                  | !               | 15                 | 156             | 225                | 82     | 59           | <b>5</b> 4   | 20 H         | 90     | * !          | 3 1      |
| Sweden             | 1                  | !               | 226                | 192             | !                  | 11     | 10           | 2 065        | 294          | 327    | 099          | 267      |
| Switzerland        | 94 516             | 11.819          | 184                | 208             | 4,040              | 1,275  | 6,000        | 9,00         | 5.455        | 4,150  | 1            | 11       |
| United Kingdom     | 9                  | 3               | 6,330              | 4,110           | 1 5                | 196    | 168          | 72           | 2,262        | 1,654  | 2,934        | 1.98     |
| Yugoslavia         | r 626              | r 330           | 1,596              | 930             | 133                | 107    | 508 095      | 925.256      | 58,773       | 43,222 | 46,808       | 16,740   |
| Total              | 661,042            | 304,536         | 81,142             | 52,451          | 52,301             | 11,141 | 20,000       |              |              |        |              |          |
|                    |                    |                 |                    |                 |                    |        |              |              |              |        |              |          |

r Revised. Includes circles, disks, bars, rod, plates, sheets, pipes, etc. 2 Less than 1/2 unit.

#### WORLD REVIEW

Estimated world demand for primary aluminum surged ahead by about 12% over that of the previous year. Shortages of electric energy supplies held output growth significantly below the potential in the United States and Japan and caused a decline in production in India. As a result, world production of primary aluminum was up only 10%. Although sales from government-held stocks in the United States helped avert a drastic shortage in that country, supply was tight in all major consuming areas during most of the year. Some 10% to 15% of the electric energy used to produce primary aluminum in many countries is believed to be based on oil-fired thermal generating plants. The sharp increase in world oil prices during the latter part of 1973 compounded energy supply problems and accelerated industry interest in locating aluminum plants near sources of low-cost thermal or hydroelectric power, most of which are found outside major consuming areas.

Large expansions of primary aluminum capacity, however, were completed in 1973 in major consuming countries, including Italy, Japan, Spain, the United Kingdom, and the United States. Countries which were being considered for aluminum plants because of energy availability included Abu Dhabi, Brazil, Indonesia, Kuwait, Qatar Shiekdom, Saudi Arabia, and Venezuela.

Argentina.—Alumínio Argentino S.A. (ALUAR), apparently continued construction of the 140,000-ton-per-year primary aluminum plant at Puerto Madryn in Chubut Province, but it appeared unlikely that the plant would begin significant production before 1975 because of delays in completing the hydroelectric power facilities on the Futaleufu River. Beginning in late 1974 or early 1975, 100,000 tons of alumina from Australia was scheduled to be delivered annually to the plant under a contract with Alcoa.

Australia.—The Tasmanian State Government reportedly was considering construction of a 170,000-ton-per-year primary aluminum plant in cooperation with Nippon Light Metals Co. Ltd. (NLM) and other Japanese interests. By 1977, Comalco Industries Pty. Ltd. reportedly planned to construct an 88,000-ton-per-year primary aluminum plant near Gladstone, Queensland.

Brazil.—Companhia Mineira de Alumí-

Table 16.-Aluminum: World production by country 1

(Thousand short tons)

|                                  |       | ,,,,   |            |
|----------------------------------|-------|--------|------------|
| Country                          | 1971  | 1972   | 1973 р     |
| North America:                   |       |        |            |
| Canada                           | 1,121 | 1.013  | 1 000      |
| Mexico                           | 4.4   |        |            |
| United States                    | 3.925 |        |            |
| South America:                   | 0,040 | 4,144  | 4,529      |
| Brazil                           |       |        |            |
| Surinam                          |       |        |            |
| Venezuela                        | 60    |        |            |
| F                                | 25    | 26     | 26         |
| Europe:                          |       |        |            |
| Austria                          | 100   | 93     | 98         |
| Czechoslovakia                   | 41    | 42     | 46         |
| France                           | 423   | 434    | 397        |
| Germany, East e                  | 65    | 65     | 101        |
| Germany, East e<br>Germany, West | 471   | 490    | 587        |
|                                  | 128   | 143    | 157        |
| nungary -                        | 74    | 75     | 74         |
| rcerand                          | 45    | 50     | 79         |
| Italy                            | 132   | 134    | 203        |
| Netherlands                      | 128   | 183    | 209        |
| Norway                           | 584   | 604    |            |
| Poland 2                         | 110   | 112    | 684<br>112 |
| Romania 3                        | 123   | 134    |            |
| Romania 3<br>Spain               | 139   | 154    | 155        |
| oweden                           | r 82  | 85     | 185        |
| Switzerland                      | 104   | 92     | 91         |
| U.S.S.R. •                       | 1,300 | 1,380  | 1 500      |
| United Kingdom                   | 131   | 189    | 1,500      |
| Yugoslavia                       | 51    | 80     | 277        |
| Africa:                          | 01    | 00     | 100        |
| Cameroon                         |       |        |            |
| Ghana                            | 56    | 51     | 49         |
| South Africa,                    | 122   | 159    | 168        |
| Republic of                      |       |        |            |
| republic of                      | 32    | 58     | 58         |
| Asia:                            |       |        |            |
| Bahrian                          | 11    | 86     | 114        |
| China, People's                  |       |        | ***        |
| Republic of e                    | 150   | 150    | 160        |
| India                            | r 194 | 197    | 170        |
| iran                             |       | ĩi     | 48         |
| Japan 4                          | r 984 | 1.118  | 1,215      |
| Korea, Republic of               | 19    | 17     | 20         |
| Taiwan                           | 29    | 35     | 39         |
| Turkey                           |       |        | e 10       |
| Ceania:                          |       |        | 10         |
| Australia                        | r 247 | 005    |            |
| New Zealand                      | r 25  | 227    | e 228      |
|                                  |       | 97     | e 121      |
| Totalr                           |       | 12,115 | 13,359     |

nio, S.A., 50% owned by Alcoa, was expected to increase capacity at its alumina reduction facilities at Poços de Caldas to about 70,000 tons per year by 1976. The capacity of the Companhia Brasileira de Alumínio S.A. (CBA) primary plant at Sorocaba was to be raised to 77,000 tons per year by 1976. Capacity at the Alumínio Minas Gerais, S.A. plant at Arutü, owned by Alcan, was raised to 15,000 tons per year. Capacity at Alcan's Saramenha facility was

<sup>&</sup>lt;sup>e</sup> Estimate. <sup>p</sup> Preliminary. <sup>r</sup> Revised. <sup>1</sup> Output of primary unalloyed ingot unless otherwise specified.

therwise specined.

2 Includes secondary.

3 Includes alloys.

4 Includes super-purity aluminum as follows in nort tons: 1971—6,706; 1972—6,313; 1973—

aluminum 151

# Table 17.-World producers of primary aluminum

(Thousand short tons)

| Country, company, plant location                                                                                             | Capacity,<br>yearend<br>1973             | Ownership                                                  |
|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------|
| NORTH AMERICA                                                                                                                |                                          |                                                            |
| Canada:                                                                                                                      |                                          | Alcan Aluminium Ltd. 100%.                                 |
| Aluminium Company of Canada, Ltd.: Arvida, Quebec                                                                            | 458                                      |                                                            |
| Beauharnois, QuebecIsle Maligne, Quebec                                                                                      | $\begin{array}{c} 52 \\ 130 \end{array}$ |                                                            |
| Isle Maligne, Quebec                                                                                                         | 300                                      |                                                            |
| Kitimat, British Columbia  Shawinigan Falls, Quebec                                                                          | 95                                       |                                                            |
| m . 1                                                                                                                        | 1.035                                    | 100%                                                       |
| Canadian Reynolds Metals Co. Ltd.:                                                                                           |                                          | Reynolds Metals Co. 100%.                                  |
| Total Canadian Reynolds Metals Co. Ltd.: Baie Comeau, Quebec                                                                 | 175                                      |                                                            |
| Total Canada                                                                                                                 | 1,210                                    |                                                            |
| Mexico:<br>Alumínio, S.A. de C.V., Vera Cruz                                                                                 | _ 44                                     | Aluminum Co. of America 44% private Mexican interests 56%. |
| United States: (see table 3)                                                                                                 | 4,893                                    | _                                                          |
| Total North America                                                                                                          | 6,147                                    | _                                                          |
| SOUTH AMERICA                                                                                                                |                                          | -                                                          |
| Rrazil.                                                                                                                      |                                          | Alcan Aluminium Ltd. 100%.                                 |
| Alumínio Minas Gerais, S.A.:<br>Saramenha (Ouro Prêto)                                                                       | _ 35                                     | Alcan Aluminium Lou. 100 /61                               |
| Arutü, Bahia                                                                                                                 | _ 15                                     | T+1 800/                                                   |
| Companhia Brasileira de Alumínio S.A. (C.B.A.)                                                                               | :                                        | Industria Votorantim. Ltd. 80%;<br>Government 20%.         |
| Sorocaha São Paulo                                                                                                           | _ 44                                     | At the Co of America 50%                                   |
| Companhia Mineira de Alumínio, S.A.:<br>Poços de Caldas, Minas Gerais                                                        | _ 28                                     | Hanna Mining Co. 23.5%; Milia                              |
|                                                                                                                              |                                          | Gerais State 26.5%.                                        |
| Total Brazil                                                                                                                 | 122                                      | <u>-</u>                                                   |
| Surinam: Suriname Aluminium Co. (Suralco): Paranam                                                                           | 73                                       | Aluminum Co. of America 100%.                              |
| **************************************                                                                                       |                                          | Reynolds Metals Co. 50%; Govern                            |
| Alumínio del Caroni, S.A. (Alcasa) Matanzas                                                                                  |                                          | ment 50%.                                                  |
| Total South America                                                                                                          | 220                                      | =                                                          |
| EUROPE                                                                                                                       |                                          |                                                            |
| Austria:<br>Salzburger Aluminum GmbH (SAG):                                                                                  |                                          | Alusuisse 100%.                                            |
| Lend Salzhurg                                                                                                                | 13                                       | Government 100%.                                           |
| Vereinigte Metallwerke Ranshofen-Berndorf,                                                                                   |                                          | Government 100 //.                                         |
| A.G. (VMRB): Ranshofen, Braunau-am-Inn                                                                                       | 88                                       |                                                            |
| Total Austria                                                                                                                | 101                                      | <u>-</u>                                                   |
|                                                                                                                              |                                          | =                                                          |
| Czechoslovakia: Ziar Aluminium Works:                                                                                        |                                          | Government 100%.                                           |
| Ziar-on-Hron                                                                                                                 | 72                                       | <u> </u><br>=                                              |
| France:                                                                                                                      | *                                        | a 14 100a                                                  |
| Pachiney Hoine Kuhlmann Group (PUK):                                                                                         | 38                                       | Self 100%.                                                 |
| Auzat, Ariège                                                                                                                |                                          |                                                            |
| Chedde, Haute-Savoie La Praz, Savoie L'Argentière, Haute-Alpes La Saussaz, Savoie Nogueres, Basses-Pyrénées Rioupéroux-Isére | 4                                        |                                                            |
| L'Argentière, Haute-Alpes                                                                                                    | 42<br>13                                 |                                                            |
| La Saussaz, Savoie                                                                                                           | 127                                      |                                                            |
| Rioupéroux-Isére                                                                                                             | 26                                       | 3                                                          |
| St Ican de Maurienne-Savoie                                                                                                  | 91                                       |                                                            |
|                                                                                                                              |                                          |                                                            |
| Sabart-Ariege<br>Lannemezan-Haute Pyrénées<br>Venthon-Savoie                                                                 | 28                                       |                                                            |
| Total France                                                                                                                 | 457                                      | <del></del>                                                |
| 1000                                                                                                                         |                                          | =                                                          |
| Germany, East:                                                                                                               |                                          | Government 100%.                                           |
| Electrochemisches Kombinat: Bitterfeld                                                                                       | 5                                        | 5                                                          |
|                                                                                                                              |                                          | 9                                                          |
| Lautawerk Total Germany, East                                                                                                |                                          |                                                            |

# Table 17.—World producers of primary aluminum—Continued (Thousand short tons)

| Country, company, plant location                                                               | Capacity<br>yearend<br>1973 |                                                                              |
|------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------|
| EUROPE—Continued                                                                               |                             |                                                                              |
| Germany, West:                                                                                 |                             |                                                                              |
| Aluminium-Hütte Rheinfelden GmbH:                                                              |                             | Alusuisse 99.85%.                                                            |
| Rheinfelden, Baden Vereinigte Aluminium-Werke A.G. (VAW): Erffwerke Gravopheriak               | _ 61                        |                                                                              |
| Erftwerke, Grevenbroich<br>Innwerke, Toging                                                    | - 40                        | Government 100%.                                                             |
| Innwerke, Toging                                                                               | 77                          |                                                                              |
| Lippenwerke, Lunen<br>Norf, Rheinwerke                                                         |                             |                                                                              |
|                                                                                                |                             |                                                                              |
| Gebrueder Giulini GmbH:                                                                        | - 88                        | Gebrueden Civlini Coultt 1000                                                |
| Ludwigshafen                                                                                   | _ 22                        | Gebrueder Giulini GmbH 100%.                                                 |
| Kaiser-Preussag Aluminium GmbH:                                                                |                             | Kaiser 50%; Preussag A.G. 50%.                                               |
| Leichtmetall GmbH, Essen                                                                       | . 71<br>. 139               |                                                                              |
|                                                                                                | - 159                       | Metallgesellschaft A.G. 50%; Alusuisse 50%.                                  |
| Reynolds Aluminium Hamburg GmbH:                                                               |                             | Reynolds International Inc 90c/                                              |
| Hamburg                                                                                        |                             | Reynolds International, Inc. 90%<br>City of Hamburg 10%.                     |
|                                                                                                | 110                         |                                                                              |
| Total Germany, WestGreece:                                                                     |                             |                                                                              |
| Aluminium de Grèce S.A. (ADG) Distomon                                                         | 160                         | Péchiney 72%; Ugine 18%; Government 10%.                                     |
| Hungary:                                                                                       |                             | ernment 10%.                                                                 |
| Magyarsoviet Bauxite Inar                                                                      |                             | Covernment 1000                                                              |
| Ajka                                                                                           | 19                          | Government 100%.                                                             |
|                                                                                                |                             |                                                                              |
| Tatabanya                                                                                      | 17                          |                                                                              |
| Total Hungary                                                                                  |                             |                                                                              |
| Icelandic Aluminium Co., Hafnarfjordur                                                         | 83                          | Alusuisse 100%.                                                              |
| Italy:                                                                                         |                             | Musuisse 100%.                                                               |
| Alcan Alluminio Italiano S n A ·                                                               |                             | Alaam Alaasti Tit saasi                                                      |
| Borgo-Franco d'Ivrea                                                                           | 4                           | Alcan Aluminium Ltd. 100%.                                                   |
| Alumetal S.p.A.:                                                                               | -                           | Government 94%; Montecatini Edi-                                             |
| Bolzano                                                                                        |                             | son 6%.                                                                      |
| Fusina                                                                                         | 66<br>40                    |                                                                              |
| Mori                                                                                           | 26                          |                                                                              |
| Societá Alluminio Veneto per Azioni S.p.A.<br>(SAVA) :<br>Fusina                               |                             | Alusuisse 50%; Government 50%.                                               |
| Porto Marghera                                                                                 | 33                          |                                                                              |
| Aluminio Sardo S.p.A. (ALSAR):                                                                 | 33                          | Covernment 0457 No. 1                                                        |
|                                                                                                |                             | Government 94%; Montecatini Edison 6%.                                       |
| Porto Vesme, Sardinia                                                                          | 110                         | 5011 0 /6.                                                                   |
| Total Italy                                                                                    | 312                         |                                                                              |
| Jetherlands.                                                                                   |                             |                                                                              |
| Aluminium Delfzijl N.V. (Aldel), Delfzijl<br>Péchiney Nederland N.V., Vlissingen (Flushing)    | 106                         | Holland Aluminium N.V. 100%.                                                 |
| Pechiney Nederland N.V., Vlissingen (Flushing)                                                 |                             | Péchiney 85%; Hunter-Douglas                                                 |
|                                                                                                |                             | 15%.                                                                         |
| Total Netherlands                                                                              | 200                         |                                                                              |
| orway:                                                                                         |                             |                                                                              |
| Norsk Hydro A/S Karmøy Fabrikker (Alnor):                                                      |                             | Norsk Hydro 100%. (Government                                                |
| Karmøy Island                                                                                  |                             | 50%)                                                                         |
| A/S Ardal og Sunndal Verk (ASV):                                                               | 115                         | Covernment FAC Al For                                                        |
| Ardal                                                                                          | 194                         | Government $50\%$ ; Alcan $50\%$ .                                           |
| Constant                                                                                       | 33                          |                                                                              |
| Det Norske Nitridaktieselskap (DNN):                                                           | 132                         | Aller Food Bridge                                                            |
|                                                                                                | 1                           | Alcan 50%; British Aluminium 50%.                                            |
| Eydehavn                                                                                       | 16                          | ου /(·                                                                       |
| Tysseldal Mosjøen Aluminiumverk A/S (Mosal), Mosjoen Søer-Norge Aluminium A/S (Soral), Mosjoen | 27                          |                                                                              |
| Søer-Norge Aluminium A/S (Soral), Mosjoen                                                      | 105                         | Alcoa 50%; Elkem 50%.                                                        |
|                                                                                                | 77 A                        | Alcoa 50%; Elkem 50%.<br>Alusuisse 67%; Compadec and other<br>interests 33%. |
| Lista Aluminiumverk A/S (Elkem), Lista                                                         | 62 A                        | Alcoa 50%; Elkem 50%.                                                        |
|                                                                                                | 761                         | ov /c , Mixem ov /c.                                                         |
| pland: Ministry of Heavy Industry:                                                             | G                           | Government 100%.                                                             |
|                                                                                                |                             |                                                                              |
| Konin Works                                                                                    | 61                          |                                                                              |
| oland: Ministry of Heavy Industry:<br>Konin Works<br>Skawina Works<br>Total Poland             | 61<br>61<br>122             |                                                                              |

# Table 17.-World producers of primary aluminum-Continued

(Thousand short tons)

| Country, company, plant location                                                                                                                                                            | Capacity,<br>yearend<br>1973 | Ownership                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------|
| EUROPE—Continued                                                                                                                                                                            |                              |                                                                                |
| Romania:<br>Slatina                                                                                                                                                                         | 120                          | Government 100%.                                                               |
| Spain: Alumínio de Galicia, S.A.:                                                                                                                                                           | _ 61                         | Péchiney 66%; Endasa 17%; Government 17%.                                      |
| La Coruña Sabinanego, Huesca Empresa Nacional del Alumínio, S.A. (ENDASA)                                                                                                                   | _ 15                         | Government 50.5%; Alcan 25%; Banco-deBilbao 15%; Spanish interests 9.5%.       |
| Aviles                                                                                                                                                                                      | - 88<br>- 26                 | terests 5.5%.                                                                  |
| Valladolid<br>Total Spain                                                                                                                                                                   |                              |                                                                                |
| Sweden:  A/B Svenska Aluminiumkompaniet (Sako)  Sundsvall, Kubikenborg                                                                                                                      | _                            | Svenska Metallverken 79%; Alcan 21%.                                           |
| Switzerland: Swiss Aluminium Ltd. (Alusuisse): Chippis                                                                                                                                      | _ 35                         | Alusuisse 100%.                                                                |
| Steg Usine d'Aluminium Martigny, S.A. Martigny Total Switzerland                                                                                                                            | _ 12                         | Self 100%.                                                                     |
| U.S.S.R.:  Bogoslovsk (Krasnoturinsk) Sverdlovskaya Oblast, Urals Bratsk, Irkutskaya Oblast, Siberia Irkutsk (Shelekovo) Irkutskaya Oblast,                                                 | _ 154<br>_ 220               | Government 100%.                                                               |
| Siberia<br>Kamensk-Ural'skiy, Sverdlovskaya Oblast, Urals                                                                                                                                   | _ 220<br>_ 154               |                                                                                |
| Kanaker (Yerevan), Armenia  Kandalaksha, Murmanskaya Oblast  Krasnoyarsk, Krasnoyarskiy Kray, Siberia  Nadvoitsy, Karelskaya, A.S.S.R  Novokuznetsk (Stalinsk) Kemeroyskaya  Oblast Siboria | 83<br>33<br>220<br>39        |                                                                                |
| Sumgait (Kirovabad), Azerbaijan Volgograd (Stalingrad) Volgogradskaya Oblast Volkhov (Zvanka), Leningrad Oblast                                                                             | _ 83<br>_ 135                |                                                                                |
| Zaporozhye (Dneprovsk) Zaporozhskaya Oblast, Ukraine                                                                                                                                        | 77                           | -                                                                              |
| Total U.S.S.R                                                                                                                                                                               | 1,578                        | =                                                                              |
| United Kingdom: The British Aluminium Co., Ltd. (BA):                                                                                                                                       | 11                           | Tube Investments, Ltd. 49%; Reynolds Metals Co. 48%.                           |
| Kinlochleven, Scotland Lochaber (Ft. William), Scotland Invergordon, Scotland                                                                                                               | 32<br>112                    | Alcan 100%.                                                                    |
| Alcan (UK) Ltd.: Lynemouth, Northumberland                                                                                                                                                  | 132                          |                                                                                |
| Anglesey Aluminium Ltd.: Holyhead, New Wales, Scotland                                                                                                                                      |                              | Corp. 34%; British Insulated<br>Callenders Cables, Ltd. 19%.                   |
| Total United Kingdom                                                                                                                                                                        | 399                          | =                                                                              |
| Yugoslavia: Kidricevo, Slovenia Lozovac, Croatia                                                                                                                                            | 7                            |                                                                                |
| Titograd, Montenegro Sibenik (Boris Kidric), Croatia Total Yugoslavia                                                                                                                       | 83                           | _                                                                              |
| Total Europe                                                                                                                                                                                |                              | =                                                                              |
|                                                                                                                                                                                             |                              | =                                                                              |
| AFRICA Cameroon: Compagnie Camerounaise de l'Aluminium Péchiney Ugine (Alucam), Edea                                                                                                        | 61                           | Péchiney 48%; Ugine 12%, Cobeal 10%, Comal Cie 30%.  Kaiser 90%; Reynolds 10%. |
| Ghana: Volta Aluminium Corp. (Valco): Tema                                                                                                                                                  | 162                          | Kaiser 90%; Reynolds 10%.                                                      |

# Table 17.-World producers of primary aluminum-Continued

(Thousand short tons) Capacity, Country, company, plant location yearend Ownership 1973 AFRICA-Continued South Africa, Republic of:
Alusaf (Pty.) Ltd., Richards Bay 57 Industrial Development Corp. ernment) and private South African interests 78%; Alusuisse 22%. Total Africa 280 ASIA 132 Kaiser Aluminium, British Metals 17% each; Western Metals 8.5%; Bretton Investments 5.1%; Electro-Kopper 12%; Bahrain Government 40.4%. Bahrain: Aluminium Bahrain (ALBA) China, People's Republic of: Government 100%. Taiyuan, Kansi Lanchow, Kansu 60 Hefei, Anhwei Teingtao, Shantung
Jiaozuo, Honan 160 Wuhan, Hupei
Hunan, Hunan
Changsha, Hunan Total China, People's Republic of \_\_\_\_\_ 220 Aluminium Corp. of India Ltd. (Alucoin):

Asansol, West Bengal

Hindustan Aluminium Corp. Ltd. (Hindalco):

Renukoot, Uttar Pradesh

Indian Aluminium Co. Ltd. (Indal):

Belgaum, Bombay

Alupuram, Kerala

Hirakud Orissa Self 100%. 10 Kaiser 27%; Birla and Indian interests 73%.
Alcan 65%; Indian interests 35%. 105 73 Alupuram, Kerala Hirakud, Orissa Madras Aluminium Co. Ltd. (Malco): 21  $\overline{25}$ Montecatini Edison 27%: Madras Mettur India 20 State Government 73%. Total India 254 Iran Iran Aluminum Co. (IRALCO), Arak 50 Iranian Government 77.7%; Reynolds Metals Co. 17.3%; Pakistani Government 5%. Japan Mitsubishi Chemical Industries, Ltd.: Self 100%. Naoestu \_\_\_\_\_ 170 Sakaide Nippon Light Metal Co., Ltd. (NLM): Alcan 50%; Japanese interests 50%. Kambara Kambara Kokkaido (Tomakomai) 123 143 Niigata Showa Denko K.K.: \_\_\_\_\_\_ 110 Self 100%. Chiba 185 Kitakata -----47 46 Omachi \_\_\_\_\_ Sumitomo Chemical Co., Ltd.: Self 100%. Isoura Kikumoto 84 26 Nagoya 176 Toyama 176 Mitsui Aluminium Industry Co., Omuta 85 Self 100%. Total Japan 1.356 The Daehan Aluminum Co. (Han Kuk):
Ulsan Korean Development Bank 50%; PUK 50%. -----Taiwan Aluminium Corp. (Taialco): Government 100%. Kaohsiung, Takao 42 Turkey: Seydisehir \_\_\_\_\_ Government 100%. 22

2.094

Total Asia

Table 17.—World producers of primary aluminum—Continued (Thousand short tons)

|                                                                                                                                                                              | apacity,<br>yearend<br>1973 | Ownership                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OCEANIA  Australia: Alcan Australia, Ltd.: Kurri-Kurri, New South Wales Alcoa of Australia Pty. Ltd.: Point Henry, Victoria Comalco Industries Pty. Ltd.: Bell Bay, Tasmania | 50<br>99<br>104             | Alcan 70.5%; other interests 29.5%.  Alcoa 51%; Australian interests 49%.  Kaiser 45%; Conzinc Rio Tinto of Australia Ltd. 45%; other Australian interests 10%. |
| Total Australia  New Zealand: New Zealand Aluminium Smelters Ltd.: Bluff  Total Oceania  Total world                                                                         | 253<br>123<br>376<br>15.041 | Comalco Industries, Pty. Ltd. 50%<br>Sumitomo Chemical Co. 25%;<br>Showa Denko K.K. 25%.                                                                        |

scheduled to be increased to 36,000 tons per year by 1974. The planned expansion would bring total capacity in Brazil at existing plants to about 200,000 tons per year by 1976.

A proposed new plant to produce primary aluminum near Recife and at other locations was being planned by Brazilian, Canadian, and Japanese interests in connection with the development of the Trombetas bauxite deposits. Total domestic production capacity for primary aluminum was expected to reach 300,000 to 400,000 tons per year by the 1980's.

Canada.-Alcoa announced plans to construct a 60,000-ton-per-year primary aluminum plant near Valleyfield, Quebec, by 1976. Alcan reportedly had flexible plans to add 300,000 tons of new or expanded capacity in Canada over the next 10 years. The company was considering construction of a 90,000-ton-per-year primary aluminum plant in the Saguenay-Lac St. Jean area of Quebec for possible completion in 1977, was scheduled to boost annual productive capacity at its Arvida plant by 38,000 tons in 1976, and reportedly was discussing, with NLM, a 50% owned company based in Japan, the possibility of expanding existing Canadian capacity or of constructing new primary aluminum facilities in Canada.

China, People's Republic of.—Based on a published report, primary capacity at the Fushun plant was about 60,000 tons per year. The plant was said to be operated efficiently and possibly to be using alumina from the aluminous shales near Kiaoning.<sup>5</sup>

Strong demand for primary aluminum apparently continued since imports were established to have been in the 100,000-ton-per-year range, the same as last year. Reportedly, more metal would have been purchased if prices had been lower.

Czechoslovakia.—Primary aluminum capacity was expected to be increased to 132,000 tons per year by the 1980's.

France.—The primary aluminum plant at Nogueres was shut down from June 27 to August 16 because of a dispute between management and workers. The electrolyte and molten metal left in the cells froze, and production was not resumed until September. By yearend about 90% of the plant was believed to be operating. Some 40,000 tons of production was said to have been lost, and possible damage to anodes caused by the freezing of the cells had not been fully assessed.

Germany, Federal Republic of.—The 88,000-ton-per-year alumina reduction plant at Stade, operated by Vereinigte Aluminium-Werke A.G. (VAW) was commissioned. Commercial production also was being started at the new 110,000-ton-per-year primary aluminum facility at Hamburg, operated by Reynolds.

Greece.—The Government and Alcoa reached agreement in principle to construct a \$350 million alumina-aluminum complex at Pachi, near Megara. The facility will include a 286,000-ton-per-year primary aluminum production plant which is to become

<sup>&</sup>lt;sup>5</sup>Mamen, C. China Report—Part 2. Mines and Plants Visited. Canadian Mining J., v. 94, No. 3, March 1973, p. 33.

operational in two stages. The first stage was expected to be operating by 1976, and the second by 1978 or 1979. Share capital investment was to be \$105 million, 60% by Alcoa and 40% by the Government through the Hellenic Industrial Development Bank, which also was to arrange for loans to raise the remaining \$245 million.

Hungary. — Government spokesmen reportedly announced plans to expand primary aluminum capacity from about 69,000 tons per year in 1973 to 96,000 tons per year by 1985. Fabricating capacity during the same period was expected to be increased to between 270,000 and 300,000 tons per year, compared with about 100,000 tons per year in 1973. Primary aluminum requirements were received from the U.S.S.R. under barter arrangements in exchange for alumina produced in Hungary.

India.—The capacity data shown in table 17 include some expansions believed to have been completed in 1972 or 1973 but not operated during 1973 because of an electric power shortage. The Madras Aluminium Co. Ltd. (Malco), Hindustan Aluminium Corp. Ltd. (Hindalco), and Indian Aluminium Co. Ltd. (Indal), were especially affected by the power shortage. Because of the energy problems, total output of primary aluminum was curtailed during the year. The Tamil Nadu government announced plans to nationalize Malco.

Indonesia.—The government and five Japanese aluminum companies apparently agreed in principle to build hydroelectric power and primary aluminum production facilities costing \$500 million at Kuala Tanjung on the east coast of Northern Sumatra. Alcoa and Kaiser participated at various times in the preliminary discussions of the project and reportedly were still considering plans to join the Japanese firms, which included Mitsui Aluminum Industry Co., Ltd., Mitsubishi Chemical Industries, Ltd., NLM, Showa Denko K.K., and Sumitomo Chemical Co., Ltd. The primary aluminum plant was scheduled to have an initial capacity of 250,000 tons per year beginning in the early 1980's and eventually be expanded to 450,000 tons per year. The power facilities would have a 480,000-kilowatt capacity.

Although many details were yet to be agreed upon, the plan reportedly called for nationalization of the power facility 30 years after it was commissioned. The initial agreement also called for a fixed tax of \$16.55 per short ton of aluminum produced

plus a corporation tax on profits of 37.5% for the first 10 years and 45% thereafter.

Italy.—MCS S.p.A., owned by the State corporation Ente Participazione Finanziamento Industria Manifattura (EFIM), acquired 94% of the aluminum operations of Montecatini Edison S.p.A. MCS also started production of primary aluminum at a new plant at Porto Vesme in Sardinia.

Japan.—Primary aluminum capacities at Niigata, Chiba, and Toyama were expanded. Electric power supply problems and increased costs of imported oil threatened to cause production cutbacks at about half of the primary aluminum plants toward the end of the year. The increased fuel costs were expected to encourage the location of primary aluminum capacity outside Japan.

Korea, Republic of.—A new firm, the Daehan Aluminum Co., was formed by the Korean Development Bank and Péchiney Ugine Kuhlmann (PUK) to operate the primary aluminum plant at Ulsan. The plant was to be expanded to about 100,000 tons per year by 1978, at a cost of \$88 million, about 20% of which was to be raised locally.

Netherlands.—Capacity of the Vlissingen primary aluminum plant operated by the PUK Group was expected to be doubled early in 1974. Pending availability of electric energy, a third potline, increasing capacity to 278,000 tons per year, was expected to be constructed by 1977.

Norway.—Subject to availability of electric power, market conditions, and financial arrangements. A/S Ardal og Sunndal Verk (ASV) planned to increase primary aluminum capacity at its Ardal plant to 215,000 tons per year by 1980. The 33,000-ton-peryear plant at Hoyanger would be dismantled after a new 110,000-ton-per-year facility is started up in 1981. The Sunndal plant was to be expanded to 200,000 tons per year by 1980. Det Norske Nitridaktieselskap (DNN) planned to phase out its primary aluminum plant at Eydehavn in 1974, and was considering expansion of capacity at its Tysseldal plant to 50,000 tons per year. Lista Aluminiumverk A/S (Elkem) also was considering expansion of its primary aluminum plant to 88,000 tons per year by 1975.

New Zealand.—New Zealand Aluminium Smelters Ltd., planned to expand capacity of its Bluff primary aluminum plant to 166,000 tons per year by 1976. Government ALUMINUM 157

restrictions, placed on the level of Lake Manapouri, the source of electric power for the plant, appeared to limit the ultimate capacity of the facility, which had previously been scheduled to reach 250,000 tons per year.

Philippines.—Tentative plans for construction of two primary aluminum plants were reported. Reynolds International Inc., a subsidiary of Reynolds Metals Co. of the United States, and the Government signed a letter of intent to construct, near Ormos, Leyte, a 100,000-ton-per-year aluminum plant in which each will hold a 50% interest. Reynolds was to manage construction and provide technical assistance for the project. Implementation of the plans apparently was contingent on whether sufficient sources of geothermal power could be found.

Alusuisse reportedly was selected to supply the technical knowhow for a proposed new 22,000-ton-per-year primary aluminum facility in Mindanao, planned by the Aluminum Corp. of the Philippines.

South Africa, Republic of.—Capacity of the primary aluminum plant at Richards Bay was expected to be expanded to 84,000 tons per year in 1974.

Spain.—An agreement in principle was reached between Alcan, PUK, the Government entity, and the Instituto Nacional de Industria (INI), for the formation of a new corporation to produce alumina and primary aluminum metal at Villagarcía de Arosa in Galicia. Empresa Nacional del Alumínio S.A. (ENDASA), 50.5% of which was owned by INI, a government corporation, would own 50.5% of the new organization, Alcan would hold 25%, and the remainder would be held by Aluminio de Galicia, S.A. (Alugasa), which in turn is owned 66% by PUK, and 34% by Spanish interests.

Projected capacity of the primary aluminum plant, scheduled to be in operation in 1977, was 193,000 tons per year. Alumina was to be supplied from a domestic plant using Brazilian bauxite. Electric power would be based on lignite and would be

supplied by the Puentes de Garcia Rodriquez generating plant.

Turkey.—Production was started at the primary aluminum plant at Seydisehir early in the year. Initial capacity was estimated at about 22,000 tons per year and was to be increased eventually to 66,000 tons per year.

U.S.S.R.—PUK reportedly was discussing plans to provide technical assistance for building a \$500 million primary aluminum plant near the Syano-Shushenska hydroelectric facilities under construction in the Yenissey-Ankara River Basin in Siberia. Production at the planned 500,000-ton-peryear aluminum plant was expected to begin after initial operation of the hydroelectric facilities in 1977.

Venezuela.—Plans for major expansion of domestic primary aluminum capacity were announced. The capacity of the existing primary aluminum plant at Matanzas was being doubled to 50,000 tons per year. Mitsubishi Chemical Industries, Ltd., and other Japanese firms, and Reynolds, half owner of the Matanzas plant, were discussing plans for a new plant or an additional expansion to 200,000 tons per year. In addition, three Japanese firms, Showa Denko, K.K., Kobe Steel Co., and Marubeni, K.K., and the Corporación Venezolana de Guyana (CVG) a government agency, formed a new company, Industria Venezolana de Aluminio C.A., to construct a 75,000-ton-per-year primary aluminum plant by 1977, which was scheduled to be doubled by 1979. Showa Denko and Kobe Steel would each own 35% of the new company. Marubeni would own 10%, and the CVG would own the remaining 20%.

Yugoslavia.—Production reportedly was started at the new 83,000-ton-per-year primary aluminum plant at Sibenik. Electric power for the plant apparently was limited, restricting output. Capacity reportedly was scheduled to be increased to 110,000 tons per year by 1976. Despite the apparent problems with electric power supply, expansion of the capacity of the Titograd primary aluminum plant also was planned.

# **TECHNOLOGY**

The trend toward automation primary aluminum production facilities through computerization continued. Showa Denko K.K. of Japan found that computercontrolled, high-ampere (150,000 ampere), large-sized, prebaked aluminum potlines were generally more efficient than other types, although cathode wear was somewhat higher owing to the high amperage. The new line was especially designed to reduce labor and power requirements.

Computerized, automated feeding alumina to reduction cells at the ASV primary aluminum plant at Sunndal, Norway was tested.7 Two groups of reduction cells each with 11 cells, were used in the test. Alumina was added to the cells in one of the groups in sufficient quantities to establish stability in the cells, following each "anode effect" or period of time during which the voltage across the cell increases sharply, indicating a depletion of alumina in the bath. The other group was supplied a specific constant quantity of alumina after each anode effect and feeding cycle. The group with interim alumina additions based on an assumed interval of 24 hours between anode effects, consumed less power and fluoride, and the anode effects were easier to control. Under these conditions about one anode occurred in each cell per day. By extending the assumed anode effect to 48-hour intervals, the actual anode effects were reduced to 0.6 per day.

Commercial operating experiences with the National Southwire Aluminum Co. computer-controlled alumina reduction plant at Hawesville, Ky.,8 and at Intalco's Ferndale, Wash., plant were described. The experimental computer-controlled operation of 20 reduction cells at the Granges Aluminum Co. reduction plant at Sundsvall, Sweden was described in detail.10 Granges planned to install a \$1 million computer control system at its plant during 1973 and 1974.

The Bureau of Mines published two reports on its investigations of methods to recover aluminum and other metals from wastes and scrap.11

The Bureau operated a 5-ton-per-hour pilot plant for continuous mechanical separation of values contained in raw urban refuse. The entire system was assembled using commercially available equipment, The process relies on multistage proces-

sing including shredding, air classification, screening, gravity concentration, and electrostatic separation. Compactor trucks delivered raw refuse collected along typical routes in metropolitan Washington, D.C., to the pilot plant. The loads were separated into concentrates of (1) light-gage iron, (2) massive metals, (3) glass, (4) putrescibles and waste combustibles, (5) paper, and (6) plastics. Although some refinements remain to be made in the processing system flowsheet, the data obtained to date were highly encouraging, indicating favorable economics for commercial-size plants.

Three cryogenic methods were investigated in conjunction with crushing and classifying techniques to separate and reclaim the metallic components contained in insulated wires, shredded automobile nonferrous metal concentrates, small motors, generators, and rubber tires. Excellent separation of zinc die-casting alloys from copper and aluminum contained in shredded automobile nonferrous metal concentrates was attained by chilling at -72° C for 1 minute, crushing in a grateless hammer mill, and screening. From the screened products, 97.2% and 100% of the copper and aluminum, respectively, were recovered in the plus 1-inch fraction, and 100% of the zinc was recovered in the minus 1-inch fraction of over 97% zinc die-cast purity. Laboratory experimental results comparing direct and indirect chilling indicated that a sufficiently

<sup>&</sup>lt;sup>6</sup> Rutledge, P. Showa Denko Launches Automated Potline Using Prebaked Anodes at Chiba Aluminum Smelter. Eng. and Min. J., v. 174, No. 10, October 1973, pp. 88-90.

<sup>7</sup> Lindheim, O., and O. Mandal. Computerized Control and Wheelbreaker Operation of Aluminum Reduction Cells. Pres. at 102nd Ann. Meeting, Light Met. Soc., AIME, Proc., Chicago Ill., Feb. 25-Mar. 1, 1973, pp. 11-26.

<sup>8</sup> Adkins E. M. and J. A. Murphy. Operating

SAdkins, E. M., and J. A. Murphy. Operating Experience With a Digital Computer at NSA's Kentucky Aluminum Reduction Plant. Pres. at 102nd Ann. Meeting, Light Met. Soc. AIME, Proc., Chicago, Ill., Feb. 25-Mar. 1, 1973, pp. 27-28

<sup>&</sup>lt;sup>9</sup> Dugois, J., J. Ganii and K. Williams. Analysis of Intalco Aluminum's Potline Minicomputers. Pres. at 102nd Ann. Meeting. Light Meet. Soc., AIME, Proc., Chicago, Ill., Feb. 25-Mar. 1, 1973, pp. 159-174.

<sup>10</sup> Bohlin, U. Computer Control of Aluminum Electrolysis at Granges Aluminum Employing Normalized Voltage'. Pres. at 102nd Ann. Meeting. Light Met. Soc., AIME, Proc., Chicago, Ill., Feb. 25-Mar. 1, 1973, pp. 39-56.

<sup>11</sup> Sullivan, P. M., M. H. Stanczyk, and M. J. Spendlove. Resource Recovery From Raw Urban Refuse. BuMines RI 7760, 1973, 28 pp. Valdez, E. G., K. C. Dean, and W. J. Wilson. Use of Cryogens to Reclaim Nonferrous Scrap Metals. BuMines RI 7716, 1973, 13 pp.

ALUMINUM 159

low temperature could be attained by indirect chilling to permit use of a liquid CO<sub>2</sub>-dry ice system on insulated wires and mixed nonferrous metallic concentrates.

Other industry developments in processing scrap materials included development of an air classifier system, which reportedly enabled the production of high-quality fuel from the lightweight part of shredded trash and enhanced recovery and recycling of metals and other heavy material.12 In the system, garbage is shredded into small pieces and introduced into the air classifier. Air is drawn upward through the material causing separation of the solid waste into light and heavy fractions. A series of magnetic belts are used to separate the ferrous products from the other heavy components. Using the system, American Can Co. proposed a full system for treating a municipality's solid waste-erecting a treatment facility, operating and managing it, marketing recoverable materials, and disposing of unsalable residues. The system was proposed in several major metropolitan

Cryogenics Inc., reportedly was expanding a large-scale pilot plant operation utilizing a nitrogen freezing method to generate 50 tons per day of clean aluminum, steel, copper, and precious metals from conglomerate scrap. After nitrogen freezing, aluminum, copper, and steel-bearing motors were processed in hammer mills, shaker screens, and air and magnetic separation equipment.

Increasingly stringent restrictions on the emission of pollutants and the continuing cost-price squeeze in production of primary aluminum has resulted in intensified efforts to reduce fluorine consumption. The quantities of fluorine used, the reasons for the losses, and the trends in consumption of fluorine including a forecast of use to 1980, were dicussed.<sup>14</sup>

Methods for controlling fumes released when magnesium is removed from molten

aluminum were described in proposed rules for effluent guidelines for the secondary aluminum industry. Wet scrubbing techniques in effect transfer an air pollution problem to a water pollution problem whether chlorine or aluminum fluoride are used to remove the magnesium. Water from fume scrubbing techniques is neutralized to precipitate aluminum and magnesium compounds and the supernatant water is recycled.

Dry processes must contend with corrosive gasses in both methods for removing magnesium. In the Derham process, which has been licensed for use at about five plants in the United States, magnesium chloride is entrapped in a liquid flux covering the molten aluminum in a special compartment.16 The resulting flux is reused in melting operations. The Alcoa process is a fumeless process for removing magnesium from molten aluminum and recovers magnesium chloride as a product. This process uses no flux and achieves high chloride efficiency through extending the time of contact between chlorine and magnesium in the melt. In the coated baghouse or Teller technique, the fumes resulting from magnesium removal are passed through filter bags coated with a solid material to absorb effluent gasses as well as to retain particulates.

<sup>&</sup>lt;sup>12</sup> American Metal Market. Rights to Air Classifier System For Solid Waste to Americology. V. 80, No. 221, Nov. 14, 1973, p. 14.

<sup>13</sup> Bohne, W. Cryogenies So Successful Quadrupling of Pilot Plant Targeted For Next March. Am. Metal Market, v. 80, No. 216, Nov. 7, 1973, pp. 11, 16.

<sup>&</sup>lt;sup>14</sup> Wickes, H. G., Jr., and J. B. Whitchurch. Fluorine Consumption Trends of the Aluminum Industry. Pres. at 102nd Ann. Meeting. Light Met. Soc., AIME, Proc., Chicago, Ill., Feb. 25– Mar. 1, 1973, pp. 1–21.

<sup>15</sup> Environmental Protection Agency. Nonferrous Metals Manufacturing Point Source Category. Federal Register, V. 88, No. 30, 1973, pp. 33169-33183.

<sup>&</sup>lt;sup>16</sup> Derham, Leslie J. (assigned to Alloys and Chemicals Corp.). Purification of Aluminum. U.S. Pat. 3,650,730, Mar. 21, 1972.



# Antimony

# By Charlie Wyche 1

Responding to a generally tight supply and increasing demand, the domestic antimony industry increased both mine and primary smelter production during 1973. Încreases were also recorded in both consumption and secondary smelter production. The 28% increase in consumption of primary antimony was balanced by withdrawals from the U.S. stockpile as imports of ore, metal, and oxide decreased from those of 1972. Byproduct antimonial lead at primary lead refineries increased 56%. Secondary smelters operated at a high rate throughout the year, and production of antimony from scrap increased 3% over that of 1972. The domestic primary metal price rose from \$0.59 per pound in January to \$0.94 in mid-December. Consumer stocks of primary antimony increased about 1,500 tons during the year.

Legislation and Government Programs.

—The General Services Administration (GSA) as authorized under Public Law 92–105, enacted August 11, 1971, continued disposal of some 6,000 tons of surplus Government stocks of antimony metal. The metal was in the form of granules, pigs,

slabs, cakes, and ingots, and was of stockpile grades "C" and "D" quality. Initially, the rate of disposal was set at 800 tons per calendar quarter; however, this was increased in May to more than 2,000 tons per quarter. In late November, GSA had exhausted that portion of its stocks that Congress authorized it to sell. Since the stockpile metal was less pure than the two commercial grades, GSA prices were lower than commercial prices. The quoted price range of GSA for grade "C" metal rose to \$0.68 per pound, from \$0.62 at the beginning of the year. Purchasers had to agree that the antimony was for domestic consumption. Firms that purchased antimony for resale had to agree to sell the metal at no more than the price charged by GSA. Total sales from Government stocks in 1973 amounted to 5,975 tons; Government inventory at yearend was 40,702 tons.

Exploration assistance for antimony continued under the Office of Minerals Exploration, and Government participation remained at 75%.

Table 1.-Salient antimony statistics

(Short tons)

|                                          | 1969                                                                  | 1970                                                                     | 1971                                                                       | 1972                                                                   | 1973                                                           |
|------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|
| United States: Production: Primary: Mine | 938<br>13,203<br>23,840<br>207<br>17,032<br>17,843<br>57.57<br>73,001 | 1,130<br>13,381<br>21,424<br>543<br>18,654<br>13,937<br>144,19<br>77,124 | 1,025<br>11,374<br>20,917<br>1,023<br>13,595<br>13,707<br>71.18<br>170,653 | 489<br>13,344<br>122,428<br>121<br>23,743<br>16,124<br>59,00<br>73,259 | 545<br>17,206<br>24,062<br>21,265<br>20,613<br>68.56<br>76,413 |

<sup>·</sup> Reviseu.

1 Includes primary antimony content of antimonial lead produced at primary lead refineries.

<sup>&</sup>lt;sup>1</sup> Physical scientist, Division of Nonferrous Metals-Mineral Supply.

# DOMESTIC PRODUCTION

#### MINE PRODUCTION

Domestic mine production of 545 tons of antimony in 1973 was 11% above that of 1972, reversing the downward trend, which began in 1971. Production of antimony from antimony ores increased in relation to that from other sources, but antimony recovered as a byproduct of lead-silver ores by the Sunshine Mining Co. remained the predominant source of mine production. The lead-silver ores of the Coeur d'Alene district of Idaho contributed 322 tons (59%) of the total supply. Production would have been even higher if a 4-month strike had not occurred at the company's Kellogg, Idaho, plant.

U.S. Antimony Corp., the only U.S. mine that operated primarily for antimony, increased its metal production substantially during the year. Although the smelter began operating on a regular basis in the spring of 1973, there were still some metallurgical problems to be solved at yearend. The operation is a batch process and has a capacity of approximately 600 tons of metallic antimony annually. A planned 50% increase in mill output is expected to increase metal production to about 800 tons per year. The company is also studying the feasibility of producing antimony trioxide.

The only other source of domestic mine production was a mine in Nevada. In addition, 731 tons of antimony was recovered in antimonial lead from domestic lead ores at primary lead smelters.

Table 2.—Mine production and shipments of antimony in the United States

| (Short tons)                         |                                           |                                     |                                     |  |  |  |  |
|--------------------------------------|-------------------------------------------|-------------------------------------|-------------------------------------|--|--|--|--|
| Year                                 | Antimony concentrate                      | Antimony                            |                                     |  |  |  |  |
|                                      | (quantity)                                | Produced                            | Shipped                             |  |  |  |  |
| 1969<br>1970<br>1971<br>1972<br>1973 | 5,707<br>6,681<br>4,721<br>2,072<br>2,468 | 938<br>1,130<br>1,025<br>489<br>545 | 943<br>1,029<br>1,073<br>547<br>494 |  |  |  |  |

# SMELTER PRODUCTION

Primary.—Primary smelter production of antimony was 17,206 tons, an increase of 29% over that produced in 1972. The increase resulted essentially from higher output of oxide, byproduct antimonial lead, and residues. However, production of metal and sulfide decreased 25% and 60%,

respectively. The antimony content of byproduct antimonial lead recovered at primary lead refineries from domestic and foreign ores increased to 1,143 tons, 56% above that of the previous year. Ores and concentrates used by primary smelters to produce metal was derived from the following: 92% from foreign antimony ores and base metal ores, and 8% from domestic mine production of antimony concentrate and as a byproduct at domestic lead smelters. Most of the byproduct antimony recovered was consumed at the smelter in the manufacture of antimonial lead; the remainder was processed to oxide or recycled in residues.

The quantities and types of material produced at the smelters were as follows: Metal, 16%; oxide, 65%; antimonial lead, 7%; ground residue, 11%; and sulfide, 1%. Antimony metal was produced by NL Industries, Inc., Sunshine Mining Co., and U.S. Antimony Corp. Oxide was produced by American Smelting & Refining Co., Harshaw Chemical Co., McGean Chemical Co., M & T Chemicals Inc., NL Industries, Inc., and U.S. Antimony Corp. Byproduct antimonial lead was produced at lead refineries operated by American Smelting & Refining Co., The Bunker Hill Co., and St. Joe Minerals Corp.

Secondary.—Recovery of antimony from antimonial lead scrap totaled 24,062 tons, a 7% increase from 1972. The overall rise was attributed to the increased availability of old antimonial lead scrap. Secondary smelters recovered 20,459 tons, primary smelters recovered 24 tons, and manufacturers and founderies recovered the remaining 3,579 tons. Old scrap represented 85% of the total secondary antimony produced and consisted of the following: Batteries, 66%; type metal, 14%; babbitt, 12%; and all other material, 8%. Drosses and residues were the only sources of secondary antimony recovered from new scrap, which contributed 15% of the total. The antimony content of antimonial lead recovered from secondary sources was normally insufficient to meet commercial specifications of antimonial lead alloys. To prepare the desired alloys, about 2,275 tons of primary antimony was required to supplement the secondary antimony during 1973, compared with 2,570 tons in 1972.

163 ANTIMONY

Table 3.-Primary antimony produced in the United States

(Short tons, antimony content)

|      |                                           | Class of                                   | material pro                | duced                             |                                       |                                                |
|------|-------------------------------------------|--------------------------------------------|-----------------------------|-----------------------------------|---------------------------------------|------------------------------------------------|
| Year | Metal                                     | Oxide                                      | Sulfide                     | Residues                          | Byproduct<br>antimonial<br>lead       | Total                                          |
| 1969 | 3,129<br>3,732<br>3,816<br>3,837<br>2,859 | 7,746<br>8,261<br>6,272<br>8,343<br>11,273 | 95<br>23<br>18<br>232<br>92 | 330<br>384<br>136<br>201<br>1,839 | 1,903<br>981<br>1,132<br>731<br>1,143 | 13,203<br>13,381<br>11,374<br>13,344<br>17,206 |

Table 4.-Secondary antimony produced in the United States, by kind of scrap and form of recovery

(Short tons, antimony content)

|                                     | 1972 r       | 1973         | Form of recovery                                                              | 1972 r           | 1973             |
|-------------------------------------|--------------|--------------|-------------------------------------------------------------------------------|------------------|------------------|
| Kind of scrap                       | 1914 .       | 1310         |                                                                               | 17,452           | 19,212           |
| Vew scrap:<br>Lead-base             | 3,622<br>65  | 3,527<br>62  | In antimonial lead <sup>1</sup><br>In other lead alloys<br>In tin-base alloys | 4,970            | 4,842            |
| Tin-base<br>Total                   | 3,687        | 3,589        | Total<br>Value (millions)                                                     | 22,428<br>\$26.5 | 24,062<br>\$33.0 |
| Old scrap:<br>Lead-base<br>Tin-base | 18,725<br>16 | 20,459<br>14 |                                                                               |                  |                  |
| Total                               | 18,741       | 20,473       |                                                                               |                  |                  |
| Grand total                         | 22,428       | 24,062       |                                                                               |                  |                  |

r Revised.
1 Includes 319 tons of antimony recovered in antimonial lead from secondary sources at primary plants in 1972 and 24 tons in 1973.

Table 5.-Byproduct antimonial lead produced at primary lead refineries in the United States

(Short tons)

|                              |                                                |                                   | Anti                            | mony Conte                    | nt                                        |                                 |
|------------------------------|------------------------------------------------|-----------------------------------|---------------------------------|-------------------------------|-------------------------------------------|---------------------------------|
|                              | Gross From                                     |                                   | From                            | From                          | From Total                                |                                 |
| Year                         | weight From domestic ores 1                    | domestic                          | foreign<br>ores <sup>2</sup>    | scrap -                       | Quantity                                  | Percent                         |
| 1969<br>1970<br>1971<br>1972 | 24,741<br>20,438<br>19,686<br>15,051<br>15,455 | 1,174<br>598<br>828<br>516<br>731 | 729<br>383<br>304<br>215<br>412 | 179<br>203<br>59<br>319<br>24 | 2,082<br>1,184<br>1,191<br>1,050<br>1,167 | 8.4<br>5.8<br>6.0<br>7.0<br>7.6 |

Includes primary residues and a small quantity of antimony ore.
 Includes foreign base bullion and small quantities of foreign antimony ore.

# CONSUMPTION AND USES

Total domestic consumption of primary and secondary antimony in 1973 was 44,675 tons, 13% greater than that of 1972. Primary antimony contributed 46% of the total (20,613 tons), and secondary metal supplied 54% (24,062 tons). Virtually all of the secondary antimony was consumed in the manufacture of antimonial lead grids for use in batteries and other hardlead alloys.

Industrial usage of primary antimony by

class of material consumed increased in all areas except ore and concentrate. In the category of consumption by products, the use of metal decreased in all products except antimonial lead, ammunition, castings, and solder. Antimony metal and antimony oxide represented 45% and 55%, respectively, of the raw material consumed. Total consumption of primary metal products increased 26%, resulting principally from increased usage for antimonial lead.

Table 6.-Industrial consumption of primary antimony in the United States

(Short tons, antimony content)

| _                                    | Class of material consumed        |                                           |                                            |                              |                                   |                                       |                                           |  |  |  |
|--------------------------------------|-----------------------------------|-------------------------------------------|--------------------------------------------|------------------------------|-----------------------------------|---------------------------------------|-------------------------------------------|--|--|--|
| Year                                 | Ore and<br>concen-<br>trate       | Metal                                     | Oxide                                      | Sulfide                      | Residues                          | Byproduct<br>antimonial<br>lead       | Total                                     |  |  |  |
| 1969<br>1970<br>1971<br>1972<br>1973 | 507<br>380<br>387<br>1,226<br>582 | 6,275<br>4,989<br>5,080<br>5,473<br>5,824 | 8,756<br>7,157<br>6,944<br>8,389<br>10,970 | 72<br>46<br>28<br>104<br>255 | 330<br>384<br>136<br>201<br>1,839 | 1,903<br>981<br>1,132<br>731<br>1,143 | 17,84<br>13,93<br>13,70<br>16,12<br>20,61 |  |  |  |

In nonmetal products, a substantial growth rate of antimony oxide usage was experienced in the area of flame retardants. Oxide consumption was given an even greater impetus by Government legislation requiring that the interior trims of 1973 model cars be treated with flame retardants. Since this requirement applied also to imported cars, the upsurge in demand for antimony oxide was noticeable throughout the world. Domestic consump-

tion in ceramics and glass also continued the upward trend. A total of 2,219 tons of antimony was consumed in "other" nonmetal products. Of this quantity, approximately 73% was used as sodium antimonate as an opacifier in enamel frit. An additional 14% of this total was consumed as antimony trichloride, petroleum additives, antimony sulfide, and chemicals in a variety of applications.

Table 7.—Industrial consumption of primary antimony in the United States, by class of material produced

(Short tons, antimony content)

| Product                                    | 1969   | 1970       | 1971   | 1972   | 1070   |
|--------------------------------------------|--------|------------|--------|--------|--------|
| Metal products:                            |        |            |        | 1912   | 1973   |
| Ammunition                                 |        |            |        |        |        |
| Antimonial lead  Bearing metal and bearing | 115    | 102        | 67     | 64     | •      |
| Bearing metal and bearings                 | 6,723  | 5.246      | 5,430  | 6,149  | 12     |
| Cable covering                             | 758    | 481        | 515    | 559    | 8,02   |
| Cable covering Castings                    | 55     | 38         | 36     |        | 52     |
| Collangible tubes and to                   | 33     | 16         | 20     | 19     | 1      |
| Collapsible tubes and foil                 | 56     | 35         | 22     | 39     | 6      |
| Sheet and pipeSolder                       | 105    | 77         | 74     | 20     | 1      |
|                                            | 242    | 286        |        | 108    | 9      |
| Type metal Other                           | 541    | 220        | 178    | 177    | 19     |
| Other                                      | 137    | 73         | 177    | 142    | 13     |
|                                            |        | 78         | 102    | 105    | 10     |
| Total                                      | 8,765  | 6,574      | 6,621  | 7 200  |        |
| onmetal products:                          |        | -,         | 0,021  | 7,382  | 9,29   |
| Amminition miles                           |        |            |        |        |        |
| Ammunition primersFireworks                | 37     | 27         | 23     | 00     |        |
| Florence                                   | 30     | <b>1</b> 7 |        | 23     | 1      |
| Flameproofing chemicals and compounds      | 2,096  | 1,774      | 1 704  | 4      |        |
|                                            | 2,108  |            | 1,524  | 2,280  | 2,90   |
|                                            | 722    | 1,820      | 1,840  | 1,695  | 1,91   |
|                                            | 2,558  | 610        | 592    | 644    | 64     |
|                                            | 433    | 1,667      | 1,810  | 2,391  | 2,92   |
| Other                                      | 1,094  | 519        | 525    | 587    | 69     |
|                                            | 1,094  | 929        | 768    | 1,118  | 2,21   |
| Total                                      | 0.070  | 7.000      |        | ·      |        |
|                                            | 9,078  | 7,363      | 7,086  | 8,742  | 11,322 |
| Grand total                                | 17,843 | 13,937     | 13,707 | 16,124 | 20,618 |

#### **STOCKS**

Industry stocks were down in the second quarter, but increased steadily in the final quarters to 10,078 tons at yearend, the largest quantity on record. The increase was due primarily to the sale and delivery

of about 5,000 tons of Government stocks to purchasers during the year. Increases in metal and ore stocks more than offset the decline of about 1,100 tons in oxide stocks. Stocks of residues and antimonial lead

165 ANTIMONY

were substantially above the 1972 level. Antimony sulfide was the only other stock that was below the 1972 figure.

Government stocks of antimony on De-

cember 31, 1973, totaled 42,591 tons. Of the total inventory, the strategic stockpile contained 20,560 tons, and the supplemental stockpile contained 22,031 tons.

Table 8.-Industry stocks of primary antimony in the United States, December 31 (Short tons, antimony content)

|                                                                     | (Silor Comb, all calls)                      |                                             |                                             |                                              |                                             |
|---------------------------------------------------------------------|----------------------------------------------|---------------------------------------------|---------------------------------------------|----------------------------------------------|---------------------------------------------|
|                                                                     | 1969                                         | 1970                                        | 1971                                        | 1972                                         | 1973                                        |
| Stocks  Ore and concentrate  Metal Oxide Sulfide Residues and slags | 2,227<br>1,273<br>2,053<br>108<br>307<br>371 | 2,973<br>1,598<br>2,932<br>39<br>948<br>357 | 3,582<br>1,367<br>2,697<br>22<br>647<br>322 | 3,562<br>1,332<br>3,179<br>182<br>176<br>191 | 5,585<br>1,540<br>2,074<br>31<br>526<br>322 |
| Antimonial lead Total                                               | 6,339                                        | 8,847                                       | 8,637                                       | 8,622                                        | 10,078                                      |
| I 0081                                                              |                                              | •                                           |                                             |                                              |                                             |

<sup>1</sup> Inventories from primary sources at primary lead refineries only.

#### PRICES

The domestic price for antimony metal increased four times during the year. The increases, which occurred in February, April, November, and December, raised RMM antimony metal from \$0.57 to \$0.92 per pound f.o.b. Laredo. The Lone Star grade increased from \$0.68 to \$1.09 per pound during the same period. The price increases took place in spite of the fact that GSA sold 5,947 tons of antimony metal in 1973. The price increases were attributed to the rapidly growing demand for antimony metal and compounds, particularly in flame retardants, and the reluctance of the People's Republic of China to sell any significant tonnages at its spring and fall Canton Fairs. Also, early in December, price decontrol for minor metals allowed U.S. antimony prices to aline with the generally higher prices in world mar-

kets. Prices for antimony trioxide also increased from \$0.69 at the beginning of 1973, to \$1.05 per pound by the close of 1973.

Strong demand for antimony metal and oxide during the year boosted the price of ore. The quoted price of European lump ore, 60% antimony, rose to \$17.65-\$18.65 per short ton unit, up from \$7.60-\$8.60 at the beginning of the year.

Table 9.-Antimony price ranges in 1973

| Type of antimony                                                                            | Price per<br>pound                   |
|---------------------------------------------------------------------------------------------|--------------------------------------|
| Domestic metal <sup>1</sup><br>Foreign metal <sup>2</sup><br>Antimony trioxide <sup>3</sup> | \$0.57-0.92<br>.55-1.35<br>.69-1.055 |

RMM grade, f.o.b., Laredo, Tex. Duty-paid delivery, New York. Quoted in Metals Week.

## FOREIGN TRADE

Exports of antimony metal, alloys, and waste and scrap were 515 tons, appreciably above the 121 tons exported in 1972, and the value, \$468,976, was more than five times that of the preceding year. Antimony scrap comprised the bulk of material exported, and consignments were made to 24 countries. Canada and Belgium were the leading importers with 79 tons each, followed by the United Kingdom. The oxide exported was 388 tons, 25% more than the 1972 total, with a value of \$425,981 in 1973. West Germany, Canada, Brazil, and Belgium, in descending order of receipts, received over 73% of the total exports.

General imports of various antimony materials totaled 21,265 tons, a decline of 10% in comparison with 23,743 tons received in 1972. The decrease extended over all three categories of materials imported, but the largest decline was in receipts of metal. The Republic of South Africa, Bolivia, Mexico, Chile, and Turkey supplied over 90% of the ore and concentrate. Ten other countries supplied small percentages of the remainder. The People's Republic of China, the United Kingdom, and Mexico supplied over 65% of the metal. Yugoslavia, Belgium-Luxembourg, Brazil, Spain, and Turkey were the only other countries

to supply any appreciable quantities of metal. Oxide deliveries came chiefly from the United Kingdom and France (77%).

Other imports included 100 tons of alloy containing 83% or more antimony, 57 tons

of which came from the United Kingdom; 21 tons was received from Mexico; 20 tons was supplied by Belgium-Luxembourg, and 2 tons came from Canada. This material had a total value of \$102,803.

Table 10.-U.S. imports for consumption of antimony, by country

|                                                | 19                       | 72                   | 19                       | 73                                      |
|------------------------------------------------|--------------------------|----------------------|--------------------------|-----------------------------------------|
| Country                                        | Quantity<br>(short tons) | Value<br>(thousands) | Quantity<br>(short tons) | Value                                   |
| ntimony metal including needle or liquated: 1  |                          |                      | (SHOTE COILS)            | (thousands)                             |
|                                                | 100                      |                      |                          |                                         |
|                                                | 138                      | <b>\$135</b>         | 61                       | •0                                      |
| Canada<br>China Barrist B                      | 55                       | 50                   | 33                       | \$8                                     |
| Chilla, Feoble's Republic of                   | . 1                      | 15                   | 1                        | 2                                       |
| France Germany West                            | 1,017                    | 973                  | 180                      | 2                                       |
|                                                | . 59                     | 64                   | 100                      | 22                                      |
|                                                | (2)                      | 8                    | -:                       | -                                       |
|                                                | 66                       | 65                   | 1                        | 1                                       |
| Mexico<br>Netherlands                          | 86                       | 103                  |                          | _                                       |
| Netherlands                                    | 362                      | 194                  | . 3                      |                                         |
|                                                | 22                       | 23                   | 141                      | 5                                       |
|                                                | 5                        | 5                    | 11                       | 20                                      |
| SpainSweden                                    | 1 <u>2</u>               | 13                   |                          | _                                       |
|                                                |                          | 13                   | 34                       | 5                                       |
| Taiwan Turkey                                  | 106                      | 455                  | (2)                      | (2)                                     |
| TurkeyUnited Kingdom                           | 37                       | 101                  |                          | • • • • • • • • • • • • • • • • • • • • |
| United Kingdom Yugoslavia                      | 160                      | 30                   | 32                       | ãë                                      |
| Yugoslavia                                     | 254                      | 142                  | 180                      | 208                                     |
|                                                | 404                      | 246                  | 66                       | 72                                      |
| Total                                          | 2,380                    | 0.105                |                          |                                         |
| timony oxide:                                  | 2,300                    | 2,167                | 743                      | 818                                     |
| Belgium-Luxembourg                             |                          |                      |                          |                                         |
| Canada                                         | 610                      | 051                  |                          |                                         |
| China Paralal P                                | 010                      | 651                  | 410                      | 557                                     |
| China, People's Republic of France             | 85                       | ==                   | 3                        | 5                                       |
| Germany W                                      | 1.359                    | 79                   | 314                      | 343                                     |
|                                                | 1,339                    | 1,502                | 1,225                    | 1.467                                   |
|                                                |                          | 186                  | (2)                      | (2)                                     |
|                                                | 556                      | 633                  | 220                      | 276                                     |
|                                                | <b>52</b>                | 62                   | 33                       | 216<br>37                               |
| U.S.S.R.<br>United Kingdom                     |                          |                      | 33                       | 37                                      |
| United Kingdom                                 |                          |                      | 45                       |                                         |
|                                                | 2,198                    | 2.653                | 2,368                    | 57                                      |
| Total                                          |                          |                      | 2,000                    | 3,323                                   |
| Includes needle or liquated (value in thousand | 5,032                    | 5.766                | 4,651                    | 6,095                                   |

<sup>&</sup>lt;sup>1</sup> Includes needle or liquated (value in thousands) 1972: Belgium-Luxembourg, 73 tons (\$68); United Kingdom, 5 tons (\$7); 1973: Belgium-Luxembourg, 41 tons (\$57); United Kingdom, 10 tons (\$16).

Table 11.-U.S. imports for consumption of antimony ore, by country

| <b>a</b> .                                     |                                                  | 1972                                |                      | 1973                            |                                     |                      |  |
|------------------------------------------------|--------------------------------------------------|-------------------------------------|----------------------|---------------------------------|-------------------------------------|----------------------|--|
| Country                                        | Gross<br>weight<br>(short tons)                  | Antimony<br>content<br>(short tons) | Value<br>(thousands) | Gross<br>weight<br>(short tons) | Antimony<br>content<br>(short tons) | Value<br>(thousands) |  |
| Australia<br>Bolivia<br>Brazil                 | $\begin{smallmatrix} 56\\4,071\end{smallmatrix}$ | 34<br>2,562                         | \$19<br>1,536        | 5,939                           | 3,662                               | \$2,807              |  |
| Chile<br>Colombia                              | 2,759                                            | 1,722                               | 1,096                | 232<br>386<br>2,520             | 153<br>248<br>1,590                 | 121<br>213           |  |
| Germany, West<br>Guatemala<br>Honduras         | $\begin{array}{c} 5\bar{7} \\ 315 \end{array}$   | $\frac{25}{158}$                    | 15<br>35             | 7111<br>586                     | 52                                  | 1,104<br>11          |  |
| Mexico                                         | 77<br>8,261                                      | $\frac{19}{2,2\bar{1}\bar{7}}$      | 6                    | 32<br>23                        | 296<br>12<br>13                     | 82<br>9<br>4         |  |
| Morocco<br>Mozambique<br>Peru                  | $36\overline{5}$ $\overline{44}$                 | 150                                 | 820<br>70            | 7,099 $1.102$                   | 2,088<br>657                        | 563                  |  |
| outh Africa, Republic of<br>'hailand<br>'urkey | $17,224 \\ 313$                                  | 27<br>10,160<br>138                 | 19<br>5,766<br>55    | 161<br>11,375                   | 80<br>6,446                         | 531<br>57<br>4,410   |  |
| nited Kingdom                                  |                                                  |                                     | <br>                 | ${}^{88}_{4,205}_{10}$          | $^{36}_{1,339}$                     | 19<br>960<br>12      |  |
| Total                                          | 33,542                                           | 17,212                              | 9,437                | 33,869                          | 16,679                              | 10,903               |  |

ANTIMONY 167

Table 12.-U.S. imports for consumption of antimony

|                      | Antimony ore                       |                                        |                            | Needle or liquated                 |                           | Antimony metal 1                   |                           | Antimony oxide                     |                           |
|----------------------|------------------------------------|----------------------------------------|----------------------------|------------------------------------|---------------------------|------------------------------------|---------------------------|------------------------------------|---------------------------|
| Year                 | Gross<br>weight<br>(short<br>tons) | Antimony<br>content<br>(short<br>tons) | Value<br>(thou-<br>sands)  | Gross<br>weight<br>(short<br>tons) | Value<br>(thou-<br>sands) | Gross<br>weight<br>(short<br>tons) | Value<br>(thou-<br>sands) | Gross<br>weight<br>(short<br>tons) | Value<br>(thou-<br>sands) |
| 1971<br>1972<br>1973 | 22,102<br>33,542<br>33,869         | 9,619<br>17,212<br>16,679              | \$8,787<br>9,437<br>10,903 | 32<br>78<br>51                     | \$47<br>75<br>73          | 1,638<br>2,302<br>692              | \$1,914<br>2,092<br>745   | 2,791<br>5,032<br>4,651            | \$4,317<br>5,766<br>6,095 |

<sup>&</sup>lt;sup>1</sup> Does not include alloy containing 83% or more of antimony: 1971: United Kingdom, 120 short tons (\$120,093); Turkey, 32 short tons (\$29,022); Japan, 22 short tons (\$18,453); Mexico, 85 short tons (\$113,139); Thailand, 11 short tons (\$10,356). 1972: Mexico, 87 short tons (\$79,294); United Kingdom, 31 short tons (\$25,327); Taiwan, 11 short tons (\$31,693). 1973: United Kingdom, 57 short tons (\$59,854); Mexico, 21 short tons (\$19,858); Belgium-Luxembourg, 20 short tons (\$20,216); Canada, 2 short tons (\$2,875).

#### **WORLD REVIEW**

World primary antimony production, responding to favorable economic conditions, and escalating prices, increased 4% above that in 1972. Higher production rates, compared with 1972 were reported for most of the foreign countries, but only Bolivia, the Republic of South Africa, and Turkey had significant tonnage increases. Demand,

however, exceeded supply in all major consuming countries. The Canton Fairs were of little help because the quantity of antimony supplied to the Japanese industry was small. Also, metal made available to the European market was at very high prices. Because of the unbalanced supplydemand relationship, antimony producers

Table 13.—Antimony: World production (content of ore unless otherwise indicated), by country

(Short tons)

| Country                       | 1971     | 1972   | 1973 р       |
|-------------------------------|----------|--------|--------------|
| North America:                |          |        |              |
| Canada 1                      | 162      | 340    | 947          |
| Guatemala                     | 976      | 992    | 1,060        |
| Honduras                      | 160      | 33     | 53           |
| Mexico 2                      | 3,705    | 3.280  | 2.632        |
| United States                 | 1.025    | 489    | 545          |
| South America:                | -,       |        |              |
| Argentina                     | 15       | 23     | e <b>3</b> 0 |
| Bolivia 3                     | 12,861   | 14,472 | 16,462       |
| Peru (recoverable) 2          | 757      | 881    | e 900        |
| Europe:                       |          |        |              |
| Austria (recoverable)         | 515      | 553    | 636          |
| Czechoslovakia e              | 660      | 660    | 660          |
| Italy                         | 1,295    | 1.324  | 1.510        |
| Portugal                      | 2,200    | 15     | 22           |
| Spain                         | 122      | 152    | 132          |
| U.S.S.R. e                    | 7,600    | 7,700  | 7,800        |
| Yugoslavia                    | 2.207    | 2,177  | • 1,900      |
| Africa:                       | 2,20.    | 2,1    | 2,000        |
| Alleria •                     | 66       | 66     | 66           |
| Morocco                       | 2.174    | 917    | 1,249        |
| South Africa, Republic of     | 15,704   | 16.062 | 17,306       |
| Asia:                         | 10,104   | 10,002 | 11,000       |
|                               | 141      | 144    | 158          |
|                               | 13,000   | 13.000 | 13.000       |
| China, People's Republic of * | 10,000   | * 6    | • 6          |
| Japan                         | J        | 8      | 12           |
| Korea, Republic of            | 317      | 226    | • 220        |
| Malaysia (Sarawak)            | 34       | 50     | 15           |
| Pakistan •                    | 2.529    | 5,208  | • 3.750      |
| Thailand                      |          |        |              |
| Turkey                        | 3,124    | 2,982  | 3,696        |
| Oceania: Australia 4          | r 1,501  | 1,504  | 1,652        |
| Total                         | r 70,653 | 73,259 | 76,419       |

Estimate.
 P Preliminary.
 Revised.
 Antimony content of smelter products; excludes output from New Brunswick, which is believed to be small.

<sup>&</sup>lt;sup>2</sup> Includes antimony content of antimonial lead.

Exports.
 Antimony content of antimony concentrates, lead concentrates, and lead-zinc concentrates.

worldwide continued to develop new mines and expand existing ones.

Australia.—Australia's Antimony Corp. N.L. reported that its antimony mine at Dorrigo, New South Wales, was brought into production in May. The company entered into an agreement with Broken Hill Antimony, Pty. Ltd. to process the ore. Broken Hill Antimony installed additional flotation facilities at the site to increase production to 4,000 tons of concentrate per year. Demand from buyers was heavy, and several offers of long-term contracts were considered. Proven ore reserves at Dorrigo exceeded 500,000 tons, and development work was being conducted in adjacent areas. The Antimony Corp. also has antimony prospects in the Taylor's Arm district near Macksville, New South Wales.

Munga Creek Minerals N.L. increased antimony ore production, despite rising production costs and the adverse affects of currency revaluations. The increased ore production (at the lease areas in the Kempsey district of New South Wales) and improved milling plant techniques will provide a continuous supply of antimony at lower prices to markets in North America, Europe, and Japan.

Atherton Antimony N.L. commenced opencut mining at the Antimony Reward mine in North Queensland. More than 9,000 tons of ore has been stockpiled, and exploration was continued to determine the extent of ore reserves. In Victoria, Mid-East Minerals N.L. continued underground development of the Brunswick Reef at Costerfield. Values of 20% to 30% antimony and up to 2.25 troy ounces of gold per ton have been reported in a vein 10 to 20 inches wide at a depth of 150 feet.

Bolivia.—Construction of an antimony smelter in Bolivia continued on schedule. This 5,000-ton-per-year smelter was expected to be completed during 1973. The Czechoslovakian firm, Skoda Export, carried out the feasibility study and helped to construct the \$5 million smelter.

Burma.—In Burma, an antimony refining plant was constructed by the Mineral Development Corp. and was in operation near Moulmein.

Canada.—Consolidated Durham Mines & Resources Ltd. remained Canada's only an-

timony mine. The company mined veintype ore deposits containing stibnite at its Lake George property near Fredericton, Brunswick. The mill operated throughout 1973 after implementing a water pollution control system and undertaking additional shaft sinking and underground development in late 1972. The mill produced concentrates containing over 64% antimony, which was shipped to Japan, Europe, and the United States. Several other Canadian deposits of stibnite were explored and partly developed, but results were generally discouraging. The better known deposits were in the Atlantic Provinces, Quebec, British Columbia, and the Yukon Territory.

Japan.—Japan's Hibino Metal Co. made plans to import 40 to 50 tons of antimony metal on a long-term basis. Although the company presently produces a combined total of 300 tons of oxide and metal, it was reported that pollution controls, would prohibit expanded production from ore.

South Africa, Republic of.—In the Republic of South Africa, Chemetron Corp. (U.S. company) signed an agreement to form a joint venture company (Antimony Products (Pty.) Ltd.) to produce crude antimony oxide. The other participants were Consolidated Murchison Ltd. and Johannesburg Consolidated Investment Co. Ltd. Antimony Products Ltd. will build a plant near the antimony mines operated by Consolidated Murchison in the Northern Transvaal at Gravelotte, Republic of South Africa. The plant was scheduled for operation by the end of the year; annual capacity was to be around 3,500 tons.

Thailand.—A \$1.2 million antimony mining and smelting project was in progress at Lampang Province (Northern Thailand) by Amco Metal Industries Corp. The annual capacity of the smelter will be 15,400 short tons of 99.8% metal. The new project will substantially enlarge the capacity of the country's antimony industry, which totaled 11,100 tons of ore and only 200 tons of metal in 1972. The additional tonnage will also alter somewhat the world production pattern and place Thailand among the top 10 antimony metal producers.

169 ANTIMONY

### **TECHNOLOGY**

Two U.S. patents concerning the extraction of antimony metal and compounds were issued during the year. One patent, issued to the Federal Bureau of Mines, covers a method of producing hydrated antimony pentoxide electrolytically from either stibnite, tetrahedrite or livingstonite.2 The ground ore concentrate was slurried in an aqueous brine of sodium chloride, potassium chloride, or potassium bromide, and the mixture electrolyzed at a temperature of not over 50° C and current density of from 0.1 to 1.0 ampere per square inch for a period of up to 24 hours, whereby the insoluble hydrated pentoxide was formed. The insoluble product was filtered off and converted to the metal by conventional procedures. other patent described a method of processing antimony sulfide ore concentrate to obtain antimony oxide.3 Flotation concentrate or other finely divided ore was fluidized with air or oxygen. The fluidized ore temperature heated to a 1,200-1300° C for a period of about 4 seconds under turbulent conditions, and the

resulting antimony oxide was recovered from the kiln offgases.

An article 4 described how sintering of iron-antimony mixtures inhibit γ-grain growth as a result of the solid-phase diffusion of antimony in iron. When heated, the pellets of higher antimony contents exhibited a swelling that developed in one of two stages corresponding to the formation of intermetallic compounds.

A Canadian patent was issued pertaining to a process for removing antimony impurity from copper matte or copper sulfide.5 The molten material was treated with scrap iron, and the treated melt partially oxidized with air or oxygen-enriched air to oxidize the scrap iron and cause the major portion of the antimony content to pass from the copper into the coverter slag.

<sup>&</sup>lt;sup>2</sup> Schneiner, E. J., R. E. Lindstrom, and T. A. Henrie (assigned to the Department of the Interior). U.S. Pat. 3,755,106, Aug. 28, 1973.

<sup>2</sup> Nerazzi, N. (assigned to AMMI S.P.A.). U.S. pat. 3,759,500, Sept. 18, 1973.

<sup>4</sup> Behar, F., C. Servant, and G. Cizeron. Sintering in the System of Polyphase Mixtures of Pulverulent Iron and Antimony. J. Less-Common Metals, v. 30, No. 2, February 1973, pp. 259-278.

<sup>5</sup> Lundquist, S. A., (assigned to Boliden AB). Can. Pat. 930,959, July 31, 1973.



# **Asbestos**

# By Robert A. Clifton 1

Shipments of asbestos in the United States increased 14% and established another record high in 1973. The construction boom was the main reason for the increased demand. Imports were 8% above 1972 levels.

Canada, the world's leading producer of asbestos increased shipments 7% to its largest market, the United States. Canada's total shipments increased 10% over those of 1972.

Legislation and Government Programs.-The Environmental Protection Agency (EPA) published asbestos emission standards in April. In October, EPA published the first portion of its effluent guidelines for asbestos manufacturing point sources. On April 16, 1973, in a Presidential message to the Congress proposing stockpile disposal legislation, the national stockpile objective for amosite was reduced to zero, and that of chrysotile to 1,100 short tons. In1973 the General Services Administration (GSA) reduced Government inventories by disposing of 419 short tons of amosite, 6,076 tons of crocidolite, and 266 tons of chrysotile. Rhodesian asbestos continued to arrive in the country under the "strategic material" exception in the U.S. observance of the United Nations sanctions.

Environmental Impact.—Threatened effects of environmental regulations on the asbestos market remained just threats in 1973. The new regulations of the Office of Safety and Health Administration (OSHA) of the Department of Labor did not slow asbestos use in manufacturing. EPA promulgated its regulations on asbestos dust on April 6.

The controversial Reserve Mining Co. case was still before the U.S. District Court in Duluth, Minn., at year-end. Appellate action was deemed likely whichever side won.

Energy.—The Bureau of Mines conducted a comprehensive study of energy use in the asbestos mining industry in 1973. The survey covered all producers in Arizona, California, North Carolina, and Vermont.

Sources of energy included 2.2 million gallons of heavy fuel oil (43% of total usage), 168 million cubic feet of natural gas (22%), 47.6 million kilowatt-hours of purchased electricity (21%), 545,000 gallons of diesel oil (10%), 182,000 gallons of liquefied petroleum gas (LPG) (3%) and 64,000 gallons of gasoline (1%). Converted

Table 1.-Salient asbestos statistics

|                                                                         | 1969      | 1970      | 1971        | 1972            | 1973      |
|-------------------------------------------------------------------------|-----------|-----------|-------------|-----------------|-----------|
| United States: Production (sales)short tons Valuethousands              | 125,936   | 125,314   | 130,882     | 131,663         | 150,036   |
|                                                                         | \$10,648  | \$10,696  | \$12,174    | \$13,409        | \$16,288  |
| Exports and reexports (unmanufactured)short tons_ Valuethousands_       | 36,173    | 46,585    | 53,678      | 58,624          | 66,442    |
|                                                                         | \$4,979   | \$6,996   | \$7,863     | <b>\$</b> 9,051 | \$9,342   |
| Exports and reexports of asbestos products (value)thousands             | \$28,183  | \$25,391  | r \$31,409  | \$32,110        | \$40,720  |
| Imports for consumption (unmanufactured) short tons _ Value thousands _ | 694,558   | 649,402   | 681,367     | 735,515         | 792,473   |
|                                                                         | \$76,422  | \$75,146  | \$80,090    | \$87,732        | \$98,914  |
| Consumption, apparent short tons. World: Productiondo                   | 784,321   | 728,131   | 758,571     | 808,554         | 876,067   |
|                                                                         | 3,599,123 | 3,851,251 | r 3,951,449 | 4,159,984       | 4,605,935 |

r Revised.

1 Measured by quantity produced, plus imports (unmanufactured) minus exports and reexports (unmanufactured).

<sup>&</sup>lt;sup>1</sup> Physical scientist, Division of Nonmetallic Minerals—Mineral Supply.

to equivalent kilowatt-hours, total energy used was 226 million kilowatt hours, of which 59 million (26%) was used in mining and 167 million (74%) in milling. On

a tonnage basis, energy used per ton of usable asbestos was 1,500 kilowatt-hours. Estimated cost was \$1.7 million or \$11.32 per

Table 2.-Analysis of U.S. asbestos production and trade

(As a percent of apparent consumption)

|                         | 1969 | 1970 | 1971       | 1972                                    | 1973 |
|-------------------------|------|------|------------|-----------------------------------------|------|
| Mine production:        |      |      |            | 1015                                    | 1910 |
| Quantity<br>Value       | 16   | 10   |            |                                         |      |
| value                   |      | 17   | 17         | 16                                      | 17   |
| Value                   | 13   | 14   | 14         | 14                                      |      |
|                         |      |      |            | 1.4                                     | 15   |
|                         | 5    | 6    | -          | _                                       |      |
|                         | ő    | ŭ    | 7          | 7                                       | 8    |
| mports for consumption: | О    | 9    | 10         | 10                                      | 8    |
| Onentite Consumption:   |      |      |            |                                         | 0    |
| QuantityValue           | 89   | 89   |            |                                         |      |
|                         | 93   |      | 90         | 91                                      | 90   |
| Value                   | 93   | 95   | 95         | 96                                      | 93   |
| One-ti                  |      |      |            | • • • • • • • • • • • • • • • • • • • • | 90   |
| Quantity<br>Value       | 84   | 00   |            |                                         |      |
| Value                   |      | 83   | 8 <b>3</b> | 84                                      | 83   |
|                         | 87   | 86   | 86         | 86                                      | 85   |
|                         |      |      |            |                                         | 89   |

Table 3.—Stockpile objective and Government inventories as of December 31, 1973 (Short tons)

|            | Stockpile |                                | Inven                              | tories                       |                                    |
|------------|-----------|--------------------------------|------------------------------------|------------------------------|------------------------------------|
|            | objective | National                       | Supplemental                       | Defense<br>Production<br>Act | Total                              |
| Chrysotile | 1,100     | 11,630<br>6,059<br>12<br>1,554 | 46,549<br>3,284<br>1,274<br>17,814 | <br>242<br>                  | 58,179<br>9,349<br>1,529<br>19,368 |

Table 4.-Energy used by the asbestos mining industry in 1973

| Source and unit                                                                                                                                | Used in<br>mining               | Used in<br>milling                         | Total<br>used                              | Total<br>(thousand<br>kilowatt-<br>hours)              |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------------------|
| Heavy fuel oil thousand gallons Natural gas million cubic feet Electricity thousand kilowatt-hours Diesel oil thousand gallons LPG do do do do | 852<br>2,641<br>412<br>14<br>52 | 1,345<br>168<br>44,974<br>133<br>168<br>12 | 2,197<br>168<br>47,615<br>545<br>182<br>64 | 96,358<br>50,736<br>47,615<br>22,147<br>6,987<br>2,343 |
| Total energy, thousand kilowatt-hours                                                                                                          | 59,192                          | 166,994                                    | 226,186                                    | 226,186                                                |

## **DOMESTIC PRODUCTION**

U.S. mines shipped 14% more asbestos in 1973 than in 1972. The value increased 21%. Four States produced asbestos; California, with 70% was the leader, followed in order by Vermont, Arizona, and North Carolina. Total output was 150,036 tons valued at \$16,288,000.

The California segment of the asbestos industry continued to grow, with a 16% increase in production to 105,663 tons, and

was led by Pacific Asbestos Corp.'s mine in Calaveras County. The next leading producing county was Fresno, with Coalinga Asbestos Co. Inc. and Atlas Asbestos Corp. mines. Union Carbide Corp. had significant production in San Benito County. The State's increased production realized a \$2,213,000 increase in value.

GAF Corp.'s mine in Orleans County, Vt., remained the asbestos mine in the ASBESTOS 173

United States with the highest production, but was surpassed by Pacific Asbestos in product value. With only Jaquays Mining Corp.'s mine in Gila County operating in 1973, Arizona production decreased 27%. The production in North Carolina of Powhatan Mining Co. declined another 64% in 1973. U.S. asbestos producers and mine sites are as follows:

| State and company            | County | Name of mine                                                                   | Type of asbestos                                        |
|------------------------------|--------|--------------------------------------------------------------------------------|---------------------------------------------------------|
| Arizona: Jaquays Mining Corp | Gila   | Chrysotile Santa Cruz Christie Pacific Asbestos Santa Rita Hippy Lowell Lowell | Chrysotile.  Do. Do. Do. Do. Anthophyllite. Chrysotile. |

## CONSUMPTION AND USES

Overall consumption in 1973 increased 8% over that of 1972 with no usage trends apparent.

The data shown in table 6 although collected on the same form as the 1972 data, are not really comparable with 1972 data because expansion of the mailing list resulted in a 17% increase in the share of apparent consumption reported by respondents. It appears however, for example, that the large increase in consumption shown by floor tile manufacturers was the result of better coverage rather than any great change in the market. The cooperation of the industry continued to result in more complete data. The chrysotile data in table 6 have been adjusted to reflect 96% of the apparent consumption. Data for other types of asbestos are presented as reported.

While continuity between 1972 data and those of 1973 is disclaimed in the preceding paragraph, the increase in consumption for minor or "Other" uses (to 22%)

of the total) is logical and can be explained as reflecting data from new respondents who have minor end uses. Of total consumption, the eight major uses were: Construction 30%, floor tile 20%, paper 10%, friction products 8%, asphalt felts 5%, packing and gaskets 2%, insulation 2%, and textiles 1%.

Analysis of the newly available data on U.S. asbestos consumption was facilitated by selectively grouping commercial chrysotile grades as shown in table 5. These selected groupings disregarded chemical and physical properties, etc., and are based loosely on the Quebec Asbestos Mining Association standards.

Crudes, and Groups 1, 2, and others, while not milled, have the same ultimate textile uses as Group 3, and will be grouped as "BM I," (spinning). Groups 4 and 5 will be "BM II," shingle and paper. Groups 6 and 7 will be "BM III," shorts.

Note that the spinning grades (BM I) are consumed only in four of the major

Table 5.—Bureau of Mines groupings of commercial chrysotile grades

| Table 5.—Bureau or                                               |                                              |                           |
|------------------------------------------------------------------|----------------------------------------------|---------------------------|
| BM I<br>(spinning)                                               | BM II<br>(shingle and paper)                 | BM III<br>(shorts)        |
| (аршинд)                                                         | CANADA                                       | Croup 6 Group 7           |
| Group 1 (crude), Group 2 (crude),<br>Group 3, AAA, AA, A, AC, CC | Group 4, Group 5, AK, CP, AS, CT, AX, CY, AY | Group o, Group            |
| Group o, 122-1,                                                  | ARIZONA                                      |                           |
| No. 1 Crude, No. 2 Crude, AAA                                    | Group No. 3, Group No. 4, Group<br>No. 5     | Group No. 6, Group No. 7  |
|                                                                  | CALIFORNIA                                   |                           |
| None                                                             | Grade 4, Grade 5                             | Grade 6, Grade 7          |
| Mone                                                             | VERMONT                                      |                           |
| Grade 3                                                          | Grade 4, Grade 5                             | Grade 6, Grade 7, Grade 8 |

end uses, and comprised 2% of the reported tonnage consumed. Shingle and paper grades (BM II) comprised 20% of the weight of the fibers reported and were consumed in all the major use categories but floor tile and textiles. The remainder, 78% of the reported fibers were shorts (BM III) and were consumed in every major use except textiles.

The construction field accounted for 17% of the anthophyllite reported consumed with minor uses the remainder.

Eighty-four percent of the reported amosite consumption was used for insulation, 6% for construction, and 7% for asphalt felts.

Construction accounted for 50% of the crocidolite consumed and paper 1%.

A market survey made by a major inorganic fiber manufacturer, covering 1972 sales, distinguished between product categories and major consuming industry usage. This distinction between products and end uses was adhered to in this chapter.

Analysis of table 7 shows that although

100% of the obvious products were used in the construction industry, there were enough portions of other products used to show the construction industry accounting for 77% of the total asbestos consumption. This is probably high and caused in part by assigning all asbestos consumption to only three major industries. Another possible source of error can come from assigning no insulation (thermal or electrical) consumption to the transportation industry, because shipboard, train, and truck uses for insulation products are many.

The major industry breakdown of gaskets and packing, friction materials, coatings and compounds, and plastics are of interest.

An EPA report shows that nine of the major asbestos products manufacturing firms have captive fiber sources through United States and Canadian mines either wholly or partially owned. The total present production capacity of these mines exceeds 2 million short tons per year.

Table 6.-U.S. asbestos consumption in 1973
(Short tons)

|                          |                     | (Sh                    | ort tons)                 |                         |                     |            |                     |
|--------------------------|---------------------|------------------------|---------------------------|-------------------------|---------------------|------------|---------------------|
| End uses                 |                     | Chrysotile             | (adjusted)                |                         | Antho-              | Amosite    | Const               |
| Construction             | ВМ І                | BM II                  | BM III                    | Total                   | phyllite (reported) | (reported) | Croci-<br>dolite    |
| Floor tile               |                     | 99,900                 | $\frac{148,400}{172,700}$ | 248,300<br>172,700      | 193                 | 275        | (reported)<br>9,029 |
| PaperAsphalt felts       | 5,600               | $\frac{28,100}{3,300}$ | 35,000<br>85,200          | 68,700                  |                     |            |                     |
| acking and gaglete       | $1,2\bar{0}\bar{0}$ | 8,600<br>10,700        | 36,300<br>9,600           | 88,500<br>44,900        |                     | 3<br>310   | 218                 |
| nsulation Cextiles Other | $1,200 \\ 10,900$   | 2,400                  | 8,200                     | $\frac{21,500}{11,800}$ |                     | 3,587      | 56                  |
|                          | 400                 | 16,000                 | $155,5\bar{0}\bar{0}$     | $10,900 \\ 171,900$     | 969                 | 98         | $\frac{29}{8,634}$  |
| Total                    | 19,300              | 169,000                | 650,900                   | 839,200                 | 1,162               | 4.273      | 17,966              |

Table 7.—Asbestos product industry distribution in 1972
(Thousand short tons)

| Dec. 1                                  | Market industry   |                     |                               |            |                     |  |
|-----------------------------------------|-------------------|---------------------|-------------------------------|------------|---------------------|--|
| Product Asbestos cement pine and allere | Con-<br>struction | Trans-<br>portation | Appliance<br>and<br>equipment | Total      | Percent<br>of total |  |
| Asbestos cement pipe and sheet          | 217               |                     |                               |            |                     |  |
| Sheet vinyl flooring                    | 152               |                     |                               | 217        | 26.                 |  |
| Roofing papers                          | 06                |                     |                               | 152        | 18.                 |  |
| iaskets and pagising                    | 82                |                     |                               | 96         | 11.                 |  |
| riction materials                       | 10                | $\bar{2}\bar{5}$    | 5.5                           | 8 <b>2</b> | 10.                 |  |
| nsulation pipe and 41                   |                   | 60                  | 35                            | 70         | 8.                  |  |
| Coatings and compounds                  | $\bar{40}$        | 00                  | . 8                           | 68         | 8.                  |  |
| Plastice                                | 23                | 5                   | 10                            | 50         | 6.                  |  |
| ilectrical ingulation                   | 4                 | 11                  | 5                             | 33         | 4.                  |  |
| xport and rooment                       | *                 | 11                  | . 8                           | 23         | 2.                  |  |
| Iscellaneous                            |                   | -7                  | 10                            | 10         | ĩ.                  |  |
|                                         |                   | 4                   | 4                             | 8<br>2     | ī.                  |  |
| Total -                                 |                   | 1                   | 1                             | 2          | -:                  |  |
| Percent of total                        | 624               | 106                 |                               |            |                     |  |
| Percent of total                        | 77                |                     | 81                            | 811        | 100.                |  |
|                                         |                   | 13                  | 10                            | 100        |                     |  |

#### **PRICES**

Quoted prices for Quebec asbestos in 1973 rose 8%, effective May 1, 1973. British Columbia and Vermont asbestos prices remained unchanged. The price of all asbestos was expected to rise in the future.

Prices for some grades of Arizona chrysotile asbestos were raised on September 1, 1973. Quotations, f.o.b. Globe, were as follows:

| tos was expected to rise in the | Description                                                                 | Per short to |            |
|---------------------------------|-----------------------------------------------------------------------------|--------------|------------|
| Grade                           |                                                                             | \$1          | ,650       |
| Group No. 1                     | Crude                                                                       |              | 950<br>858 |
| Group No. 2                     | Crudedo                                                                     | 550-         | 700        |
|                                 | Nonferrous filtering and spinning<br>Nonferrous plastic and filtering       | 550-         | 600        |
| Group No. 4                     | Nonferrous plastic and intering                                             | 385-         | 425<br>35  |
| Group No. 5                     | Defense on shorts                                                           | 65-          |            |
| Group No. 4                     | Nonferrous plastic and meering<br>Plastic and filtering<br>Refuse or shorts | 385-         |            |

As of February 15, 1973, Vermont chrysotile asbestos, f.o.b. Morrisville, was priced

as follows:

| otile aspestos, i.o.b. Morrisva | Description   | Per short ton |
|---------------------------------|---------------|---------------|
| Group No. 4                     | Shingle fiber | 114.00        |

Quotations for Canadian (Quebec) chrysotile, f.o.b. mine, were as follows, as of

May 1, 1973:

| otile, f.o.b. mine, were as | Description | Per short ton |
|-----------------------------|-------------|---------------|
| Group No. 1                 | Crudedo     | 177-209       |

Prices for British Columbia, Canada, chrysotile asbestos were effective January 1,

1973. Quotations, f.o.b. Vancouver, were as follows:

| rysotile asbestos were | Description               | Per short ton |
|------------------------|---------------------------|---------------|
| Grade                  |                           | Can \$89      |
|                        | Nonferrous-spinning fiber | 71            |
| A                      |                           |               |
|                        | do                        | 38            |
|                        | Asbestos cement fiber     | 27            |
| J                      |                           |               |
|                        |                           |               |
| D                      |                           |               |
|                        |                           |               |
| [                      |                           |               |
| X                      |                           |               |
| Y                      | do                        |               |
| Ý                      |                           |               |

Private negotiated sales are the African asbestos producers' modus operandi. Because this rules out market quotations, the following are average values, regardless of grade, imported from Republic of South Africa calculated from U.S. Department of Commerce data:

|                                      |                     | Per                 | short               | ton                 |                     |
|--------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| Type                                 | 1969                | 1970                | 1971                | 1972                | 19731               |
| Amosite<br>Crocidolite<br>Chrysotile | \$153<br>189<br>192 | \$160<br>196<br>198 | \$164<br>212<br>120 | \$187<br>211<br>202 | \$187<br>210<br>260 |

<sup>&</sup>lt;sup>1</sup> First 8-month data on imports, U.S. Bureau of the Census.

The increased demand for asbestos in all categories resulted in price increases almost across the board. Further price rises are expected early in 1974.2

<sup>&</sup>lt;sup>2</sup> Asbestos. V. 55, No. 7, January 1974, p. 40.

## FOREIGN TRADE

The value of exports of asbestos products manufactured in the United States increased 27% over the value of those exported in 1972. Six of the nearly 100 countries buying these products accounted for more than 60% of the foreign sales. They were Canada (40%), West Germany (8%), the United Kingdom (7%), Mexico (3%), Australia (3%), and Venezuela (1%).

The major products exported were packing and gaskets with 26% of the value,

brake linings with 19%, and textiles and yarns 16%.

In 1973 the United States imported 90%of its crude asbestos needs. This was 1% below the 1972 percentage. Canada provided 96% of the imports, the Republic of South Africa provided 3%, and 13 other countries provided the remainder. Chrysotile, with 97%, dominated the imported types. There was a 13% increase in the dollar value of imported fibers.

Table 8.-U.S. exports and reexports of asbestos and asbestos products

| $\mathbf{Product}$                                                                                  | 1                     | 972                   | 1973        |                      |  |
|-----------------------------------------------------------------------------------------------------|-----------------------|-----------------------|-------------|----------------------|--|
|                                                                                                     | Quantity              | Value<br>(thousands)  | Quantity    | Value<br>(thousands) |  |
| EXPORTS Unmanufactured:                                                                             |                       |                       |             | (Unousanus)          |  |
| Crude and spinning and                                                                              |                       |                       |             |                      |  |
| Crude and spinning and nonspinning fibers                                                           |                       |                       |             |                      |  |
| Waste and refusedo.                                                                                 | ns <sub></sub> 22,081 | \$3,786               | 42,791      | ec co                |  |
| m                                                                                                   | 29,711                | 3,835                 | 23,109      | \$6,60<br>2,64       |  |
| Totaldo_                                                                                            | 51,792                | <b>5</b> 001          |             | 2,04                 |  |
| Products:                                                                                           | 01,192                | 7,621                 | 65,900      | 9,25                 |  |
| Gaskets and naching                                                                                 |                       |                       |             |                      |  |
| Gaskets and packingdo_ Brake liningsdo_ Clutch facings, including liningsnumb Textiles and yarnnumb | 2,409                 | 7.462                 | 0.000       |                      |  |
| Clutch facing including in a do                                                                     | 4 496                 | 6,654                 | 3,309       | 10,48                |  |
| Textiles and yarnnumberships and clapboarddo_ Articles of asbestos coment                           | er 2,727,573          | 1,908                 | 5,813       | 7,86                 |  |
| Shingles and alone                                                                                  | 18 & 6/12             | 4,863                 | 2,620,486   | 1,87                 |  |
| Articles of ashestos coment                                                                         | 10,366                | 2,308                 | 9,598       | 6,45                 |  |
| Protective elething                                                                                 | 9 649                 | $\frac{2,308}{2.148}$ | 11,226      | 2,586                |  |
| Insulation heat and games                                                                           | NA                    | 320                   | 9,336       | 2,478                |  |
| Manufactures, n.e.c.                                                                                | NA                    | 1.772                 | ŅĄ          | 462                  |  |
| ,                                                                                                   | NA                    | 4,623                 | ŅA          | 2,850                |  |
| Total                                                                                               |                       | 4,020                 | NA          | 5,659                |  |
|                                                                                                     |                       | 32,058                |             | 40,705               |  |
| REEXPORTS                                                                                           |                       |                       |             | 40,100               |  |
| Inmanufactured:<br>Crude and spinning and nonspinning fibers                                        |                       |                       |             |                      |  |
| Waste and refusedo                                                                                  | 6,287                 | 1 005                 |             |                      |  |
| waste and refusedo                                                                                  | 545                   | 1,367                 | <b>43</b> 8 | 86                   |  |
| Totaldo                                                                                             | 040                   | 63                    | 104         | 5                    |  |
| roducts:                                                                                            | 6,832                 | 1,430                 | 542         | 91                   |  |
| Gaskets and pooling                                                                                 |                       |                       |             |                      |  |
| Gaskets and packingdo<br>Textiles and yarn                                                          | 254                   | 11                    |             |                      |  |
| Textiles and yarndoArticles of ashestos coment                                                      | 5                     | 12                    |             |                      |  |
| Articles of asbestos cementdo                                                                       | 100                   | 29                    | ==          |                      |  |
| Totaldo                                                                                             |                       |                       | 54          | 15                   |  |
|                                                                                                     | 359                   | 52                    | F.4         |                      |  |
| Revised. NA Not available.                                                                          |                       |                       | 54          | 15                   |  |

Table 9.-U.S. imports for consumption of asbestos (unmanufactured), by class and country

|                                             |                                   |                           | /D                               | -ilo                      | A11                              | othe              | er                     | Tota                             | al                        |
|---------------------------------------------|-----------------------------------|---------------------------|----------------------------------|---------------------------|----------------------------------|-------------------|------------------------|----------------------------------|---------------------------|
|                                             | Crude (includ-<br>ing blue fiber) |                           | Textile<br>fiber                 |                           |                                  |                   |                        |                                  |                           |
| Year and country                            | Quantity (short tons)             | Value<br>(thou-<br>sands) | Quan-<br>tity<br>(short<br>tons) | Value<br>(thou-<br>sands) | Quan-<br>tity<br>(short<br>tons) | (t                | alue<br>thou-<br>ands) | Quan-<br>tity<br>(short<br>tons) | Value<br>(thou-<br>sands) |
| 1972                                        |                                   |                           |                                  |                           |                                  |                   |                        | 29                               | \$                        |
| olivia                                      | . 29                              | \$3                       | 11,599                           | es 216                    | 702.2                            | 30 S              | 78,577                 | 713,895                          | 83,90                     |
| anada                                       | 66                                | 10                        | 11,555                           | φυ,υτ                     |                                  | 43                | 160                    | 4,440                            | 16                        |
| inland                                      |                                   |                           |                                  |                           |                                  | 6                 | 1                      | 6                                |                           |
| *0000                                       |                                   |                           |                                  |                           |                                  | 2                 | 3                      | 2                                | 0/                        |
| olv                                         | 55                                | $\bar{8}\bar{5}$          |                                  |                           |                                  | 97                | 118                    | 1,025                            | 20                        |
| [orombidile                                 |                                   |                           |                                  | •                         |                                  |                   |                        | 200                              |                           |
| Ladagia Southern                            |                                   |                           | . 16                             |                           | 7 1,4                            | 31                | 220                    | 16,385                           | 3,2                       |
| outh Africa, Republic OL                    | _ 11,000                          |                           |                                  |                           | _                                |                   |                        | 40<br>4                          |                           |
| moniland                                    | _                                 |                           |                                  | _                         |                                  | 4                 | 1                      | 1,686                            |                           |
| mitgorland                                  |                                   |                           | 843                              | 3 1                       | 28                               | 43                | 43                     | 1,000                            |                           |
| Zugoslavia                                  |                                   |                           |                                  |                           | F 707 9                          | EC                | 70 123                 | 735,515                          | 87,7                      |
| Total                                       | 15,701                            | 3,274                     | 12,45                            | 3 5,33                    | 5 707,8                          | 100               | 10,120                 |                                  |                           |
| 4059                                        |                                   |                           |                                  |                           |                                  |                   |                        |                                  | 92,8                      |
| 1973                                        | 1,99                              | 397                       | 15,66                            | 5 6.02                    | 0 746,9                          | 88                | 86,449                 | 764,644                          |                           |
| Canada                                      |                                   |                           | 10,00                            |                           | 1,0                              | )27               | 98                     | 1,027                            |                           |
| Finland                                     | - <u>-</u>                        | ā <u>2</u> 1              | _                                |                           |                                  | . = =             | -;                     |                                  |                           |
| Cormany West                                | -                                 | ,                         | _                                |                           |                                  | 303               | 8                      |                                  |                           |
| Guyana                                      |                                   | -                         | _                                |                           |                                  | 8                 |                        |                                  |                           |
|                                             |                                   | _                         |                                  |                           |                                  | 3                 | į                      |                                  |                           |
| Mologogy Reniiblic                          |                                   |                           |                                  |                           |                                  | 43<br>5           |                        |                                  |                           |
| Mexico                                      | 5                                 | 1 27                      | 7 -                              |                           |                                  | 12                | 1                      |                                  |                           |
| Mozambique                                  |                                   |                           |                                  |                           |                                  | 1                 | (1)                    |                                  | 1 (1)                     |
| Panama                                      |                                   |                           |                                  |                           |                                  | 1                 | (-)                    | 84                               | 5                         |
| Portugal                                    |                                   | 5 42                      |                                  | - 5                       | -ī 3,                            | $4\bar{2}\bar{7}$ | 73                     | 3 25,06                          | 4 5,                      |
| Rhodesia, SouthernSouth Africa, Republic of | 21,62                             |                           |                                  | 8                         | 73 °,                            |                   |                        | ં ૧૧                             |                           |
| South Africa, Republic of                   | 20                                | 0 12                      | -                                | ,,                        |                                  | $\bar{50}$        | ī                      | 1 5                              |                           |
| Vomen                                       |                                   |                           | _                                |                           |                                  | 8                 |                        | 3                                | 8                         |
| Yugoslavia                                  |                                   |                           | -                                |                           |                                  |                   |                        |                                  | 2 00                      |
|                                             |                                   | 5,50                      | 0 15,8                           | 03 6.0                    | 94 751,                          | 875               | 87,32                  | 0 792,47                         | <b>3 9</b> 8,             |
| Total                                       | 24,79                             | ი ი,ის                    | 0 10,0                           | 00 0,0                    |                                  |                   |                        |                                  |                           |

<sup>1</sup> Less than ½ unit.

Table 10.-U.S. imports for consumption of asbestos from specified countries, by grade
(Short tons)

| Table 101                                                          | (Sho                    | rt tons)             |                                        |                            |                      |                                        |
|--------------------------------------------------------------------|-------------------------|----------------------|----------------------------------------|----------------------------|----------------------|----------------------------------------|
|                                                                    |                         | 1972                 |                                        |                            | 1973                 |                                        |
| Grade -                                                            | Canada                  | Southern<br>Rhodesia | Republic<br>of South<br>Africa         | Canada                     | Southern<br>Rhodesia | Republic<br>of South<br>Africa         |
| Chrysotile: Crudes. Spinning fibers. All other. Crocidolite (blue) | 66<br>11,599<br>702,230 |                      | 2,439<br>16<br>1,431<br>5,374<br>7,125 | 1,991<br>15,665<br>746,988 | 845<br><br><br>      | 1,235<br>8<br>3,427<br>12,552<br>7,842 |
| Amosite                                                            | 713,895                 | 200                  | 16,385                                 | 764,644                    | 845                  | 25,064                                 |

## **WORLD REVIEW**

All available information leads to the conclusion that 1973 was a record setting year for asbestos throughout the world. Demand, at least in the Non-Communist countries outstripped supply, as evidenced by the world's largest mine having its entire year's production sold by August. Market growth was limited by supply, but no real hardships surfaced, with the exception

of spinning-grade fibers, which were in very short supply the latter part of the year.

The market situation, and worldwide inflation would indicate substantial price increases in 1974.

Australia.—The Woodsreef mine ran into trouble on two fronts. The revalua-

tion of the Australian dollar decreased revenue at a time when equipment inadequacies would not permit increased production. New equipment eased the situation somewhat, but maybe not enough to reach the break-even point by the end of the year.

Bolivia.—A further influx (\$658,000) of money was earmarked by the United Nations Industrial Development Organization (UNIDO) to the budding asbestos industry at Cochabamba. Corporacion Boliviana de Fomento was to contribute an additional \$328,000 toward achieving a 5,000-ton-per-year operation there.

Canada.—For the second straight year Canadian production reached a record high, with a 17% increase over the previous year, and remains firmly in the lead as the worlds primary producer. A controversial proposal was put forward in Quebec to have the province's asbestos (80% of Canadian total) marketed through a provincial government "Development Council." The mining community reacted unfavorably. Major activity centered around the following:

- 1. Canadian Johns-Manville Co., Ltd. officially dedicated the new concentrator plant at its Jeffrey mine in Asbestos, Quebec. This marks the end of its \$75 million expansion program. The mine, probably the world's largest, now produces 600,000 tons per year of fiber, which represents 37% of Canada's output and 13% of world chrysotile production.
- 2. United Asbestos, Inc., the name of the company resulting from the merger of United Asbestos Corp., Ltd., and Allied Mining Corp., reported that its property in Midlothian Township, Ontario, contains 31 million tons of 9% fiber ore in grades 5, 6, and 7. Production of 100,000 tons per year of fiber is planned to start in 1974 after a very successful test marketing effort.
- 3. Abitibi Asbestos Mining Co., Ltd., reported proven ore reserves of 100 million tons of ore averaging 4% fiber at its property 50 miles north of Amos, Quebec. Bulk tests have been run through its pilot plant, and fibers are being amassed for test marketing.
- 4. Rio Tinto Canadian Exploration, Ltd., was evaluating the McAdam Mining Corp.,

Ltd., property under its option. The property, 20 miles east of Chibougamau, Quebue, has a "C" zone containing 105 million tons of ore grading 3.92% fiber and three other zones containing 86.4 million tons of 3.55% ore.

5. Lake Asbestos of Quebec, Ltd., a subsidiary of American Smelting and Refining Co., has purchased the assets of National Gypsum Co.'s Canadian subsidiary National Asbestos Mines, Ltd., at Thetford Mines. The combined production will put Lake Asbestos at nearly 200,000 tons per year of fiber.

Colombia.—Asbestos Colombianas, S.A. and Nicolet Industries, Inc. is raising its sights from 25,000 tons per year to 60,000 tons per year of fiber from its find in the Department of Antioquia. Reserves are estimated at 18.2 million tons of 4.3% fiber content.

Greece.—The emergence of a healthy and growing asbestos cement products industry has stabilized the "on again, off again" picture of the Kozani deposit. The Asbestos Mines of Northern Greece Mining, S.A. (MABEM), which is 90% owned by Cerro Corp., has finished exploration and pilot plant studies. A plant with 50,000 tons per year (expandable to 1,000,000) will be started in 1974 to process the 50 million tons of ore containing 3% chrysotile of grades 4, 5, and 6.

New Zealand.—Cassiar Asbestos Corp., Ltd., was selected by Kennecott Copper Corp. and Lime and Marble Corp. as a partner to explore and, if warranted, develop the Pyke asbestos find. Exploration and bulk sampling were underway.

Philippines.—La Suerta Resources and Industries, Inc., was actively developing an asbestos prospect in Zambales and negotiating for a Japanese market.

Spain.—Active prospecting for asbestos was underway in the Sierra Nevada where short fibers were once produced.

Swaziland.—The Havelock mine, now owned by Havelock Asbestos Mines, Ltd., in which the Swaziland Government owns a 40% share, with Turner & Newall owning the rest, was having difficulties with weak rock underground. Yield and profits have been suffering.

ASBESTOS 179

U.S.S.R.-Comecon members are to construct an asbestos mining and concentration plant at Kiembay in Kazakhstan, according to "Novosti." The 500,000 tons per year of asbestos will be proportioned to members based on their contribution to construction costs. Ore reserves are a reported 24 million tons.

Table 11.-Asbestos: World production by country (Short tons)

| Country <sup>1</sup>                            | 1971               | 1972                   | 1973 р    |
|-------------------------------------------------|--------------------|------------------------|-----------|
| North America:                                  | 1,634,579          | 1.687.051              | 1,974,000 |
| Canada (sales)                                  | 1,004,013          | 1,001,001              | 1,314,000 |
| MexicoUnited States (sold or used by producers) | $130,8ar{82}$      | $131,6\bar{6}\bar{3}$  | 150,036   |
| South America:                                  |                    |                        |           |
| Argentina                                       | 433                | 1,001                  | e 1,100   |
| Brazil e                                        | 22,000             | 36,000                 | 44,000    |
| Europe:                                         | e 3.300            | 1.653                  | • 3.300   |
| Bulgaria                                        | 11,420             | 7.042                  | • 12,000  |
| Finland 2                                       | 783                | r e 780                | • 780     |
| France                                          | 131.801            | 145,675                | 164,525   |
| Italy                                           | 140                | 3 9                    | e 140     |
| Portugal                                        | 1.270.000          | 1,345,000              | 1,411,000 |
| U.S.S.R. •Yugoslavia                            | 17,011             | 12,170                 | 10,352    |
| Africa:                                         |                    |                        | 400       |
| Egypt, Arab Republic of                         | 77                 | 486                    | 486       |
| Mozambique                                      | 1,577              | 589                    | 624       |
| Rhodesia, Southern e                            | 88,000             | 88,000                 | 88,000    |
| South Africa, Republic of                       | 355,228            | 356,206                | 368,435   |
| Swaziland                                       | 39,114             | 36,817                 | 40,675    |
| Asia:                                           | 155 000            | 990 000                | 230.000   |
| China, People's Republic of e                   | 175,000            | 220,000 $430.851$      | 29,059    |
| Cyprus                                          | 30,531             | 13,528                 | 12,456    |
| India                                           | $12,122 \\ 19,762$ | 15,903                 | 15,281    |
| Japan                                           | 19,762             | $\frac{15,905}{2,155}$ | 6,268     |
| Korea, Republic of (South)                      | $2,5\bar{65}$      | 2,163                  | · 3,200   |
| Taiwan                                          | 4,291              | 5,428                  | 5,201     |
| Turkey                                          | 4,431              | 0,420                  | 0,201     |
| Oceania:                                        | - 000              | 10 015                 | · 35,000  |
| Australia                                       | r 833              | 19,015                 | * 35,000  |
| Total                                           | r 3,951,449        | 4,159,984              | 4,605,935 |

e Estimate. P Preliminary. r Revised.

1 In addition to the countries listed, Czechoslovakia, North Korea and Romania also produce asbestos, but available information is inadequate to make reliable estimates of output levels.

<sup>&</sup>lt;sup>2</sup> Includes asbestos flour. <sup>3</sup> Gross weight. <sup>4</sup> Exports only.



## Barite

### By Frank B. Fulkerson 1

Barite producers in the United States sold or used over 1.1 million tons of primary barite in 1973, the highest since 1957. Compared with 1972 figures, quantity and value advanced 22% and 12%, respectively. The tonnage produced in Nevada increased 73%. Imports of crude ore were

the highest since 1962. Sales of ground and crushed barite produced from domestic and imported material rose 8% in quantity and 19% in value. Barite mining and processing companies were increasing capacity, to meet growing demand for drilling-mud minerals.

Table 1.-Salient barite and barium-chemical statistics

(Thousand short tons and thousand dollars)

|                                               | 1969                                                              | 1970                                                            | 1971           | 1972                                                                                          | 1973                  |
|-----------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------|-----------------------|
| United States: Barite (Primary):              |                                                                   |                                                                 |                |                                                                                               |                       |
| Sold or used by producers<br>Value            | $1,077 \\ 15,753$                                                 | $854 \\ 12,800$                                                 | 825 $13,491$   | 906<br>14,883<br>624                                                                          | 1,104<br>16,688       |
| Imports for consumption Value                 | $     \begin{array}{r}       614 \\       5,549     \end{array} $ | $     \begin{array}{r}       706 \\       6,314   \end{array} $ | 484<br>4,468   | 5,648                                                                                         | 716<br>7,596<br>1,571 |
| Ground and crushed sold by producers<br>Value | 1,537<br>37,297                                                   | 1,388<br>34,294                                                 | 1,330 $34,020$ | $     \begin{array}{r}       1,461 \\       45,590 \\       \hline       66     \end{array} $ | 54,473<br>62          |
| Barium chemicals sold by producers Value      | 130<br>19,101                                                     | 105<br>16,961                                                   | 83<br>15,488   | 13,869<br>4,362                                                                               | 13,899<br>4.761       |
| World: Production                             | 4,238                                                             | 4,338                                                           | 4,114          | 4,302                                                                                         | 4,701                 |

Table 2.—Barite (primary) sold or used by producers in the United States, by State
(Thousand short tons and thousand dollars)

|                                                              | 197                                 | 2                                   | 1973                                 |                                           |
|--------------------------------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------------|
| State                                                        | Quantity                            | Value                               | Quantity                             | Value                                     |
| Alaska Arkansas California Georgia Missouri Nevada Tennessee | W<br>W<br>4<br>W<br>213<br>317<br>W | W<br>W<br>34<br>W<br>3,637<br>2,659 | W<br>W<br>11<br>W<br>196<br>549<br>W | W<br>W<br>152<br>W<br>3,395<br>4,691<br>W |
| Undistributed                                                | 906                                 | 8,553<br>14,883                     | 1,104                                | 8,450<br>16,688                           |

W Withheld to avoid disclosing individual company confidential data; included with "Undistributed." Data may not add to totals shown because of independent rounding.

#### DOMESTIC PRODUCTION

Domestic producers reported that 1,104,000 short tons of primary barite was sold or used in 1973. The term "primary barite," as used in this chapter, applied to the first marketable product and includes

crude barite, flotation concentrate, and other beneficiated material such as washer, jig, or magnetic separation concentrates.

<sup>&</sup>lt;sup>1</sup> Industry economist, Division of Nonmetallic Minerals—Mineral Supply.

Barite was produced at 38 mines in 7 States in 1973 (30 mines in 1972). Nevada supplied 50% of the tonnage but only 28% of the value. Barite produced in Nevada had relatively low value, owing to transportation costs and distance to markets. Missouri ranked second in barite production.

Principal producers were Baroid Div., NL Industries, Inc., with mines in Arkansas, Missouri, Nevada, and Tennessee; Dresser Minerals Div., Dresser Industries, Inc., with mines in Arkansas, Missouri, and Nevada; Milchem, Inc., with mines in Missouri and Nevada; IMCO Services, Halliburton Co., with a mine in Nevada; and Alaska Barite Co., Inlet Oil Corp., with a mine in Alaska.

Ground and crushed barite was produced mainly in Louisiana and Texas from imported material, and in Arkansas, Missouri, and Nevada from domestic barite. Processing mills were also located in California, Georgia, Illinois, Tennessee, and Utah.

Among the developments in 1973, Milchem, Inc., began construction near Battle Mountain, Nev., of its second beneficiation plant and its first Nevada grinding mill. Dresser Minerals completed a new beneficiation plant at its Greystone, Nev., mine and announced it would double its production capacity in Missouri by constructing two washing plants.

The remote East Northumberland District in the Toquima Range, Nye County, Nev., recorded its first significant barite production when IMCO Services began a mining operation in the district. Mine run ore was hauled by truck 150 miles to Mina in Mineral County for stockpiling and shipment to the company grinding plant at Houston, Tex. Other new producers in Nevada included Eisenman Chemical Co. and Rocky Mountain Refractories, both in Elko County, and the Milwhite Co. in Elko and Lander Counties.

Molybdenum Corp. of America included a circuit to recover up to 60 tons per day of byproduct barite in its new mill at the Mountain Pass rare earth mine, San Bernardino County, Calif. The large rare earth carbonate ore body contains about 20% barite.<sup>2</sup>

The Minerva Co. commenced production of flotation barite concentrate from the zinc-fluorspar flotation tailing circuit at its Mine No. 1 mill near Cave in Rock, Ill.

Dresser Minerals ceased production at its Magnet Cove, Ark., mine and at the Malvern mill, 12 miles away. Officials said to continue producing would have required a capital expenditure of more than \$2 million, because it would be necessary to go to a lower level in the mining operation and construct a new mill nearer the mine. The mine was opened in 1940 by Magnet Cove Barium Corp., which was acquired by Dresser Industries, Inc., in 1949.

#### CONSUMPTION AND USES

More than 83% of the ground and crushed barite sold in 1973 was used as a weighting agent in oil- and gas-well drilling muds. This use increased 143,100 tons (12%), owing to greater drilling activity. Barite usage as a filler in paint and for barium-chemical manufacturing advanced 6,100 tons (13%) and 3,100 tons (3%), respectively. All other uses declined 37,500 tons (26%). These other uses included filler in rubber, plastics, and paper; flux, oxidizer, and decolorizer in glass manufacturing; and miscellaneous, including ballast for ships, heavy aggregate for concrete, applications in foundries, and unspecified.

Principal consumers of barite to produce barium chemicals were Chemical Products Corp., Cartersville, Ga.; the Great Western Sugar Co., Johnstown, Colo.; Inorganic Chemicals Div., FMC Corp., Modesto, Calif.; Mallinckrodt Chemical Works, St. Louis, Mo.; and Sherwin Williams Chemicals, Coffeyville, Kans. The Great Western Sugar Co. produced barium hydroxide, which it used in sugar beet refining. The other companies sold their production of barium chemicals. Demand exceeded supply, as the result of barium-chemical plant closures in 1971 and 1972.

 $<sup>^2</sup>$  California Geology. V. 26, No. 12, December 1973, pp. 300–301.

Table 3.-Ground and crushed barite sold, by use 1

|                                    | 1971                           |                     | 1972                     | 1972                |                          |                     |
|------------------------------------|--------------------------------|---------------------|--------------------------|---------------------|--------------------------|---------------------|
| Use <sup>2</sup>                   | Quantity<br>(short tons)       | Percent<br>of total | Quantity<br>(short tons) | Percent<br>of total | Quantity<br>(short tons) | Percent<br>of total |
| Barium chemicals 3                 | 140,843                        | 10                  | 105,589<br>(4)           | 7                   | 108,693<br>(4)           | 7                   |
| Filler or extender:                | 43,439                         | 3                   | 46,342<br>(4)            | 3                   | 52,404<br>(4)            | 3                   |
| RubberOther filler<br>Other filler | 22,430<br>1,044,367<br>104,318 | 77<br>8             | 1,183,340<br>142,183     | 80<br>10            | $1,326,451 \\ 104,722$   | 83<br>7             |
| Other uses                         | 1,355,397                      | 100                 | 1,477,454                | 100                 | 1,592,270                | 100                 |

<sup>1</sup> Includes imported barite.

Table 4.-Barium chemicals produced and sold by producers in the United States in 1973 1

(Short tons)

|                  |                       |                                           | Sold by p                                      | roducers                                               |  |
|------------------|-----------------------|-------------------------------------------|------------------------------------------------|--------------------------------------------------------|--|
| Chemical         | Plants                | Produced -                                | Quantity                                       | Value                                                  |  |
| Barium carbonate | 3<br>4<br>1<br>1<br>2 | 44,898<br>W<br>W<br>W<br>W<br>W<br>34,877 | 32,366<br>W<br>W<br>W<br>W<br>W<br>W<br>29,183 | \$5,279,897<br>W<br>W<br>W<br>W<br>W<br>W<br>8,619,363 |  |
| Total 2          | 6                     | 79,775                                    | 61,549                                         | 13,899,260                                             |  |

W Withheld to avoid disclosing individual company confidential data; included with "Other barium chemicals."

#### **PRICES**

Price quotations reported in Engineering & Mining Journal were higher in December 1973 than in December 1972. These quotations serve as a general guide and do not necessarily reflect actual transactions. Barite prices are negotiated between buyer and seller.

The average value per ton excluding container cost of crushed and ground barite f.o.b. plant increased from \$31.20 in 1972 to \$34.67 in 1973. These values were calculated from producers' statements.

Table 5.-Barite price quotations

|                                                                                                                                                                                                                                                                  | Price per short ton                             |                                                   |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------|--|--|
| Item                                                                                                                                                                                                                                                             | December 1972                                   | December 1973                                     |  |  |
| Chemical, filler, and glass grades, f.o.b. shipping point, carload lots:  Hand picked, 95% BaSO <sub>4</sub> , not over 1% iron  Magnetic or flotation, 96% BaSO <sub>4</sub> , not over 0.5% iron  Water ground, 99.5% BaSO <sub>4</sub> , 325 mesh, 50-lb bags | \$22.50-\$24.50<br>26.50- 28.50<br>55.00- 78.00 | \$29.50 <b>-\$</b> 31.80<br>34.50<br>60.00- 80.00 |  |  |
| Drilling-mud grade: Ground, 83%–93% BaSO <sub>4</sub> , 3%–12% iron, specific gravity 4.20–4.30, f.o.b. shipping point, carload lots. Crude, imported, specific gravity 4.20–4.30, c.i.f. gulf ports.                                                            | 37.00- 44.00<br>14.00- 18.00                    | 40.00- 47.00<br>17.00- 21.00                      |  |  |

Source: Engineering and Mining Journal. V. 173, No. 12, December 1972; v. 174, No. 12, December 1973.

Includes imported barite.
 Uses reported by producers of ground and crushed barite, except for barium chemicals.
 Quantities reported by consumers.
 Included with "Other uses" to avoid disclosing individual company confidential data.

ais.  $^1$  Only data reported by barium-chemical plants that consume barite are included.  $^2$  A plant producing more than one product is counted only once in arriving at total.

#### FOREIGN TRADE

Imports of crude barite totaled 716,000 tons, an increase of 15% over those of 1972 and the highest since 1962. Average values per ton of crude barite at foreign ports were as follows for the indicated countries: Ireland, \$11.12; Mexico, \$11.11; and Peru, \$7.43. Barite, nearly all of drilling-mud grade, entered the United States through the following customs districts: New Orleans, La., 48%; Laredo, Tex., 23%; Port Arthur, Tex., 21%; and El Paso, Houston, and Galveston, Tex., 8%. Foreign trade statistics also showed imports of crushed or ground witherite (natural

barium carbonate), mostly from the United Kingdom, totaling 4,500 tons.

Barium chemical imports, mainly from West Germany and the United Kingdom, increased as the result of a drop in U.S. production of these chemicals.

U.S. barite exports increased 29%. Most of the exports went to Canada and Singapore and were handled through the following customs districts: New Orleans, 50%; Seattle, 22%; Detroit, 19%; other, 9%. The United States exported mostly ground barite and imported mostly crude barite.

Table 6.-U.S. exports of natural barium sulfate and carbonate

| Country                      | 19                       | 72                   | 1973                     |                      |  |
|------------------------------|--------------------------|----------------------|--------------------------|----------------------|--|
|                              | Quantity<br>(short tons) | Value<br>(thousands) | Quantity<br>(short tons) | Value<br>(thousands) |  |
| Argentina                    |                          |                      | 59                       | -                    |  |
| Barbados<br>Brazil           |                          |                      | 283                      | \$2<br>26            |  |
|                              | 165                      | \$6                  | 400                      |                      |  |
| Canada                       | 35,158                   | 1,383                | 38.800                   | 1 17                 |  |
| Colombia                     |                          | -,000                | 230                      | 1,57                 |  |
| Costa Rica                   |                          |                      | 43                       | 10                   |  |
| Danomey                      | r 535                    | r 42                 | 40                       | 2                    |  |
|                              | 122                      | 23                   |                          |                      |  |
| El Salvador                  | 80                       | 4                    | $\bar{4}\bar{7}$         |                      |  |
|                              |                          | *                    | 2,174                    |                      |  |
|                              |                          |                      | 196                      | 93                   |  |
| Juatemala                    | 620                      | r 32                 | 269                      | .3                   |  |
| Honduras                     | 100                      | 5                    | 75                       | 11                   |  |
|                              |                          | v                    | 38                       | 4                    |  |
| srael                        | ==                       |                      | 18                       | إ                    |  |
| amaica                       | $\bar{50}$               | - <u>-</u> -         | 18                       | 1                    |  |
| apan                         | 38                       | i                    | 71                       | - 5                  |  |
| Korea, Republic of           | 1,599                    | 58                   | 11                       | 3                    |  |
| reeward and windward Islands | -,000                    | 90                   | $\bar{2}\bar{6}$         |                      |  |
| dalaysia                     | $\bar{2}\bar{6}$         | ī                    | 26                       | 1                    |  |
|                              | 69                       | 5                    | $3ar{7}ar{8}$            | 52                   |  |
|                              |                          | U                    | 235                      | 17                   |  |
| ew Guinea                    |                          |                      | $\frac{235}{1.878}$      | .8                   |  |
| eru                          |                          |                      | 1,878                    | 95                   |  |
| hilippines                   | $\tilde{24}$             | - <u>ī</u>           | 363                      | .1                   |  |
|                              |                          |                      |                          | 17                   |  |
| cilegal                      |                          |                      | 1,145                    | 68                   |  |
|                              | $13.62\overline{2}$      | $3\overline{17}$     | 648                      | 27                   |  |
|                              | 128                      | 6                    | 19,442                   | 835                  |  |
|                              | 120                      | U                    | 317                      | 13                   |  |
| nited Arab Emirates          |                          |                      | 525                      | 28                   |  |
| enezuela.                    | $5\overline{78}$         | $ar{z}ar{z}$         | 178<br>228               | 8                    |  |
|                              |                          |                      |                          | 8                    |  |
| Total                        | r 52,914                 | r 1,909              | 68,086                   | 2,884                |  |

r Revised.

Table 7.-U.S. exports of lithopone

| Year                 | Quantity<br>(short tons) | Value<br>(thousands) |  |
|----------------------|--------------------------|----------------------|--|
| 1971<br>1972<br>1973 | 1,395<br>986             | \$425<br>458<br>357  |  |

BARITE 185

Table 8.-U.S. imports for consumption of barite, by country

(Thousand short tons and thousand dollars)

|                                                                                            | 197                                              | 2                                                        | 1973                                            |                                                    |
|--------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------|-------------------------------------------------|----------------------------------------------------|
| Country                                                                                    | Quantity                                         | Value                                                    | Quantity                                        | Value                                              |
| Crude barite:  Canada France Guatemala Greece Ireland Mexico Morocco Nicaragua Peru Turkey | 20<br>(1)<br>67<br>154<br>140<br>41<br>16<br>186 | 228<br>3<br>807<br>1,517<br>1,456<br>500<br>119<br>1,018 | 50<br>(1)<br>51<br>227<br>142<br>42<br>201<br>3 | 567<br>-2<br>691<br>2,524<br>1,577<br>706<br>1,498 |
| Total                                                                                      | 624                                              | 5,648                                                    | 716                                             | 7,59                                               |
| Ground barite:  Canada France Mexico United Kingdom                                        | (1)<br>(1)<br>(1)                                | 3<br>4<br>-3                                             | (¹)<br>                                         | 16<br>15                                           |
| Total                                                                                      | (1)                                              | 10                                                       | 9                                               | 17                                                 |

<sup>1</sup> Less than ½ unit.

Table 9.-U.S. imports for consumption of barium chemicals

|                      | Lithop                  | one                       | (prec                 | anc fixe<br>cipitated<br>m sulfate) | Bariu<br>chlori          |                           |                                | Sarium<br>droxide                              |
|----------------------|-------------------------|---------------------------|-----------------------|-------------------------------------|--------------------------|---------------------------|--------------------------------|------------------------------------------------|
| Year                 | Quantity (short tons)   | Value<br>(thou-<br>sands) | Quantity (short tons) | (thou-                              | Quantity (short tons)    | Value<br>(thou-<br>sands) | Quan<br>tity<br>(shor<br>tons) | (thou-<br>t sands)                             |
| 1971<br>1972<br>1973 | 81<br>84<br>84          | \$13<br>17<br>29          | 3,52<br>6,41<br>7,52  | 2 1,691                             | 1,446<br>7,316<br>10,774 | \$167<br>938<br>1,987     | 2,48                           | \$\bar{3} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |
| 1910                 | Bariu                   | m nitrat                  | e                     | Barium o                            | earbonate<br>itated      |                           | Other b                        |                                                |
|                      | Quantity<br>(short tons |                           | lue<br>sands)         | Quantity<br>(short tons)            | Value<br>(thousands      |                           | ntity<br>t tons)               | Value<br>(thousands)                           |
| 1971<br>1972<br>1973 | 83<br>68<br>69          | 2 5                       | \$139<br>126<br>138   | 1,120<br>8,316<br>10,206            | \$9<br>84<br>1,60        | 1                         | 799<br>716<br>1,022            | \$313<br>334<br>531                            |

Table 10.-U.S. imports for consumption of crude, underground, and crushed or ground witherite

|                      | Crude, u                 | nground              | Crushed or ground        |                      |  |
|----------------------|--------------------------|----------------------|--------------------------|----------------------|--|
| Year -               | Quantity<br>(short tons) | Value<br>(thousands) | Quantity<br>(short tons) | Value<br>(thousands) |  |
| 1971<br>1972<br>1973 | 417<br>141               | \$22<br>19           | 94<br>1,311<br>4,470     | \$20<br>169<br>697   |  |

### **WORLD REVIEW**

A two-part article in Industrial Minerals discussed the effect on the world barite industry of increased oil- and gas-well drilling due to the energy shortage. The first part dealt with the North European shelf, and the second part analyzed conditions in Australia, the Far East, and other areas.3

Australia.—Dresser Australia Pty., Ltd., planned to place a new barite mine in operation by mid 1975 near Port Hedland in Western Australia.

Canada.—In view of growing demand in foreign markets for drilling-mud grade

barite, American Smelting & Refining Co. studied the feasibility of recovering barite from old tailings at its Buchans, Newfoundland, lead-zinc-copper mine. The ore mined at Buchans contains barite as a gangue mineral.4 Scientists of the National Research Council of Canada recovered grades as high as 97% barite from the old

<sup>3</sup> Bligh, R. P. Barytes in Petroleum Expansion. Ind. Miner. (London), No. 71, August 1973, pp. 9-23; and No. 72, September 1973, pp. 9-23.

<sup>4</sup> Industrial Minerals (London), ASARCO and Barytes for North Sea. No. 73, October 1973, pp. 46.40

Table 11.-Barite: World production, by country (Short tons)

| Country 1                             | 1971           | 1972       | 1973 p    |
|---------------------------------------|----------------|------------|-----------|
| North America:                        |                |            |           |
| Canada                                | 120,765        | 77 001     |           |
| Mexico                                |                | 77,261     | 98,000    |
| United States 2                       | 308,362        | 288,147    | 281,372   |
| South America:                        | 825,000        | 906,000    | 1,104,000 |
| Argentina                             | - 00 405       | ~ ~ ~      |           |
| Brazil e                              | r 23,435       | 25,645     | e 27,500  |
| Chile                                 | 47,100         | 51,000     | 79,700    |
| Colombia                              | 1,413          | 2,864      | 6,506     |
| Peru                                  | 6,382          | e 7,000    | 2,119     |
| Europe:                               | 113,004        | er 226,000 | e 237,000 |
| ī                                     |                |            | ,         |
|                                       | 870            | 223        | 472       |
| Czechoslovakia <sup>e</sup><br>France | 8,300          | 8,300      | 8,300     |
| France                                | 121,254        | e 110,000  | • 121,000 |
| Germany, East e                       | 33,000         | 33,000     | 33,000    |
| Germany, west                         | 450,693        | 406,434    | 359,910   |
| Greece v                              | 93,635         | 110,584    | • 121,000 |
| ireiand                               | 216,160        | 257,356    | • 275,500 |
| Italy                                 | 222,144        | 200,365    |           |
| roland e                              | 61,000         | 55,000     | • 183,500 |
| I or tugar                            | 1.268          |            | 55,000    |
| Romania e                             | 128,000        | 909        | 1,135     |
| Spain                                 |                | 128,000    | 128,000   |
| U.S.S.R.e                             | 91,789         | 145,505    | • 165,000 |
| United Kingdom e                      | 331,000        | 342,000    | 356,000   |
| Yugoslavia                            | 29,000         | 24,000     | 25,000    |
| Africa:                               | 71,308         | 77,744     | e 83,000  |
| Algoria 4                             |                |            |           |
| Egypt Arah Papublic of                | 40,234         | 38,764     | e 38,500  |
| Egypt, Arab Republic of               | 321            | 1,878      | e 2,200   |
| Kenya Mayana                          | 8 <b>19</b>    | 692        | e 900     |
| Morocco                               | 93,117         | 102,779    | 113.197   |
| South Airica, Republic of             | 3,265          | 2,775      | • 3,300   |
| Swaziiand                             | 159            | 136        | 128       |
| Tunisia                               | 1,965          | 1,310      | 20,465    |
| sia:                                  | -,             | 1,010      | 20,400    |
| Burma                                 | 25,312         | 28,627     | 17 479    |
| Unina, People's Republic of a         | 154,000        | 171.000    | 17,472    |
| India                                 | 64,700         |            | 182,000   |
| Iran 5                                | 66,000         | 50,831     | 128,529   |
|                                       | 63,096         | 88,185     | 110,000   |
| Korea, North e_                       | 199,090        | 66,659     | 72,000    |
| Korea, Republic of                    | 132,000        | 132,000    | 132,000   |
| Pakistan Philipping                   | 23             | 33         | 225       |
| Philippines                           | 3,265          | 2,648      | 1,872     |
| Thailand                              |                |            | 3,595     |
| Thailand Turkey                       | 70,040         | 107,024    | 55,000    |
| Turkey                                | f 31 , $f 468$ | 53,923     | 98,703    |
| ceania: Australia                     | 59,316         | 28,977     | · 28,600  |
| Total                                 |                |            |           |
| I Oval                                | r 4,113,982    | 4,361,578  | 4,760,700 |

e Estimated. P Preliminary. Revised.
In addition to the countries listed, Bulgaria and Southern Rhodesia also produce barite, but available information is inadequate to make reliable estimates of production. <sup>2</sup> Sold or used by producers.

<sup>Solid or used by producers.
Barite concentrates.
Ground barite.
Year beginning March 21 of that stated.</sup> 

187 BARITE

tailings in laboratory tests using a two stage agglomeration process.5

Dresser Minerals planned to open a new mine in northern British Columbia to serve the drilling mud market in western and northern Canada.

France.—A research group formed in by the Bureau de Recherches Géologiques et Minières, and Mines de Garrot S.A. completed a study of methods to treat ore from the large Chaillac deposit, situated 30 miles southwest of Châteauroux, in the Indre area. Exploitation of the deposit has been prohibited by the nature of the ore, which is a very fine barite-iron oxides composite. Flotation was the beneficiation process finally chosen. It was estimated that the recovery of barite would be about 85%. The content of concentrates would be about 97% BaSO<sub>4</sub>.

India.—High-grade lump barite being exported from a new mine 120 miles Shipments included a from Madras. 15,000-ton cargo to Poland and smaller lots to Norway and elsewhere. Production at the mine was running at 500 tons per day and was entirely by hand labor using a labor force of over 400.6

Ireland.-Milchem, Ltd., began production in September at its 60,000-ton-per-year barite flotation plant in County Galway. The plant treats the Irish Base Metals, Ltd., tailings pond. Both Milchem and IMCO Services conducted barite exploration programs in Ireland in 1973.

Thailand.-Most of the barite produced in Thailand was shipped to grinding mills in Singapore. Several barite prospects were investigated during the year. Jalupathan Cement Co. installed grinding equipment for production of drilling mud grade bar-

United Kingdom.—Aberdeen Barytes Co., Ltd., installed a grinding mill at Aberdeen, Scotland. Anchor Drilling Fluids Division, Maritime Drilling Services, Ltd., planned to construct a new grinding mill at Dundee. Scotland.

### **TECHNOLOGY**

The Calico mining district about 10 miles east of Barstow, Calif., contains extensive deposits of low-grade silver-barite ore. Laboratory beneficiation work was done by Bureau of Mines scientists on four ore samples from the district to develop methods to recover the values. The samples assayed at 2 to 3 ounces of silver per ton and 7% to 12% barite. Cyanidation recovered from 47% to 60% of the silver. From 75% to 90% of the barite was recovered in a plus 92% barite product from cyanidation residues. Salt roasting the ore samples before cyanidation increased silver recoveries, but a high-grade barite product could not be floated from the residues.7

Sachtleben Chemie Gmbh of Cologne, West Germany, developed a new weighting agent for oil and gas well-drilling muds. The material, known as Fer-O-Bar, was prepared from iron oxide cinders resulting from the calcination of pyrite ores. Laboratory tests showed that the Fer-O-Bar might be a satisfactory substitute for barite.8

<sup>&</sup>lt;sup>5</sup> Meadus, F. W., and I. E. Puddington. The Beneficiation of Barite by Agglomeration. Can. Min. and Met. Bull., v. 66, No. 734, June 1973, pp. 123-126.

Meadus, F. W., and I. E. Puddington. (assigned to National Research Council). Economic Recovery of Barite From Relatively Low-grade Ores, Mill Tailings, or the Like. Can. Pat. 939,837, Jan. 8, 1974.

<sup>6</sup> Industrial Minerals (London). No. 69, June 1973, p. 53.

<sup>6</sup> Industrial Minerais (London), No. 93, Jane 1973, p. 53.
7 Agey, W. W., J. V. Batty, H. W. Wilson, and W. J. Wilson. Beneficiation of Calico District, California, Silver-Barite Ores. BuMines RI 7730, 1973, 15 pp.
8 Industrial Minerals. Sachtleben's Fer-O-Bar. No. 68, May 1973, pp. 33-34.



## Bauxite

## By Horace F. Kurtz 1

World bauxite production totaled about 70 million long tons in 1973, compared with 30 million tons 10 years earlier. The strong growth in world bauxite production, 9% in 1973, largely reflected a continued rising demand for aluminum, the principal end use of bauxite. World alumina production, the intermediate step between bauxite and aluminum production, increased 11% to nearly 29 million short tons.

U.S. production and imports of bauxite in 1973 remained near the 1972 levels. A reduction in bauxite inventories enabled domestic alumina production to be increased. This increase, together with sharply higher imports of alumina, was sufficient to meet the demand for making aluminum.

Legislation and Government Programs.-Jamaica-type metallurgical-grade bauxite in government stockpiles was authorized for sale during 1973, but none was sold. Surinam-type bauxite sold previously shipped from government stockpiles.

The Environmental Protection Agency issued proposed plant effluent limitations which included restrictions on the discharge of waste water from alumina plants into navigable waters.2

Table 1.-Salient bauxite statistics (Thousand long tons and thousand dollars)

| (Thousand Young 11                                                                                                                                              | 1969   | 1970   | 1971     | 1972     | 1973   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----------|----------|--------|
| United States:  Production, crude ore (dry equivalent)  Value  Exports (as shipped)  Imports for consumption 1  Consumption (dry equivalent)  World: Production | 1,843  | 2,082  | 1,988    | 1,812    | 1,879  |
|                                                                                                                                                                 | 25,725 | 30,070 | 28,543   | 23,238   | 26,635 |
|                                                                                                                                                                 | 5      | 3      | 34       | 29       | 12     |
|                                                                                                                                                                 | 12,160 | 12,620 | 12,326   | 11,428   | 11,240 |
|                                                                                                                                                                 | 15,580 | 15,673 | 15,619   | 15,375   | 16,642 |
|                                                                                                                                                                 | 51,008 | 56,873 | r 61,143 | r 64,021 | 68,563 |

<sup>&</sup>lt;sup>1</sup> Revised.

<sup>1</sup> Import figures for Jamaica, Haiti, and the Dominican Republic were adjusted by the Bureau of Mines to dry equivalent. Other bauxite imports, which are virtually all dried, are on an asshipped basis. Excludes calcined bauxite and bauxite imported into the Virgin Islands.

## DOMESTIC PRODUCTION

Bauxite production in the United States increased 4% to 1.88 million long tons (dry equivalent) in 1973. About 90% of the bauxite was produced in Arkansas. The remainder was mined in Alabama and Georgia. Except for the Mars Hill underground mine of Reynolds Mining Corp. in Saline County, Ark., all of the bauxite mines were open pit operations.

In Arkansas, Aluminum Co. of America (Alcoa), American Cyanamid Co., and Revnolds produced in Saline County, and Stauffer Chemical Co. mined in Pulaski County. Bauxite-processing plants were operated by American Cyanamid, Porocel Corp., and Stauffer.

Bauxite was mined in Alabama in Barbour County by Eufaula Bauxite Mining Co., A. P. Green Refractories Co., and Wilson-Snead Mining Co., and in Henry County by Abbeville Lime Co., Harbison-Walker Refractories Co., and Wilson-Snead. Drying or calcining facilities were operated by A. P. Green, Harbison-Walker, and Wilson-Snead.

American Cyanamid and C-E Minerals, a division of Combustion Engineering, Inc.,

<sup>1</sup> Industry economist, Division of Nonferrous

Industry economics, State of the Mineral Supply.

Environmental Protection Agency. Nonferrous Metals Manufacturing Point Source Category. Federal Register, v. 38, No. 230, Nov. 30, graph of the Conference of the Mineral State of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of the Conference of 1973, pp. 33169-33183.

mixed bauxite in Sumter County, Georgia. Treatment plants were located at Andersonville, Ga.

The eight alumina plants in the continental United States and the one plant in the U.S. Virgin Islands produced a total

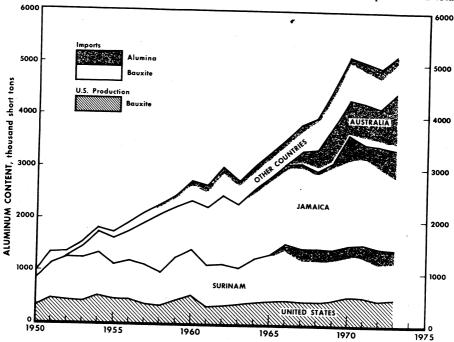



Figure 1.-Estimated new supply of bauxite and alumina in the United States and Virgin Islands.

Table. 2.-Mine production of bauxite and shipments from mines and processing plants to consumers in the United States

(Thousand long tons and thousand dollars)

| State and year            | Mine production       |                   | Shipments from mines and processing plants to consumers |               |                   |                  |
|---------------------------|-----------------------|-------------------|---------------------------------------------------------|---------------|-------------------|------------------|
|                           | Crude                 | Dry<br>equivalent | Value 1                                                 | As<br>shipped | Dry<br>equivalent | Value            |
| Alabama and Georgia:      |                       |                   |                                                         | -             |                   |                  |
| 1969<br>1970 <sup>2</sup> | $\frac{117}{270}$     | 88<br>213         | 1,020                                                   | 72            | 79                | 1,324            |
| 1971                      | 261                   | 213<br>207        | 3,778                                                   | 149           | 161               | 3,299            |
| 1972                      | 227                   | 178               | 3,564                                                   | 143           | 171               | 3,566            |
| 1973                      | 247                   | 193               | 2,228                                                   | 187           | 218               | 4,605            |
| Arkansas:                 | 241                   | 199               | 2,751                                                   | 221           | 265               | 5,782            |
| 1969<br>1970              | $\frac{2,116}{2.251}$ | 1,755<br>1,869    | 24,706                                                  | 2,044         | 1,765             | 26,304           |
| 1971                      | 2,157                 | 1,781             | 26,293                                                  | 2,194         | 1,917             | 29,049           |
| 1972                      | 1,973                 | 1,634             | 24,979                                                  | 2,161         | 1,892             | 28,296           |
| 1973                      | 2,040                 | 1,686             | 21,010                                                  | 2,128         | 1,844             | 25,426           |
| Total United States: 3    | _,010                 | 1,000             | 23,884                                                  | 2,079         | 1,782             | 27,180           |
| 1969                      | 2,233                 | 1,843             | 25,725                                                  | 2,116         | 1.844             | 97 699           |
| 1051                      | 2,522                 | 2,082             | 30,070                                                  | 2.343         | 2.078             | 27,628           |
| 1070                      | 2,419                 | 1,988             | 28,543                                                  | 2,305         | 2,063             | 32,348           |
| 1972                      | 2,200                 | 1,812             | 23,238                                                  | 2,314         | 2,063             | 31,862           |
| 1319                      | 2,287                 | 1,879             | 26,635                                                  | 2,300         | 2,061             | 30,032<br>32,962 |

<sup>1</sup> Computed from selling prices and values assigned by producers and from estimates of the Bureau of Mines.

2 Includes data from Oregon and Washington.

3 Data may not add to totals shown because of independent rounding.

Table 3.-Recovery of dried, calcined, and activated bauxite in the United States

(Thousand long tons)

| Crude          | Total processed<br>bauxite recovered <sup>1</sup> |                                                                                                                                                |  |
|----------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ore<br>treated | As<br>recov-<br>ered                              | Dry<br>equiva-<br>lent                                                                                                                         |  |
| 288            | 162                                               | 218                                                                                                                                            |  |
| 428            |                                                   | 343                                                                                                                                            |  |
| 444            | 250                                               | 357                                                                                                                                            |  |
|                | 210                                               | 319                                                                                                                                            |  |
| 338            | 169                                               | 287                                                                                                                                            |  |
|                | 288<br>428<br>444<br>399                          | Crude ore treated         bauxite read           288         162           428         259           444         250           399         210 |  |

<sup>&</sup>lt;sup>1</sup> Dried, calcined, and activated bauxite.

Table 4.-Percent of domestic bauxite shipments, by silica content

| -                                           |      |                |               |               |               |
|---------------------------------------------|------|----------------|---------------|---------------|---------------|
| SiO <sub>2</sub> (percent)                  | 1969 | 1970           | 1971          | 1972          | 1973          |
| Less than 8<br>From 8 to 15<br>More than 15 | 55   | 19<br>54<br>27 | 4<br>65<br>31 | 6<br>64<br>30 | 6<br>61<br>33 |

of 7.57 million short tons of alumina and aluminum oxide products in 1973, an increase of 8%. The total production included 6.83 million tons of calcined alumina, 635,000 tons of commercial alumina trihydrate, and 99,000 tons of tabular, activated, and other alumina. Consolidated Aluminum Corp. (Conalco), 60% of which is owned by Swiss Aluminium Ltd. and 40% by Phelps Dodge Corp., acquired half interest in the Burnside, La., alumina plant of Ormet Corp. when it purchased the aluminum operations of Olin Corp. near the end of the year. Revere Copper and Brass, Inc., owned the other half of Ormet.

Domestic alumina shipments totaled 7.56 million tons and were valued at \$532 million, compared with \$479 million (revised) in 1972. Approximately 6.57 million tons was shipped to primary aluminum plants. The chemical industry, including producers of aluminum fluoride fluxes for aluminum plants, received the second largest tonnage, and most of the remaining alumina was shipped to producers of abrasives, ceramics, and refractories.

Table 5.-Production and shipments of alumina in the United States (Thousand short tons)

|               |                     |                               | Total                                       |                             |  |
|---------------|---------------------|-------------------------------|---------------------------------------------|-----------------------------|--|
| Year          | Calcined<br>alumina | Other<br>alumina <sup>1</sup> | As pro-<br>duced or<br>shipped <sup>2</sup> | Calcined<br>equiva-<br>lent |  |
| Production: 3 |                     | 1=0                           | 7,148                                       | 7,001                       |  |
| 1970          | 6,670               | 478                           | 7,213                                       | 7,002                       |  |
|               | 6,545               | 668                           | 6,976                                       | 6,739                       |  |
| 1971          | 6,235               | 741                           |                                             | 7,344                       |  |
| 1972          | 6,834               | 734                           | 7,568                                       | 1,044                       |  |
| 1973          |                     |                               | - 100                                       | 6,961                       |  |
| Shipments:    | 6,631               | 476                           | 7,106                                       | 6,975                       |  |
| 1970          | 6,525               | 659                           | 7,184                                       |                             |  |
| 1971          | 6,222               | 745                           | 6,968                                       | 6,730                       |  |
| 1972          | 6,822               | 738                           | 7,561                                       | 7,335                       |  |
| 1973          | 0,022               |                               |                                             |                             |  |

<sup>&</sup>lt;sup>1</sup>Trihydrate, activated, tabular, and other aluminas. Excludes calcium and sodium aluminates.

<sup>2</sup>Data may not add to totals shown because of independent rounding.

<sup>3</sup>Includes only the end product if one type of alumina was produced and used to make another me of alumina. type of alumina.

Table 6.-Capacities of domestic alumina plants, December 31, 1973 <sup>1</sup>

(Thousand short tons per year)

| Company and plant                 | Capacity |
|-----------------------------------|----------|
| Aluminum Co. of America:          |          |
| Bauxite, Ark                      | e 375    |
| Modile. Ala                       | e 1,025  |
| Point Comfort, Tex                | e 1,350  |
| Total                             | 2,750    |
| Martin Marietta Aluminum, Inc.    |          |
| St. Croix, V.I                    | 360      |
| Kaiser Aluminum & Chemical Corp.: |          |
| Baton Rouge, La                   | 1,025    |
| Gramercy, La                      | 800      |
| Total                             | 1,825    |
| Ormet Corp.: Burnside, La         | 600      |
| Reynolds Metals $Co.:$            |          |
| Hurricane Creek, Ark              | 840      |
| Corpus Christi, Tex               | 1,385    |
| Total                             | 2,225    |
| Grand total                       |          |
|                                   | 7,760    |

<sup>&</sup>lt;sup>e</sup> Estimate by the Bureau of Mines.
<sup>1</sup> Capacity may vary depending upon the bauxite used.

## CONSUMPTION AND USES

Bauxite consumption in the United States (including the Virgin Islands) increased 8% to 16.6 million long tons (dry basis). Most of the increase was consumed in the production of calcined alumina for the aluminum industry, although all major consuming industries increased the use of bauxite. Foreign sources provided about 88% of the total bauxite consumed in 1973.

The production of alumina and related products required 93% of the total bauxite consumed. An average of 2.11 long dry tons of bauxite was used to produce 1 short ton (calcined basis) of alumina. The two alumina plants in Arkansas used mainly bauxite mined in Arkansas, and the other seven alumina plants used only imported ore.

The refractories industry used nearly one-half million tons (dry weight basis) of bauxite, establishing another record high level. Nearly all of this bauxite was used in the calcined form, which weighs about 65% of the dry equivalent weight. Imports, mainly from Guyana, comprised 83% of the bauxite used in refractories.

Five companies consumed bauxite in manufacturing artificial abrasives, and all of the bauxite used was calcined. The bulk of the ore came from Surinam, while most of the remainder came from the People's Republic of China. Data on consumption

Table 7.-Bauxite consumed in the United States, by industry

(Thousand long tons, dry equivalent)

| Year and industry | Domestic | Foreign | Total 1   |
|-------------------|----------|---------|-----------|
| 1972:             |          |         |           |
| Alumina           | 1,733    | 12,626  | 14,359    |
| Abrasive 2        |          | 253     | 253       |
| Chemical          | 3 142    | 3 218   | 284       |
| Refractory        | 75       | 329     | 403       |
| Other             | w        | w       | ±05<br>76 |
| Total 1 2         | 1,950    | 13,425  | 15.375    |
| 1973 :            |          |         |           |
| Alumina           | 1,725    | 13,784  | 15.509    |
| Abrasive 2        |          | 259     | 259       |
| Chemical          | 3 167    | 3 211   | 313       |
| Refractory        | 81       | 414     | 496       |
| Other             | w        | w       | 65        |
| Total 1 2         | 1,974    | 14,668  | 16,642    |

W Withheld to avoid disclosing individual company confidential data; included with "Chemical."

cal."

1 Data may not add to totals shown because of independent rounding.

2 Includes consumption by Canadian abrasive industry. Small quantity of domestic bauxite included with foreign in 1973.

3 Includes other uses.

by the abrasives industry included bauxite fused and crushed in Canada because much of this material is made into abrasive wheels and coated products in the United States. About 10% to 15% of this material is used for nonabrasive applications, principally refractories.

Bauxite consumption by the chemicals

BAUXITE 193

Table 8.—Crude and processed bauxite consumed in the United States

(Thousand long tons, dry equivalent)

| Туре                            | Domestic<br>origin | Foreign<br>origin | Total 1 |
|---------------------------------|--------------------|-------------------|---------|
| 1972:                           |                    |                   |         |
| Crude and dried<br>Calcined and | 1,766              | 12,838            | 14,602  |
| activated                       | 185                | 588               | 772     |
| Total 1                         | 1,950              | 13,425            | 15,375  |
| 1973:                           |                    |                   |         |
| Crude and dried<br>Calcined and | 1,748              | 13,995            | 15,743  |
| activated                       | 226                | 673               | 899     |
| Total                           | 1,974              | 14,668            | 16,642  |

<sup>&</sup>lt;sup>1</sup> Data may not add to totals shown because of independent rounding.

industry increased 10%. The United States, Guyana, and Surinam were the principal sources of bauxite for this industry. Other consumers of bauxite, in descending order of magnitude, included the cement, oil and gas, and steel and ferroalloys industries, and municipal waterworks.

Thirty-one primary aluminum plants in the United States consumed 8.73 million short tons of calcined alumina, compared with 7.94 million tons in 1972. Alumina consumption data for other uses were not available. A significant quantity was used to make aluminum fluoride and synthetic cryolite, which is also used in the production of primary aluminum.

Table 9.—Production and shipments of selected aluminum salts in the United States in 1972

(Thousand short tons and thousand dollars)

| Item                                                     | Number<br>of<br>producing                    | Produc-<br>tion | Total shi<br>including i<br>trans | nterplant |
|----------------------------------------------------------|----------------------------------------------|-----------------|-----------------------------------|-----------|
|                                                          | plants                                       |                 | Quantity                          | Value     |
| Aluminum sulfate:                                        |                                              |                 |                                   |           |
| Commercial $(17\% \text{ Al}_2\text{O}_3)$               | 67                                           | 1,256           | 1,194                             | \$51,648  |
| Municipal (17% Al <sub>2</sub> O <sub>3</sub> )          | $\begin{smallmatrix} 3\\17\end{smallmatrix}$ | 5               | XX                                | XX        |
| Iron-free (17% Al <sub>2</sub> O <sub>3</sub> )          | 17                                           | 71              | 49                                | 3,046     |
| Aluminum chloride:                                       |                                              |                 |                                   | -         |
| Liquid (32°Bé)                                           | } 5                                          | BT A            | BY A                              | BT A      |
| Crystal (32°Bé)                                          | (°                                           | NA              | NA                                | NA        |
| Anhydrous (100% AlCl <sub>3</sub> )                      | ´ 5                                          | NA              | NA                                | NA        |
| Aluminum fluoride, technical                             | 6                                            | 33              | 32                                | 8,864     |
| Aluminum hydroxide, trihydrate                           |                                              |                 |                                   | -,        |
| (100% Al <sub>2</sub> O <sub>3</sub> ·3H <sub>2</sub> O) | 7                                            | 529             | 503                               | 47,175    |
| Other inorganic aluminum compounds 1                     | ХX                                           | XX              | XX                                | 27,258    |

NA Not available. XX Not applicable.

#### **STOCKS**

Total stocks of bauxite in the United States were drawn down by 6%, or about 1.2 million long dry tons, during 1973. A reduction in bauxite inventories at alumina plants accounted for about half of the decline. Government stockpiles were reduced 3%. About 314,000 tons of Surinam-type bauxite was shipped from Government defense inventories, and an additional 110,000 tons was withdrawn from a government stockpile accumulated during World War II.

The Government stockpile objectives for Surinam-type bauxite and refractory-grade bauxite were eliminated in 1973, and the stockpile objective for Jamaica-type bauxite

was lowered to 4,638,000 tons. At yearend, the Government stockpiles contained an additional 9,789,000 long tons, dry basis, classified as uncommitted excess (unsold) bauxite. The remaining 1,602,000 tons were committed for sale.

Inventories of alumina and related products at plants producing alumina and primary aluminum totaled 1,239,000 short tons on December 31, 1973, an increase of 14% from the 1,083,000 tons (revised) at the end of 1972. The Government held no stocks of alumina except in the form of abrasive grain and crude fused aluminum oxide. These inventories totaled 390,000 short tons.

<sup>&</sup>lt;sup>1</sup> Includes sodium aluminate, light aluminum hydroxide, cryolite, and alums.

Source: Data are based upon Bureau of the Census report Form MA-28E.1, Annual Report on Shipments and Production of Inorganic Chemicals.

Table 10.-Stocks of bauxite in the United States 1

(Thousand long tons, dry equivalent)

| Sector                                                             | Dec. 31,<br>1972           | Dec. 31,<br>1973       |
|--------------------------------------------------------------------|----------------------------|------------------------|
| Producers and processors _<br>Consumers<br>Government <sup>2</sup> | r 791<br>r 2,797<br>16,453 | 684<br>2,165<br>16,029 |
| Total                                                              | r 20,041                   | 18,878                 |

r Revised.

#### **PRICES**

Prices on most of the bauxite and alumina produced throughout the world are not quoted because the large tonnages used by the aluminum industry are usually obtained from affiliated companies or purchased under long-term negotiated contracts.

Bureau of Mines estimates of the value of domestic production were based on data supplied by producers. The Bureau's estimated average value of crude domestic bauxite shipments in 1973, f.o.b. mine or plant, was \$11.58 per long ton, compared with \$10.60 in 1972. The average value of shipments of domestic calcined bauxite was estimated at \$41.78 per ton, compared with \$31.38 in 1972. Bauxite values among producers varied widely because of differences in grade.

The average value of imported dried or partially dried bauxite consumed at alumina plants in the United States and the Virgin Islands in 1973 was estimated at \$14.84 per long dry ton. Engineering and Mining Journal published the following prices on supercalcined refractory-grade bauxite imported from Guyana, car lots, per long ton:

|                                            | January-<br>June | July–<br>December |
|--------------------------------------------|------------------|-------------------|
| F.o.b. Baltimore, Md<br>F.o.b. Mobile, Ala |                  | \$62.50<br>62.53  |

The average value of domestic calcined alumina shipments, as determined from producers' reports, was \$66.85 per short ton. Shipments of alumina trihydrate averaged \$77.71 per ton. The average value of imported alumina (including small quantities of hydrate) was \$62.02 per ton at port of shipment. Exports of alumina from the United States and the Virgin Islands averaged \$83.48 per ton.

Table 11.-Market quotations on alumina and aluminum compounds (In bags, carlots, freight equalized)

| Compounds                                                                                                                                                                                         | Jan. 1, 1973                                      | Dec. 31, 1973                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| Alumina, calcinedper pound Alumina, hydrated, heavydo Alumina, activated, granular, worksdo Aluminum sulfate, commercial, ground (17% AlzOs)per ton Aluminum sulfate, iron-free dry (17% AlzOs)do | \$0.06<br>\$0.04450455<br>.1365<br>67.25<br>92.05 | \$0.06<br>\$0.04450455<br>.1365<br>67.25<br>98.60 |

Source: Chemical Marketing Reporter.

<sup>1</sup> Domestic and foreign bauxite; crude, dried,

<sup>2</sup> Includes bauxite stockpiled during World War II (781,000 tons Dec. 31, 1973, 91us bauxite in defense material inventories (national stockpile, supplemental stockpile). stockpile, Defense Production Act).

Table 12.-Average value of U.S. exports and imports of bauxite1

(Per long ton)

|                                          | Average | value, port of s | shipment |
|------------------------------------------|---------|------------------|----------|
| Type and country                         | 1971    | 1972             | 1973     |
| Exports: Bauxite and bauxite concentrate | \$45.02 | \$44.59          | \$59.35  |
| Imports:                                 |         |                  |          |
| Crude and dried:                         | 10.68   | 11.24            | 11.37    |
| Australia                                | 16.58   | 17.92            | 15.48    |
| Dominican Republic <sup>2</sup>          |         | 14.33            | 11.04    |
| Greece                                   | 4.93    | 5.37             | 8.53     |
| Guinea                                   | 11 90   | 10.09            | 9.89     |
| Guyana                                   | 9.86    | 10.79            | 10.80    |
| Haiti <sup>2</sup>                       |         | 13.48            | 13.28    |
| Jamaica <sup>2</sup>                     |         | 11.96            | 11.61    |
| Surman                                   | 10.40   | 13.21            | 12.72    |
| Average                                  |         |                  |          |
| Calcined:                                | 39.85   | 50.49            | 53.93    |
| Guyana                                   | 34.87   | 47.20            | 51.27    |
| Surinam                                  | 39.33   | 50.04            | 53.60    |
| Average                                  |         |                  |          |

<sup>&</sup>lt;sup>1</sup> Excludes bauxite into the Virgin Islands from foreign countries: 1971—Australia \$5.54, Papau New Guinea \$4.31, Guinea \$4.94; 1972—Australia \$4.74, Guinea \$4.82, Guyana \$7.01; 1973—Australia \$13.66, Guyana \$6.98.

<sup>2</sup> Dry equivalent tons adjusted by Bureau of Mines used in computation.

Note: Bauxite is not subject to an ad valorem rate of duty, and the average values may be arbitrary for accountancy between allied firms, etc. Consequently, the data do not necessarily reflect market values in the country of origin.

### FOREIGN TRADE

Exports from the United States classified as "bauxite and concentrates of aluminum excluding alumina" totaled only 12,000 long tons in 1973 and were valued at \$811,000. Canada received 88% of the total.

Alumina exports, including 26,000 tons of aluminum hydroxide, decreased 13% to 765,000 short tons, the lowest level since 1967. Canada received 43% of the total, Ghana received 17%, and Mexico received 13%. Reduced shipments to the U.S.S.R. accounted for most of the decline in exports from the United States mainland, although the U.S.S.R. and Norway shared an additional 283,000 tons exported from the U.S. Virgin Islands to foreign countries.

Exports of aluminum sulfate increased to 21,000 tons, valued at \$642,000. The largest of the 27 recipient countries were Venezuela, which received 15,000 tons, and Canada, which received 2,500 tons. Artificial corundum exports increased to 30,000 tons, valued at \$11.5 million, of which 10,000 tons was shipped to Canada, 8,000 tons to the United Kingdom, and 2,000 tons to Sweden. Exports classified as "other aluminum compounds" totaled 42,000 tons and were valued at \$14.1 million. Much of this tonnage was believed to be aluminum fluoride and synthetic cryolite shipped to other

countries for use as a flux in making primary aluminum.

No duties were imposed on imports of bauxite, alumina, or aluminum hydroxide in 1973. All duties on these commodities were suspended effective July 15, 1971.

Imports of crude, partially dried, and dried bauxite declined 2% to 11.24 million long tons in 1973, the third consecutive year of reduced imports. Decreased imports of bauxite from Jamaica and Haiti more than offset increases from all other countries that regularly supply the United States; however, Jamaica continued to supply over half the total imports. Bauxite imports into the Virgin Islands totaled an additional 625,000 tons, virtually unchanged from the previous year. Imports from Guinea to the United States began on a regular basis in the second half of 1973 and were expected to become an important new source of bauxite.

Calcined bauxite imports, which were used largely in the manufacture of refractories, increased to 294,000 tons. Guyana provided 84% of the total and Surinam most of the remainder. Additional calcined bauxite was imported into Canada for manufacture into crude fused aluminum oxide, much of which was subsequently

Table 13.-U.S. exports of alumina,1 by country

(Thousand short tons and thousand dollars)

| Country                                                                                                         | 1971                                                                 |                                                                                                        | 1972                                                                 |                                                                                                 | 1973                                                                 |                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
|                                                                                                                 | Quantity                                                             | Value                                                                                                  | Quantity                                                             | Value                                                                                           | Quantity                                                             | Value                                                                                                 |
| Canada France Grandy, West Ghana Hungary Japan Mexico Poland Sweden U.S.S.R United Kingdom Venezuela Yugoslavia | 273<br>1<br>23<br>109<br>60<br>2<br>97<br>19<br>10<br>434<br>2<br>17 | 21,350<br>479<br>2,647<br>7,207<br>3,594<br>1,618<br>6,528<br>1,381<br>717<br>24,751<br>1,417<br>5,243 | 282<br>2<br>2<br>106<br>44<br>3<br>109<br>43<br>19<br>237<br>2<br>20 | 21,119<br>475<br>1,383<br>5,652<br>2,594<br>4,022<br>7,572<br>3,182<br>1,351<br>12,835<br>1,577 | 328<br>2<br>11<br>133<br>-6<br>101<br>20<br>66<br>48<br>4<br>33<br>3 | 25,299<br>627<br>1,518<br>8,749<br>6,910<br>7,442<br>1,180<br>3,892<br>2,800<br>1,878<br>2,633<br>735 |
| Total                                                                                                           | 1,080                                                                | 77,627                                                                                                 | 879                                                                  | 65,702                                                                                          | 765                                                                  | 3,415<br>67,078                                                                                       |

<sup>&</sup>lt;sup>1</sup> Includes exports of aluminum hydroxide: 1971—34,000 short tons; 1972—41,000 short tons;

Note: Excludes alumina exported from the Virgin Islands to foreign countries: 1971—Norway 116,000 tons, U.S.S.R. 65,000 tons; 1972—Cyprus 26,000 tons, Norway 191,000 tons, Poland 58,000 tons; 1973—Norway 157,000 tons, U.S.S.R. 126,000 tons.

Table 14.-U.S. imports for consumption of bauxite (crude and dried), by country (Thousand long tons and thousand dollars)

| Country                                                                                        | 1971                                                       |                                                                    | 19                                                                | 1972                                                                         |                                                              | 1973                                                          |  |
|------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------|--|
|                                                                                                | Quantity                                                   | Value                                                              | Quantity                                                          | Value                                                                        | Quantity                                                     | Value                                                         |  |
| Australia Dominican Republic rreece uinea uyana laiti amaica ierra Leone urinam (enezuela ther | 139<br>912<br>34<br>15<br>271<br>502<br>7,583<br><br>2,870 | 1,485<br>15,119<br>286<br>74<br>3,034<br>4,951<br>96,767<br>31,923 | 277<br>851<br>3<br>8<br>360<br>422<br>6,958<br>15<br>2,534<br>(2) | 3,116<br>15,258<br>43<br>43<br>3,635<br>4,556<br>93,860<br>172<br>30,327<br> | 359<br>916<br>45<br>128<br>483<br>307<br>6,345<br>2,651<br>6 | 4,08<br>14,18<br>49<br>1,09<br>4,77<br>3,31<br>84,26<br>30,79 |  |

<sup>&</sup>lt;sup>1</sup> Official Bureau of the Census data for Jamaican, Haitian, and Dominican Republic bauxite have been converted to dry equivalent by deducting free moisture: Jamaican is 15.4%. Haitian 13%, and Dominican Republic 16.8%. Other imports, which are virtually all dried, are on as-shipped basis.

<sup>2</sup> Less than ½ unit.

Note: Excluded bauxite imported into the Virgin Islands from foreign countries: 1971—Australia 393,000 tons, Papua-New Guinea 30,000 tons, Guinea 588,000 tons; 1972—Australia 220,000 tons, Guinea 57,000 tons, Guyana 347,000 tons: 1973—Australia 161,724 tons, Guyana 463,470 tons.

Table 15.-U.S. imports for consumption of bauxite (calcined), by country (Thousand long tons and thousand dollars)

| Country —                                                             | 1971                                 |                                            | 1972                                       |                                                   | 1973                        |                                         |
|-----------------------------------------------------------------------|--------------------------------------|--------------------------------------------|--------------------------------------------|---------------------------------------------------|-----------------------------|-----------------------------------------|
|                                                                       | Quantity                             | Value                                      | Quantity                                   | Value                                             | Quantity                    | Value                                   |
| Australia Canada Guyana Surinam Trinidad and Tobago Zaire Other Total | (1)<br>247<br>30<br>15<br>(1)<br>292 | 1<br>9,857<br>1,040<br>579<br>10<br>11,487 | 6<br>(1)<br>185<br>35<br>21<br><br><br>247 | 223<br>6<br>9,342<br>1,652<br>1,139<br><br>12,362 | -6<br>247<br>36<br>5<br>(1) | 397<br>13,300<br>1,843<br>210<br>15,751 |

<sup>&</sup>lt;sup>1</sup> Less than ½ unit.

197 BAUXITE

Table 16.-U.S. imports for consumption of alumina,1 by country (Thousand short tons and thousand dollars)

|              | 197              | 1       | 197      | 2       | 197       | 3      |
|--------------|------------------|---------|----------|---------|-----------|--------|
|              | 197              |         |          |         | Quantity  | Value  |
| Country      | Quantity         | Value   | Quantity | Value   | Qualities |        |
|              |                  | 00.004  | 1,168    | 67,674  | 1,939     | 116,57 |
| 1 -11-       | 1,240            | 66,634  | 20       | 2,136   | 21        | 2,48   |
| ustralia     | 17               | 1,883   |          | 1,936   | 1         | 9      |
| anada        | 84               | 5.135   | 23       |         | â         | 1,0    |
| ance         | 3                | 755     | 1        | 433     | o         | 1,0    |
| ermany, West | 63               | 3,951   | 107      | 6,138   |           |        |
| reece        |                  | 3,331   | - 5      | 357     | 21        | 1,2    |
|              | ( <sup>2</sup> ) |         | 58       | 3,534   | 33        | 1,9    |
| inea         | 13               | 929     |          | 48,836  | 904       | 57.7   |
| ıyana        | 458              | 30,681  | 748      |         | 73        | 5,0    |
| maica        | 68               | 4.968   | 138      | 8,599   | 380       | 22,0   |
| ipan         | 463              | 26.851  | 571      | 32,916  |           |        |
| irinam       | 400              | 87      | 11       | 854     | (2)       | 1      |
| ther         | 1                |         |          | 150 (19 | 3,375     | 209.   |
|              | 2,410            | 141,904 | 2,850    | 173,413 | 0,010     | _00,0  |
| Total        | 2,410            | ,       |          |         |           |        |

<sup>&</sup>lt;sup>1</sup> Includes small quantities of aluminum hydroxide.

Note: Shipments from the Virgin Islands to the United States: 1971—120,000 short tons (\$9,316,-000); 1972—67,051 short tons (\$4,827,674); 1973—23,424 short tons (\$1,686,505).

used in abrasive and refractory products in the United States. An estimated 80% of these Canadian imports came from Surinam, and most of the remainder came from the People's Republic of China.

Imports of alumina, including small

quantities of aluminum hydroxide, increased 18% to a record high level of 3.4 million short tons. Receipts from Australia increased by 771,000 tons. Of the total alumina imports, Australia provided 57%. Jamaica 27%, and Surinam 11%.

## WORLD REVIEW

World bauxite production was estimated at nearly 70 million long dry tons in 1973, an increase of 9%. The greatest production increases occurred in Australia, Jamaica, and Guinea, while India showed the largest decline. Australia and Jamaica together produced 44% of the world's supply.

World production of alumina increased 11%. The United States, with 26% of the total, remained the largest producer, but Australian output showed the greatest growth, increasing by over 1 million short

Australia.—Australia was the world's largest producer of bauxite and the second largest producer of alumina. In Western Australia, Alcoa of Australia (W.A.) Ltd. operated alumina plants at Kwinana and Pinjarra using bauxite mined in the Darling Range. Alumina from both plants was shipped from Kwinana, but port facilities at Bunbury were being prepared to handle future shipments from Pinjarra. The Pinjarra plant was reported to be undergoing an expansion to a capacity of about 1 million tons per year, which should be completed in 1975. Additional expansion was being considered.

Comalco Ltd. conducted the world's larg-

est bauxite mining operation at Wiepa, Queensland, on the Cape York Peninsula. The deposits and the operations were described.3 Shipments of beneficiated bauxite from Wiepa increased by 2 million tons in 1973 to 9.1 million tons. Of the total, 4.3 million tons went to the Gladstone and Bell Bay alumina plants in Australia, 1.7 million tons to Japan, and 3.1 million tons to Europe and other areas. Sales of calcined abrasive-grade bauxite also increased. A second calcining kiln, with a capacity of 150,000 tons and costing \$4.5 million, was expected to be completed by the end of 1974.

Queensland Alumina Ltd. completed the third expansion of its Gladstone alumina plant. Annual rated capacity was raised to 2.2 million short tons, and production in 1973 was about 2 million tons. Comalco shut down its 20-year-old alumina plant at Bell Bay, Tasmania, for economic reasons after operating it through most of 1973. After 4 years of study, a group of companies led by Comalco decided that it would be uneconomic to construct a large alumina plant in the Wiepa area in the near future.

<sup>3</sup> Mining Magazine. Weipa Bauxite. V. 130, No. 1, January 1974, pp. 12-21.

Table 17.-Bauxite: World production, by country

(Thousand long tons)

| Country 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1971     | 1972    | 1973           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|----------------|
| North America:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | 1       |                |
| TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |         |                |
| Dominican Republic <sup>2 3</sup> Haiti <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | r 1,071  | 1,019   | 1.127          |
| Jamaica 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 633      | 677     | e 690          |
| United States 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12,244   | 12,345  | 13.38          |
| South America:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,988    | 1,812   | 1,879          |
| D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |         | 2,010          |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 530      | 596     | e 640          |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | r 3,858  | 3.291   | 3.224          |
| Europe:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6,612    | 7,654   | 6,580          |
| E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •        | .,      | 0,000          |
| Cormany Wash                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.134    | 3,203   | 3.084          |
| Germany, WestGreece                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3        | 2       | 0,004          |
| TT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,816    | 2,398   | e 2.600        |
| Tingary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2,057    | 2,321   | 2,559          |
| Daniel de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la company de la com | 191      | 95      |                |
| Spain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 300      | 300     | 49<br>340      |
| U.S.S.R. e 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5        | 6       | 340<br>7       |
| Yugoslavia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | r 4.000  | r 4.100 | 4.200          |
| Africa:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,928    | 2,162   |                |
| GI.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -,020    | 2,102   | 2,133          |
| a .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | r 323    | 356     | 905            |
| 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | r 1.966  | 2.018   | 305<br>e 3.000 |
| discontinue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7,000    | 5       |                |
| Sierra Leone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 58i      | 683     | 6              |
| China David D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 001      | 000     | 652            |
| China, People's Republic of e 7India                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 540      | 570     | 700            |
| Indonesia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.493    | 1,628   | 590            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,218    | 1.256   | 1,250          |
| malaysia (West Malaysia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 962      | 1.059   | 1,200          |
| m. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (8)      | 1,059   | e 1,200        |
| Turky                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 151      | 255     | (8)            |
| ceama. Austrana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r 12,532 | 14,209  | 328            |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |         | 17,535         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r 61,143 | 64,021  | 68,563         |

e Estimate. Preliminary. r Revised.

for refractory applications.

8 Less than ½ unit.

Nabalco Pty., Ltd., produced bauxite and alumina at Gove, Northern Territory. The second stage of the Gove alumina plant was put into operation in the middle of the year increasing annual capacity to 1.1 million tons.

The Alwest bauxite and alumina project in southern Western Australia was reported to have been delayed because of financing difficulties. Federal rules requiring Australian majority equity and no-interest bank deposits of one-third of all foreign investments were cited as major deterrents to foreign participation.

Brazil.—Bauxite mining has historically been centered in Minas Gerais, and none has been mined commercially in northern Brazil. However, deposits discovered in the Amazon Area since 1967 may eventually

prove large enough to give Brazil the greatest bauxite production potential in the Western Hemisphere. Government regulations and procedures relating to the development of mineral deposits were described.4

During 1973 Alcan Aluminum Ltd. and Companhia Vale do Rio Doce (CVRD) conducted a joint study of the possibility of developing the bauxite deposits Alcan discovered near the confluence of the Amazon and Trombetas Rivers. In December the companies announced the signing of a memorandum of understanding with eight other companies to underwrite further development of the project. Tentative plans called for construction to begin in mid-

In addition to the countries listed, Southern Rhodesia may have continued to produce bauxite during the period covered by this table. However, no information on bauxite-mining activities, 2 Dry bauxite equivalent of crude ore.

<sup>3</sup> Shipments.

4 Dry bauxite equivalent of ore processed by drying plant.

5 Bauxite processed for conversion to alumina in Jamaica plus exports of kiln-dried ore.

6 Excludes materials other than bauxite used for the production of alumina, estimated as follows n thousand long tons: Nepheline concentrates (25% to 30% alumina), 1971—7,102, 1972—7,1673, 1973—2,116, alumite ore (16% to 18% alumina), 1971—7394, 1972—7492, 1973—590.

7 Diasporic bauxite for production of aluminum only; excludes 98,000 to 195,000 tons of production or refractory applications.

<sup>&</sup>lt;sup>4</sup> Lefond, S. J. Brazilian Mining: Relaxed Government Attitudes Pave the Way for Ex-ploiting Critical Reserves. Min. Eng., v. 25, No. 11, November 1973, pp. 31-45.

BAUXITE 199

Table 18.-Alumina: World production, by country

(Thousand short tons)

| Country 1                              | 1971     | 1972    | 1973 P  |
|----------------------------------------|----------|---------|---------|
| Country                                |          |         |         |
| North America:                         | 1,257    | 1.266   | e 1,275 |
| a 1                                    | 1,237    | 2,355   | 2,378   |
| Tempica (exports)                      |          | 6,976   | 7,568   |
| United States                          | 7,213    | 0,510   | .,      |
| Cth. Amenica:                          | 101      | 212     | e 220   |
|                                        | 184      | 287     | e 300   |
| Brazil<br>Guyana                       | 342      |         | e 1.520 |
| GuyanaSurinam                          | 1,407    | 1,519   | 1,520   |
|                                        |          |         | 80      |
| Europe:                                | . 80     | 80      |         |
| Czechoslovakia e                       | 1.339    | 1,226   | 1,397   |
| France                                 | 52       | 50      | 50      |
| Germany, East                          | 911      | 1,010   | 998     |
| C                                      | 511      | e 513   | e 530   |
| Creece                                 | 515      | 573     | 722     |
| TT                                     | r 289    | 227     | e 532   |
| The last                               | 231      | 231     | 311     |
| Domania e                              | r 2.300  | r 2,500 | 2,600   |
| U.S.S.R.e                              | 109      | 128     | 138     |
| United Kingdom                         |          | 149     | e 193   |
| Yugoslavia                             | 136      | 731     | 678     |
| Africa: Guinea                         | 733      | 191     | 0.0     |
|                                        |          | 310     | 320     |
| Asia:<br>China, People's Republic of e | 300      |         | 345     |
| China, People's Republic of            | r 394    | 400     |         |
|                                        | 1,767    | 1,813   | 2,190   |
| Japan                                  | 47       | 58      | e 68    |
| Toimen                                 | r 2.990  | 3,382   | 4,43    |
| Oceania: Australia                     | r 25,104 | 25,996  | 28,84   |
| Total                                  | 20,101   |         |         |

<sup>&</sup>lt;sup>e</sup> Estimate. <sup>p</sup> Preliminary. <sup>r</sup> Revised. <sup>1</sup> In addition to the countries listed, Austria produces alumina (fused aluminum oxide), but output is used entirely for abrasives production. Production was as follows in short tons: 1971—30,011; 1972—28,943; 1973—31,110.

Table 19.-World producers of alumina

(Thousand short tons)

| (Thousand si                                                                                                        | iort tons)                   |                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------|
| Country, company, and plant location                                                                                | Capacity,<br>yearend<br>1973 | Ownership                                                                                       |
| NORTH AMERICA Canada: Aluminum Company of Canada Ltd. Arvida, Quebec                                                | 1,387                        | Alcan Aluminium Ltd. 100%.                                                                      |
| Jamaica: Alcan Jamaica Ltd.: Ewarton, St. Catherine Kirkvine, Manchester                                            | 624<br>615                   | Alcan Aluminium Ltd. 100%.                                                                      |
| Alcoa Minerals of Jamaica, Inc. Woodside, Clarendon                                                                 | 551                          | Aluminum Co. of America 100%.                                                                   |
| Alumina Partners of Jamaica, Nain, St. Elizabeth                                                                    | 1,300                        | Reynolds Metals Co. 36.8%; Anaconda Aluminum Co. 36.8%; Kaiser Aluminum & Chemical Corp. 26.4%. |
| Revere Jamaica Alumina, Ltd., Maggotty, St. Elizabeth Total Jamaica United States (see table 6) Total North America | 7,760                        | Revere Copper & Brass Inc. 100%.                                                                |
| SOUTH AMERICA                                                                                                       |                              |                                                                                                 |
| Brazil: Alumínio Minas Gerais, S.A., Saramenha, Minas Gerais                                                        | 100                          | Alcan Aluminium Ltd. 100%.                                                                      |
| Cia. Brasileira de Aluminio, S.A.,<br>Sorocaba, São Paulo                                                           |                              | Industria Votorantim, Ltd. 80%;<br>Government, 20%.                                             |
| Cia. Mineira de Alumínio,<br>Poços de Caldas, Minas Gerais                                                          | • 75                         | Aluminum Co. of America 50%;<br>Hanna Mining Co. 23.5%; Brazilian interests 26.5%.              |
| Total BrazilSee footnote at end of table.                                                                           | 285                          | •                                                                                               |

## Table 19.-World producers of alumina-Continued

(Thousand short tons) Capacity, Country, company, and plant location yearend Ownership 1973 SOUTH AMERICA—Continued
Guyana: Guyana Bauxite Co., MacKenzie ----Surinam: Surinam Aluminum Co., Paranam ---Government 100%. Aluminum Co. of America 100%. 385 e 1,460 Total South America 2,130 EUROPE Czechoslovakia: Ziar, Banskobystricky 143 Government 100%. Péchiney Ugine Kuhlmann Group: Self 100%. Gardanne \_\_\_\_\_ 815 La Barasse 330 Total France \_\_\_\_\_\_ Germany, East: V.E.B., Lauta \_\_\_\_\_ 1,435 70 Government 100%. Germany, West:
Aluminium Oxid Stade GmbH, Stade \_\_\_\_\_ 661 Vereinigte Aluminium 50%; Reynolds 50%. Gebrueder Giulini GmbH, Ludwigshafen \_\_\_\_ Martinswerke GmbH für Chemische und Metallürgische Produktion, Bergheim \_\_\_\_\_ 143 Self 100%. 420 Aluminium Ltd. (Alusuisse) 99.2%. Vereinigte Aluminium-Werke A.G.: Government 100%. Lippenwerke, Lünen \_\_\_\_\_ Nabrewerk, Schwandorf \_\_\_\_\_ 474 231 Total West Germany Total West Germany \_\_\_\_\_ Greece: Aluminium de Grèce S.A., Distomon \_\_ 1,929 Péchiney Ugine Kuhlmann Group 529 90%; Government 10%. Hungary: Ajka I \_\_\_\_\_Ajka II \_\_\_\_ \_\_\_\_\_\_ Almasfuzito

Magyarovar 720 Government 100% Total Hungary 720 Montecatini-Edison S.p.A., Porto Marghera --Eurallumina S.p.A., Porto Vesme, Sardinia --Self 89%; Government 11%. Alsar S.p.A. 41.67%; Comalco 20%; Metallgesellschaft A.G. 17.5%; Montecatini-Edison S.p.A. 20.83%. 231 661 Total Italy 892 Romania: Government 100%. Oradea 231 Tulcea \_\_\_\_\_ 276 Total Romania 507 U.S.S.R.: Government 100%. Achinsk Kamensk-Uralsky Kandalaksa \_\_\_\_\_\_Kirovabad -----Krisonoturinsk Krasnoturinsk Kovo Kuznetsk Pavlodar ~ e 3.500 Pikalevo \_\_\_\_\_ Sumgait \_\_\_\_\_\_Volgograd Sumgait Volkhov-Tikhiun Total U.S.S.R.
United Kingdom: The British Aluminium
Co., Ltd., Burntisland e 3,500 110 Tube Investments, Ltd. 52%; Reynolds 48%. Yugoslavia: Government 100%. Titograd \_\_\_\_\_Kidricevo 220 \_\_\_\_\_\_ 154 Total Yugoslavia 374 Total Europe 10.209 AFRICA Guinea: Friguia Kimbo \_\_\_\_ Frialco Co. 51%; Government 49%. (Frialco: Olin Corp. 38.5%; Péchiney 36.5%; British Aluminium 10%; Alusuisse 10%; Vereinigte Aluminium 5%). 772 Total Africa \_\_\_\_\_ 772 See footnote at end of table.

## Table 19.-World producers of alumina-Continued

(Thousand short tons)

| ,                                                                                                   | rt tons)                     |                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                     | Capacity,<br>yearend<br>1973 | Ownership                                                                                                                          |
| AIRA                                                                                                |                              | Government 100%.                                                                                                                   |
| u : Deemle's Republic of:                                                                           |                              | Government 100%.                                                                                                                   |
| Antung                                                                                              |                              |                                                                                                                                    |
|                                                                                                     |                              |                                                                                                                                    |
|                                                                                                     |                              |                                                                                                                                    |
|                                                                                                     | e 330                        |                                                                                                                                    |
|                                                                                                     | - 6990                       |                                                                                                                                    |
|                                                                                                     |                              |                                                                                                                                    |
|                                                                                                     |                              |                                                                                                                                    |
|                                                                                                     |                              |                                                                                                                                    |
| Vangehuan                                                                                           |                              |                                                                                                                                    |
| Total China, People's Republic of                                                                   | e 330                        |                                                                                                                                    |
|                                                                                                     |                              |                                                                                                                                    |
| India: Aluminium Corp. of India, Ltd., Jaykaynagar, West Bengal                                     |                              | Self 100%.                                                                                                                         |
| Jaykaynagar, West Bengal                                                                            | 28                           |                                                                                                                                    |
|                                                                                                     | 220                          | Government 100%.                                                                                                                   |
| Korba, Madhya Pradesh<br>Hindustan Aluminium Corp. Ltd.,                                            |                              |                                                                                                                                    |
| Renukoot, Uttar Predesh                                                                             | 182                          | Birla and Indian interests 73%;                                                                                                    |
| Renukoot, Uttar Fredesii                                                                            |                              | Kaiser 27%.                                                                                                                        |
| T 11 Alamaianiama Co. 1                                                                             |                              | Alcan 55%; Government 45%.                                                                                                         |
| Indian Aluminium Co.:  Muri, Bihar                                                                  | 85                           |                                                                                                                                    |
| Belgaum, Mysore                                                                                     | 125                          |                                                                                                                                    |
| Madras Aluminium Co. Ltd.,                                                                          |                              | Mades State Government 73%                                                                                                         |
| Mettur, Tamil Nadu                                                                                  | 55                           |                                                                                                                                    |
| Mettur, lamii Nadu                                                                                  |                              | Montecatini-Edison 27%.                                                                                                            |
| Total India                                                                                         | 695                          |                                                                                                                                    |
| Total India                                                                                         |                              | _                                                                                                                                  |
| Japan:<br>Mitsui Alumina Co., Wakamatsu                                                             | 220                          | Mitsui Group 98.5%; other Japanese interests 1.5%. Alcan 50%; Japanese interests 50%.                                              |
| Nippon Light Metal Co. Ltd.:                                                                        |                              | Alcan 50%; Japanese interess 50%                                                                                                   |
|                                                                                                     | 595                          |                                                                                                                                    |
|                                                                                                     | 367                          | Self 100%.                                                                                                                         |
| Showa Denko K.K., Yokohama                                                                          | 600                          | Self 100%.                                                                                                                         |
| Showa Denko K.K., Yokohama Sumitomo Chemical Co., Ltd., Kikumoto                                    | 844                          | Sell 100%.                                                                                                                         |
| Total Japan                                                                                         | 2,626                        |                                                                                                                                    |
|                                                                                                     |                              | a 1000/                                                                                                                            |
| Trbeing Token                                                                                       | 84                           | Government 100%.                                                                                                                   |
| Turkey: Seydisehir                                                                                  | 220                          | Government 100%.                                                                                                                   |
| Turkey. Beyalsom                                                                                    | 3,955                        | -                                                                                                                                  |
| Total Asia                                                                                          |                              | :                                                                                                                                  |
| OCEANIA                                                                                             |                              | P16/                                                                                                                               |
| Australia: (WA) Ltd:                                                                                |                              | Aluminum Co. of America 51%                                                                                                        |
| Alcoa of Australia (W.A.) Ltd.:                                                                     | c 1,325                      | Australian interests 49%.                                                                                                          |
| Kwinana, Western Australia                                                                          | e 800                        |                                                                                                                                    |
| Pinjarra, Western Australia                                                                         |                              |                                                                                                                                    |
| Nabalco Pty., Ltd.,                                                                                 | 1,100                        | Swiss Aluminium Australia Lt                                                                                                       |
| Kwinana, Western Australia Pinjarra, Western Australia Nabalco Pty., Ltd., Gove, Northern Territory |                              | 70%; Gove Alumina Ltd. 30%.                                                                                                        |
| Queensland Alumina Ltd.,                                                                            | 2,205                        | Kaiser 37.3%; Alcan 22%; Péch                                                                                                      |
| Queensland Alumina Ltd.,<br>Gladstone, Queensland                                                   | 2,200                        | ney 20%; Comalco 11.3%; Cozine Riotinto of Australia, Lt 9,4%, (Comalco: Conzine Ritinto of Australia 45%; Kaise 45%, public 10%). |
|                                                                                                     |                              | • • •                                                                                                                              |
|                                                                                                     | 5 420                        |                                                                                                                                    |
| Total Oceania<br>Total World                                                                        | 5,430<br>34,953              | =                                                                                                                                  |

e Estimate.

1974, first shipments of bauxite by 1977, and eventual export of over 3 million tons per year. Brazilians will own 51% of the venture and foreign companies 49%.

Plans to enlarge two alumina plants by 1976 have been reported. Companhia Mineira de Alumínio was expected to increase

annual capacity at its Poços de Caldas plant to 154,000 short tons. Companhia Brasileira de Aluminio, S.A. planned to increase capacity of its Sorocaba plant to 173,000 tons.

Fiji.—Bauxite Fiji Ltd., owned by three Japanese aluminum producers, terminated plans to develop bauxite deposits on the

island of Vanua Levu. Construction of production facilities was near completion but was abandoned because of rising costs.

Germany, West.—Aluminium Oxid Stade GmbH., owned jointly by Reynolds International, Inc., and Vereinigte Aluminium-Werke A.G. (VAW), completed construction of a new alumina plant at Stade. The plant has a capacity of 661,000 tons per year and may be expanded.

Ghana.—As a result of a new government policy that Ghana hold a majority interest in mining investments, British Aluminium Co. Ltd. and the Government agreed to form Ghana Bauxite Co. in which the Government would hold 55% of the equity shares and British Aluminium, 45%. British Aluminium has been the only bauxite producer in Ghana and has exported all of its production.

Greece.—Eight companies reportedly mined bauxite, all of which was produced in the Province of Central Greece. Bauxite was again the largest mineral export of Greece. Export quotas for 1973 were established as follows: European Economic Communities, 458,000 long tons; U.S.S.R., 443,000 tons; United Kingdom, 74,000 tons; United States, 74,000 tons; Sweden, 69,000 tons; Spain, 49,000 tons; five other countries, 79,000 tons.

Aluminium de Grèce S.A., a subsidiary of Péchiney Ugine Kuhlmann (PUK), was the only producer of alumina in Greece. Plans for several other alumina plants continued to be negotiated, but no final construction agreements had been concluded at yearend. The Government announced that it had agreed in principle on a joint venture wtih Alcoa to build alumina and aluminum plants near Megara. The venture, in which Alcoa would have a 60% interest and the Government 40%, would include an alumina plant with an annual capacity of 287,000 short tons which could eventually be doubled. Reynolds Metals Co. reportedly received Government approval for a 500,000-ton-per-year alumina plant to be located on the northern shore of the Gulf of Corinth. Reynolds would be associated with Bauxite Parnasse Mining Co. in this project.

Guinea.—The first shipload of high-grade bauxite from the large Boke project left the new port at Kamsar in early August. Production was scheduled at 4 to 5 million tons in 1974 and 9 million tons by 1979. The bauxite is mined at Sangaredi and shipped about 80 miles by rail to Kamsar where it is crushed and dried before exportation. Boké is operated by Guinea Bauxite Co. (CBG), which is owned by the Government of Guinea (49%) and Halco (Mining), Inc. (51%), a consortium consisting of Alcoa (27%), Alcan (27%), Martin Marietta Aluminum, Inc. (20%), PUK (10%), VAW (10%), and Montecatini-Edison S.p.A. (6%). The Government receives 65% of the profits of CBG.

Compagnie International pour la Production de l'Alumine (FRIA) was the only other producer of bauxite in Guinea in 1973 and the only producer of alumina in Africa. The name of the company was changed to Friguia during the year when the Government acquired a 49% ownership of the enterprise. The remaining 51% was owned by the Frialco Co. consortium, consisting of Olin Corp. (38.5%), PUK (36.5%), British Aluminium (10%), Alusuisse (10%), and VAW (5%).

Bauxite deposits at Debele in the Kindia Region were being developed by the Government with assistance from the U.S.S.R. Ore was to be shipped about 70 miles by rail to Conakry for export to the U.S.S.R. Production was expected to be at the level of 2.5 to 3.0 million tons per year. Initial shipments were delayed until 1974.

Hungary.—A new bauxite mine, Rakhegy II, near Lake Balaton in Transdanubia was opened and was expected to produce 350,000 tons per year.

India.—The alumina plant at Korba, Madhya Pradesh, of the government-owned Bharat Aluminium Co. was reported to have come onstream in April. The plant, with an annual capacity of 220,000 short tons per year, will use bauxite from Amarkantak and Phutkapahar. The State Government of Gujarat announced plans for an export-oriented plant of similar size to be located at Bhuj in the Kutch area. The bauxite is to be mined by Gujarat Mineral Development Corp.

Indonesia.—P.N. Aneka Tambang, a government-owned mining company, announced that it had increased its bauxite production and shipping capacity on Bintan Island. Exports to Japan, its principal customer, were to be increased from 1.0 million tons per year to 1.2 million tons. Reserves on Bintan have been estimated at 78 million tons. Following extensive exploration, Alcoa announced its intention to develop bauxite deposits on Kalimantan

BAUXITE 203

(Indonesian Borneo) and to build a large alumina plant.

Jamaica.—Jamaica, the world's second largest producer of bauxite, was also the fourth largest alumina producer. Alcoa's new alumina plant was reported to have reached capacity production, but operating difficulties were encountered at the new plants operated by Alumina Partners of Jamaica, (Alpart) and Revere Jamaica Alumina, Ltd.

In addition to the bauxite produced in Jamaica to supply the five alumina plants on the island, Jamaican bauxite is exported by Kaiser Bauxite Co., Reynolds Jamaica Mines Ltd., and Alcoa. Production by Kaiser was interrupted for half of September because of a dispute over a labor contract. Reynolds was reportedly expanding bauxite capacity from 2.5 to 3.25 million tons per year.

Japan.—Japan's imports of bauxite increased 4% in 1973 and came from five sources, as follows:

| Supplier                                                                      | Quantity<br>(thousand<br>long tons) |                     |  |
|-------------------------------------------------------------------------------|-------------------------------------|---------------------|--|
|                                                                               | 1972                                | 1973                |  |
| Australia: Comalco Ltd Nabalco Pty. Ltd. (Gove) Indonesia: P.N. Aneka Tambang | 2,177<br>534<br>1,089               | 2,012<br>926<br>997 |  |
| Malaysia: Ramunia Bauxite Co Southeast Asia Bauxites Ltd _                    | 220<br>475                          | 242<br>507          |  |
| Total                                                                         | 4,495                               | 4,684               |  |

Sumitomo Chemical Co., Ltd., announced that the annual capacity of its alumina plant at Kikumoto would be increased to 955,000 tons by 1975.

Romania.—Production began at a new alumina plant at Tulcea. Production was not expected to reach full capacity of 276,000 tons until 1975.

Spain.—Plans were disclosed for the construction of an alumina plant in the area of Villagarcia de Arosa, Galicia, on the northwest coast. The plant would eventually have a capacity of 880,000 tons per year, and initial production was expected by 1977. The plant would be operated by a firm formed by two Spanish aluminum-producing companies, Empresa Nacional del Aluminio S.A. (Endasa), 55%, and Aluminio de Galicia S.A. (Alugasa), 45%. Endasa is owned by an agency of the Spanish Government, Institute Nacional de Industria (75%), and Alcan (25%). Alugasa is owned

by Péchiney Ugine Kuhlmann and Spanish interests.

Surinam.—Bauxite was mined by Surinam Aluminum Co. (Suralco), an Alcoa subsidiary, and Billiton Maatschappij Suriname N.V. Suralco also produced alumina and aluminum and converted bauxite to alumina for Billiton. Reynolds Metals Co., under a 1971 joint agreement with the Government, continued bauxite exploration activities in the Bakhuys Mountains in western Surinam.

An agreement was signed in August under which Billiton is to bring its assets into the formation of a new corporation, Billiton Suriname, N.V., in which the Government will participate up to 25%. Billiton also is to take part up to 25% in the capital of the Government company of N.V. Grasshopper Aluminium Co. (Grassalco). The new Billiton company and Grassalco will form a joint venture to develop bauxite and other mineral deposits.

Alcan Aluminium Ltd. and Billiton International Metals B.V. began a feasibility study for a joint project to produce refractory-grade calcined bauxite, based on Billiton's reserves. Depending on the outcome, possible annual production was foreseen at 150,000 tons, beginning in 1976.

Turkey.—Production began at the new Seydisehir alumina plant in March 1973. Over half of the output of the 220,000-ton-per-year plant will be used at a nearby aluminum plant when it is put into operation. Most of the remaining alumina is to be exported to the U.S.S.R., which assisted in financing the complex. Bauxite exports to the U.S.S.R. during the year were reported at 150,000 tons.

United Kingdom.—British Aluminium was phasing out alumina production at its Newport plant and expected to close the plant early in 1974. Its Burntisland plant was being converted entirely to the production of nonmetallurgical grades of alumina.<sup>5</sup> Bauxite for the plant has been imported mainly from the company's mines in Ghana.

Yugoslavia.—Construction was reported to have begun on an alumina plant near Obrovac in northern Dalmatia. The plant will have a designed capacity of 330,000 tons per year. Hungary and East Germany will provide part of the equipment and financing for the plant.

<sup>&</sup>lt;sup>5</sup> Metal Bulletin Monthly. New Lease of Life for Burntisland. No. 36, December 1973, pp. 41, 43.

#### **TECHNOLOGY**

Aluminum resources in the United States were assessed by the U.S. Geological Survey.6

In December a joint venture of Earth Sciences. Inc., National Steel Corp., and Southwire Co. began test production of alumina from alunite in a new pilot plant at Golden, Colo. The group was reported to have extensive alunite reserves near Cedar City, Utah.

The Bureau of Mines evaluated a sulfurous acid-sulfuric acid process for recovering alumina from clay. The process appeared to be less attractive economically than some alternate techniques of producing alumina from clay. The Bureau initiated a project at Boulder City, Nev., to test and evaluate the most promising processes for recovering alumina from do-

mestic nonbauxitic raw materials. A smallscale continuous pilot plant was under construction, and industry was being invited to support the program. The first process to be investigated will be a nitric acid leach of kaolinitic clay.

Methods for determining nahcolite and dawsonite content in oil shales were investigated and evaluated.8

<sup>&</sup>lt;sup>6</sup> Patterson, S. H., and J. R. Dyni. Aluminum and Bauxite. Ch. in United States Mineral Resources. U.S. Geol. Survey Prof. Paper 820, 1973, pp. 35-43.

sources. U.S. Geol. Survey Fig. Paper 620, 1816, pp. 35-43.

<sup>7</sup> Barrett, P. J., P. W. Johnson, and F. A. Peters. Methods of Producing Alumina From Clay, An Evaluation of a Sulfurous Acid-Sulfuric Acid Process. BuMines RI 7758, 1973, 40 pp. <sup>8</sup> Huggins, C. W., T. E. Green, and T. L. Turner. Evaluation of Methods for Determining Nahcolite and Dawsonite in Oil Shales. BuMines RI 7781, 1973, 21 pp.

# Beryllium

### By E. Chin 1

Domestic production of beryl ore increased in 1973, and one mining company, which mined bertrandite, recovered and stockpiled sufficient ore to maintain a 2-year supply for its operation. The demand for beryllium metal, which is used principally in military and aerospace applications, weakened in 1973. However, a strong demand for beryl-

lium-copper alloys and beryllium oxide ceramics was reflected by increased sales and shipments of those products. The Government's Poseidon missile program, which has been a large user of beryllium components, passed its peak, and the industry did not receive orders for the 1974 requirements for beryllium components.

Table 1.-Salient beryllium mineral statistics

|                                                                                | 1969                | 1970                | 1971                 | 1972                | 1973p               |
|--------------------------------------------------------------------------------|---------------------|---------------------|----------------------|---------------------|---------------------|
| United States:                                                                 |                     |                     |                      |                     |                     |
| Beryl, approximately 11% BeO:  Shipped from minesdo  Importsdodo               | W<br>6,422<br>8,483 | W<br>4,942<br>9,496 | W<br>4,026<br>10,373 | W<br>3,345<br>7,781 | W<br>1,586<br>8,695 |
| Price, approximate, per unit BeO imported, cobbed beryl at port of exportation | \$37                | \$35                | \$33                 | \$30                | \$30                |
| Bertrandite ore: Utah, low-grade, shipped from minesshort tons                 | W<br>8,869          | W<br>6,857          | W<br>r5,791          | W<br>4,634          | W<br>4,291          |

 $<sup>^{\</sup>rm p}$  Preliminary.  $^{\rm r}$  Revised. W Withheld to avoid disclosing individual company confidential data.  $^{\rm l}$  Includes some bertrandite ore which was calculated as equivalent to beryl containing 11% BeO.

Legislation and Government Programs.— In 1973, the Office of Preparedness removed beryl and beryllium-copper master alloy from the list of strategic and critical materials, and the stockpile objectives for these items were abolished. The stockpile objective for beryllium metal was reduced from 150 short tons to 88 short tons. Government inventories of beryl decreased 487 short tons during 1973 as a result of stockpile disposals.

As the result of public hearings held by the Environmental Protection Agency in 1972, emission standards for beryllium were published in the Federal Register on April 6, 1973. The beryllium emission standards cover extraction plants, foundries, ceramic manufacturing plants, machine shops (processing beryllium or beryllium alloys containing more than 5% beryllium), and disposal of beryllium-containing waste. The standards for sources of beryllium dust, fume, or mist emission into the atmosphere were es-

tablished to insure that ambient concentrations of beryllium would not exceed daily 0.01 microgram per cubic meter, based on a 30-day average.

Table 2.—Government yearend stocks of beryllium materials (Short tons)

| Material                                    | National<br>stockpile | Supplemental<br>stockpile | All<br>stocks |
|---------------------------------------------|-----------------------|---------------------------|---------------|
| Beryl (11% BeO)                             | 4                     | 2,841                     | 18,628        |
| Beryllium-copper<br>master alloy:<br>Excess | 1,075                 | 6,312                     | 7,387         |
| Beryllium metal: Objective Excess           |                       | 88<br>141                 | 88<br>141     |
| Total                                       |                       | 229                       | 229           |

Source: General Services Administration. Statistical Supplement, Stockpile Report to the Congress OP-4, July-December 1973, pp. 5-6.

<sup>1</sup> Physical scientist, Division of Nonferrous Metals—Mineral Supply.

## DOMESTIC PRODUCTION

The largest domestic source of beryllium ore was the Spor Mountain bertrandite mine near Delta, Utah. The bulk of the activity in beryl mining was confined to prospecting and assessment work, primarily in Colorado and South Dakota.

During 1973, Brush Wellman, Inc. (Brush), mined sufficient bertrandite to maintain a desired 2-year supply for its operations. Brush's facilities include extraction plants at Delta, Utah, and Elmore, Ohio, to convert bertrandite and beryl, respectively, to beryllium hydroxide. The Elmore plant also has manufacturing and fabrication facilities for beryllium metal, beryllium-copper master alloy and beryllium oxide ceramics shipped in 1973.

Brush expanded its facility at Elmore to provide additional furnace and casting capacity. Brush also is constructing a building at Elmore to house a new rolling mill for beryllium-copper and phosphor-bronze alloys. At Shoemakersville, Pa., Brush installed a new continuous strip annealing line which included furnace, quench, and brushing capability. An 18-inch slitter was added to the

beryllium-copper strip line. In early 1974, Brush expected to complete a new facility in Clinton, N.J., to accommodate the expanded demand for beryllium oxide ceramic parts. In midyear, Brush announced the closing of its beryllium metal machining facility at Hayward, Calif.

Kawecki Berylco Industries, Inc. (KBI), used beryl for its primary ore, most of which was imported. The beryl was processed at its Hazelton, Pa., plant. Further processing and fabricating was done at both the Hazelton and Reading, Pa., plants. In 1973, KBI closed its beryllium machining and compacting facility at Yonkers, N.Y. The work done at that plant was to be absorbed by the company's other finishing plants.

KBI installed new mills for the production of precision beryllium-copper strip, and new furnaces for heat treating beryllium-copper at its facilities in Pennsylvania. Additionally, mechanical cleaning equipment was being installed to improve the quality of strip products.

## CONSUMPTION AND USES

The beryllium industry consumed beryllium ore equivalent to 8,695 short tons of beryl containing 11% BeO. Because demand for beryllium metal in aerospace and defense programs declined during the year, less metal was shipped in 1973 than in 1972. However, there was an increase in the amount of beryllium-copper master alloy and beryllium oxide ceramics shipped in 1973.

Beryllium metal is used where a high stiffness-to-weight ratio is needed, as in the aerospace industry. It is used for space optical devices, X-ray windows, and airplane brakes, and in missile parts and nuclear structures.

Beryllium-copper alloy products consumed the largest quantity of beryllium. These alloys combine the properties of good electrical and thermal conductivity, strength, hardness, and resistance to fatigue, corrosion, and wear. They are used in an ever-increasing variety of markets such as in the business machine, appliance, transportation, and communication industries. Beryllium-copper alloys are used in electrical and electronic systems for connectors, sockets, switches, and temperature- and pressure-sensing devices to facilitate miniaturization and to provide reliability and long service life.

Beryllium oxide ceramics are used in parts for lasers and microwave tubes, and in semi-conductors. Typical applications include power amplifiers for microwave and radio communications, electronic ignition systems, and power regulators such as light-dimming switches.

### **STOCKS**

Consumer stocks of hand-sorted beryl at the end of 1973 totaled 5,894 short tons compared with 6,913 short tons at yearend

1972. Dealers' stocks of beryl are not reported. Stocks of bertrandite are company confidential data.

BERYLLIUM 207

## PRICES AND SPECIFICATIONS

Domestic beryl prices were negotiated between producers and buyers and were not quoted in the trade press. While the price of imported beryl was probably negotiated, the quoted price in 1973 was \$30 to \$35 per short ton unit. This price range was quoted by Metals Week throughout the year.

Prices for beryllium metal products also remained steady throughout 1973. Beryllium billet was quoted at \$70 per pound and 98% powder ranged from \$44 to \$54 per pound. The yearend price for 5-inch-diameter beryllium rod was \$102.82 per pound.

Beryllium-copper master alloy was quoted at \$53 per pound. Casting ingot containing 2% to 2.25% beryllium in copper started at \$2.06 per pound and dropped in March to \$2.035 per pound for the remainder of the year. The quoted base price for Alloy 25 strip was \$3.05 per pound at yearend.

## FOREIGN TRADE

Exports of beryllium alloys, waste, and scrap in 1973 totaled 109,199 short tons, valued at \$1,220,000. For the second consecutive year, the average unit value for beryllium exports was low in comparison with prior years due to increased shipments of beryllium waste and scrap generated from machining operations. The principal destination for this material was Japan.

Imports of beryl decreased for the fourth consecutive year and the quantity received was down 53% from that in 1972. The average unit value for imported beryl was \$303 per short ton. About 89% of the beryl imported was from Brazil, the Republic of South Africa, Argentina, and Australia, with Brazil furnishing over one-half of the imports. In addition to the imports of beryl, there were 89 pounds of beryllium metal, wrought, unwrought, and waste and scrap imported, with a value of \$889,000.

Table 3.-U.S. exports of beryllium alloys, wrought or unwrought, and waste and scrap 1

|                      | 1972                 |                      | 1973                 |                     |
|----------------------|----------------------|----------------------|----------------------|---------------------|
| Country              | Quantity<br>(pounds) | Value<br>(thousands) | Quantity<br>(pounds) | Value<br>(thousands |
|                      | 1,270                | \$5                  |                      |                     |
| ustralia             | 3,660                | 2                    |                      |                     |
| elgium-Luxembourg    | 1,208                | 4                    | 4,536                | \$14                |
| Brazil               | 8,175                | 56                   | 6,736                | 104                 |
| anada                | 0,110                |                      | 45                   | 2                   |
| Denmark              | 23,181               | 83                   | 2,723                | 132                 |
| France               | 1,105                | 19                   | 20,258               | 137                 |
| Germany, West        | •                    | 1                    | 4                    | 2                   |
| ndia                 | 6                    | 1                    | -                    |                     |
| taly                 | 3                    | 352                  | 60,412               | 402                 |
| apan                 | 34,025               |                      | 22                   | 1                   |
| Mexico               | 271                  | 1                    | 17                   | ( <sup>2</sup> )    |
| Netherlands          | 185                  | 2                    |                      | 18                  |
| Netherlands Antilles |                      |                      | 6,220                | 10                  |
| Norway               | 14,141               | 20                   |                      |                     |
| Philippines          | 1,447                | 5                    |                      |                     |
| Spain                | 11                   | 1                    |                      |                     |
| Switzerland          | 1,963                | 23                   | 934                  | 21                  |
| Switzerland          | 156                  | 1                    | 2,126                | :                   |
| Taiwan               | 4,685                | 263                  | 5,166                | 38                  |
| United Kingdom       |                      | 839                  | 109,199              | 1,22                |
| Total                | 95,492               | 600                  | 100,100              |                     |

<sup>&</sup>lt;sup>1</sup>Consisting of beryllium lumps, single crystals, powder, beryllium-base alloy powder, and beryllium rods, sheets, and wire.

<sup>&</sup>lt;sup>2</sup> Less than ½ unit.

Table 4.-U.S. imports for consumption of beryl, by customs district and country

| Customs district and country                                                                                                                                                                                                |                          | 972                  | 1973                     |             |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------|--------------------------|-------------|--|
| Customs district and country  iladelphia district: Angola Angola Australia Brazil Congo Malagasy Republic Portugal Rhodesia, Southern Rwanda South Africa, Republic of Uganda Total  y York City district: Angola Australia | Quantity<br>(short tons) | Value<br>(thousands) | Quantity<br>(short tons) | Value       |  |
| Philadelphia district:                                                                                                                                                                                                      |                          | (                    | (BHOTE COIIS)            | (thousands) |  |
| Angola                                                                                                                                                                                                                      |                          |                      |                          |             |  |
| TI SCHOOLS                                                                                                                                                                                                                  | 56                       | \$13                 | 77                       | \$19        |  |
| Australia                                                                                                                                                                                                                   | 248                      | 74                   | 138                      | 31          |  |
| Brazil                                                                                                                                                                                                                      | _ 81                     | 24                   | 116                      | 37          |  |
| Congo                                                                                                                                                                                                                       | 1,755                    | 576                  | 862                      | 272         |  |
|                                                                                                                                                                                                                             | 23                       | 7                    | 002                      | 414         |  |
| Portugal                                                                                                                                                                                                                    | 40                       | 13                   | 13                       |             |  |
| Rhodesia Southorn                                                                                                                                                                                                           |                          |                      | 13                       | 9           |  |
| Rwanda                                                                                                                                                                                                                      | 65                       | 20                   |                          | ð           |  |
| South Africa Day 13                                                                                                                                                                                                         | 88                       | 23                   | 67                       | ==          |  |
| Ugenda Rivica, Republic of                                                                                                                                                                                                  | 798                      | 298                  | 300                      | 12          |  |
| 080000                                                                                                                                                                                                                      | 98                       | 26                   | 900                      | 102         |  |
| Total                                                                                                                                                                                                                       | 3,252                    |                      |                          |             |  |
| Jour Vorle City 11 4 4 4                                                                                                                                                                                                    | 0,202                    | 1,074                | 1,586                    | 481         |  |
| American district:                                                                                                                                                                                                          |                          |                      |                          |             |  |
|                                                                                                                                                                                                                             | 55                       | 15                   |                          |             |  |
| ZIUSH AIIB                                                                                                                                                                                                                  | 16                       | 5                    |                          |             |  |
| South Africa, Republic of                                                                                                                                                                                                   | 22                       | 9                    |                          |             |  |
| Total                                                                                                                                                                                                                       |                          |                      |                          |             |  |
|                                                                                                                                                                                                                             | 93                       | 27                   |                          |             |  |
| Grand total                                                                                                                                                                                                                 | 3,345                    | 1 101                |                          |             |  |
|                                                                                                                                                                                                                             | 0,040                    | 1,101                | 1,586                    | 481         |  |

#### WORLD REVIEW

Australia.—Seleka Mining and Investments, Ltd. (Seleka), completed an initial drilling program in early 1972 to determine the extent of beryl mineralization at its mine near Perenjori about 200 miles northeast of Perth. By the end of 1972, more than 300 tons of beryl was recovered using small-scale opencut methods. In early 1973, Seleka signed a 5-year contract to supply the entire output of its beryl mine to an unnamed U.S. corporation. The contract was estimated to be around \$120,000 per year. The unspecified company reportedly made a substantial interest-free loan to Seleka for the period of the contract.

France.—Tréfimétaux-Berylco S.A., jointly owned by Kawecki Berylco Industries, Inc.,

and Tréfimétaux, G.P., continued the expansion program at its plant in Coueron. Additional equipment is being added to the beryllium-copper production facilities.

Japan.—As reported by the Japan Society of Newer Metals, N G K Insulators, Ltd., produced beryllium metal, beryllium-copper alloys, and beryllium oxide. Yokosawa Chemical Co., Ltd., produced beryllium-copper alloys and beryllium oxide, while Santoku Metal Industry Co., Ltd., produced beryllium-aluminum alloys. Production data for 1973 were not available. Japan imported beryl principally from Africa, Brazil, and Australia, and beryllium metal scrap from the United States.

Table 5.—Beryl: World production, by country (Short tons)

| Country 1                         |         |         |         |
|-----------------------------------|---------|---------|---------|
| Angola                            | 1971    | 1972    | 1973    |
| A                                 |         | 193     | e 10    |
| A                                 | 276     | e 300   | e 300   |
| Brazil                            | r 80    | 68      | • 70    |
| oraziiMalagasy RepublicMozambique | 2,756   | 1.710   | e 1.650 |
| Mozambique                        | 66      | 10      | * 10    |
| ortugal                           | 14      | - 9     | • 1     |
| Ortugal                           | 17      | 19      | • 20    |
|                                   | 100     | 65      | 65      |
| Jganda                            | 214     | • r 130 | • 130   |
| Jganda                            | 541     | 276     | e 70    |
| J.S.S.R. 6                        | r 243   | 68      | e 65    |
| Inited States                     | 1,400   | 1,500   | 1,600   |
| Inited States                     | W       | w       | , w     |
| ombi-                             | 84      | • 80    | • 80    |
| Total                             |         | 206     | e 220   |
| • Estimate D Proliminary T        | r 5,791 | 4.634   | 4,291   |

Estimate. Preliminary. Revised. W Withheld to avoid disclosing individual company confidential data.

<sup>1</sup> In addition to the countries listed, the Territory of South West Africa may also have produced beryl, but mineral production from this area has not been officially reported since 1966, and no reliable information is available as a basis for estimating output since that time.

Nepal.—The Nepalese Industrial Development Corp. introduced incentives aimed at attracting foreign investment to exploit the country's mineral wealth. Deposits of interest in the country include beryl near Kathmandu, limestone, magnesite, muscovite, pyrite, and talc.

## **TECHNOLOGY**

Because of the commercial application of beryllium-copper alloys as spring materials, information regarding the stress relaxation behavior of these alloys has significant practical value. Stress relaxation experiments were used as a basis for determining the deformation parameters of a precipitation hardened alloy of copper with 1.87 weight-percent beryllium. The precipitate was found to strengthen the material mainly by increasing the long-range internal stress.

Considerable work was done by the industry in improving beryllium materials through the use of impact grinding of powders and a better understanding of the effect of purity on mechanical properties. These new materials (called S-65 at Brush Wellman and CIP/HIP-l at KBI) have excellent room temperature and elevated temperature ductility. The minimum room temperature elongation of 3% obtained in these materials is twice that which is obtained in the more conventional grades of beryllium. The stress-strain curve indicates that these materials should be very useful under impact service conditions. The material can be consolidated by either hot pressing or by the CIP/HIP process which consists of cold isostatic pressing, followed by hot isostatic pressing.

Due to the sparse data on sputter-deposited beryllium, an investigation was conducted to obtain information on thick, sputter-deposited beryllium foils. Specimens of sputter-deposited beryllium foils displayed strong textures for a deposition temperature range between 9.5° C and 470° C. The hardness of the deposits ranged from 275 to 800 diamond point hardness. The data indicated that it should be possible to sputter-deposit foils with specific properties.

A simple technique using mesityl oxide was developed for the solvent extraction of beryllium. Mesityl oxide quantitatively extracts beryllium from 0.5 molar hydrochloric acid containing 5 molar potassium thiocyanate. The method is simple, sensitive, selective, and applicable for microgram concentrations of beryllium.

Two patents on the extraction of beryllium values from solutions produced by leaching beryllium ore with acid were issued.<sup>5</sup>

The large beryllium deposits in western Utah are a significant part of the world's beryllium resources.<sup>6</sup> A study conducted by the U.S. Geological Survey determined the mineralogy and chemical composition of the host tuff of the beryllium deposit at Spor Mountain and defined the principal alteration processes responsible for the deposition of the beryllium in the tuff.

<sup>&</sup>lt;sup>2</sup>Rohde, R. W., and T. V. Nordstrom. Stress Relaxation of a Copper-1.87 wt. percent Beryllium Alloy. Materials Science and Engineering, v. 12, Nos. 3/4, September/October 1973, pp. 179-185.

<sup>&</sup>lt;sup>3</sup> Patten, J. W., and E. D. McClanahan. Effects of Deposition Temperature and Substrate Bias on Orientation and Hardness of Thick Sputter Deposited Beryllium Foils. J. Less-Common Metals, v. 30, No. 3, March 1973, pp. 351-359.

<sup>&</sup>lt;sup>4</sup> Dhond, P. V., and S. M. Khopkaf. Mesityl Oxide as an Extracting Agent for Beryllium. Anal. Chem., v. 45, No. 11, September 1973, pp. 1937–1938.

<sup>&</sup>lt;sup>5</sup> Grunig, J. K., R. J. Anderson, and B. L. Vance (assigned to The Anaconda Company). Solvent Extraction. U.S. Pat. 3,729,541, Apr. 14, 1973.

Suzuki, H., H. Einaga, and Y. Mori (assigned to the National Institute for Researches in Inorganic Materials). Solvent Extraction. U.S. Pat. 3,751,557, Aug. 7, 1973.

<sup>6</sup> U.S. Geological Survey. Hydrothermal Alteration Associated With Beryllium Deposits at Spor Mountain, Utah. Professional Paper 818-A, 1973, 20 pp.

# Bismuth

# By John A. Rathjen 1

Consumption of bismuth in the United States during 1973 rose for the second consecutive year reaching a level of 2.9 million pounds. The largest increase was in metallurgical additives, although fusible alloys and chemical applications also registered strong gains.

The price of bismuth through the year was firm, with several increases reflecting currency fluctuations and strong market conditions. Domestic production was reduced slightly due to the final phaseout of one primary lead smelter, however, this was more than offset by increased imports which were 1.1 million pounds over the 1972 total. World mine production was down nominally reflecting curtailed production in Canada, which was partially offset by gains in Peru.

Legislation and Government Programs.-The General Services Administration (GSA) reported a stockpile inventory at yearend of 2,100,061 pounds of bismuth. The new objective is 95,900 pounds. This indicates a surplus of some 2,004,161 pounds which will require Congressional action for release to the public sector.

Bismuth remained on the list of commodities eligible for aid from the Office of Minerals Exploration (OME), covering 75% of the exploration costs; however, no contracts were in effect during 1973 and no applications were pending.

Table 1.-Salient bismuth statistics

(Pounds)

|                                                                                                                                                        | 1969                                                              | 1970                           | 1971                                       | 1972                                        | 1978                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------|--------------------------------------------|---------------------------------------------|----------------------------------------------------------------------|
| United States:  Consumption  Exports   Imports, general  Price: New York, average ton lots  Stocks Dec. 31: Consumer and dealer  World: Production   3 | 2,531,959<br>447,931<br>894,804<br>\$4.63<br>597,901<br>8,289,000 | 997,924<br>\$6.00<br>2 791 714 | 71,187<br>848,708<br>\$5.26<br>2 1 107 215 | 264,276<br>1,562,934<br>\$3.63<br>2 717,466 | 2,906,219<br>151,053<br>2,676,271<br>\$4.92<br>2540,756<br>8,798,000 |

 <sup>&</sup>lt;sup>1</sup> Includes bismuth, bismuth alloys, and waste and scrap.
 <sup>2</sup> Consumer stocks only.
 <sup>3</sup> Excludes United States.

## DOMESTIC PRODUCTION

Primary production of bismuth in the United States continued to be from the American Smelting and Refining Company (Asarco) Omaha, Nebr., refinery. The raw material input appeared to be split on approximately a 50% basis between those ores and bullions which were of domestic origin and those which were imported for smelting and refining. Roughly 8% of the bismuth production was recovered as a secondary product by United Refining and Smelting Co. at Franklin Park, Ill., and UV Industries, Inc., formerly U.S. Smelting Refining & Mining Co., at East Chicago, Ind.

Individual data relating to U.S. refinery production are withheld to avoid a breach of confidentiality; however, overall production figures were down some 10% in 1973 as compared with 1972 production.

Additional domestic production of bismuth can be expected when The Anaconda Company brings the Victoria mine in Elko

<sup>&</sup>lt;sup>1</sup> Mineral specialist, Division of Nonferrous Metals-Mineral Supply.

County, Nev., into full operation. This is a copper mine which has remained idle through the years because of the high bismuth content in the ore which is deleterious to current methods of copper smelting. The perfection of the new hydrometallurgical Arbiter process will now make it possible to separate the copper and the bismuth

economically and plans are to bring the complex onstream by 1975. It has been announced that the bismuth in the copper concentrate will run about 0.7%, which indicates that possibly an additional 400,000 pounds of bismuth could be added to the market annually.

# CONSUMPTION AND USES

Domestic consumption of bismuth in 1973, at 2.9 million pounds, was the highest recorded figure since 1966 when 3.2 million pounds were consumed. There were increases in virtually all categories with metallurgical additives up 51%, fusible alloys up 24%, and pharmaceutical-chemical applications up 14%.

In spite of the fact that the use of bismuth oxychloride as a cosmetic aid and the use of bismuth-based indigestion remedies were on the decline, overall use of bismuth in the pharmaceutical-chemical area increased, indicating new industrialcommercial applications. The new uses were essentially in catalytic applications for plastics manufacture since exhausted and undesirable uranium-based catalysts were being replaced by newer, more adaptable molybdenum-bismuth compounds.

Increased use of bismuth in the metallurgical field during 1973 was attributed to the extremely high rate of activity in the ferrous and aluminum metals industries where bismuth is used as an aid to the

casting of white cast iron and also to improve machinability of certain steels and aluminum.

Increased construction of industrial plants and high-rise complexes, as well as rehabilitation of older buildings where bismuth is used as a low melting point alloy for fire control devices probably accounts for the increased consumption of fusible alloys.

Table 2.-Bismuth metal consumed in the United States, by use (Pounds)

| Use                         | 1972                                                      | 1973                                                     |
|-----------------------------|-----------------------------------------------------------|----------------------------------------------------------|
| Fusible alloys <sup>1</sup> | 754,432<br>549,973<br>18,004<br>983,877<br>1,105<br>8,143 | 932,630<br>830,928<br>15,206<br>1,117,644<br>21<br>9,790 |
| Total                       | 2,315,534                                                 | 2,906,219                                                |

<sup>&</sup>lt;sup>1</sup> Includes bismuth contained in bismuth-lead bullion used directly in the production of an end product.

<sup>2</sup> Includes industrial and laboratory chemicals

#### **STOCKS**

Consumer stocks dropped for the second consecutive year to a level of 541,000 pounds as compared with 717,000 pounds in 1972, a reduction of 25% on an annual basis. A quarterly review of the stock position is indicative of the supply-demand picture as it developed through the year. Starting at

a level of 717,000 pounds, the figure rose to 907,000 pounds at the March closing. Inventories dropped to 767,000 pounds at the end of June and then climbed to 909,000 pounds at the end of September. A very sharp drop occurred in the fourth quarter to 541,000 pounds or a decrease of 60% in 3 months.

#### **PRICES**

Currency fluctuations in addition to strong market requirements were important factors in the increase in domestic prices throughout the year. The January price of \$4 per pound was increased to \$4.50 in March where it remained until June when a split price of \$4.75-\$5 was established. In

September, the sellers of foreign bismuth raised quotations to \$5.50 per pound; this price remained firm until November when the price was further increased to \$6.50 per pound resulting in a spread of \$5-\$6.50 per pound of bismuth metal. In December the Cost of Living Council authorized the doBISMUTH 213

mestic producer to increase its price to meet the high level of competition and established a uniform domestic price at \$6.50 per pound. At yearend, dealer and foreign prices were highly volatile and the outlook for a price increase in 1974 was probable.

#### FOREIGN TRADE

Exports of bismuth in all forms during 1973 dropped sharply to a level of 151,000 pounds as compared with 264,000 pounds in 1972, a reduction of some 43%. Shipments were recorded to 18 countries, with six of those representing 94% of the total. In order of declining volume the countries were Canada, 42,000 pounds, (28%); Argentina, 42,000 pounds, (28%); the Netherlands, 21,000 pounds, (14%); Mexico, 14,000 pounds, (9%); the United Kingdom, 13,000 pounds, (8%); and Belgium, 11,000 pounds, (7%).

General imports of metallic bismuth in 1973 reached a record high of 2.7 million pounds. This can be attributed to increased demand, lower domestic production, and cessation of stockpile sales. The principal

contributors to imports in quantitative order were Japan, 754,000 pounds, (28%); Peru, 489,000 pounds, (18%); the United Kingdom, 488,000 pounds, (18%); Mexico, 358,000 pounds, (13%); and West Germany, 344,000 pounds, (13%).

Table 3.-U.S. exports of bismuth<sup>1</sup>

| Y    | 'ear | Gross<br>weight<br>(pounds) | <b>Val</b> ue |
|------|------|-----------------------------|---------------|
| 1970 |      | 910,275                     | \$2,332,423   |
| 1971 |      | 71,187                      | 199,084       |
| 1972 |      | 264,276                     | 492,585       |
| 1973 |      | 151,053                     | 446,284       |

<sup>&</sup>lt;sup>1</sup> Includes bismuth, bismuth alloys, and waste and scrap.

Table 4.-U.S. general imports of metallic bismuth, by country

|                               | 1                    | 972                  | 1973                 |                      |  |
|-------------------------------|----------------------|----------------------|----------------------|----------------------|--|
| Country                       | Quantity<br>(pounds) | Value<br>(thousands) | Quantity<br>(pounds) | Value<br>(thousands) |  |
| Relgium-Luxembourg            | 8,030                | \$32                 | 58,079               | \$241                |  |
| Deigium Bunemeens             | 1,164                | 4                    | 1,410                | 4                    |  |
| Bolivia                       | 47,446               | 163                  | 73,932               | 345                  |  |
| CanadaCuador                  | 20,000               | 94                   |                      |                      |  |
|                               | 6,631                | 19                   |                      |                      |  |
| FranceGermany, West           | 42,046               | 141                  | 343,686              | 1,627                |  |
|                               | 191,029              | 596                  | 754,146              | 1,255                |  |
| JapanKorea, Republic of       | 111,650              | 339                  | 67,358               | 280                  |  |
|                               | 238,660              | 666                  | 357,796              | 1,341                |  |
| Mexico<br>Vetherlands         | r 17.626             | r 56                 | 2,517                | 19                   |  |
|                               | 478,885              | 1,733                | 488,751              | 2,112                |  |
| PeruSouth Africa, Republic of | 8,000                | 18                   | 29,994               | 85                   |  |
|                               | r 390,638            | r 1.371              | 487,552              | 2,292                |  |
| United KingdomYugoslavia      | 1,129                | ´ 3                  | 11,050               | 54                   |  |
| Total                         | 1,562,934            | 5,235                | 2,676,271            | 9,655                |  |

r Revised.

#### WORLD REVIEW

The world market for bismuth continued to improve through 1973 resulting in a strong price structure and a changing pattern of international trade. Total production remained steady at 8.8 million pounds in 1973. Bismuth continued to be produced basically as a byproduct of smelting lead, copper, molybdenum, and zinc ores although it was reported that substantial quantities were being returned to the market from

secondary treatment of spent catalysts. Bolivia remained the world's largest producer of metal from primary ore.

The First Ordinary General Assembly of the Bismuth Institute convened on April 2 and ended on April 4, 1973. The officers forming the board of directors were elected and the statutes of the Institute were approved.

The principal objectives of the Institute

are to develop new applications for the usedirectly to merchants and exported for of bismuth, to increase the use of bismuth in its present applications, and to study patents and publications of relevant technical significance which may lead to a wider use of bismuth. In the first two bulletins, issued in October and December 1973, 48 patent references were cataloged along with a survey of publications, a history of bismuth, and a detailed paper on the use of bismuth in medicine. Charter members included Cerro de Pasco Corp., Peru; Corporación Minera de Bolivia (COMIBOL); Mining & Chemical Products Ltd., United Kingdom; Salsigne S.A., France; Sidech S.A., Belgium; and Peko-Wallsend Ltd., Australia.

The Institute was incorporated in La Paz, Bolivia, and maintains an information center in Brussels, Belgium.

Australia.-Mine production during 1973 was estimated to be some 815,000 pounds. The anticipated surge in production from the Peko-Wallsend Ltd. properties did not occur due to severe flooding which affected both mining operations and smelter construction. The initial program is still in effect and when the program is completed in 1974, an additional 2 million pounds of bismuth might be available to the market. Current production of bismuth from all sources is being exported for smelting and refining with the bulk going to Japan and the balance to Europe.

Bolivia.-Production from all sources in 1973 was estimated to be 1.4 million pounds. Of this, a substantial portion was treated Telamayu smelter operated by COMIBOL. A rich bullion produced at the smelter was exported to Europe for refining and ultimate sale in the world market by COMIBOL. The balance of production in the form of ores and concentrates was sold

treatment.

Canada.-Production of bismuth in Canada was reduced sharply in 1973 to 90,000 pounds as compared with 275,000 pounds during 1972. Most of the loss was attributed to curtailed molybdenum production in Quebec where bismuth is recovered as a byproduct. Interruptions at the lead smelter of Cominco Ltd. at Trail, British Columbia, could also account for some of the reduction. The other Canadian bismuth producer, Brunswick Mining and Smelting Corp. Ltd. at Belledune, New Brunswick, was still in the process of converting its furnace facil-

Mexico.-Bismuth production in Mexico remained stable during 1973 with an estimated 1.4 million pounds, basically the same output as in 1972. The two principal producers were Asarco Mexicana, S.A., and Industrias Peñoles, S.A. at the Met-Mex Peñoles, S.A., plant. Both refineries are located at Monterrey in the State of Nuevo

Peru.-Mine production of bismuth in Peru during 1973 increased to a level of 1.7 million pounds as compared with 1.5 million pounds in 1972. During the course of the year Cerro Corp., one of the major world suppliers of bismuth from its refinery at La Oyora, was expropriated by the Peruvian Government and Minèro Peru became the operating and marketing agency for all production at this facility. On December 29, 1973, an official decree was released announcing total Federal Government control and assigning Centromin (a new governmental agency) the operating and marketing responsibilities for the complex. Minèro Peru was to operate and develop the mining

Table 5.-Bismuth: World mine production by country (Thousand pounds)

| Country 1                                   | 1971    | 1972       | 1973 P  |
|---------------------------------------------|---------|------------|---------|
| Argentina (in ore)                          | (2)     | • 1        | • 1     |
| Australia (in concentrates)                 | r 564   | 796        | . e 815 |
| Bolivia 3                                   | r 1.504 | 1,393      | ° 1,400 |
| Canada (in ore)                             | r 271   | 275        | 90      |
| China, People's Republic of (in ore) e      | 550     | <b>550</b> | 550     |
| France (metal)                              | 170     | 148        | e 155   |
| Germany, West (in ore) e                    | 29      | 27         | 25      |
| Japan (metal)                               | 1,790   | 1,974      | ° 2,010 |
| Korea, Republic of (metal)                  | 214     | 212        | ° 210   |
| Mexico 4                                    | 1,257   | 1,387      | e 1,400 |
| Mozambique (in ore)                         | 3       |            | ==      |
| Peru 4                                      | r 1,415 | 1,492      | 1,653   |
| Romania (in ore) e                          | 180     | 180        | 180     |
| South Africa, Republic of (in concentrates) | (2)     | ==         | ==      |
| Spain (metal) e                             | 26      | 26         | 26      |
| Sweden (in ore) •                           | 33      | 33         | 33      |
| Uganda (in ore)                             | 2       | 9          | e 9     |
| U.S.S.R. (metal) e                          | 120     | r 120      | 120     |
| United States                               | w       | w          | w       |
| Yugoslavia (metal)                          | 202     | 196        | 121     |
| Total                                       | r 8,330 | 8,819      | 8,798   |

Estimate. P Preliminary. P Revised. W Withheld to avoid disclosing individual company confidential data.

<sup>&</sup>lt;sup>1</sup> In addition to the countries listed, Brazil, Bulgaria, East Germany, and South West Africa are believed to produce bismuth, but information is inadequate to make reliable estimates of

output levels.

2 Less than ½ unit.

3 Production by COMIBOL and exports by medium and small mines.

4 Bismuth content of refined metal, bullion and alloys recovered indigenously, plus recoverable content of concentrates exported for processing.



# Boron

By K. P. Wang 1

Production and domestic consumption of boron minerals continued the rising trend that began in 1961 and reached new highs in 1973. Recorded exports in terms of B<sub>2</sub>O<sub>3</sub> content also showed a sharp increase over those of 1972, but lower than the high levels of 1969–70. All U.S. output had been in the

form of sodium borates and boric acid. Recently, production of calcium borate (colemanite) was resumed on a small scale in California, the same State that provides the entire domestic production of boron minerals.

Table 1.—Salient boron minerals and compounds statistics in the United States
(Thousand short tons and thousand dollars)

| 1969   | 1970                         | 1971                                             | 1972                                                                | 1973                                                                                    |
|--------|------------------------------|--------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
|        |                              |                                                  |                                                                     |                                                                                         |
|        |                              |                                                  | 1 101                                                               | 1 005                                                                                   |
|        | 1,041                        |                                                  |                                                                     | 1,225                                                                                   |
|        |                              |                                                  |                                                                     | 664                                                                                     |
| 81,261 | 86,827                       | 89,856                                           | 95,882                                                              | 113,648                                                                                 |
|        |                              |                                                  |                                                                     |                                                                                         |
| 24     | 27                           | 7                                                | 20                                                                  | 18                                                                                      |
| 718    | 831                          | 233                                              | 626                                                                 | 568                                                                                     |
|        | 1,020<br>551<br>81,261<br>24 | 1,020 1,041<br>551 562<br>81,261 86,827<br>24 27 | 1,020 1,041 1,041<br>551 562 568<br>81,261 86,827 89,856<br>24 27 7 | 1,020 1,041 1,041 1,121<br>551 562 568 607<br>81,261 86,827 89,856 95,882<br>24 27 7 20 |

<sup>&</sup>lt;sup>1</sup> Colemanite only.

#### DOMESTIC PRODUCTION

Domestic production and sales of boron increased about 9.4% in 1973. As in past years, most of the output came from Kern County, Calif., and to a lesser extent from San Bernardino County, Calif.

At Boron in Kern County, the large open pit mine of U.S. Borax & Chemical Corp., a subsidiary of the British-owned Rio-Tinto Zinc Corp. Ltd., remained the world's foremost source of boron. U.S. Borax produced upgraded crude sodium borates (better than 96% purity), refined borates (including anhydrous borax), and boric acid (including anhydrous boric acid) at the mine site. High-purity and specialty products were produced mainly at Wilmington, Calif., and secondarily at Burlington, Iowa. Wilmington was also the company's port of export. These plants, led by the one at Boron had a combined annual capacity of more than 600,000 short tons of equivalent B2O3 in 1973. U.S. Borax maintains a storage center at Botlek in the Netherlands from which borax and borates are shipped to other parts of Europe. All told, the company increased production by nearly 12% during 1973. Crude sodium borates, known by the commercial name of Rasorite, represented about one-half of U.S. Borax's overall output in terms of value and 60% in terms of tonnage.

Kerr-McGee Corp.'s subsidiary, American Potash & Chemical Co., and Stauffer Chemical Co. produced boron compounds as coproducts from brines of Searles Lake in San Bernardino County, Calif., at their adjacent plants in Trona. American Potash's 1973 output was somewhat less than its annual capacity of 100,000 short tons of B<sub>2</sub>O<sub>3</sub>, and Stauffer Chemical was also producing below its capacity of 25,000 to 30,000 tons of B<sub>2</sub>O<sub>3</sub>. Both companies increased output by about 10% during the year. In 1973, Kerr-McGee moved ahead on its program to build a \$100 million soda ash plant along with possibly additional borate refining facilities.

<sup>&</sup>lt;sup>1</sup> Supervisory physical scientist, Division of Nonmetallic Minerals—Mineral Supply.

During 1973, Tenneco Oil Co. increased output slightly, although it continued to produce less colemanite than was originally planned, from its deposit in the Furnace Creek district of Inyo County, Calif., and nearby processing plant in Nevada. Tenneco had designed the facilities to produce about

70,000 short tons of calcined colemanite per year, but actually turned out only a fraction of this owing to difficulties in calcining. However, the 48% B<sub>2</sub>O<sub>3</sub> grade calcined colemanite found a ready market at the Owens-Corning Fiberglass Corp. plants in Anderson, S.C., and Burkette, Tenn.

#### CONSUMPTION AND USES

Because of the wide range of products, and the lack of statistics on the large tonnages of crude borates exported, U.S. consumption of boron materials is difficult to estimate. Official U.S. trade statistics do not list crude borate exports separately, and the major domestic producers do not publish details on shipments to foreign countries. It appears however, that shipments of unfinished products to foreign countries were much larger than those of fully refined products, and that a major proportion of U.S. Borax's output of crude borates was shipped to Europe. In general, less than half of the domestic output of boron minerals and compounds was consumed at home, and the remainder was exported.

About 40% or more of the boron compounds consumed domestically, were used in the manufacture of various kinds of glasses. Boron materials account for 5% to 10% of many special glasses by weight and 50% to 75% by value. About 15% of all boron consumed went into insulating fiberglass, 10% into textile fiberglass, and 15% to 20% into all other glasses. Manufacture of enamels, frits, and glazes for protective and decorative coatings on sinks, stoves, refrigerators, and many other household and industrial appliances accounted for another 10% of the boron consumption.

Approximately 15% of the boron compounds consumed in the United States went into soaps and cleaners during 1973, with possibly one-third in the form of sodium perborate detergents. In Europe, on the other hand, sodium perborate detergents used primarily in high-temperature wash-

ing account for more than a quarter of all the boron consumed. Borax and boric acid uses in the cleansing field include toothpaste, mouthwash, and eyewash, because of its bactericidal characteristics, easy solubility in water, and excellent water-softening properties.

Borax added to fertilizers to supply boron, an essential plant nutrient, accounted for about 5% of the U.S. boron demand. Another 2% to 3% went into making herbicides. Substituting colemanite for fluorite in steelmaking did not progress much beyond the pilot plant stage.

About one-fourth of the boron consumed in the United States went into many miscellaneous uses. Minor amounts of boron compounds were used as fluxing materials in welding, soldering, and metal refining. Some elemental boron was used as a deoxidizer in nonferrous metallurgy, as a grain refiner in aluminum, as a thermal neutron absorber in atomic reactors, in delayed action fuses, as an ignitor in radio tubes, and as a coating material in solar batteries. Use of boron compounds in abrasives gained ground, particularly cubic boron nitride produced by synthetic diamond producers. Use of boric acid as a catalyst in the air oxidation of hydrocarbons accounted for more than 3% of the boron consumption. Boron materials went into many other areas, including direct consumption in chemicals, conditioning agents or precursors to chemicals, plasticizers, adhesive additives for latex paints, fire retardants, antifreeze, textile and paper products, biocides in jet fuels, photography, and composite materials.

#### **PRICES**

Prices of most borate products at yearend 1973 were about 6% more than the prices

posted for yearend 1972. Prices of various kinds of borates are shown in table 2.

Table 2.-Borate prices at yearend, 1973

|                                        | Price per<br>short<br>ton 1 |
|----------------------------------------|-----------------------------|
| Borax, technical:                      |                             |
| Anhydrous, $99\%$ :                    | \$119.75                    |
| Bags                                   | 109.50                      |
| Pulk                                   | 109.50                      |
| Granular, decahydrate, 99.5%:          |                             |
| Bags                                   | 68.75                       |
|                                        | 59.50                       |
| Bulk<br>Granular, pentahydrate, 99.5%: |                             |
| Granular, pentanyurate, 50.070         |                             |
| Boric acid, technical: 2               | 88.7                        |
| Bags                                   | 70.71                       |
| Bulk                                   |                             |
| Anhydrous, 99.9%, bags 3               |                             |
| Carretele 99 9% hags                   |                             |
| G                                      | . 140.0                     |
| Sodium borate powder, U.S.P., bags     | 117.2                       |

Source: Chemical Marketing Reporter and industry sources.

## FOREIGN TRADE

U.S. exports of boric acid totaled 41,407 short tons valued at \$6.9 million in 1973, as compared with 27,655 tons in 1972. Exports of refined sodium borate increased to 168,826 tons valued at \$19.4 million in 1973, from 162,123 tons in 1972. Combined exports of all refined boron compounds was therefore higher than tonnages in 1971 and 1972, although still lower than the previous record levels during 1969-70. As noted, these figures do not tell the whole story because exports of crude borates, not separately recorded, were actually much higher than exports of refined borates.

A detailed breakdown of recorded exports in 1973 is shown in table 3. Within this table, data for all countries outside of Western Europe are accurate.

While the overall total exported to Western Europe is accurate, the quantities shown for individual countries of Western Europe do not reflect the true picture. In table 3, the Netherlands appears as the major recipient of U.S. exports. However, the Netherlands is actually a major transshipment point, and a significant portion of the material shown destined for that country is ultimately shipped to other nearby countries. A more meaningful array of recipient nations, including an estimate for crude borates, would show that West Germany, France, the United Kingdom, Japan, Belgium, Spain, and Italy were the ranking final destinations, in that order; the Netherlands was actually eighth in 1973.

In 1973, the United States imported 18,216 short tons of calcium borate (colemanite) valued at \$568,000, all from Turkey. This compares with 20,227 short tons valued at \$626,000 during 1972.

<sup>&</sup>lt;sup>1</sup> Carlots, f.o.b. plant works. <sup>2</sup> Technical boric acid \$33 per short ton higher in drums.

3 Anhydrous and granular \$10 to \$12 per short

ton lower in bulk.

| Table 3.—U.S. | exports | of | boric | acid | and | sodium | borates, | in | 1973 |
|---------------|---------|----|-------|------|-----|--------|----------|----|------|
|---------------|---------|----|-------|------|-----|--------|----------|----|------|

| Destination -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (H <sub>3</sub> BO          | ic acid<br>s content) | Sodium borates<br>(refined) |                     |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------|-----------------------------|---------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quantity<br>(short<br>tons) | Value<br>(thousands)  | Quantity<br>(short<br>tons) | Value<br>(thousands |  |
| D 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.043                       | \$649                 | 7.510                       |                     |  |
| Brazil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13                          | 1                     | 7,510                       | \$796               |  |
| BrazilCanada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.530                       | 269                   | 52                          | 5                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,601                       | 381                   | 658                         | 149                 |  |
| 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 69                          |                       | 18,244                      | 1,151               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 279                         | 12                    | 135                         | 18                  |  |
| Costa Kiea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             | 51                    | 739                         | 89                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45                          | 9                     | 132                         | 14                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                           | 1                     | 75                          | 16                  |  |
| Tunce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |                       | 179                         | 18                  |  |
| dermany, west                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |                       | 235                         | 24                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,346                       | 490                   | 502                         |                     |  |
| Hong Kong                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14                          | 4                     | 47                          | 57                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 186                         | 30                    | 4,585                       | - 6                 |  |
| ndonesia<br>srael<br>taly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 165                         | 18                    |                             | 537                 |  |
| talv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                           | 1                     | 1,624                       | 148                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 178                         | 46                    | 232                         | 25                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14,173                      | 2,264                 | 314                         | 39                  |  |
| Korea, Republic of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 320                         |                       | 48,482                      | 5,870               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35                          | 60                    | 2,842                       | 238                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 7                     | 542                         | 51                  |  |
| etherlands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,727                       | 287                   | 7,589                       | 832                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7,270                       | 1,437                 | 56,238                      | 7.142               |  |
| lew Zealand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 129                         | 25                    | 75                          | 10                  |  |
| licaraguaakistan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 319                         | 55                    | 3.194                       | 571                 |  |
| akistaneru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                       | 35                          | 8                   |  |
| eruhilinnings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |                       | 92                          |                     |  |
| hilippines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 269                         | 32                    | 379                         | . 9                 |  |
| nilippines oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland oland o | 515                         | 91                    | 875                         | 53                  |  |
| nganore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 118                         | 13                    | 019                         | 109                 |  |
| ingapore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 171                         | 36                    | 455                         |                     |  |
| outh Africa, Republic of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 110                         | 29                    | 636                         | 68                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 242                         | 44                    | 1,482                       | 206                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 59                          |                       | 59                          | 4                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 479                         | 9                     | 146                         | 10                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50                          | 88                    | 3,965                       | 424                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 10                    | 1,755                       | 176                 |  |
| enezuela etnam. South                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,234                       | 284                   | 471                         | 39                  |  |
| etnam, South                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 415                         | 75                    | 355                         | 42                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                       | 2,985                       | 238                 |  |
| ther                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |                       | 342                         | 43                  |  |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 297                         | 54                    | 1,024                       |                     |  |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41.407                      | 6,862                 |                             | 119                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1,701                      | 0,802                 | 168,826                     | 19.354              |  |

# WORLD REVIEW

China, People's Republic of.—Large resources of borates reportedly occur in the Iksaydam dried lake area of Tsinghai Province where there is a plant producing mixed salts. National output of borates and boric acid combined may be several tens of thousands of tons annually. The textile fiberglass industry which has been expanded sharply in recent years, consumes a considerable quantity of borates annually. China ships a few thousand tons of surplus borates annually to Japan.

Turkey.—Turkey's 1973 production of boron minerals increased to possibly 250,000 short tons of  $B_2O_3$  content. Actual production is hard to estimate since Turkey has both colemanite (calcium borate) and "tincal" (sodium borate) reserves and was in the process of expanding processing capacity. Because of the extensive reserves and great demand for boron products in world

markets, Turkey's relative production position regarding the United States continued to improve. The Government-owned Etibank gained further importance as the principal producer of borates at the expense of Türks Boraks Madençilik A.S. (a subsidiary of Rio-Tinto inc Corp.) and others. The issue of nationalization was not settled at yearend, but it appeared imminent that the "boron" industry would be totally nationalized.

Etibank owns the largest reserves of borates in Turkey and operated some of the most important mines and plants. Under its jurisdiction are both colemanite and tincal deposits. Although details on 1973 data are not available, Etibank's production in 1972 comprised about 190,000 short tons of upgraded colemanite (about 40% B<sub>2</sub>O<sub>3</sub> grade) 90,000 short tons of upgraded tincal (perhaps 35% B<sub>2</sub>O<sub>3</sub> grade), 30,000 tons of

BORON 221

borax, and 12,000 short tons of boric acid. The tincal was used to manufacture borax and boric acid at the Bandirma plant, which was designed and built by Polish engineers around 1968.

The nature of Etibank's operations has undergone steady change. Two colemanite mines were in existence at yearend 1973—an open pit mine, Emet, and an underground mine, Espey, both in Kutahya Province and roughly 215 miles from the port city of Bandirma. Combined known reserves exceed 10 million short tons of 27%—30% ore, but potential reserves are many times larger. A washing plant with a capacity to upgrade 660,000 short tons of ore into 330,000 short tons of product (40%—45% grade) was in full-scale operation at Hisarcik in 1973.

Etibank's tincal deposits were discovered at Kirka only a few years ago. Known reserves are several tens of million tons of ore (26% plus grade), and potential reserves may be more than 10 times greater. A washing plant with an annual capacity of 440,000 short tons of product (35% B<sub>2</sub>O<sub>3</sub> grade) was under construction and expected to be completed by the summer of 1974. Tincal from Kirka has replaced colemanite from Kutahya as the principal feed at the Bandirma plant. Plans are underway to eventually build fa-

cilities to transform the tincal product to crude borax pentahydrate, crude anhydrous borax, and refined anhydrous borax. These developments will further strengthen Turkey's position in the world as a supplier of boron minerals and products.

U.S.S.R.-As an order of magnitude, the U.S.S.R. may be producing at a rate corresponding to 20% to 30% the U.S. level from reserves that may be half as much. The borate industry of the U.S.S.R. was born in 1934, when several dozen deposits of relatively standard ores were discovered along a fracture zone of a large Permian salt dome in the Inder District, 150 miles north of the Caspian Sea. Other deposits were subsequently discovered in Kazakhstan, the Caucasus, and Siberia. Recently, a complex boron mineralization in the form of azoproit (contains titanium and magnesium also) was found on the western shores of Lake Baikal. The U.S.S.R. has had a surplus of boron compounds, judging from imports made by Japan from the Soviet All-Union Export-Import Agency, Dalintorg. Japan imported 3,725 short tons of boric acid and 52,665 tons of borax (probably penta variety) from the U.S.S.R. during 1973, a little more than average tonnages in 1971-72.

#### **TECHNOLOGY**

The use of colemanite as a substitute for fluorspar in the basic oxygen furnace (BOF) steel process made some progress. Widespread application showed little promise because of the adequate world supply of fluorspar and increasing demand for boron minerals in the manufacture of insulating fiberglass. However, despite high costs and some deleterious side effects, colemanite already was used in limited quantities in flux mixes to eliminate sulfur and phosphorus from specialty high-carbon steels.

Oxidation, erosion, wear, and corrosion resistance, as well as hardness, of steel bonded carbides and various grades of steel reportedly can be improved by using a new diffusion process that imparts a layer of boron on the surface of these metals. It was also claimed that various wear and tooling applications are foreseen.<sup>2</sup>

Alkali borate and B<sub>2</sub>O<sub>3</sub> glasses containing large concentrations of gaseous noncondensed

compounds (including Ar and H<sub>2</sub>) were synthesized at high temperatures and pressures, and the solubilities of the gases were determined.<sup>3</sup>

The U.S. Air Force continued its investigation of using boron as part of a fluidized-solids propellant mixture, but have not yet reported its findings.

It was claimed that many reagents derived from boron, such as borane and diborane, exhibited enormous versatility in types of organic synthesis reactions and therefore should be used much more industrially.<sup>4</sup>

<sup>&</sup>lt;sup>2</sup> Mal, K. K. and S. E. Tarkan. Diffused Boron Ups Hardness, Wear Resistance of Metals. Mater. Eng., v. 77, No. 4, April 1973, pp. 70-71.

<sup>&</sup>lt;sup>3</sup> Faile, S. P., and D. M. Roy. Gas Solubility in Relation to the Structures of Glasses and Liquids. J. Am. Ceram. Soc., v. 56, No. 1, January 1973, pp. 12-16.

<sup>4</sup> Chemistry & Industry. Boron Derivatives as Selective Reagents for Organic Synthesis. No. 5, Mar. 3, 1973, pp. 206-210.

|  |  | * |  |
|--|--|---|--|
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |

# **Bromine**

# By Charles L. Klingman 1

The bromine industry had another record year in 1973, registering an 8.1% increase in the quantity of elemental bromine used or sold, compared with a 7% historic growth rate. Even ethylene dibromide, a gasoline additive, showed a 5.5% increase in spite of a national effort to reduce atmospheric pollution through the use of less tetraethyl lead and ethylene dibromide in gasoline. Greater increases were evidenced in the production of flame retardants and agricultural chemicals. Estimates of bromine and bromine compounds exports were obtained for the first time through a Bureau of Mines survey, and it indicated that about 10% of the U.S. bromine production was exported.

The average unit value of bromine produced, as indicated by reports of bromine producers, dropped about 2.5% in 1973, continuing a trend in price reduction which has persisted for several years. Average production costs were probably reduced by the increased production from Arkansas brines, which are richer than Michigan brines in bromine content.

In 1973, the future of the bromine industry was difficult to predict because of the uncertain position of additives in gasoline. If the additives were reduced by 1979 to 23% of the 1973 usage, as required by Environmental Protection Agency (EPA) regulations, there could be an excess supply of bromine on the market. Certain bromine plants which primarily produce ethylene dibromide might be forced to close or to diversify into the manufacture of other bromine compounds. On the other hand, if

EPA regulations were modified, there could be much more demand for bromine than could be supplied by existing facilities.

Legislation and Government Programs.-Regulations issued by EPA during 1973 to reduce the lead content of gasoline for public health protection had a potentially critical effect on the bromine industry. Ethylene dibromide is added to gasoline in direct proportion to the amount of tetraethyl lead contained, and serves as a scavenger to remove lead from automobile engines after combustion. The average lead content of gasoline in 1973 was 2.2 grams per gallon, but EPA rules called for a reduction to an average of only 77% of the 1973 level by the end of 1974. The final goal was to reduce the lead content to an average of 0.5 gram per gallon, 23% of the 1973 level, by January 1, 1979.

In terms of ethylene dibromide production, the proposed 1974 reduction would amount to a loss of 73 million pounds, and the final EPA goal would reduce ethylene dibromide output by 243 million pounds per year. The Ethyl Corp. and others entered a lawsuit against EPA to nullify the 1973 regulations, contending that EPA had not proved that the use of lead in gasoline was detrimental to public health.

Bromine was not considered to be of strategic importance to the United States, and there was no Government-sponsored stockpile for bromine or its compounds. There was a small tariff, however, on imports of bromine and a few bromine compounds.

# DOMESTIC PRODUCTION

Bromine production in 1973, from the leading State of Arkansas increased 13% over that of 1972, continuing the State's historic rise in bromine production. By contrast, Michigan showed about 3.8% decrease in bromine production. Approximately 9.4% of the bromine produced was sold in the

elemental form to nonmanufacturers of bromine compounds.

In 1973, there were 10 bromine-producing plants in 3 States operated by 7 companies. Two of these plants confined their operations to the extraction of elemental bromine and did not manufacture compounds.

<sup>1</sup> Physical scientist, Division of Nonmetallic Minerals—Mineral Supply.

Table 1.—Elemental bromine sold as such or used in the preparation of bromine compounds by primary producers in the United States

(Thousand pounds and thousand dollars)

|          | 19'               | 72              | 19                | 79              |
|----------|-------------------|-----------------|-------------------|-----------------|
| 9.11     | Quantity          | Value           | Quantity          | Value           |
| SoldUsed | 37,402<br>349,462 | 6,343<br>57,346 | 39,203<br>379,047 | 7,350<br>59,781 |
| Total    | 386,864           | 63,689          | 418,250           | 67,131          |

Table 2.—Bromine compounds sold by primary producers in the United States
(Thousand pounds and thousand dollars)

|                                                                      |                             |                             |                  | ,                 |                   |                 |
|----------------------------------------------------------------------|-----------------------------|-----------------------------|------------------|-------------------|-------------------|-----------------|
|                                                                      |                             | 1972                        |                  |                   | 1973              |                 |
|                                                                      | -                           | Quantity                    |                  | Quantity          |                   |                 |
|                                                                      | Gross<br>weight             | Bromine content             | Value            | Gross<br>weight   | Bromine           | Value           |
| Ethylene dibromide<br>Methyl bromide<br>Other compounds <sup>1</sup> | 316,603<br>24,683<br>84,962 | 269,334<br>20,768<br>58,934 | 49,325<br>8,381  | 333,953<br>21,846 | 284,013<br>18,366 | 51,684<br>7,560 |
| Total                                                                | 426,248                     | 349.036                     | 39,770<br>97,476 | 98,606            | 68,471            | 60,444          |
| <sup>1</sup> Includes hydrobromic acid.                              |                             | ,                           |                  | 454,405           | 370,850           | 119,688         |

<sup>&</sup>lt;sup>1</sup> Includes hydrobromic acid, tetrabromobisphenol, ethyl, ammonium, sodium, potassium, and other bromides.

Table 3.-Domestic bromine producers

| State                              | Company                                                                                                                     | County                                                | Plant                                                      | Production<br>source                              |  |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------|--|
| Arkansas<br>California<br>Michigan | Bromet Co The Dow Chemical Co Great Lakes Chemical Corp Michigan Chemical Corp Kerr-McGee Chemical Corp The Dow Chemical Co | Columbiadodododo San Bernardino Mason Midland Gratiot | El Dorado Magnoliadodo El Doradodo Trona Ludington Midland | Well brines. Do. Do. Do. Do. Searles Lake brines. |  |

# CONSUMPTION AND USES

The Bureau of Mines does not survey the consumption of bromine and bromine compounds. From production records, however, it was known that 68% of the 1973 elemental bromine production went to the manufacture of ethylene dibromide. Most of this production was used as a gasoline additive, but the compound was also used as a solvent and in agriculture. In spite of pessimism in the industry over the future of ethylene dibromide as a gasoline additive, its consumption increased by 5.5% in 1973.

New developments in the consumption of

bromine were centered around flame retardants and agricultural applications. Flame retardants for plastics provided a growing and potentially profitable outlet for bromine. Agricultural chemicals were led by methyl bromide, a soil sterilant and an insect fumigant. Many bromine-bearing agricultural chemicals were considered to be proprietary in nature.

Elemental bromine was utilized as a disinfectant, as an algaecide, and as an oxidizer in the manufacture of other chemicals.

#### **PRICES**

Prices for bromine and certain bromine compounds at yearend were quoted in the

Chemical Marketing Reporter as follows:

BROMINE 225

|                                                                                                                                                                                                                                                                                                            | Cents per pound   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Bromine, purified:                                                                                                                                                                                                                                                                                         | _ 49              |
| Bromine, purified: Cases, carlots,                                                                                                                                                                                                                                                                         | _ 49              |
| Zone I: 1  Returnable drums, carlots, truckloads, delivered east of Rocky Mountains -                                                                                                                                                                                                                      | _ 20<br>_ 18      |
| Ammonium bromide, national formulary (N.F.) granular, drawn, freight equalized                                                                                                                                                                                                                             | 48.0-48.5<br>54.5 |
| Tanks, same basis                                                                                                                                                                                                                                                                                          | 68                |
| Ethylene dibromide, drums, carlots, freight equalities 22222                                                                                                                                                                                                                                               | 20                |
| Tanks, freight equalized  Methyl bromide, distilled, tanks, 140,000-pound minimum, freight allowed  Potassium bromate, granular, powdered, 200-pound drums, carlots, freight allowed  Potassium bromide, N.F., granular, drums, carlots  Sodium bromide, N.F. granular, 400-pound drums, freight equalized | - 64-77<br>43.5   |

<sup>&</sup>lt;sup>1</sup> Delivered prices for drums and bulk shipped west of Rockies, 1 cent per pound higher. Bulk truck prices 1 cent per pound higher for 30,000-pound minimum and 2 cents per pound higher for 15,000-pound minimum. Price f.o.b. Midland and Ludington, Mich., freight equalized, 1 cent per pound lower.

The average unit price of bulk elemental bromine as evaluated by producers in 1973 was 2.5% less than the 1972 average price,

continuing a historic trend toward lower prices.

# FOREIGN TRADE

The Bureau of Mines annual survey of bromine producers obtained information, for the first time, on exports of bromine and bromine compounds. The total reported for the United States is known not to include all shipments but is given below for reference:

| 1973 exports         | Quantity<br>(pounds)  |
|----------------------|-----------------------|
| Bromine in compounds | 40,683,000<br>535,000 |
| Total                | 41,218,000            |

A review article covering bromine activities

in 1973 <sup>2</sup> quoted H. W. Andre of the Great Lakes Chemical Corp. as saying that one-third of the U.S. production of ethylene dibromide (100 million pounds) was shipped overseas in 1973.

Imports of bromine compounds remained quite small in 1973, totaling only 57,000 pounds of contained bromine. Imports consisted mostly of potassium bromide and sodium bromide from Israel, France, Canada, and West Germany. Japan also shipped a small amount of ethylene dibromide to the United States in 1973.

# WORLD REVIEW

The United States produced and consumed about 70% of the world bromine supply in 1973. The estimated production for other major bromine-producing countries is given in table 4. Bromine reserves in all producing countries are believed to be large, but quantities are unknown. Sea water, of course, provides an unlimited source of bromine at relatively low levels of bromine concentration.

In France, bromine is produced as a coproduct at the potash mines in Mulhouse in the Alsace area. Production from these mines is limited by law to prevent excessive damage to the ecology.

Israel has virtually unlimited resources of

bromine in the waters of the Dead Sea, but the unstable political situation in that area has prevented extensive increases in present bromine production.

The United Kingdom is supplied with bromine in the waters of the Dead Sea, but tion on British bromine production is concealed to avoid disclosure of company confidential data. Very few mineral production facts are available from any of the Soviet bloc countries. Bromine production in the U.S.S.R. is indirectly estimated from related data at about 28 million pounds per year.

<sup>&</sup>lt;sup>2</sup> Chemical & Engineering News. Bromine Outlook Tied to Clean Air Rules. V. 52, No. 8, Feb. 25, 1974, pp. 11-12.

Table 4.-Bromine: World production, by country 1 (Thousand pounds)

| (=====================================                                                  |                                                                                  |                                                                                      |                                                                                                |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Country 2 France                                                                        | 1971                                                                             | 1972                                                                                 | 1973 р                                                                                         |
| Germany, West e India Israel Israel Italy s Japan Spain e4 United Kingdom United States | 32,033<br>5,700<br>538<br>26,799<br>11,515<br>20,726<br>880<br>52,470<br>355,946 | 29,895<br>6,000<br>° 550<br>30,865<br>° 11,500<br>23,093<br>880<br>66,139<br>386,864 | ° 31,000<br>6,600<br>° 55(<br>° 26,500<br>° 11,500<br>24,300<br>° 880<br>° 66,200<br>° 421,000 |

1 Owing to incomplete reporting, this table has not been totaled.
2 In addition to the countries listed, several other nations may also produce bromine (including, most notably, the U.S.S.R.), but output data are not reported and no basis is available for estimating output levels.

mating output levels.

3 Elemental bromine from thermal and marine waters only; additional bromine may be produced in the form of compounds and/or as elemental bromine from other sources.

4 Spanish bromine production was officially reported to be 32 metric tons in 1971, but according to other Spanish sources, this figure is low, excluding quantities of elemental bromine that were consumed by the manufacturing firms in the process of producing bromine compounds. The Additionary and Technical Studies Commission of the Spanish Chemical Industry (Comisión Assora y de Estudios Téchnicos de la Industria Quimica Española) indicates that 1971 output was of the dustria Quimica en España 1971, Madrid, 1972, pp. 38-39). No later published figures are available.

# **TECHNOLOGY**

Two scientists of The Dow Chemical Co. discovered 3 that bromine chloride was a more active brominating agent and was much less corrosive than bromine. Both chemicals required the presence of moisture to develop their corrosive nature, but moist bromine was found to be much more corrosive than bromine chloride.

An advance in pacemaker batteries was announced by General Electric Co.4 The cell had a bromine cathode, a sodium-amalgam anode, and a beta-alumina ceramic electrolyte. Its expected life was about 10 years.

One increasing use for bromine was as a reagent to produce brominated vegetable

oil, BVO.5 This soybean-oil-based product was used mainly by soft drink producers to adjust the density and cloudiness of citrus flavorings. The safety aspects of BVO were under investigation by the U.S. Food and Drug Administration in 1973. Less than 1 million pounds of BVO per year were manufactured.

<sup>&</sup>lt;sup>3</sup> Chemical Engineering. Bromine Chloride: Less Corrosive Than Bromine. V. 80, No. 18, Aug. 6, 1973, pp. 102-106.

<sup>&</sup>lt;sup>4</sup> Chemical & Engineering News. Concentrates. V. 51, No. 43, Oct. 22, 1973, p. 12.

<sup>&</sup>lt;sup>5</sup> Chemical Week. The Safety Aspects of Brominated Vegetable Oil. V. 113, No. 21, Nov. 21,

# Cadmium

# By J. M. Hague 1

Declining domestic production of cadmium continued to reduce the percentage of United States self-sufficiency in a period of expanding domestic and world demand. Of 6,228 tons of cadmium apparently consumed in the United States in 1973, only about 32% came from domestic mines. U.S. zinc smelters produced 60% of the cadmium supply from a mixture of domestic and imported materials; net metal imports accounted for 29%, the Government stockpile 6%, and drawdown of industry stocks 5% of supply. Six companies produced primary cadmium at eight domestic plants. Canada was the major source of imported metal and concentrates. Price increases for cadmium during 1973, from \$3 per pound to \$3.75 per pound, were moderate when compared with other nonferrous metals. The unit of measure for statistical data contained in this chapter has been changed to short tons from the thousand pound measure used in previous editions.

Legislation and Government Programs .-Sales from the national stockpile administered by the General Services Administration (GSA) were 385 tons (770,405 pounds) in 1973. At the end of the year, the total stockpile inventory was 4,242 tons, including 21 tons already committed, the objective for retention was 2,223 tons, and the

quantity available for disposal was 1,221 tons. Prices for GSA sales were at current producer prices for balls, and 5 cents below the producer price for sticks, f.o.b. storage locations in lots of 2,000 pounds or

In April 1973, the Office of Preparedness revised the stockpile objective for cadmium from 3,000 tons to 2,223 tons. A bill, H.R. 9596, was introduced in the Congress in July to authorize the release of this difference, 777 tons, from the national stockpile. No hearings had been held on this bill by the end of 1973. The previous authorization under Public Law 91-314 provided for the releases made throughout the year.

Phase 4 price controls were applied to cadmium by the Cost of Living Council on June 13, 1973, and were removed on December 6, 1973; the quoted price remained at \$3.75 per pound throughout this period, and continued at that figure after the control was lifted.

Exploration cost assistance for cadmium is available from the Office of Minerals Exploration with 50% of allowable costs furnished by Government participation. No contracts were sought or active in 1973.

engineer, Division of Nonferrous <sup>1</sup> Mining engineer, I Metals—Mineral Supply.

Table 1.-Salient cadmium statistics

(Short tons)

|                                                                                                                                                                                | 1969     | 1970     | 1971     | 1972     | 1973     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|
| United States:  Production 1 Shipments by producers 2 Valuethousands_ Exports Imports for consumption, metal Apparent consumption Price: Average per pound 3 World: Production | 6,323    | 4,732    | 3,965    | 4,145    | 3,714    |
|                                                                                                                                                                                | 6,489    | 3,424    | 3,887    | 5,240    | 4,304    |
|                                                                                                                                                                                | \$40,636 | \$24,163 | \$9,823  | \$18,965 | \$23,891 |
|                                                                                                                                                                                | 542      | 187      | 33       | 509      | 153      |
|                                                                                                                                                                                | 539      | 1,246    | 1,749    | 1,211    | 1,946    |
|                                                                                                                                                                                | 7,531    | 4,531    | 5,436    | r 6,313  | 6,228    |
|                                                                                                                                                                                | \$3,27   | \$3.57   | \$1.92   | \$2.56   | \$3.64   |
|                                                                                                                                                                                | 19,392   | 18,227   | r 17,007 | r 18,388 | 18,74    |

<sup>1</sup> Primary and secondary cadmium metal. Includes equivalent metal content of cadmium sponge used directly in production of compounds.

<sup>&</sup>lt;sup>2</sup> Includes metal consumed at producer plants.
<sup>3</sup> Average quoted price for cadmium sticks and balls in lots of 1 to 5 tons.

# **DOMESTIC PRODUCTION**

Domestic production of cadmium continued at a rate slightly below the 1972 pace, diminishing in each quarter until the fourth, which showed a recovery to a quarterly rate close to 950 tons. The longterm decline in cadmium production was an expected result of declining zinc production, but the two do not show a direct correlation owing to stockpiling of intermediate products and variations in cadmium content of zinc concentrates received by zinc-cadmium producers. Total production for 1973 was  $\bar{3}$ ,714 tons, a decrease of 10% from the 1972 level. Shipments exceeded production as stocks were drawn down, and the value of shipments increased 26% to \$24 million, mostly because of price increases early in the year.

Imports of flue dust from Mexico decreased 78% from the 1972 rate, further decreasing the supply of raw material for domestic producers. Imports of zinc concentrate decreased 22%, which also reduced the cadmium content available for domestic recovery.

The cadmium content of sulfide com-

pounds produced (including cadmium sulfoselenide and cadmium lithopone) increased 4% over the level of the previous year, reaching a 38% share of total domestic production.

Cadmium oxide was produced at two plants and cadmium metal was produced at eight plants, all owned by six companies; secondary cadmium was remelted or refined at one secondary metal plant.

Table 2.—Cadmium sulfide 1 produced in the United States

(Short tons)

| Year |  | Sulfide 2<br>(cadmium content) |
|------|--|--------------------------------|
| 1969 |  | 1,220                          |
| 1970 |  | 1,068                          |
| 1971 |  | 1,118                          |
| 1972 |  | 1,357                          |
| 1973 |  | 1,412                          |

<sup>&</sup>lt;sup>1</sup> Cadmium oxide withheld to avoid disclosing individual company confidential data.

# CONSUMPTION AND USES

The apparent consumption of cadmium, a total of 6,228 tons, was little changed from the 1972 consumption. (See figure 1.) Government sales continued to contribute substantially to the total supply.

Metal used for electroplating parts for appliances, motor vehicles, machinery, and hardware probably accounted for slightly less than half of U.S. consumption. Compounds used as colorants (red, orange, yellow) in paints and frits, and compounds used as stabilizers in plastics accounted for about one-third of the total usage. Nickel-cadmium and silver-cadmium batteries, alloys, cadmium phosphors, and other uses accounted for the one-sixth remainder.

Table 3.—Apparent consumption of cadmium

(Short tons)

|                          | 1972    | 1973  |
|--------------------------|---------|-------|
| Stocks-beginning         | r 2,649 | 1,662 |
| Production               | 4,145   | 3,714 |
| Imports, metal           | 1,211   | 1,946 |
| Government sales         | 479     | 385   |
| Total (supply)           | r 8,484 | 7,707 |
| C41                      | 509     | 153   |
|                          | r 1,662 | 1,326 |
| Apparent consumption 1 _ | r 6,313 | 6,228 |

r Revised.

<sup>&</sup>lt;sup>2</sup> Includes cadmium lithopone and cadmium sulfoselenide.

 $<sup>^{1}\,\</sup>mathrm{Total}$  supply minus exports and yearend stocks.

CADMIUM 229

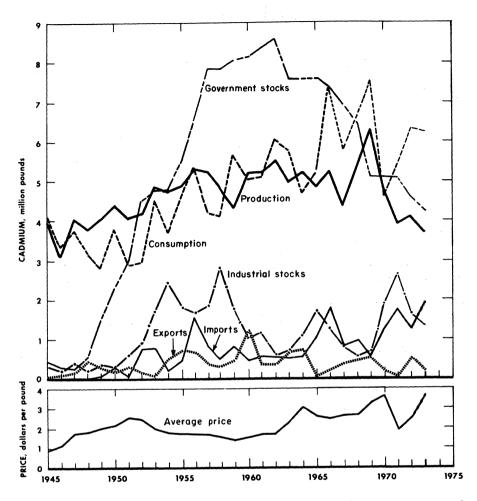



Figure 1.—Trends in production, consumption, yearend stocks, exports, imports, and average price of cadmium metal in the United States.

#### **STOCKS**

Stocks held by industry declined 20% in 1973, continuing the decline of 1972. Stocks of cadmium metal and cadmium content of compounds at the end of 1973 totaled 1,326 tons, half of the inventory of 2 years ago.

Cadmium remaining in the GSA stockpile, not included in the table, was 4,242 tons, of which 1,221 tons was presently available for disposal.

Table 4.—Industry stocks, December 31

(Short tons)

|                        |                  | 1972                 |                  | 73                   |
|------------------------|------------------|----------------------|------------------|----------------------|
|                        | Cadmium<br>metal | Cadmium in compounds | Cadmium<br>metal | Cadmium in compounds |
| Metal producers        | 831              | w                    | 456              | w                    |
| Compound manufacturers | 226              | 466                  | 205              | 542                  |
| Distributors           | 114              | r 25                 | 104              | 19                   |
| Total                  | 1,171            | r 491                | 765              | 561                  |

 $<sup>\</sup>sp{r}$  Revised. W Withheld to avoid disclosing individual company confidential data; included with "Compound manufacturers."

#### **PRICES**

Producer prices for cadmium at the beginning of the year were \$3.00 per pound for 1-ton lots. On January 25, the price was raised to \$3.25 per pound by American Smelting & Refining Co. (Asarco); other producers followed this lead the next day. On March I, Bunker Hill Co. raised its price to \$3.50 per pound and Asarco, Cominco, Ltd., and American Metal Climax Inc. (AMAX) then quoted \$3.75, but St. Joe Minerals Corp. and The New Jersey Zinc Co. remained at \$3.25 throughout March. Early in April all producers moved to the \$3.75 per pound quotation, and this quoted price remained unchanged to the end of the year. Dealer prices were 15 to 20 cents

below the producer price in much of the second quarter and part of the third quarter, more in line with lower European prices. By the end of the year, U.S. dealer quotations were only 5 to 10 cents under the \$3.75 producer price, and the European price was \$3.60 to \$3.65 per pound.

Table 5.—Cadmium prices, 1973
(Dollars per pound)

| Date                                                                             | Producers' price,<br>1-ton to 5-ton lots |  |
|----------------------------------------------------------------------------------|------------------------------------------|--|
| Jan. 1 to 25<br>Jan. 25 to Feb. 28<br>March 1 to April 1 _<br>April 2 to Dec. 31 | 3.25<br>3.50-3.75                        |  |

#### FOREIGN TRADE

Exports of cadmium metal and scrap decreased from 509 tons in 1972 to 153 tons in 1973. Principal destinations were as follows: France 43%, Belgium 20%, Japan 13%, and West Germany 11%. Much of the cadmium going to Belgium was probably scrap or secondary material sent for refining in European plants.

Imports of cadmium metal increased by 61% to compensate in part for the marked decrease in imports of flue dust from Mexico. Canada was again the main source of imported metal, accounting for 41% of the total. Other sources of foreign cadmium were Australia 18%, Belgium-Luxembourg 17%, Peru 5%, and others 19%.

No duties are imposed on metal or flue dust imported from most-favored nations, but a statutory duty of 15 cents per pound is levied on cadmium metal imported from communist-bloc countries, except Yugoslavia.

Table 6.-U.S. exports of cadmium metal and cadmium in alloys, dross, flue dust, residues, and scrap

|      | Year | Quantity<br>(short<br>tons) | Value<br>(thousand<br>dollars) |
|------|------|-----------------------------|--------------------------------|
| 1971 |      | 33                          | 172                            |
| 1972 |      | 509                         | 2,363                          |
| 1973 |      | 153                         | 598                            |

Table 7.-U.S. imports for consumption of cadmium metal and cadmium flue dust, by country

|                                                 | 10'                      | 1972                 |                          | 1973                |  |  |
|-------------------------------------------------|--------------------------|----------------------|--------------------------|---------------------|--|--|
| Country                                         | Quantity<br>(short tons) | Value<br>(thousands) | Quantity<br>(short tons) | Value<br>(thousands |  |  |
| admium metal:                                   |                          | \$21                 | 4                        | \$24                |  |  |
| Argentina                                       | 4                        | 821                  | 359                      | 2,395               |  |  |
| Australia                                       | 203                      | 467                  | 336                      | 2,143               |  |  |
| Belgium-Luxembourg                              | 109                      |                      | 805                      | 5,553               |  |  |
| Canada                                          | 534                      | 2,322                | 3                        | 19                  |  |  |
| Chile                                           |                          |                      | 23                       | 130                 |  |  |
| France                                          | 9                        | 25                   | 61                       | 351                 |  |  |
| Germany, West                                   | 37                       | 120                  | 6                        | 25                  |  |  |
| Ghana                                           |                          | ·                    | 11                       | 65                  |  |  |
| Ghana                                           |                          |                      | 20                       | 111                 |  |  |
| Italy                                           | 64                       | 177                  |                          | 162                 |  |  |
| Japan                                           |                          |                      | 24                       | 439                 |  |  |
| Korea, Republic of                              | 68                       | 196                  | 83                       | 288                 |  |  |
| Mexico                                          | 18                       | 64                   | 44                       | 698                 |  |  |
| Netherlands                                     | 148                      | 600                  | 103                      |                     |  |  |
| Peru                                            | 16                       | 70                   | 24                       | 159                 |  |  |
| South Africa, Republic of                       | 1                        | 3                    | 17                       | 10-                 |  |  |
| Spain                                           | ( <sup>2</sup> )         | ( <sup>2</sup> )     |                          | -                   |  |  |
| U.S.S.R                                         |                          |                      | 6                        | 3                   |  |  |
| United Kingdom                                  |                          |                      | 17                       | 9                   |  |  |
| Yugoslavia                                      |                          |                      | 1.040                    | 12,79               |  |  |
|                                                 | 1,211                    | 4,886                | 1,946                    | 24                  |  |  |
| Total Movico                                    | 370                      | 685                  | 82                       |                     |  |  |
| Flue dust (cadmium content): Mexico Grand total | 1,581                    | 5,571                | 2,028                    | 13,04               |  |  |

 $<sup>^{1}</sup>$  1972 and 1973 general imports and imports for consumption were the same.

# WORLD REVIEW

World smelter production of cadmium increased 2.0% to a preliminary total of 18,747 short tons, not equaling the record 19,374 tons produced in 1969. The United States was the largest metal producer with 20% of the total, followed by Japan 18%, U.S.S.R. 15%, Belgium 8%, West Germany 7%, Canada 5%, and other countries 27%.

Apparent consumption in the United States was about 33% of world production. Table 8 presents data on world cadmium smelter production.

During 1973, the U.S. Geological Survey published a review of world cadmium ores and resources.<sup>2</sup> The average ratio of zinc to cadmium in "average world zinc concentrate" is given as 230:1, but selected assays show a wide regional variation. U.S.

smelters recovered cadmium as a byproduct of zinc production in the ratio of 1:229, indicating that materials fed to U.S. smelters contain slightly more cadmium than the world average and also suggesting that U.S. smelter recovery is reasonably good.

During 1973, an increase in cadmium plant capacity was announced by Texasgulf Inc., at its Timmins, Ontario, Canada, plant, and a new cadmium producing plant was started by Amax Zinc Company, Inc., at Sauget, Ill. Amax plans to gradually phase out cadmium production at the Blackwell, Okla., zinc smelter. Two large Japanese producers announced cutbacks in cadmium production because of the energy shortage.

<sup>&</sup>lt;sup>2</sup> Less than ½ unit.

<sup>&</sup>lt;sup>2</sup> Wedow, H., Jr. Cadmium. Ch. in United States Mineral Resources. U.S. Geol. Survey Prof. Paper 820, 1973, pp. 105-109.

| Table 8.—Cadmium: | World    | smelter | production 1 |
|-------------------|----------|---------|--------------|
|                   | ort tons |         | •            |

| Country                                        | 1971             | 1972         | 1973 1       |
|------------------------------------------------|------------------|--------------|--------------|
| North America:                                 |                  | 1012         | 19191        |
| Canada (refined)<br>United States <sup>2</sup> | 784              | 1,125        | e 947        |
| Latin America:                                 | 3,965            | 4,145        | 3,714        |
| Mexico (refined)Peru                           | 010              |              |              |
|                                                | 212              | 205          | e 220        |
|                                                | 188              | 231          | e 260        |
|                                                | 20               |              |              |
| D 1                                            | 28               | 29           | e 30         |
|                                                | 1,044            | 1,268        | e 1.590      |
| Finland France                                 | 220              | 220          | 220          |
| France<br>Germany, East <sup>e</sup>           | 132              | 193          | e 185        |
| Germany, East e<br>Germany, West               | 638              | 631          | e 700        |
| Germany, West                                  | 17               | 17           | 17           |
| Italy                                          | 1,081            | 1.007        | e 1.320      |
| Netherlands e                                  | 386              | 459          | e 419        |
| Netherlands <sup>e</sup><br>Norway             | 136              | 134          | 132          |
| Norway<br>Poland e                             | 101              | 96           | e 115        |
| Poland e<br>Romania e                          | r 440            | r 390        | 390          |
|                                                | 90               | 90           | 90           |
| U.S.S.R. e                                     | 112              | 122          | e 127        |
| U.S.S.R. e<br>United Kingdom<br>Yugoslavia e   | 2,650            | 2,700        |              |
|                                                | 289              | 265          | 2,750        |
| frica:                                         | r 150            | 265<br>150   | 346          |
| South West Act                                 | 100              | 190          | 165          |
| South-West Africa, Territory of                |                  |              |              |
| ZaireZambia                                    | <sup>3</sup> 216 | 4 172        | e 220        |
| Zambiasia:                                     | 289              | 326          | e 331        |
|                                                | 11               | 17           | e 18         |
| Chína, People's Republic of e<br>India         |                  |              |              |
| India                                          | 110              | 110          | 110          |
|                                                | 32               | 34           | 110          |
| Korea, North e                                 | 2,949            | 3,339        | e 34         |
|                                                | 120              | 3,339<br>120 | e 3,417      |
|                                                | 617              | 793          | 120<br>e 760 |
| Total                                          |                  |              |              |
|                                                | 17,007           | 18,388       | 18,747       |

e Estimate. Preliminary.

erefore such output is not recorded in this wast. 2 2 Includes secondary.

3 Output of Tsumeb Corp. Ltd. for year ending June 30, 1971.

4 Output of Tsumeb Corp. Ltd. for calendar year 1972.

## **TECHNOLOGY**

During 1973, the National Environmental Research Center was reviewing the current knowledge of cadmium in the environment seeking to set standards for control consistent with the provisions of the Clean Air Act. In July, the Environmental Protection Agency (EPA) issued a list of toxic pollutants, including cadmium and cadmium compounds, in accordance with provisions of the Water Pollution Control Act. Interested parties were invited to submit comments concerning establishment of standards for effluents to meet the requirements of the Act.3 Late in December, EPA proposed effluent standards for nine toxic pol-

lutants, including cadmium, restricting discharges into navigable waters.4 The daily average cadmium concentration permitted depends on the flow of the stream into which discharge is made, but shall not exceed 40 micrograms per liter in fresh water and is further restricted by a daily weight limit.

Continued interest in cadmium in the environment was shown by numerous papers

e Estimate. P Preliminary. P Revised.

Table gives unwrought metal production from ores, concentrates, flue dusts, and other materials of both domestic and imported origin. Sources generally do not indicate if secondary metal (recovery from scrap) is included; where known, this has been indicated by footnote. Data derived in part from World Metal Statistics (published by World Bureau of Metal Statistics, am Main). Cadmium is produced in ores, concentrates, and flue dusts in a number of other countries, but these materials are exported for treatment elsewhere to recover cadmium metal, 2 Includes secondary.

<sup>&</sup>lt;sup>3</sup> Federal Register. Proposed List of Toxic Pollutants. V. 38, No. 129, July 6, 1973, pp. 18044-

<sup>4</sup> Federal Register. Proposed Toxic Pollutant fluent Standards. V. 38, No. 247, Dec. 27, Effluent Standards. V 1973, pp. 35388-35395.

in a wide variety of scientific and engineer-

ing publications.5

The cadmium content of Illinois coals was investigated by the Illinois State Geological Survey; the range reported was 0.3 to 28 parts per million, with cadmium occurring as a solid solution component of sphalerite (ZnS) particles which were separated by heavy-liquid concentration from the low-temperature ash.6

An electrochemical process for removing cadmium, mercury, chromium, lead, and other heavy metals from waste water effluents was developed by a division of Rockwell International at Canoga Park, Calif., under the sponsorship of the State of California. Metallic impurities are plated out on a bed of fluidized conductive particles. Projected operating costs are claimed to be competitive with chemical precipitation or ion-exchange processes.7

Interest grew during 1973 in the development of solar energy systems using cadmium sulfide photovoltaic cells. Solar energy research programs are being conducted at the University of Delaware and several other U.S. universities as well as research centers in Japan, U.S.S.R., Israel, Australia, and other countries.8

A rapid method of measuring minute concentrations of cadmium was announced using an absorption spectrophotometer developed by Varian Associates, Palo Alto,

A patent was granted and assigned to Bunker Hill Co. for the precipitation of cadmium from zinc sulfate solutions used in the electrolytic recovery of zinc.10

Conditions in a single pore of a cadmium battery plate were studied using microscopy to reveal the morphology causing loss in capacity on repeated charge and discharge.11

Diffusion in the silver-cadmium alloy system at 600° C was investigated to determine intrinsic diffusion coefficients and vacancy wind effects found to be appreciable in this

system.12

Developments in cadmium technology are frequently abstracted in Zinc Abstracts, a bimonthly publication available free of charge from the Zinc Institute, Inc., 292 Madison Avenue, New York, N.Y. 10017. Numerous publications on cadmium were reviewed during 1973 describing diffusion, densities and other properties of alloys, treatment of urban and industrial effluents, the solid state physics of cadmium compounds used for semiconductors and photoconductive films, vacuum metallizing, occu-

pational health hazards, classification for pigments, brush plating, distillation of cadmium and lead from Waelz oxides, nickelcadmium battery components, distribution of cadmium in deep sea sediments, addition agents in cadmium plating, determination of cadmium in blood, permissible limits of metal release from glazed ceramic ware (British), corrosion resistance studies of plating and alloys, surveys of and determination of trace amounts of cadmium in

<sup>5</sup> Bolton, N. E., R. I. Van Hook, W. Fulkerson, W. S. Lyon, A. W. Andren, J. A. Carter, and J. F. Emery. Trace Element Measurements at the Coal Fired Allen Steam Plant, Oak Ridge National Laboratory. ORNL-NSF-EP-43, March 1073 pn. 1 22

National Laboratory.

1973, pp. 1-83.

Buchauer, M. J. Contamination of Soil and Vegetation Near a Zinc Smelter by Zinc, Cadwium, Copper and Lead. Environmental Sci. & mium, Copper and Lead. Environmental Sci. & Technol., v. 7, No. 2, February 1973, pp. 131-

Vegetation Near a Zinc Smelter by Zinc, Cadmium, Copper and Lead. Environmental Sci. & Technol., v. 7, No. 2, February 1973, pp. 131–135.

Clark, G. R. II and A. M. Kudo. Cadmium Uptake by Scallops Grown in Artificially Enriched Seawater. Geol. Soc. of America Abstracts With Programs, v. 5, No. 6, March 1973, p. 22.

Copenhaver, E. D., G. U. Ulrikson, L. T. Newman, and W. Fulkerson. Cadmium in the Environment, an Annotated Bibliography, Oak Ridge National Laboratory. ORNL-EIS-73-17, April 1973, pp. 1-451.

Corbett, R. G., R. F. Lee, and Barbara M. Manner. Residual Effects of Cadmium Pollution, West Branch Reservoir, Ohio. Geol. Soc. of America Abstracts With Programs, v. 5, No. 5, February 1973, p. 390.

Gish, C. D., and R. E. Christensen. Cadmium, Nickel, Lead and Zinc In Earthworms from Roadside Soil. Environmental Sci. and Technol., v. 7, No. 11, November 1973, p. 1060.

Lee, D. H. K. Metallic Contaminants and Health. National Institute of Environmental Health. National Institute of Environmental Health. National Institute of Environmental Health. National Institute of Environmental Health. National Institute of Environmental Health. National Institute of Environmental Health. National Institute of Environmental Health. National Institute of Environmental Health. National Institute of Environmental Health. National Institute of Environmental Health. National Institute of Environmental Health. National Institute of Environmental Health. National Institute of Environmental Health. National Institute of Environmental Health. Sciences, Fogarty International Center Proceedings No. 9, Academic Press, New York, 1972. pp. 97-124.

Perhac, R. M., R. J. Bayer, S. S. Gentry, and Charlene J. Whelan, Mobility of Cd, Co, Cu, Ni, and Zn in a Copper Ridge District Stream, East Tennessee. Geol. Soc. of America Abstracts With Programs, v. 5, No. 5, February 1973, p. 342.

Guskoter, H. J., and P. C. Lindahl. Cadmium: Mode of Occurrence in Illinois Coals.

<sup>6</sup> Gluskoter, H. J., and P. C. Lindahl. Cadmium: Mode of Occurrence in Illinois Coals. Science, v. 181, No. 4096, July 20, 1973, pp. 264-266.

7 Chemical Engineering. Fluidized-Metal Traps Metal. V. 80, No. 13, June 11, 1973, p. 78.

<sup>8</sup> Chemical and Engineering News. Solar Energy May Achieve Wide Use by 1980's. V. 51, No. 5, Jan. 29, 1973, pp. 12-13.

<sup>9</sup> Chemical Week. Measuring Minute Concentrations of Cadmium. V. 113, No. 5, Aug. 1, 1973, p. 36.

<sup>10</sup> Orlandini, B. Precipitation of Cadmium From Zinc Sulfate Solution. U.S. Patent 3,761,251, Sept. 25, 1973.

11 Will, F. G., and H. J. Hess. Morphology and Capacity of a Cadmium Electrode. J. Elec-trochem. Soc., v. 20, No. 1, January 1973, pp.

<sup>12</sup>Iorio, N. R., M. A. Dayananda, and R. E. Grace. Intrinsic Diffusion and Vacancy Wind Effects in Ag-Cd Alloys. Met. Trans., v. 4, No. 5, May 1973, pp. 1339-1346.

foods, leaks in nickel-cadmium cells, and ultrafiltration compared with ion-exchange techniques for effluent processing.<sup>13</sup>

<sup>13</sup> Zinc Institute, Inc. Zinc Abstracts. V. 31, Nos. 1-6, 1973, pp. 5-288.

# Calcium and Calcium Compounds

# By Avery H. Reed 1

One company in Connecticut manufactured calcium metal. Calcium-magnesium chloride was produced by two firms in California and three in Michigan. Synthetic calcium-magnesium chloride was manufactured by four companies, in New York, Ohio, and Washington.

#### DOMESTIC PRODUCTION

Pfizer Inc. produced calcium metal at its Canaan, Conn., plant by the Pidgeon process, in which quicklime and aluminum powder are heated in vacuum retorts. At 1,170° C, calcium vaporizes and is collected at one end of the retort.

Leslie Salt Co. and National Chloride Co. of America produced calcium-magnesium chloride from dry lake beds in San Bernardino County, Calif. Output declined 8%. The Dow Chemical Co., Michigan Chemical Corp., and Wilkinson Chemical Corp. recovered calcium-magnesium chloride from wells in Gratiot, Lapeer, Mason, and Midland Counties, Mich. Output increased 3%.

Total production of natural calcium-magnesium chloride was 609,000 tons, 3% more than that in 1972 but 7% below the 1969 record.

Allied Chemical Corp., Syracuse, N.Y.; PPG Industries, Inc., Barberton, Ohio; and Reichold Chemicals, Inc., and Hooker Chemical Corp., Tacoma, Wash., manufactured synthetic calcium-magnesium chloride as a byproduct of soda ash. Total output decreased 23% to 249,000 tons and was 40% below the 1968 record. During the year, PPG Industries and Hooker Chemical Corp. closed their plants.

#### CONSUMPTION AND USES

Calcium metal was used as a reducing agent to separate such metals as columbium, tantalum, thorium, titanium, uranium, vanadium, and zirconium from their oxides; to form alloys with aluminum, lead, lithium, magnesium, and silicon; as a scavenger in the steel industry; and in the manufacture of calcium hydride.

The principal use for calcium-magnesium chloride was to melt snow and ice from roads, streets, bridges, and pavements. It was also used as a dust suppresant on roads and driveways, and as an accelerator for concrete.

<sup>&</sup>lt;sup>1</sup> Physical scientist, Division of Nonmetallic Minerals—Mineral Supply.

## PRICES AND SPECIFICATIONS

Calcium metal prices in 1972 ranged from \$1 to \$5 per pound. Calcium chloride is usually sold either as solid flake or pellet averaging about 75% CaCl2, or as a concentrated liquid averaging about 40% CaCl<sub>2</sub>. In 1973, on a 75% basis, average value for natural calcium chloride was \$28.90; the average value for synthetic calcium chloride was \$36.30.

Table 1.-Price quotations for calcium chloride

(Per short ton)

| Grade               | Dec. 24, 1972 | Dec. 31, 197 |  |
|---------------------|---------------|--------------|--|
| Flake or pellet,    |               |              |  |
| 94%-97% 1           | \$56.50       | \$57.75      |  |
| Flake, 77%-80% 1    | 44.50         | 45.00        |  |
| Powdered, 77%       |               | -3100        |  |
| minimum 1           | - 52.50       | 53.00        |  |
| Liquor, 40% 2       | _ 17.00       | 17.50        |  |
| Granulated, U.S.P.3 | - 780.00      | 780.00       |  |

<sup>1</sup> Paper bags, carload lots, plant, freight

Source: Chemical Marketing Reporter. V. 204, No. 27, Dec. 31, 1973.

#### FOREIGN TRADE

Exports of calcium chloride in 1973, mainly to Canada, Mexico, Austria, and Brazil, totaled 889 tons valued at \$117,779. Dicalcium phosphate exports, mainly to Mexico, Canada, Italy, and Brazil, were 2,447 tons valued at \$369,707. Exports of precipitated calcium carbonate totaled 385 tons valued at \$35,236 and were mainly to Canada, Mexico, El Salvador, and Japan.

Total imports of calcium and calcium compounds were 231,000 tons valued at \$10,181,000. Imports of calcium metal from Ontario, Canada, were 55 tons valued at \$77,864. Calcium chloride imports, mainly from Canada, were 7,357 tons valued at \$317,007, an increase of 20% from those of 1972. Imports of other calcium compounds, mainly from Norway, the Netherlands, France, and Turkey, were 224,000 tons valued at \$9,774,000.

The other calcium compounds imported included 156,113 tons of calcium nitrate from Norway, the Netherlands, Sweden, and Canada; 26,653 tons of whiting from France, the United Kingdom, Switzerland, West Germany, and Belgium; 18,216 tons of calcium borate from Turkey; 7,143 tons of calcium carbide from Canada and France; 3,893 tons of calcium cyanide from Canada, Japan, and Mexico; 3,794 tons of calcium cyanamide from Canada, Norway, West Ger-

many, and Japan: 3,332 tons of precipitated calcium carbonate from the United Kingdom, Japan, and West Germany; 2,755 tons of dicalcium phosphate from Belgium and Canada; 530 tons of calcium hypochlorite from Japan; 140 tons of chlorinated lime from the United Kingdom and West Germany; and 1,013 tons of miscellaneous calcium compounds, mainly from Canada, Japan, and Switzerland.

Table 2.-U.S. imports for consumption of calcium and calcium chloride

| Year - |  | Calcium                      |           | Calcium chloride            |           |  |
|--------|--|------------------------------|-----------|-----------------------------|-----------|--|
|        |  | Quantity Value<br>(pounds) ( |           | Quantity Value (short tons) |           |  |
| 1969   |  | 662,200                      | \$619,000 | 9.226                       | \$349.998 |  |
| 1970   |  | 164,769                      | 141,125   | 8,280                       | 359,096   |  |
| 1971   |  | 48,391                       | 29,751    | 13,019                      | 543,656   |  |
| 1972   |  | 248,080                      | 181,437   | 6,128                       | 225,463   |  |
| 1973   |  | 110,407                      | 77,864    | 7,357                       | 317,007   |  |

Table 3-U.S. imports for consumption of calcium chloride, by country, in 1973

| Country            | Quantity<br>(short tons) | Value    |
|--------------------|--------------------------|----------|
| Belgium-Luxembourg | 212                      | \$13,893 |
| Canada             | 6,918                    | 251,702  |
| Germany, West      | 50                       | 40,806   |
| Japan              | 165                      | 9,900    |
| United Kingdom     | 12                       | 706      |
| Total              | 7,357                    | 317,007  |

#### WORLD REVIEW

Canada.—Chromasco Corp. Ltd. produced calcium metal at its Haley smelter near Renfrew, Ontario. Canada continued to lead all other countries in the production of calcium metal; output in 1972 was 477,000 pounds valued at \$342,000. Canada was the

leading source of U.S. imports of calcium chloride.

France.-Planet-Wattohm S.A., a subsidiary of Compagnie de Mokta, produced calcium metal by the Pidgeon process.

<sup>&</sup>lt;sup>2</sup> Tank cars, freight equalized. <sup>3</sup> 225-pound drums, freight equalized.

#### **TECHNOLOGY**

Calcium deoxidation has given rise to a new family of more machinable steels for carburized worms and pinions. Fine-grain steels, developed by Republic Steel Corp. and sold under the trade name "Cal-DeOx" carbon and alloy gear steels, can improve cutter life 30% to 100%. Longitudinal mechanical properties and heat-treat response in annealing, and carburizing and hardening for the new steels are similar to alumi-

num-silicon deoxidized steel. However, Cal-DeOx steels are expected to have better transverse properties and fatigue resistance. One gear and axle plant already has increased productivity 25% by switching to the new steels.<sup>2</sup>

<sup>&</sup>lt;sup>2</sup> Materials Engineering. Calcium Deoxidized Steels Improve Gear Cutting. V. 77, No. 7, May 1973, pp. 48-50.



# Carbon Black

# By John L. Albright 1

Carbon black production and shipments increased during 1973, continuing the trend of the last 3 years. Domestic sales reached 3,314 million pounds, more than double the sales of 20 years earlier. Producers' stocks declined below the 1972 level. Texas produced more carbon black than any other State, and Louisiana maintained its position as the country's second largest producer. Total production was 3,500 million pounds. Increased furnace black production more than offset declines in channel black, and total production recorded a 9.3% increase over the 1972 output. Overall demand continued to increase, although channel black, Intermediate-Abrasion Furnace (ISAF) and Superabrasion Furnace (SAF) production and shipments decreased during 1973.

Shipments totaled 3,507 million pounds, including 192.7 million pounds exported. Domestic shipments increased for the third consecutive year and totaled 3,315 million pounds, surpassing the previous year's shipments by 5.3%. Exports, ending a 4-year downward trend, increased 81 million pounds over the 1972 low and totaled 193 million pounds in 1973. Imported carbon black and bone black totaled 8.7 million pounds and was supplied mainly by Canada, Indonesia, and West Germany.

Numerous industries utilized carbon black, but the largest volumes were consumed by ink, paint, plastic, and rubber products manufacturers. The rubber industry continued to be the largest consumer, and most carbon black went into the manufacture of highway vehicle tires and tubes. According to the Rubber Manufacturers Association,

Inc., 189.2 million motorcycle and passenger tires were produced in 1973, a decrease of 3.3% from the previous year; bus and truck tire production reached a record 34.3 million units, up 0.8% from that of 1972. Combined tire shipments during the year totaled 238.9 million units, including exports.

Carbon black producing plants operated at 82.9% capacity in 1973, the highest rate reported since 1968, and plant capacity increased 1.4% during 1973. Daily plant capacity has grown 4.5 million pounds during the last 10 years. More than three-fourths of the carbon black plant capacity is in Louisiana and Texas.

Average value of carbon black produced was 8.12 cents per pound in 1973, an increase of 0.36 cent per pound over the 1972 average. Recent annual average values had not exceeded 8 cents per pound. Carbon black production from liquid hydrocarbons and natural gas, with nearly 93% of the production from liquid hydrocarbons feedstocks, was up 1.4% from 1972 and 3.6% from 1971. Natural gas feedstock continued its downward trend; the volume of natural gas used declined 4,257 million cubic feet. Yield from natural gas declined 24.6 million pounds, from 5.02 pounds per thousand cubic feet in 1972 to 4.96 pounds per thousand cubic feet in 1973. More than 32 million additional gallons of liquid hydrocarbon feedstocks were utilized, and average yield of carbon black from this feedstock increased from 4.96 to 5.22 pounds per gallon.

<sup>&</sup>lt;sup>1</sup> Mineral specialist, Division of Fossil Fuels— Mineral Supply.

Table 1.—Salient statistics of carbon black produced from natural gas and liquid hydrocarbons in the United States

|                                       |                      | June                 |                      |                                         |                        |
|---------------------------------------|----------------------|----------------------|----------------------|-----------------------------------------|------------------------|
| (Thouse                               | ind pounds)          |                      |                      |                                         |                        |
|                                       | 1969                 | 1970                 | 1971                 | 1972                                    | 1973                   |
| Production:                           |                      |                      |                      |                                         | 1010                   |
| Channel process Furnace process Total | 132,471<br>2,830,790 | 113,548<br>2,817,605 | 46,354<br>2,970,781  | 22,378<br>3,178,731                     | 14,222                 |
|                                       | 2,963,261            | 2,931,153            |                      | 3,201,109                               | 3,485,719<br>3,499,941 |
| Shipments (including losses):         |                      |                      |                      | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 0,400,041              |
| Exports                               | 2,783,208<br>196,203 | 2,650,450<br>192,636 | 2,853,948<br>163,246 | 3,148,114<br>111,328                    | 3,314,646<br>192,665   |
| Producer stocks Dec. 31               | 2,979,411            | 2,843,086            | 3,017,194            | 3,259,442                               | 3,507,311              |
| Due de de                             | 208,020              | 296,087              | 296,028              | 237,695                                 | 230,325                |
| Average per poundcents_               | 215,120<br>7.26      | 222,271<br>7.58      | 232,049<br>7.69      | 248,361<br>7.76                         | 284,153<br>8.12        |

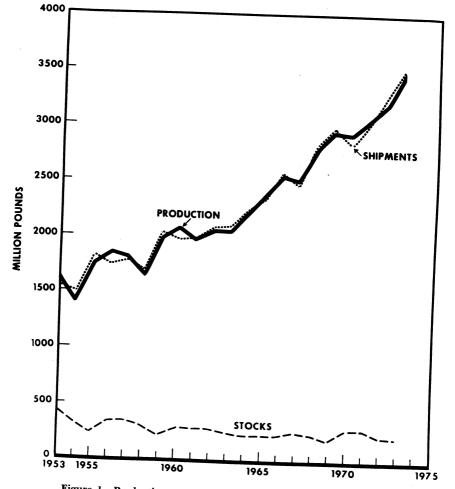



Figure 1.-Production, stocks, and shipments of carbon black.

# PRODUCTION AND CAPACITY

Production by State.—In 1973, carbon black production totaled 3,500 million pounds, an increase of 299 million pounds over the previous year's total. Louisiana and Texas plants produced an aggregate of 2,719 million pounds, 77.7% of the national total. The remaining carbon black production came from plants in Alabama, Arkansas, California, Kansas, Ohio, Oklahoma, and West Virginia.

Production by Grade and Type.—Seven major grades of carbon black, produced by the furnace combustion and thermal cracking methods, comprised 99.6% of the 1973 production. The remainder was produced by the channel black process, which continued its long-term diminishing pattern. Channel black production was 14 million pounds in 1973, down 36.5% from the previous year. The combined production of General-Purpose Furnace (GPF) and High-Abrasion Furnace (HAF) grades accounted for 60.5% of the furnace blacks produced. Semireinforcing Furnace (SRF) was the major grade of carbon black produced by the gas furnace process.

Number and Capacity of Plants .-Thirty-four carbon black plants continued to operate in the United States, unchanged from the previous year, and more than three-fourths of the installed plant capacity was in Louisiana and Texas. Although no new plants were constructed, capacities of existing plants were increased during the year. Cabot Corp. introduced new technology furnace blacks in 1973 to replace many of the darkest color channel blacks for specialty applications. The corporation announced plans to shut down its last channel black plant during 1974. Cabot's new product, Large-Particle Furnace (LPF), was developed as a replacement for regular thermal black. Significant capital expenditures were made by Cabot during 1973 for modernization of the Ville Platte, La., plant and for

expansions at the Franklin, La., installation. During 1973 Cabot added approximately 120 million pounds per year of furnace black plant capacity and reduced the capacity of thermal black by approximately 30 million pounds per year.

J. M. Huber Corp. continued expanding its Texas carbon black plants. A second thermal black unit was completed during 1973, at Borger, increasing the company's annual thermal capacity to 42 million pounds. Other improvements underway at the Baytown and Borger, Tex., facilities were scheduled for completion in mid-1974. At that time, the company's annual capacity of oil furnace blacks will be 333 million pounds, and the gas furnace black annual capacity will be 36 million pounds.

Phillips Petroleum Co. added 20 million pounds per year capacity to its Borger, Tex., carbon black plant. A further 47 million pounds of yearly capacity was authorized to be added to Phillip's Texas facilities, 27 million pounds at Borger and the remainder at Orange.

Materials Used and Yields.—In 1973, a total of 623.2 million gallons of liquid hydrocarbons was consumed in the manufacture of 3,254 million pounds of carbon black. There was 32 million gallons more of liquid hydrocarbons consumed in 1973 than in 1972. Yields averaged 5.22 pounds per gallon from liquid hydrocarbons, compared with 4.96 pounds per gallon in feedstock decreased Natural gas 4,257 million cubic feet to 49,682 million cubic feet, and the volume of carbon black produced from natural gas was 246 million pounds, a decline of 24.6 million pounds from the 1972 production. Yields from natural gas in 1973 averaged 4.96 pounds of carbon black per thousand cubic feet, a decrease of 1.2% from that of the previous year.

#### CONSUMPTION AND USES

Over 90% of the carbon black consumption was in rubber applications, and the rubber tire industry was the principal consumer. Carbon black is an essential ingredient in the manufacture of tires. Passenger car tires use 6 to 7 pounds of carbon black each, and average truck tires contain approximately 20 pounds of blacks. Domestic sales of carbon black increased in 1973 by

166.9 million pounds, or 5.3%. Aggregate sales enjoyed the third consecutive year of growth, as records were established in all major consuming sectors, except the paper industry. Sales for use in the manufacture of ink increased 1.8 million pounds and those to the rubber industry increased to 3,115 million pounds in 1973.

#### **STOCKS**

Yearend 1973 carbon black stocks were 230.3 million pounds, down 7.4 million pounds from the yearend 1972 inventory. Channel black stocks declined significantly from 7.7 million pounds to 2.4 million pounds, and furnace black inventories were 2.0 million pounds below the yearend 1972

level. Yearend 1973 stocks of GPF, HAF, and SRF grades of furnace blacks were slightly higher than stocks available at the end of 1972, but this increase was offset by reduced stocks of thermal, Fast-Extrusion Furnace (FEF), ISAF, and SAF grades of carbon blacks.

# FOREIGN TRADE

Carbon black exports totaled 192.7 million pounds, an increase of 81.4 million pounds over the 1972 total, and was the largest volume exported since 1969. Channel black accounted for less than 8% of the quantity exported but 31% of the \$24.1 million total value of exported carbon blacks. Average value of channel black exported in 1973 was 49.9 cents per pound, (46.3 cents per pound in 1972) and that of furnace black was 9.3 cents per pound (9.4 cents per pound in 1972).

The Netherlands, Canada, and Brazil purchased the largest consignments of U.S. produced carbon black, followed by France, Taiwan, and Japan. These six countries

accounted for more than 63% of U.S. exports. Carbon black imported during 1973 amounted to 8.7 million pounds plus 230 thousand pounds of bone black. This represented an impressive increase from the 1972 carbon black imports, but imported blacks accounted for only 0.2% of total supplies. More than 96% of the imported material originated in Canada, Indonesia, and West Germany. In 1973, imported carbon black was valued at an average 11.4 cents per pound compared with the average value of 12.5 cents per pound for exported carbon blacks; the 1972 values were 15.3 and 13.4 cents per pound respectively.

#### WORLD REVIEW

More than three-fourths of the known worldwide carbon black production was from Western European and North American plants. North America accounted for nearly half of the 1973 world production of carbon black. The Republic of South Africa was the only producer in Africa. Production information was sparse for Communist countries. The United States, Japan, and West Germany were the three largest producers, as shown in table 11.

In 1973, world demand was strong for carbon black, and plants operated at near capacity. Increased shipments were recorded by carbon black producers in most countries, as 1973 sales surpassed previous levels, and production and bulk storage installations were expanded to meet increasing demand. In Canada, Cancarb Ltd. completed the construction of the Medicine Hat, Alberta, thermal carbon black plant, with an initial capacity of 40 million pounds annually of pelletized medium thermal black.

New carbon black plants were inaugurated in Asia and the Middle East. Plans were finalized for a 25-million-pound-per-year plant to be built by Australian Carbon Black

Pty., Ltd. (ACB) near Port Dickson, Malaysia. Malaysian Government and private groups will hold 50% ownership in the new plant, and ACB will hold the remaining stock and will operate the facility. Iran Carbon Co.'s carbon black plant, the first in the Middle East, was under construction during 1973 at Akwaz, Iran. It is scheduled to begin production in 1974. Initially, the plant will have an annual capacity of 33 million pounds and will market most of its products domestically. After 4 years of operation, the Iranian plant's capacity is to be doubled, and exports will commence to consumers along the Indian Ocean, the Persian Gulf, and the Red Sea.

Cities Service Co. and Phillips Petroleum Co. acquired 50% interest each in the Sevalco Ltd. (formerly Philblack Ltd.), Bristol, England, carbon black plant. The Bristol facility had an annual capacity of 251 million pounds. During 1973 Continental Carbon Co. sold a license to a Taiwan firm to use its patent rights and technical knowledge in the manufacture of carbon black in that country.

#### **TECHNOLOGY**

Carbon black, a petrochemical, is an extremely fine soot, primarily carbon (90% to 99%), that contains some hydrogen and oxygen. Oil furnace black may also contain small amounts of sulfur. Properties of carbon black are determined largely by the process by which it is manufactured. Furnace black, which accounts for 99% of all carbon black produced, is made by three different processes—gas furnace, oil furnace, and thermal. Brief descriptions follow of these processes, the channel process, and the manufacture of lampblack and acetylene black.

Gas Furnace.—The gas furnace process is based on partial combustion of natural gas in refractory-lined furnaces. Carbon black is removed by flocculation and high-voltage electric precipitators. Yields of the gas furnace blacks range from 10% to 30% and are lowest for the smaller particle-size grades. Properties of gas furnace blacks can be modified to a degree by changing the ratio of air to gas. High-Modulus Furnace (HMF) and SRF grades are generally produced from gas.

Oil Furnace.—Liquid hydrocarbons are used in the oil furnace process. Natural gas is generally burned to furnish the heat of combustion, and atomized oil is introduced into the combustion zone to be burned to various grades of carbon black. Yields range from 35% to 65%, depending on the grade of black produced. Oil furnace grades are FEF, GPF, HAF, ISAF, and SAF.

The most desirable feedstock oil for furnace black plants has 0° to 4° API gravity, is low in sulfur, and is high in aromatics and olefins. It comes from near the "bottom of the refinery barrel" and is similar in many respects to residual fuel oil. Rising costs of natural gas have been a factor in the shift to greater use of liquid feedstocks and a decline in the use of natural gas as a source of carbon. Oil furnace processing has become highly flexible, supplementing channel blacks in most high-performance applications, notably passenger car tires. Over the past 2 decades, carbon black technology has centered on the oil furnace black process.

Thermal.—Unlike channel and furnace blacks, thermal blacks are produced by cracking hydrocarbons; that is, by separating carbon from the hydrogen and not by the

combustion of hydrocarbons. Thermal furnaces are built in a checkerboard brickwork pattern. Two refractory-lined furnaces, or generators, are used. One generator is heated using hydrogen as a fuel, while the other generator is charged with natural gas, which decomposes to produce thermal black and hydrogen. Hydrogen collected is used as fuel for the generator being heated. Yields of carbon black are primarily in the large particle sizes and range from 40% to 50%.

Channel Black.—Made by the oldest process, channel black is a product of incomplete combustion of natural gas. Small flames are impinged on cool surfaces, or channels, where carbon black is deposited and then scraped off as the channel moves back and forth over a scraper. Properties of channel black are varied by changes in burner tip design, distances from tip to channel, and the amount of air made available for combustion. The process is extraordinarily inefficient chemically. For rubber-reinforcing grades, the yield is only 5%; for high-color blacks of finer particle sizes, the yield shrinks to 1%. Low yields and rising gas prices have spurred the industry to develop other methods to make blacks.

Lampblacks.—Lampblacks are manufactured by slowly burning selected oils and tars in a restricted supply of air. These blacks are of large particle size, possess little reinforcing ability in rubber, and are low in jetness and coloring power. They are of value as tinting pigments in certain paints and lacquers. In most applications lampblacks have been replaced by carbon blacks.

Acetylene Black.—Acetylene blacks, produced by the thermal decomposition of acetylene, possess a high structural, or chaining, tendency. Their particle size is about 40 millimicrons. They provide high elastic modulus and high conductivity in rubber stocks.

Coal-derived carbon blacks have yet to be produced commercially, but several small companies are marketing carbon black extenders and fillers which are produced from anthracite and bituminous coals. These carbon black substitutes are used in rubber compounding and in the production of carbon paper, ink, paint, and plastic. Extenders-fillers from coal are being utilized in conjunction with furnace carbon blacks, replacing thermal carbon blacks.

Table 2.-Carbon black produced from natural gas and liquid hydrocarbons in the United States, by State (Thousand pounds)

|                                    | (The                                           | ousand pou                                   | nds)                 |                      |      |                                   |
|------------------------------------|------------------------------------------------|----------------------------------------------|----------------------|----------------------|------|-----------------------------------|
|                                    | 1969                                           | 1970                                         | 1971                 | 1972                 | 1973 | Change<br>from 1972<br>(percent)  |
| Louisiana Texas Other States Total | 1,045,902<br>1,442,033<br>475,326<br>2,963,261 | 982,416<br>1,395,851<br>552,886<br>2,931,153 | 1,326,153<br>612,250 | 1,425,874<br>697,258 |      | +12.0<br>+ 6.0<br>+ 12.0<br>+ 9.3 |

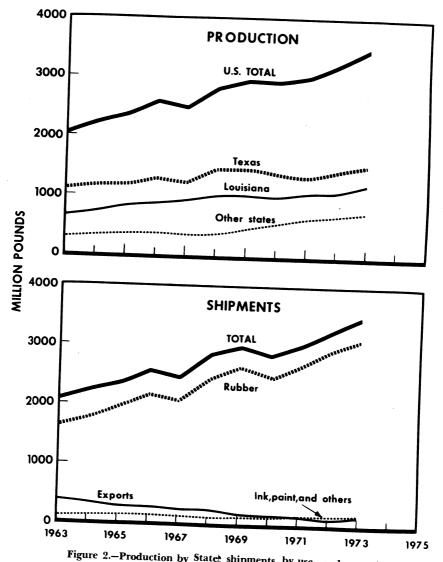



Figure 2.-Production by State, shipments by use. and exports.

Table 3.-Production and shipments of carbon black in the United States in 1973, by month and grade

(Thousand pounds)

|           |         |         |         |                               | (             |         |         |                  |         |           |
|-----------|---------|---------|---------|-------------------------------|---------------|---------|---------|------------------|---------|-----------|
|           | SRF 1   | GPF 2   | FEF 3   | HAF 4                         | SAF 5         | ISAF 6  | Thermal | Total<br>Furnace | Channel | Total     |
|           |         |         |         | PRODUCTION                    | rion 7        |         |         |                  |         |           |
| January   | 24,692  | 56,842  | 27,610  | 104,355                       | 3,432         | 32,419  | 24,270  | 273,620          | 1,105   | 274,725   |
| February  | 23,265  | 58,278  | 33,244  | 102,330                       | 2,742         | 27,485  | 22,758  | 270,102          | 1,259   | 271,361   |
| March     | 28,767  | 64,598  | 34,335  | 126,226                       | 2,169         | 30,961  | 28,281  | 315,337          | 1,500   | 316,837   |
| April     | 29,504  | 58,892  | 38,391  | 118,668                       | 2,756         | 30,576  | 25,582  | 304,369          | 1,355   | 305,724   |
| May       | 31,189  | 26,766  | 37,175  | 124,759                       | 3,510         | 26,521  | 29,090  | 309,010          | 1,348   | 310,358   |
| June      | 31,170  | 54,317  | 31,181  | 108,888                       | 3,701         | 26,390  | 24,879  | 280,526          | 1,218   | 281,744   |
| July      | 27,176  | 46,766  | 31,352  | 100,995                       | 1,888         | 26,830  | 25,220  | 260,227          | 1,217   | 261,444   |
| August    | 23,551  | 48,061  | 30,817  | 113,374                       | 3,427         | 21,260  | 26,934  | 267,424          | 1,285   | 268,709   |
| September | 25,446  | 61,052  | 27,027  | 118,652                       | 2,602         | 20,458  | 27,273  | 282,510          | 1,207   | 283,717   |
| October   | 26,016  | 61,726  | 33,787  | 130,409                       | 3,222         | 23,322  | 30,202  | 308,684          | 1,185   | 309,869   |
| November  | 28,429  | 59,897  | 36,017  | 128,649                       | 2,579         | 19,664  | 25,549  | 300,784          | 691     | 301,475   |
| December  | 27,241  | 66,663  | 31,380  | 136,294                       | 2,323         | 22,744  | 26,481  | 313,126          | 825     | 313,978   |
| Total     | 326,446 | 693,858 | 392,316 | 1,413,599                     | 34,351        | 308,630 | 316,519 | 3,485,719        | 14,222  | 3,499,941 |
|           |         |         | SHIP    | SHIPMENTS (including exports) | ading exports | 8 (     |         |                  |         |           |
| January   | 26,827  | 64,268  | 37,293  | 115,601                       | 4,207         | 32,908  | 27,753  | 308,857          | 1,462   | 310,319   |
| February  | 26,398  | 58,753  | 34,552  | 109,801                       | 2,787         | 32,300  | 23,457  | 288,048          | 1,425   | 289,473   |
| March     | 30,729  | 64,861  | 38,220  | 127,020                       | 3,115         | 32,402  | 29,121  | 325,468          | 1,931   | 327,399   |
| April     | 29,733  | 57,689  | 37,001  | 116,498                       | 3,152         | 29,130  | 25,195  | 298,398          | 1,657   | 300,055   |
| May       | 26,810  | 52,018  | 35,628  | 120,222                       | 3,048         | 28,769  | 28,018  | 294,513          | 2,186   | 596,699   |
| June June | 25,210  | 46,610  | 27,898  | 95,768                        | 3,426         | 23,712  | 26,283  | 248,907          | 1,661   | 250,568   |
| July      | 23,789  | 46,931  | 27,550  | 97,324                        | 2,580         | 24,781  | 25,726  | 248,681          | 1,384   | 250,065   |
| August    | 27,972  | 54,364  | 32,608  | 115,369                       | 2,382         | 22,343  | 27,280  | 282,318          | 1,453   | 283,771   |
| September | 23,506  | 53,953  | 27,187  | 114,510                       | 2,739         | 22,509  | 26,802  | 271,206          | 1,677   | 272,883   |
| October   | 28,982  | 67,623  | 37,204  | 138,105                       | 3,357         | 26,070  | 28,031  | 329,372          | 1,807   | 331,179   |
| November  | 28,937  | 61,789  | 34,907  | 131,028                       | 2,811         | 23,681  | 27,079  | 310,232          | 1,579   | 311,811   |
| December  | 140,47  | *07,00  | 074,00  | 140,100                       | 7,000         | 166,02  | 600,02  | 701,107          | 1,00,1  | 600,007   |

|                              | furnace).                    |
|------------------------------|------------------------------|
|                              | High-modulus                 |
|                              | (includes                    |
| furnace.                     | e furnace (includes          |
| <sup>1</sup> Semireinforcing | <sup>2</sup> General-purpose |

November -----Total -----

General-Purpose furnace (includes fugn-modulus infrince).

\* High-abrasion furnace.

\* High-abrasion furnace.

\* Superabrasion furnace.

\* Intermediate-abrasion furnace.

\* Intermediate-abrasion furnace.

\* Tompiled from reports of a survey firm and producing companies. Figures adjusted to agree with annual reports of individual producers.

\* Includes lossen.

Table 4.-Number and capacity of carbon black plants operated in the United States

|                                                                |                                                                                           | 197                  | 72                                       | plants<br>19                   |                                                    |             | y capacity |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------|------------------------------------------|--------------------------------|----------------------------------------------------|-------------|------------|
| State                                                          | County or Parish                                                                          | Chan-<br>nel         | Fur-<br>nace                             | Chan-<br>nel                   | Fur-<br>nace                                       | 1972        | 1973       |
| Texas                                                          | Aransas Carson Gaines Gray Harris Howard Hutchinson Montgomery Moore Orange Terry Wheeler |                      | 1<br><br>1<br>1<br>2<br>2<br>1<br>1<br>1 | <br>1<br>1<br><br><br><br><br> | 1<br><br>1<br>1<br>2<br>2<br>1<br>1<br>1<br>1<br>1 | - 5,075,602 | 5,213,511  |
| Total Texas                                                    |                                                                                           | 2                    | 12                                       | 2                              | 12                                                 | 5,075,602   | 5,213,511  |
| Louisiana                                                      | Avoyelles Calcasieu Evangeline Ouachita St. Mary West Baton Rouge                         |                      | 1<br>1<br>1<br>2<br>3<br>1               | <br><br><br>                   | 1<br>1<br>2<br>3<br>1                              | 3,870,108   | 3,851,837  |
| Total Louisia                                                  | na                                                                                        |                      | 9                                        |                                | 9                                                  | 3,870,108   | 3,851,837  |
| Alabama Arkansas California Kansas Ohio Oklahoma West Virginia | Russell Union Kern Grant {Lucas Washington Kay {Pleasants Marshall                        | <br><br><br><br><br> | 1<br>3<br>1<br>1<br>1<br>1               | <br><br><br><br><br>           | 1<br>1<br>3<br>1<br>1<br>1<br>1<br>1<br>1          | 2,465,849   | 2,507,833  |
| Total other S                                                  | states                                                                                    |                      | 11                                       |                                | 11                                                 | 2,465,849   | 2,507,833  |
| Total United                                                   | States                                                                                    | 2                    | 32                                       | 2                              | 32                                                 | 11,411,559  | 11,573,181 |

Table 5.-Carbon black and feedstock used in its production, by State

|                                                  | Louisiana | Texas           | Other<br>States <sup>1</sup> | Total               |
|--------------------------------------------------|-----------|-----------------|------------------------------|---------------------|
| 1972                                             |           |                 |                              |                     |
|                                                  |           |                 |                              | 0.001.100           |
| Carbon black production:                         | 1,077,977 | 1,425,874       | 697,258                      | 3,201,109           |
|                                                  | 78.843    | 117,963         | 51,555                       | 248,361<br>7.76     |
|                                                  | 7.31      | 8.27            | 7.39                         | 7.76                |
| Average valuecents per pound                     | 1.02      |                 |                              |                     |
| _ 10                                             | 00 500    | 24,720          | 5,656                        | 53, <del>9</del> 39 |
|                                                  | 23,563    | 4,356           | 1,460                        | 10,537              |
| Valuethousand dollars                            | 4,721     | 4,000           | -,                           |                     |
|                                                  | 20.01     | 17.62           | 25.81                        | 19.54               |
| cents per thousand cubic feet                    | 20.04     | 11.02           |                              |                     |
| al blook produced 5                              |           | 43,219          | 20,182                       | 270,976             |
| thousand pounds                                  | 207,575   | 40,410          | 20,2                         |                     |
|                                                  |           |                 | 105 450                      | 590,753             |
| Liquid hydrocarbons used:                        | 177,633   | 277,642         | 135,478                      | 48,028              |
| Liquid hydrocarbons used:  Totalthousand gallons | 14,051    | 22,572          | 11,405                       | 8.13                |
|                                                  | 7.91      | 8.13            | 8.41                         | 2,930,133           |
|                                                  | 870,402   | 1,382,655       | 677,076                      | 2,530,100           |
| Carbon black produced_thousand pounds_           |           |                 |                              |                     |
| 1973                                             |           |                 |                              |                     |
| a 11-de mandaration :                            |           | 107             | 781,106                      | 3,499,941           |
| Carbon black production: Totalthousand pounds    | 1,207,708 | 1,511,127       | 59.185                       | 284,153             |
| Valuethousand dollars                            | 96,824    | 128,144<br>8.48 | 7.58                         | 8.12                |
| Average valuecents per pound_                    | 8.02      | 8.48            | 1.00                         |                     |
|                                                  |           |                 |                              | 49,682              |
| Natural gas used: 2                              | 21,278    | 23,142          | 5,262                        | 12.018              |
|                                                  | 5,181     | 5,236           | 1,601                        | 12,010              |
| Valuethousand dominate                           | 0,202     |                 |                              | 24.19               |
|                                                  | 24.35     | 22.63           | 30.43                        | 24.15               |
| cents per thousand cubic leet                    |           |                 |                              | 040 409             |
| Carbon black produced 3                          | 182,107   | 42,878          | <b>21,43</b> 8               | 246,428             |
| thousand pounds                                  | 102,10    | •               |                              |                     |
| Liquid hydrocarbons used:                        | 100 500   | 295,358         | 141,301                      | 623,23              |
|                                                  | 186,577   | 25,989          | 14,158                       | 56,29               |
| thousand udilais                                 | 16,149    | 8.80            | 10.02                        | 9.0                 |
|                                                  | 8.66      | 1,468,249       | 759,668                      | 3,253,51            |
| Carbon black produced_thousand pounds            | 1,025,601 | 1,400,249       | ,                            |                     |

<sup>&</sup>lt;sup>1</sup> Arkansas, California, Kansas, Ohio, Oklahoma, and West Virginia.

Table 6.-Natural gas and liquid hydrocarbons used in manufacturing carbon black in the United States and average yield

|                                                                                                            | 1969             | 1970             | 1971             | 1972                    | 1973             |
|------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|-------------------------|------------------|
| Natural gas used 1million cubic feet                                                                       | 98,251           | 85,884           | 63,699           | 53,939                  | 49,682           |
| Natural gas used                                                                                           | 4.64             | 4.44             | 5.06             | 5.02                    | 4.96             |
| Average value of natural gas used per                                                                      | 14.88<br>524,370 | 16.45<br>523,914 | 17.51<br>547,704 | 19.54<br>590,753        | 24.19<br>623,236 |
| Liquid hydrocarbons usedthousand gallons_<br>Average yield of carbon black per gallon<br>pounds            | 4.78             | 4.87             | 4.92             | 53,939<br>5.02<br>19.54 | 5.22             |
| Average value of liquid hydrocarbons used per galloncents  Number of producers reporting  Number of plants | 7.23<br>9<br>38  | 7.35<br>9<br>37  | 7.96<br>9<br>37  | 8                       | 9.03<br>8<br>34  |

<sup>&</sup>lt;sup>1</sup> Includes natural gas used to enrich liquid hydrocarbons.

<sup>&</sup>lt;sup>2</sup> Includes natural gas used to enrich liquid hydrocarbons.

<sup>&</sup>lt;sup>3</sup> Produced from natural gas used as feedstock.

Table 7.—Sales of carbon black for domestic consumption in the United States, by use (Thousand pounds)

| Use                                                 | 1969                                                          | 1970   | 1971                                                          | 1972                                                          | 1973   | Change<br>from 1972<br>(percent)                     |
|-----------------------------------------------------|---------------------------------------------------------------|--------|---------------------------------------------------------------|---------------------------------------------------------------|--------|------------------------------------------------------|
| Paint Paper Rubber Miscellaneous <sup>1</sup> Total | 73,077<br>17,711<br>5,668<br>2,616,166<br>65,327<br>2,777,949 | 71,454 | 75,201<br>18,693<br>3,767<br>2,678,151<br>77,715<br>2,853,527 | 82,532<br>21,408<br>4,225<br>2,953,779<br>84,764<br>3,146,708 | 88,786 | $+2.22 \\ +1.21 \\ -0.31 \\ +5.44 \\ +4.74 \\ +5.30$ |

<sup>&</sup>lt;sup>1</sup> Includes chemical, food, plastics, and metallurgical.

Table 8.-Producers' stocks of channel and furnace-type blacks in the United States, December 31

(Thousand pounds)

| Year                                 | SRF                                            | 773.675                               |        |        | Furnac                                         | e     |                                                |                                      |         |                                    |                                                     |
|--------------------------------------|------------------------------------------------|---------------------------------------|--------|--------|------------------------------------------------|-------|------------------------------------------------|--------------------------------------|---------|------------------------------------|-----------------------------------------------------|
|                                      | - SRF                                          | HMF                                   | GPF    | FEF    | HAF                                            | SAF   | ISAF                                           | Thermal                              | Total   | Channe                             | 1 70-4 1                                            |
| 1969<br>1970<br>1971<br>1972<br>1973 | 24,478<br>37,875<br>33,551<br>24,309<br>27,215 | 2,518<br>2,048<br>3,158<br>(¹)<br>(¹) | 35,885 | 27,619 | 48,725<br>64,106<br>68,798<br>83,446<br>92,063 | 6.417 | 38,712<br>50,513<br>42,870<br>36,558<br>25,586 | 28,044<br>42,119<br>67,987<br>17,100 | 189,547 | 18,473<br>22,059<br>9,743<br>7,677 | 208,020<br>296,087<br>296,028<br>237,695<br>230,325 |

Table 9.-U.S. exports of carbon black, by country

(Thousand pounds and thousand dollars)

|                                         | 1971                |                  | 1972                                    | 2                   | 1973                |                       |
|-----------------------------------------|---------------------|------------------|-----------------------------------------|---------------------|---------------------|-----------------------|
| Country                                 | Quantity            | Value            | Quantity                                | Value               | Quantity            | Value                 |
| T. 41. America                          |                     |                  |                                         |                     |                     | 4 0 10                |
| North America:<br>Canada                | 26,736              | 2,472            | 19,735                                  | 2,057               | 26,226              | 1,942<br>1 <b>6</b> 1 |
| Guatemala                               | 396                 | 42               | 148                                     | $^{17}_3$           | $1,549 \\ 1,391$    | 148                   |
| Jamaica                                 | 848                 | $73 \\ 247$      | $\substack{23\\1,662}$                  | 273                 | 4,303               | 342                   |
| Mexico                                  | $\frac{2,080}{447}$ | 48               | 515                                     | 49                  | 401                 | 48                    |
| Other                                   |                     | 2,882            | 22,083                                  | 2,399               | 33,870              | 2,641                 |
| Total                                   | 30,507              | 2,882            | 22,000                                  | 2,000               | 00,010              |                       |
| outh America:                           | 3,412               | 433              | 1,425                                   | 248                 | 1,553               | 198                   |
| Argentina<br>Brazil                     | 6,423               | 689              | 3,553                                   | 385                 | 24,074              | 2,178                 |
| Chile                                   | 433                 | 69               | 318                                     | 54                  | 446                 | 61<br>79              |
| Colombia                                | 529                 | 97               | 471                                     | $\frac{77}{29}$     | 543<br>276          | 40                    |
| Peru                                    | 192                 | $\frac{27}{100}$ | 250<br>809                              | 97                  | 670                 | 74                    |
| Venezuela                               | 941<br>183          | 24               | 55                                      | 9                   | 188                 | 21                    |
| Other                                   |                     | 1,439            | 6,881                                   | 899                 | 27,750              | 2,651                 |
| Total                                   | 12,113              | 1,400            | 0,001                                   |                     |                     |                       |
| Europe:                                 | 81                  | 21               | 140                                     | 43                  | 145                 | 17                    |
| Austria                                 | 2,143               | 233              | 2,931                                   | 278                 | 1,900               | 242                   |
| Belgium-Luxembourg<br>Denmark           | 823                 | 130              | 954                                     | 180                 | 596                 | 125                   |
| Finland                                 | 163                 | 27               | 302                                     | 33                  | 227                 | 128<br>1,661          |
| Eugenee                                 | 16,514              | 1,900            | 13,815                                  | $\frac{1,558}{792}$ | $14,444 \\ 9,380$   | 929                   |
| Germany West                            | 6,997               | 878              | 7,252 $4,212$                           | 552                 | 4,142               | 735                   |
| 1Laiv                                   | 5,894               | 830<br>5,550     | r 15,898                                | r 2,434             | 30,436              | 5,179                 |
| Netherlands                             | 43,622<br>874       | 82               | 433                                     | 42                  | 281                 | 27                    |
| Norway<br>Portugal                      | 253                 | 39               | 278                                     | 43                  | 500                 | 63                    |
| Romania                                 |                     |                  | . ==                                    |                     | 522                 | 87<br>347             |
| Spain                                   | 2,295               | 274              | 1,961                                   | $\frac{261}{24}$    | $\frac{2,741}{438}$ | 3                     |
| Sweden                                  | 1,006               | 89<br>93         | $\frac{192}{955}$                       | 103                 | 724                 | 98                    |
| Switzerland                             | 986<br>6,416        | 989              | r 5,535                                 | r 904               | 9,411               | 1,33                  |
| United Kingdom                          | 99                  | 26               | 148                                     | 42                  | 328                 | 75                    |
| Yugoslavia<br>Other                     | 168                 | 25               | 71                                      | 14                  | 14                  | 3                     |
| Total                                   | 88,334              | 11,186           | r 55,077                                | г 7,303             | 76,229              | 11,080                |
| Africa:                                 |                     |                  |                                         |                     | 73                  |                       |
| Angola                                  | 13                  | 3                | $\begin{array}{c} 1 \\ 940 \end{array}$ | 1<br>115            | 2,262               | 24                    |
| Ghana                                   | 1,089               | 100<br>56        | 748                                     | 67                  | 1.173               | 9                     |
| Kenya                                   | 631<br>5,939        | 600              | 4,431                                   | 424                 | 5,148               | 62                    |
| South Africa, Republic of _<br>Tanzania | 168                 | 16               | 51                                      | 6                   | 350                 | 3                     |
| Other                                   | 112                 | 12               | 55                                      | 7                   | 136                 | 2                     |
| Total                                   | 7,952               | 787              | 6,226                                   | 620                 | 9,142               | 1,03                  |
| Asia:                                   |                     |                  |                                         |                     | 110                 | -                     |
| Cambodia                                | . ==                |                  | 115                                     | 10<br>34            | $\frac{110}{371}$   | 1<br>5                |
| Hong Kong                               | 306                 | 42<br>146        | $\frac{202}{1.988}$                     | 233                 | 619                 | Š                     |
| India                                   | 912<br>185          | 15               | 195                                     | 16                  | 252                 | 2                     |
| Indonesia                               | 573                 | 50               | 91                                      | 15                  | 55                  | 1                     |
| Iran<br>Israel                          | 324                 | 38               | 468                                     | 51                  | 431                 | 0.1                   |
| Japan                                   | 8,828               | 2,335            | 7,996                                   | 2,117               | 13,706              | 3,1<br>41             |
| Korea, Republic of                      | 480                 | 95               | 532                                     | 120                 | 4,019<br>136        |                       |
| Lebanon                                 | 119                 | 11               | 118<br>246                              | 11<br>19            | 155                 |                       |
| Malaysia                                | 136<br>209          | 11<br>18         | 226                                     | 18                  |                     | 2                     |
| Pakistan                                | 637                 | 72               | 625                                     | 59                  |                     | 1                     |
| Philippines<br>Singapore                | 197                 | 28               | 294                                     | 32                  |                     | 1                     |
| South Vietnam                           | 725                 | 88               | 1,071                                   | 93                  |                     | 1                     |
| Taiwan                                  | 796                 | 196              | 748                                     | 159                 |                     | 1,3                   |
| Thailand                                | 1,050               | 92               | 634<br>100                              | 58<br>14            |                     | •                     |
| Turkey                                  | 687<br>2            | 66<br>6          | 100                                     | 3                   |                     |                       |
| Other                                   | 16,166              | 3,309            | 15,668                                  | 3,062               |                     | 6,0                   |
| Total                                   | 10,100              | 0,000            | 10,000                                  |                     |                     |                       |
| Oceania:                                | 6,074               | 635              | 3,523                                   | 40'                 |                     | 4                     |
| Australia<br>New Zealand                | 2,100               | 187              | 1,780                                   | 160                 |                     | 1                     |
| 11CM NCG1011G                           |                     | 822              | 5,303                                   | 578                 | 5,223               | 6                     |
| Total                                   | 8,174               | 022              | 0,000                                   |                     |                     | 24,0                  |

r Revised.

Table 10.-U.S. exports of carbon black in 1973, by month

(Thousand pounds and thousand dollars)

| Month                                                                                                | Chan                                                                                             | nel                                                                                | Furr                                                                                                               | ace                                                                                                  | Tot                                                                                                                 | al                                                                                                       |
|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Month                                                                                                | Quantity                                                                                         | Value                                                                              | Quantity                                                                                                           | Value                                                                                                | Quantity                                                                                                            | Value                                                                                                    |
| January February February March April May June July August September October November December Total | 690<br>2,492<br>1,648<br>1,281<br>1,700<br>1,110<br>730<br>1,110<br>784<br>990<br>1,143<br>1,362 | 414<br>633<br>708<br>650<br>1,063<br>473<br>373<br>765<br>519<br>666<br>450<br>738 | 8,244<br>8,517<br>10,139<br>13,323<br>14,060<br>11,488<br>18,741<br>14,872<br>22,730<br>22,747<br>16,109<br>17,255 | 918<br>876<br>1,067<br>1,356<br>1,576<br>1,296<br>1,067<br>1,692<br>1,623<br>2,131<br>1,431<br>1,571 | 8,934<br>11,009<br>11,787<br>14,554<br>15,760<br>12,598<br>19,471<br>15,482<br>23,464<br>23,737<br>17,252<br>18,617 | 1,332<br>1,509<br>1,775<br>2,006<br>2,639<br>1,769<br>1,440<br>2,457<br>2,142<br>2,797<br>1,881<br>2,809 |

Table 11.—Carbon black: World production by country (Million pounds)

| Country 1                  | 1971    | 1972             | 1973        |
|----------------------------|---------|------------------|-------------|
| Argentina e                |         |                  | 10.0        |
| Austrana e                 | 66      | 66               | 66          |
| Belgium e                  | 116     | 128              | 131         |
| Brazil                     | 4       | 4                | 101         |
| Canada e                   | 126     | e 132            | e 148       |
|                            | 186     | 196              | 258         |
| Szechoslovakia e           | 40      | 45               | 50          |
|                            | 22      | 33               | 33          |
| dermany, west              | 345     | 350              | e 353       |
|                            | 578     | 582              | 641         |
|                            | 9       | 9                | 10          |
|                            | 84      | e 88             | e 100       |
|                            | 1       | e g              | e 3         |
|                            | 276     | 288              | e 320       |
| forea, Republic of         | 679     | 751              | 891         |
|                            | r 17    | 19               | 29          |
| tetherlands                | 70      | $\overline{74}$  | 74          |
| lomania                    | 204     | 206              | e 209       |
| outh Africa, Republic of e | r 165   | 163              | e 163       |
| pam                        | 62      | 66               | 66          |
| weden e                    | r 110   | er 110           | 111         |
| aiwan                      | 45      | 50               | 54          |
| nited States               | (2)     | ( <sup>2</sup> ) | e (2)       |
| nited States               | 480     | 450              | e 463       |
| enezuela e                 | 3,017   | 3,201            | 3,500       |
| nacal'                     | 16      | 16               | 3,500<br>18 |
|                            | 35      | 29               | e 31        |
| Total                      | r 6,753 |                  |             |
| e Estimate n.D.            | 0,100   | 7,059            | 7,721       |

e Estimate. P Preliminary. r Revised.

In addition to the countries listed, the People's Republic of China, Norway, Poland, Turkey and the U.S.S.R. produce carbon black, but available information is inadequate to make reliable Less than ½ unit.

# Cement

# By Robert E. Ela 1

Portland cement shipments from plants in the United States and Puerto Rico continued at record levels for the third consecutive year to attain a new high of 86,399,000 tons in 1973, surpassing the 1972 record by 6%. Mill value rose to \$1.89 billion, an increase of 15%, reflecting a unit increase of \$1.57 per ton.

The supply and demand relationship changed dramatically in many parts of the country. Contributing factors were curtailed production due to previous closings of older and uneconomical plants, minor fuel shortages, shifting markets, labor disputes, severe weather conditions, and spring floods. The construction industry which represents virtually the entire market for the cement industry reached an historical milestone in 1973 when over \$100 billion in contracts were awarded.

During the year increased volume in industrial, commercial, and government construction projects, such as mass transit, more than offset a decline in residential and highway construction. Housing starts declined because of increased lumber prices,

labor costs, and high interest rates.

The cement industry, which only recently became highly dependent on oil and natural gas for its fuel requirements, was now returning to coal as a means of assuring uninterrupted production. Many companies were initiating plans to secure adequate supplies of fuel for existing systems.

Two companies changed corporate names. American Cement Corp. was changed to Amcord, Inc., and Penn Dixie Cement Corp. was changed to Penn Dixie Industries. Columbia Cement Company Division of PPG Industries, Inc., was sold to Filtrol Corp. in mid-1973. The sale involved the plants at Bellingham, Wash., and Zanesville, Ohio, and all distribution facilities. The cement plant at Barberton, Ohio, was not included in the sale and continued to operate as a unit of the Chemical Division of PPG Industries, Inc.

Statistical data in some of the tabulations are arranged by cement districts. A cement district represents either a State, a segment

Table 1.-Salient cement statistics (Thousand short tons and thousand dollars)

| (Thousand short                                                                                                                                                                                    | Wild wird                                                                               | •220                            |                                             |                                                                                             |                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                    | 1969                                                                                    | 1970                            | 1971                                        | 1972                                                                                        | 1973                                                                                     |
| United States: 1 Production 2 Shipments from mills 23 Value 234 Average value per ton 2 Stocks Dec. 31 at mills 5 Exports 7 Imports for consumption 7 Consumption, apparent r 67 World: Production | 76,693<br>78,637<br>\$1,354,033<br>\$17.22<br>7,129<br>67<br>1,708<br>80,279<br>598,825 | 7,574<br>123<br>2,473<br>75,882 | \$19.01<br>• 6,425<br>84<br>3,057<br>81,498 | 82,597<br>83,336<br>\$1,724,140<br>\$20.69<br>r 7,036<br>83<br>4,851<br>84,952<br>r 728,601 | 85,438<br>88,467<br>\$1,970,602<br>\$22.27<br>5,511<br>268<br>6,644<br>90,479<br>780,344 |

<sup>&</sup>lt;sup>1</sup> Statistical specialist, Division of Nonmetallic Minerals—Mineral Supply.

r Revised.

Excludes Puerto Rico.

Includes portland, masonry, and slag cement (1969). Excludes slag cement (1970-73).

Includes imported cement shipped by domestic producers only.

Value received, f.o.b. mill, excluding cost of containers.

Value received, f.o.b. mill, excluding cost of guantity shipped plus imports minus exports.

Quantity shipped plus imports minus exports.

Adjusted to eliminate duplication of import (clinker and cement) shipped by domestic cement manufacturers.

of a State, or a group of States not necessarily contiguous. The States of California, New York, and Pennsylvania are further divided to provide additional marketing information. The divisions for these States are as follows:

California, Northern.—Points north and west of the northern borders of San Luis Obispo and Kern Counties and the western borders of Inyo and Mono Counties. California, Southern.—All other counties in California.

New York, Western.—All counties west of a dividing line following the eastern boundaries of St. Lawrence, Lewis, Oneida, Madison, Chenango, and Broome Counties.

New York, Eastern.—All counties east of the above dividing line.

New York, Metropolitan.—The five counties of New York City, (Bronx, Kings, New York, Queens, and Richmond) plus Westchester, Rockland, Suffolk, and Nassau Counties.

Pennsylvania, Eastern.—All counties east of the eastern boundaries of Potter, Clinton, Centre, Huntingdon, and Franklin Counties.

Pennsylvania, Western.—All other counties in Pennsylvania.

Legislation and Government Programs.-On November 27 the Cost of Living Council (CLC) exempted from price and wage controls (under the Economic Stabilization Program) manufacturers' sales of cement and wages paid to workers in the cement industry. The exemption from price controls applied to cements listed in Part 9 of the 1973 Annual Book of ASTM Standards as follows: C-150 (portland cement); C-10 (natural cement); C-91 (masonry cement); C-595 (blended hydraulic cements); and expansive, calcium aluminate, oil well, plastic, and regulated-set cements. The CLC received commitments that production capacity would be increased expeditiously to alleviate developing supply problems.

The United Cement, Lime, and Gypsum Workers International Union and the Cement Employers Association agreed to establish a series of joint meetings to consider and discuss labor relation problems in the cement industry.

Public Law 93-87, an act to authorize appropriations for the construction of certain highways in accordance with title 23 of the United States Code and for other purposes, was passed on August 13, 1973.

In a suit brought by the Portland Cement Association the United States Court of Appeals for the District of Columbia Circuit ruled that Environmental Protection Agency (EPA) procedures left the question of achievability in doubt and precluded cement manufacturers from demonstrating that the standards were not achievable. The EPA, recognizing that emission of dust in excess of standards will occur for short periods during startup, shutdown, and equipment malfunctions, amended its air pollution standards for new and substantially modified cement plants.

On September 7, 1973, EPA published in the Federal Register, volume 38, No. 173, a notice of proposed rulemaking for the cement manufacturing category relating to effluent limitations guidelines for existing sources and standards of performance and pretreatment standards for new sources. The EPA also published a document entitled "Economic Analysis of Proposed Effluent Guidelines: Cement Industry." The document was available in limited quantities through EPA.

The Federal Trade Commission (FTC) approved an agreement by OKC Corp. to sell the ready-mix concrete and building materials operation of Jahncke Service, Inc. The remaining assets of Jahncke will be sold in compliance with the FTC divestiture order. Under the terms of an FTC consent order issued in June 1972, Lehigh Portland Cement Co. sold its wholly-owned subsidiary, Virginia Concrete Co., and had until June 1974 to select the divestiture of either its Miami, Fla., cement operation or certain Florida ready-mixed concrete operations. The divestiture of Botsford Ready-Mix Co. was also completed in accordance with the consent agreement entered into by the Missouri Portland Cement Co. and the FTC.

Environmental Activities.—Millions of dollars continued to be spent on advanced pollution control equipment to bring existing plants into full compliance with the National Environmental Policy Act (PL 91–109) signed into law January 1970.

Alpha Portland Industries, Inc., was installing additional pollution control equipment at its St. Louis, Mo., plant and installed an electrostatic precipitator at its Jamesville, N.Y., plant. Lone Star Industries, Inc., completed a new \$3.5 million air quality control installation at its New Orleans, La., plant. Louisville Cement Co. placed a new electrostatic precipitator into

service at Bessemer, Pa., to bring that plant's kilns into compliance with new emissions standards. Additional dust collection equipment was being installed by Medusa Cement Co. Div., Medusa Corp., at its York, Pa., and Charlevoix, Mich., plants. Improvement projects were begun by Martin Marietta Corp. at the Davenport, Iowa, and Calera, Ala., plants. Ideal Cement Co. Div., Ideal Basic Industries, Inc., installed new electrostatic precipitators at the Trident, Mont., and Devil's Slide, Utah, plants and at the existing Portland, Colo., plant. Projects were underway to upgrade precipitator performance at the Ada, Okla., and Mobile, Ala., plants.

Many companies were financing pollution control facilities through tax-exempt bonds and securities issued by municipalities and local government agencies. Companies will repay the loans under a lease arrangement with the local governments. These bond issues represented an effective means to raise capital at relatively low cost for essential but nonproductive equipment.

The city of Metropolis, Ill., authorized the issuance of pollution control and industrial development bonds to finance a portion of the expansion program by Missouri Portland Cement Co. at Joppa, Ill. Dundee Cement Co. negotiated the sale of \$7 mil-

lion of tax-exempt bonds to finance two major pollution control projects at the Dundee, Mich., plant. Cost of installation of pollution control equipment by Universal Atlas Cement Div., United States Steel Corp. at its new Leeds, Ala., plant will be financed by a \$4.5 million environmental improvement revenue bond issued by the Industrial Development Board of the city of Leeds.

Amcord, Inc., was the defendant in litigation and in environmental control proceedings involving emissions from some of the company's cement plants.

Ideal Cement Co. Div., Ideal Basic Industries, Inc., phased out operations at its 60year-old San Juan Bautista, Calif., plant and abandoned plans to construct a new plant at San Juan due to environmental problems. The company cited the attitudes toward construction, reflected by California court decisions, and voter response to environmental matters as having an influence that would restrict construction activity for the short range and have an adverse effect on the long range as well. Inflation and environmental design changes for the proposed new plant boosted the original estimated cost of \$37 million to \$48 million. The quarry and plant site will be rehabilitated following demolition of the old plant.

### DOMESTIC PRODUCTION

### PORTLAND CEMENT

The cement industry, in spite of operating clinker-producing plants at near capacity levels to meet the escalating demand for cement, had to import recordbreaking quantities of cement and clinker to meet domestic requirements.

Manufacturers in the United States and Puerto Rico produced 78.2 million tons of clinker, imported 2.7 million tons of clinker, and used stockpiled clinker to grind an alltime record 83.5 million tons of portland cement and 4 million tons of masonry cement.

Eight companies accounted for 41% of the total clinker and portland cement produced in the United States and Puerto Rico. They were: Amcord, Inc.; General Portland, Inc.; Ideal Cement Co. Div., Ideal Basic Industries, Inc.; Kaiser Cement & Gypsum Corp.; Lone Star Industries, Inc.; Marquette Cement Mfg. Co.; Martin Marietta Cement, Martin Marietta Corp.; and Universal Atlas

Cement Div., United States Steel Corp.

Production Capacity.—The cement industry in the United States and Puerto Rico was capable of grinding 100.4 million tons of cement annually, based on the fineness necessary to grind Type I and II cement, and making allowances for downtime required for maintenance.

By yearend 471 kilns were operating at 166 plants, including eight white cement plants, in 41 States and Puerto Rico with an estimated 24-hour daily clinker production capacity of 274,000 tons. An average of 60 days downtime was reported for kiln maintenance and replacing refractory brick. Based on 305 days of operation, the apparent annual clinker production capacity of the industry was 84 million tons. The industry operated at 93.5% of its apparent capacity.

In addition to 166 clinker-producing plants, seven plants had only grinding mills operating on imported, purchased, or interplant transfers of clinker.

Table 2.-Finished portland cement produced, shipped, and in stock in the United States, by district 2

| • |           | cks          | ills        | sand                  | tons)       | 1973               |                                           | 354                        | 181                                  | 146                         | 215      | 221                    | 109      | 3                  | 80             | 45                        | 100                               | 29             | 124    | 267                   | 163                | 177                               | 116    | 192               | 192                 | 39       | 231         | 42          | 45                | 5,158              | =        |
|---|-----------|--------------|-------------|-----------------------|-------------|--------------------|-------------------------------------------|----------------------------|--------------------------------------|-----------------------------|----------|------------------------|----------|--------------------|----------------|---------------------------|-----------------------------------|----------------|--------|-----------------------|--------------------|-----------------------------------|--------|-------------------|---------------------|----------|-------------|-------------|-------------------|--------------------|----------|
|   |           | Sto          | atmills     | (thousand             | short       | 1972               |                                           | 464<br>397                 | 225                                  | 186                         | 263      | 372                    | 130      |                    | 182            | 95                        | 152                               | 8              | 188    | 418                   | 232                | 249                               | 100    | 225               | 169                 | 44       | 306         | 27          | 39                | 6,699              |          |
|   |           |              | Value       | Average               | short       | ton                | 690.40                                    | 20.77                      | 18.12                                | 20.81                       | 19.78    | 20.46                  | 24.78    |                    | 23.64          | 26.67                     | 23.30                             | 23.91          | 22.39  | 21.79                 | 20.82              | 22.76                             | 21.45  | 24.09             | 22.32               | 21.97    | 21.66       | 29.17       | 19.98             | 23.95              |          |
|   |           | 1973         | Va          | Total                 | (thou-      | (enma              | \$115 855                                 | 128,998                    | 42,655                               | 73,362                      | 123,442  | 74,523                 | 42,402   | 610                | 28,124         | 72,666                    | 55,820                            | 40,059         | 59.574 | 99,858                | 42,172             | 189.368                           | 22,437 | 92,861            | 100,02              | 64 953   | 136,939     | 13,213      | 41,203<br>851 405 | 38,782             |          |
|   | nts       |              |             | Quantity<br>(thousand | short tons) |                    | 5,679                                     | 6,210                      | 2,354                                | 3,456                       | 6,242    | 3,642                  | 1,711    | 2.446              | 1,201          | 2,725                     | 2,396                             | 1,712          | 2,688  | 4,582                 | 2,026              | 8,320                             | 1,046  | 3,854             | *01.1<br>00.0       | 3,075    | 6,321       | 453<br>069  |                   | 1,619              | 000 00   |
|   | Shipments |              |             | ē                     | short       | поп                | \$19.15                                   | 19.29                      | 19.85                                | 19.53                       | 18.88    | 21.08                  | 21.93    | 21.63              | 21.66          | 24.65                     | 20.58                             | 21.40          | 20.19  | 18.91                 | 19.43              | 21.97                             | 21.43  | 21.67             | 22,15               | 20.08    | 20.06       | 16.32       | 20.27             | 22.31              | 20.81    |
|   | 0.0       | 1972         | Value       | Total                 | (thousands) |                    | \$97,391                                  | 114,018                    | 49,371                               | 57,953                      | 61,410   | 33,124                 | 37,176   | 53,398             | 27,286         | 59,773                    | 35,045                            | 34,001         | 49,635 | 35.432                | 49,734             | 171,642                           | 79.276 | 26,848            | 18,914              | 57,320   | 124,988     | 31,756      | 1,620,046         | 33,732             | .653.779 |
|   |           |              | Quantity _  | (thousand             | canor coms) |                    | 5,086                                     | 2,302                      | 2,487                                | 2,968<br>5,901              | 3,158    | 1,571                  | 7,030    | 2,469              | 1,260<br>9.495 | 2,360                     | 1,707                             | 1,589          | 4,408  | 1,889                 | 2,560              | 946                               | 3,560  | 1,239             | 854                 | 2,855    | 402         | 1,946       | 79,920            | 1,512              | 81,432   |
|   | :         | Froduction 3 | short tons) |                       | 1973        |                    | 5,578                                     | 2,427                      | 2,558                                | 6.007                       | 3,756    | 1,531                  |          | 2,525              | 2,149          | 2,404                     | 1,479                             | 1,028<br>9,590 | 4,359  | 2,036                 | 2,746              | 1.047                             | 3,441  | 1,462             | 908                 | 6.705    | 467         | 2,060       | 83,476            | WAT OF             | 99,476   |
|   | ,         | Frod         | shor        |                       | 1972        | 1                  | 5,241<br>6,028                            | 2,302                      | 2,52<br>8,52<br>8,52<br>8,52<br>8,53 | 6,181                       | 3,466    | 1,540                  |          | 1 980              | 2,142          | 2,419                     | 1,602                             | 2.491          | 4,329  | 1,986                 | 7,884              | 926                               | 3,145  | 1,426             | 2 783               | 6,609    | 379         | 1,959       | 80,744<br>NA      | 80 744             | F#1 (00  |
|   | Plants    | active       | during      | - 1                   | 1972 1973   | 01                 | 14<br>14<br>14                            |                            | 4 00<br>4 00                         | 10 9                        | o .      | 9                      | re<br>re |                    | 4              | <u>-</u> 1                | 0 <del>4</del>                    | 5              | 1 2    | o re                  | 18                 | 7                                 |        | # 65<br># 65      | , ro                | <b>8</b> | 01 c        |             | A NA              | 4 178              |          |
|   |           | District     |             |                       |             | New York and Maine | Eastern Pennsylvania Western Pennsylvania | Maryland and West Virginia | Ohio<br>Mishings                     | Indiana, Kentucky Wissonsia | Illinois | Virginia North Country | Carolina | Georgia<br>Florido | Alabama        | Louisiana and Mississinni | Minnesota, South Dakota, Nebraska | -              | Kansas | Oklahoma and Arkansas | Wyoming Management | Colorado, Arizona III-ah Nom Mani | ,      | Oregon and Nevada | Southour California | Hawaii   | Puerto Rico | r average 4 | 10                | Total or average 4 |          |

Revised. NA Not available.
Includes Puerbo Rico.
Includes Puerbo Rico.
Includes Puerbo Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.
Includes Hosto Rico.

Table 3.-Clinker capacity and production in the United States,1 by district, as of December 31, 1973

|                                            | A   | ctive | plants | 2                | Num-        | Daily<br>capac-<br>ity           | Aver-<br>age<br>number             | Appar-<br>ent <sup>3</sup><br>annual<br>capac- | Pro-<br>duc-<br>tion 4           | Per-          |
|--------------------------------------------|-----|-------|--------|------------------|-------------|----------------------------------|------------------------------------|------------------------------------------------|----------------------------------|---------------|
| District _                                 |     | Dry   | Both   | Total            | of<br>kilns | (thou-<br>sand<br>short<br>tons) | of days<br>for<br>main-<br>tenance | ity<br>(thou-<br>sand<br>short<br>tons)        | (thou-<br>sand<br>short<br>tons) | uti-<br>lized |
| New York and Maine                         | 7   | 3     |        | 10               | 22          | 20                               | 81                                 | 5,680                                          | 5,354                            | 94.3          |
| Eastern Pennsylvania                       | 3   | 8     | 1 -    | 12               | 52          | 20                               | 75                                 | 5,809                                          | 5,923                            | 102.0         |
| Western Pennsylvania                       | 3   | ž     |        | - <del>-</del> 5 | 13          | -8                               | 71                                 | 2,353                                          | 2,371                            | 100.8         |
| Maryland and                               | ·   | _     |        | •                |             |                                  |                                    | •                                              |                                  |               |
| West Virginia                              | 2   | 2     |        | 4                | 10          | 8                                | 44                                 | 2,566                                          | 2,508                            | 97.7          |
| Ohio                                       | 5   | 3     |        | 8                | 22          | 10                               | 19                                 | 3,455                                          | 3,074                            | 89.0          |
| Michigan                                   | 5   | ĭ     |        | ĕ                | 27          | 17                               | 21                                 | 5,842                                          | 4,805                            | 82.2          |
| Indiana, Kentucky,                         | ·   | -     |        | -                |             |                                  |                                    | -                                              |                                  |               |
| Wisconsin                                  | 3   | 5     |        | 8                | 20          | 12                               | 70                                 | 3,537                                          | 3,389                            | 95.8          |
| Illinois                                   |     | š     |        | 3                | -8          | 6                                | 103                                | 1,572                                          | 1,419                            | 90.3          |
| Tennessee                                  | 6   |       |        | 6                | 13          | 6                                | 80                                 | 1,711                                          | 1,660                            | 97.0          |
| Virginia, North<br>Carolina, South         | Ů   |       |        | •                |             |                                  |                                    | ·                                              |                                  |               |
| Carolina                                   | 3   | 1     |        | 4                | 11          | 7                                | 42                                 | 2,261                                          | 1,959                            | 86.6          |
| Georgia                                    | 1   | 2     |        | 3                | 7           | 4                                | 65                                 | 1,201                                          | 1,086                            | 90.4          |
| Florida                                    | 4   |       |        | 4                | 12          | 7                                | 24                                 | 2,723                                          | 2,182                            | 80.1          |
| Alabama                                    | 5   | 2     |        | 7                | 18          | 8                                | 65                                 | 2,396                                          | 2,393                            | 99.9          |
| Louisiana and                              | •   | _     |        |                  |             |                                  |                                    |                                                |                                  |               |
| Mississippi                                | 5   |       |        | 5                | 13          | 5                                | 58                                 | 1,533                                          | 1,469                            | 95.8          |
| Minnesota, South                           | •   |       |        | -                |             |                                  |                                    |                                                |                                  |               |
| Dakota, Nebraska                           | 3   | 1     |        | 4                | 13          | 5                                | 23                                 | 1,712                                          | 1,500                            | 87.6          |
| Iowa                                       | 3   | 2     |        | 5                | 19          | 8                                | 29                                 | 2,689                                          | 2,436                            | 90.6          |
| Missouri                                   | 5   | 2     |        | 7                | 12          | 15                               | 59                                 | 4,584                                          | 4,154                            | 90.6          |
| Kansas                                     | 3   | 2     |        | 5                | 16          | 7                                | 75                                 | 2,027                                          | 1,930                            | 95.2          |
| Oklahoma and                               | Ü   | -     |        | •                |             |                                  |                                    |                                                |                                  |               |
| Arkansas                                   | 3   | 2     |        | 5                | 11          | 9                                | 55                                 | 2,789                                          | 2,600                            | 93.2          |
| Texas                                      | 14  | 3     | -ī     | 18               | 47          | 26                               | 45                                 | 8,318                                          | 7,853                            | 94.4          |
| Wyoming, Montana,                          |     | •     | -      |                  |             |                                  |                                    |                                                |                                  |               |
| Idaho                                      | 3   |       | 1      | 4                | 9           | 4                                | 104                                | 1,045                                          | 1,027                            | 98.3          |
| Colorado, Arizona,                         | 3   | 5     |        | 8                | 19          | 12                               | 44                                 | 3,855                                          | 3,322                            | 86.2          |
| Utah, New Mexico                           | 3   | 1     |        | 4                | 7           | 4                                | 66                                 | 1,194                                          | 1,151                            | 96.4          |
| Washington                                 | 2   | 1     |        | 3                | $\dot{7}$   | 3                                | 57                                 | 923                                            | 911                              | 98.7          |
| Oregon and Nevada                          | 3   | 2     |        | 5                | 15          | 11                               | 85                                 | 3.075                                          | 2,728                            | 88.7          |
| Northern California<br>Southern California | 2   | 5     | -ī     | 8                | 33          | 22                               | 78                                 | 6,320                                          | 6,534                            | 103.4         |
|                                            | í   | 1     |        | 2                | 3           | 2                                | 138                                | 453                                            | 469                              | 103.5         |
| Hawaii                                     | 3   | _     |        | 3                | 12          | 8                                | 107                                | 2,062                                          | 2,005                            | 97.2          |
| Puerto Rico                                |     |       |        |                  |             | 274                              | 60                                 | 83,685                                         | 78.212                           | 93.5          |
| Total or average $_{-}$                    | 103 | 59    | 4      | 166              | 471         | 214                              | 00                                 | 00,000                                         | 10,212                           |               |

<sup>&</sup>lt;sup>1</sup> Includes Puerto Rico.

<sup>2</sup> Includes white cement manufacturing facilities. Plants not active December 31, 1973: Ideal Cement Co. closed San Juan Bautista plant in July 1973; Amcord, Inc. ceased production at Port Huron and Brennan Ave. plants in January 1973.

<sup>3</sup> Calculated on individual company data: 365 days, minus average days for maintenance, times the reported 24 hour capacity.

<sup>4</sup> Includes production reported for plants which added or shut down kilns during the year.

| Table 4.—Daily | clinker | capacity, | December | 31 ¹ |
|----------------|---------|-----------|----------|------|
|----------------|---------|-----------|----------|------|

| Short tons<br>per 24-hour period | Number<br>of<br>plants <sup>2</sup> | Kilns <sup>3</sup> | Total capacity | Percent of total capacity |
|----------------------------------|-------------------------------------|--------------------|----------------|---------------------------|
| 1972:                            |                                     |                    |                |                           |
| Less than 600                    | 10                                  | 17                 | 4,860          | 1.9                       |
|                                  | 47                                  | 93                 | 40,646         | 15.9                      |
| 1 700 1 0 000                    | 60                                  | 175                | 80,808         | 31.5                      |
| 0.000                            | 29                                  | 77                 | 55,384         | 21.6                      |
| 2,300 to 2,800                   | 9                                   | 31                 | 22,646         | 8.8                       |
| 2,800 and over                   | 14                                  | 68                 | 52,073         | 20.3                      |
| Total                            | 169                                 | 461                | 256,417        | 100.0                     |
| 1973:                            |                                     |                    |                |                           |
| Less than 600                    | 7                                   | 10                 | 3.498          | 1.3                       |
| 600 to 1,150                     | 43                                  | 81                 | 36,540         | 13.3                      |
| 1,150 to 1,700                   | 52                                  | 143                | 71.741         | 26.2                      |
| 1,700 to 2,300                   | 37                                  | 118                | 69.362         | 25.4                      |
| 2,300 to 2,800                   | 7                                   | 22                 | 17,692         | 6.5                       |
| 2,800 and over                   | 20                                  | 97                 | 74,725         | 27.3                      |
| Total                            | 166                                 | 471                | 273,558        | 100.0                     |

Includes Puerto Rico.
 Includes white-cement-producing facilities.
 Total number in operation at plants.

Capacity Changes.—An explosion and fire in recently installed electrostatic precipitators forced Marquette Cement Mfg. Co. to shut down its new kiln and cut back production at the Oglesby, Ill., plant from May through August. In December, two old 11foot-diameter by 200-foot-long wet process kilns were shut down. The company also had reduced production at the Cape Girardeau, Mo., plant earlier in the year because of flooding of the Mississippi River.

Glens Falls Cement Co. Div. of The Flintkote Co. completed installation of a new 15-foot-diameter by 235-foot-long dry process kiln equipped with a 220-foot-high, four-stage counter flow suspension preheater at its Glens Falls, N.Y., plant. The new kiln replaced three old wet process kilns with a combined capacity of 320,000 tons annually.

Early in the year a new kiln with a capacity of 360,000 tons went on line at the Louisville Cement Co., Speed, Ind., plant. Operation of three old kilns, two dating back to 1910, were discontinued. This change resulted in a net increase in capacity of 188,000 tons.

Ideal Cement Co. Div. of Ideal Basic Industries, Inc., completed a \$12 million modernization program at Trident, Mont. The successful startup of a new 12-foot-diameter by 450-foot-long kiln, which replaced four old kilns, raised the plant's capacity 16% to 333,000 tons per year.

At Miami, Fla., General Portland, Inc., completed modification of two kilns in a modernization program.

Monarch Cement Co. completed installation of a new dry process kiln with a preheater at Humboldt, Kans. The new 12foot-diameter by 165-foot-long kiln was put onstream in October. A second identical kiln was scheduled for operation in 1975. Two old kilns will be phased out in 1974.

In October Coplay Cement Mfg. Co. reactivated six kilns at its recently purchased Egypt, Pa., plant, formerly the property of the Giant Portland Cement Co. and now an integral part of the Coplay plant. The addition of the six kilns increased the annual capacity of the new plant complex to 1.350,000 tons.

Arizona Portland Cement Co. Div. of California Portland Cement Co. completed the major portion of a modernization and expansion program at its Rillito, Ariz., plant. Included in this phase of the program was the startup of the new raw crusher, 4-mile belt conveyor from quarry to plant site, raw mill, and preheater kiln. Additional expansion currently underway at the Rillito plant includes a new finish grinding mill, additional bulk loading facilities, and dust collecting equipment to be installed on the original facilities. Completion of the entire program in early 1974 will more than double the plant's present capacity of 500,000 to 1,150,000 tons an-

The new kiln under construction for Giant Portland Cement Co. at Harleyville, S.C., did not become operational in 1973 as expected. The new kiln is scheduled to be completed early in 1974 and will replace

257

the smallest of four old kilns currently in production.

Planned Expansion and New Plants .-Major construction projects undertaken by Ideal Cement Co. Div. of Ideal Basic Industries, Inc., were proceeding satisfactorily. A new cement-producing facility adjacent to the present plant at Portland, Colo., was nearing completion with operations scheduled to begin June 1974. The new addition will increase the plant's capacity from 415,000 to 885,000 tons of cement per year. The new plant at Trident, Mont., was designed for coal-firing in anticipation of possible natural gas and oil shortages. The company was proceeding with a feasibility study on the construction of a new cement plant in the Mobile, Ala., area.

Expansion programs by OKC Corp. at its Pryor, Okla., and New Orleans, La., plants were nearing completion. A new finish grinding mill and kiln modifications at Pryor will increase the capacity of the Oklahoma Cement Co. plant to 425,000 tons of cement annually. The completion of a second kiln, raw grinding mill, and finish grinding mill at New Orleans will more than double the output of the Louisiana Cement Co. plant.

Medusa's new kiln at Clinchfield, Ga., was nearing completion and was due onstream early in 1974. The 15-foot-diameter by 220-foot-long kiln with suspension preheater will replace three short wet kilns now in operation. The new facilities are expected to reduce by more than 50% the Btu's presently required to produce a ton of cement.

Six other plant expansions and modernization programs were in various stages of construction and scheduled for completion in 1974: Santee Portland Cement Co., Holly Hill, S.C.; Diamond-Kosmos Cement Div. of The Flintkote Co., Kosmosdale, Ky.; Gifford-Hill Portland Cement Co., Harleyville, S.C.; Texas Industries, Inc., Columbus, Miss.; Centex Cement Corp., LaSalle, Ill.; Southwestern Portland Cement Co., subsidiary of Southdown, Inc., Fairborn, Ohio.

An \$11.5 million expansion was underway at the Kaiser Cement & Gypsum Corp., Longhorn Div., cement plant at San Antonio, Tex. It will include an efficient dryprocess kiln that will consume less fuel per ton than the plant's three existing wet process kilns. The clinker capacity of the plant will nearly double to 785,000 tons per year when completed early in 1975. Additional air pollution control equipment will

be included in the expansion to keep the plant in compliance with environmental regulations.

Lehigh Portland Cement Co. announced plans to expand the Mitchell, Ind., cement plant by 50% to an annual capacity of 750,000 tons. The project is scheduled for completion in 1976 at an estimated cost of approximately \$10 million.

Martin Marietta was adding a new finishing mill and storage silos in an effort to expand the production capacity of its

Calera, Ala., plant.

United States Steel's Universal Atlas Cement Div. started a modernization project which will almost double the production capability of the Leeds, Ala., plant. The new manufacturing facility will consist of a dry-process preheater kiln, a new raw mill capable of drying raw materials in the mill circuit replacing the present wet grinding mills, and a new clinker grinding mill. When the new facilities are completed, they will have a cement processing capacity of more than 600,000 tons per year.

Lone Star Industries, Inc., and Canada Cement Lafarge Ltd., which is 50.1% owned by Ciments Lafarge, Paris, France, signed a joint-venture agreement to form Citadel Cement Corp. to produce hydraulic cement. The new company with headquarters in Atlanta, Ga., will begin operations January 1, 1974. Initial assets include Lone Star plants in Roanoke, Va., and Birmingham, Ala. Citadel Cement Corp. continued the \$35 million expansion program that will double annual capacity at the Roanoke plant to 1.2 million tons when completed by mid-1975. The company plans to start a \$50 million construction project on a new plant with an annual capacity of 750,000 tons at an undisclosed location to serve the eastern Gulf Coast.

Missouri Portland Cement Co. began a \$30 million expansion program that will more than double the production capacity of its Joppa, Ill., plant. New equipment will include a dry process kiln equipped with a single-stage preheater having an annual capacity of 750,000 tons and pollution control facilities. Although the expansion program will span 10 years, the major portions were scheduled for completion by mid-1975. A 7,500-horsepower finish grinding mill, one of the largest mills in the United States, will also be installed in the new facility.

Florida Mining & Materials Corp. announced plans to begin construction im-

mediately of a new cement plant 7 miles north of Brooksville, Fla. The plant, scheduled for completion late in 1975, will have a dry-process kiln equipped with a suspension preheater and an annual capacity of 546,000 tons.

Portland Cement Co. of Utah announced a \$5.5 million modernization program without a guarantee of increased production for its plant at Salt Lake City.

Alpha Portland Industries, Inc., planned to increase the capacity of its St. Louis, Mo., plant to 340,000 tons per year.

Amcord, Inc., announced an expansion project which will increase the volume of the Stockerton, Pa., plant by 16%.

Additional expansion programs currently underway are listed below. Scheduled completion dates are shown in parentheses: Whitehall Cement Mfg. Co., Cementon, Pa. (1975); Coplay Cement Mfg. Co., Coplay, Pa. (1975); Monolith Portland Cement Co., Monolith, Calif. (1974–76); Southeastern Materials, Inc., Miami, Fla. (1975); and Pennsuco Cement & Aggregates, Inc., subsidiary of Maule Industries, Inc. (1974–75).

Puerto Rican Cement Co., Toa Alta, Puerto Rico, San Juan Cement Co., Dorado, Puerto Rico, and Hawaiian Cement Corp. at Barbers Point, Hawaii, are also expanding plant facilities.

Cement Grinding Facilities.—The old Jefferson Avenue plant of American Cement Corp. in Detroit, Mich., purchased by Edward C. Levy Co. in June 1972, began to operate under the name of Jefferson Marine Terminal in 1973, grinding clinker imported from Sweden and Canada.

In March, Pennsuco Cement & Aggregates, Inc., placed an order for an additional 6,300-horsepower grinding mill to be installed early in 1975 that will increase the grinding capacity by nearly 1 million tons.

Gulf Coast Portland Cement Co. Div. of McDonough Co. completed installation of an 11- by 34-foot finish mill at its plant in Houston, Tex.

River Cement Co. installed a 13- by 34-foot, 3,500-horsepower finish-grinding mill with an annual capacity of 178,000 tons. The plant's annual grinding capacity will be increased to 1,128,000 tons.

Ash Grove Cement Co. completed installation of new crushing facilities and two 13-by 47-foot, 4,400-horsepower finishing mills at its plant in Louisville, Nebr. Work on the new dry process kiln continued.

National Portland Cement Co. of Florida was expected to be in operation early in 1974. The new plant, with an annual capacity of 282,000 tons, will operate on clinker imported from Europe.

In addition to these grinding plants, the following companies operate grinding facilities on imported, purchased, or interplant transfer of clinker: Wyandotte Cement, Inc., at Wyandotte, Mich., and Universal Atlas Cement Div. of United States Steel Corp. at Milwaukee, Wis.; Huron Cement Div. of National Gypsum Co. at Superior, Wis.; Allentown Portland Cement Co. Div. of National Gypsum Co. at West Conshohocken, Pa.; and G. & W. H. Corson, Inc., at Plymouth Meeting, Pa.

Raw Materials.—Several companies were involved in exploration and development work for basic raw materials. Ideal Basic Industries, Inc. completed a \$4.5 million program which will triple the capacity of limestone operations at Texada Island, North Vancouver, Canada. The plant supplies high-quality limestone to the company's Seattle cement plant and to other cement and chemical companies in the Pacific Northwest.

Lehigh Portland Cement Co. signed an agreement with Brinco Ltd. of Montreal, Canada, for the joint examination of a limestone deposit in the Port-au-Port Peninsula of western Newfoundland.

Martin Marietta Cement announced that new limestone and clay deposits for future development, calculated to last 30 years or more, were added to reserves for the Georgia plant and an additional limestone source was added to reserves of the Colorado plant.

#### MASONRY CEMENT

Demand for masonry cement continued at a recordbreaking pace. Total shipments were 4,130,000 tons, exceeding the previous alltime high established in 1972 by 7%. The unit value increased \$2.91 per ton to \$29.43, and the total value advanced 19% to \$121.5 million.

During the year 42 companies manufactured masonry cement at 115 plants. The combined output of six companies accounted for 52% of the total masonry cement produced in the United States. The companies in descending order were Louisville Cement Co.; Martin Marietta Corp.; Marquette Cement Mfg. Co.; General Portland, Inc.; Ideal Cement Co., Div. of Ideal Basic Industries, Inc.; and Medusa Cement Co., Div. of Medusa Corp. Masonry cement

Table 5.—Raw materials used in producing portland cement in the United States¹
(Thousand short tons)

|                                                                        | 1972    | 1973    |
|------------------------------------------------------------------------|---------|---------|
| Raw materials                                                          |         |         |
| alcareous:                                                             | 84.922  | 86,699  |
|                                                                        | 25,879  | 26,067  |
|                                                                        | 5,081   | 5,144   |
| Cement rock (includes marr)                                            |         | - 001   |
|                                                                        | 8,062   | 7,931   |
| Clay                                                                   | 4,096   | 4,099   |
| Shale                                                                  | 110     | 240     |
|                                                                        | 1,993   | 2,053   |
| Siliceous: Sand                                                        | 781     | 748     |
| SandSandstone and quartz                                               |         |         |
| Ferrous: Iron ore, pyrites, millscale, and other iron-bearing material | 839     | 968     |
| Iron ore, pyrices, ministration                                        | 4.094   | 4,25    |
| Other: Gypsum and anhydrite                                            | 759     | 682     |
|                                                                        | 271     | 29      |
|                                                                        | 33      |         |
| Fly ashOther, n.e.c                                                    |         | 139,18  |
| Other, n.e.c                                                           | 136,920 | 199,100 |

<sup>&</sup>lt;sup>1</sup> Includes Puerto Rico.

was produced exclusively at only three plants: Riverton Lime & Stone Co., Inc., Riverton, Va.; M. J. Grove Lime Co. Div. of The Flintkote Co., Frederick, Md.; and Martin Marietta Cement, a subsidiary of Martin Marietta Corp., Birmingham, Ala. Quantities produced on the job by masons who prefer to purchase portland cement and add clay or lime for plasticity are not included in table 6.

## **ALUMINOUS CEMENT**

A totally new patented process for the production of calcium aluminate cements was developed and put on stream by Universal Atlas Cement Div. of United States Steel Corp. at its Buffington complex in

Gary, Ind. Stoichiometric mixes of finely powdered limestone and bauxite are pelletized and passed through a drier/preheater before being sintered in a specially designed high-temperature rotary kiln. The sintered pellets are then ground into calcium aluminate cements.

The Aluminum Co. of America operated a calcium aluminate plant at Bauxite, Ark.

The completion in June of a \$3 million grinding and packing facility at Norfolk, Va., will enable Lone Star Lafarge Co., the joint venture formed in 1970, to distribute to customers in the United States calcium aluminate cement produced from imported clinker.

## **ENERGY**

Energy economics has become an absolute operating necessity to an industry that requires 490 trillion Btu's of fossil fuels energy and 10.9 billion kilowatt-hours of electrical energy. Based on national totals, the average cement plant used 5.6 million Btu's of fuel and 124 kilowatt-hours of electricity to produce 1 ton of cement.

The cost of fuel and electrical energy, representing 40% of the production cost, was expected to rise 25% in some areas and nearly double in Hawaii where only oil is burned.

In an industry which recently became largely dependent on oil and natural gas because of convenience, availability, relatively low prices, and strict environmental regulations, many plants are now returning to coal as a means of assuring uninterrupted production. Modifications of existing fuel systems will hopefully be completed before shortages of natural gas and oil reach a point where production might be curtailed. Capital cost of these changes are expected to be substantial.

Plans to assure adequate supplies of fuel were underway by many companies. Ideal Basic Industries, Inc., picked up an option to explore a coal property in Oklahoma, negotiated long-term contracts to purchase low-sulfur coal for two of its cement plants, and signed a letter of intent with Rocky Mountain Energy Co., a subsidiary of Union Pacific Corp., to form a joint venture to

Table 6.-Prepared masonry cement produced and shipped in the United States, by district

|                                                  | Plants       |                |                |              | Shipments      | Shipments from mills |         |                |  |
|--------------------------------------------------|--------------|----------------|----------------|--------------|----------------|----------------------|---------|----------------|--|
| District                                         | active       | Production     |                | 1972         |                |                      | 1973    |                |  |
| TOTACE .                                         | during       | short tons)    | Quantity       | Value        | ne             | Quantity             | 1.      | Value          |  |
|                                                  | 1972 1973    | 1079 1079      | sand           | Total        | Average        | (thou-               | Total   | Average        |  |
|                                                  |              | 1916 1978      | snort<br>tons) | sands)       | per<br>ton 1   | short                | (thou-  | per            |  |
| New York and Maine                               | u            |                |                |              |                | cons                 | Serios) | , uon          |  |
| Western Pennsylvania                             | r 9 10       |                | 126            | \$3,004      | \$23.84        | 134                  | \$3.609 | 896 93         |  |
| Maryland and West Virginia                       | , O.         | 162 166        | 162            | 8,016        | 27.74          | 321                  | 9,488   | 29.56          |  |
| Mishing                                          | 70 L         |                | 145            | 3,406        | 23.49          | 169                  | 4,955   | 29.32          |  |
| Indiana, Kentucky Wissonsin                      | o 4.         |                | 161            | 4,684        | 29.09          | 176                  | 5.641   | 27.01<br>39.05 |  |
| Illinois                                         | 50           |                | 509            | 5,959        | 23.84          | 247                  | 6,185   | 25.04          |  |
| Tennessee                                        | eo 1         |                | 80             | 2,400        | 24.36          | 554                  | 13,099  | 23.64          |  |
| Virginia, North Carolina, South Carolina         | 4 n          |                | 176            | 4.104        | 91.04          | 886                  | 2,901   | 32.97          |  |
| Floride                                          | e<br>e       |                | 397            | 12,122       | 30.53          | 716                  | 7,908   | 39.34          |  |
| Alahama                                          | 52           | 234 288        | 89 ∫           | 1,569        | 23.07          | 247                  | 10,095  | 32.68          |  |
| Louisiana and Missississis                       | 7 7          |                | (213)          | 6,901        | 32.40          | 256                  | 8,120   | 31.73          |  |
| Minnesota. South Debote M. L.                    | 2            | •              | 407            | 11,221       | 27.57          | 425                  | 13,074  | 04.0T          |  |
| , commander,                                     | 4            | 34 25          | 49<br>98       | 1,091        | 22.27          | 51                   | 1,479   | 29.00          |  |
| Missouri                                         | က<br>က 1     |                | 99             | 1 016        | 27.44          | 58                   | 998     | 30.93          |  |
| Kansas                                           | ⊕ r          |                | 80             | 1,859        | 23.03          | 89                   | 2,351   | 34.57          |  |
| Taxes                                            | o r          | 54 70          | 59             | 1,452        | 24.61          | 8 t                  | 2,400   | 28.57          |  |
| Wyoming Montone Till                             | 19           |                | 119            | 2,796        | 23.50          | 196                  | 2,068   | 28.33          |  |
| Colorado, Arizona, Iltah Naw Manie               | 4            | 7 147<br>2 290 | 217            | 5,812        | 26.78          | 234                  | 6.606   | 23.44<br>98.99 |  |
| ŧ ;                                              | 9 9          | 146 145        | 144            | 174<br>3 271 | 24.86          | 2                    | 183     | 26.14          |  |
| Oregon and Nevada                                | 4            |                | 9              | 170          | 23.41<br>98.29 | 145                  | 4,204   | 28.99          |  |
| Southern California                              | !-           | :              | ;              | ) !<br>!     | 20.03          | ۰,                   | 169     | 28.17          |  |
| Hawaji                                           |              | ;-<br>:        | ×.             | ×            | M              | (2)                  | 70 es   | 23.00          |  |
| TI S +0+01                                       | 5            | 13 16          | ≥ 6            | ×è           | ×              | <b>-</b>             | 18      | 18 00          |  |
| Foreign countries 4                              | r 115 115 3  | 1              |                | 384          | 29.54          | 16                   | 537     | 33.56          |  |
| Grand total or average 3                         | NA           | NA NA          | 712            | 1,845        | 26.53<br>26.04 | 4,057                | 119,547 | 29.47          |  |
|                                                  | . 115 115 3, | 3,812 4,022    | 3,848 1        | 102,114      | 26.52          |                      | 100,100 | *.T.1.7        |  |
| Revised. NA Not available. W Withheld to avoid A | dinalogia    |                |                |              |                |                      | 121,028 | 29.43          |  |

Revised. NA Not available. W Withheld to avoid disclosing individual company confidential data; included with "Foreign countries."

2 Computed prior to rounding.

2 Less than 500 short tons.

3 Data may not add to totals shown because of independent rounding.

4 Cement imported and distributed by domestic producers only. Source of imports withheld to avoid disclosing individual company confidential data.

Table 7.-Clinker produced in the United States, by kind of fuel1

|                            |          | linker produc                             | ed                          | Fu                                       | iel consume                                    | d                                          |
|----------------------------|----------|-------------------------------------------|-----------------------------|------------------------------------------|------------------------------------------------|--------------------------------------------|
| Year and fuel              |          | Quantity<br>(thousand<br>short tons)      | Per-<br>cent<br>of<br>total | Coal<br>(thou-<br>sand<br>short<br>tons) | Oil<br>(thou-<br>sand<br>42-gallon<br>barrels) | Natural<br>gas<br>(thousand<br>cubic feet) |
| 1972 :                     |          | 9.1.4.0.4.0                               | 18.2                        | 3,646                                    |                                                |                                            |
| Coal                       | 36       | <sup>2</sup> 14,046<br><sup>2</sup> 9,206 | 11.9                        | 5,040                                    | 9,276                                          |                                            |
| Oil                        | 18       |                                           | 15.6                        |                                          |                                                | 75,474,261                                 |
| Natural gas                | 29       | <sup>2</sup> 12,098                       | 8.1                         | 1,257                                    | 484                                            |                                            |
| Coal and oil               | 11       | 6,276                                     | 12.4                        | 1,169                                    |                                                | 36,182,730                                 |
| Coal and natural gas       | 27       | 9,585                                     | 22.0                        | 1,100                                    | 2,002                                          | 90,385,803                                 |
| Oil and natural gas        | 34       | 17,003                                    | 11.8                        | 1,267                                    | 469                                            | 21,307,728                                 |
| Coal, oil, and natural gas | 15       | 9,164                                     |                             |                                          |                                                | 223,350,522                                |
| Total                      | 170      | 77,378                                    | 100.0                       | 7,339                                    | 12,231                                         | 225,500,022                                |
| 1973:                      |          | 19,009                                    | 24.3                        | 4,727                                    |                                                |                                            |
| Coal                       | 41<br>16 | 9,444                                     | 12.1                        | 2,                                       | 9,381                                          |                                            |
| Oil                        | 31       | 11,550                                    | 14.8                        |                                          | -,                                             | 78,681,049                                 |
| Natural gas                |          | 5,944                                     | 7.6                         | $1,0\bar{2}\bar{6}$                      | 1,331                                          | · · ·                                      |
| Coal and oil               | 11<br>28 | 11.058                                    | 14.1                        | 1,414                                    | -,                                             | 40,372,442                                 |
| Coal and natural gas       | 28<br>35 | 18,819                                    | 24.1                        | -,                                       | 2,570                                          | 92,263,767                                 |
| Oil and natural gas        | 35<br>4  | <b>2,388</b>                              | 3.0                         | 308                                      | 118                                            | 5,707,972                                  |
| Coal, oil, and natural gas |          |                                           |                             |                                          | 13,400                                         | 217,025,230                                |
| Total                      | 166      | 78,212                                    | 100.0                       | 7,475                                    | 10,400                                         | 211,020,200                                |

Table 8.-Clinker produced and fuel consumed by the portland cement industry in the United States, by process 1

|                                     | Cli                                | nker produced                        |                     | F                                | uel consumed                              |                                            |
|-------------------------------------|------------------------------------|--------------------------------------|---------------------|----------------------------------|-------------------------------------------|--------------------------------------------|
| Year and process                    | Plants<br>active<br>during<br>year | Quantity<br>(thousand<br>short tons) | Percent<br>of total | Coal<br>(thousand<br>short tons) | Oil<br>(thousand<br>42-gallon<br>barrels) | Natural<br>gas<br>(thousand<br>cubic feet) |
| 1972 :  Wet  Dry '  Both            | r 106                              | 7 45,741                             | 7 59.1              | 4,158                            | 7 8,728                                   | 147,540,429                                |
|                                     | 60                                 | 29,767                               | 38.5                | 3,075                            | 3,310                                     | 67,924,453                                 |
|                                     | 3                                  | 1,870                                | 2.4                 | 106                              | 193                                       | 7,885,640                                  |
|                                     | r 169                              | 77,378                               | 100.0               | 7,339                            | 12,231                                    | 233,350,522                                |
| Total  1973:  Wet  Dry  Both  Total | 103                                | 45,955                               | 58.8                | 4,270                            | 9.732                                     | 143,188,081                                |
|                                     | 59                                 | 29,911                               | 38.2                | 3,098                            | 3,483                                     | 62,683,137                                 |
|                                     | 4                                  | 2,346                                | 3.0                 | 107                              | 185                                       | 11,154,012                                 |
|                                     | 166                                | 78,212                               | 100.0               | 7,475                            | 13,400                                    | 217,025,230                                |

<sup>&</sup>lt;sup>1</sup> Includes Puerto Rico.

<sup>2</sup> Average consumption of fuel per ton of clinker produced as follows: 1972—coal, 0.25958 ton;

oil, 1.008 barrels; and natural gas, 6,239 cubic feet. 1973—coal, 0.24867 ton; oil, 0.993 barrels;
and natural gas, 6,812 cubic feet.

r Revised.
1 Includes Puerto Rico.

| Table 9Electric energy | used | at p | ortland | cement | plants 1 | in | the | United | States 2 |
|------------------------|------|------|---------|--------|----------|----|-----|--------|----------|
|                        |      | Ī    | by proc | ess    |          |    |     |        |          |

|                                    |                  | 1       | Electric         | energy u                         | sed                                |              |                                                   | Aver                                                 |
|------------------------------------|------------------|---------|------------------|----------------------------------|------------------------------------|--------------|---------------------------------------------------|------------------------------------------------------|
|                                    | portlan          | ated at |                  | chased                           |                                    | tal          | Finished                                          | age<br>electri<br>energ                              |
| Year and process                   | Active<br>plants |         | Active<br>plants | Quantity (million kilowatthours) | Quantity (million kilowatt- hours) | Per-<br>cent | cement<br>produced<br>(thousand<br>short<br>tons) | used per to of cement pro- duced (kilo- watt- hours) |
| 1972:                              |                  |         |                  |                                  |                                    |              |                                                   |                                                      |
| Wet                                | 7                |         | r 103            | r 5.678                          | r 5,882                            | r 55.8       | r 47,770                                          | r 123.                                               |
|                                    | 8                | 646     | r 64             | r 3,767                          | r 4,413                            | r 41.8       | r 31,061                                          | 142.                                                 |
| Total                              |                  |         | 3                | 257                              | 257                                | 2.4          | 1,913                                             | 144.                                                 |
| Percent of total electric          | 15               | 850     | r 170            | 9,702                            | 10,552                             | 100.0        | 80,744                                            | 130.                                                 |
| energy used                        |                  | 8.1     |                  | 91.9                             |                                    |              |                                                   |                                                      |
| 973:                               |                  |         |                  |                                  |                                    |              |                                                   |                                                      |
| Wet                                | 7                | 171     | 101              | 5,902                            | 6,073                              | 56.0         | 40.100                                            |                                                      |
| Dry 3                              | 7                | 548     | 66               | 3,913                            | 4,461                              | 41.1         | 49,100                                            | 123.                                                 |
| Both                               |                  |         | 4                | 317                              | 317                                | 2.9          | $\frac{32,011}{2,363}$                            | 139.                                                 |
| Total<br>Percent of total electric | 14               | 719     | 171              | 10,132                           | 10,851                             | 100.0        | 4 83,476                                          | 134.2                                                |
| energy used                        |                  | 6.6     |                  | 93.4                             |                                    |              |                                                   | _                                                    |

r Revised.

1 Includes grinding plants and white cement facilities.

<sup>2</sup> Includes Puerto Rico.

Includes data for grinding plants: 6 in 1972; 7 in 1978.
Data does not add to total shown because of independent rounding.

reopen and expand the presently inactive Stansbury underground coal mine owned by Rocky Mountain Energy Co. Initial production exceeding 1 million tons of coal per year was planned to begin in 1975 at the

mine near Rock Springs, Wyo.

As the result of an active program during the last 2 years, Kaiser Cement & Gypsum Corp. obtained rights to natural gas production and purchased natural gas reserves in Texas. Its gas supplies will provide the San Antonio cement plant with a portion of its fuel requirements during periods of interruption from normal sources. Natural

gas exploration programs initiated by Lone Star Industries, Inc. in 1972 were showing excellent progress. During the year, a natural gas drilling program launched in New Mexico, Oklahoma, and Texas by the Diversified Industries Group resulted in 25 successful well completions out of 28 starts. Continuation of the gas development program is planned for the next several years.

A venture by Medusa to explore for gas and oil has proved successful and should supply part of its fuel requirements next year. Exploration is expected to increase in 1974.

#### TRANSPORTATION

Spring floods on the Mississippi, Missouri, and Ohio Rivers affected transportation. High water at shipping and receiving docks upset normal patterns of barge traffic to terminals, causing shortages of cement in areas dependent on river transportation.

Cement was transported from manufacturing plants in bulk or in containers, by truck, rail, or waterway. Of the 84,424,000 tons of portland cement shipped from plants, 79% was sent directly to customers from producing plants and 21% was transferred to distribution facilities strategically located in principal market areas for customer delivery by short-haul truck loads.

Eleven percent of the cement shipped from plants to terminal and to customer moved via low-cost water transportation. One producer, interestingly, calculated that river transportation required 80% less fuel than truck transportation to move 1 ton of cement 1 mile. Although trucks were used to haul 84% of the total cement to customers, they accounted for only 5% of the total cement transferred from plants to terminals. Manufacturers continued to use railroad and waterways almost equally as the principal means of supplying distribution cen-

Table 10.-Shipments of portland cement from mills in the United States, in bulk and in containers, by type of carrier1

(Thousand short tons)

|                                              |                       |                 |                             | Shipments        | to ultima                     | te consumer           |                                 |
|----------------------------------------------|-----------------------|-----------------|-----------------------------|------------------|-------------------------------|-----------------------|---------------------------------|
| Year and                                     | Ship                  | nents from      |                             | terminal to      |                               | plant to<br>sumer     | Total<br>ship-                  |
| type of                                      | In<br>bulk            | In containers   | In<br>bulk                  | In<br>containers | In<br>bulk                    | In<br>containers      | ments                           |
| 1972:<br>Railroad<br>Truck<br>Barge and boat | 9,020<br>516<br>8,426 | 295<br>60<br>5  | 835<br>17,940<br>312        | 213<br>848       | 11,126<br>43,278<br>843<br>63 | 714<br>5,253<br><br>7 | 12,888<br>67,319<br>1,155<br>70 |
| Unspecified 2                                | 17,962                | 360             | 19,087                      | 1,061            | 55,310                        | 5,974                 | 3 81,432                        |
| 1973: Railroad  Truck Barge and boat         | 7,7 <b>6</b> 3<br>877 | 253<br>89<br>38 | 1,418<br>17,381<br>67<br>18 | 48<br>734<br>    | 11,111<br>48,516<br>902<br>49 | 598<br>5,547<br>11    | 13,175<br>72,178<br>969<br>78   |
| Unspecified 2                                | 17,310                | 380             | 18,884                      | 782              | 60,578                        | 6,156                 | 3 4 86,39                       |

Data does not add to total shown because of independent rounding.

A novel aircraft method was developed for transferring cement to Alaska for its oil exploration program. Stored cement was blown into tanks fitted inside the compartments of a cargo carrier. The cement was discharged at the destination by reversing the procedure. Each loading and unloading operation required approximately 15 minutes to dispose of 39,000 pounds of cement.

# CONSUMPTION AND USES

Shipments of cement by State of destination are considered to be consumption. Consumption of portland cement continued at record levels for the third consecutive year, surpassing the 1972 record by 7%.

Domestic producers shipped 86.4 million tons of portland cement, which included 1.7 million tons of imported cement. In addition to the imported cement shipped by domestic manufacturers, 1.9 million tons of portland cement was imported and shipped or used by others not producing cement in the United States and Puerto Rico.

Consumption was greater than in the previous year in all but seven States. The largest increase was in Florida, with 849,000 tons; Illinois, 543,000; Ohio, 497,000; New York, 433,000; and in Nebraska, Wisconsin, and Pennsylvania, the increase was in excess of 200,000 tons. The seven States showing decreased activity included Georgia. with a decline of 85,000 tons, followed by Michigan, Louisiana, Virginia, Rhode Island, Vermont, and Alaska.

Demand in excess of available supplies placed shipments of cement under allocation in some areas of the country during part of the year.

Ready-mix concrete producers were the primary consumers of portland cement, accounting for 66% of the total cement shipped by domestic producers. Concrete product manufacturers used 14% of the cement shipments to make concrete block and pipe, precast, prestressed concrete, and other concrete products. Building material dealers received 8% of the total cement consumed; direct shipments to highway contractors were 7%; other contractors received 3%; and Federal, State, or other governmental bodies and other miscellaneous users accounted for the remaining 2%.

<sup>&</sup>lt;sup>1</sup> Includes Puerto Rico.
<sup>2</sup> Includes cement used at plant.
<sup>3</sup> Bulk shipments were 91.4% (74,397 tons); container (bag) shipments were 8.6% (7,035 tons) 3 Bulk shipments were 92.0% (79,462 tons); container (bag) shipments were 8.0% (6,938 for 1972. Bulk shipments were 92.0% (79,462 tons); container (bag) shipments were 8.0% (6,938 for 1972)

Table 11.-Cement shipments, by destination and origin 1 (Thousand short tons)

| -                                   | Portlar                  | id cement 2              | Masonr                                           | y cemen                  |
|-------------------------------------|--------------------------|--------------------------|--------------------------------------------------|--------------------------|
|                                     | 1972                     | 1973                     | 1972                                             | 197                      |
| Destination:                        |                          |                          |                                                  |                          |
| AlabamaAlaska <sup>3</sup>          | 1,261                    | 1,407                    | 110                                              |                          |
|                                     | 63                       | 53                       | 110<br>W                                         | 11                       |
| Arkansas                            | 1,544                    | 1,711                    | w                                                | 7                        |
|                                     | 838                      | 866                      | 65                                               | ż                        |
|                                     | 3,026                    | 3,135                    | (4)                                              |                          |
|                                     | 5,465 $1,425$            | 5,473                    | ( <del>'</del> 4)                                | (4)<br>(4)               |
| Connecticut                         | 874                      | 1,593                    | 45                                               | 4                        |
| Diaware *                           | 191                      | 906<br>219               | 16                                               | 1                        |
| District of Columbia 3              | 224                      | 230                      | 10<br>27                                         | 1                        |
| Florida<br>Georgia                  | 5,001                    | 5,850                    | 377                                              | 2<br>45                  |
| Georgia Hawaji Ldebo                | 2,506                    | 2,421                    | 243                                              | 24                       |
|                                     | 402                      | 453                      | 13                                               | 1                        |
| 11111015                            | 414                      | 429                      | 1                                                | •                        |
|                                     | 3,606                    | 4,149                    | 116                                              | 12                       |
|                                     | $1,793 \\ 1,601$         | 1,838                    | 115                                              | 12                       |
|                                     | 1,048                    | 1,744                    | 25                                               | 2                        |
|                                     | 1,125                    | $1,126 \\ 1,150$         | 24                                               | 2                        |
|                                     | 2,358                    | 2,335                    | 104<br>73                                        | 11                       |
| Maine                               | 257                      | 278                      | 13                                               | 7                        |
|                                     | 1,432                    | 1.525                    | 118                                              | 1<br>12                  |
| Massachusetts <sup>3</sup> Michigan | 1,411                    | 1,460                    | 49                                               | 5                        |
| Minnesota                           | 3,231                    | 3,198                    | 179                                              | 17                       |
| Mississippi                         | 1,602                    | 1,762                    | 52                                               | 5                        |
| Missouri                            | 929                      | 968                      | 72                                               | 7                        |
| Montana                             | $1,798 \\ 242$           | 1,876                    | 41                                               | 4                        |
| Treatment                           | 956                      | 282                      | 3                                                |                          |
|                                     | 402                      | $^{1,192}_{467}$         | (4)                                              | 1                        |
| New Hampshire 3                     | 243                      | 279                      | 13                                               | (+)                      |
| New Jersey 3                        | 2,174                    | 2,252                    | 80                                               | 1;<br>8′                 |
| New Mexico                          | 566                      | 595                      | 16                                               | î'                       |
| New York, eastern New York, western | 729                      | 927                      | 42                                               | 4:                       |
|                                     | 1,108                    | 1,176                    | 58                                               | 6                        |
| Troith Carolina                     | 1,796                    | 1,963                    | 45                                               | 49                       |
|                                     | $^{1,873}_{312}$         | 1,972                    | 269                                              | 288                      |
| Onio                                | 3,340                    | 347                      | 7                                                |                          |
| Oklanoma                            | 1.398                    | 3,837 $1.419$            | 230                                              | 23'                      |
| Oregon                              | 806                      | 835                      | 64<br>(4)                                        | 60                       |
| Pennsylvania, eastern               | 2,070                    | 2.276                    | 73                                               | (4)<br>86                |
| Tempsivania, western                | 1,203                    | 1,206                    | 82                                               | 90                       |
| Puerto Rico                         | 1,904                    | 1,947                    |                                                  | 90                       |
| South Carolina                      | 200                      | 187                      | 6                                                |                          |
| South Dakota                        | 910                      | 1,025                    | 166                                              | 162                      |
| Tennessee                           | 319                      | 334                      | 7                                                | 10                       |
| i exas                              | 1,608<br>6,786           | 1,744                    | 192                                              | 209                      |
| Otan                                | 652                      | 6,821<br>686             | 179                                              | 192                      |
| vermont "                           | 154                      | 143                      | 1                                                | 1                        |
| VIIgilia                            | 2,107                    | 2,084                    | $\begin{smallmatrix}6\\232\end{smallmatrix}$     | 6                        |
| Washington                          | 1.091                    | 1,104                    | 28 <u>2</u><br>7                                 | 250                      |
| west virginia                       | 557                      | 707                      | 36                                               | 7<br>43                  |
|                                     | 1,619                    | 1,837                    | 65                                               | 68                       |
|                                     | 194                      | 204                      | 2                                                | 3                        |
| Total United States                 | 82,744                   | 88,003                   | 3,782                                            | 4,071                    |
| roreign countries "                 | 64                       | 259                      | 89                                               | 4,071<br>88              |
| Total shipments                     | 82,808                   | 88,262                   | 3,871                                            | 4,159                    |
|                                     |                          |                          | 3,011                                            | 7,100                    |
| igin:                               |                          |                          |                                                  |                          |
| igin: United States <sup>6</sup>    | 77.974                   | 89 710                   | 9.770                                            | 4 05-                    |
| igin: United States 6 Puerto Rico   | 77,974<br>1,946          | 82,719<br>2.062          | 3,779                                            | 4,057                    |
| igin:                               | 77,974<br>1,946<br>2,888 | 82,719<br>2,062<br>3,481 | $\begin{array}{c} 3,779 \\ \bar{92} \end{array}$ | $4,057$ $1\overline{02}$ |

W Withheld to avoid disclosure of individual company confidential data; included with "Foreign countries.

countries."

<sup>1</sup> Includes cement produced from imported clinker and imported cement shipped by domestic producers, Canadian cement manufacturers, and other importers.

<sup>2</sup> Excludes cement used in the manufacture of prepared masonry cement.

<sup>3</sup> Has no cement producing plants.

<sup>4</sup> Less than 500 short tons.

<sup>5</sup> Direct shipments by producers to foreign countries, U.S. possessions and territories, and also including States indicated by symbol W.

<sup>6</sup> Includes cement produced from imported clinker by domestic producers (1972—1,576,000; 1973—2,673,000).

<sup>7</sup> Includes imported cement distributed by domestic producers, Canadian cement manufacturers, and other importers. Origin of imports withheld to avoid disclosing individual company confidential data.

Table 12.-Cement shipments, by type of customer in 1973

(Thousand short tons)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |      |          |              | enout)                  | TOTAL PRINCE |             |                 |          |            |                |                |                      |          |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|----------|--------------|-------------------------|--------------|-------------|-----------------|----------|------------|----------------|----------------|----------------------|----------|----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |      |          |              |                         |              |             |                 |          |            | Federal, State | State          | Miscel-              | <u>.</u> |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ruildi   | ng   | Concrete | ţe.          | ,                       | 7            | Hiohway     |                 | Other    |            | and other      | er             | laneous<br>including |          | [040]          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | material | iai  | product  | t å          | Ready-mixed<br>concrete | nxed<br>ete  | contractors | tors            | contrac  | tors       | government     | es             | own use              | -        | Total          |
| District origin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dealers  | 2    | turers   |              |                         | 100          | Ough-       | Per-            | Quan-    | Per-       | Quan-          | Per-           | Quan-                | Fer-     |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quan-    | Per- | Quan-    | Per-<br>cent | Quan-<br>tity           | rer-         | tity        | cent            | tity     | cent       | tity           | amag           | San S                |          | 670            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tity     | nia  | fara     |              |                         | :            | 191         | 3.4             | 44       | 8.0        | 61             | Œ,             | 980                  | -<br>د د | 6.210          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 49.0     | 7.4  | 761      | 13.4         | 4,225                   | 74.4         | 303         | 6.9             | 31       | τĠ         | 11             | 7.0            | 5 <del>4</del>       | ;<br>?   | 2,354          |
| New York and Maine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 641      | 10.3 | 1,485    | 23.9         | 3,646                   | 59.4         | 243         | 10.3            | 55.      | %; c       | 15             | ١٠ċ            | 33                   | 1.3      | 2,568          |
| Western Pennsylvania                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 270      | 11.5 | 57.8     | 22.9         | 1,713                   | 66.7         | 54          | 12.1            | 17       | 1.20       | 1              | ļ              | 32                   |          | 3,450<br>6.242 |
| Maryland and West Virginia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | 5.4  | 593      | 17.2         | 2,188                   | 63.3<br>66.4 | 637         | 10.2            | 57       | 6.         | 10             | 7.             | ř                    | : 1      |                |
| Wishigan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | 6.3  | 957      | 19.9         | 7,14                    |              |             | 9               | 9        | 7          | ;              | ì              | 19                   | ro c     | 3,642          |
| Indiana, Kentucky,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | 7.4  | 530      | 14.6         | 2,507                   | 68.8         | 292<br>173  | 11.0            | 20       | 1.3        | 4.5            | હ્યું ત        | 16                   | ٠<br>ن   | 1,711          |
| Wisconsin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 192      | 12.2 | 109      | 10.9         | 1,071                   | 67.1         | 74          | 4.3             | 21       | 1.2        | 2              | ?              | ,                    | É        | 9 4 4 6        |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 103      | 0.9  | 340      | 0.61         |                         |              | 0           | 6               | 23       | 1.3        | 60             | ٦.             | - t                  | €.       | 1.201          |
| North Carolina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | 8.4  | 387      | 15.8         | 1,591                   | 65.1         | 877         | . <del>4</del>  | 9        | 2.0        | ro é           | 4.4            | 3 6                  |          | 2,725          |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | 16.2 | 168      | 14.0         | 1 790                   | 65.7         | 181         | 9.9             | 62       | 6.5        |                | . <del>4</del> | <b>-</b>             | -:       | 2,396          |
| Georgia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 230      | 4.7  | 419      | 16.4         | 1,463                   | 61.1         | 104         | <del>4</del> .3 | 219      | 18.1       | 44             | 2.9            | 31                   | 2.0      | 1,533          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 7 ox | 138      | 9.0          | 805                     | 52.3         | 202         | 13.4            | 134      | 1          |                | 1              | c                    | -        | 1.712          |
| and Mississipp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | ?    |          | ;            | 1 000                   | 7 0 7        | 352         | 20.6            | 85       | 8.4        | ∞ 5            | œά             | 12                   | . 9.     | 2,688          |
| Minnesota, South Danota,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 113    | 9.9  | 132      | 7.7          | 1,023                   | 65.1         | 254         | 9.4             | 56       | 9.5        | 6              | ંબં            | 23                   | rō.      | 4,582          |
| Twent to a superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the superior of the sup | 184      | 90.5 | 457      | 6.6          | 3,431                   | 74.9         | 443         | 9.7             | 9.<br>6. | 3.1        | ,              | Œ              | <br>                 | 9.70     | 2,020          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 193      | 4 00 | 198      | 8.6          | 1,445                   | 27.3         | 101         | 25.0            | 98       | 3.1        | 87 8           | -: <u>-</u>    | 654<br>854           | 1.5      | 8,320          |
| Kansas Kansas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 218      | 7.8  | 270      | 9.7          | 1,727                   | 62.8         | 514         | 6.2             | 209      | 6.1        | 80 C           | .2.            | 512                  | 4.9      | 1,046          |
| Toyes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | 6.5  | 719      | 9.6          | 768                     | 73.4         | 30          | 5.9             | 7.4      | 1.1        | 1              | ! :            | ,                    | Ċ        |                |
| Wyoming, Montana, Idaho -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | 5.9  | 8        | :            | .00                     |              | 199         | 3.2             | 149      | 3.9        | <b>~</b> `     | €`             | 102                  | . 00     |                |
| Colorado, Arizona, Utan,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 279      | 7.2  | 377      | 8.6          | 2,821                   | 67.7         | 65          | 5.4             | 26       | 2.7<br>2.7 | 9 0            | 1.1            | 22                   | 2.4      | 923            |
| Weshington                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 64     | 4.0  | 216      | 10.1         | 633                     |              | 89          | 4.7             | 90       | . 6        | 9              | ۲:             | 91                   | 6.5      |                |
| Oregon and Nevada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 75     | × ×  | 326      | 10.6         | 2,207                   |              | 165         | 4. c.           | 114      | 1:8        | 56             | ₹.             | 47                   | 2.6      |                |
| Northern California                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 531      | 10.0 | 803      | 12.7         | 4,399                   |              | 7           | 6.              | 7        | 1.6        | i t            | 10             | 12                   | i æ      |                |
| Southern California                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 202      | 4.4  | 59       | 13.0         | 1 038                   |              | 21          | 1.0             | 98 E     | 7.7        | ÷ 65           | . 63           | <b>∞</b>             | ī.       | 1              |
| Puerto Rico                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 638      | 30.9 | 230      | 13.4         | 1,127                   |              | 82          | 5.2             | 1 000    | ***        | 341            | 4.             | 1,548                | 1.8      | 86,399         |
| Imports 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 108      | 0.0  | F        |              | 57,137                  | 66.1         | 6,098       | 7.0             | 2,390    | 0.4        | ;              |                |                      |          |                |
| Total "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | #on')    | •    |          |              |                         |              |             |                 |          |            |                |                |                      |          |                |

Tess than 0.1%..
2 Gement imported and distributed by domestic producers only. Source of imports withheld to avoid disclosing individual company confidential data.
3 Data may not add to totals shown because of independent rounding.

#### **PRICES**

The average mill value 2 of portland cement (all types) was \$21.88 per ton in 1973, an increase of \$1.57 per ton. The mill value ranged from a low of \$18.12 in western Pennsylvania to a high of \$29.17 in Hawaii. The average mill value of gray cement advanced \$1.56 per ton to \$21.73 and white cement increased \$0.75 per ton to \$46.06.

Published mill prices in the Engineering News-Record showed that December prices for bulk shipments ranged from a low of \$21.60 per ton in Independence, Kans., to a high of \$32.00 per ton in Waianae, Hawaii. Bagged cement prices for these areas were \$25.40 and \$34.40, respectively. Most prices were subject to cash discounts. Base prices for portland cement f.o.b. city were reported monthly in the Engineering News-Record for 20 cities across the United States. The December 1973 average for bulk cement was \$26.76 per ton compared with \$25.25 per ton in December 1972. In the 20-city survey, bulk prices ranged from a low of \$23.00 per ton in Pittsburgh, Pa., to

a high of \$33.40 per ton in Denver, Colo. Masonry cement in bags averaged \$32.37 per ton in December 1973 and ranged from \$25.40 per ton in Detroit, Mich., to \$37.00 per ton in Kansas City, Mo.

Rising costs of labor and fuel at cement plants continued to outpace selling prices in effect under the Economic Stabilization Act. When Phase II ended in January, the CLC granted modest price increases which were cost justified and fully documented by the applicant. The relatively modest price adjustments permitted within phase III guidelines resulted in some restoration of optimism in the industry. A significant event occurred November 27, when the CLC exempted the cement industry from wage and price controls. The decontrol action was

Table 13.-Portland cement shipped by plants in the United States, by type 1 (Thousand short tons and thousand dollars)

| Туре                                                                                                                                                                                                   |                                                           | 1972                                                                                         |                                                                                 |                                                                       | 1973                                                                                        |                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| -                                                                                                                                                                                                      | Quantity                                                  | Value                                                                                        | Average<br>per ton                                                              | Quantity                                                              | Value                                                                                       | Average<br>per ton                                                     |
| General use and moderate heat (types I and II) High-early-strength (type III) Sulfate-resisting (type V) Oil-well White Portland-slag and portland pozzolan Expansive Miscellaneous 2 Total or average | 75,452<br>2,827<br>581<br>671<br>459<br>438<br>177<br>827 | 1,512,214<br>61,508<br>11,672<br>14,626<br>20,795<br>8,412<br>5,213<br>19,341<br>3 1,653,779 | \$20.04<br>21.76<br>20.09<br>21.80<br>45.31<br>19.21<br>29.45<br>23.39<br>20.31 | 79,567<br>2,877<br>687<br>654<br>512<br>1,021<br>129<br>952<br>86,399 | 1,722,097<br>66,352<br>14,985<br>14,473<br>23,585<br>22,103<br>3,772<br>22,910<br>1,890,277 | \$21.64<br>23.06<br>21.81<br>22.13<br>46.06<br>21.65<br>29.24<br>24.07 |

Table 14.-Average mill value in bulk of cement in the United States, by year 1 (Per short ton)

| Year | Portland<br>cement | Slag<br>cement | Prepared<br>masonry<br>cement <sup>2</sup> | All<br>classes<br>of cement |
|------|--------------------|----------------|--------------------------------------------|-----------------------------|
| 969  | \$17.04            | \$20.44        | \$21.22                                    | 3 \$17.18                   |
|      | 17.69              | W              | 22.68                                      | 17.88                       |
|      | 18.74              | W              | 25.28                                      | 19.01                       |
|      | 20.31              | W              | 26.52                                      | 20.59                       |
|      | 21.88              | W              | 29.43                                      | 22.22                       |

W Withheld to avoid disclosing individual company confidential data. <sup>1</sup> Includes Puerto Rico.

<sup>&</sup>lt;sup>2</sup> Mill value is the actual value of sales to customers, f.o.b. plant; less all discounts and allowances; less all freight charges to customer; less all freight charges from producing plant to distribution terminal, if any; less total cost of operating terminal, if any; less cost of paper bags and pallets.

<sup>&</sup>lt;sup>1</sup> Includes Puerto Rico.
<sup>2</sup> Includes type IV, waterproof cements.

<sup>3</sup> Data does not add to total shown because of independent rounding.

<sup>2</sup> Includes masonry cements made at portland, natural, and slag cement plants.

designed to make cement price adjustments possible to the extent allowed by competitive forces, to offset increased operating costs, and to provide an adequate return on investments to make plant improvements and new capacity economically feasible.

# FOREIGN TRADE

Exports of cement from the United States totaled 325,000 tons to attain the highest level since 1956 and reversed the decline which began in 1971. More than 90% of the total exports was marketed in only five countries—Canada, Mexico, Netherlands Antilles, Leeward and Windward Islands, and the Dominican Republic.

The cement industry imported cement and clinker at a recordbreaking level to supplement production and to relieve the strain on available capacity. Imports continued escalating for the sixth consecutive year, rising 36%, from 4,911,000 tons in 1972 to 6,683,000 tons in 1973, setting another alltime high. Imports, economically logical only in areas bordering points of entry, were most significant in Florida. More than 2,363,000 tons, or 35% of the total imports, entered through two customs districts, Tampa and Miami, in Florida.

Canada continued to be the principal foreign source of cement, supplying 42% of the imported cement and clinker, followed by United Kingdom with 17%, Bahamas with 14%, Norway with 10%, Spain with 5%, France with 5%, and Mexico with 4%. The combined imports from nine other countries accounted for the remaining 3%.

Total imports exceeded the cement manufactured in each individual State except for California, Pennsylvania, and Texas and were 676,000 tons more than was produced in Michigan, the 4th State in rank. Clinker comprised 41% of the total imports in 1973 compared with 34% in 1972. Nineteen plants were operating on imported clinker—six in Texas, three in Michigan, two each in Florida and South Carolina, and one each in Maine, New York, Pennsylvania, Virginia, Washington, and Wisconsin. Four of the plants used imported clinker exclusively to produce cement.

Imports appeared to be at their peak and could trend downward when present contracts expire. One foreign cement producer already was unable to supply substantial quantities of cement for Gulf Coast markets. Other indications were: Foreign countries continued to absorb more of their production and placed stricter controls on exports; several foreign companies indicated that they did not intend to expand plant facilities to meet growing demands in the United States; and carriers may find it difficult to obtain adequate ship fuel to transport cement and clinker.

Table 15.-U.S. exports of hydraulic cement, by country

| Country                 |                          | 971                  | 19     | 972         | 1.           | 079          |
|-------------------------|--------------------------|----------------------|--------|-------------|--------------|--------------|
|                         | Quantity<br>(short tons) | Value<br>(thousands) |        |             | Quantity     | 973<br>Value |
| Austria                 | 000                      |                      |        | (chousanus) | (snort tons) | (thousands   |
|                         |                          | <b>\$34</b>          | 168    | \$25        | 05           |              |
|                         |                          | 60                   | 282    | 25          | 85           | \$18         |
|                         |                          | 96                   | 2,722  | 181         | 554          | 27           |
|                         |                          | 54                   | 542    | 28          | 1,514        | 94           |
|                         |                          | 40                   | 293    | 25          | 98           | 24           |
| Canaga                  | <b>*</b> 0               | 42                   | 528    | 17          | 269          | 20           |
|                         |                          | 1,351                | 57,862 | 1,729       | 381          | 20           |
|                         |                          |                      | ,      | 1,129       | 168,182      | 3,635        |
|                         |                          | 46                   | 1.018  | 66          | 564          | 26           |
|                         |                          | 6                    | 512    | 16          | 707          | 42           |
|                         |                          | 40                   | 810    | 34          | 646          | 28           |
|                         |                          | 37                   | 1,126  | 54<br>53    | 16,045       | 269          |
|                         |                          | 2                    | 103    |             | 266          | 12           |
|                         |                          | 21                   | 116    | .6          | 564          | 29           |
| Germany, West           | 7,719                    | 71                   | 76     | 15          | 436          | 30           |
| Guatemala               | 541                      | 112                  | 444    | 3           | 966          | 11           |
| Honduras                | 208                      | 26                   | 774    | 84          | 374          | 60           |
| Honduras                | 190                      | 13                   | 357    |             | 347          | 20           |
| Indonesia               | 515                      | 26                   | 86     | 16          | 546          | 28           |
|                         | 228                      | (1)                  |        | 5           | 1,200        | 86           |
| reland                  | 24                       | `′1                  | 336    | 13          | 3,081        | 149          |
| Italy                   | 242                      | ĝ                    | 168    | 13          | 232          | 22           |
| amaica                  | 591                      | 37                   | 483    | 32          | 424          | 35           |
|                         | 3,704                    | 299                  | 409    | 24          | 1.272        | 54           |
|                         | 25                       | (1)<br>233           | 1,360  | 246         | 2,840        | 444          |
|                         | 161                      |                      | 106    | 5           | 318          | 33           |
|                         | 101                      | 6                    | 98     | 2           | 260          | 7            |
| ISIAnds                 | 12,709                   | 100                  |        |             | 200          | 1            |
|                         | 2                        | 130                  | 9,669  | 100         | 17,173       | 174          |
|                         | 4                        | 14                   |        |             | 475          |              |
|                         | 4.001                    | .==                  |        |             | 475          | 23           |
|                         | 5,935                    | 355                  | 5,036  | 316         | 68.391       | 21           |
| ew (7)) mea             | 0,930                    | 64                   | 7,970  | 81          | 23.601       | 2,355        |
| icaragua                | 626                      | 27                   |        |             | 1,140        | 249          |
|                         |                          | 24                   | 58     | 6           | 130          | 51           |
| man <sup>2</sup>        | 633                      | 23                   | 409    | 20          | 262          | 5            |
|                         |                          |                      |        | 20          |              | _7           |
| anama                   | 30                       | 4                    | 11     |             | 487          | 53           |
| eru                     | 19                       | 5                    | 100    | 14          | 1,425        | 64           |
| hilippines              | 124                      | 14                   | 30     | 1           | 238          | 25           |
| audi Arabia             | 301                      | 30                   | 174    | 15          | 584          | 32           |
| ngapore                 | 271                      | 29                   | 402    | 33          | 207          | 35           |
| ngapore<br>outh Africa. | 29                       | 6                    | 90     | 33<br>19    | 1,201        | 67           |
| Republic of             |                          |                      | 50     | 19          | 299          | 30           |
| Republic of             | 93                       | 2                    | 66     | 10          |              |              |
| oain                    | 52                       | 12                   | 195    | 18          | 140          | 19           |
| veden                   | 136                      | 17                   | 352    | 20          | 198          | 32           |
| vitzerland              | 453                      | 41                   | 932    | 26          | 37           | 5            |
| iiwan                   | 486                      | 60                   | 204    | 72          | 587          | 81           |
| inidad and Tobago       | 25                       | 8                    |        | 9           | 193          | 23           |
|                         |                          | O                    | 383    | 16          | 365          | 22           |
| Pacific Islands         |                          |                      | 976    | /**         |              |              |
| rkev                    | 169                      | 24                   | 376    | (1)         | 905          | 38           |
| lited Kingdom           | 249                      | 24<br>22             | 539    | 15          | 109          | 3            |
| nezueia                 | 285                      |                      | 431    | 28          | 436          | 5 <b>4</b>   |
| gosiavia                | 125                      | 15                   | 175    | 19          | 1.298        | 113          |
| her                     | 2,125                    | 27                   | 29     | 15          | 93           | 20           |
| /T-4-1                  | 0.0                      | 108                  | 3,253  | 197         | 2,120        | 156          |
|                         |                          | 3,463                | 00,889 |             |              |              |

Table 16.-U.S. imports for consumption of cement, by year 1

(Thousand short tons and thousand dollars)

|                            | Year             | Roman, p<br>and or<br>hydraulic | ther<br>cement             | Hydra<br>ceme<br>clink | ent<br>er                 | Whi<br>nonstai | ning                  | Tot                     | al                          |
|----------------------------|------------------|---------------------------------|----------------------------|------------------------|---------------------------|----------------|-----------------------|-------------------------|-----------------------------|
| 1051                       |                  | Quantity                        | Value                      | Quantity               | Value                     | Quantity       | Value                 | Quantity                | Value                       |
| 1971 _<br>1972 _<br>1973 _ |                  | 2,327<br>3,192<br>3,911         | 35,681<br>51,115<br>67,406 | 728<br>1,691<br>2,743  | 7,610<br>19,672<br>35,501 | 33<br>28<br>29 | 1,057<br>970<br>1,177 | 3,088<br>4,911<br>6,683 | 44,348<br>71,757<br>104,084 |
| 1 Inc                      | ludes Puerto Ric | ю.                              |                            |                        |                           |                |                       |                         |                             |

 $<sup>^1\, {\</sup>rm Less}$  than  $\frac{1}{2}$  unit.  $^2$  Prior to January 1972 part of Arab Peninsula States.

Table 17.-U.S. imports for consumption of hydraulic and clinker cement, by customs district and by country

(Thousand short tons and thousand dollars)

|                                    |               |                |             |           | and thousand dollars)                   | 197              | 2                   | 1973            |            |
|------------------------------------|---------------|----------------|-------------|-----------|-----------------------------------------|------------------|---------------------|-----------------|------------|
| Customs district<br>and country    | Quan-<br>tity | Value          |             | Value     | Customs district<br>and country         |                  |                     | Quan- V<br>tity | alue       |
|                                    |               |                |             |           | New York City:                          |                  |                     | (1)             | <b>(1)</b> |
| Anchorage:                         | 57            | 1,183          | 54          | 1,107     | Canada                                  |                  |                     | (1)<br>(1)      | (¹)<br>A   |
| Canada<br>Japan                    | (1)           | 2              | (1)         | 1         | Germany, West_                          | $4\overline{62}$ | $7.0\bar{9}\bar{9}$ |                 | 6,095      |
| Japan                              | 57            | 1,185          | 54          | 1,108     | Norway                                  | 402              | 7,099               |                 | 6,099      |
| Total<br>Baltimore: France         |               | 24             |             |           | Total                                   |                  | 7,099               | (1)             | 1          |
|                                    |               |                |             |           | Nogales: Mexico                         | _=               |                     |                 |            |
| Boston:                            |               |                |             |           | Norfolk:                                | 172              | 3,164               | 153             | 3.154      |
| Belgium-<br>Luxembourg             | (1)           | (1)            | (1)         | 22        | Bahamas                                 |                  | 2,846               |                 | 4,787      |
| Canada                             | (1)           | ` 1            | 1           | 22        | France                                  | <b>**</b> **     | 11                  |                 | ·          |
| Total                              | (1)           | 1              | 1           | 44        | Italy<br>Spain                          | 19               | 213                 | 42              | 501        |
|                                    |               | 6,919          | 677         | 9,735     | United Kingdom                          |                  |                     | 46              | 595        |
| Buffalo: Canada<br>Charleston:     | . 500         | 0,510          | • • • •     |           | Total                                   | 421              | 6,234               | 543             | 9,037      |
| United Kingdom -                   | _ 219         | 2,503          | 273         | 3,617     |                                         |                  |                     |                 |            |
|                                    |               |                |             |           | Ogdensburg:<br>Canada                   | 298              | 5,220               | 320             | 5,853      |
| Chicago:                           | . 44          | 704            | 70          | 1,050     | Panama                                  | (1)              | 4                   |                 | =          |
| Canada<br>Germany, West            | . 37          |                | (1)         | 1         | Total                                   |                  | 5,224               | 320             | 5,853      |
| Spain                              | . 5           | 209            |             |           |                                         |                  |                     |                 |            |
| Total                              |               | 913            | 70          | 1,051     | Pembina:                                | 99               | 1,981               | 163             | 3,220      |
| Cleveland: Canada                  |               |                | (1)         | 134       | Canada<br>United Kingdom                |                  |                     | (¹)             | 1          |
|                                    |               |                |             |           |                                         |                  | 1,981               | 163             | 3,221      |
| Detroit:<br>Canada                 | _ 300         | 3,081          | 477         |           | Total                                   |                  |                     |                 |            |
| Spain                              |               | 1,189          | 173         | 2,747     | Philadelphia:                           | 40               | 540                 |                 |            |
| Spain<br>Sweden                    | _ 38          |                |             |           | Canada                                  | _ 40             | 940                 |                 |            |
| Turkey                             | _ 14          |                |             | 0.000     | Germany:<br>East                        | _ (1)            | 6                   |                 |            |
| Total                              |               |                | 1 00        |           | West                                    | _ 5              | 454                 | 4               | 416        |
| Duluth: Canada                     |               |                | . 102       | 1,041     | Spain                                   | _ 21             |                     | - <u>-</u>      | 90         |
| El Paso:                           |               |                |             |           | Yugoslavia                              | 3                |                     |                 |            |
| Guatemala                          |               |                | . (¹)<br>35 | 658       | Total                                   | _ 69             | 1,313               | 6               | 506        |
| Mexico                             |               |                |             |           | Portland, Maine:                        |                  | 821                 | 19              | 425        |
| Total                              | 26            | 499            | 35          | 002       | Canada                                  |                  | 021                 |                 |            |
| Galveston:                         |               |                |             |           | St. Albans:                             |                  | 0.000               | 165             | 3,50       |
| Denmark                            | _ 12          | 148            | 3           | 3         | Canada                                  |                  | 2,639               | (1)             | 0,00       |
| Denmark<br>Germany, West           | - =           | 914            | (1)<br>4 10 | 3 1,521   | United Kingdom                          |                  | 2,639               |                 | 3,50       |
| United Kingdom                     |               |                |             |           | Total                                   | 112              | 2,055               | 100             | 0,00       |
| TotalGreat Falls: Canada           | _ 60          | 3 1,062<br>3 6 |             | 2 57      | San Juan:                               |                  |                     |                 |            |
| Great Falls: Canada                | ١ :           | 1 1            | -           | 1 13      | Belgium-                                | 10               | 538                 | 13              | 61         |
| Honolulu: Japan<br>Houston: United |               |                |             |           | Luxembourg                              |                  |                     |                 | -          |
| Kingdom                            | 4             |                |             |           | Colombia<br>Denmark                     |                  |                     |                 | _          |
| Laredo: Mexico                     |               | )              | 9           | 1 12      | France                                  | /1)              | 18                  | (¹)             | 1          |
| Los Angeles:                       |               |                |             |           | Honduras                                | 3                | 3 41                |                 | 60         |
| Germany, Wes                       | t_ (1         | ) 1            | 0 (1        | ) 16      | Spain                                   | 18               |                     |                 | 60         |
| Spain                              |               |                | _           | 1 55      | Venezuela                               |                  |                     |                 | 1,22       |
| Spain<br>Taiwan                    | (1            |                | 1 -         |           | Total                                   | 60               | 1,307               | 88              | 1,50       |
| United Kingdon                     | a             |                |             | 1 71      | Savannah: Spain                         |                  |                     |                 | 1,00       |
| Total                              |               | 1 6            | 33          | 1 11      | Seattle:                                |                  |                     |                 | 3,98       |
| Miami:                             |               |                |             |           | Canada                                  |                  |                     |                 | 3,90       |
| Bahamas                            | 25            | 7 4,14         | 17 22       | 4,053     | United Kingdor                          |                  |                     |                 | 3,9        |
| Belgium-                           |               |                | 27          | 2 73      | Total                                   | 36               | 1 4,542             | 2 336           | 3,9        |
| Luxembourg                         |               | 1 2<br>55 64   |             |           |                                         |                  |                     |                 |            |
| Canada<br>Honduras                 |               |                | 37          | 5 96      | Rahamas                                 | 52               | 6 8,45              | 1 5 <b>6</b> 8  | 9,7        |
| Italy                              |               |                | 4           | 12 225    | Belgium-                                |                  | 4 40                | 5 3             | 1          |
| Mexico                             | •             | 83             |             | 30 461    | 220000000000000000000000000000000000000 |                  | 4 105<br>7 1,265    |                 | 1,6        |
| Norway                             | 1             | 39 1,38        |             | 38 4,671  |                                         |                  | 4 5                 |                 |            |
| Peru                               |               |                | 62 .        | 1 180     |                                         |                  |                     | _ 29            | 3          |
| Spain                              |               |                |             | 41 817    |                                         | 1                | 4 27                |                 | 3          |
| Sweden                             |               | 11             | 86          |           | · Mexico                                | 19               |                     | 2 208           | 3,2<br>5   |
| Turkey<br>United Kingdo            |               | 05 1,4         |             | 48 7,577  | Spain                                   |                  |                     | _ 30<br>10      | 2          |
| Total                              |               | 42 8,7         |             | 53 20,844 | United Kingdo                           |                  |                     | _ 40            | É          |
| Milwaukee:                         |               |                |             |           | Venezuela                               |                  | 0 10 00             |                 | 16,7       |
|                                    |               | 71 8           | 38          | 64 1,42   | Total                                   |                  | 12,38               |                 |            |
| Canada                             |               |                |             |           |                                         |                  | 1 71 72             | m 90 009        | 1046       |
| New Orleans:<br>United Kingdom     |               | 1              | 31          |           | _ Grand total                           | 4,91             | .1 71,75            | 7 -0,000        | 104,0      |

 $<sup>^1</sup>$  Less than  $\frac{1}{2}$  unit.  $^2$  Data does not add to total shown because of independent rounding.

| Table 18.—U.S. import | for consumption of hydraulic and clinker cement, by co | untry |
|-----------------------|--------------------------------------------------------|-------|
| Counts                | 1070                                                   |       |

| Country                       |             | 972    | 19'                | 73            |
|-------------------------------|-------------|--------|--------------------|---------------|
| D 1                           | Quantity    | Value  | Quantity           | Value         |
| Bahamas<br>Belgium-Luxembourg | 955         | 15.500 |                    |               |
| Deigium-Luxembourg            | 18          | 15,762 | 945                | 16,93         |
| Out 1                         | 2,100       | 670    | 18                 | 81            |
| Denmark                       | 18          | 30,433 | 2,779              | 41,79         |
| France                        | 21          | 200    |                    | ,             |
|                               | 233         | 386    |                    | _             |
| Germany:                      | 233         | 2,888  | 302                | 4,79          |
| East<br>West                  | /1\         |        |                    | -,            |
|                               | (¹ <u>)</u> | 6      |                    |               |
|                               | 5           | 464    | 33                 | 81            |
| Ionduras                      |             |        | (1)                | 01            |
| taly                          | 20          | 399    | 21                 | 42            |
|                               | (1)         | 11     | 42                 | 22            |
| texico                        | <u>(1)</u>  | 15     | 1                  | 14            |
| TOI Way                       | 290         | 3,587  | 273                | 4,346         |
|                               | 601         | 8,488  | 676                | 10,766        |
| eru                           | (1)         | 4      | ****               | 10,100        |
| pain                          | 4           | 62     |                    |               |
|                               | 144         | 2,001  | 361                | 6 100         |
| aiwaii                        | 38          | 360    | 41                 | 6,128<br>817  |
| urkey                         | (1)         | 1      | 41                 | 91.4          |
| Inited Kingdom                | 25          | 295    |                    |               |
|                               | 428         | 5.475  | $1.1\overline{49}$ | 15 617        |
| 'monal                        | 8           | 111    | 40                 | 15,614        |
| m-1-3                         | 3           | 139    | 2                  | 502           |
| Total                         | 4,911       | 71,757 | 6,683              | 90<br>104,084 |

<sup>1</sup> Less than 1/2 unit.

# WORLD REVIEW

Increased costs of energy, wages, and transportation, plus the deterioration in profitability needed to maintain full utilization of production capacities were cause for concern by those manufacturers already confronted by the increased strain on available capacity.

In 1973, the European countries belonging to the European Cement Association (CEMBUREAU) put into operation at existing plants a total of 15 new kilns with a combined annual capacity of 8.5 million tons and started production at seven new plants with a total annual capacity of 4.1 million tons. Twenty-seven plant expansions and five new plants under construction will increase annual clinker production capacity by 20.3 million tons when completed in

Austria.—Gmunder Portlandzementfabrik Hans Hatschek A.G. and Schretter & Cie. each placed a new kiln into operation. The addition of these two kilns with a combined annual capacity of 680,000 tons, and the phasing out of five kilns with a combined capacity of 470,000 tons resulted in a net increase of 210,000 tons for the cement industry.

Belgium.-The expansion and modernization of the Obourg plant by Ciments d'Obourg S.A. (CBR), which includes a new 3,000-ton-per-day kiln and a 250-ton-perhour grinding plant, is scheduled for completion late in 1975. A new 550,000-ton slag cement plant under construction by CBR at Gand is expected to be operational in 1974.

Brazil.—The new cement plant being constructed at Pedro Leopoldo in Minas Gerais by Cimento Nacional de Mines S.A. is expected to be operational late in 1974. The new plant will be equipped with a dry kiln with a 4-stage heat exchanger and will have an annual capacity in excess of 1 million tons.

Canada.—Lake Ontario Cement Ltd. completed the first phase of an expansion program at its Pitcon, Ontario, cement plant with the installation of two roller mills. The company is proceeding with phase two of the program and will install an 850,000ton-per-year kiln system which will double clinker capacity of the existing plant. The latest technical developments available are to be built into the new kiln system to insure maximum production at minimum

Genstar Ltd. acquired Miron Co. Ltd. of Montreal late in 1973. The acquisition of Miron Co. Ltd., with its more than 1 million tons of cement production capacity, makes Genstar Ltd. the second largest ce-

ment producer in Canada. A computerized central control system was installed at the company's Edmonton plant; modifications were made at the Bamberton plant to improve fuel efficiency; and work was underway to winterize the Winnipeg plant to allow operations to continue over a longer period of time each year.

The largest grinding mill of its type in the world, 18 feet in diameter by 72 feet in length, with a rating of 6,500 kilowatts was put into service by St. Lawrence Cement Co. at its Mississauga plant at Clark-

son, Ontario.

Colombia.—Cementos Boyacá S.A. was constructing a new 100-ton-per-hour grinding mill at its plant near Bogotá. The modernization program also includes greater storage capacity and improvements in quarry and distribution facilities. The program is expected to be completed at the end of 1974.

Costa Rica.—Industria Nacional de Cemento S.A. completed the first phase of its expansion program at the Cartago plant and was rapidly proceeding with the second phase of the program. Under phase two, the company will reactivate and convert the wet process kiln to the dry process, install a new electrostatic precipitator, and construct a new raw grinding mill with a capacity of 100 tons per hour. Completion of the expansion program in 1974 will raise the plant's daily capacity of 1,300 tons.

Finland.—Paraisten Kalkkivuori Oy plans to install a new 550,000-ton-per-year coal-

fired kiln at its Pargas plant.

France.—Output rose 2% in spite of the longest strike in the history of the French cement industry. Cement production was curtailed from November 16 to December 18. France remained the leading cement exporter of the CEMBUREAU, exporting 2.3 million tons.

The overall production capacity of the newly created Ciments d'Origny S.A. group (formerly Ciments d'Origny-Desvroise with three plants and S.A. des Chaux et Ciments Portland du Haut-Rhin with one plant) and its affiliated companies totals 4.4 million tons per year. Of this, 2.4 million tons was from the four Ciments d'Origny S.A. plants; 880,000 tons from the two Ciments de Champagnole plants; 770,000 tons from the Biache Saint Vaast plant of Ciments de Biache; and 330,000 tons from the Le Boucau plant of Ciments de l'Adour. A new 1,500-ton-per-day kiln being constructed by Ciments d'Origny at its Lumbres

plant is expected to increase the annual capacity of the Origny group from 4.4 to 4.9 million tons.

Ciments Français began operating a new dry process kiln with an annual capacity of 360,000 tons at its Beffes plant and expects a 1-million-ton kiln now under construction at its Couvrot plant to begin operation in

Germany, West.—A new 3,300-ton-per-day kiln was put in service by Alsen-Breitenburg Zement-und Kalkwerke, G.m.b.H., at its Lägerdorf plant. Nordcement A.G. was unable to achieve continuous operation of a new kiln at its Alemannia plant at Höver due to unexpected technical difficulties. When the new facilities are fully operational, they will be capable of producing l million tons of cement annually.

Each of the following cement manufacturers completed installation of a new kiln: Georg Behringer Portlandzement und Kalkwerke; Portland-Zementwerke Heidelberg A.G.; E. Schwenk, Zement und Steinwerke; and Portlandzementwerk Wittekind Hugo

Miebach Söhne.

Greece.—The acquisition of Hellenic Cement Co. in December 1972 and the completion of its new 700,000-ton plant at Drepanon, Patras, in June 1973 raised the Titan Cement Co.'s total annual capacity to 3.4 million tons. Halyps S.A. delayed completion of the new kiln at its Skaramanga plant until the end of 1974. Chalkis Cement Co. continued construction on its third 1-million-ton unit at Mikro Vathy, Avlidos. Basil B. Katsiapis received government approval to erect a 500,000-ton-peryear plant on the Island of Crete. Failure to obtain a license resulted in the cancellation of a joint venture by General Cement Co., Titan Cement Co., and Chalkis Cement Co. to build a 600,000-ton-per-year plant on Crete.

Indonesia.—Construction was started on the \$35 million P.T. Semen Cibinong cement plant. The plant was to have a dryprocess kiln with a suspension preheater and when completed in 1975, it would have an annual capacity of 550,000 tons. The company plans to more than double this

capacity at some later date.

Iran.—Asia Cement Co., Teheran, authorized "Holderbank" Management and Consulting Ltd. to undertake the engineering work on a new 3-million-ton-per-year cement plant.

Israel.—Acceleration in consumption and difficulties in handling a greater volume of

cement imports created serious problems for the cement industry. Israel Portland Cement Works "Nesher" Ltd., the only cement manufacturer in Israel, with plants at Haifa, Ramla and Bet Shemesh, was able to supply only 60% of the domestic requirements for cement. The rehabilitated Bet Shemesh plant purchased in 1972 was producing cement from imported clinker. The plant's maximum output of 600,000 tons is expected to be attained early in 1974. A new bulk cement unloading facility capable of handling 60 tons of cement per hour or 15,000 tons per month was erected at the port of Ashdod. A second unloading facility was expected to be installed at Ashdod and an order has been placed for one to be installed at Haifa. Solel Bonek, in joint ownership with Israel Corp. Investment Co., was given the option to construct a new cement plant at Mizpe Ramon, Negev.

Japan.—Ryukyu Cement Co. Ltd. completed a \$2.3 million expansion program in Okinawa and increased productive capacity 18%, to 530,000 tons per year.

Lebanon.—Improved harbor facilities and installation of new loading equipment was completed by Société des Ciments Libanais at its Chekka plant. These improvements will enable the company to export cement considered to be in excess of domestic needs.

Mexico.—Cementos Apasco S.A. started construction of a new preheater kiln with a daily capacity of 2,000 tons at its Apaxco plant. The kiln was scheduled for operation late in 1974. Cementos Veracruz S.A. continued erection of a new 1,200-ton-per-day kiln at its Orizaba plant. The startup of the new kiln was scheduled for late 1974. Plant expansion was underway at Cementos Apasco, Cementos Veracruz, and Cementos Mexicanos.

Netherlands.—N.V. Eerste Nederlandse Cement Industrie (ENCI), in a joint venture with the Belgian CBR group, is constructing a new kiln at Lixhe with an annual capacity of 1 million tons. ENCI completed installation of a new 6,000-horse-power cement mill at its Rozenburg plant, increasing the annual capacity of the plant to 1 million tons of slag cement.

New Zealand.—New Zealand Cement Holdings Ltd. announced that it will add a third kiln with an annual capacity of 150,000 tons to its Westport plant. Both of the company's cement plants, at Westport and Barnside, operated at near capacity.

Nicaragua.—Production of portland cement went from 130,000 tons in 1972 to

194,000 tons in 1973, an increase of 49% to meet the demands created by the reconstruction of Managua after the December 23, 1972, earthquake. A new kiln being installed at the country's sole cement manufacturing plant at San Rafael del Sur is expected to raise the production capacity to 307,000 tons per year.

Norway.—Norcem, the sole manufacturer of cement in Norway, was established November 14, 1968, by merger of A/S Christiania Portland Cementfabrik, A/S Dalen Portland-Cementfabrik, and Nordland Portland Cementfabrik A/S. The combined output of the three plants, Slemmestad near Oslo (1.1 million tons), Dalen near Brevik (1.2 million tons), and Kjøprilk in Nordland (340,000 tons), provided Norcem with 2.7 million tons of cement annually. Norcem, with its fleet of 28 specially equipped bulk carriers, exported 676,000 tons of cement in 1973 to the United States.

Portugal.—Cia. Industrial do Cimento do Sul completed construction of its new 330,000-ton plant at Loulé. The new 550,000-ton plant under construction for Cia. de Cimentos do Norte at Souselas in northern Portugal is scheduled to begin production in 1974.

Spain.—Cementos Alba S.A. and Portland Valderrivas S.A. completed construction of their new cement plants. When full operation is attained, combined capacity of the two plants will be 1.5 million tons.

Switzerland.—The new 770,000-ton-peryear cement plant presently under construc-Cementfabrik Holderbank by Rekingen-Mellikon, Aargau, was scheduled to be operational early in 1975. Société des Chaux et Ciments de la Suisse Romande completed one phase of its modernization project at the Eclépens plant with the startup of a new raw mill and raw material installation early in the year. The next phase, which includes a new 1,500-ton-perday dry-process kiln, was expected to be completed early in 1974. Bündner Cementwerke A.G. expects to have a new 1,600ton-per-day dry-process kiln in operation at its Untervaz plant about mid-1974. A new kiln under construction for Wuerenlinger-Siggenthal is scheduled to be completed in 1974.

Thailand.—The 1973 cement production capacity was 4.3 million tons. Future expansion programs at the three cement companies in existence and the establishment of a fourth, approved by the Ministry of Industry, will raise the capacity to 6.8 mil-

lion tons. Siam City Cement Co., Ltd., will increase capacity from 2,000 to 5,000 tons per day (approximately 1.5 million tons per year); however, no completion date has been announced. Jalaprathan Cement Co., Ltd., will boost capacity from the current rate of 1,500 to 3,000 tons daily at its plant at Amphu Cha-am, Petchaburi Province. Capacity at the firm's plant at Amphu Takli in Nakhon Sawan Province will be raised to 1,250 tons per day from the present 1,000 tons. Total annual capacity of the two plants will be about 1.3 million tons. While no completion date has been set for the Cha-am project, the Takli expansion is expected to be completed by the end of 1974. Siam Cement Co., Ltd., has ordered a new kiln and related equipment for its plant at Kaeng Khoi, Saraburi Province, to increase annual output 800,000 tons per year. The company's four plants after mid-1975 will have an aggregate plant capacity of 3.6 million tons per year. Thai Sathapana Co., Ltd., received permission from

the Ministry of Industry in September 1973 to erect a 1,000-ton-per-day plant at Amphu Pak Tho in Ratchaburi Province. The plant, under construction, is due to go into production early in 1975.

Turkey.—Goltas Cimentos A.S. started production at its new plant at Isparta. The new plant under construction by Bolu Cimento Sanayii A.S. at Bolu will come into production in 1974. Five other plants under construction and scheduled for completion in 1975 are Unye at Ordu (620,000 tons); Mardin Cimento at Mardin (580,000 tons); Iskenderun at Hatay (550,000 tons); Kars Cimento at Kars (275,000 tons); and Akcimento at Mersin (in excess of 1 million tons).

Yemen Arab Republic.—The Soviet-built facility at Bajil was producing at 50% of its planned capacity of 50,000 tons of cement per year. There are plans to expand the Bajil plant and to build another cement plant to meet growing domestic needs.

# **TECHNOLOGY**

Fuel requirements for kiln heat transfer systems vary widely among different clinker production systems as the following tabulalation illustrates:

| System                                                                                                                                                                                | 10 <sup>6</sup> Btu per ton<br>of clinker                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Long dry kiln Long wet kiln with chains Long dry kiln with chains Long dry kiln with waste heat boiler Long dry kiln with internal crosses Suspension preheater Lepol grate preheater | 3.90 to 6.10<br>4.95 to 6.10<br>3.90 to 5.85<br>2.85 to 4.45 |
| Tr. ' Engineers                                                                                                                                                                       |                                                              |

Source: Kaiser Engineers.

Within each category, heat usage varies depending on a number of factors, the most important of which are the design of the systems, the degree of maintenance, the skill of the operator, and the composition of the raw materials. However, on the whole, the air suspension preheater consistently keeps the fuel expenditure much lower than any other type of system.

A method for disposing of oil slicks on coastal waters, rivers, and the like, using portland cement or other hydraulic cement was patented.<sup>3</sup> The method uses a finely ground cement, 1,000 to 12,000 square centimeters per gram, previously coated with hydropholic, natural, or synthetic oil. The coated cement is usually sprayed on the oil slick, forming oil-cement globules, which sink rapidly. The oil-cement globules are relatively stable, disintegrating only over a lengthy period of time, releasing small, noninjurious oil globules.

In accordance with the 1972-73 U.S.-Soviet Agreement on Exchanges and Cooperation in Scientific, Technical, Educational, Cultural, and Other Fields, signed April 11, 1972, four Soviet experts in the field of special cements and polymer concrete arrived in the United States in May 1973.

<sup>&</sup>lt;sup>3</sup> Nutt, W. O. (assigned to Cement Marketing Co. Ltd.). British Pat. 1,282,411, July 19, 1972.

Table 19.—Hydraulic cement: World production, by country (Thousand short tons)

| Country                                   | 1971            | 1070                                          |                 |
|-------------------------------------------|-----------------|-----------------------------------------------|-----------------|
| North America:                            | 1011            | 1972                                          | 1978            |
| Bahamas Canada (sold or used by produced) |                 |                                               |                 |
| Canada (sold or used by producers)        | 917             | 1,087                                         | 1,0             |
| Cuba e                                    | $9,066 \\ 235$  | 9,976                                         | 10,8            |
| Dominican Republic                        | 235<br>830      | 288                                           | 29              |
| El Salvador                               | 657             | 830<br>746                                    | 88              |
| Guatemala                                 | 205             | $746 \\ 240$                                  | 78              |
| Haiti                                     | 250             | 291                                           | 26<br>e 30      |
| Honduras<br>Jamaica                       | 79              | 89                                            | e (             |
| Jamaica<br>Mexico                         | 179             | 214                                           | 28              |
| Nicaragua                                 | 467<br>r 8,113  | 460                                           | 44              |
| Panama                                    | 128             | 9,482                                         | 10,78           |
| Trinidad and Tohogo                       | 310             | $\frac{130}{325}$                             | 19              |
| United States (including Puerto Rico)     | 282             | 316                                           | 47<br>29        |
| South America.                            | r 80,316        | r 84,556                                      | 87,49           |
| ArgentinaBolivia                          |                 |                                               | 01,20           |
| Bolivia<br>Brazil                         | 6,099           | 6,002                                         | 5,71            |
| Chile                                     | $141 \\ 10,806$ | 166                                           | 18              |
| Colombia                                  | 1,508           | 12,545 $1,548$                                | 14,70           |
| Ecuador                                   | 3,139           | 3,188                                         | e 1,20<br>3,54  |
| Paraguay                                  | 407             | 385                                           | e 48            |
| Peru<br>Surinam                           | 67              | 79                                            | 82              |
| Surinam<br>Uruguay                        | 1,595           | 1,793                                         | e 1,900         |
| Uruguay<br>Venezuela                      | 54<br>504       | e 110                                         | e 130           |
| Gurope:                                   | 3,086           | 513                                           | 577             |
| Albania e                                 | 0,000           | 3,287                                         | 4,740           |
| Austria Belgium                           | 400             | 400                                           | 400             |
| BelgiumBulgaria                           | 6,053           | 7,016                                         | 6,900           |
| Bulgaria<br>Czechoslovakia                | 7,640           | 7,815                                         | 7,762           |
| Czechoslovakia<br>Denmark                 | r 4,277         | 4,310                                         | 4,603           |
| Finland                                   | 8,770<br>3,013  | 8,868                                         | 9,238           |
| France                                    | r 2,025         | $\begin{array}{c} 3,167 \\ 2,183 \end{array}$ | e 3,300         |
| Germany East                              | 31,910          | 33,339                                        | 2,341<br>33.863 |
| Germany, West                             | 9,340           | 9,763                                         | 12,125          |
| Greece<br>Hungary                         | 45,209          | 47,559                                        | 45,040          |
| Hungary<br>Iceland                        | 6,106           | 6,986                                         | 7,117           |
| Iceland<br>Ireland                        | 2,989<br>r 127  | 3,273                                         | 3,757           |
| Ireland<br>Italy                          | 1,657           | 143                                           | 148             |
| Luxembourg                                | r 35,052        | 1,619<br>36,882                               | 1,852           |
| Netherlands<br>Norway                     | 289             | 341                                           | 39,961<br>353   |
| Norway Poland                             | 4,459           | 4,435                                         | 4,494           |
| PolandPortugal 1                          | r 3,020         | 2,919                                         | 2,976           |
| Portugal <sup>1</sup> Romania             | 14,420          | 15,417                                        | 17,143          |
| Romania Spain (including Canary Islands)  | 2,709<br>9,395  | 3,131                                         | e 4,000         |
| Sweden                                    | r 18,916        | 10,154 $21,495$                               | 10,856          |
| Switzerland                               | r 4,354         | 4,114                                         | 24,511 $4,180$  |
| U.S.S.RUnited Kingdom                     | 5,754           | 6,297                                         | 6,345           |
| United Kingdom Yugoslavia                 | r 110,596       | 114,970                                       | 120,703         |
| Yugoslaviarica :                          | r 19,508        | 19,894                                        | 22,037          |
|                                           | 5,461           | 6,339                                         | 6,841           |
| AlgeriaAngola                             | 1,063           | 1 000                                         |                 |
| Cameroon                                  | 584             | 1,023<br>688                                  | e 1,000         |
| Cape Verde Islands                        | r 154           | 187                                           | 847<br>181      |
| Egypt, Arab Republic of                   | 11              | 9                                             | e 11            |
| Ethiopia Ghana                            | 4,322           | 4,213                                         | 3.995           |
| Ghana<br>Ivory Coast                      | 233             | 207                                           | 225             |
| Ivory Coast<br>Kenya                      | 585             | 454                                           | e 500           |
| KenyaLiberia                              | 551<br>875      | 643                                           | 661             |
|                                           | 100             | 882                                           | 873             |
| Malagasy Republic                         | 79              | 100<br>e 90                                   | ° 100           |
| Malawi                                    | 85              | 71                                            | 77              |
| Morocco Mozambique                        | 69              | 82                                            | 98              |
| Mozambique                                | 1,626           | 1,700                                         | 1,785           |
| NigerNigeria                              | 464             | 516                                           | 674             |
| Nigeria Rhodesia, Southern                | 33              | 36                                            | e 40            |
| Rhodesia, SouthernSenegal                 | r 732           | 1,231                                         | 1,641           |
| Senegal South Africa, Republic of Sudan   | 616<br>266      | 690                                           | e 720           |
| Republic of                               |                 | 369                                           | 325             |
| Sudan                                     | 6,455           | 6,733                                         | 7,566           |

Table 19.-Hydraulic cement: World production, by country-Continued (Thousand short tons)

| Country                       | 1971      | 1972        | 1973 P  |
|-------------------------------|-----------|-------------|---------|
| Africa—Continued              |           |             |         |
| Tanzania                      | 196       | 261         | 289     |
| Tunisia                       | 644       | 693         | 583     |
| Uganda                        | r 226     | 183         | e 165   |
| Zaire                         | 502       | 525         | 519     |
|                               | 519       | 534         | 454     |
| Zambia                        | 010       | 001         |         |
| Asia:                         | 100       | 109         | e 110   |
| Afghanistan 2                 | 71        | 25          | 33      |
| Bangladesh                    | 217       | 236         | 249     |
| Burma                         |           | r 31.240    | 33,880  |
| China, People's Republic of e | r 25,300  |             | e 490   |
| Cyprus                        | 334       | 355         |         |
| Hong Kong                     | 564       | 450         | 485     |
| India                         | 16,418    | 17,306      | 16,535  |
| Indonesia                     | r 537     | 657         | 915     |
| Tran                          | 3,142     | 3,968       | e 4,410 |
| Iraq                          | 2,046     | r e 2,100   | e 2,000 |
| Israel                        | 1.549     | 1,703       | 1,336   |
| Japan                         | r 65,515  | 73,120      | 86,007  |
|                               | 462       | 730         | 680     |
| Jordan                        | 65        | 51          | e 55    |
| Khymer Republic               | r 5,300   | r 5.800     | 6,400   |
| Korea, North e                | 7,575     | 7.150       | 9,008   |
| Korea, Republic of            | 1.652     | 1,792       | 1.825   |
| Lebanon                       | r 1.207   | 1.279       | 1.409   |
| Malaysia                      |           | 1,219       | 165     |
| Mongolia                      | 105       |             | 3,174   |
| Pakistan                      | 2,889     | 2,970       | 4.474   |
| Philippines                   | r 3,436   | 3,200       |         |
| Qatar e                       | 280       | 280         | 280     |
| Ryukyu Islands                | e 280     | e 280       | (2)     |
| Saudi Arabia                  | 775       | 1,003       | • 1,020 |
| Singapore                     | 676       | 1,112       | e 1,200 |
| Sri Lanka                     | 425       | 422         | 465     |
| Syrian Arab Republic          | 1.002     | 1,107       | e 1,100 |
|                               | 5,559     | 6.272       | 6,586   |
|                               | 3,063     | 3,739       | 4.128   |
| Thailand                      | 8,320     | 9.286       | 9.868   |
| Turkey                        | 550       | 280         | 550     |
| Vietnam, North •              | 290       | 268         | 292     |
| Vietnam, South                | 290       | 200         |         |
| Oceania:                      | r 104     | 5,296       | 5,781   |
| Australia                     | 5,164     | 5,296<br>99 | 103     |
| Fiji Islands                  | 86        |             | 1,166   |
| New Zealand                   | 907       | 991         |         |
|                               | r 679,948 | r 728,601   | 780,344 |

e Estimate. P Preliminary. Revised.

Includes production from the Azores and Madeira Islands as follows in thousand short tons:
1971—None; 1972: Azores—17; Madeira—33; 1973: Azores—24 (estimated); Madeira—37 (estimated).
The balance of output in each year was from continental Portugal.

Year beginning March 21 of that stated.
Included with Japan.



# Chromium

# By John L. Morning 1

In 1973 worldwide demand for chromium brought increased production of chromite and chromium products worldwide. A record year for domestic stainless steel producers created a strong demand for chromium alloys. As a result, the domestic chromium alloy industry returned to the production levels of 1969 and 1970, imports of ferrochromium reached a new high, and domestic consumption of chromium alloys exceeded 500,000 tons for the first time.

Legislation and Government Programs.—The Office of Emergency Preparedness (OEP) on April 12 revised stockpile objectives for chromium materials as follows: Chemical-grade chromite, 8,400 tons; metallurgical-grade chromite, 444,710 tons; refractory-grade chromite, 54,000 tons; and high-carbon ferrochromium, 11,476 tons. A zero objective was established for low-carbon ferrochromium, ferrochromium-silicon, and chromium metal. At midyear, OEP was abolished and the Office of Preparedness under the General Services Administration (GSA) was established.

Government chromium stockpile material inventories are shown in table 2. Included in the inventories is material sold but unshipped. This includes chemical-grade chromite, 185,268 tons; metallurgical-grade chromite, 85,342 tons; and refractory-grade chromite, 135,339 tons. In addition, 191 tons of chromium metal was inventoried as undelivered sales.

GSA under various disposal programs offered for sale all three grades of chromite and chromium metal. Sales were as follows: Metallurgical-grade chromite, 39,931 tons; refractory-grade chromite, 191,000 tons; and chromium metal, 1,055 tons.

Deliveries of chromite from Government stockpiles from current or prior year sales contracts were as follows: Chemical-grade, 155,412 tons; metallurgical-grade, 56,586

tons; and refractory-grade, 62,433. In addition, delivery of 864 tons of chromium metal added to the domestic supply.

The Ferroalloys Association in early May sought relief against a high level of imports of chromium and manganese alloys by petitioning the Tariff Commission under Section 301 of the Trade Expansion Act of 1962. By late June, the worldwide steel boom had been initiated, order books were filled, and profits improved. The domestic ferroalloy producers then requested a suspension of the complaint.

The Environmental Protection Agency (EPA) proposed effluent limitation guidelines for existing sources, and standards of performance and pretreatment standards for new sources for the electroplating point source category.<sup>2</sup>

EPA also proposed rules for the ferroalloy manufacturing point source category and effluent limitation guidelines for existing sources; and standards of performance and pretreatment standards for new sources.<sup>3</sup>

The National Institute for Occupational Safety and Health (NIOSH) submitted criteria for recommended standards governing exposure to toluene diisocyanate or chromic acid and toluene. Chromic acid was defined as meaning chromium trioxide and solutions of chromium trioxide. The criteria document recommended that no worker be exposed to chromic acid in concentrations greater than 0.05 milligram per cubic meter of air determined as a time-weighted average, or a ceiling concentration greater than 0.1 milligram per cubic meter determined by sampling time of 15 minutes.

<sup>1</sup> Physical scientist, Division of Ferrous Metals—Mineral Supply.
2 Federal Register. V. 38, No. 193, Oct. 5, 1973, pp. 27694—27699.
3 Federal Register. V. 38, No. 201, Oct. 18, 1973, pp. 29008–29018.

The Department of the Treasury revoked a finding (FR March 21, 1964) that the importation of chromic acid from Australia was injurious to the domestic

industry.4 With this action, the Department closed the case.

<sup>4</sup> Federal Register. V. 38, No. 37, Feb. 26, 1973, p. 5175.

Table 1.—Salient chromite statistics

(Thousand short tons)

| nited States:                                                                                              | 1969                                        | 1970                                                                | 1971                                          | 1972                                       | 1973                                     |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------|------------------------------------------|
| Exports Reexports Imports for consumption Consumption Stocks Dec. 31: Consumer orld: Production r Revised. | 49<br>150<br>1,106<br>1,411<br>740<br>5,865 | $\begin{array}{c} 41\\ 73\\ 1,405\\ 1,403\\ 733\\ 6,672\end{array}$ | 35<br>145<br>1,299<br>1,093<br>1,019<br>1,019 | 20<br>57<br>1,056<br>1,140<br>857<br>6,977 | 21<br>34<br>931<br>1,387<br>597<br>7,507 |

Table 2.-U.S. Government chromium stockpile material inventories and objectives (Thousand short tons)

|                                                                                                                                                                               | Objective                | Inventory by program, Dec. 31, 1973     |                              |                                            |                                           |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------|------------------------------|--------------------------------------------|-------------------------------------------|--|
| Chromite, chemical-grade                                                                                                                                                      |                          | National<br>stockpile                   | Defense<br>Production<br>Act | Supple-<br>mental<br>stockpile             | Tota                                      |  |
| Chromite, refractory-grade Chromite, refractory-grade Chromite, metallurgical-grade Ferrochromium, high-carbon Ferrochromium, low-carbon Ferrochromium-silicon Chromium metal | 8<br>54<br>444<br>11<br> | 529<br>932<br>2,266<br>126<br>128<br>26 | 901<br><br><br>              | 224<br>174<br>323<br>277<br>191<br>33<br>7 | 753<br>1,106<br>3,490<br>403<br>319<br>59 |  |

# DOMESTIC PRODUCTION

Domestic mine production of chromite ceased in 1961 when the last Government Defense Production Act contract was phased out. However, the United States continued to be one of the world's leading

chromite consumers in producing chromium alloys, refractories, and chemicals. The principal producers of these products were as follows:

| Metallurgical industry:                                     | Company                               |     | Division                                                |
|-------------------------------------------------------------|---------------------------------------|-----|---------------------------------------------------------|
| Airco Alloys and Carbid                                     | e Div., Air Reduction Co. Inc         |     | Plant                                                   |
| Chromium Mining & G.                                        | nelting Corp                          |     | Magara Falls, N.Y.                                      |
| Interlake Inc<br>Ohio Ferro-Alloys Corp<br>Shieldalloy Corp |                                       |     | Graham, W.Va. Beverly, Ohio                             |
|                                                             |                                       |     | Newfield, N.J.<br>Niagara Falls, N.Y.<br>Marietta, Ohio |
| Refractory industry: Basic, Inc Corhart Refractories Co.    | , Inc                                 |     | Alloy, W.Va.                                            |
| Twentaconies Co_                                            |                                       |     | Louisville, Ky.                                         |
| Harbison-Walker Refract                                     | ories Co. (Div. of Dresser Industries | Ina | Lehi, Utah                                              |
| and ac Onei                                                 | mear Corp                             | •   | Daitimore, Md.                                          |
| North American Det                                          | 11110)                                |     | Columbiana, Unio                                        |
| Chemical industry:                                          |                                       |     | Jackson, Ohio                                           |
| PPG Industries, Inc                                         |                                       |     | Baltimore, Md.<br>Castle Haynes, N.C.<br>Kearny, N.J.   |
|                                                             |                                       | (   | Corpus Christi, Tex.                                    |

CHROMIUM 279

# CONSUMPTION AND USES

Domestic consumption of 1,387,000 tons of chromite ore and concentrate containing about 429,000 tons of chromium was 18% higher than in 1972. Of the total chromite consumed, the metallurgical industry used 66.3%, the refractory industry 18.8%, and the chemical industry 14.9%. The metallurgical industry consumed 920,000 tons of chromite containing 303,000 tons of chromium in producing 417,745 tons of chromium alloys and metal. About 67.6% of the metallurgical-grade ore had a chromium-to-iron ratio of 3:1 and over, 16.8% had a ratio between 2:1 and 3:1, and 15.6% had a ratio of less than 2:1.

Producers of chromite-bearing refractories consumed 261,000 tons of ore containing about 63,000 tons of chromium. The chemical industry consumed 206,000 tons of chromite containing about 64,000 tons of chromium in producing 159,000 tons of chemicals (sodium bichromate equivalent).

Chromium has a wide range of applications in three consuming industries. In the

metallurgical industry its principal use is in stainless steel. Owing to a record year in stainless steel production, demand for chromium alloys was strong, especially during the last 9 months of the year. Stainless steel accounted for 73% of total chromium alloys consumed, an increase of over 100,000 tons compared with that of 1972. Consumption of alloys in most other end use categories increased significantly with the exception of carbon steel.

In the refractory industry, chromium was used in the form of chromite primarily for the manufacture of refractory bricks to line metallurgical furnaces. Consumption of chromite for refractory purposes increased 17% compared with that of 1972.

The chemical industry consumes chromite for manufacturing sodium or potassium dichromate, the base material for a wide range of chromium chemicals. Chromite consumption in this industry increased 9% compared with that of 1972.

Table 3.—Consumption of chromite and tenor of ore used by primary consumer groups in the United States

|                                      | -                                           |                                                        | in the U                                    | meu stat                             | .63                                         |                                                        |                                           |                                      |  |
|--------------------------------------|---------------------------------------------|--------------------------------------------------------|---------------------------------------------|--------------------------------------|---------------------------------------------|--------------------------------------------------------|-------------------------------------------|--------------------------------------|--|
|                                      | Metallu                                     | Metallurgical<br>industry                              |                                             | Refractory industry                  |                                             | Chemical industry                                      |                                           | Total                                |  |
| Year                                 | Gross<br>weight<br>(thousand<br>short tons) | Average<br>Cr <sub>2</sub> O <sub>3</sub><br>(Percent) | Gross<br>weight<br>(thousand<br>short tons) |                                      | Gross<br>weight<br>(thousand<br>short tons) | Average<br>Cr <sub>2</sub> O <sub>3</sub><br>(Percent) | short tons)                               |                                      |  |
| 1969<br>1970<br>1971<br>1972<br>1972 | 898<br>912<br>720<br>727<br>920             | 49.1<br>48.0<br>47.8<br>47.9<br>48.1                   | 302<br>278<br>193<br>224<br>261             | 35.0<br>35.9<br>36.3<br>35.9<br>35.0 | 211<br>213<br>180<br>189<br>206             | 45.1<br>45.3<br>45.6<br>45.7<br>45.3                   | 1,411<br>1,403<br>1,093<br>1,140<br>1,387 | 45.5<br>45.2<br>45.4<br>45.2<br>45.2 |  |

Table 4.—Production, shipments, and stocks of chromium ferroalloys and chromium metal (Short tons)

|                                                                                           | Produ                                 | ction                                 | Shipments                              | Producer<br>stocks                  |  |
|-------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|-------------------------------------|--|
| Alloy                                                                                     | Gross Chromium<br>weight content      |                                       | Біпри                                  | Dec. 31                             |  |
| 1972:  Low-carbon ferrochromium  High-carbon ferrochromium  Ferrochromium-silicon Other 1 | 68,372<br>169,525<br>98,223<br>14,239 | 47,766<br>112,805<br>36,886<br>11,349 | 78,997<br>162,718<br>90,986<br>16,104  | 23,575<br>37,888<br>22,096<br>2,585 |  |
| Total                                                                                     | 350,359                               | 208,806                               | 348,805                                | 86,144                              |  |
| 1973: Low-carbon ferrochromium High-carbon ferrochromium                                  | 86,958<br>234,102<br>78,992<br>17,693 | 60,917<br>158,550<br>29,071<br>11,505 | 103,444<br>251,954<br>88,921<br>18,040 | 9,348<br>20,475<br>7,177<br>2,046   |  |
| Other 1 Total Private abromium metal, ex                                                  | 417,745                               | 260,043                               | 462,359                                | 39,04                               |  |

<sup>&</sup>lt;sup>1</sup> Includes chromium briquets, chromium metal, exothermic chromium additives, and other miscellaneous chromium alloys.

Table 5.-U.S. consumption, by end uses, and consumer stocks of chromium ferroalloys and metal in 1973

(Short tons, gross weight)

| End use                                                                                                                                                                          | Low-<br>carbon<br>ferro-<br>chromium       | High-<br>carbon<br>ferro-<br>chromium                          | Ferro-<br>chromium-<br>silicon                       | Other                                                | Total                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------|
| Carbon Stainless and heat-resisting Full alloy High-strength low-alloy and electric Tool Cast irons Superalloys Alloys (excluding steels and superalloys): Welding and ellectric | 16,553<br>2,456<br>1,873<br>1,170<br>5,057 | 2,300<br>177,970<br>45,493<br>9,379<br>4,865<br>9,769<br>6,454 | 504<br>77,366<br>4,945<br>2,507<br>273<br>232<br>557 | 387<br>231<br>4,482<br>2,269<br>74<br>1,118<br>2,142 | 4,24;<br>373,40;<br>71,47;<br>16,61;<br>7,08;<br>12,28;<br>14,210 |
| Aiscellaneous and unspecified  Total                                                                                                                                             | $\frac{1,236}{2,873}$                      | 790<br>1,363<br>807                                            | $ar{22}$ $ar{56}$                                    | $^{286}_{2,475}$ $^{1,377}$                          | 1,692<br>5,096<br>5,113                                           |
| Chromium content_tocks Dec. 31, 1973                                                                                                                                             | 150,733<br>102,444<br>15,802               | 259,190<br>168,539<br>24,162                                   | 86,462<br>34,755<br>6,740                            | <sup>2</sup> 14,841<br>9,904<br><sup>3</sup> 1,752   | 511,226<br>315,642<br>48,456                                      |

#### STOCKS

Chromite stocks decreased significantly for the second successive year; however, the metallurgical industry accounted for virtually all of the decrease. Stocks in the metallurgical industry decreased nearly 44%, while stocks in the chemical and refractory industries were about the same as in 1972.

Owing to strong demand for chromium alloys, producer stocks decreased 55% as consumer stocks rose 77% compared with those of 1972.

Table 6.-Consumer stocks of chromite, Dec. 31

(Thousand short tons)

| Industry                          | 1969              | 1970              | 1971              | 1972             | 1973              |
|-----------------------------------|-------------------|-------------------|-------------------|------------------|-------------------|
| Metallurgical Refractory Chemical | 296<br>301<br>143 | 387<br>235<br>111 | 667<br>233<br>119 | 601<br>160<br>96 | 339<br>154<br>104 |
| Total                             | 740               | 733               | 1,019             | 857              | 597               |
|                                   |                   |                   |                   |                  |                   |

Stocks of chromium chemicals (sodium bichromate equivalent) at producer plants decreased from 13,936 tons in 1972 to 6,858 tons in 1973.

## **PRICES**

Despite vastly improved demand for chromite ore and chromium products, ore prices were generally down somewhat from their 1972 levels. Some ferrochrome prices, on the other hand, showed conspicuous advances. Imported ferrochrome also increased in price owing to dollar revaluations and increased demand.

Soviet metallurgical-grade ore continued to decline in price for the second straight

year after a continuous 4-year rise that peaked in 1971. Midyear prices for Soviet ore with a 4:1 chromium-to-iron ratio decreased to \$37 to \$39 per metric ton, 48%Cr<sub>2</sub>O<sub>3</sub> pricing basis, f.o.b. Soviet ports. Turkish 3:1 chromite was down to \$37 per long ton, 48% basis, f.o.b. Atlantic coast ports. In contrast to declining prices for Soviet and Turkish ores, South African

chromite rose to \$33 to \$34 per long ton, f.o.b. Atlantic coast ports.

Domestic ferrochromium prices, which were eroded in 1972 owing to lack of demand and an influx of ferrochromium imports, increased in the second quarter of 1973. Further increases in price during the year were not permitted under the Goverment's economic stabilization program.

Selected chromium alloy prices published by Metals Week for December 28, 1973, follow:

| Material                                                         | Cents per<br>pound of<br>chromium        |
|------------------------------------------------------------------|------------------------------------------|
| High-carbon terroculoundum                                       | 23.7<br>22.0–23.0<br>21.0–22.5           |
| Low-carbon ferrochromium (0.25% carbon) Low-carbon ferrochromium | 36.5<br>35.0                             |
| (0.05% carbon) Imported low-carbon ferrochromium                 | 34.0<br>Cents per<br>pound of<br>product |
| Aluminothermic chromium metal<br>Electrolytic chromium metal     | 138<br>153                               |

<sup>1 1972</sup> price; 1 producer's price was 26.2 cents for 1973.

## FOREIGN TRADE

Exports of chromite were about the same as in 1972, but reexports decreased 40% compared with those of 1972. Major exports were to Canada, 41%; Ireland, 31%; and Mexico, 18%; the balance went to seven other countries. Reexports were shipped to Mexico, 64%; Ireland, 19%; and Canada, 17%.

Ferrochromium exports increased 18% to 15,164 tons valued at \$5.1 million. West Germany received 34%; Canada, 30%; the United Kingdom, 14% and 16 countries received the balance.

Chromium and chromium alloys (wrought and unwought) and waste and scrap exports increased to 388 tons valued at \$556,000 from 200 tons in 1972.

Exports of pigment-grade chromium chemicals increased 50% compared with those of 1972, rising to 249 tons valued at \$461,000. Canada received 38% of the shipments; Japan, 20%; and the United Kingdom, 16%; the balance went to 21 other countries. Non-pigment-grade chromium chemicals exported totaled 2,568 tons valued at \$2,687,000, increasing 103% in quantity and 76% in value compared with those of 1972.

Exports of sodium chromate and dichromate more than tripled, rising to 12,341 tons valued at \$3,374,000. Canada was the leading recipient of shipments with 35% of the total, followed by the Republic of Korea, 13%; Taiwan, 11%; and Japan, 10%. Thirty-two other countries also received shipments.

Despite a big year in the domestic consuming industries, imports of chromite decreased 12% compared with those of 1972. Imports from the U.S.S.R. and Southern Rhodesia decreased 44% and 53%, respectively, while imports from the Philippines,

the Republic of South Africa, and Turkey increased 45%, 22%, and 36%, respectively,

Imports of ferrochromium set a record yearly high for the third year in a row as 155,541 tons valued at \$35,175,000 was received. The Republic of South Africa (30%), Japan (25%), Sweden (14%), and Southern Rhodesia (11%) accounted for 80% of the low-carbon ferrochromium imports, whereas Southern Rhodesia (41%), the Republic of South Africa (37%), Finland (8%), and Brazil (6%) accounted for 92% of the high-carbon ferrochromium imports.

Ferrochromium-silicon imports were 55% higher than in 1972. Three countries supplied 13,037 tons valued at \$3,127,000. Southern Rhodesia supplied 68%; the Republic of South Africa, 31%; and Sweden, 1%.

Chromium carbide imports of 308 tons valued at \$882,000 were nearly double those of 1972. West Germany supplied 80% and the United Kingdom the balance.

Imports of chromium metal, unwrought and waste and scrap, increased to 2,690 tons valued at \$6,080,000 from 1,894 tons valued at \$3,791,000 in 1972. Of the nine countries supplying imports, the United Kingdom accounted for 59% and Japan for 33%.

Imports of chromium-containing pig-

Table 7.—U.S. exports and reexports of chromite ore and concentrates

(Thousand short tons and thousand dollars)

 Year
 Exports
 Reexports

 Quantity
 Value
 Quantity
 Value

 1971
 35
 2,094
 145
 6,08

 824
 57
 1,94

1973 . . . . . . . . . .

Table 8.-U.S. imports for consumption of chromite, by grade and country (Thousand short tons and thousand dollars)

r Revised.

Less than  $\frac{1}{2}$  unit.

CHROMIUM 283

Table 9.-U.S. imports for consumption of ferrochromium, by country

| V                                   |                                 | -carbon ferros<br>than 3% car       |                      | High-carbon ferrochromium (3% or more carbon) |                                     |                      |
|-------------------------------------|---------------------------------|-------------------------------------|----------------------|-----------------------------------------------|-------------------------------------|----------------------|
| Year and country                    | Gross<br>weight<br>(short tons) | Chromium<br>content<br>(short tons) | Value<br>(thousands) | Gross<br>weight<br>(short tons)               | Chromium<br>content<br>(short tons) | Value<br>(thousands) |
| 1972:                               |                                 |                                     |                      |                                               |                                     |                      |
| Belgium-Luxembourg_                 | 39                              | 28                                  | \$17                 | 1,554                                         | 1,021                               | \$237                |
| Brazil                              |                                 |                                     |                      | 4,205                                         | 2,535                               | 651                  |
| Canada                              | 45                              | 30                                  | 17                   |                                               | 77                                  | _===                 |
| Finland                             |                                 |                                     | . ==                 | 6,887                                         | 3,612                               | 681                  |
| France                              | 465                             | 336                                 | 177                  |                                               |                                     | -==                  |
| Germany, West                       |                                 | 2,163                               | 1,211                | 2,316                                         | 1,519                               | 501                  |
| Italy                               |                                 |                                     |                      | 1,653                                         | 1,075                               | 320                  |
| Japan                               |                                 | 9,598                               | 5,434                | 3,577                                         | 2,267                               | 736                  |
| Netherlands                         |                                 |                                     | 2 .55                | 827                                           | 556                                 | 183                  |
| Norway                              | 6,282                           | 4,505                               | 2,422                | 3,318                                         | 2,272                               | 766                  |
| Rhodesia, Southern<br>South Africa, | 3,578                           | 2,581                               | 1,403                | 11,835                                        | 8,075                               | 1,910                |
| Republic of                         | 23,095                          | 14,406                              | 5,955                | 30,890                                        | 17,113                              | 4.361                |
| Sweden                              |                                 | 7,125                               | 3,958                | 1,171                                         | 796                                 | 269                  |
| Turkey                              |                                 | 4,703                               | 2,312                | 1,111                                         | 130                                 | 200                  |
| Yugoslavia                          | 1,117                           | 774                                 | 416                  | $4.8\bar{4}\bar{4}$                           | $3.1\overline{76}$                  | 651                  |
|                                     |                                 |                                     |                      |                                               |                                     |                      |
| Total                               | 68,194                          | 46,249                              | 23,322               | 73,077                                        | 44,017                              | 11,266               |
| 1973:                               |                                 |                                     |                      |                                               |                                     |                      |
| Brazil                              |                                 |                                     |                      | 7,129                                         | 4,160                               | 1,012                |
| Canada                              | 9                               | 6                                   | 5                    | ·                                             |                                     |                      |
| Finland                             |                                 |                                     |                      | 8,652                                         | 4,528                               | 888                  |
| Germany, West                       | 2,077                           | 1,506                               | 1,117                | 413                                           | 263                                 | 84                   |
| Japan                               |                                 | 7,577                               | 4,263                | 441                                           | 298                                 | 119                  |
| Norway                              | 3,194                           | 2,163                               | 1,260                | 1,160                                         | 792                                 | 281                  |
| Rhodesia, Southern                  | 6,321                           | 4,505                               | 2,508                | 47,190                                        | 32,166                              | 8,041                |
| South Africa,                       |                                 |                                     |                      | 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2       |                                     |                      |
| Republic of                         | <b>13,21</b> 8                  | 8,745                               | 4,385                | 41,360                                        | 23,451                              | 6,448                |
| Spain                               |                                 |                                     |                      | 1,385                                         | 944                                 | 302                  |
| Sweden                              |                                 | 4,542                               | 2,786                | 1,160                                         | 783                                 | 276                  |
| Turkey                              |                                 | 1,180                               | 598                  | 2 255                                         | 0.475                               | 0.55                 |
| Yugoslavia                          |                                 |                                     |                      | 3,307                                         | 2,149                               | 802                  |
| Total                               | 43,344                          | 30,224                              | 16,922               | 112,197                                       | 69,534                              | 18,253               |

ments were as follows: Chrome green, 161 tons; chrome yellow, 4,492 tons; chromium oxide green, 915 tons; hydrated chromium oxide green, 10 tons; molybdenum orange, 5,031 tons; and zinc yellow, 1,347 tons. Total value was \$5.6 million, 11% lower than in 1972. Chromium yellow accounted for 53% of the total value of these products. The leading suppliers were Japan,

42% of total value, and Canada, 22%.

Sodium chromate and dichromate imports totaled 1,031 tons valued at \$209,000, a substantial decrease from the 5,748 tons imported in 1972. Japan supplied 84% of the imports and the Republic of South Africa the balance. In addition, 6 tons of potassium chromate and dichromate was received from West Germany.

#### **WORLD REVIEW**

Albania.—According to the head of the State Planning Commission, chromite production will be a future growth area. For the 5-year plan of 1971–75, chromite output was targeted at 992,000 tons in 1975. Chromite concentrate was first exported in 1972, and export sales were expected to double in 1973. The state agency, Exportal, controls sales to foreign markets.

Greece.—Chromite production in Greece primarily comes from two mines. Metallurgical ore (concentrate) was produced by the General Mineral Exploration and Min-

ing Development Corp. (GEMEE) at the Skoumtsa mine in the Kozani area of Macedonia, while refractory ore was produced by the Scalistiri Group at Tsangli near Fársala in Thessaly. A full assessment of Greece's chromite resources has not been made, but exploration activity during the past few years increased estimated reserves to 6.5 million tons proven and 2 million tons possible. Chromite consumption in Greece, primarily refractory-grade ore, was used at a brick plant operated by the Scalistiri Group.

Table 10-Chromite: World production by country

(Thousand short tons)

| Country 1                 | 1971    | 1972             | 1973 р |  |
|---------------------------|---------|------------------|--------|--|
| Albania.                  | 553     | r e 630          | 720    |  |
| Argentina                 | (2)     | e (2)            | e (2)  |  |
| Brazil e                  | `´ 31   | `´33             | 33     |  |
| Colombia                  | 1       | re (2)           | 13     |  |
| Cuba e                    | 22      | 22               | 22     |  |
| Cyprus                    | r 46    | 26               | * 33   |  |
| Finland                   | 123     | 107              | • 130  |  |
| Greece                    | r 16    | 24               | e 24   |  |
| India                     | 288     | $3\overline{25}$ | 295    |  |
| <u>Iran</u>               | 194     | 198              | e 200  |  |
| Japan                     | 35      | 27               | 26     |  |
| Malagasy Republic         | r 165   | 123              | 173    |  |
| Pakistan                  | 27      | 36               | 24     |  |
| Philippines               | r 474   | 385              | 640    |  |
| Rhodesia, Southern e      | r 600   | r 600            | 600    |  |
| South Africa, Republic of | 1,812   | 1,635            | 1.818  |  |
| Sudan                     | 23      | 25               | 35     |  |
| Turkey                    | e 665   | e 710            | 617    |  |
| U.S.S.R.º                 | 1,980   | 2,040            | 2,100  |  |
| Yugoslavia                | 38      | 31               | 4      |  |
| Total                     | r 7,093 | 6,977            | 7,507  |  |

<sup>2</sup> Less than ½ unit.

8 Exports.

India.-India's chromite production in 1972 increased nearly 13% compared with that of 1971. Exports, all to Japan for the fourth consecutive year, dropped by 33,547 tons to 62,218 tons. Ferrochromium output fell from 13,756 tons in 1971 to 1,422 tons. The country's principal ferrochromium producer, Ferroalloy Corp. Ltd., did not operate owing to poor marketing conditions; Industrial Corp. of Orissa, Ltd. ceased operating in June; three other producers operated intermittently to meet limited requirements.

Japan.—Japan's production of chromium alloys in 1971-72 reached 450,000 tons. one-half was charge chromium; 120,000 tons of low-carbon ferrochromium and 80,000 tons of ferrochromium-silicon were also produced. Demand for chromium alloys for stainless steel production in 1974 was projected at 760,000 tons.

Mozambique.-Interest was shown by Companhia Moçambicana de Minas S.A. (CONOCMIN) in the ultrabasic formation of Mount Achiza. Chromium and nickel minerals have been identified in the area.

Philippines.—Output of chromite increased 66% compared with that of 1972; 84% was classified as refractory-grade and 16% as metallurgical-grade. Exports of refractory-grade chromite totaled 492,143 tons. The United States received 55%; Japan 15%, and the United Kingdom 11%. The

balance was shipped to nine other countries. Japan received all of the 105,466 tons of metallurgical-grade chromite exported.

Rhodesia, Southern.—United Nations economic sanctions, which were applied in 1966, brought retaliation by the Rhodesian Government in the form of an embargo on mining news, primarily production data. Firm production data has been unavailable since 1965. Estimated annual chromite production of 400,000 tons has been carried by the Bureau of Mines for several years, and numerous sources have indicated that the figure is too low. Rhodesian ferrochromium production capacity could utilize more than the estimated figure. Accordingly, the Bureau of Mines estimate has been increased to 600,000 tons annually for 1971-73.

South Africa, Republic of.—Chromite production in the Republic of South Africa totaled over 1.8 million tons, an 11% increase compared with 1972 output. Of the total, 729,000 tons was classified as less than 44% Cr<sub>2</sub>O<sub>3</sub>, 1,056,000 tons from 44% to 48% Cr<sub>2</sub>O<sub>3</sub>, and 33,000 tons as over 48% Cr<sub>2</sub>O<sub>3</sub>. Local sales of chromite accounted for 497,000 tons and exports for 1,205,000

Transvaal Consolidated Land Exploration Co., Ltd., reported record sales of chromite owing to South African and worldwide demand for chromite. The firm maintained its position as the largest sin-

Estimate.
 Preliminary.
 Revised.
 In addition to the countries listed, Bulgaria, North Korea and North Vietnam also produce chromite, but available information is inadequate to permit estimation of output levels.

285 CHROMIUM

gle producer of chromium ore in the Republic, and further expansion programs at new and existing mines were being undertaken.

Development of a chromite mine of Lavino (S.A.) (Pty.) Ltd., Steelpoort, Eastern Transvaal, was initiated in 1955, and shipments began in 1957. One seam of chromite about 50 inches thick currently is being worked and ranges in depth below surface from 16 feet to about 300 feet. A crushing and screening plant produces six sizes of ore ranging from 4-inch lump to minus 30-mesh foundry sand. Mine capacity is about 260,000 tons annually. Shipments are made to Lourenço Marques for export or to the African Metals Corp. Ltd. Ferrometals plant at Witbank.

Turkey.—Etibank State Agency) (a planned to initiate construction of a facility at Elâziğ to produce 25,000 tons of ferrochromium annually. The plant will produce ferrochromium and ferrochromiumsilicon. Japanese financing is involved in return for ferrochromium shipments.

## **TECHNOLOGY**

The basic principles of chromite flotation were discussed, and a review of previous work was presented.5

In addition, the results of experimental studies on Albanian, Cuban, and Russian chromite were described. The authors concluded; (1) of the various ions that can be present in the pulp, aluminum ions have the greatest influence on the flotation behavior of chromite; (2) in anionic flotation of chromite, aluminum species cause depression in the pH range of 4.5 to 8 and activation between pH 10 and 12; (3) complex effects of the gangue minerals and soluble species in solution cause similar flotation behavior of chromium ore with anionic and cationic collectors; and (4) because of high acid consumption and unfavorable conditions in acid environments, flotation of chromium ores should be undertaken under alkaline conditions.

Showa Denko KK (Japan) announced plans to produce a reduced chromite pellet for use in stainless steel manufacture. The pellets, made from chromite concentrate, would be 80% reduced in a rotary kiln. Full-scale testing was scheduled for mid-1974.

The growth of argon-oxygen decarburization (AOD) process for the manufacture of stainless steel in 1973 continued worldwide, as at least eight new installations initiated operations. The combination of the AOD process with that of continuous casting (CC), together with a listing of AOD and CC worldwide installations, was published.6 It can be expected that other stainless steel producers in the United States and worldwide will team up AOD and CC.

Nippon Steel Corp. produced stainless steel by employing a combination of the basic oxygen steelmaking process and the RH-OB process developed by Nippon. The RH-OB process utilizes oxygen for final decarburization in a vacuum degassing unit.

Researchers showed considerable interest in thermodynamic properties of chromium alloys.7

Constitution diagrams for chromium-iridium and for chromium-rhodium were published.8

<sup>&</sup>lt;sup>5</sup> Sobieraj, S., and J. Laskowski. Flotation of Chromite: 1-Early Research and Recent Trends; 2-Flotation of Chromite and Surface Properties of Spinel Minerals. Inst. Min. and Met. Trans. -Sec. C, v. 82, No. 85, December 1973, pp. 2007-C213.

<sup>6</sup> Journal of Metals. AOD-CC Gives Crucible Competitive Lead. V. 104, No. 5, October 1973, pp. 30-45.

<sup>7</sup> DeLuca, J. P., and J. M. Leitnakec. Review of Thermodynamic Properties of the Cr.-N Sve-

competitive Leau. v. 104, No. 5, October 1973, pp. 30-45.

1 DeLuca, J. P., and J. M. Leitnakec. Review of Thermodynamic Properties of the Cr-N System. J. Am. Ceram. Soc., v. 56, No. 3, March 1973, pp. 126-129.

Natesan, K., and T. F. Kassner. Thermodynamics of Carbon in Nickel, Iron-Nickel and Iron-Chromium-Nickel Alloys. Met. Trans., v. 4, No. 11, November 1973, pp. 2557-2566.

Mazandarany, F. N., and R. D. Pehlke, Thermodynamic Properties of Solid Alloys of Chromium With Nickel and Iron. Met. Trans., v. 4, No. 9, September 1973, pp. 2067-2076.

Young, D. J., W. W. Smeltzer, and J. S. Kirkaldy. Nonstoichiometry and Thermodynamics of Chromium Sulfide. J. Electrochem. Soc., v. 120, No. 9, September 1973, pp. 1221-1224.

S Waterstrat, R. M., and R. C. Manuszewski. The Chromium-Iridium Constitution Diagram. J. Less-Common Metals., v. 32, No. 1, July 1973, pp. 79-89.

The Chromium-Rhodium Constitution Diagram. J. Less-Common Metals, v. 32, No. 3, September 1973, pp. 331-343.

Analytical determination of chromium and manganese in steel is tedious and time consuming. A rapid spectrophotometric procedure that proved satisfactory over a 3-year period was published.9

The reactions occurring during the anodic polarization of tinplate passivated cathodically in a dichromate solution (CDC tinplate) were ascertained. It was found that a large portion of the CDC passivation film consists of chromium in the metallic state.10

M & T Chemicals Inc. announced the development of a commercial process for single-layer microcracked chromium plating that provides brighter deposits and a reproducible fine crack pattern in a plating time of 4 to 6 minutes. The firm claims the process leads to less corrosion and cost-cutting for electroplaters. In many applications it can enable the plater to have the same protection of the base metal with less nickel, thereby allowing platers to increase productivity and cut plating costs.

Patent activity during the year concerned burden preparation and prereducfor production ferroalloy;11 direct reduction of oxide ores;12 silicon control in production of high-carbon ferrochromium; 13 methods for purifying low-carbon ferrochromium and production of chromium metal; 14 methods for production of chromium chemicals;15 and methods for chromium electroplating.16

<sup>9</sup> Bhuchar, V. M., and V. P. Kukreja. Rapid Spectrophotometric Determination of Chromium and Manganese in Steels. Metallurgia and Metal Forming, v. 40, No. 3, March 1973, p. 91.

<sup>10</sup> Rauch, S. E., Jr., and R. N. Stienbricker. A Study of Surface Chromium on Tinplate. J. Electrochem. Soc., v. 120, No. 6, June 1973, pp. 735–738.

Study of Surface Chromium on Inplate. J. Electrochem. Soc., v. 120, No. 6, June 1973, pp. 735-738.

11 Baum, J. J. Direct Reduction Apparatus. U.S. Pat. 3,740,042, June 19, 1973.

12 Fey, M. G., and G. A. Kemeny. Method of Direct Ore Reduction Using a Short Cap Arc Heater. U.S. Pat. 3,765,870, Oct. 16, 1973.

13 Eda, S., H. Iwabuchi, K. Yamagishi, and K. Nakagawa (assigned to Nippon Kokan K. K.). Method of Controlling the Amount of Sillicon Contained as an Impurity in High-Carbon Ferrochromium. U.S. Pat. 3,765,871, Oct. 16, 1973.

14 Chadwick, C. (assigned to Union Carbide Corp.). Method of Purifying Low-Carbon Ferrochromium. U.S. Pat. 3,765,051, Apr. 3, 1973.

Crowther, J. C. Electrowinning of Chromium Metal. U.S. Pat. 3,766,028, Oct. 16, 1973.

Takean, M., K. Takahata, et. al. (assigned to Nippon Kokan K. K.). Method for the Continuous Vacuum Decarburization of Low Carbon Ferrochromium. U.S. Pat. 3,746,584, July 17, 1973.

15 Hanbo, K. (assigned to Nippon Denko K.). Method for the Manufacture of Alkali Chromate From a Chrome Ore. U.S. Pat. 3,733,389, May 15, 1973.

Morgan, T., R. W. Low, et. al. (assigned to Allied Chemical Corp.). Process for the Manufacture of Chrome Chemicals. U.S. Pat. 3,715,425, Feb. 16, 1973.

<sup>16</sup> Chessin, H., and M. Best. Novel Chromium Plating Composition. U.S. Pat. 3,758,390, Sept. 11, 1973.

Chessin, H. and P. Walker. (assigned to M&T Chemicals Inc.). Electrodeposition of an Iridescent Chromium Coating. U.S. Pat. 3,745,097, July 10, 1973.

Cox, C., J. Pechonick, Jr., and P. Zylstra, Jr. (assigned to United States of America represented by the Secretary of the Air Force). Method for Impregnating Microcracks in Chromium Plating. U.S. Pat. 3,761,303, Sept. 25, 1973.

Eisner, S. (assigned to Norton Co.). Crack Free Hard Chrome. U.S. Pat. 3,749,652, Aug. 7, 1073.

Low, M., and H. Jones (assigned to Permalite Chemical Inc.). Electrodeposition of Chromium. U.S. Pat. 3,713,999, Jan. 30, 1973.

## Clays

## By Sarkis G. Ampian 1

Clays in one or more of the classification categories (kaolin, ball clay, fire clay, bentonite, fuller's earth, or common clay and shale) were produced in 47 States and Puerto Rico. Clay production was not reported in Alaska, the District of Columbia, Rhode Island, or Vermont. The States leading in output were Georgia, 7.7 million tons; Texas, 5.7 million tons; and Ohio, 4.7 million tons; followed in order by North Carolina, Pennsylvania, and Alabama. Georgia also led in total value of clay output with \$160.4 million; Wyoming was second with \$24.0 million. Compared with 1972 figures, clay production increased in 30 States and value increased in 34 States. Total quantity of clays sold or used by domestic producers in 1973 was approximately 8% higher than in 1972, and total value was approximately 17% higher. Both the total tonnage and value of clays produced were alltime highs. Modest increases in value per ton were reported for all clays in 1973 owing to increased labor, fuel, and material costs. The increasing shortage and costs of fuels were causing considerable concern among clay producers and clay product manufacturers. Industrywide efforts were made to both economize and obtain standby fuels for their requirements. The costs of environmental protection equipment and environmental restrictions, combined with the energy crisis, were beginning to adversely affect production during the last quarter of 1973.

Kaolin in 1973 accounted for only 9% of the total clay production but for 46% of the domestic clay and shale value.

Table 1.—Salient clay and clay products statistics in the United States <sup>1</sup>
(Thousand short tons and thousand dollars)

|                                                                                                                                                                                      | 1969      | 1970      | 1971      | 1972      | 1973      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|-----------|-----------|
| Domestic clays sold or used by producers  Value  Exports  Value  Imports for consumption  Value  Clay refractories, shipments (value)  Clay construction products, shipments (value) | 58,694    | 54,853    | 56,666    | 59,456    | 64,351    |
|                                                                                                                                                                                      | \$264,415 | \$267,912 | \$274,431 | \$303,022 | \$354,058 |
|                                                                                                                                                                                      | 1,574     | 2,076     | 1,973     | 1,847     | 2,097     |
|                                                                                                                                                                                      | \$45,767  | \$66,116  | \$65,329  | \$66,216  | \$79,774  |
|                                                                                                                                                                                      | 82        | 87        | 64        | 67        | 53        |
|                                                                                                                                                                                      | \$1,750   | \$1,802   | \$1,501   | \$1,309   | \$1,879   |
|                                                                                                                                                                                      | \$257,507 | \$256,384 | \$236,563 | \$274,679 | \$323,479 |
|                                                                                                                                                                                      | \$608,982 | \$554,431 | \$641,567 | \$722,236 | \$783,187 |

<sup>&</sup>lt;sup>1</sup> Excludes Puerto Rico.

# DOMESTIC PRODUCTION, PRICES, AND FOREIGN TRADE, BY TYPE OF CLAY

#### KAOLIN

Domestic production of kaolin in 1973 increased 13%, and the value increased 19%. The average unit value for all grades of kaolin in 1973 was \$27.26 per ton, \$1.51 higher than in 1972. Kaolin was produced

at mines in 16 States. Two States, Georgia (75%) and South Carolina (13%), accounted for 88% of the total U.S. production in 1973, Arkansas ranked third, Alabama fourth, and Texas fifth. Output in 1973 de-

<sup>&</sup>lt;sup>1</sup> Physical scientist, Division of Nonmetallic Minerals—Mineral Supply.

clined in California and increased in Alabama, Arkansas, Florida, Georgia, Idaho, Minnesota, Missouri, Nevada, North Carolina, Pennsylvania, South Carolina, Texas, and Utah. Indiana became a new producing State in 1973.

Kaolin is defined as a white, claylike material approximating the mineral kaolinite. It has a specific gravity of 2.6 and a fusion point of 1,785° C. The other kaolin-group minerals, such as halloysite and dickite, are encompassed.

During 1973 J. M. Huber Corp. began construction of one of the world's largest spray dryers at its Wren, Ga., facility. Spray dryers were also added by Engelhard Minerals & Chemicals Corp. at its McIntyre; Ga., operation, and by Anglo-American Clay Corp. at its Sandersville, Ga., plant. Anglo-American's spray dryer was part of a completed expansion program started in early 1972 to meet the increasing demand for its high-brightness paper-coating grades. Anglo-American and Union Camp Corp. were jointly exploring the latter's lands in Georgia for commercially valuable kaolin deposits. Allied Chemical Corp. purchased a large kaolin property in Wilkinson County, Ga. Horton International announced its intentions to produce air-floated kaolin from its deposits near Sandersville and also to custom grind for other kaolin producers.

The Georgia Senate, seeking to capitalize on the aluminum potential of the State's kaolin, resolved to offer \$250,000 to the first person or firm to commercially produce alumina or aluminum chloride from Georgia's deposits. The resolution, which stipulates that at least 300,000 tons must be produced the first year, must be passed by the Georgia House of Representatives and approved by the public as a constitutional amendment.<sup>2</sup> Georgia's kaolin deposits are considered to be the world's largest.

Exports of kaolin, as reported by the U.S. Department of Commerce, increased from 668,000 short tons valued at \$26.3 million in 1972 to 732,000 tons valued at \$30.5 million in 1973. The tonnage and value of the kaolin exported in 1973 increased 10% and 16%, respectively, over that shipped in 1972. The unit value per ton increased \$2.29. This increase in the unit value of the kaolin exported was attributed to the greater percentage of the higher quality paper-coating grades shipped.

Kaolin was exported to 56 countries. The recipients were Japan, 31%; Canada, 22%;

West Germany, 20%; Italy, 11%; and the remaining countries, 16%. Generally, exports to all countries increased, except for those to the Netherlands, France, Brazil, and Italy, which decreased 95%, 54%, 33%, and 4%, respectively. The kaolin producers reported the end use for their exports as follows: Paper coating, 55%; paper filling, 4%; rubber, 8%; and others, including refractories, fiberglass, paint, and plastics, 33%.

Kaolin imports in 1973 reversed the downward trend reported for a number of years by increasing from 25,481 short tons valued at \$736,000 in 1972 to 34,203 tons valued at \$881,000. The United Kingdom supplied nearly 98%; Canada, nearly 2%; and two other countries, less than 0.5%.

Kaolin prices quoted in the trade journals in 1973 were unchanged from 1972. Chemical Marketing Reporter, December 31, 1973, quoted prices as follows:

| Waterwashed, fully calcined, bulk                 |               |
|---------------------------------------------------|---------------|
| carload lots, f.o.b. Georgia,                     |               |
| per ton                                           | \$76.00       |
| Partially calcined, same basis,                   |               |
| per ton                                           | 69.00         |
| Paper-grade, uncalcined, same                     |               |
| basis, per ton:                                   |               |
| No. 1 coating                                     | \$40.00-41.00 |
| No. 2 coating                                     | 32.00-33.00   |
| No. 3 coating                                     | 31.00-32.00   |
| Filler, general purpose, same                     |               |
| basis, per ton                                    | 14.00         |
| Delaminated, waterwashed, uncal-                  |               |
| cined, paint-grade, 1-micrometer                  |               |
| average, same basis, per ton                      | 67.00         |
| Dry-ground, air-floated, soft, same               | 4400          |
| basis, per ton<br>National Formulary, powder, 50- | 14.00         |
| pound bags, 5,000-pound lots.                     |               |
| works, per pound                                  | 0.0055        |
| National Formulary, colloidal,                    | 0.0675        |
| 150-pound drums, works, per                       |               |
| pound                                             | 0.1650        |
| pound                                             | 0.1000        |
|                                                   |               |

The average unit value reported by domestic kaolin producers was \$27.26 per ton, an increase of \$1.51 above the 1972 value.

#### BALL CLAY

Production and value reported for domestically mined ball clay in 1973 increased 14% and 20%, respectively. Tennessee mines provided 64% of the Nation's output, followed in order of output by Kentucky, Mississippi, Texas, Maryland, New York, and California. Production in Kentucky, Maryland, Mississippi, and Tennessee increased over that reported in 1972, while California production decreased.

Ball clay is defined as a plastic, whitefiring clay used principally for bonding in ceramic ware. The clays are of sedimentary

<sup>&</sup>lt;sup>2</sup> Chemical Engineering. Chementator. V. 81, No. 3, February 1974, p. 19.

origin and consist mainly of the clay mineral kaolinite and sericite micas.

In 1973 Old Hickory Clay Co. installed a fluidized-bed dryer at its Gleason, Tenn., plant. This fluidized-bed dryer, an industry first, was reportedly capable of operating at lower temperatures than the present rotary dryers, thereby eliminating the danger of calcining or overfiring which reduces the natural plasticity of ball clays. H. C. Spinks Clay Co. began constructing a drying and grinding facility scheduled for completion in 1974, at Gleason. This facility will both expand production of air-floated and mechanically dried clays and eliminate costly hauling from its Gleason area mines to other plants.

The average unit value for ball clay reported by domestic producers rose in 1973 to \$16.88 per ton, an increase of \$0.89 per

Table 2.-Clays sold or used by producers in the United States in 1973, by State 1

|                |              | ,                  | S                   | hort tons            |                    |                                   |                      | Total                                   |
|----------------|--------------|--------------------|---------------------|----------------------|--------------------|-----------------------------------|----------------------|-----------------------------------------|
| State          | Kaolin       | Ball<br>clay       | Fire<br>clay        | Ben-<br>tonite       | Fuller's<br>earth  | Common<br>clay<br>and shale       | Total                | value                                   |
| Alabama        | 127,044      |                    | 359,840             | w                    |                    | 2,446,648 2                       |                      | 2 \$8,787,60                            |
| Arizona        | 5            |                    | w                   | 35,067               |                    | 82,241                            | <sup>3</sup> 117,313 | 3 459,07                                |
| Arkansas       | w            |                    |                     |                      |                    | 1,445,790 4                       |                      | 4 1,411,55                              |
| California     | 26,251       | $\bar{\mathbf{w}}$ | 119,364             | 49,682               | $\mathbf{w}$       | 2,526,158                         | 2,723,339            | 6,853,26                                |
| Colorado       |              |                    | 58,126              | 1,012                |                    | 734,485                           | 793,623              | 1,709,85                                |
| Connecticut    |              |                    |                     |                      |                    | 161,707                           | 161,707              | 320,17<br>8,84                          |
| Delaware       |              |                    |                     |                      |                    | 14,747                            | 14,747               | 13,717,79                               |
| Florida        | 27,955       |                    |                     |                      | 419,168            | 691,570<br>2,766,378 <sup>3</sup> | 1,138,693            | 15,111,10<br>19,111,10                  |
| Georgia        | 4.510,263    |                    | $\mathbf{w}$        |                      | 444,326            | 2,766,378                         | W                    | · 100,413,21                            |
| Hawaii         |              |                    |                     |                      |                    | W                                 | 42,088               | 226,68                                  |
| [daho          | w            |                    | $\mathbf{w}$        | $\mathbf{w}$         |                    | 11,116<br>1,660,306 <sup>5</sup>  |                      | 5 3,612,68                              |
| Illinois       |              |                    | 97,270              |                      | $\mathbf{w}$       |                                   | 1,436,420            | 2,567,81                                |
| Indiana        | w            |                    | $\mathbf{w}$        |                      |                    | 1,393,483                         | 967,396              | 2,028,00                                |
| Iowa           |              |                    |                     |                      |                    | 967,396                           | 1,169,264            | 1,489,56                                |
| Kansas         |              |                    |                     |                      |                    | 1,169,264                         | 1,103,204            | 6 1.961.32                              |
| Kentucky       |              | w                  | 142,556             |                      |                    | 978,523                           | 978,523              | 1,329,39                                |
| Louisiana      |              |                    |                     |                      |                    |                                   | 40,773               | 74.41                                   |
| Maine          |              |                    |                     |                      |                    | 40,773                            | 6 896,599            | 6 1,973,49                              |
| Maryland       |              | W                  |                     |                      |                    | 896,599                           | 217,053              | 404.4                                   |
| Massachusetts  |              |                    |                     |                      |                    | 217,053                           | 2,150,706            | 3,304,39                                |
| Michigan       |              |                    |                     |                      |                    | 2,150,706<br>155,555              | 4 155,555            | ± 233,28                                |
| Minnesota      | w            |                    |                     | 204 105              | $\bar{\mathbf{w}}$ | 1,622,586                         | 2,074,985            | 9,082,3                                 |
| Mississippi    |              | $\mathbf{w}$       |                     | 286,135              |                    | 1,564,697                         | 2,550,926            | 11,626,3                                |
| Missouri       | 82,745       |                    | 829,484             | 74,000               |                    | 42,337                            | 3 218,923            | 3 1,298,1                               |
| Montana        |              |                    | $\mathbf{w}$        | 176,586              |                    | 158,468                           | 158,468              | 285,7                                   |
| Nebraska       |              |                    | 75                  | $\bar{\mathbf{w}}$   |                    | W                                 | 35,650               |                                         |
| Nevada         | 1,950        |                    | 45                  |                      |                    | 43,350                            | 43,350               | 63,5                                    |
| New Hampshire  |              |                    | 24 4 5 5            |                      |                    | 156,915                           | 183,318              | 665,7                                   |
| New Jersey     |              |                    | 26,403              |                      |                    | 87,808                            | 3 87,808             | 3 169,4                                 |
| New Mexico     |              |                    | $\mathbf{w}$        |                      |                    | 1 798 912                         | 6 1,798,912          | 6 2,146,1                               |
| New York       | ==           | w                  |                     |                      |                    | 4 109 174                         | 4 4,109,174          | 4 5,057,1                               |
| North Carolina | $\mathbf{w}$ |                    |                     |                      |                    | W                                 | w                    |                                         |
| North Dakota   |              |                    | 1,095,474           |                      |                    | 3.636,309                         | 4,731,783            | 12,456,2                                |
| Ohio           |              |                    |                     | $\bar{\mathbf{w}}$   |                    | 1 297,699                         | 2 1,297,699          | 2 1,871,0                               |
| Oklahoma       |              |                    |                     | 875                  |                    | 166,703                           | 167,578              | 290,7                                   |
| Oregon         |              |                    | 001 744             |                      |                    |                                   | 4 2,975,188          |                                         |
| Pennsylvania   |              |                    | 891,744             |                      |                    | 463,621                           | 463,621              | 473,1                                   |
| Puerto Rico    |              |                    |                     |                      | $\bar{\mathbf{w}}$ | 1.495.514                         | 5 2,250,483          | 5 12,876,5                              |
| South Carolina |              |                    |                     | $\tilde{\mathbf{w}}$ |                    | 200,511                           | 2 200,511            | = 181,1                                 |
| South Dakota   |              | 105 605            |                     | **                   | $\bar{\mathbf{w}}$ | 1.231.226                         | 5 1,718,851          | 5 9,082,9                               |
| Tennessee      |              | 487,625            | 87,484              | 84,620               | w                  | 5,329,859                         | 5,667,260            | 13,114,6                                |
| Texas          | . <b>W</b>   | w                  | 5,300               | 4,880                | 2,870              | 229,580                           | 4 242,630            | <b>4770,</b> 9                          |
| Utah           |              |                    | 9,300               |                      | 2,010              | 1.645,726                         | 1,645,726            | 1,885,7                                 |
| Virginia       |              |                    | $\ddot{\mathbf{w}}$ |                      |                    | 286,538                           | 3 286,538            | 3 <b>663</b> ,8                         |
| Washington     |              |                    | w                   |                      |                    | 0.47 000                          | 3 347,833            | 3 516,3                                 |
| West Virginia  |              |                    | vv                  |                      |                    | 1 770                             |                      | ) 3,1                                   |
| Wisconsin      |              |                    |                     | 2.106,369            |                    | 236,148                           |                      | 7 24,043,0                              |
| Wyoming        |              | 050 005            | 354,893             | 253,316              | 272,069            |                                   | 7 1,268,301          |                                         |
| Undistributed  | 462,297      | 279,087            | 304,093             | 200,010              | 1 100 495          | 49,775,190                        |                      |                                         |
| Total          | E 009 470    | 766 719            | 4 067 983           | 3.072.542            | 1.138.436          | 49,770,190                        | 04,014,00            | , , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |

W Withheld to avoid disclosing individual company confidential data; included with "Undistributed.'

<sup>&</sup>lt;sup>1</sup> Includes Puerto Rico.

<sup>&</sup>lt;sup>2</sup> Excludes bentonite. <sup>3</sup> Excludes fire clay.

<sup>4</sup> Excludes kaolin.

Excludes fuller's earth.

Excludes ball clay.

Incomplete total; remainder included in State totals.

Table 3.-Kaolin sold or used by producers in the United States, by State

| State                                                                                                                              | 19                                                                                        | 972                                                                                                                | 1973                                                                                            |                                                                                                              |  |
|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                    | Short tons                                                                                | Value                                                                                                              | Short tons                                                                                      | Value                                                                                                        |  |
| Alabama Arizona California Florida Georgia Missouri Nevada Dhio Dregon Pennsylvania South Carolina Other States <sup>1</sup> Total | 112,152<br>58,743<br>W<br>3,966,443<br>W<br>28,371<br>133<br>54,983<br>681,086<br>415,721 | \$1,186,466<br>150<br>522,198<br>W<br>120,495,819<br>W<br>W<br>135,748<br>670<br>613,167<br>8,997,932<br>4,953,400 | 127,044<br>5<br>26,251<br>27,955<br>4,510,263<br>82,745<br>1,950<br><br>W<br>754,969<br>462,297 | \$1,365,601<br>150<br>256,641<br>789,375<br>144,726,059<br>W<br>50,700<br>——<br>W<br>10,353,682<br>5,829,174 |  |
| 10tai                                                                                                                              | 5,317,637                                                                                 | 136,905,550                                                                                                        | 5,993,479                                                                                       | 163,371,382                                                                                                  |  |

W Withheld to avoid disclosing individual company confidential data; included with "Other States." Includes Arkansas, Idaho, Indiana (1973), Minnesota, North Carolina, Texas, Utah, and data indicated by symbol W.

Table 4.-Kaolin sold or used by producers in the United States, by kind

| Kind                                                        |                                                         | 972                                                                | 1973                                                      |                                                                       |  |
|-------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------|--|
|                                                             | Short tons                                              | Value                                                              | Short tons                                                | Value                                                                 |  |
| Airfloat Calcined Delaminated Unprocessed Waterwashed Total | 1,307,066<br>212,797<br>186,230<br>872,785<br>2,738,759 | \$19,469,122<br>11,324,402<br>8,574,354<br>9,297,150<br>88,240,522 | 1,397,199<br>176,425<br>194,180<br>1,230,823<br>2,994,852 | \$21,963,180<br>12,980,059<br>10,193,639<br>16,623,209<br>101,611,298 |  |
|                                                             | 5,317,637                                               | 136,905,550                                                        | 5,993,479                                                 | 163,371,38                                                            |  |

Table 5.-Georgia kaolin sold or used by producers, by kind

| Kind                                                        |                                                                    | 972                                                                               | 1973                                                               |                                                                                     |  |
|-------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|
|                                                             | Short tons                                                         | Value                                                                             | Short tons                                                         | Value                                                                               |  |
| Airfloat Calcined Delaminated Unprocessed Waterwashed Total | 788,023<br>132,895<br>186,230<br>217,527<br>2,641,768<br>3,966,443 | \$10,317,785<br>10,196,168<br>8,574,354<br>4,832,833<br>86,574,679<br>120,495,819 | 839,625<br>146,425<br>194,180<br>421,905<br>2,908,128<br>4,510,263 | \$11,629,754<br>11,934,459<br>10,193,633<br>10,981,785<br>99,986,424<br>144,726,059 |  |

Table 6.—Georgia kaolin sold or used by producers, by kind and use (Short tons)

|                                     |                    | 19               | 972              |                      |                    | 1973             |                    |               |
|-------------------------------------|--------------------|------------------|------------------|----------------------|--------------------|------------------|--------------------|---------------|
| Use                                 | Air-<br>float      | Unproc-<br>essed | Water-<br>washed |                      | Air-<br>float      | Unproc-<br>essed | Water              |               |
| Domestic:                           |                    |                  |                  |                      |                    |                  |                    |               |
| AdhesivesAlum (aluminum sulfate)    | W                  |                  | w                | 54,012               | $\mathbf{w}$       |                  | $\mathbf{w}$       | 44,218        |
| and other chemicals<br>Animal feed  | (2)                | ( <sup>2</sup> ) | ( <sup>2</sup> ) | (2)                  |                    | $\mathbf{w}$     | w                  | 131,942       |
| Brick, face                         | (-)                | 13.250           |                  | 13,250               | 117<br>565         |                  |                    | 117           |
| Catalysts (oil refining)            | (2)                |                  |                  | (2)                  | W                  |                  | $\bar{\mathbf{w}}$ | 565<br>43,699 |
| China/dinnerware Crockery and other | ( <sup>2</sup> )   |                  |                  | (2)                  | w                  |                  | ŵ                  | 18,084        |
| earthenware<br>Fiberglass           | 19,995             |                  |                  | 19,995               | 3,556              |                  |                    | 3,556         |
| Firebrick, block, shapes            | 72 F00             | 19,388           | W                | 130,625              | w                  |                  | w                  | 134,604       |
| Floor and wall tile,                | -                  | 19,388           |                  | 92,897               | 32,400             | 47,252           |                    | 79,652        |
| ceramic<br>Grogs and crudes,        |                    |                  |                  | 18,385               | $\mathbf{w}$       |                  | w                  | 21,485        |
| refractory<br>Gypsum products       |                    | ( <sup>2</sup> ) |                  | ( <sup>2</sup> )     | w                  | w                |                    | 153,179       |
| Paint                               | $\bar{\mathbf{w}}$ | (                | (2)<br>W         | (2)                  | W                  |                  |                    | 52,023        |
| Paper coating                       | 16,100             | 1                | .417.816         | 127,460<br>1,433,916 | $11,982 \\ 71,502$ |                  |                    | 111,302       |
| See footnotes at end of table       |                    |                  | , ,              | -, -00,010           | 11,002             | 1,0              | 07,409             | 1,610,911     |

Table 6.—Georgia kaolin sold or used by producers, by kind and use-Continued

|                                              |         | 1        | 972              |                 |              |         | 197     | 3                             |         |
|----------------------------------------------|---------|----------|------------------|-----------------|--------------|---------|---------|-------------------------------|---------|
| Use _                                        |         | Unproc-  | Water-<br>washed | Total           | Air-         |         | proc-   | Water-<br>vashed <sup>1</sup> | Total   |
|                                              | float   | essed    | washed           |                 |              |         |         |                               |         |
| Continued                                    |         |          |                  | co              | 7 100 5      | 70      | 6       | 30,474 8                      | 313,044 |
| estc—Continued Paper filling                 | 256,903 |          | 500,784          | 757,687         | ( 104,⊍      | w       | '       | w                             | 61,889  |
| Plastics                                     |         |          | W                | 66,844          |              | w       |         | w                             | 9,650   |
| Dattawr                                      | w       |          | W                | 10,765          |              | w       |         | W                             | 300     |
| Dfng granules                                | (2)     |          | 00 049           | $(^{2})$ 143,39 |              |         |         |                               | 112,82  |
| Rubber                                       | 122,553 |          | 20,842<br>W      | 111,31          | 8 119.9      | 20      |         | 40,945                        | 160,86  |
| Sanitary ware                                | w       |          | **               | 111,01          | ,-           |         |         |                               |         |
| Miscellaneous:                               |         |          |                  |                 |              |         |         |                               |         |
| Animal feed; caulk-                          |         |          |                  |                 |              |         |         |                               |         |
| Animal feed; caulk-<br>ing, putty, sealers;  |         |          |                  |                 |              |         |         |                               |         |
| linoleum; pesticides<br>and related products | 5,520   |          |                  | 5,52            | 0            |         |         |                               | -       |
| and related products                         | 0,020   |          |                  |                 |              |         |         |                               |         |
| Catalysts (oil refin-                        |         |          |                  |                 | _            |         |         |                               |         |
| ing); foundry sand;                          | 15,763  |          |                  | . 15,76         | 3            |         |         |                               | _       |
| unknown uses                                 | ,       |          |                  |                 |              |         |         |                               |         |
| China/dinnerware;                            |         |          |                  | 0-              | •            |         |         |                               | _       |
| glazes, glass, enamels; roofing tile         | 21,012  |          |                  | 21,01           | .2           |         |         |                               | _       |
| Electrical porcelain;                        | - /     |          |                  |                 |              |         |         |                               |         |
| refractory grogs                             |         |          |                  |                 |              |         |         |                               |         |
| and crudes; roofing                          |         |          |                  | E0 00           | 21           |         |         |                               | -       |
| granules                                     | 53,381  | L        |                  | _ 53,38         |              |         |         |                               |         |
| Electrical porcelain;                        |         |          |                  |                 |              |         |         |                               |         |
| glazes, glass, enam-                         |         |          |                  |                 |              |         |         |                               |         |
| els; high alumina                            |         |          |                  |                 |              |         |         |                               |         |
| rofractories: 1100-                          |         |          |                  |                 |              |         |         |                               |         |
| ·Lisidaa                                     |         |          |                  |                 |              |         |         |                               |         |
| and related prod-<br>ucts unknown uses       |         |          |                  |                 | 67           | ,279    |         |                               | 67,27   |
| ucts; unknown uses                           | -       |          |                  | -               |              | ,       |         |                               |         |
| Alliminum suitate,                           |         |          |                  |                 |              |         |         |                               |         |
| flue linings; retrac-                        |         |          |                  |                 |              |         |         |                               |         |
| tory grogs and                               |         |          |                  |                 |              |         |         |                               |         |
| crudes; unknown                              |         | _ 126,16 | 2 -              | _ 126,1         | 62           |         |         |                               |         |
| uses                                         |         | _ 120,20 | -                |                 |              |         |         |                               | 39,4    |
| Flue linings, portland                       |         |          |                  | -               |              |         | 39,481  |                               | 35,4    |
| cement                                       | _       | _        |                  |                 |              |         |         |                               |         |
| Catalysts (oil refin-<br>ing); chemical      |         |          |                  |                 |              |         |         |                               |         |
| manufacturing; alu-                          |         |          |                  |                 |              |         |         |                               |         |
| minum sulfate                                |         |          | 41,8             | 12 41,8         | 5 <b>4</b> Z |         |         |                               |         |
| Face brick; gypsum                           |         |          |                  |                 |              |         |         |                               |         |
| products; refractory                         | ,       |          |                  |                 | 199          |         |         |                               |         |
| mortar and cement.                           |         |          | 4                | 33 4            | 133          |         |         |                               |         |
| Fertilizers; ink;                            |         |          | 155              | 66 15,5         | 566          |         |         |                               |         |
| textiles                                     |         |          | 15,5             | 00 10,0         | ,00          |         |         |                               |         |
| Medical, pharmaceu-                          |         |          |                  |                 |              |         |         |                               |         |
| tical, cosmetic;                             |         |          |                  |                 |              |         |         |                               |         |
| foundry sand;                                |         |          |                  |                 |              |         |         |                               |         |
| ceramic tile; un-                            |         |          | 22,0             | 81 22,          | 081          |         |         |                               |         |
| known uses                                   | -       |          | ,                | ,               |              |         |         |                               |         |
| Fertilizers; mineral                         |         |          |                  |                 |              |         |         |                               |         |
| oil filtering, Clari-                        |         |          |                  |                 |              |         |         |                               |         |
| fying, decolorizing                          | ,       |          |                  |                 |              |         |         |                               |         |
| ink; medical, phar                           | •       |          |                  |                 |              |         |         |                               |         |
| maceutical, cos-                             |         |          |                  |                 |              |         |         |                               |         |
| metic; foundry<br>sand; refractory           |         |          |                  |                 |              |         |         |                               |         |
| sand; retractory                             |         |          |                  |                 |              |         |         |                               |         |
| mortar and cement                            | •       |          |                  |                 |              |         |         | 46,113                        | 46.     |
| textiles; unknown                            |         |          |                  | -==             | 6            | 41 000  | 251,085 |                               | (3)     |
| uses<br>Undistributed                        | 171.9   | 993      | 329,             | 031 (3)         | 2            | 11,002  | 201,000 | 0.550.010                     | 9.716   |
| Ondistributed                                | 775 1   | 14 158.8 | 300 2.348.       | 395 3,282       | ,309 82      | 26,161  | 337,818 | 2,552,812                     | 3,110,  |
| Total                                        |         |          |                  |                 |              |         |         |                               |         |
| Zvnorte.                                     |         |          |                  |                 | 205          |         |         | 18,916                        | 18      |
| Exports:<br>Paint                            |         |          | 23,              |                 | ,395         | 8,464   |         | 471,495                       | 479     |
| Paper coating                                |         | _==      | 361,             |                 | ,431<br>,466 | 0,404   |         | 35,085                        | 35      |
| Paner filling                                | ,       | 834      | 181,             | 03Z 183         | ,466<br>760  | 5,000   | 84,087  |                               | . 89    |
| Refractories                                 | 10,0    | 000 58,  |                  |                 | ,760<br>,184 | 5,000   | 04,001  | 2 691                         | 3       |
| TACTI MC001100 =====                         | 1,0     | 075      | 3,               |                 | ,898         |         |         | 166,744                       |         |
| Rubber                                       |         |          | 47.              | 070 44          | ,000         |         |         |                               |         |
| Rubber                                       |         |          |                  |                 | 104          | 19 46 4 | 8/ 087  | 695 921                       | 793     |
| RubberOther Total Grand total                |         | 909 58.  | 797 619          | 498 684         | ,134         | 13,464  | 84,087  |                               |         |

W Withheld to avoid disclosing individual company confidential data; included with "Undistributed."

1 Includes calcined and delaminated.
2 Included in "Miscellaneous" uses.
3 "Undistributed" total included with total for each specific use.

| Table 7.—South Carolina | kaolin sold or used by<br>(Short tons) | producers, | by kind | and use |
|-------------------------|----------------------------------------|------------|---------|---------|
|                         | <u> </u>                               |            |         |         |

| Kind and use                                                            |         |         |
|-------------------------------------------------------------------------|---------|---------|
| Airfloat:                                                               | 1972    | 1973    |
| Adhesives<br>Fertilizers                                                |         |         |
|                                                                         | 19,405  | 20,43   |
| Firebrick, block, shapes Pesticides and related products                | 41,832  | 41.03   |
| Pesticides and related productsRubber                                   | 7,690   | 5.38    |
| Rubber                                                                  | 23,191  | 21.10   |
| Exports 1                                                               | 227,057 | 248,49  |
| Other uses 2                                                            | 61,095  | 71,65   |
| Total                                                                   | 58,926  | 91,14   |
| Jnprocessed: Face brick; firebrick, block, shapes (1972); other (1973), | 439,196 | 499,24  |
| Grand total                                                             | 241,890 | 255,72  |
| <sup>1</sup> Fertilizers and rubber                                     | 681,086 | 754,969 |

<sup>1</sup> Fertilizers and rubber.

ton. Chemical Marketing Reporter, December 31, 1973, listed ball clay prices unchanged from 1972 as follows:

| Domestic, air-floated, bags, car-<br>load lots, Tennessee,                               |                 |
|------------------------------------------------------------------------------------------|-----------------|
| per ton                                                                                  | \$18.00-\$22.00 |
| Tennessee, per ton<br>Imported, air-floated, bags, car-<br>load lots Atlantic ports, per | 8.00- 11.25     |
| Imported, lump bulk Creek                                                                | 70.00           |
| Lakes, per ton                                                                           | 40.50           |

Ball clay exports in 1973 amounted to 114,000 short tons valued at \$2.2 million, compared with 87,000 tons worth \$1.7 million in 1972. Exports increased 31% over that shipped in 1972, while the value was nearly 30% higher. The unit value of ball clay exported in 1973 declined \$0.14 per ton, from \$19.41 in 1972 to \$19.27. These shipments were made to 21 countries. The major recipients were Canada, 47%, and Mexico, 45%; 19 countries accounted for the remaining 8%.

#### FIRE CLAY

Fire clay sold or used by domestic producers in 1973 was reported at 4,067,983 short tons valued at \$36.2 million. Fire clay is defined as detrital material, either plastic or rocklike, containing low percentages of iron oxide, lime, magnesia, and alkalies to enable the material to withstand temperatures of 1,500° C or higher. Fire clay is basically kaolinite but usually contains other materials such as diaspore, ball clay, bauxite clay, and shale. Fire clays commonly occur as underclay below coal seams

and are generally used for refractories. Some fire clay was previously reported in other end uses.

Fire clay production was reported in 1973 from mines in 20 States. The first four States in rank, Ohio, Pennsylvania, Missouri, and Alabama, accounted for 78% of the total domestic output.

In 1973, A. P. Green Refractories Co. purchased the plants and properties of H. K. Porter Co., Inc., near Fulton, Mo., and Bessemer, Ala.

Exports of fire clay increased from 124,000 short tons worth \$2.9 million in 1972 to 196,000 tons valued at \$3.82 million in 1973. Fire clay exports rose 58% in tonnage and 32% in value. The price of exported fire clay declined by \$3.94 to \$19.49 per ton.

Fire clay was exported to 48 countries, with Canada and Mexico receiving 56% and 26%, respectively. No imports of fire clay were reported during 1973.

There are no price quotations in domestic journals for fire clay, but the per-ton value reported by producers ranged from \$2 to about \$9. The reported average unit value for fire clay produced in the United States increased 9%, from \$8.15 per ton in 1972 to \$8.89 in 1973.

#### BENTONITE

Bentonite production in 1973 increased 11% in tonnage and 19% in value over that of 1972. A general increase in domestic consumption, particularly in iron ore pelletizing, drilling mud, animal feed, and oil filtering uses, was noted along with an overall increase in exports.

Fertilizers and rubber.

2 Includes animal feed; electrical porcelain (1973); fiberglass; fine china/dinnerware; ceramic floor and wall tile (1972); glazes, glass, and enamels (1973); gypsum products; paint; paper filling; plastics (1973); pottery; sanitary ware; and other uses.

Table 8.-Kaolin sold or used by producers in the United States, by kind and use

(Short tons)

|                                             |             | 1972      | 13              |                  |                     | 1973       |            |           |
|---------------------------------------------|-------------|-----------|-----------------|------------------|---------------------|------------|------------|-----------|
| 1                                           |             | -un       |                 |                  |                     | un.        | Water-     | Total     |
| Ose                                         | Airfloat    | processed | washed 1        | Total            | Airfloat            | processed  | wasned -   | TORM      |
|                                             |             |           |                 | :                | 1                   |            | 19 066     | 64 653    |
|                                             | ×           | ij        | × i             | 73,417           | 02,087              | 198 917    | 28.863     | 227,780   |
| Alum (aluminum sulfate) and other chemicals | :B          | 133       | 99,994<br>W     | 9.452            | $10,1\overline{59}$ | 1          | 4,840      | 14,999    |
| Animal feed                                 | ≱           | 284,507   | B               | 285,268          | 565                 | 381,754    | 200        | 882,619   |
| Catalysts (oil refining)                    | ≱           | 36,880    | W<br>91 964     | 75,698           | <b>&gt;</b>         | 86,507     | 20,730     | 107,237   |
| Cement, portland                            | ŀ           | *0*,*0    | * 1             | 20               | !                   | 1          | 100        | 107       |
| Ceramic—hobby                               | ¦≱          | ) ¦       | M               | 50,801           | 21,278              | :          | 8,464      | 3,623     |
| China/annierware                            | 19,995      | ŀ         | !               | 19,995           | 5,025               | : :        | 4.500      | 15,910    |
| Electrical porcelain                        | 5,938<br>W  | 1         | ¦≱              | 75,969           | 41,376              | <b>:</b>   | 30,902     | 72,278    |
| Fertilizers                                 | ₽           |           | ×               | 153,788          | M                   | 110        | Š          | 189,311   |
| Fiberglass                                  | 84,739      | 252,608   | 1               | 337,347          | 41,977              | 270,205    | 4 833      | 33.995    |
| Filebrick, block, smares                    | 43,235      | 200       | ¦‡              | 43,435           | 29,162              | 1 1        | 7,450      | 8,137     |
| Glazes, glass, enamels                      | ≱≱          | ≱≱        | *               | 153,541          | A                   | ×          | 13         | 153,179   |
| Grogs and crudes, refractory                | 6 491       | 6.100     | 3,510           | 16,101           | 52,394              | ;          | 3,861      | 191 079   |
| Gypsum products                             | 16,617      | : !       | 124,878         | 141,495          | 17,703              | :          | 1 539 409  | 1.610.911 |
| Panar coating                               | 16,100      | !         | 1,417,816       | 1,433,916        | 194 151             | !          | 630.474    | 824,625   |
| Paper filling                               | 264,354     | !         | 900,104         | 28 442           | M                   | 1          | M          | 28,750    |
| ~                                           | 25,500<br>W | 5.000     | W.              | 71,844           | 7,539               | ł          | 55,089     | 62,628    |
| Plastics                                    | 13,355      | M         | ₽               | 23,743           | 12,474              | 1          | 2,676<br>W | 306       |
| Roofing granules                            | M S         | ;         | 267 96          | 876 099          | 343.759             | ; ;        | 22,939     | 366,698   |
| Rubber                                      | 349,661     | !         | 59.616          | 146,053          | 137,778             | 1,702      | 41,636     | 181,116   |
| Sanitary ware                               | 26,112      | 8,898     | 40,929          | 75,939           | 68,238              | 18,107     | 49,756     | 136,101   |
| MiscellaneousTradistributed                 | 274,559     | 137,822   | 240,683         | (2)              | 188,431             | 189,044    | 9 66 666   | F 119 495 |
| . !                                         | 1,232,899   | 814,058   | 2,522,588       | 4,569,545        | 1,306,793           | 1,140,100  | 4,000,000  | 0,111,0   |
| Exports:                                    | 1           | 1         | M               | M                | 5,292               | :          | 9,059      | 14,351    |
| Ceramics menufacturing                      |             | . ;       | M               | M S              | <b>!</b>            | 1          | 19 616     | 19,616    |
|                                             | 1           | 1         | 23,395          | 23,395           | 8.464               |            | 471,495    | 479,959   |
| Paper coating                               | 1 824       | ł         | 181,632         | 183,466          | ; ;                 | 1          | 35,085     | 35,085    |
| Paper filling                               | 10,123      | 58,727    | 33              | 68,883           | 5,000               | 84,087     | 3.681      | 72.420    |
| Rubber                                      | 59,525      | !         | 3,109<br>45,598 | 62,634<br>48,283 | 2,911               | <b>!</b> ! | 160,296    | 163,207   |
| Other                                       | 74.167      | 58,727    | 612,198         | 748,092          | 90,406              | 84,087     | 699,491    | 873,984   |
| 10th                                        | 1,807,066   | 872,785   | 3,137,786       | 5,317,637        | 1,397,199           | 1,230,823  | 3,365,457  | 5,993,479 |
| diana was                                   |             |           |                 |                  |                     |            |            |           |

WWithheld to avoid disclosing individual company confidential data; included with "Undistributed." Includes calcined and delaminated.
2 "Undistributed" total included with total for each specific use.

| Table 9Ball clay sold or | used | by | producers in | n th | e United | States, | bv | State |
|--------------------------|------|----|--------------|------|----------|---------|----|-------|
|--------------------------|------|----|--------------|------|----------|---------|----|-------|

| State                   | 19                 | 72                       | 19                 | 73                       |
|-------------------------|--------------------|--------------------------|--------------------|--------------------------|
|                         | Short tons         | Value                    | Short tons         | Value                    |
| TennesseeOther States 1 | 431,126<br>244,159 | \$6,444,986<br>4,350,539 | 487,625<br>279,087 | \$7,744,794<br>5,193,960 |
| 10tai                   | 675,285            | 10,795,525               | 766,712            | 12,938,754               |

<sup>&</sup>lt;sup>1</sup> Includes California, Indiana (1972), Kentucky, Maryland, Mississippi, New York, and Texas.

Table 10.-Fire clay sold or used by producers in the United States, by State 1

| State                | 1                            | 972                   | 1                     | 973                  |
|----------------------|------------------------------|-----------------------|-----------------------|----------------------|
| -                    | Short tons                   | Value                 | Short tons            | Value                |
| Alabama              | 350,094                      | \$2,862,973           | 359,840               | \$3,884,488          |
| Colorado             | 100,270                      | 281,387               | 119,364               | 624,992              |
| IdahoIllinois        | 54,294 <sup>,</sup><br>9,868 | 206,158<br>W          | 58,126<br><b>W</b>    | 224,662<br>W         |
| Kentucky             | 106,003<br>81,094            | 661,752<br>517,775    | 97,270 $142,556$      | 609,253<br>920,961   |
| Maryland<br>Missouri | 3,319<br>894,174             | 11,617<br>5,512,204   | 829,484               |                      |
| New Jersey           | W<br>59,372                  | $\mathbf{w}$          | 45                    | 7,562,661<br>420     |
| Ohio Pennsylvania    | 803,493                      | 370,757 $5,127,052$   | $26,403 \\ 1,095,474$ | 150,596<br>6,326,240 |
| Tennessee            | 768,688<br>21                | 9,809,806<br>42       | 891,744               | 11,070,983           |
| TexasUtah            | 88,821                       | 684,400               | 87,484                | 689,200              |
| Other States 2       | $3,764 \\ 257,360$           | $21,790 \\ 3,117,220$ | 5,300 $354.893$       | 32,000<br>4,061,431  |
| Total                | 3,580,635                    | 29,184,933            | 4,067,983             | 36,157,887           |

W Withheld to avoid disclosing individual company confidential data; included wth "Other States."

Bentonite was produced in 15 States. Increased bentonite production was reported for all States except Montana, Nevada, Texas, Mississippi, Oklahoma, Oregon, and South Dakota.

Generally, the high-swelling or sodium bentonites are produced chiefly in Wyoming, Montana, and South Dakota. The calcium or low-swelling bentonites are produced in the other States.

A new production facility scheduled for completion in 1974 was begun in Worland. Wyo., by Black Hills Bentonite Co. The facility will substantially increase Black Hills' overall production capacity. Industrywide improvements were made in environmental controls systems and in automating, bagging, and handling procedures.

On April 23, 1973, Chemical Marketing Reporter quoted bentonite price increases as follows: Domestic, 200-mesh, bags, carload lots, f.o.b. mines, from \$14.00-\$14.40 to \$15.50-\$16.00 per ton; and imported Italian, white, high-gel, bags, 5-ton lots,

ex-warehouse, from \$116.60 to \$337.60 (\$0.1688 per pound) per ton. The average unit value reported by domestic producers for bentonite sold or used in 1973 was \$11.34, an increase of \$0.74 from the \$10.60 average of the previous year. Per-ton values reported in the various producing States ranged from \$4 to \$30, but as in 1972, the average value reported by the larger producers was near the Wyoming average figure of \$11.17.

Bentonite imports in 1973, including chemically activated and special-purpose Italian material, totaled 2,670 short tons valued at \$243,000, compared with 2,853 tons valued at \$229,000 in 1972. The 2,571 tons of chemically activated bentonite was imported from six countries, with Canada supplying 44%; Mexico, 35%; West Germany, 8%; Japan, 12%; and the Netherlands and the United Kingdom the remaining 1%. Imports of Italian bentonite in 1973 decreased from 127 short tons in 1972 to 99 tons.

<sup>&</sup>lt;sup>1</sup> Refractory uses only. <sup>2</sup> Includes Arizona, Georgia, Indiana, Montana, New Mexico, Washington, West Virginia, and data indicated by symbol W.

295

| Table 11Bentonite sold | or | used | by | producers | in | the | United | States, | by | State |
|------------------------|----|------|----|-----------|----|-----|--------|---------|----|-------|
|------------------------|----|------|----|-----------|----|-----|--------|---------|----|-------|

|                                                                                                               | 1                                                                                                                         | 972                                                                                                                                           | 19                                                                                                        | 73                                                                                                                              |  |
|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|
| State —                                                                                                       | Short tons                                                                                                                | Value                                                                                                                                         | Short tons                                                                                                | Value                                                                                                                           |  |
| Arizona California Colorado Idaho Mississippi Missouri Montana Oregon Texas Utah Wyoming Other States 1 Total | 25,410<br>39,787<br>929<br>40<br>277,596<br>W<br>233,390<br>1,192<br>88,220<br>4,014<br>1,811,246<br>285,174<br>2,766,998 | \$284,660<br>923,027<br>6,043<br>120<br>3,387,514<br>W<br>1,489,361<br>14,309<br>1,127,937<br>43,803<br>18,359,756<br>3,693,987<br>29,330,517 | 35,067<br>49,682<br>1,012<br>W<br>286,135<br>74,000<br>176,586<br>84,620<br>4,880<br>2,106,369<br>253,316 | \$394,588<br>823,102<br>6,525<br>3,606,934<br>1,232,400<br>10,495<br>802,182<br>64,888<br>23,529,610<br>4,368,040<br>34,838,756 |  |

W Withheld to avoid disclosing individual company confidential data; included with "Other States." <sup>1</sup> Includes Alabama, Nevada, Oklahoma, South Dakota, and data indicated by symbol W.

Bentonite exports in 1973 increased from 521,000 short tons in 1972 valued at \$15.1 million to 551,000 tons valued at \$18.4 million. Although the tonnage exported increased only 6% from that shipped in 1972, the value increased 22%. The greater increase in value was the result of the unit value of exported bentonite increasing \$4.33 per ton, from \$29.01 per ton in 1972 to \$33.34 per ton. This increase in per-ton value was attributed to a large increase in the amount of higher cost drilling mud and foundry-grade bentonites shipped. Exports in previous years consisted of a larger percentage of the lower cost pelletizing grades. Domestic bentonite producers were facing increased competition in foreign markets. Bentonite from the Greek island of Milos was being blended with the U.S. clay for pelletizing Canadian taconite ores on a large scale.

Bentonite was exported to 77 countries, an increase of 6 from the previous year. The major recipients were Canada, 43%; the United Kingdom and West Germany, 9% each; Australia, 8%; Saudi Arabia, 5%; Japan and the Netherlands, 4% each; and others, 18%. Domestic bentonite producers reported the end use of their exports were foundry sand, 41%; iron ore pelletizing, 29%; drilling mud, 25%; and others, including animal feed, ceramics, ore treatment, and waterproofing and sealing, 5%.

#### **FULLER'S EARTH**

Production of fuller's earth in 1973 increased 15% in quantity and 20% in total value. The unit value assigned by domestic producers increased \$0.99 in 1973 to \$24.07 per ton. This increase in value was due to

Table 12.-U.S. exports of bentonite as reported by producers, by use (Short tons)

| Use                                                      | 1972                                   | 1973                                    |
|----------------------------------------------------------|----------------------------------------|-----------------------------------------|
| Drilling mud Foundry sand Pelletizing (iron ore) Other 1 | 56,666<br>167,130<br>183,458<br>15,840 | 110,430<br>180,383<br>126,998<br>20,405 |
| Total                                                    | 423,094                                | 438,216                                 |

<sup>&</sup>lt;sup>1</sup> Includes animal feed, ceramics, oil treatment, oil refining catalysts, waterproofing and sealing, and other uses.

modest increases in unit value by both the Florida and Georgia producers.

Fuller's earth production was reported from operations in nine States, an increase of one over 1972. The two top producing States, Georgia (39%) and Florida (37%), accounted for 76% of the domestic production. The other seven States accounted for the remaining 24%. Georgia, Mississippi, Tennessee, California, Florida, Texas, and Utah showed gains in production, while Illinois declined slightly. The new producing State in 1973 was South Carolina.

Fuller's earth is defined as a nonplastic clay or claylike material, usually high in magnesia, which has adequate decolorizing and purifying properties.

In 1973 Southern Clay, Inc., installed new bagging lines and a dryer at its Paris, Tenn., facility. Production from the region that includes Attapulgus (Decatur County), Ga., and Quincy (Gadsden County), Fla., is composed predominantly of the distinct lathshaped amphibole clay mineral attapulgite. Most of the fuller's earth produced in the other areas of the United States contains varieties of montmorillonite.

Prices for fuller's earth were not publicly quoted in 1973, but the per-ton values re-

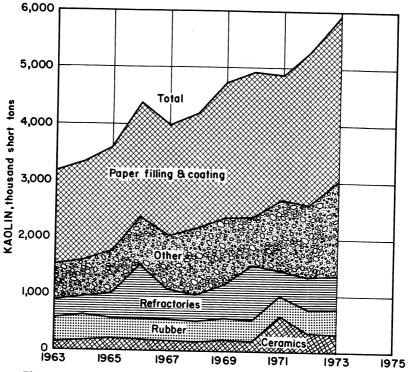



Figure 1.-Kaolin sold or used by domestic producers for specified uses.

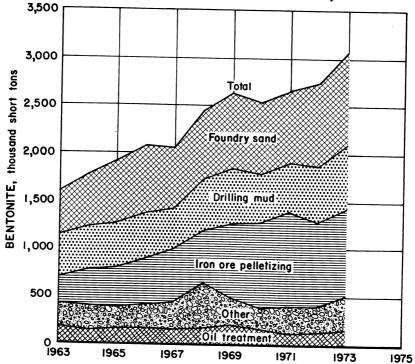



Figure 2.-Bentonite sold or used by domestic producers for specified uses.

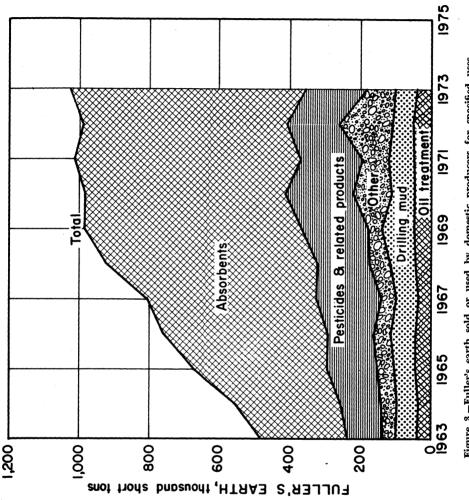



Figure 3.-Fuller's earth sold or used by domestic producers for specified uses.

| G              | 1                | 972                 |                    | 1973                 |  |  |
|----------------|------------------|---------------------|--------------------|----------------------|--|--|
| State          | Short tons       | Value               | Short tons         | Value                |  |  |
| Florida        | 353,473          | \$9,709,923         | 419,168            | \$12,001,931         |  |  |
| GeorgiaUtah    | 405,170<br>2,080 | 9,053,440<br>41.857 | $444,326 \\ 2.870$ | 10,499,157<br>62,000 |  |  |
| Other States 1 | 227,815          | 4,012,899           | 272,069            | 4,835,553            |  |  |
| Total          | 988,538          | 22,818,119          | 1,138,433          | 27,398,641           |  |  |

Table 13.-Fuller's earth sold or used by producers in the United States, by State

ported by producers ranged from \$25 to under \$40; montmorillonite prices ranged from \$10 to under \$25.

Exports of fuller's earth to 40 countries increased from 39,000 short tons in 1972 to 58,000 tons valued at \$2.7 million in 1973. Export tonnage increased 49%, and its value increased nearly 59%. The unit value of exported fuller's earth rose \$2.91 per ton. The major recipients were Canada, 29%; the United Kingdom, 22%; France, 12%; and other countries, the remaining 37%.

Imports of fuller's earth in 1973 were 52 short tons valued at \$17,000, all from Japan and West Germany. Imports increased nearly 21%.

#### COMMON CLAY

Domestic production of common clay and shale in 1973 totaled 49.3 million short tons valued at \$79.4 million. Common clay and shale represented 77% of the quantity and 22% of the value of the total clay and shale produced domestically in 1973. In addition, Puerto Rican production of common clay and shale was reported at 463,621 tons valued at \$473,195. Domestic output in 1973 increased 7% over that reported for 1972.

Common clays and shales are for the most part used by the producer in fabricating or manufacturing a product. Less than 10% of the total clay and shale output was sold. The average unit value for all common clay and shale produced in the United States in 1973 was \$1.61 per short ton, \$0.01 more than in 1972. The range in unit value reported for the bulk of the output was from \$1 to \$2 per ton.

Common clay is defined as a clay or claylike material which is sufficiently plastic to permit ready mold and vitrification below 1,100° C. Shale is a consolidated sedimentary rock composed chiefly of clay minerals that has been both laminated and indurated while buried under other sediments. These materials are used in the manufacture of structural clay products, such as brick and drain tile, portland cement clinker, and bloated lightweight aggregate.

In 1973 a new brick plant was put onstream in Endicott, Nebr., by the Endicott Clay Products Co., and another tunnel kiln was added by Continental Clay Products Co. at its Martinsburg, W. Va., facility. Other brick plants were opened by the Henry Brick Co. in Selma, Ala., and in Mississippi. New plants and/or kilns were also put on-stream in Mississippi by Delta Macon Brick and Tile Co., Inc., in Macon and Tri-State Brick and Tile Co., Inc., in Jackson. Oklahoma Brick Corp. announced that its fully automatic 60-million-brickper-year Oklahoma City plant was fully operational and that it intended to build a \$4 million expanded shale aggregate plant at El Reno, Okla. The Onondaga Lightweight Aggregate Corp., Warners, N.Y., completed an expansion project which tripled its capacity. The project included a second sintering hearth and ancillary equipment acquired from the Consolidated Edison Power Co. in New York City. Increased production at Western Brick and Aggregates plant in Nebraska City, Nebr., was accomplished by installing lifters in its rotary kiln.

The output of the energy-intensive common clay and shale industry was curtailed by shortages of fuel, labor, and descumming barium chemicals in 1973. Industrywide attention was focusing on coal firing as a possible escape from the high cost and shortages of oil and gas.

Exports of common clay and shale are not tallied by the U.S. Department of Commerce. Most countries have local deposits of either clays or shales which are adequate for manufacturing structural clay products, cement clinker, and lightweight aggregates, and thus have no need to import such materials.

<sup>&</sup>lt;sup>1</sup> Includes California, Illinois, Mississippi, South Carolina (1973), Tennessee, and Texas.

299 CLAYS

Table 14.—Common clay and shale sold or used by producers in the United States, by State 1

|                                      | 19         | 79          | 19'        |             |
|--------------------------------------|------------|-------------|------------|-------------|
| Chaha                                | Short tons | Value       | Short tons | Value       |
| State                                | DHOIC COMS |             |            | 40 F97 F19  |
|                                      | 0.000 069  | \$3,462,479 | 2,446,648  | \$3,537,518 |
| labama                               | 2,388,062  | 70,441      | 82,241     | 64,336      |
| labamarizona                         | 108,957    | 990.269     | 1,445,790  | 1,411,558   |
| rizona                               | 885,147    | 5,507,604   | 2,526,158  | 5,119,251   |
| rizona<br>rkansas                    | 2,493,297  | 5,507,004   | 734,485    | 1,478,664   |
| alifornia                            | 691,718    | 1,321,013   | 161,707    | 320,171     |
|                                      | 156,723    | 291,864     | 14.747     | 8,848       |
|                                      | 15,480     | 9,288       | 691,570    | 926,492     |
| OnnecticutOnnecticutO                | 568,351    | 625,977     | 091,010    | 5,193,999   |
| Oelaware                             | 1,855,555  | 2,772,308   | 2,766,378  | 18,13       |
| Plorida                              | w          | W           | 11,116     | 3,003,42    |
| daho                                 | 1,609,537  | 2,652,316   | 1,660,306  | 2,393,66    |
| daho<br>llinois                      | 1,009,001  | 2,462,468   | 1,393,483  | 2,393,00    |
| llinois                              | 1,419,141  | 2,642,705   | 967,396    | 2,028,00    |
| ndiana                               | 1,047,466  | 1,456,742   | 1,169,264  | 1,489,56    |
|                                      | 1,169,528  | 887,900     | 940,316    | 1,040,36    |
| owaKansas                            | 838,573    |             | 978,523    | 1,329,39    |
| KansasKentucky                       | 1,000,162  | 1,454,344   | 40,773     | 74,41       |
| Kentucky<br>Louisiana                | 40,230     | 57,031      | 896,599    | 1,973,49    |
| Louisiana<br>Maine                   | 1,101,140  | 2,109,578   | 217,053    | 404,47      |
| MaineMaryland                        | 218,779    | 415,812     | 217,000    | 3,304,39    |
| Maryland<br>Massachusetts            | 2,513,808  | 3,714,690   | 2,150,706  | 233,28      |
|                                      | 167,412    | 251,119     | 155,555    | 2,085,0     |
| Michigan<br>Minnesota                | 1,496,694  | 1,506,355   | 1,622,586  | 2,370,7     |
| Minnesota                            |            | 3,583,323   | 1,564,697  | 2,370,10    |
| Minnesota<br>Mississippi<br>Missouri | 1,676,958  | 100,610     | 42,337     | 65,7        |
| Missouri                             | 70,377     | 143,424     | 158,468    | 285,7       |
| Missouri<br>Montana                  | 115,033    | 70,125      | 43,350     | 63,5        |
| Montana<br>Nebraska                  | 50,750     | 10,120      | 156,915    | 515,2       |
| New Hampshire                        | 152,514    | 485,693     | 87,808     | 169,4       |
| New Hampshire                        | 65,124     | 107,789     | 1,798,912  | 2,146,1     |
| New Mexico                           | 1,600,723  | 1,919,417   | 4,109,174  | 5.057,1     |
| New York                             | 3,862,435  | 4,473,183   | 4,109,114  | 6,129,9     |
| New YorkNorth Carolina               | 3,292,878  | 6,009,840   | 3,636,309  | 1,871,0     |
| North CarolinaOhio                   | 937,683    | 1,397,874   | 1,297,699  | 280,2       |
| OhioOklahoma                         |            | 223,111     | 166,703    | 5,593,1     |
| Oklahoma                             | 149,411    | 5,405,932   | 2,083,444  | 5,595,1     |
| Oregon                               | 1,857,880  | 382,296     | 463,621    | 473,1       |
| Pennsylvania                         | 360,724    | 2,269,648   | 1,495,514  | 2,522,8     |
| Pennsylvania Puerto Rico             | 1,540,271  | 156,140     | 200,511    | 181,        |
| Puerto RicoSouth Carolina            | 185,461    |             | 1,231,226  | 1,338,      |
| South CarolinaSouth Dakota           | 1,286,629  | 1,273,532   | 5,329,859  | 8,950,      |
| South DakotaTennessee                | 4,894,299  | 7,872,486   | 229,580    | 612,        |
| Tennessee                            | 256,397    | 682,741     | 1 045 726  | 1,885,      |
| TexasUtah                            | 1,634,024  | 1,783,350   | 1,645,726  | 663,        |
| Utah<br>Virginia                     | 264,093    | 583,539     | 286,538    | 516.        |
| Virginia<br>Washington               | 274,310    | 402,927     | 347,833    | 3.0,        |
| Washington                           |            | 7,085       | 1,770      | 513.        |
| West Virginia                        | 3,851      | 149,370     | 236,148    | 513,        |
| Wisconsin Wyoming                    | 61,634     | 221205      | 87,648     | 178,        |
| Wyoming<br>Other States 2            | 108,374    |             |            | 79,825,     |
| Other States 2 Total                 | 46,487,593 | 74,369,973  | 49,110,100 | ,           |

W Withheld to avoid disclosing individual company confidential data; included with "Other States."

<sup>1</sup> Includes Puerto Rico.
<sup>2</sup> Includes Hawaii, Nevada, North Dakota, and data indicated by symbol W.

## CONSUMPTION AND USES

The manufacture of heavy clay products (building brick, sewer pipe, drain tile), portland cement and clinker, and lightweight aggregate accounted for 39%, 20%, and 18%, respectively, of the total 1973 domestic consumption of clays. In summary, 77% of all clay produced in 1973 was consumed in the manufacture of these clay- and shale-based construction materials. The foregoing clay tonnage relationships were similar to those reported for 1972. The utilization of clays in 1973 for heavy clay products and portland cement increased 10% and 2%, respectively, over that reported in 1972.

Heavy Clay Products.—The values reported for shipments of heavy clay products in 1973 rose by 8% to \$783 million from the 1972 value of \$722 million. The trends in corresponding quantities were less consistent. Thousand-unit counts for building or common face brick increased 6% in 1973 over that shipped in 1972, while shipments of glazed and unglazed ceramic tile and glazed brick, and of clay floor and wall tile decreased 6% and 2%, respectively. The tonnage of unglazed structural tile, and vitrified clay sewer pipe and fittings shipped during the year declined 6% and 5%, respectively. The value of these shipments, except for clay sewer pipe which decreased 5%, rose 14% for building brick, 15% for structural tile, 12% for ceramic tile, and 6% for clay floor and wall tile.

Lightweight Aggregate.—Consumption of clay and shale in the making of lightweight aggregate increased in 1973 to an alltime high of 11,657,978 short tons. This was an 8% increase over the 10.8 million short tons used in 1972.

The tonnage of raw material mentioned in tables 15 and 18 for lightweight aggregate production refers only to clay and shale and does not include the quantity of slate and blast furnace slag similarly used. In 1973, a total 1,092,021 short tons of slate was expanded for lightweight aggregate, 14% below the 1972 figure of 1,269,646 tons. The National Slag Association reported the amount of slag used for lightweight concrete aggregate and in block manufacture increased 23% in 1973, from 1,264,000 tons in 1972 to 1,560,000 tons.

Refractories.—All types of clay were used in manufacturing refractories. Fire clay, bentonite, and kaolin accounted for 72%, 16%, and 10%, respectively, of the total clays used for this purpose. Bentonite was used primarily as a bonding agent in proprietary foundry formulations. Minor tonnages of ball clay (1%), fuller's earth, and common clay and shale (the remaining 1%) were also used, primarily as bonding agents.

The tonnage used for refractories in 1973 increased from 7% in 1972 to 8% of the total clays produced. This slight increase in the use of clay-based refractories continued for a second year, a reversal in the downward pattern set for a number of years. The increase was due primarily to both the continued expansion in refractory aggregate production and an upsurge in the manufacturing of more conventional brick-type refractories. Refractory aggregates are used mostly in plastic, gunning, ramming, and castable mixes.

Filler.—All clays are used to some extent as fillers in one or more areas of use. Kaolin and fuller's earth are the principal filler clays. Kaolin was used in the manufacture of a large number of products, such as paper, rubber, plastics, paint, and fertilizers. The other important filler clay, fuller's

earth, was used primarily in pesticides and fertilizers. Clays in pesticides and fertilizers are used either as carriers, diluents, or prilling agents.

Six percent of the clay produced in 1973 was used in filler applications. Kaolin accounted for 90%, and fuller's earth accounted for 6% of all the clay used for these purposes. The other clays accounted for the remaining 4%. The consumption of kaolin decreased, except for paper filling and coating, and pesticide grades which increased 11% and 1%, respectively. Kaolin used in rubber decreased 2%, in fertilizer 5%, in paint 7%, and in plastics 13%. Total quantity of fuller's earth used in insecticides and fungicides increased 21%.

Absorbent Uses.—Absorbent uses for clays, approximately 725,587 short tons, consumed slightly more than 1% of the total 1973 clay production. Demand for absorbents in 1973 increased 22% from that reported for 1972. Fuller's earth was the principal clay used in absorbent applications; 63% of the entire output was consumed for this purpose. Bentonite was used to a lesser degree. Demand for clays in animal litter, representing 47% of the 1973 absorbent demand, decreased 41% from that reported for 1972. Demand for use in floor absorbents, chiefly to absorb hazardous oily substances, represented the remaining 53% of absorbent demand and increased 11% from the 1972 figure.

Drilling Mud.—Demand for clays in rotary-drilling muds increased 7% in 1973, from 596,180 short tons in 1972 to 639,339 tons. This increase in demand, mostly in exploratory gas well drilling and a lesser degree in oil well drilling, was spurred by the deregulation of "new" gas introduced into the interstate market after April 6, 1972. Drilling muds consumed slightly less than 1% of the entire 1973 clay production. Swelling-type bentonite is the principal clay used in drilling mud mixes, although fuller's earth or nonswelling bentonite is also used to a limited extent. Bentonite and fuller's earth accounted for nearly 100% of the total amount of clay used for this purpose. Small amounts of ball clay and common clay and shale were used in specialized formulations.

Floor and Wall Tile.—Common clay and shale, ball clay, fire clay, and kaolin, in order of demand, were used in manufacturing floor, wall, and quarry tile. This tile

CLAYS 301

end-use category accounted for less than 1% of the total clay production in 1973. Demand in 1973, 484,275 short tons, increased 7% from that shown in 1972.

Pelletizing Iron Ore.—Bentonite is used as a binder in forming iron ore pellets. Demand, resuming the general trend which declined last year, increased 10% in 1973 to 776,490 short tons. This rise in the use of bentonite for iron ore pelletizing, reflecting an upturn in steel production, was accomplished in spite of inroads made by cheaper foreign bentonites into a traditional U.S. clay market. Of the total bentonite

produced in 1973, about 25% of the swelling variety (a decrease from the 26% in 1972) was consumed for this purpose. U.S. deposits continued to be the major source for swelling bentonites.

Pottery.—The total demand for clays in the manufacture of pottery, sanitary ware, china/dinner ware, and related products, excluding clay flower pots, accounted for 1% of the total 1973 clay output. The total clay demand, principally ball and kaolin clays rose about 7% from 646,515 short tons in 1972 to 691,530 short tons in 1973.

Tabe 15.-Clays sold or used by producers in the United States in 1973, by kind and use, including Puerto Rico

(Short tons)

3,405,340 19,506,830 929 100,146 2,818,395 Total Undis-tributed 1 60,505 22,042 42,351 107,237 29,742  $^{(3)}_{312,182}$ Kaolin 3,623 15,910 72,278 189,311 28,750 Fuller's earth (2) (2) 355,778 **⊕**⊕⊕ Fire clay (re-fractory only)  $2,445,6\overline{60}$ 179,766 9 Common clay and 3,404,608 19,063,814 12,687,751 543 5,785 ŀ Bentonite 573,328 26,640 776,490 ®.  $^{(2)}_{13,000}$ 44,214 Ball clay 17,135  $\frac{1,925}{3,600}$ 111 @ ?i ₹ • @ ® 3 କ ଚ <u></u> Adnesives Alum (aluminum sulfate) and other chemicals Appnalt emulsion and tiles Common \_\_\_\_\_\_ race Catalysts (oil refining) Caulking, putty, sealers, glue Ceramic—hobby ..... Crockery and other earthenware Electrical porcelain Animal and vegetable oils
Mineral oils and greases Foundry sand Glazes, glass, enamels Grogs and crudes, refractory Linoleum Medical, pharmaceutical, cosmetic Mortar and cement, refractory Filtering, clarifying, decolorizing: igh-alumina (minimum 50% Al203) refractories Oil and grease absorbents Lightweight aggregate Pelletizing (iron ore)
Pelletizing (other) Pesticides and related products Brakes and clutches Flower pots Firebrick, block, shapes Paper coating Use Cement, portland Gypsum products Building brick: Kiln furniture Animal feed Foundry sand Fiberglass Paint

| 343,169<br>63,106<br>6,560<br>216,447<br>4 306<br>367,163<br>368,478<br>1,918,208                                       | 341,686<br>339,486<br>144,789<br>80,653<br>104,982<br>23,045<br>4 57,523<br>160,231<br>1,606,180                                                                                                                             | 64,814,339 |
|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 185                                                                                                                     | 23,645                                                                                                                                                                                                                       | (9)        |
| 62,628<br>15,150<br>366,698<br>181,116                                                                                  | 82.462<br>53.684<br>87.462<br>673.684<br>873.884                                                                                                                                                                             | 5,993,479  |
| 332,489<br>(2)<br>(3)                                                                                                   | (s) 5,417 29,532 110,542                                                                                                                                                                                                     | 1,138,433  |
| 6,560<br>13,015<br>                                                                                                     | 50,054<br>50,054<br>(2)<br>7,412<br>67,615<br>42,713                                                                                                                                                                         | 4,067,983  |
| (2)<br>17,496<br><br>1,817,268                                                                                          | 341,686<br>182,017<br>143,789<br>80,653<br>104,982<br>(2)<br>                                                                                                                                                                | 49,775,190 |
| 10,680                                                                                                                  | 57,623<br>26,569<br>488,216                                                                                                                                                                                                  | 3,072,542  |
| 170,786<br>187,862                                                                                                      | 123,420<br>1,000<br>1,000<br><br>18,950<br>99,471<br>84,384                                                                                                                                                                  | 766,712    |
| Pet absorbent Plastics Plug, tap, wad Pottery Rooting granules Rubber Sanitary ware Sanitary ware Sewer pipe, vitrified | Tile: Drain Floor and wall, ceramic Quarry Roding Structural Terra cotta Terra cotta Waterproofing and sealing Miscellaneous Chiekry Waterproofing and sealing Miscellaneous Chiekry Waterproofing and sealing Miscellaneous | Total      |

1 Total of clays indicated by footnote 2.

\* Withheld to avoid disclosing individual company confidential data; included with "Wiscellaneous."

\* Withheld to avoid disclosing individual company confidential data; included with "Miscellaneous."

\* Incomplete figure; remainder included with "Miscellaneous."

\* Includes abrashives, graphite anodes, tamping dummies, ink, mineral wool and insulation, textiles, water treatment and filtering, unknown uses, and data indicated by footnotes.

\* "Undistributed" total included with total for each specific use.

Table 16.-Shipments of principal structural clay products in the United States

| Products                                    | 1969      | 1970      | 1971      | 1972        | 1973              |
|---------------------------------------------|-----------|-----------|-----------|-------------|-------------------|
| Unglazed building or common and face brick: |           |           |           | <del></del> |                   |
| Quantitythousand standard brick             | 7,289,669 | 6,495,995 | 7,569,726 | 8,402,217   | 8,922,672         |
| Valuethousands_                             | \$318,892 | \$287,131 | \$346,390 | \$403,774   | \$460,099         |
| Unglazed structural tile:                   |           |           | ,         | ,,          | <b>, - ,</b>      |
| Quantityshort tons_                         | 241,509   | 181,046   | 152,536   | 100,534     | 94.239            |
| Valuethousands_                             | \$6,875   | \$5,903   | \$4,432   | \$3,084     | \$3,555           |
| Vitrified clay sewer pipe and fittings:     |           |           |           | ,           |                   |
| Quantityshort tons_                         | 1,783,546 | 1,622,339 | 1,720,597 | 1,717,991   | 1,637,546         |
| Valuethousands                              | \$120,420 | \$119,048 | \$133,067 | \$143,082   | \$136,517         |
| Unglazed, salt glazed, and ceramic          |           |           |           |             |                   |
| glazed structural facing tile,              |           |           |           |             |                   |
| including glazed brick:                     |           |           |           |             |                   |
| Quantitythousand brick_                     | 203,039   | 168,985   | 153,486   | 130,760     | 122,951           |
| Valuethousands                              | \$19,917  | \$16,130  | \$15,033  | \$13,191    | \$14,761          |
| Clay floor and wall tile and accessories,   |           |           |           |             |                   |
| including quarry tile:                      |           |           |           |             |                   |
| Quantitythousand brick_                     | 203,039   | 168,985   | 153,486   | 130,760     | 122,951           |
| Valuethousands                              | \$142,878 | \$126,219 | \$142,645 | \$159,105   | <b>\$</b> 168,255 |
| Total valuethousands                        | \$608,982 | \$554,431 | \$641,567 | \$722,236   | \$783,187         |

Table 17.—Clay and shale used in building brick production in the United States in 1973, by State

| State                  | Short tons | Value       | State          | Short tons | Value            |
|------------------------|------------|-------------|----------------|------------|------------------|
| Alabama                | 1,126,716  | \$1,775,051 | Nebraska       | 70.841     | \$152,041        |
| Arizona                | 82,241     | 64,436      | New Hampshire  |            | 63,555           |
| Arkansas               |            | 467,344     | New Jersey     |            |                  |
| California             | 368,021    | 801,401     | New Mexico and | ,          | ,                |
| Colorado               | 425,690    | 967,545     | North Dakota   | 71,477     | 59,692           |
| Connecticut            | 152,157    | 302,495     | New York       |            | 555.048          |
| Delaware               | 14,747     | 8.848       | North Carolina | 3,119,959  | 3,704,026        |
| Florida                | 31,490     | 34,639      | Ohio           | 1,689,036  | 2.995,476        |
| Georgia                | 2,473,259  | 4,686,181   | Oklahoma       | 578,393    | 806.157          |
| Hawaii and Michigan    | 82,744     | 130,917     | Oregon         |            | 66.933           |
| daho                   | 11,116     | 18,134      | Pennsylvania   |            | 4.787.672        |
| Illinois               | 564,447    | 1,283,362   | South Carolina | 1.276.400  | 2,170,648        |
| Indiana                | 635,900    | 1,059,500   | South Dakota   |            | 16.580           |
| [owa                   | 276,835    | 438,552     | Tennessee      |            | 820,935          |
| Kansas                 | 408,658    | 497,878     | Texas          |            | 3.450.152        |
| Kentucky               | 331,185    | 341.022     | Utah and       | 1,001,110  | 0,400,102        |
| Louisiana              | 224,021    | 319,714     | West Virginia  | 272,125    | 531.379          |
| Maine                  | 40,740     | 74.311      | Virginia       | 1,099,022  | 1,289,467        |
| Maryland and           | ,          | ,011        | Washington     |            |                  |
| Massachusetts          | 533,772    | 1,417,406   | Wisconsin      | 1,770      | 307,487<br>3,186 |
| Minnesota and Montana_ | 51.105     | 75.811      | . Wyoming      |            |                  |
| Mississippi            | 1,160,191  | 1,520,263   | · Wyoming      | 02,949     | 227,925          |
| Missouri               | 229,203    | 568,995     | Total          | 22,468,422 | 39,258,867       |

Table 18.—Clay and shale used in lightweight aggregate production in the United States in 1973, by State, including Puerto Rico

| State                             | Short tons | Value       |
|-----------------------------------|------------|-------------|
| Alabama and Arkansas              | 1,588,305  | \$1,521,559 |
| California                        | 891,896    | 1,944,799   |
| Colorado, Florida, Indiana        | 741,208    | 1,046,567   |
| Illinois and Iowa                 | 979,770    | 1,603,438   |
| Kansas, Kentucky, Louisiana       | 743,900    | 906,625     |
| Maryland, Massachusetts, Michigan | 654,842    | 1,038,728   |
| Minnesota and Missouri            | 248,810    | 459,616     |
| Mississippi                       | 428,923    | 433,212     |
| Montana                           | 25,509     | 42,472      |
| Nebraska, North Carolina, Ohio    | 1,027,344  | 1,231,599   |
| New York                          | 1,010,994  | 1,085,799   |
| North Dakota, Oklahoma, Oregon    | 340,539    | 553,321     |
| Pennsylvania, South Dakota, Utah  | 267,261    | 448,981     |
| Tennessee                         | 328,000    | 326,400     |
| Texas                             | 2,042,423  | 2,745,398   |
| Virginia, Washington, Puerto Rico | 338,254    | 367,369     |
| Total                             | 11,657,978 | 15,755,883  |

Table 19.-Shipments of refractories in the United States, by kind

|                                                                                                                                                                                                                                                  |                            |                                           | Shipm                                   | ents                                    |                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------|
|                                                                                                                                                                                                                                                  | Unit of                    | 197                                       | 2                                       | 19                                      | 73                                  |
| Product                                                                                                                                                                                                                                          | quantity                   | Quan-<br>tity                             | Value<br>(thou-<br>sands)               | Quan-<br>tity                           | Value<br>(thou-<br>sands)           |
| CLAY REFRACTORIES                                                                                                                                                                                                                                |                            |                                           |                                         |                                         |                                     |
| Fire clay (including semisilica) brick and shapes,<br>except superduty; glasshouse pots, tank blocks,<br>feeder parts, and upper structure shapes used<br>only for glass tanks. <sup>1</sup>                                                     | 1,000 9-inch<br>equivalent | 214,475                                   | r \$49,475                              | 234,781                                 | \$55,551                            |
| Superduty fire clay brick and shapesHigh-alumina brick and shapes (50% Al <sub>2</sub> O <sub>3</sub> and over) made substantially of calcined disspore                                                                                          | do                         | 67,826<br>r 74,735                        | 24,930<br>51,524                        | 68,147<br>86,491                        | 26,715<br>64,254                    |
| or bauxite. 2 Insulating firebrick and shapes                                                                                                                                                                                                    | do                         | 44,684<br>r 194,341<br>47,265<br>r 25,504 | 14,824<br>r 30,499<br>15,979<br>r 1.985 | 54,373<br>214,784<br>50,647<br>21.677   | 18,332<br>35,511<br>18,289<br>1,731 |
| Clay-kin furniture, radiant-heater elements, pot-<br>ters' supplies, other miscellaneous shaped re-<br>fractory items.                                                                                                                           |                            | NA                                        | 11,883                                  | NA                                      | 13,599                              |
| Refractory bonding mortars, air-setting (wet and                                                                                                                                                                                                 | Short tons                 | 67,019                                    | 11,263                                  | 101,318                                 | 16,378                              |
| dry types).3 Refractory bonding mortars, except air-setting                                                                                                                                                                                      | do                         | 8,632                                     | 1,262                                   | 11,024                                  | 1,691                               |
| types. <sup>3</sup> Plastic refractories and ramming mixes <sup>4</sup> Castable refractories (hydraulic-setting) Insulating castable refractories (hydraulic-setting) Other clay refractory materials sold in lump or ground form. <sup>6</sup> | do                         | 174,403<br>192,624<br>44,642<br>368,660   | 18,162<br>24,528<br>7,647<br>10,046     | 207,497<br>212,682<br>45,725<br>454,560 | 22,091<br>28,286<br>8,012<br>13,039 |
| Total clay refractories                                                                                                                                                                                                                          | -                          | XX                                        | r 274,007                               | XX                                      | 323,479                             |
| NONCLAY REFRACTORIES                                                                                                                                                                                                                             | =                          |                                           |                                         |                                         |                                     |
| Silica brick and shapes                                                                                                                                                                                                                          | 1,000 9-inch<br>equivalent | 32,437                                    | 12,877                                  | 36,668                                  | 15,309                              |
| Magnesite and magnesite-chrome brick and shapes,<br>magnesite predominating (excluding molten-cast<br>and fused magnesia).                                                                                                                       | do                         | r 87,763                                  | r 107,620                               | 110,487                                 | 146,311                             |
| Chrome and chrome-magnesite brick and shapes,                                                                                                                                                                                                    | do                         | 18,713                                    | 20,044                                  | 19,964                                  | 24,420                              |
| chrome predominating (excluding molten-cast). Graphites crucibles, retorts, stopper heads, and other shaped refractories containing natural graphite.                                                                                            | Short tons                 | 15,756                                    | 15,759                                  | 18,567                                  | 18,313                              |
| Mullite brick and shapes made predominantly of kyanite, sillimanite, andalusite, or synthetic mullite, excluding molten-cast.                                                                                                                    | 1,000 9-inch<br>equivalent | 4,517                                     | 8,917                                   | 4,918                                   | 9,961                               |
| Extra-high-alumina brick and shapes made pre-<br>dominantly of fused bauxite or fused or dense-<br>sintered alumina, excluding molten-cast.                                                                                                      | do                         | r 2,475                                   | 8,629                                   | 2,998                                   | 11,379                              |
| Silicon carbide brick and shapes made predomi-<br>nantly of silicon carbide, including kiln fur-<br>niture.                                                                                                                                      | do                         | 3,355                                     | 13,347                                  | 4,635                                   | 19,759                              |

See footnotes at end of table.

Table 19.-Shipments of refractories in the United States, by kind-Continued

|                                                                                                                                                                          |            |                    | Shipm                     | ents               |                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------|---------------------------|--------------------|---------------------------|
| Product                                                                                                                                                                  | Unit of    |                    | 1972                      |                    | 973                       |
|                                                                                                                                                                          | quantity   | Quan<br>tity       | Value<br>(thou-<br>sands) | Quar               | Value<br>(thou-<br>sands) |
| NONCLAY REFRACTORIES—Continued Zircon and zirconia brick and shapes made pre- dominantly of either of these materials. Forsterite, pyrophyllite, dolomite, dolomite-mag- | equivalent | -                  |                           | 2,387              | \$8,785                   |
| nesite, molten-cast and other nonclay brick and<br>shapes including carbon refractories, except<br>those containing natural graphite."                                   | do         | r 33,882           | r 64,019                  | 37,187             | 73,258                    |
| Basic bonding mortars, magnesite or chrome ore predominating.                                                                                                            |            |                    |                           | 16,198             | 1,639                     |
| Other nonclay refractory mortars                                                                                                                                         | do         | r 49,282           | 5,995<br>r 12,813         | 32,217<br>62,300   | 7,057<br>15,752           |
| Basic—magnesite, dolomite, or chrome ore predominating.                                                                                                                  |            |                    | 18,371                    | 141,339            | 22,062                    |
| Other nonclay plastic refractories and ramming mixes.                                                                                                                    |            | -                  | 19,394                    | 99,431             | 24,174                    |
| Dead-burned magnesia or magnesiteNonclay gunning mixes                                                                                                                   |            |                    | 10,075                    | 123,373            | 11,237                    |
| Other nonclay refractory materials sold in lump or ground form. <sup>5</sup>                                                                                             | do         | 303,108<br>342,587 | 35,817<br>11,620          | 352,887<br>393,280 | 41,880<br>13,745          |
| Total nonclay refractories                                                                                                                                               | -          | XX                 | 373,223                   | XX                 | 465,041                   |
| Grand total refractories                                                                                                                                                 | =          |                    | 647,230                   | XX                 | 788,520                   |

r Revised. NA Not available. XX Not applicable.

Excludes data for mullite and extra-high-alumina refractories; these products are included in

the nonclay refractories section.

<sup>2</sup> Calcined as applied to diaspore and bauxite implies heat treatment short of fusion for volume stability prior to use in a refractory product. In the process volatile materials are driven off and chemical changes take place.

chemical changes take place.

3 Includes bonding mortars which contain up to 60% Al<sub>2</sub>O<sub>3</sub> dry basis; bonding mortars which contain more than 60% Al<sub>2</sub>O<sub>3</sub> are included in the nonclay refractories section.

4 Includes products referred to as plastic fire brick and the less plastic materials intended for ramming into place after the addition of water, when shipped in dry form; excludes mixes made of mullite or alumina, which are included in the nonclay refractories section.

5 Includes shipments for direct use as finished refractory products by establishments classified in "manufacturing" industries and excludes shipments to refractory producers for reprocessing in the manufacture of brick and other refractories.

6 Includes data for calcined clay, ground brick and siliceous and other gunning mixes.

7 Fused as applied to bauxite and alumina means complete melting, as in an electric furnace; after cooling, the product is crushed and graded for use in the refractory. Dense-sintered alumina refers to heat treatment (short of melting) to render it relatively volume-stable for use in a refractory.

<sup>8</sup> Molten-cast refractories are made by fusing refractory oxides, as in an electric furnace, and pouring the molten material into molds to form finished shapes.

Table 20.-U.S. exports of clays by country and class in 1973

(Thousand short tons and thousand dollars)

|                           | Ben      | Bentonite | Fire             | Fire clay | Fuller's       | earth | Ka        | Kaolin  | Ball       | Ball clay | Clays, n.e.c. | n.e.c. | T        | Total  |
|---------------------------|----------|-----------|------------------|-----------|----------------|-------|-----------|---------|------------|-----------|---------------|--------|----------|--------|
| Country                   | Quantity | 7 Value   | Quantity         | Value     | Quantity Value | Value | Quantity  | v Value | Quantity   | Value     | Quantity      | Value  | Quantity | Value  |
| Australia                 | 46       | 1.234     | 1                | 33        | 1              | 16    | 13        | 389     | 1          | 1         | 16            | 736    | 77       | 2,408  |
| Brazil                    | 15       | 558       | -                | 21        | <del>,</del>   | 14    | 2         | 128     | -          | 83        | 12            | 1.021  | 32       | 1,775  |
| Canada                    | 238      | 5.068     | $11\overline{0}$ | 1,032     | 17             | 800   | 159       | 5.093   | 24         | 886       | 111           | 3,089  | 689      | 16,070 |
| Chile                     | -        | 22        | -                | 131       | : :            |       | (T)       | 38      | £          | Н         | (T)           | 12     | 67       | 204    |
| Colombia                  | 63       | 127       | Ð                | 4         | Ð              | 1     | $\Xi$     | 18      | ; <b>:</b> | ļ         | 4             | 192    | 9        | 342    |
| France                    | 9        | 478       | 87               | 142       | 4              | 465   | 9         | 284     | ;          | 1         | 22            | 1,528  | 48       | 2,897  |
| Germany, West             | 47       | 1,301     | 9                | 190       | တ              | 28    | 145       | 5,548   | ;          | !         | 18            | 672    | 214      | 7,698  |
| Indonesia                 | н        | 41        | ;                |           | Đ              | 13    | 1         | ;       | ;          | 1         |               | 26     | ø        | 110    |
| Italy                     | -        | 141       | တ                | 220       |                | 81    | 80        | 3,541   | ;          | ;         | 44            | 2,635  | 130      | 6,618  |
| Japan                     | 23       | 1.463     | 6                | 458       | Ð              | 13    | 229       | 11,188  | က          | 113       | 107           | 5,798  | 371      | 19,033 |
| Mexico                    | Н        | 80        | 51               | 1,087     | E              | 87    | 33        | 1,316   | 51         | 824       | 10            | 232    | 146      | 3,541  |
| Netherlands               | 24       | 268       | -                | 38        | 4              | 316   | Ø         | 86      | 1          | ;         | 15            | 844    | 46       | 1,864  |
| Philippines               | 67       | 200       | -                | 29        | Œ              | 2     | -         | 41      | êO         | 105       | 11            | 538    | 18       | 920    |
| Saudi Arabia              | 25       | 1,409     | Œ                | 7         | ;              | :     | ;         | 1       | (T)        | 14        | (T)           | 10     | 22       | 1,434  |
| Singapore                 | 16       | 881       | Œ                | -         | 1              | 24    | Œ         | 11      | (I)        | ī         | Ð             | 27     | 17       | 949    |
| South Africa, Republic of | က        | 320       | Œ                | 2         | Œ              | 16    | <b>67</b> | 164     | E          | က         | 4             | 241    | Ġ        | 751    |
| Sweden                    | -        | 9         | Œ                | 4         | (T)            | 20    | 10        | 344     | (T)        | 4         | 7             | 119    | 13       | 551    |
| Taiwan                    | 2        | 106       | Ξ                | 16        | . 1            | ł     | Ð         | 23      | 1          | ¦         | 18            | 906    | 20       | 1,045  |
| United Kingdom            | 20       | 1.569     | 7                | 131       | 13             | 363   | 24        | 603     | (T)        | 9         | 4             | 337    | 86       | 3,009  |
| Venezuela                 | 17       | 597       | -1               | 21        | -              | 33    | 12        | 640     | -          | 32        | က             | 170    | 32       | 1,493  |
| Other                     | 30       | 2,145     | 67               | 254       | œ              | 468   | 14        | 1,061   | H          | 69        | 49            | 3,065  | 104      | 7,062  |
| Total                     | 551      | 18,368    | 196              | 3,820     | 28             | 2,739 | 732       | 30,528  | 114        | 2,197     | 446           | 22,122 | 2,097    | 79,774 |

1 Less than 1/2 unit.

| Table | 21.—U.S. | imports | for | consumption | of | clay | in | 1973 |
|-------|----------|---------|-----|-------------|----|------|----|------|
|-------|----------|---------|-----|-------------|----|------|----|------|

| Kind                                                                | Quantity<br>(Short tons) | Value<br>(thousands) |
|---------------------------------------------------------------------|--------------------------|----------------------|
| China clay or kaolin, whether or not beneficiated:                  |                          |                      |
| Canada                                                              | 587                      | \$29                 |
| Germany, West                                                       | (¹)                      | ( <sup>1</sup> )     |
| Japan<br>United Kingdom                                             | 121                      | 26                   |
|                                                                     | 33,495                   | 826                  |
| Fuller's earth, not beneficiated: Germany, West                     | 34,203                   | 881                  |
| Fuller's earth, wholly or partly beneficiated: Japan                | 50                       | 3<br>14              |
| Bentonite: Italy                                                    | 99                       | 7                    |
| Common blue and other ball clay, not beneficiated: United Kingdom - | 9,173                    | 168                  |
| Common blue or other ball clay, wholly or partly beneficiated:      |                          |                      |
| Canada                                                              | 11                       | 3                    |
| United Kingdom                                                      | 3,337                    | 116                  |
| Total                                                               | 3,348                    | 119                  |
| Clays, n.e.c., not beneficiated: Germany, West                      | 95                       | 15                   |
| Clays, n.e.c., wholly or partly beneficiated:                       |                          |                      |
| Canada                                                              | 72                       | 7                    |
| Germany, West                                                       | 105                      | 15                   |
|                                                                     | 776                      | 196                  |
| Mexico<br>United Kingdom                                            | 608                      | 106                  |
| Total                                                               | 1,540                    | 112                  |
|                                                                     | 3,101                    | 436                  |
| Clays artificially activated with acid:                             |                          |                      |
|                                                                     | 1,133                    | 56                   |
| Germany, West<br>Japan                                              | 203                      | 24                   |
| Mexico                                                              | 331<br>904               | 83<br>72             |
| Netherlands                                                         | (1) 304<br>(1)           | (1)                  |
| United Kingdom                                                      | (1)                      | 1                    |
| Total                                                               | 2,571                    | 236                  |
| Grand total                                                         | 52,642                   | 1,879                |

<sup>1</sup> Less than 1/2 unit.

## **WORLD REVIEW**

Australia.—English China Clay Ltd. (ECC) and Abaleen Minerals NL disclosed additional information regarding their kaolin plans. ECC's new plant near Melbourne went on-stream, producing kaolin intended primarily for the Asian market. The new plant was to enable ECC to compete more effectively in Asia. Abaleen announced it was now able to acquire kaolin lease titles near Port Lincoln in South Australia. Previously Abaleen was working in agreement with three other companies. Abaleen's reserves were put at over 22 million tons with production scheduled for 1974. Production was targeted mostly for Europe and Asia. Preliminary tests on bulk samples from Abaleen's prospects showed the minus 2-micron kaolin fraction was highly suitable for papermaking. Presently, there is no Australian production of highquality coating clays.3

The Yenyenning kaolin deposits in Western Australia were reported to contain two unspecified grades of economically important kaolins. Provisional estimates were around 7 million tons of high-grade material.4

Austria.—Kernfest-Ashland-Süd-Chemie Gieserei Chemikalien GmbH, formed by Ashland Chemical Co. and Süd-Chemie, acquired a 50% interest in Georg Hantos and Co. of Vienna. Hantos is an established supplier to the Austrian foundry market. The newly formed, jointly owned company was believed to be handling Wyoming bentonite. Ashland, through its association with Federal Bentonite Co. (USA), sells Federal's foundry line.<sup>5</sup>

Belgium.—A new rotary kiln 246 feet long and 15 feet in diameter was put onstream by Argex S.A. in Antwerp to supplement the output of its older kilns. Argex produces over 10% of the world's Leca expanded clay aggregates at its plant on the mouth of the Scheldt River. A significant

<sup>&</sup>lt;sup>3</sup> Industrial Minerals. No. 65, February 1973, p. 29.

<sup>&</sup>lt;sup>4</sup> Industrial Minerals. No. 66, March 1973, p. 32.

<sup>&</sup>lt;sup>5</sup> Industrial Minerals. No. 72, September 1973, p. 73.

Table 22.-Kaolin: World production, by country

(Thousand short tons)

| Country 1                             | 1971        | 1972         | 1973 p           |
|---------------------------------------|-------------|--------------|------------------|
| North America:                        |             |              |                  |
| Mexico                                | 80          | 79           | 104              |
| United States 2                       | 4,886       | 5,318        | 5,993            |
| South America:                        | r 75        | 98           | e 100            |
| Argentina                             | r 63        | 60           | 49               |
| Chile                                 | 106         | 111          | e 111            |
| ColombiaEcuador                       | 100         | 91           | • 1              |
| Paraguay                              | i           | 4            | 9                |
| Peru                                  | (3)         | r e (3)      | e (3)            |
| Europe:                               | , ,         | ,,,          |                  |
| Austria (marketable)                  | 102         | 99           | • 90             |
| Belgium e                             | 110         | 110          | 110              |
| Bulgaria                              | 152         | • 165        | e 165            |
| Czechoslovakia                        | 445         | • 468        | e 468            |
| Denmark •                             | 20          | 20           | 20<br>• 580      |
| France 4                              | 598         | e 580<br>460 | 460              |
| Germany, West (marketable)            | 460<br>7 60 | e 61         | e 61             |
| Greece                                | 80          | 80           | 80               |
| Hungary e<br>Italy:                   | 80          | 80           | 80               |
| Crude                                 | 106         | 76           | 80               |
| Kaolinitic earth                      | 16          | 17           | e 18             |
| Portugal                              | 50          | 49           | 49               |
| Romania e                             | 55          | 55           | 55               |
| Spain (marketable) <sup>5</sup>       | 357         | <b>386</b>   | • 390            |
| U.S.S.R.'e                            | 2,100       | 2,200        | 2,300            |
| United Kingdom                        | r 3,064     | 3,366        | e 3,200          |
| Africa: Angola                        | 1           | 1            | 1                |
| Egypt, Arab Republic of               | 49          | 27           | 28               |
| Ethiopia (including Eritrea)          | 11          | 29           | • 30             |
| Kenya                                 |             | 1            | 1                |
| Malagasy Republic                     | 2           | 2            | 2                |
| Mozambique                            | 2           | 2            | ( <sup>3</sup> ) |
| Nigeria                               | (3)         |              | NA               |
| South Africa, Republic of             | 43          | 42           | 43               |
| Swaziland                             | 2           | 2            | 2                |
| Tanzania                              | 1           | 2            | 1                |
| Asia:<br>Bangladesh                   | • 2         | • 2          | 7                |
| Hong Kong                             | 3           | 3            | 7                |
| India:                                | _           | _            |                  |
| Salable                               | 203         | 317          | 282              |
| Processed                             | r 117       | 129          | 235              |
| Indonesia (kaolin powder)             | 11          | 7            | 32               |
| Iran <sup>6</sup>                     | 53          | 61           | e 61             |
| Israel                                | 22          | 32           | e 32             |
| Japan                                 | 420         | 35 <b>6</b>  | 430              |
| Korea, Republic of                    | 211         | 203          | 416              |
| Malaysia                              | 13          | 116          | 116              |
| Pakistan                              | 3           | 5            | .1               |
| Sri Lanka                             | 3           | 4            | 15<br>23         |
| Taiwan 7                              | r • 11      | 18           | 23<br>21         |
| Thailand                              | 11          | 17           |                  |
| Vietnam, South •                      | 1           | 1            | 1                |
|                                       |             | • 100        | • 100            |
|                                       | 84          |              |                  |
| Australia <sup>8</sup><br>New Zealand | 84<br>22    | 10           | 10               |

<sup>\*</sup> Estimate. \* P Preliminary. \* Revised. NA Not available.

¹ In addition to the countries listed, Brazil, People's Republic of China, East Germany, Lebanon, Southern Rhodesia, and Yugoslavia also produced kaolin, but information is inadequate to make reliable estimates of output levels. Morocco produced less than 500 tons in each of the years covered by this table.

² Kaolin sold or used by producers.

² Less than ½ unit.

⁴ Includes kaolinitic clay.

⁵ Excludes unwashed kaolin as follows in short tons: 1971—118,256; 1972—115,743; 1973—116,000 (estimated). This material has a value of less than 1/10th of the washed kaolin reported in table.

§ Year beginning March 21 of that stated.

7 Data given are for ceramic and pottery and paper filler clays.

§ Includes ball clay.

portion of the plant's output, now rated at 1 million cubic yards per year, was exported, largely to Britain but also to other European countries.6

Brazil.-Ashland Chemical Co., in another overseas marketing expansion, set up a new company, Ashland Resinas Synteticas S.A. in São Paulo, with Bentonit União to sell both Ashland's present foundry chemicals and unannounced newer products.7 A large kaolin deposit of good quality was located on the Jari River, a tributary of the Amazon, by National Bulk Carriers, Inc. Feasibility tests were underway to determine if processing facilities were warranted.8

Canada.—Indusmin Ltd. abandoned a kaolin prospect in northern Ontario and a bentonite project in Saskatchewan.9 Production of iron-pelletizing-grade bentonite was started by Inland Cement Industries, Ltd., at its Regina, Saskatchewan, plant. Acceptance of this bentonite as a substitute for Wyoming material by the eastern Canadian iron ore operations was expected to result in construction of a separate Saskatchewan

facility. Inland Cement's deposits are about 50 miles south of Regina near Truax.10

Czechoslovakia.—Additional capacity was added by the major kaolin-processing companies to meet increasing demand for their paper-filling grades. In spite of intensive research, these companies have been unsuccessful in producing acceptable papercoating clays.11

France.—The diversified Saint-Gobain-Pont-A-Mousson group gained control of a French refractory manufacturer, Société Genérale des Produits Réfractaires S.A. (SGPR), by purchasing Pechiney Ugine Kuhlmann's 33% interest.12 The St. Gobain

Table 23.-Bentonite: World production, by country (Short tons)

| Country 1                  | 1971        | 1972      | 1973 Þ    |
|----------------------------|-------------|-----------|-----------|
| North America:             |             |           |           |
| Mexico                     | 63.524      | 41.870    | 50,478    |
| United States              | r 2,665,759 | 2,766,998 | 3.072.542 |
| South America:             | _,,         | ,,        | 0,012,012 |
| Argentina                  | 94.764      | 96.571    | e 99,000  |
| Colombia                   | e 1.100     | e 1.100   | 1.323     |
| Peru                       | 32,494      | e 40,000  | e 40.000  |
| Europe:                    | /           | ,         | ,         |
| France                     | 19.092      | e 22,000  | e 22,000  |
| Greece                     | r 234,505   | 413,822   | e 441.000 |
| Hungary                    | 78,264      | 87.082    | e 94,000  |
| Italy                      | 327,102     | 303,490   | 329,974   |
| Poland e                   | 55,000      | 55,000    | 55,000    |
| Romania e                  | 132,000     | 132,000   | 132,000   |
| Spain                      | 42,167      | 47,526    | e 50,000  |
| Africa:                    | ,           | ,         | 0.,       |
| Algeria (bentonitic clay)  | 10.490      | 21,947    | e 22.000  |
| Morocco                    | r 4.190     | 9,590     | 9.51      |
| Mozambique                 | 6,009       | 2,637     | 2,660     |
| South Africa, Republic of  | 22,745      | 26,799    | 27,646    |
| Asia:                      | ,           | ,         | ,         |
| Burma                      | r 2 383     | 1.439     | 927       |
| Cyprus (bentonitic clay) 3 | 13.849      | 12,038    | 9,792     |
| Iran                       | 14,330      | e 15,000  | e 15,000  |
| Israel (metabentonite)     | 2,756       | 2,205     | e 2,200   |
| Pakistan                   | r 119       | 530       | 449       |
| Philippines                | r 147       | 67        | e 7       |
| Turkey                     | e 2.200     | r e 5.500 | 8,618     |
| Oceania:                   | ,           | -,        | -,        |
| Australia 4                | r 317       | r e 390   | e 390     |
| New Zealand                | 12,964      | 683       | 1,136     |
| Total                      | r 3,836,270 | 4,106,284 | 4,487,718 |

<sup>&</sup>lt;sup>6</sup> Ironman, R. International Reports. Rock Products v. 76, No. 6, June 1973, p. 136.

<sup>&</sup>lt;sup>7</sup> Industrial Minerals. No. 72, September 1973,

 $<sup>^8\,\</sup>mathrm{Murray},\ \mathrm{H.}\ \mathrm{H.}\ \mathrm{Kaolin.}\ \mathrm{Min.}\ \mathrm{Eng.},\ \mathrm{v.}\ 26,\ \mathrm{No.}$  2, February 1974, p. 112.

<sup>9</sup> Industrial Minerals. No. 71, August 1973,

 $<sup>^{10}</sup>$  Skillings' Mining Review. V. 62, No. 35, Sept. 1, 1973, p. 18.

<sup>11</sup> Work cited in footnote 8.

<sup>12</sup> Industrial Minerals. No. 64, January 1973,

<sup>&</sup>lt;sup>e</sup> Estimate. <sup>p</sup> Preliminary. <sup>r</sup> Revised.

<sup>1</sup> In addition to the countries listed, Austria, Canada, the People's Republic of China, West Germany, Japan, and the U.S.S.R. are believed to have produced bentonite, but output is not reported and available information is inadequate to make reliable estimates of output levels.

<sup>2</sup> Data are for year ending June 30 of that stated.

Including bentonitic clay.

311 CLAYS

Table 24.-Fuller's earth: Noncommunist world production, by country (Short tons)

| (Short tons)                                                                                                                                                             | 1971        | 1972      | 1973 P    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|-----------|
| Country 1  Algeria e Argentina Australia 2 Italy Mexico Morocco (smectite) Pakistan Senegal (attapulgite) South Africa, Republic of United Kingdom e United States Total | 66,000      | 66,000    | 66,000    |
|                                                                                                                                                                          | 1,033       | 528       | • 600     |
|                                                                                                                                                                          | r 100       | e 100     | • 100     |
|                                                                                                                                                                          | 82,626      | 82,662    | • 83,000  |
|                                                                                                                                                                          | 22,316      | 33,501    | 55,449    |
|                                                                                                                                                                          | 15,711      | 17,017    | 21,078    |
|                                                                                                                                                                          | r 11,836    | 12,397    | 12,494    |
|                                                                                                                                                                          | 3,097       | 3,405     | • 3,400   |
|                                                                                                                                                                          | 1,347       | 2,091     | 1,010     |
|                                                                                                                                                                          | 193,000     | 193,000   | 193,000   |
|                                                                                                                                                                          | 1,013,914   | 988,538   | 1,138,433 |
|                                                                                                                                                                          | r 1,410,980 | 1,399,239 | 1,574,564 |

<sup>&</sup>lt;sup>e</sup> Estimate. P Preliminary. I Kevised.

<sup>1</sup> In addition to the countries listed, France, Iran, Japan, and Turkey have reportedly produced fuller's earth in the past and may continue to do so, but output is not reported and available information is inadequate to make reliable estimates of output levels. Similarly, no information is available on output in the Communist nations of Europe and Asia, but at least some of them is also are avacuably producing fuller's carether. also are presumably producing fuller's earth.

2 Data are for year ending June 30 of that stated.

group also concentrated its refractory activities under a new company, Société Europiene des Produits Réfractaires S.A. (SEPR). SGPR, a vertically integrated company, produces a range of clay and non-clay refractories as well as insulating firebricks and fused-cast refractories.13

Modifications of the Engelhard Minerals & Chemicals Corp. and Solvay's jointly owned Brittany kaolin facility were completed, and limited quantities of filler and coating-grade clays were shipped to European markets.14

Greece.—Total reserves of irregular kaolin deposits on the islands of Milos and Lesbos, and smaller occurrences on Santorni and Paliaigos, were put at 2.5 million tons proven and 3.5 million tons probable material. The kaolin occurs in grades suitable for paper coating and filler, and for manufacturing cement, refractories, and ceramics. The total bentonite reserves on Milos were 11 million tons proven and 17 million tons probable and possible. The two largest Milos bentonite producers, Silver and Baryte Ores Mining Co. and Mykobar S.A., were undergoing plant enlargements.15

Guyana.—The Government has intensified efforts to delineate kaolin reserves in light of Japanese, East German, and American interests. Proven reserves at Topirah (site of a large bauxite mine), in the upper Demerara region, have been estimated at 2.2 million tons where the bauxite has already been mined. Additional reserves totaling 6 to 7 million tons were reported to be adjacent to existing mining areas. Georgia-quality kaolins are believed to ac-

company the bauxite. Plans were also formulated to set up a kaolin-processing plant at Topirah with Japanese participation. The East Germans were concerned with manufacturing porcelain. The interested U.S. company, Philipp Bros., is the marketing agent for the state-owned Guyana Bauxite Co. and is also a member of the Englehard group which mines and processes Georgia kaolin.16

India.-Plans were announced by Minechem Processors and Grinders (associated with Dhandhania and Co.) to produce 25,000 tpy of china clay, quartz, feldspar, limestone, and soapstone through its grinding and calcining facilities in Bihar beginning in 1974.17

Indonesia.—An unnamed U.S. company was participating with the P. N. Timah Co. in exploring a large kaolin deposit.18

Italy.—S. A. Mineraria Isole Pontine (SAMIP), already mining an extensive highgrade bentonite deposit on the island of Ponza, announced discovery of a 3-millionton deposit in Sardinia. The deposit is located near Isili and Nurallao. Preliminary reports imply the deposit may contain as much as 10 million tons of bentonite. Süd-Chemie, the Bavarian bentonite producer,

<sup>13</sup> Industrial Minerals. No. 69, June 1973, pp. 33-34.

<sup>14</sup> Work cited in footnote 8.

<sup>15</sup> Industrial Minerals. No. 75, December 1973, p. 40.

<sup>16</sup> Industrial Minerals. No. 72, September 1973, pp. 31-32. Mining Magazine. V. 128, No. 3, March 1973,

p. 201. 17 Work cited in footnote 9.

<sup>18</sup> Work cited in footnote 8.

reported it was constructing a plant at Giba in southwest Sardinia. SAMIP and Süd-Chemie now join two other companies, Baroid S.p.A., a subsidiary of NL Industries, Inc., and Industria, Chemia Carlo Laviosa, already working the Sardinian bentonites.<sup>19</sup>

Japan.—International Trading Co., Inc., exporting agent for Georgia Kaolin Co., and Sumitomo Metal Mining Co. Ltd. constructed a new bulk terminal near Osaka.<sup>20</sup> This bulk terminal should lower delivery costs to Japanese markets. Bulk shipments to Europe started in the mid-1960's.

Netherlands.—A 50% interest in the second largest Dutch refractory producer. Chamotte-Unie NV of Geldermalsen, was reportedly taken by Gibbons Dudley Ltd. of the United Kingdom. Totterdam is currently being used by Euroclay Handelmaatschapij NV, a joint undertaking of Georgia Kaolin Co. (GK) and Amberger Kaolinwerke AG (West Germany), for a storage and distribution center for supplying GK's filling and coating clays to the European paper industry. Euroclay can store up to 30,000 tons to insure delivery.

New Zealand.—New Zealand processed bentonites, available in 5,000- to 5,500-ton lots either bulk or bagged, were offered for sale in Australia by Bulk Minerals Pty. Ltd.<sup>23</sup>

Spain.—Laporte Industries of the United Kingdom bought a 40% interest in the Spanish bentonite producer, Minas de Gador. This privately owned company accounts for 80% of the Spanish bentonite production. Laporte, the largest bentonite producer in the United Kingdom, has facilities at Redhill in Surrey and Combe Hay in Bath, Somerset. Laporte is expected to develop the company's deposits and furnish technology for constructing acid-activating and sodium-base exchanging facilities near Almeria.24 Argilexpand of Vallés, in Barcelona Province, planned to erect a sodium bentonite processing plant on an undisclosed site.25

Turkey.—A new vertically integrated company, Sogut Seramik Sanayii AS, was formed to establish a ceramics industry in the

Sögüt area of Bilecik in Western Anatolia.20 United Kingdom.—Applied Aluminum Research Corp. of the U.S.A. in conjunction the London merchant bankers. Bremar Holdings, revealed details of the world's first semicommercial plant to produce aluminum metal by the Toth process. This semicommercial plant, probably located within the United Kingdom, reportedly will cost about \$25 million to build and have a metal capacity of 35,000 tons per year.27 ECC continued modernizing its old installation in Cornwall. The planning permission for extending ECC's operation into Lee Moor was received following assurances about various environmental safeguards.28

Production of Laponite, a synthetic hectorite-type clay, was to be expanded at Laporte Industries' Stallingborough plant near Grimsby. Hectorite is mined in the United States. Laponite and hectorites have the unique ability to produce clear suspensions and gels at extremely low concentrations, and are finding increasing application as thickeners in highly specialized fields and for their heat-resistant, anti-static, nontoxic, and clarifying properties.<sup>20</sup>

The Refractories Division of the Gibbons Dudley Ltd. group, consisting of Gibbons Refractories Ltd., United Fireclay Products Ltd., and Thomas Wragg and Sons (Sheffield) Ltd., has formed a new company, Gibbons International Refractories Ltd., to coordinate exports for the entire division.<sup>30</sup>

<sup>&</sup>lt;sup>19</sup> Industrial Minerals. No. 71, August 1973, p. 37.

<sup>20</sup> Work cited in footnote 8.

<sup>&</sup>lt;sup>21</sup> Work cited in footnote 9. <sup>22</sup> Industrial Materials. No. 65, February 1973, pp. 40-43.

<sup>&</sup>lt;sup>23</sup> Industrial Minerals. No. 69, June 1973, p. 53.

<sup>&</sup>lt;sup>24</sup> Work cited in footnote 19.

<sup>25</sup> Industrial Minerals. No. 68, May 1973, p. 4.

Industrial Minerals. No. 68, May 1973, p. 39.
 Industrial Minerals. No. 71, August 1973, pp. 38-39.

<sup>&</sup>lt;sup>28</sup> Industrial Minerals. No. 65, February 1973, p. 32.

<sup>&</sup>lt;sup>20</sup> Industrial Minerals. No. 74, November 1973, p. 31.

 $<sup>^{30}</sup>$  Industrial Minerals. No. 68, May 1973, p. 29.

CLAYS 313

### **TECHNOLOGY**

The Bureau of Mines at its Boulder City (Nev.) Metallurgy Laboratory initiated plans to set up and operate miniplants utilizing the more promising processes for extracting alumina from nonbauxitic materials, starting with the nitric acid processing of Georgia kaolin. The nitric and hydrochloric acid processes, the next to be studied, for treating alumina-bearing clays were judged the most promising for economically producing alumina from nonbauxitic ores. Other aluminiferous materials scheduled for future miniplant studies include other clays, anorthosite, dawsonite, and alumina-bearing wastes, such as shales and slates, from coal mining and processing. A cooperative project between the Bureau of Mines and the aluminum industry was being explored.

Work at Applied Aluminum Research Corp. (AARC)31 and Reynolds Metal Co.32 on direct aluminum metal processes was described. AARC's process, called the Toth process, applicable to clays and bauxites, begins by chlorinating a calcined clay in the presence of a reductant, such as coke, followed by fractional condensation to separate the aluminum, iron, silicon, and titanium chlorides. The separated aluminum chloride is subsequently reduced to aluminum metal and manganese chloride. The manganese chloride is further processed to both recover and recycle the manganese metal and chlorine. The other fractionally condensed metal chlorides are either converted to oxides, thereby recovering the chlorine, or sold as is.

The Reynolds process involves reducing titaniferous clays in a fused-salt bath to an aluminum-titanium alloy. The alloy is kept molten below 1,000° C causing it to separate into a low-titanium and aluminum supernatant and a heavier high-titanium and aluminum intermetallic compound. The intermetallic compound is periodically tapped, leaving a recoverable supernatant phase.

Other patents issued during the year cover a prereduction process for producing alumina and aluminum alloys from clays. and a method for recovering alpha-alumina, also from clays. In the first patent, the initial step involves prereducing an ore-coal or coke mixture at temperatures from 1,500° C to 1,800° C. The second step transfers the prereduced product to an electric

furnace, where it is fluxed and heated to between 2,000° C and 2,300° C, converting the silicon carbide to silicon and the alumina to aluminum metal. The second patent details treating a calcined clay with hot nitric acid, resulting in a leach liquor containing less than 0.05% by weight of silica contaminant. The silica and other impurities are removed from the leach liquors by combined flocculation and solvent extraction steps. A purified hydrated aluminum nitrate is subsequently crystallized and heated in a fluidized bed forming recyclable nitric acid vapors and a dried aluminum nitrate, which is calcined to an alphaalumina.

High-gradient magnetic separation (HGMS), a new and promising technology presently applied only in cleaning kaolin clays, was the topic of a thorough article.35 HGMS devices were being used by several Georgia kaolin companies in removing micron-size discoloring particles, mainly weakly magnetic, yellow iron oxide stained rutile grains, from kaolin slurries destined for glossy white paper coating. HGMS devices, available for licensing to the clay industry by J. M. Huber Corp., were reportedly making available kaolin reserves which previously could not be beneficiated economically. The commercial-scale continuous attrition grinding of coarse paper filler kaolins to the finer paper-coating grades was reported by the Bureau of Mines.86 A 20-inch-diameter grinding system was described along with optimized operating parameters. The role of kaolin in waterbased latex paints, with emphasis on TiO2 substitution, was reviewed.37 The market

<sup>&</sup>lt;sup>31</sup> Mining Magazine (London). V. 129, No. 3, September 1973, pp. 203-204.

<sup>&</sup>lt;sup>32</sup> McMinn. C. J., V. L. Bullough, and T. W. Williams (assigned to Reynolds Metal Co.). Direct Reduction of Titanium-Containing Bauxier or Clay in an Electrolytic Cell. Brit. Pat. 1,306,815, Feb. 14, 1973.

<sup>&</sup>lt;sup>33</sup> Wood, J. M., Jr. (assigned to Ethyl Corp.). Prereduction Process. U.S. Pat. 3,758,289, Sept. 11, 1973.

<sup>34</sup> Margolin, S. V., and R. W. Hyde (assigned to Arthur D. Little, Inc.). Extraction of Pure Alpha-Alumina From Kaolin or Other Aluminous Clay. Brit. Pat. 1,311,614, Mar. 28, 1973.

<sup>&</sup>lt;sup>35</sup> Chemical and Engineering News Technology. V. 52, No. 4, Jan. 28, 1974, pp. 21-22.

<sup>&</sup>lt;sup>36</sup> Davis, E. G., E. W. Collins, and I. L. Feld. Large-Scale Continuous Attrition Grinding of Coarse Kaolins. BuMines RI 7771, 1973, 22 pp.

<sup>37</sup> Adrien, D. O. Advances in Aluminum Silicates No Surprise to Many. Am. Paint Conv. Daily, v. 58, No. 18, Nov. 13, 1973, p. 31.

growth for clay and nonclay extender and filler pigments in the North Atlantic countries was forecast.\*\*

A comprehensive article on the structures and compositions of clay materials, claywater-exchange cation relations, and the thermal behavior of clay minerals and clay materials was published.30 The reaction rates of aqueous phosphate solutions with kaolinite and alumina were detailed in another work.40 The kinetics obeyed a firstorder rate law probably involving nucleation and growth of a hexagonal AlPO4 phase. The research gives an insight into the high phosphorous-binding capacity of sediments, eventually leading to the more efficient removal of phosphate pollutants from streams. Phosphorus has long been recognized as one of the main nutrients which accelerates eutrophication. The orientation of the hydroxyl ion in kaolinite, dickite, and nacrite was determined.41 This work should contribute to the more efficient calcining of kaolins which are widely used in refractories, in ceramics, and as fillers and extenders. The dehydroxylization of kaolins is also the primary step in "opening-up" many clays for recovery of their alumina. The Gibbs free energies of formation of kaolinites, flint clays, illites, calcium, and sodium montmorillonites (nonswelling and swelling bentonites) were also determined from experimental work.42 These data will permit more meaningful thermodynamic calculations for existing and predicted pyrogenic processes involving clays. An X-ray diffraction study of montmorillonites revealed that heat-treated clays give a more reliable estimate of silicate layers per particle than the conventional organictreatment methods.43 Penetration of the montmorillonite layers by the organic glycol molecules, normally an indication of swelling and/or exchange capacity, was found to be subject to uncontrolled variables which could lead to mislcading results. Heat treatment combined with X-ray diffractometry was shown to give a more accurate measure of the silicate layers. The study of transmission 44 electron images coupled with selected area electron diffractometry revealed the presence of fine-grained micas in Camp Berteaux Moroccan bentonites. The study also showed the Wyoming bentonites were better crystallized, of larger crystalline size, and relatively free of the mica contaminants found in the Moroccan bentonites. The Moroccan bentonites also were reported to contain minor amounts of chlorite and kaolinite.

A detailed article on fuller's earth in England and the European bentonite industry was published.45 The fuller's earth discussion dealt with Laporte Industries Ltd. sodium and calcium bentonites and activated earth operations at Redhill, Cockley, and Copyhold. The article also stressed new marketing areas, largely in civil engineering, and in animal feeds, absorbents, and insecticides. The Redhill mining operation supplies the Cockley works which produces the firm's acid-activated earths. The Copyhold facilities prepare the natural and exchanged clays. A concise account of the two acid activating processes-sulfuric and hydrochloric-used at Cockley and the sodium-exchange works at Copyhold, including their "Laponite" production—a synthetic hectorite-was also detailed. The bentonite portions covered the geology, mining and processing techniques, technological advances, environmental problems, markets, products, and future of the industry in Bavaria, West Germany; Ponza, Italy; and elsewhere in Europe and the Mediterranean. A similar article on bentonites in the United States was published.46

The role of bentonite in pelletizing iron ores was investigated thoroughly. This investigation was primarily to either reduce the quantity or find suitable alternatives to

<sup>&</sup>lt;sup>38</sup> American Paint Journal. V. 58, No. 15, Oct. 29, 1973, pp. 52-53.

<sup>&</sup>lt;sup>20</sup> Brindley, G. W. The World of Clay Minerals. Bull. Am. Ceram. Soc., v. 52, No. 12, December 1973, pp. 892-895.

in Chen, Y. S. R. Kinetic Study of Phosphate Reactions With Aluminum Oxide and Kaolinite. Environmental Sci. and Technol., v. 7, No. 4, April 1973, pp. 327-332.

<sup>&</sup>lt;sup>41</sup> Giese, R. F., Jr., and P. Data. Hydroxyl Orientation in Kaolinite, Dickite, and Nacrite. Am. Mineralogist, v. 58, Nos. 5-6, May 1973, pp. 471-479.

<sup>42</sup> Huang, W. H., and W. D. Keller. Gibbs Free Energies of Formation Calculated From Dissolution Data Using Specific Mineral Analyses, III. Clay Minerals. Am. Mineralogist, v. 58, Nos. 11/12, November/December 1973, pp. 1023-1028.

<sup>43</sup> Tettenhorst, R, and H. E. Roberson. H-Ray Diffraction Aspects of Montmorillonites. Am. Mineralogist, v. 58, Nos. 1-2, January/February, 1973, pp. 73-80.

<sup>&</sup>lt;sup>44</sup> Giiven, N. Montmorillonite: Electron-Optical Observations. Science, v. 181, No. 4104, Sept. 14, 1973, pp. 1049-1051.

 $<sup>^{\</sup>rm 45}$  Industrial Minerals. No. 64, January 1973, pp. 9-34.

 $<sup>^{46}</sup>$  Industrial Minerals. No. 66, March 1973, pp. 9-17.

CLAYS 315

Wyoming bentonites.47 The influences of wet and dry strengths, drying rates, pellet porosity and moisture level were obtained from carefully prepared sized particles and interpreted in terms of the physical and chemical characteristics of United States, Western Australian, and New Zealand bentonites. The iron ore in this research was a hematitic ore from Koolen Island, Western Australia. Wyoming bentonites produced the highest green and dry strengths, enabling more efficient operations and high drying temperatures. Suppression and control of spontaneous combustion in English coal mines was controlled with bentonite slurry injections.48

A detailed discussion of the Western European refractory industry, both clay and nonclay raw materials, finished refractory goods, fired bricks and shapes, and monolithics, by country, was highlighted.49 The discussion dealt with many individual companies. A similar in-depth study of the refractory industry in Japan was detailed in another article.50 Selection of refractory rotary kiln linings consistent with a continuous increase in portland cement clinker output and a decrease in heat consumption was treated exhaustively.51 Another comprehensive work on the performance of fire clay and high-alumina refractories in the sliding gate method of metal pouring was published.<sup>52</sup> Substantial savings on refractory costs were realized with fire clay and other lower alumina content nozzles.

A concise article on moving and renovating a fly ash sintering plant into an expanded shale operation was published.<sup>53</sup>

The article included a flowsheet for the renovated plant. Another paper on preparing expanded shale aggregates for agricultural uses was published.<sup>54</sup> Comparative tests showed that expanded shales outperformed all other materials, such as perlite, vermiculite, peat, sand, sawdust, and styrofoam, as a rooting medium. The expanded shales were particularly effective in well-drained areas. Mineralogy and geochemistry of Pennsylvanian shales and underclays were correlated with their suitability for lightweight aggregate and refractory ladle brick at the Fall meeting of the AIME.<sup>55</sup>

<sup>&</sup>lt;sup>47</sup> Nicol, S. K., and Z. P. Adamiak. Role of Bentonite in Wet Pelletizing Processes. Inst. Min. and Met. Trans. (Sec. C), v. 82, No. 796, March 1973, C26-C33.

<sup>&</sup>lt;sup>48</sup> Mining Journal (London). V. 282, No. 7227, Feb. 22, 1974, p. 135.

<sup>49</sup> Industrial Minerals. No. 65, February 1973, pp. 9-27.

<sup>&</sup>lt;sup>50</sup> Industrial Minerals. No. 67, April 1973, pp. 9–19.

<sup>&</sup>lt;sup>51</sup> Kunnecke, M., and B. Piscaer. Choosing Insulation for Rotary Kilns? Rock Products, v. 76, No. 5, May 1973, pp. 138-142, 148, 179.

<sup>&</sup>lt;sup>52</sup> Keitch, J. A., and R. L. Stanford. Slide Gate Refractory Applications. J. of Metals, v. 25, No. 7, July 1973, pp. 38-42.

Stearn, E. W. Sintering Plant Thrives After a 300-Mile Move. Rock Products, v. 76, No. 2, February 1973, pp. 80-81, 99.

<sup>54</sup> Stearn, E. W. Lightweight Aggregate Expands Horizons. Rock Products, v. 76, No. 12, December 1973, pp. 64-65.

<sup>55</sup> Williams, E. G., R. R. Holbrook, E. W. Lithgow, and B. R. Wilson. Properties and Occurrence of Bloating Shales and Clays in the Pennsylvanian of Western Pennsylvania. Pres. at Fall Meeting, Soc. Min. Eng., AIME, Pittsburgh, Pa., Sept., 19–21, 1973, SME Preprint 73-H-336, 12 pp.



# Coal—Bituminous and Lignite

# By L. Westerstrom 1

## DOMESTIC PRODUCTION

Bituminous coal and lignite production declined from 595.4 million tons in 1972 to 591.7 million tons in 1973. In 1973, coal demand exceeded supply throughout the year. The coal industry at times was unable to provide coal for new customers, while regular customers drew heavily from inventories. The loss in production, despite a strong demand for coal, was caused by insufficient mine capacity, unauthorized work stoppages, lower productivity in underground mines, and unfavorable weather.

Underground production declined 4.8 million tons in 1973 while production from surface mines, strip and auger, increased 1.1 million tons. Production increased in Western States and in the major coal-producing States of Kentucky and Pennsylvania, but declined in Alabama, Illinois, Indiana, Ohio, Virginia, and West Virginia.

This survey includes all bituminous coal produced in the United States except that from mines that produced less than 1,000 tons per year. All quantity figures represent marketable coal and exclude washery and other refuse. Statistics are based upon de-, tailed annual reports furnished by producers. For production not directly reported (chiefly that of small mines), data were obtained from the records of State mine departments, which have statutory authority to require such reports. Thus, complete coverage of all mines producing 1,000 tons per year or more is reported.

The weekly and monthly estimates of production, summarized in tables 6 and 7, are based upon railroad car-loadings of coal reported weekly by railroads, river shipments reported by the U.S. Army Corps of Engineers, reports from mining companies, and monthly production statements complied by local operator associations and State mine departments.

Employment declined from 149,300 men in 1972 to 148,100 men in 1973. Productivity was also lower in 1973, but the rate of decline was less than in the 4 previous years. The average output per man-day at all mines fell from 17.74 tons in 1972 to 17.58 tons in 1973. At underground mines, output declined from 11.91 tons to 11.66 tons; output at strip mines increased from 35.95 tons to 36.30 tons per man-day.

# RESERVES AND RESOURCES

The United States has vast coal resources. The U.S. Geological Survey has identified, at depths of less than 3,000 feet, deposits containing nearly 1,600 billion tons of coal. An additional hypothetical coal resource of comparable size is surmised to exist on the basis of broad geologic knowledge and theory. The Bureau of Mines has evaluated the information on identified deposits in order to determine the quantity of coal available in relatively thick beds and near enough to the surface to mine at this time by conventional surface or underground methods.2

Tables 2, 3, and 4 summarize the quantity of in-place coals calculated under specified depth and thickness criteria, which has been termed the "reserve base" by the Bureau of Mines. Thickness criteria were 28 inches or more for bituminous coal and anthracite, and 60 inches or more for subbituminous coal and lignite. The maximum depth for all ranks except lignite was 1,000

6 pp.

<sup>&</sup>lt;sup>1</sup> Industry economist, Division of Fossil Fuels
—Mineral Supply.

<sup>2</sup> U.S. Bureau of Mines. Demonstrated Coal
Reserve Base of the United States on January
1, 1974. Mineral Industry Survey, June 1974,

feet. Only lignite beds that can be mined by surface methods were included—generally those beds that occur at depths no greater than 120 feet. Some coalbeds that did not meet the depth and thickness criteria were included because they are presently being mined or it was judged that they could be mined commercially at this time. "Demonstrated" is a collective term for the sum of materials in both the measured and indicated reserve categories, as defined by the Bureau of Mines and Geological Survey. These categories are based upon a high degree of geologic identification and engineering evaluation. The quantity of coal that can be recovered economically and legally from the reserves base is termed "the coal reserve."

## **CONSUMPTION AND DISTRIBUTION**

Consumption of bituminous coal and lignite in the United States increased 7.6%, primarily at electric utility and oven coke plants and at steel-rolling mills. The remaining principal consumers used less coal than in the previous year. Consumers drew heavily from stockpiles during the year, and at the end of December, inventories had been depleted by over 14 million tons.

Tables 40, 41, and 42 summarize the shipments of coal and lignite in 1973. Table 43 shows the quantitative changes, by geographic division, and States of destination from 1969 through 1973. The distribution data, by consumer use, does not necessarily conform to the consumption data because the latter represents actual use at consumers' facilities, whereas the distribu-

tion data represents shipments from mines, some of which were in transit or in consumers' storage. These distribution data are based on reports submitted quarterly to the Bureau of Mines by producers, sales agents, distributors, and wholesalers, who normally produce or sell 100,000 tons or more annually. Their reported tonnage accounted for 93% of the coal produced or shipped in 1973. To account for total industry shipments, estimates for the remaining shipments are included, based on data from the Federal Power Commission and other reliable coal statistical reporting agencies.

Additional details of bituminous coal and lignite distribution for 1973 are presented in a Bureau of Mines report.<sup>8</sup>

### **PRICES**

The average f.o.b. mine value for all coal increased from \$7.66 per ton in 1972 to \$8.53 per ton in 1973. At underground mines, the average price of coal increased from \$9.70 per ton in 1972 to \$10.84 per ton in 1973. The average price of coal at strip mines increased from \$5.48 to \$6.11 per ton. Average rail freight charges on

coal increased from \$3.67 per ton in 1972 to only \$3.71 per ton in 1973 despite substantial increases in railroad freight rates. The slight increase in rail costs for transporting coal reflected the increase in unitrain traffic of nearly 19 million tons at reduced freight rates.

#### FOREIGN TRADE

Less coal was shipped from eastern and midwestern coal-producing districts in 1973. Shipments from the Appalachian Region were 18 million tons less than in 1972; shipments from western Kentucky, Illinois, and Indiana were approximately 2 million tons below those of 1972. Total shipments from Western States increased nearly 14 million tons in 1973.

In 1973, the United States exported 52.9

million tons, 3.1 million tons less than in 1972. Japan maintained its position as the principal U.S. foreign market with a 36.3% share of total U.S. coal exports. Shipments of coal to Canada, Europe, and South America accounted for 30.7%, 26.9%, and 5.0%, respectively.

<sup>&</sup>lt;sup>3</sup> U.S. Bureau of Mines. Bituminous Coal and Lignite Distribution for Calendar Year 1973. Mineral Industry Survey, Apr. 12, 1974, 41 pp.

#### **TECHNOLOGY**

Coal research by the Bureau of Mines during 1973 showed increased emphasis on the conversion of coal to low-ash, low-sulfur fuels through either gasification or liquefaction. At the same time, continued effort was expended to improve the quality of the environment.

Work on the SYNTHANE pilot plant has progressed to approximately 70% completion. This process, developed by the Bureau, gasifies any kind of coal with oxygen and steam to produce substitute natural gas. Following completion of the pilot-plant, which was scheduled for December 1974, operation was expected to provide data essential for demonstrating the commercial feasibility of the process.

Favorable results were obtained in converting high-sulfur coal to low-sulfur by the SYNTHOIL process. In this process, coal slurried in recycle oil is propelled by a rapid, turbulent flow of hydrogen through a fixed-bed catalytic reactor at 840° F at pressures up to 4,000 pounds per square inch. Using cobalt molybdate catalyst, about 95% of the coal is transformed into an oil that is fluid at room temperature and is suitable for boiler plant fuel. Design of an 8-ton-per-day pilot plant is underway; construction was scheduled to start in 1975. In addition, a feasibility study of the process was completed by an outside engineering firm.

In related coal combustion studies, construction continued on the three-stage combustor, designed to produce low-ash, high-temperature gas suitable for use in opencycle magneto hydrodynamic (MHD) power generation. This combustor could also be used as a source of low-Btu gas for firing boilers.

Treatment of dried lignite with oil was found to reduce the reactivity of very lowmoisture lignite more effectively than similar treatment of lignite dried to a midmoisture content. The deactivation of dried low-rank coals to permit safe shipment and storage is a major objective in upgrading low-rank coals by drying. Such results may help establish the commercial feasibility of the process.

Bureau research on coal preparation has resulted in the development of a two-stage pyrite flotation process, which in laboratory tests removed up to 90% of the pyrite contained in coal from the Lower Freeport seam. Recently, the Bureau entered a cooperative research program with a coal company to study the applicability of this process to a high-sulfur coal now being discarded as waste. The two-stage pyrite flotation process is also being considered by a major steel company for commercial application to remove sulfur from coal from the Pittsburgh coalbed.

Research during the year on the Bureau's COSTEAM process showed that ash recovered from easily liquefied coals can effectively catalyze the liquefaction of more refractory (difficult to liquefy) coals.

During the year the final report on the design to be used in constructing the wood-to-oil pilot plant was completed. This pilot plant is to be erected at the Albany Metallurgy Research Center, Albany, Oreg., and will be capable of converting 3 tons per day of wood chips to about 6 barrels of low-sulfur fuel oil.

In combustion research during the year, the combustion characteristics were determined for low-volatile (5%) chars prepared from Illinois and Utah coals. When the chars were fed to the 500-pound-perhour pulverized-fuel-fired furnace at ambient temperature, supplemental fuel equivalent to 15% of the total thermal input was required to maintain stable flames. Preheating the primary air-char stream to 450°-500° F eliminated the supplemental fuel requirement.

Table 1.-Salient statistics of the bituminous coal and lignite industry in the United States

| Item                                                  | 1969        | 1970           | 1971        | 1972        | 1973             |
|-------------------------------------------------------|-------------|----------------|-------------|-------------|------------------|
| Productionthousand short tons                         | 560,505     | 602,932        | 552,192     | 595,386     | F01 700          |
| Valuethousands_                                       | \$2,795,509 | \$3,772,662    | \$3 904 562 | \$4 KE1 000 | 591,738          |
| Consumptionthousand short tons_                       | 507,275     | 515,619        | 494,862     | 516,776     | \$0,049,612      |
| Stocks at end of year:                                |             | ,              | 101,002     | 010,110     | 556,022          |
| Industrial consumers and retail yards                 |             |                |             |             |                  |
| thousand short tons                                   | 80,482      | 92,275         | 89,985      | r 116,500   | 102,200          |
| Stocks on upper lake docksdo                          | 1,484       | 1,468          | 1,205       | 939         | 822              |
| Imports 1do                                           | 56,234      | 70,944         | 56,633      | r 55,997    | 52,903           |
| Price indicators, average per net ton:                | 109         | 36             | 111         | 47          | 127              |
| Cost of coking coal at merchant coke                  | ***         |                |             |             |                  |
| ovens<br>Railroad freight charge <sup>2</sup>         | \$10.75     | r \$12.27      | r \$15.26   | r \$17.67   | \$19.77          |
| Value f.o.b. mines (sold in open market)              | \$3.10      | \$3.41         | \$3.70      | \$3.67      | \$3.71           |
| Value f.o.b. mines (sold in open market)              | \$4.65      | \$5.89         | \$6.66      | \$7.35      | \$8.06           |
| Method of mining:                                     | \$4.99      | <b>\$6.2</b> 6 | \$7.07      | \$7.66      | \$8.53           |
| Hand-loaded underground                               |             |                |             |             |                  |
| thousand short town                                   | 11,700      | 9,599          | 4.992       | 2,974       | 1 070            |
| Mechanically loaded undergrounddo                     | 335,431     | 329,189        | 270,896     | 301,129     | 1,970<br>297,384 |
| refrestrance mechanically loaded                      | 96.6        | 97.2           | 98.2        | 99.0        | 99.3             |
| rercentage cut by machine                             | 46.2        | 46.1           | 40.6        | 37.4        | 35.8             |
| Mined by stripping _thousand short tons               | 197,023     | 244,117        | 258,972     | 275,730     | 276,645          |
| Percentage mined by stripping<br>Mined at auger mines | 35.2        | 40.5           | 46.9        | 46.3        | 46.8             |
| thousand short tons                                   | 16,350      | 20,027         | 17,332      | 15,554      | 15,739           |
| Percentage mined at auger mines                       | 2.9         | 3.3            | 3.1         | 2.6         | 2.7              |
| Mechanically cleaned _thousand short tons_            | 334,761     | 323,452        | 271,401     | 292,829     | 288.918          |
| Percentage mechanically cleaned                       | 59.7        | 53.6           | 49.1        | 49.2        | 48.8             |
| Sapacity at 280 daysthousand short tons               | 5,118       | 5,601          | 5,149       | 4,879       | 4,744            |
| Capacity at 235 daysdo                                | 694,000     | 740,000        | 736,000     | 741,000     | 730,000          |
| · · · · · · · · · · · · · · · · · · ·                 | 583,000     | 621,000        | 618,000     | 622,000     | 613,000          |
| Average number of men working daily:                  |             |                |             |             |                  |
| Underground mines                                     | 99,269      | 107,808        | 109,311     | 112,252     | 111.083          |
| Strip minesAuger mines                                | 22,323      | 28,395         | 32,979      | 34,027      | 34,203           |
| rager mines                                           | 2,940       | 3,937          | 3,374       | 2,986       | 2,835            |
| Total                                                 | 124,532     | 140,140        | 145,664     | 149,265     | 148,121          |
| verage number of days worked:3                        |             |                |             |             |                  |
| Underground mines                                     | 224         | 229            | 210         | 222         | 231              |
| Strip mines                                           | 247         | 236            | 220         | 225         | 223              |
| Auger mines                                           | 139         | 148            | 132         | 121         | 122              |
| Total                                                 | 226         | 228            | 210         | 225         | 227              |
| roduction per man per day: 3                          |             |                |             |             |                  |
| Underground mines short tons                          | 15.61       | 13.76          | 12.03       | 11.91       | 11 60            |
| Strip mines do                                        | 35.71       | 35.96          | 35.69       | 35.95       | 11.66<br>36.30   |
| Auger minesdo                                         | 39.88       | 34.26          | 39.00       | 43.00       | 45.33            |
| Totaldo                                               | 19.90       | 18.84          | 18.02       | 17.74       | 17.58            |

r Revised.

Bureau of the Census, U.S. Department of Commerce.

Interstate Commerce Commission.

Bestimates based on data supplied by Health and Safety Analysis Center, Mining Enforcement and Safety Administration.

Table 2.-Demonstrated coal reserve base 1 of the United States on January 1, 1974, by method of mining

(Million short tons)

| Gt-t              | Potential minir                         | ng method        | - Total |
|-------------------|-----------------------------------------|------------------|---------|
| State -           | Underground                             | Surface          | - Iotai |
| Alabama           | 1,798                                   | 1,184            | 2,982   |
| Alaska            | 4,246                                   | 7,399            | 11,645  |
| Arizona           |                                         | 350              | 350     |
| Arkansas          | 402                                     | 263              | 665     |
| Colorado          | 14,000                                  | 870              | 14,870  |
| Georgia           | 1                                       |                  | 1       |
| Illinois          | 53,442                                  | 12,223           | 65,665  |
| Indiana           | 8,949                                   | 1.674            | 10,623  |
| Iowa              | 2,885                                   | ·                | 2.885   |
| Kansas            |                                         | 1,388            | 1,388   |
| Kentucky, Eastern | 9,467                                   | 3,450            | 12,917  |
| Kentucky, Western | 8,720                                   | 3.904            | 12,624  |
| Maryland          | 902                                     | 146              | 1.048   |
| Michigan          | 118                                     | 1                | 119     |
| Missouri          | 6.074                                   | 3.414            | 9.488   |
| Montana           | 65.165                                  | 42,562           | 107,727 |
| New Mexico        | 2.136                                   | 2,258            | 4,394   |
| North Carolina    | 31                                      | (2)              | 31      |
| North Dakota      |                                         | 16.003           | 16.003  |
| Ohio              | 17.423                                  | 3,654            | 21,077  |
| Oklahoma          | 860                                     | 434              | 1,294   |
| Oregon            | i                                       | ( <sup>2</sup> ) | 1       |
| Pennsylvania      | 29,819                                  | 1.181            | 31.000  |
| South Dakota      |                                         | 428              | 428     |
| Tennessee         | 667                                     | 320              | 987     |
| Texas             | • • • • • • • • • • • • • • • • • • • • | 3,272            | 3.272   |
| Utah              | 3,780                                   | 262              | 4.042   |
| 37'-              | 2.971                                   | 679              | 3,650   |
| TT7 3 * /         | 1,446                                   | 508              | 1.954   |
| TT7 . 1 T7° · ·   | 34.378                                  | 5.212            | 39,590  |
| TIT .             | 27,554                                  | 23,674           | 51.228  |
| -                 |                                         |                  |         |
| Total             | 297,235                                 | 136,713          | 433,948 |

<sup>&</sup>lt;sup>1</sup> Includes measured and indicated categories as defined by the U.S. Bureau of Mines and the U.S. Geological Survey and represents 100% of the coal in place.

<sup>2</sup> Less than 1 million tons.

Table 3.-Demonstrated reserve base 1 of coals in the United States on January 1, 1974, potentially minable by underground methods

(Million short tons)

| State             | Anthracite | Bituminous   | Sub-<br>bituminous | Lignite | Total   |
|-------------------|------------|--------------|--------------------|---------|---------|
| Alahama           |            | 1,798        |                    |         | 1,798   |
| Alaska            |            |              | 4,246              |         | 4,246   |
| Arkansas          | 96         | 306          |                    |         | 402     |
| Colorado          | 28         | 9,227        | 4,745              |         | 14,000  |
| Georgia           |            | i , i        | -,                 |         | 1       |
| Illinois          |            | 53,442       |                    |         | 53,442  |
|                   |            | 8.949        |                    |         | 8,949   |
|                   |            | 2,885        |                    |         | 2,885   |
| Iowa              |            | 9,467        |                    |         | 9,467   |
| Kentucky, Eastern |            | 8,720        |                    |         | 8,720   |
| Kentucky, Western |            | 902          |                    |         | 902     |
| Maryland          |            |              |                    |         | 118     |
| Michigan          |            | 118          |                    |         |         |
| Missouri          |            | 6,074        | ==                 |         | 6,074   |
| Montana           |            | 1,384        | 63,781             |         | 65,165  |
| New Mexico        | 2          | 1,527        | 607                |         | 2,136   |
| North Carolina    |            | 31           |                    |         | 31      |
| Ohio              |            | 17,423       |                    |         | 17,423  |
| Oklahoma          |            | 860          |                    |         | 860     |
| Oregon            |            |              | 1                  |         | 1       |
| Pennsylvania      | 7.030      | 22,789       |                    |         | 29,819  |
| Tennessee         | 1,000      | 667          |                    |         | 667     |
|                   |            | 3,780        |                    |         | 3,780   |
| Utah              | 138        | 2,833        |                    |         | 2,971   |
| Virginia          | 190        | 2,000<br>251 | 1.195              |         | 1,446   |
| Washington        |            |              | 1,130              |         | 34,378  |
| West Virginia     |            | 34,378       | 02 020             |         | 27,554  |
| Wyoming           |            | 4,524        | 23,030             |         |         |
| Total             | 7,294      | 192,336      | 97,605             |         | 297,235 |

<sup>&</sup>lt;sup>1</sup> Includes measured and indicated categories as defined by the U.S. Bureau of Mines and the U.S. Geological Survey and represents 100% of the coal in place.

Table 4.—Demonstrated reserve base 1 of coals in the United States on January 1, 1974, potentially minable by surface methods

(Million short tons)

| State             | Anthracite | Bituminous | Sub-<br>bituminous | Lignite | Total            |
|-------------------|------------|------------|--------------------|---------|------------------|
| Alabama           |            | 157        |                    | 1,027   | 1.184            |
| Alaska            |            | 1,201      | 5.902              | 296     | 7,399            |
| Arizona           |            | ,          | 350                |         | 350              |
| Arkansas          |            | 231        | 000                | 32      | 263              |
| Colorado          |            | 870        |                    | 02      | 870              |
| Illinois          |            | 12,223     |                    |         | 12,223           |
| Indiana           |            | 1,674      |                    |         |                  |
| Kansas            |            | 1.388      |                    |         | 1,674            |
| Kentucky, Eastern |            | 3,450      |                    |         | 1,388            |
| Kentucky, Western |            | 3,904      |                    |         | 3,450            |
| Maryland          |            | 146        |                    |         | 3,904            |
| Michigan          |            | 140        |                    |         | 146              |
| Missouri          |            | 0.414      |                    |         | 1                |
| Montana           |            | 3,414      | 07 107             |         | 3,414            |
|                   |            | a==        | 35,431             | 7,131   | 42,562           |
|                   |            | 250        | 2,008              |         | 2,258            |
|                   |            | (2)        |                    |         | ( <sup>2</sup> ) |
| North DakotaOhio  |            | 4 457      |                    | 16,003  | 16,003           |
|                   |            | 3,654      |                    |         | 3,654            |
| Oklahoma          |            | 434        |                    |         | 434              |
| Oregon            | 77         | (2)        | (2)                |         | (2)              |
| Pennsylvania      | 90         | 1,091      |                    |         | ì.181            |
| South Dakota      |            |            |                    | 428     | 428              |
| Tennessee         |            | 320        |                    |         | 320              |
| Texas             |            |            |                    | 3.272   | 3,272            |
| Utah              |            | 262        |                    | -,      | 262              |
| Virginia          |            | 679        |                    |         | 679              |
| Washington        |            |            | 500                | -8      | 508              |
| West Virginia     |            | 5,212      | 550                | 0       | 5.212            |
| Wyoming           |            | -,-12      | 23.674             |         | 23.674           |
| Total             | 90         | 40 501     |                    |         |                  |
| 10001             | 90         | 40,561     | 67,865             | 28,197  | 136,713          |

 $<sup>^1</sup>$  Includes measured and indicated categories as defined by the U.S. Bureau of Mines and the U.S. Geological Survey and represents 100% of the coal in place.  $^3$  Less than 1 million tons.

Table 5.—Annual average unit heat value of bituminous coal and lignite produced and consumed in the United States, 1955–73 <sup>1</sup>
(British thermal units (Btu) per pound)

Total production Domestic consumption Thousand Year Average Thousand Average Trillion Trillion short Btu short Btu Btu Rtu tons per pound tons per pound 1955 \_\_\_\_\_ 464,633 12,080 13,000 423,412 10.940 12,920 1956 500,874 492,704 13,013 12,990 12,990 432,858 11,142 12,870 1957 12,800 413,668 10,640 12,860 1958 410,446 10,663 12,990 366,703 366,256 9,366 12,770 1959 \_\_\_\_\_ 412,028 10,581 12,840 12,740 12,740 12,690 9,332 1960 \_\_\_\_\_ 415,512 10,662 12,830 380,429 374,405 9.693 1961 \_\_\_\_\_ 402.977 10,308 12,790 9,502 1962 \_\_\_\_\_ 422,149 10,782 11,712 12,790 12,760 12,750 387,774 12,670 9,826 1963 \_\_\_\_\_ 458,928 409,225 10,353 12,650 1964 \_\_\_\_\_ 486,998 12,418 431,116 459,164 10,899 12,640 1965 512,088 13,017 12,710 11.580 12.610 1966 \_\_\_\_\_ 533.881 13,507 12,650 486,266 12,205 12,550 552,626 -----13,904 12,580 480,416 11,981 12,470 1968 545,245 13,664 12,530 498,830 12,401 12,430 1969 13,957 12,450 507,275 12,509 12,330 1970 602,932 12,290 14,820 515 619 12,488 12,110 1971 12,120 11,857 12,273 552,192 13,385 494,862 11,980 1972 595.386 14,319 12,025 516,776 11.875

12,005

556,022

11.825

14,208

591,738

¹ Prior to 1973, the average heat content of the annual output of bituminous coal and lignite was measured at 13,100 Btu per pound. This value was based on an estimate made in 1949 (U.S. Bureau of Mines Information Circular 7538). In recent years, this heat value has not been representative of the average unit heat value of the total annual coal supply because of the large annual increases in utilization of coal of lower heat values by the electric utility industry. The annual production values shown in this table are weighted averages of known and estimated Btu value of coal shipments to each major consuming sector. They include, for example, the Btu value of coal consumed at electric utility generating plants as reported to the Federal Power Commission and compiled by the National Coal Association. Currently, electric utility plants account for 70% of total domestic coal consumption. The averages for U.S. consumption exclude shipments overseas and to Canada, the preponderance of which is of high Btu value metallurgical coal, thus accounting for the difference in values between total production and domestic consumption.

Table 6.-Production of bituminous coal and lignite in the United States, with estimates, by week

| Week ended         | Produc-<br>tion<br>1972 | Maximum<br>number of<br>working<br>days | Average<br>produc-<br>tion per<br>working<br>day | Week ended         | Produc-<br>tion<br>1973 | Maximum<br>number of<br>working<br>days | Average<br>produc-<br>tion per<br>working<br>day |
|--------------------|-------------------------|-----------------------------------------|--------------------------------------------------|--------------------|-------------------------|-----------------------------------------|--------------------------------------------------|
|                    |                         |                                         | 1,949                                            | Jan. 6             | 9,307                   | 5                                       | 1,861                                            |
| Jan. 8             | 11,696                  | 6<br>6                                  | 2,021                                            | Jan. 13            | 10,503                  | 6                                       | 1,751                                            |
| Jan. 15            | 12,125                  | 6                                       | 1,949                                            | Jan. 20            | 11,346                  | 6                                       | 1,891                                            |
| Jan. 22            | 11,691                  | 6                                       | 2,003                                            | Jan. 27            | 11,556                  | 6                                       | 1,926                                            |
| Jan. 29            | 12,015                  | 6                                       | 1,941                                            | Feb. 3             | 11,787                  | 6                                       | 1,965                                            |
| Feb. 5             | 11,645                  | 6                                       | 1,952                                            | Feb. 10            | 10,974                  | 6                                       | 1,829                                            |
| Feb. 12            | $11,712 \\ 12,069$      | ě                                       | 2,012                                            | Feb. 17            | 11,349                  | 6                                       | 1,892<br>1,918                                   |
| Feb. 19            | 11,502                  | ě                                       | 1,917                                            | Feb. 24            | 11,510                  | 6                                       | 2,017                                            |
| Feb. 26            | 10,999                  | 6                                       | 1,833                                            | Mar. 3             | 12,101                  | 6<br>6                                  | 1,931                                            |
| Mar. 4<br>Mar. 11  | 11,462                  | 6                                       | 1,910                                            | Mar. 10            | 11,585                  | 6                                       | 1,817                                            |
| Mar. 18            | 11,838                  | 6                                       | 1,973                                            | Mar. 17            | 10,901                  | 6                                       | 1,818                                            |
| Mar. 25            | 12,466                  | 6                                       | 2,078                                            | Mar. 24            | 10,906                  | 6                                       | 1,999                                            |
| Apr. 1             | 12,010                  | 5.3                                     | 2,266                                            | Mar. 31            | 11,994<br>10,276        | 5                                       | 2,055                                            |
| Apr. 8             | 12,483                  | 6                                       | 2,081                                            | Apr. 7             | 11,360                  | 6                                       | 1,893                                            |
| Apr. 15            | 12,190                  | 6                                       | 2,032                                            | Apr. 14            | 11,325                  | ě                                       | 1,888                                            |
| Apr. 22            | 12,469                  | 6                                       | 2,078                                            | Apr. 21            | 11,805                  | ĕ                                       | 1,968                                            |
| Apr. 29            | 12,672                  | 6                                       | 2,112                                            | Apr. 28            | 11,345                  | Ğ                                       | 1,891                                            |
| May 6              | 11,372                  | 6                                       | 1,895                                            | May 5<br>May 12    | 11,229                  | 6                                       | 1,872                                            |
| May 13             | 11,502                  | 6                                       | 1,917                                            | May 19             | 11,595                  | 6                                       | 1,933                                            |
| May 20             | 11,990                  | 6                                       | 1,998                                            | May 26             | 11.527                  | 6                                       | 1,921                                            |
| May 27             | 12,125                  | 6                                       | 2,021                                            | June 2             | 10,672                  | 5                                       | 2,134                                            |
| June 3             | 10,765                  | 5                                       | $2,153 \\ 2,201$                                 | June 9             | 12,090                  | 6                                       | 2,015                                            |
| June 10            | 13,206                  | 6                                       | 2,201                                            | June 16            | 12,781                  | 6                                       | 2,130                                            |
| June 17            | 13,191                  | 6                                       | 2,199                                            | June 23            | 12,650                  | 6                                       | 2,108                                            |
| June 24            | 12,521                  | $^{6}_{3.1}$                            | 2,137                                            | June 30            | 6,377                   | 3.1                                     | 2,057                                            |
| July 1             | 6,624                   | $\frac{3.1}{2.1}$                       | 2,113                                            | July 7             | 4,626                   | 2.3                                     | 2,011                                            |
| July 8             | 4,438                   | 4.8                                     | 2,182                                            | July 14            | 10,664                  | 5.2                                     | 2,051                                            |
| July 15            | 10,475                  | 6                                       | 1,934                                            | July 21            | 11,938                  | 6                                       | 1,990                                            |
| July 22            | 11,605<br>11.889        | 6                                       | 1,982                                            | July 28            | 12,025                  | 6                                       | 2,004<br>1,986                                   |
| July 29            | '                       | ě                                       | 1,890                                            | Aug. 4<br>Aug. 11  | 11,917                  | 6                                       | 2,069                                            |
| Aug. 5             | '000                    | ě                                       | 1,983                                            | Aug. 11            | 12,415                  | 6<br><b>6</b>                           | 2,003                                            |
| Aug. 12            |                         | Ğ                                       | 1,903                                            | Aug. 18            | 12,042                  | 6                                       | 2,058                                            |
| Aug. 19            | 000                     | 6                                       | 1,834                                            | Aug. 25            | 12,350                  | 6                                       | 2,055                                            |
| Aug. 26            | 44 004                  | 6                                       | 1,934                                            | Sept. 1            | 12,327                  | 5                                       | 2,029                                            |
| Sept. 2<br>Sept. 9 |                         | 5                                       | 2,058                                            | Sept. 8            | 10,147                  | 6                                       | 2,033                                            |
| Sept. 16           |                         | 6                                       | 1,994                                            | Sept. 15           | $12,196 \\ 12,582$      | 6                                       | 2,097                                            |
| Sept. 23           |                         | 6                                       | 2,047                                            | Sept. 22           | 12,784                  | 6                                       | 2,131                                            |
| Sept. 30           |                         | 6                                       | 1,994                                            | Sept. 29           | 11,862                  | ő                                       | 1,977                                            |
| Oct. 7             | 11,569                  | 6                                       | 1,928                                            | Oct. 6             | 11,959                  | 6                                       | 1,993                                            |
| Oct. 14            | 12,120                  | 6                                       | 2,020                                            | Oct. 13<br>Oct. 20 | 11,911                  | 5                                       | 2,382                                            |
| Oct. 21            | 11,702                  | 5                                       | 2,340                                            | Oct. 20<br>Oct. 27 | 11,989                  | 6                                       | 1,998                                            |
| Oct. 28            | 11,773                  | 6                                       | 1,962                                            | Nov. 3             | 11,745                  | ě                                       | 1,958                                            |
| Nov. 4             | 11,899                  | 6                                       | 1,983                                            | Nov. 3<br>Nov. 10  | 12,048                  | 6                                       | 2,008                                            |
| Nov. 11            | _ 11,914                | 6                                       | 1,986                                            | Nov. 17            | 11,502                  | 6                                       | 1,917                                            |
| Nov. 18            | 12,042                  | 6                                       | 2,007<br>2, <b>0</b> 35                          | Nov. 24            | 10,298                  | 5                                       | 2,060                                            |
| Nov. 25            | _ 10,177                | 5                                       | 2,035<br>1,940                                   | Dec. 1             | 11,524                  | 6                                       | 1,921                                            |
| Dec. 2             | _ 11,637                | 6                                       | 1,940                                            | Dec. 8             | 13,149                  | 6                                       | 2,192                                            |
| Dec. 9             |                         | 6<br>6                                  | 1,808                                            | Dec. 15            | 40 000                  | 6                                       | 2,180                                            |
| Dec. 16            |                         | 6                                       | 1,757                                            | Dec. 22            | 11,653                  | 6                                       | 1,942                                            |
| Dec. 23            |                         | 5                                       | 1.806                                            | Dec. 29            | 8,229                   | 5                                       | 1,646                                            |
| Dec. 30            | _ 9,028                 | υ                                       | 2,000                                            | Jan. 5             | 1 1,923                 | ² 1                                     | 1 1,923                                          |
|                    |                         |                                         |                                                  |                    |                         |                                         |                                                  |
| Total or           |                         |                                         |                                                  |                    |                         | 298.6                                   | 1,982                                            |

<sup>&</sup>lt;sup>1</sup> Figures represent production and number of working days in that part of week included in calendar year shown.

<sup>2</sup> Average daily output for the working days in the calendar year shown.

<sup>3</sup> Data may not add to totals shown because of independent rounding.

Table 7.—Production of bituminous coal and lignite, in 1973, by State, with estimates by months 1

| 6.02         6.04         1.69         1.67         1.67         1.67         1.78         1.66         1.89         19.20           250         219         202         64         56         22         273         81         249         86         64         66         82         273         81         249         86         47         694         47         694         56         68         26         48         26         48         56         68         82         48         66         66         82         48         66         66         88         66         66         88         66         66         88         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | States | Jan.                        | Feb.                     | Mar.                     | Apr.                 | May                | June                 | ns)<br>July                 | Aug.                        | Sept.                | Oct.                 | Nov.                     | Dec.                            | Total                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|--------------------------|--------------------------|----------------------|--------------------|----------------------|-----------------------------|-----------------------------|----------------------|----------------------|--------------------------|---------------------------------|---------------------------|
| 6.01         5.02         4.92         5.05         6.08         5.05         5.05         5.05         5.05         5.05         5.05         5.05         5.05         5.05         5.05         5.05         5.05         5.05         5.05         5.05         5.05         5.05         5.05         5.05         5.05         5.05         5.05         5.05         5.05         5.05         5.05         5.05         5.05         5.05         5.05         5.05         5.05         5.05         5.05         5.05         5.05         5.05         5.05         5.05         5.05         7.05         4.05         4.05         4.05         5.05         7.05         4.05         5.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05         6.05 <th< td=""><td></td><td>1,646<br/>62<br/>250<br/>46</td><td>1,562<br/>59<br/>219<br/>25</td><td>1,754<br/>64<br/>292<br/>20</td><td>1,559<br/>55<br/>276</td><td>1,629<br/>59<br/>255</td><td>1,374 <math>50</math> <math>282</math></td><td>1,511<br/>80<br/>273</td><td>1,774<br/>58<br/>311</td><td>1,578<br/>56<br/>249</td><td>1,783<br/>54<br/>305</td><td>1,666</td><td>1,394</td><td>19,230</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | 1,646<br>62<br>250<br>46    | 1,562<br>59<br>219<br>25 | 1,754<br>64<br>292<br>20 | 1,559<br>55<br>276   | 1,629<br>59<br>255 | 1,374 $50$ $282$     | 1,511<br>80<br>273          | 1,774<br>58<br>311          | 1,578<br>56<br>249   | 1,783<br>54<br>305   | 1,666                    | 1,394                           | 19,230                    |
| 64.06         6,208         6,208         6,709         74         7,040           4,222         4,544         4,807         4,6716         4,824         4,684         4,684         4,684         4,684         4,684         4,684         4,684         4,686         4,182         4,184         4,084         4,684         4,686         6,610         7,018         6,640         6,640         6,886         6,886         6,864         4,684         4,686         4,182         4,182         4,184         4,184         4,186         4,188         4,188         4,188         4,188         4,188         4,188         4,188         4,188         4,188         4,188         4,188         4,188         4,188         4,188         4,188         4,188         4,188         4,188         4,188         4,188         4,188         4,188         4,188         4,188         4,188         4,188         4,188         4,188         4,188         4,188         4,188         4,188         4,188         4,188         4,188         4,188         4,188         4,188         4,188         4,188         4,188         4,188         4,188         4,188         4,188         4,188         4,188         4,188         4,188         4,188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | 525<br>5,548<br>1,760<br>49 | 5,281<br>1,876<br>53     | 5,212<br>2,255<br>49     | 4,525<br>2,138       | 5,247<br>2,239     | 4,590<br>2,073       | 25<br>362<br>4,871<br>1,808 | 30<br>644<br>6,098<br>2,929 | 29<br>5,364<br>2,449 | 28<br>5,032<br>2.178 | 4, 567<br>1,908<br>1,908 | 242<br>247<br>547<br>643<br>643 | 6,233<br>61,572           |
| 5,406         6,208         6,194         7,018         6,640         6,402         6,885         6,887         6,780         6,926         6,610           9,88         4,544         4,877         4,675         4,821         4,188         4,693         4,084         4,864         4,586         4,162         6,610           9,88         10,74         10,504         11,633         11,81         9,640         11,678         9,911         11,644         10,461         9,762           129         319         262         313         318         346         643         442         618         474         378           667         887         730         78         66         1016         925         1,176         1,184         1,101           867         867         678         66         1016         926         1,134         1,101           868         866         1016         9,617         1,134         1,134         1,104           868         662         624         1,047         962         1,134         1,104           81         1,148         1,148         1,148         1,104         1,134         1,104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | 88                          | 82                       | 96                       | 66                   | 75                 | 97                   | 88                          | 98                          | 101                  | 97                   | <b>44</b>                | 41<br>75                        | 20,203<br>601<br>1,086    |
| 129         1,1,54         1,044         1,046         1,046         1,046         1,046         1,046         10,461         9,762         277         161         282         217         161         9,91         11,644         10,461         9,762         217         161         9,762         217         161         9,762         217         161         9,762         217         161         9,762         217         161         9,762         217         161         9,762         217         161         9,762         217         161         9,762         217         161         9,762         217         161         9,762         217         161         9,762         224         22         24         22         18         66         1,016         9,25         1,176         1,184         1,101         3,78         86         68         1,164         9,67         1,184         1,101         1,101         1,101         9,762         1,104         1,104         1,104         1,104         1,104         1,104         1,104         1,104         1,104         1,104         1,104         1,104         1,104         1,104         1,104         1,104         1,104         1,104         1,104 <td></td> <td>6,133<br/>4,733<br/>10,866</td> <td>5,406<br/>4,232<br/>9,638</td> <td>6,203</td> <td>6,197</td> <td>7,018</td> <td>6,540</td> <td>5,402<br/>4,138</td> <td>6,885<br/>4,693</td> <td>5,867<br/>4,084</td> <td>6,780<br/>4,864</td> <td>5,925<br/>4,536</td> <td>5,610</td> <td>73,966</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | 6,133<br>4,733<br>10,866    | 5,406<br>4,232<br>9,638  | 6,203                    | 6,197                | 7,018              | 6,540                | 5,402<br>4,138              | 6,885<br>4,693              | 5,867<br>4,084       | 6,780<br>4,864       | 5,925<br>4,536           | 5,610                           | 73,966                    |
| 667         882         730         780         783         606         1,016         925         1,175         1,184         1,101           20         25         24         22         18         31         27         35         1,184         1,101           687         755         804         755         864         1,047         962         1,184         1,101           638         662         624         1,047         962         1,118         1,134         1,101           638         662         624         1,047         962         1,134         1,103         1,134           6,143         662         624         1,047         962         1,134         1,101           14,13         3,917         3,790         4,254         880         885         841         1,003         1,134         1,134           6,261         6,601         5,602         5,652         6,707         4,017         3,732         4,017         1,734         6,512         6,502         8,604         4,44         641         6,35         8,44         6,117         1,134         1,134         1,134         1,134         1,134         1,134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | 129                         | 129                      | 159<br>319               | 10,504<br>142<br>252 | 11,693             | 11,361<br>161<br>338 | 9,540<br>104<br>345         | 11,578<br>119<br>643        | 9,951<br>124<br>442  | 11,644<br>202<br>513 | 10,461<br>217<br>474     | 9,762<br>161<br>378             | 127,645<br>1,789<br>4,658 |
| 687         762         804         766         624         1,047         962         1,20         1,134           638         662         622         688         886         1,168         841         1,003         1,136         738           3,743         3,917         3,790         4,254         880         3,608         4,196         3,673         4,017         3,732         738           6,261         6,704         6,562         6,601         6,602         6,662         6,707         6,977         6,197         3,732         3,206           6,261         6,707         6,777         6,777         6,977         6,773         4,017         3,732         3,206           8,67         8,67         6,601         6,602         6,562         6,774         6,777         6,977         7,184         6,512         6,222           87         8,89         8,77         8,78         4,44         6,41         6,35         8,44         6,122         6,22           86         4,78         4,44         6,41         6,35         8,44         6,12         6,22         8,22         1,24         6,12         6,12         1,12         1,12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 662<br>20                   | 667                      | 832<br>25                | 730                  | 780<br>24          | 733<br>22            | 606<br>18                   | 1,016                       | 925                  | 1,175                | 1,184                    | 1,101                           | 10,411                    |
| 3,743         3,917         3,790         4,254         3,800         3,603         4,034         4,617         573         550         560         103         4,017         3,732         560         573         230         216         230         216         230         216         230         216         230         216         230         216         230         216         230         216         230         216         230         216         230         216         230         216         230         216         230         216         230         217         218         411         412         412         413         414         414         414         414         414         414         414         414         414         414         414         414         414         414         414         414         414         414         414         414         414         414         414         414         414         414         414         414         414         414         414         414         414         414         414         414         414         414         414         414         414         414         414         414         414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | 498<br>624<br>624           | 687<br>638               | 857<br>757<br>662        | 752<br>606<br>624    | 804<br>612<br>622  | 755<br>588<br>583    | 624<br>685<br>383           | 1,047                       | 952<br>841           | 1,210                | 1,220                    | 1,134                           | 313<br>10,724<br>9,069    |
| 6,261         6,710         6,052         6,601         5,652         5,552         6,707         6,178         210         173           376         874         640         444         641         635         844         641         6722           376         880         376         400         477         834         649         474         618           2,581         2,827         473         477         323         524         409         474         430         461           2,61         2,62         3,65         2,43         3,443         3,267         2,725         3,184         450         461         450         474         430         461         450         474         430         461         450         474         430         451         450         474         430         451         450         474         430         450         451         451         451         451         451         451         451         451         451         451         451         451         451         451         451         451         451         451         451         451         451         451         451         451                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | 3,852                       | 3,743                    | 3,917<br>136             | $\frac{3,790}{174}$  | 4,254              | 3,800<br>158         | 3,603<br>155                | 4,196                       | 3,673                | 608<br>4,017         | 579<br>3,732             | 550<br>3,206                    | 6,906                     |
| 370         380         375         400         405         748         641         635         844         840         718           2,581         2,581         2,822         2,920         3,095         2,682         2,843         8,48         409         474         480         461           261         2,49         2,74         2,84         2,87         2,725         3,168         2,87         2,564           9,01         1,0467         9,266         10,093         8,891         8,257         10,732         9,016         10,271         8,822         11,102           728         1,0467         9,966         19,96         1,165         1,162         1,383         1,299         1,700           45,893         60,547         46,999         61,420         46,613         48,81         8,81         1,883         1,700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | 677                         | 6,261<br>665             | 6,710<br>574             | 6,052<br>585         | 6,601              | 5,602                | 5,552                       | 6,707                       | 6,197                | 259<br>7,184         | 210<br>6,512             | 173<br>6.222                    | 2,183                     |
| 2,581         2,882         2,920         3,985         2,87         3,87         2,87         474         430         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450         450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | 390<br>449                  | 370<br>563               | 380<br>473               | 375<br>455           | 400                | 455                  | 798                         | 834<br>834                  | 635<br>684           | 844<br>838           | 840<br>802               | 718                             | 8,219                     |
| 9,013 10,467 9,266 10,993 8,391 8,267 1,532 9,016 10,271 8,822 11,102 17,289 1,014 996 996 1,105 1,165 1,165 1,165 1,165 1,299 1,768 1,299 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 1,700 |        | 2,83 <b>6</b><br>225        | 2,581                    | 2,882                    | 2,920                | 3,095              | 2,633                | 323<br>2,443                | 524<br>3.257                | 409                  | 474                  | 430                      | 450                             | 5,500                     |
| 45,893 50,547 46,999 51,420 46,613 43,801 55,874 48,999 51,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | 10,019 $846$                | 9,013<br>728             | 10,467                   | 9,265<br>996         | 284<br>10,093      | 8,391                | 317<br>8,257                | 312<br>10,732               | 297<br>9,016         | 274<br>10,271        | 261<br>8.822             | 2,534<br>237<br>11 109          | 33,961<br>3,270           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 49,379                      | 45,893                   | 50,547                   | 46,999               | 51,420             | 46,613               | 43.801                      | 1,353                       | 1,299                | 1,768                | 1,829                    | 1,700                           | 14,886                    |

<sup>1</sup> Figures are based principally upon railroad carloadings and river shipments supplemented by direct reports from certain local sources. These estimates include coal both shipped by truck, and used at the mines, and the totals represent output for all mines producing 1,000 tons or more per year.

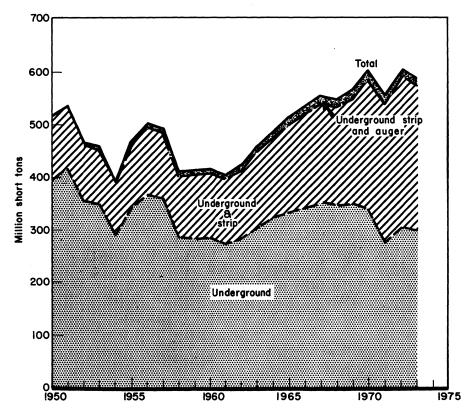



Figure 1.—Production of bituminous coal and lignite, by type of mining in the United States.

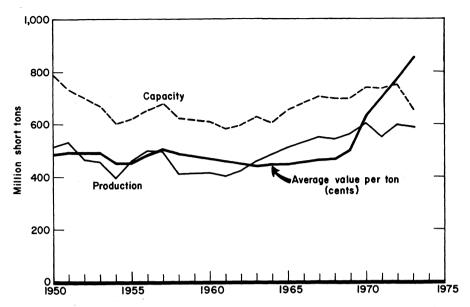
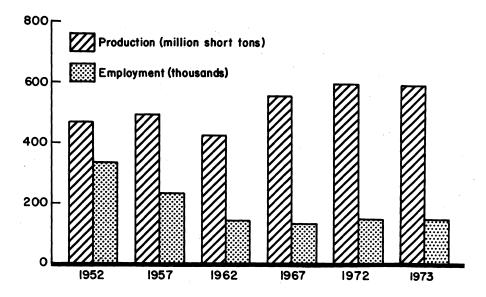



Figure 2.—Trends of bituminous coal and lignite production, realization, and mine capacity in the United States.

Table 8.—Production of bituminous coal and lignite in the United States, in 1973, by State, and type of mining


| State                  | Underground | Strip   | Auger  | Total <sup>1</sup> |
|------------------------|-------------|---------|--------|--------------------|
| Alabama                | 7.618       | 11,529  | 84     | 19,230             |
| Alaska                 | .,          | 694     |        | 694                |
| Arizona                |             | 3,247   |        | 3,247              |
| Arkansas               | -3          | 432     |        | 434                |
| Colorado               | 3,361       | 2.834   | 38     | 6.233              |
| Illinois               | 32,570      | 29,002  | •••    | 61,572             |
| Indiana                | 789         | 24,465  |        | 25,253             |
| Indiana                | 356         | 245     |        | 601                |
|                        | 550         | 1,086   |        | 1,086              |
| Kansas                 |             | 1,000   |        | 1,000              |
| Kentucky:              |             |         |        |                    |
| Eastern                | 40.553      | 23,671  | 9,742  | 73,966             |
| Western                | 22.342      | 31,337  | -,     | 53,679             |
|                        | 62.895      | 55,008  | 9.742  | 127,645            |
| Total                  |             |         | 79     | 1.789              |
| Maryland               | 66          | 1,643   | 79     |                    |
| Missouri               |             | 4,658   |        | 4,658              |
| Montana:               |             |         |        |                    |
| Bituminous             | 1           | 10,410  |        | 10,411             |
| Lignite                | 1           | 314     |        | 314                |
|                        |             |         |        |                    |
| Total                  | _ 1         | 10,724  |        | 10,725             |
| New Mexico             | 733         | 8,336   |        | 9,069              |
| North Dakota (lignite) |             | 6,906   |        | 6,906              |
| Ohio                   | 16,225      | 28,527  | 1,031  | 45,783             |
| Oklahoma               |             | 2,183   |        | 2,183              |
| Pennsylvania           | 46,207      | 29,829  | 366    | 76,403             |
| Tennessee              | 3.636       | 4.236   | 348    | 8,219              |
| Texas (lignite)        |             | 6.944   |        | 6,944              |
| Utah                   | 5,500       | -,      |        | 5,500              |
| Virginia               | 23,437      | 8,700   | 1.824  | 33,961             |
| Washington             | 16          | 3,254   | _,0    | 3,270              |
| West Virginia          | 95.516      | 17,704  | 2.228  | 115.448            |
| Wyoming                | 425         | 14,461  | 2,220  | 14,886             |
| • -                    |             |         |        |                    |
| Grand total 1          | 299,353     | 276,645 | 15,739 | 591,738            |

<sup>&</sup>lt;sup>1</sup> Data may not add to totals shown because of independent rounding.

Table 9.-Production of bituminous coal and lignite in the United States, in 1973, by district, and by type of mining

|     | District               | Underground         | Strip'  | Auger                       | Total 1 |
|-----|------------------------|---------------------|---------|-----------------------------|---------|
| 1.  | Eastern Pennsylvania   | 21.100              | 25,061  | 285                         | 46,445  |
| 2.  | Western Pennsylvania   | 26,728              | 7.043   | 161                         | 33,932  |
| 3.  | Northern West Virginia | 25,563              | 8,454   | 431                         | 34,447  |
| 4.  | Ohio                   | 16,225              | 28,527  | 1.031                       | 45,783  |
| 5.  | Michigan               | 10,220              | 20,021  | -,00-                       |         |
| 6.  | Panhandle              | $8.7\bar{1}\bar{1}$ | 120     | $\overline{22}$             | 8.853   |
| 7.  | Southern Number 1      | 27.067              | 2.836   | 493                         | 30,395  |
| 8.  | Southern Number 2      | 99.592              | 41.848  | 13,174                      | 154,614 |
| 9.  | West Kentucky          | 22,342              | 31,337  | 10,114                      | 53,679  |
|     |                        | 32,570              | 29,002  |                             | 61,572  |
| 10. | Illinois               | 789                 | 24,465  |                             | 25,253  |
| 11. | Indiana                | 356                 | 24,405  |                             | 601     |
| 12. | Iowa                   |                     |         | $1\overline{0}\overline{5}$ |         |
| 13. | Southeastern           | 8,273               | 11,951  | 109                         | 20,329  |
| 14. | Arkansas-Oklahoma      | 3                   | 773     |                             | 776     |
| 15. | Southwestern           | _77                 | 14,528  |                             | 14,528  |
| 16. | Northern Colorado      | 510                 |         |                             | 510     |
| 17. | Southern Colorado      | 3,584               | 3,026   | 38                          | 6,648   |
| 18. | New Mexico             |                     | 11,391  |                             | 11,391  |
| 19. | Wyoming                | 425                 | 14,461  |                             | 14,886  |
| 20. | Utah                   | 5,500               |         |                             | 5,500   |
| 21. | North-South Dakota     |                     | 6,906   |                             | 6,906   |
| 22. | Montana                | 1                   | 10,724  |                             | 10,725  |
| 23. | Washington             | 16                  | 3,948   |                             | 3,964   |
|     | Total 1                | 299,353             | 276,645 | 15,739                      | 591,738 |

<sup>&</sup>lt;sup>1</sup> Data may not add to totals shown because of independent rounding.



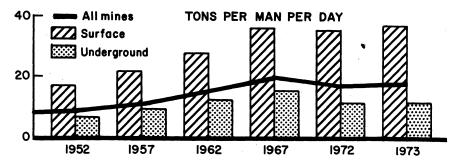



Figure 3.—Trends of employment and output per man at bituminous coal and lignite mines in the United States.

Table 10.-Number of mines, production, value, men working daily, days active, man-days, and output per man per day at bituminous coal and lignite mines in the United States, in 1973, by State

|                                       |                            |                                  | Production                | n (thousand                            | short tons)                               |                                                  | Average                                    | Average                                      | Average                                                                  | Number<br>of man-                             | Average                                                     |
|---------------------------------------|----------------------------|----------------------------------|---------------------------|----------------------------------------|-------------------------------------------|--------------------------------------------------|--------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------|
| State                                 | Number of of sective mines | Shipped<br>by<br>rail or         | Shipped<br>by<br>truck    | Mine-<br>mouth<br>generating<br>plants | All<br>others <sup>2</sup>                | Total 3                                          | value<br>per<br>ton *                      | of men<br>working<br>daily                   | number<br>of days<br>worked                                              | worked<br>(thou-                              | per man                                                     |
| Alabama Alaska Arizona Arkansas       | 105<br>1<br>11<br>11<br>30 | 14,304<br>579<br>414<br>4,853    | 3,003<br>115<br>20<br>746 | 1,915                                  | 8<br>3,247<br>( <sup>5</sup> )<br>4<br>70 | 19,230<br>694<br>3,247<br>434<br>6,233<br>61,572 | \$11.01<br>W<br>W<br>13.37<br>7.41<br>6.71 | 5,098<br>74<br>161<br>157<br>1,418<br>10,500 | 233<br>252<br>252<br>252<br>253                                          | 1,218<br>20<br>48<br>35<br>35<br>2,613<br>702 | 15.79<br>33.86<br>67.90<br>12.35<br>17.46<br>23.56<br>35.98 |
| Illinois<br>Indiana<br>Iowa<br>Kannas | 39<br>4<br>4               | 23,711<br>21,129<br>161<br>1,009 | 3,682<br>439<br>74        | 411                                    | 81   81                                   | 25,253<br>601<br>1,086                           | 6.06<br>5.46<br>7.35                       | 2,680<br>128<br>228                          | 221<br>221<br>294                                                        | 28<br>67                                      | 21.20                                                       |
| Kentucky:<br>Eastern                  | 1,862                      | 69,071                           | 4,729                     | 8,707                                  | 167                                       | 73,966<br>53,679                                 | 9.03                                       | 20,499                                       | 199                                                                      | 1,916                                         | 18.13<br>28.02<br>21.29                                     |
| Western Total Maryland                | 1,443                      | 112,655<br>1,235<br>1,286        | 6,094<br>553<br>90        | 8,707                                  | 190                                       | 127,645<br>1,789<br>4,658                        | 7.73<br>7.63<br>5.37                       | 27,975<br>322<br>579                         | 214<br>197<br>265                                                        | 158<br>158                                    | 30.39                                                       |
| Montana:                              | -                          | 10,339                           | 22                        | 1                                      | 50                                        | 10,411                                           | 2.83                                       | 270<br>22                                    | 292<br>257                                                               | 79<br>6                                       | 132.26<br>55.55                                             |
| Lignite                               | 2 60                       | 313                              | 23 23                     | 7.676                                  | 209                                       | 10,725                                           | 3.51                                       | 292<br>719                                   | 288<br>258<br>258                                                        | 84<br>186<br>67                               | 127.11 $48.84$ $102.36$                                     |
| New Mexico                            | 12<br>235                  | 3,705<br>28,871                  | 11,555                    | 2,998                                  | 153<br>14                                 | 6,906<br>45,783<br>2,183                         | 7.40<br>7.40<br>69                         | 9,700<br>380                                 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0            | 2,153                                         | 21.26<br>19.82                                              |
| Oklahoma                              | 964                        | 2,060<br>51,223<br>5,601         | 122<br>17,824<br>2,618    | 7,246                                  | 110                                       | 76,403<br>8,219                                  | 10.30<br>8.13                              | 25,373<br>1,934                              | 240<br>207<br>321                                                        | 6,102<br>400<br>69                            | 20.54<br>20.75                                              |
| Tennessee Texas (lignite)             | 16                         | 4,001                            | 1,492                     | 6,700                                  | 11-60                                     | 6,944<br>5,500<br>33,961                         | ,<br>11.19<br>11.12                        | 1,603<br>12,226                              | 523<br>533<br>530<br>530<br>530<br>530<br>530<br>530<br>530<br>530<br>53 | 383<br>2,685                                  | 14.36<br>12.65<br>28 90                                     |
| . <u>a</u> ∙≅.                        | 650<br>3<br>932            | 32,673 $105,174$                 | 1,285<br>24<br>3,776      | 3,246<br>6,188<br>8,58                 | 311<br>84                                 | 3,270<br>115,448<br>14,886                       | 6.56<br>11.61<br>4.09                      | 318<br>44,765<br>1,011                       | 264<br>218<br>263                                                        | 9,762                                         | 11.83                                                       |
|                                       | 4.744                      | 9,100                            | 57,268                    | 64,424                                 | 4,284                                     | 591,738                                          | 8.53                                       | 148,121                                      | 227                                                                      | 33,653                                        | 17.58                                                       |
| Grand Coar                            |                            |                                  | , ,                       | al dote                                |                                           |                                                  |                                            | ,                                            |                                                                          |                                               |                                                             |

Withheld to avoid disclosing individual company confidential data.
Includes coal loaded at mines directly into railroad cars or river barges, hauled by trucks to railroad sars or river barges, hauled by mine employees, used for other purposes at mine, and shipped Includes coal used at mine for power and heat, made into beehive coke at mine, used by mine employees, used for other purposes at mine, and shipped

by slurry pipeline from Arizona.

\* Data may not add to totals shown because of independent rounding.

\* Value received or charged for coal, f.o.b. mine. Includes a value, estimated by producer, for coal not sold.

\* Less than 500 tons.

Table 11.-Number of mines, production, value, men working daily, days active, man-days, and output per man per day at bituminous coal lignite mines in the United States, in 1973, by district

|             |              |                  | age<br>s<br>(an                        | Z Z    | 1      | 200        | .∞     | 9               | !0     | 0 6V          | 9        | <u>م</u>   | و م    | 0             | · •          | 9                 | 6                 | <b>0</b> 0  | 6          |        | e# ** |        | n            |         | 1            |
|-------------|--------------|------------------|----------------------------------------|--------|--------|------------|--------|-----------------|--------|---------------|----------|------------|--------|---------------|--------------|-------------------|-------------------|-------------|------------|--------|-------|--------|--------------|---------|--------------|
|             |              |                  | Average<br>tons<br>per man             | n Jad  |        | 13.50      | 16.3   | 21.2            | 6      | 9.5           | 14.5     | 28.0       | 28.5   | 91.9          | 15.7         | 11.6              | 39.4              | 15.6        | 17.1       | 66.5   | 14.94 | 109 96 | 127.11       | 37.91   |              |
|             |              |                  | Number<br>of man-<br>days<br>worked    | sands) | 977 6  | 2.907      | 2,102  | 2,153           | 659    | 3,297         | 10,621   | 1,916      | 6,019  | 200           | 1.290        | 49                | 368               | ဇာ          | 387        | 171    | 0 88  | 67     | 84           | 105     | 99 650       |
|             |              |                  | Average<br>number<br>of days<br>worked |        | 930    | 243        | 211    | 777             | 231    | 219           | 210      | 200<br>240 | 262    | 221           | 238          | 252               | 284               | 482         | Z91<br>926 | 263    | 233   | 255    | 289          | 267     | 200          |
|             |              |                  | Average<br>number<br>of men<br>working | uany   | 14.418 | 11,988     | 9,977  | 60.60           | 2,827  | 15,020        | 00,000   | 10.500     | 2,680  | 128           | 5,432        | 264               | 120               | 1 590       | 620        | 1.011  | 1,603 | 265    | 292          | 269     | 148.121      |
| by district |              |                  | Average<br>value<br>per<br>ton 4       |        | \$9.27 | 11.42      | 7.40   | 1               | 8.86   | 15.73         | 5.93     | 6.71       | 90.9   | 5.46          | 10.88        | 4.41              | M                 | 7.89        | 2.83       | 4.09   | 11.19 | 2.07   | 7.82<br>2.82 | 0       | 0.00         |
| 600         |              |                  | Total 3                                |        | 46,445 | 33,932     | 45,783 | !               | 8,858  | 154.614       | 53,679   | 61,572     | 25,253 | 601<br>90 990 | 870,07       | 14.528            | 510               | 6,648       | 11,391     | 14,886 | 5,500 | 0,300  | 3.964        | 591 728 | 201,100      |
| 600000      |              | 18)              | All<br>others 2                        |        | 73     | 134        | 14     | 13              | 106    | 196           | 23       | 20         | 31     | ¦∝            | (5)<br>(5)   | 4                 | 1                 | တ           | 3,247      | × .    | 723   | 200    | 3 1          | 4.284   |              |
|             | and shout to | TOT THE PROPERTY | rail or by generating of water 1       |        | 7,246  | 1,543      |        |                 |        |               |          |            |        |               |              |                   |                   |             |            |        |       |        |              |         |              |
|             | tion (thouse | onoma l          | Shipped<br>by<br>truck                 |        | 12,127 | 1,883      | 11,555 | 325             | 1,010  | 8,710         | 1,365    | 3,689      | 439    | 3,118         | 22           | 527               | 301               | 440         | ωñ         | 1.492  | 20    | 23     | 139          | 57,268  |              |
|             | Produc       | Chinned          | by rail or water 1                     | 200 00 | 27,281 | 30,888     | 28,871 | 4.194           | 29,279 | 145,352       | 53.711   | 21,129     | 161    | 15,288        | 753          | 6,990<br>906      | 5 570             | 466         | 9.100      | 4,001  | 3,705 | 10,652 | 579          | 465,762 |              |
|             |              | Number           | of<br>active<br>mines                  | 740    | 302    | 249        | 667    | 16              | 321    | 2,436         | 55       | 39         | 12     | 124           | 97           | * °               | 30                | 10          | 17         | 16     | 12    | ۰ د    | 4            | 4,744   |              |
|             |              |                  | District                               |        |        |            |        | Southern Minner |        | West Kentucky | Illinois | Towns      |        |               | Southwestern | Northern Colorado | Southern Colorado | Thew Mexico | Wyoming    |        |       |        | Total 3      |         | W With I i i |
| 1           |              |                  | 1                                      |        | vi 00  | <b>∀</b> 1 | ro a   | ) <u>[</u>      | 00     | 6             | 1        | 12         | 13.    | 14.           | 15.          | 9 5               | . 6               | 9 0         | 25.        | 2      | 22.   | 23.    |              |         | ۲            |

W Withheld to avoid disclosing individual company confidential data.

Includes coal loaded at mines directly into railroad cars or river barges, hauled by trucks to railroad siding, and hauled by trucks to waterways.

Includes coal used at mine for power and heat, made into beehive coke at mine, used by mine employees, used for other purposes at mine, and shipped by slurry pipeline in Arizona.

In any not add to totals shown because of independent rounding.

We will be received or charged for coal, f.o.b. mine. Includes a value, estimated by producer, for coal not sold.

Table 12.-Number of mines, men working daily, days active, and output per man per day at bituminous coal and lignite mines in the United States, in 1973, by State

|                           | Num              | Number of mines | 88        |                  | Average number of men<br>working daily | age number of men<br>working daily |         | Avera            | Average number of<br>days worked | er of            | Average          | Average tons per man per day | man pe             | r day                 |
|---------------------------|------------------|-----------------|-----------|------------------|----------------------------------------|------------------------------------|---------|------------------|----------------------------------|------------------|------------------|------------------------------|--------------------|-----------------------|
| State                     | Under-<br>ground | Strip           | Auger     | Under-<br>ground | Strip                                  | Auger                              | Total g | Under-<br>ground | Strip                            | Auger            | Under-<br>ground | Strip                        | Auger              | Total                 |
| Alabama                   | 21               | 83              | 1         | 3.274            | 1,818                                  | 9                                  | 5,098   | 235              | 246                              | 260              | 9.91             | 25.76                        | 53.61              | 15.79                 |
| Alaska                    |                  | Н,              | !         | 1                | 74                                     | :                                  | 74      | 1                | 277                              | 1                | }                | 33.86                        | ;                  | 33.86<br>67.90        |
| Arkansas                  | ¦=               | 101             |           | ļ                | 152                                    | ; ;                                | 157     | 109              | 228                              |                  | 4.60             | 12.47                        | 1 1                | 12.35                 |
| Colorado                  | 21               | ×.              | H         | 1,223            | 186                                    | 6                                  | 1,418   | 251              | 262                              | 86               | 10.93            | 58.15                        | 43.62              | 17.46                 |
| Illinois                  | 87 °°            | 27 98<br>80 88  | ;         | 7,229            | 3,271<br>2,440                         | 1                                  | 2,680   | 249<br>175       | 248<br>270                       | : 1              | 18.74            | 37.08                        | ; ;                | 35.98                 |
| Iowa                      | 001              | 201             | : }       | 200              | 75                                     | ; ;                                | 128     | 292              | 171                              | ! !              | 22.98            | 19.06                        | 1                  | 21.20                 |
| Kansas                    | 1                | 4               | :         | :                | 077                                    | -                                  | 077     | -                | *67                              | :                | :                | 2                            | 4                  |                       |
| Kentucky:<br>Eastern      | 584              | 399<br>55       | 379       | 14,868           | 4,153                                  | 1,478                              | 20,499  | 215              | 164                              | 139              | 12.70            | 34.75<br>45.01               | 47.46              | $\frac{18.13}{28.02}$ |
| Western                   | 070              | 99              | :   6     | 10101            | 4,100                                  | 1                                  | 200     | 200              | 001                              | 190              | 14.95            | 30 07                        | 47.46              | 91 90                 |
| Total Marviand            | 610              | 454<br>46       | 87.6<br>8 | 19,584           | 6,913<br>292                           | 1,478                              | 322     | 225<br>194       | 198                              | 190              | 22.84            | 28.48                        | 27.83              | 28.20                 |
| Missouri                  | 1                | 10              | 1         | : :              | 629                                    | 1                                  | 579     | · i              | 265                              | ;                | 1                | 30.39                        | 1                  | 30.39                 |
|                           |                  |                 |           |                  |                                        |                                    |         |                  |                                  |                  |                  |                              |                    |                       |
| Montana:<br>Bituminous    | 7                | 9               | ł         | æ                | 265                                    | ;                                  | 270     | 52               | 296                              | !                | 4.06             | 132.68                       | ł                  | 132.26                |
| Lignite                   | 1                | 7               |           |                  | 7.7                                    | 1                                  | 7.7.    | -                | 1.97                             | -                | 1                | 00.00                        | 1                  | 00.00                 |
| Total                     | -                | œ               |           | 5                | 287                                    | :                                  | 292     | 252              | 293                              | 1                | 4.06             | 127.50                       | !                  | 127.11                |
| New Mexico                |                  | က်              | 1         | 239              | 480                                    | ;                                  | 719     | 239              | 897                              | į                | 12.82            | 109.96                       | ;                  | 102 36                |
| North Dakota (lignite).   | 28               | 176             | 31        | 5,982            | 3,587                                  | 131                                | 9,700   | 228              | 216                              | $1\overline{14}$ | 11.89            | 36.88                        | $69.\overline{15}$ | 21.26                 |
| Oklahoma                  | 13               | 112             | 1 11      | 10 440           | 380                                    | 151                                | 380     | 244              | 290<br>227                       | 15               | 9 63             | 19.82                        | 32.15              | 19.82                 |
| Pennsylvania<br>Tennessee | 46               | 49              | ရှိ ဇာ    | 1,170            | 720                                    | 44                                 | 1,934   | 215              | 196                              | 168              | 14.46            | 29.99                        | 46.95              | 20.54                 |
| Texas (lignite)           | 1                | က               | ;         | 1                | 215                                    | }                                  | 215     | 10               | 321                              | !                | 100              | 100.75                       | 1                  |                       |
| Utah                      | 300              | 949             | 180       | 1,603            | 1.263                                  | 263                                | 12,226  | 239              | 224                              | 145              | 9.91             | $30.\overline{81}$           | 47.75              |                       |
| Weshington                | 3                |                 | 2         | 16               | 302                                    |                                    | 318     | 194              | 268                              | 1                | 5.26             | 40.19                        | {                  |                       |
| West Virginia             | 522              | 304             | 106       | 40,137           | 3,900                                  | 728                                | 44,765  | 226              | 162                              | 88               | 10.53            | 28.11                        | 34.39              | 11.83                 |
| w yoming                  | 0                | 12              |           | 100              | 040                                    |                                    | 1,0,0,  | 12.7             | 9                                | 100              | 27.01            | 06 96                        | 42 99              | 17 50                 |
| Grand total               | 1,737            | 2,309           | 869       | 111,083          | 34,203                                 | 2,835                              | 148,121 | 231              | 223                              | Izz              | 11.00            | 30.30                        | 40.00              | 11.90                 |

Table 13.--Number of mines, men working daily, days active, and output per man per day at bituminous coal and lignite mines in the United States, in 1973, by District

| 2,827 232<br>15,020 223                                                   |
|---------------------------------------------------------------------------|
| 2,203 50,555 221 1713<br>1,476 259 252<br>10,500 249 248<br>2,680 175 270 |
| 292<br>234<br>204                                                         |
| 108                                                                       |
|                                                                           |
| 241                                                                       |
| 239                                                                       |
| 292 52 298                                                                |
| 231                                                                       |

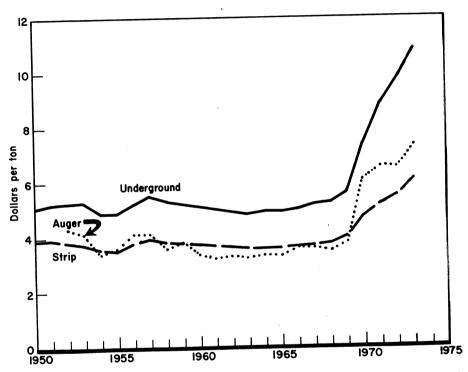



Figure 4.—Average value per ton f.o.b. mines, of bituminous coal and lignite produced in the United States, by type of mining.

Table 14.—Average value per ton, f.o.b. mines, of bituminous coal and lignite produced in the United States, by State

|                        |                  |              |                   | ,      | ,                |        |                   |         |
|------------------------|------------------|--------------|-------------------|--------|------------------|--------|-------------------|---------|
| State -                | 77               | 19           | 72                |        |                  | 19     | 73                |         |
|                        | Under-<br>ground | Strip        | Auger             | Total  | Under-<br>ground | Strip  | Auger             | Total   |
| Alabama                | \$14.20          | \$7.01       | \$6.18            | \$9.63 | 015 54           |        |                   |         |
| Alaska                 |                  | w            |                   | ₩      | \$15.54          | \$8.04 | \$6.69            | \$11.01 |
| Arizona                |                  | ŵ            |                   | W      |                  | W      |                   | W       |
| Arkansas               | 12.50            | 10.90        |                   |        | 10.00            | W      |                   | w       |
| Colorado               | 8.34             | 4.10         |                   | 10.93  | 13.89            | 13.36  |                   | 13.37   |
| IIIInois               | 6.83             | 5.49         |                   | 6.45   | 9.95             | 4.43   | 5.51              | 7.41    |
| indiana                | 6.62             | 5.51         |                   | 6.14   | 7.52             | 5.81   |                   | 6.71    |
| iowa                   | 4.80             | 4.91         |                   | 5.58   | 6.94             | 6.04   |                   | 6.06    |
| Kansas                 |                  |              |                   | 4.86   | 5.40             | 5.54   |                   | 5.46    |
|                        |                  | 6.39         |                   | 6.39   |                  | 7.35   |                   | 7.35    |
| Kentucky:              |                  |              |                   |        |                  |        |                   |         |
| Eastern                | 9.46             | 6.23         | C 00              |        |                  |        |                   |         |
| Western                | 5.97             | 4.81         | 6.20              | 8.01   | 10.63            | 7.05   | 7.22              | 9.03    |
|                        | 0.51             | 4.01         | 5.64              | 5.23   | 6.49             | 5.53   |                   | 5.93    |
| Total                  | 8.31             | 5.38         | 2.00              |        |                  |        |                   | 0.00    |
| Maryland               | 4.42             |              | 6.20              | 6.81   | 9.16             | 6.18   | 7.22              | 7.73    |
| Missouri               |                  | 5.56         | 5.71              | 5.46   | 7.00             | 7.65   | 7.78              | 7.63    |
|                        |                  | 5.20         |                   | 5.20   |                  | 5.37   |                   | 5.37    |
| Montana:               |                  |              |                   |        |                  | 0.0.   |                   | 0.37    |
| Rituminous             |                  |              |                   |        |                  |        |                   |         |
| Bituminous             | 9.74             | 2.00         |                   | 2.01   | 16.81            | 0.00   |                   |         |
| Lignite                |                  | 2.45         |                   | 2.45   |                  | 2.82   |                   | 2.83    |
| Total                  |                  |              |                   | 4.40   |                  | 2.60   |                   | 2.60    |
| Total                  | 9.74             | 2.01         |                   | 2.03   | 10.01            |        |                   |         |
| New Mexico             | 10.42            | 2.66         |                   | 3.61   | 16.81            | 2.82   |                   | 2.82    |
| North Dakota (lignite) |                  | 2.02         |                   |        | 10.00            | 2.94   |                   | 3.51    |
| JΠ10                   | 7.41             | 5.29         | $4.\overline{69}$ | 2.02   | - 77             | 2.07   |                   | 2.07    |
| Oklahoma               | 15.00            | 7.01         | 4.09              | 5.96   | 8.50             | 6.82   | 6.20              | 7.40    |
| Pennsylvania           | 10.39            | 6.86         | a ==              | 7.28   |                  | 7.69   |                   | 7.69    |
| ennessee               | 7.56             |              | 6.37              | 9.14   | 12.02            | 7.68   | 6.91              | 10.30   |
| exas (lignite)         | 1.00             | 6.83         | 7.70              | 7.23   | 8.61             | 7.69   | 8.52              | 8.13    |
| can                    | 8.93             | w            |                   | w      |                  | w      |                   | w       |
| irginia                | 11.56            | 8.00         |                   | 8.93   | 11.19            | ••     |                   | 11.19   |
| vasnington             |                  | 6.70         | 6.46              | 10.11  | 12.70            | 7.66   | $7.\overline{33}$ | 11.19   |
| Vest Virginia          | 16.40            | 6.51         |                   | 6.61   | 17.74            | 6.50   | 1.00              |         |
| Vyoming                | 10.90            | 7.54         | 7.95              | 10.31  | 12.24            | 8.58   | 0 00              | 6.56    |
|                        | 4.89             | 3.69         |                   | 3.74   | 7.07             | 4.01   | 8.66              | 11.61   |
| Total                  | ^                |              |                   |        |                  | 7.01   |                   | 4.09    |
| - ^ /61                | 9.70             | <b>5.4</b> 8 | 6.54              | 7.66   | 10.84            | 6.11   | 7.39              | 8.53    |

W Withheld to avoid disclosing individual company confidential data.

Table 15.—Average value per ton, f.o.b. mines, of bituminous coal and lignite produced, by district

| District -                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                     | 19                                                                                                                                | 72                                                          |                                                                                                                                         |                                                                                                                                             | 19                                                                                                                               | 973                                             |                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                 | Under-<br>ground                                                                                                                                    | Strip                                                                                                                             | Auger                                                       | Total                                                                                                                                   | Under-<br>ground                                                                                                                            | Strip                                                                                                                            | Auger                                           | Tota                                                                                                                                             |
| 1. Eastern Pennsylvania 2. Western Pennsylvania 3. Northern West Virginia 4. Ohio 5. Michigan 6. Panhandle 7. Southern Number 1 8. Southern Number 2 9. West Kentucky 0. Illinois 1. Indiana 2. Iowa 3. Southeastern 4. Arkansas-Oklahoma 5. Southwestern 6. Northern Colorado 7. Southwestern 6. Northern Colorado 7. Southern Colorado 8. New Mexico 9. Wyoming 1. Utah 1. North-South Dakota | \$9.60<br>10.79<br>8.55<br>7.41<br><br>7.51<br>14.87<br>10.19<br>5.97<br>6.83<br>6.62<br>4.80<br>13.40<br>14.79<br><br>5.17<br>9.46<br>4.89<br>8.93 | \$6.92<br>6.38<br>6.84<br>5.29<br>6.50<br>6.1.40<br>6.41<br>5.49<br>5.51<br>4.91<br>6.98<br>8.3.7<br>4.86<br>4.11<br>2.68<br>3.69 | \$6.66<br>5.34<br>6.36<br>4.69<br>11.88<br>6.47<br>5.64<br> | \$8.25<br>9.93<br>8.16<br>5.96<br>7.49<br>14.45<br>8.86<br>6.14<br>5.58<br>4.86<br>9.43<br>4.86<br>5.17<br>7.25<br>2.68<br>3.74<br>8.93 | \$11.05<br>12.53<br>9.60<br>8.50<br>8.88<br>16.12<br>11.56<br>6.49<br>7.52<br>6.94<br>5.40<br>15.07<br>13.89<br>W<br>10.54<br>7.07<br>11.19 | \$7.80<br>7.28<br>7.37<br>6.82<br>7.57<br>12.77<br>7.41<br>5.53<br>5.81<br>6.04<br>5.54<br>8.02<br>13.61<br>4.47<br>2.83<br>4.01 | \$6.74 7.63 7.85 6.20 7.57 11.01 7.35 6.75 5.51 | \$9.27<br>11.42<br>9.03<br>7.40<br>8.86<br>15.73<br>10.08<br>5.93<br>6.71<br>6.06<br>5.46<br>10.88<br>13.61<br>4.41<br>W<br>7.89<br>2.83<br>4.09 |
| . Montana                                                                                                                                                                                                                                                                                                                                                                                       | $9.\overline{74}$ $16.40$                                                                                                                           | 2.02<br>2.01<br>6.99                                                                                                              |                                                             | 2.02<br>2.03<br>7.07                                                                                                                    | 16.81<br>17.74                                                                                                                              | $2.\overline{07} \\ 2.82 \\ 7.03$                                                                                                |                                                 | 11.19<br>2.07<br>2.82                                                                                                                            |
| Total                                                                                                                                                                                                                                                                                                                                                                                           | 9.70                                                                                                                                                | 5.48                                                                                                                              | 6.54                                                        | 7.66                                                                                                                                    | 10.84                                                                                                                                       | 6.11                                                                                                                             | 7.39                                            | 7.08<br>8.53                                                                                                                                     |

Table 16.—Production and average value per ton, f.o.b. mines, of bituminous coal and lignite sold in open market and not sold in open market, by State

|                        |                           | Production                    |                 | Aver                      | age value per<br>f.o.b. mines | ton,         |
|------------------------|---------------------------|-------------------------------|-----------------|---------------------------|-------------------------------|--------------|
| State                  | Sold in<br>open<br>market | Not sold<br>in open<br>market | Total 1         | Sold in<br>open<br>market | Not sold<br>in open<br>market | Total        |
| ,                      | 15.006                    | 4.004                         | 19,230          | \$10.01                   | \$14.79                       | \$11.01<br>W |
| Alabama                | 15,226                    |                               | 694             | w                         |                               | w            |
| Alaska                 | 694                       |                               | 3,247           | w                         |                               |              |
| Arizona                | 3,247                     |                               | 434             | 13.37                     | ==                            | 13.37        |
| Arkansas               | 434                       | 1,279                         | 6,233           | 5.32                      | 15.50                         | 7.41         |
| Colorado               | 4,954                     |                               | 61.572          | 6.55                      | 10.50                         | 6.71         |
| Illinois               | 59,004                    | <b>2,56</b> 8                 | 25,253          | 6.06                      |                               | 6.06         |
| Indiana                | 25,253                    |                               | 601             | 5.46                      |                               | 5.46         |
| Iowa                   | 601                       |                               | 1,086           | 7.35                      |                               | 7.35         |
| Kansas                 | 1,086                     |                               | 1,080           |                           |                               |              |
| 77                     |                           |                               |                 | 8.44                      | 13.72                         | 9.03         |
| Kentucky:              | 65,588                    | 8,378                         | 73,966          | 5.93                      | 10.12                         | 5.93         |
| Eastern                | 53,679                    |                               | 53,679          | 5.95                      |                               |              |
| Western                |                           |                               |                 | 7.31                      | 13.72                         | 7.73         |
| Total                  | 119.267                   | 8,378                         | 127,645         |                           |                               | 7.63         |
|                        | 1.789                     |                               | 1,789           | 7.63                      |                               | 5.37         |
| Maryland               | 4,658                     |                               | 4,658           | 5.37                      |                               |              |
| Missouri               |                           |                               |                 |                           |                               |              |
| Montana:               |                           |                               | 10 411          | 2.83                      |                               | 2.83         |
| Bituminous             | 10,411                    | . 77                          | $10,411 \\ 314$ | 6.50                      | 2.58                          | 2.60         |
| Lignite                | 1                         | 313                           | 314             | 0.00                      |                               |              |
| Ligitice               |                           |                               | 10,725          | 2.83                      | 2.58                          | 2.82         |
| Total                  | 10,412                    | 313                           |                 | 2.91                      | 9.87                          | 3.51         |
| New Mexico             | 8,278                     | 792                           | 9,069           | 2.00                      | 2.26                          | 2.07         |
| North Dakota (lignite) | 5,003                     | 1,903                         | 6,906           | 7.30                      | 8.22                          | 7.40         |
|                        | 40,804                    | 4,979                         | 45,783          | 6.99                      | 15.04                         | 7.69         |
| OhioOklahoma           | 1,993                     | 190                           | 2,183           | 8.71                      | 13.88                         | 10.30        |
| Pennsylvania           | 52,929                    | 23,474                        | 76,403          | 8.13                      | 10.00                         | 8.13         |
| Pennsylvania           | 8,219                     |                               | 8,219           | 8.18                      | $\tilde{\mathbf{w}}$          | W            |
| Tennessee              |                           | 6,944                         | 6,944           | 6.50                      | 15.29                         | 11.19        |
| Texas (lignite)        | 2.563                     | 2,937                         | 5,500           |                           | 15.30                         | 11.12        |
| Utah                   | 33,003                    | 958                           | 33,961          | $11.00 \\ 14.10$          | 6.50                          | 6.56         |
| Virginia               | 24                        | 3,246                         | 3,270           |                           | 15.62                         | 11.61        |
| Washington             | 103,214                   | 12,234                        | 115,448         | 11.13                     | 3.40                          | 4.09         |
| West Virginia          | 11,277                    | 3,609                         | 14,886          | 4.31                      | 3.40                          |              |
| Wyoming                | 513,929                   | 77.808                        | 591,738         | 8.06                      | 11.65                         | 8.5          |

W Withheld to avoid disclosing individual company confidential data.

1 Data may not add to totals shown because of independent rounding.

Table 17.-Number and production of bituminous coal and lignite mines, in 1973, by State, size of output, and type of mining

|                                            |                    | tity                    | 7,618                                                                      | 19,230                          | 694<br>3,247             | es            | 434       | 3.361                 | 2,834    | 6,233     | 32,570                     | 61,572   | 789                     | 25,253 | 356        | 245<br>601              | 40,553                           | 9,742           | 22,342                  |
|--------------------------------------------|--------------------|-------------------------|----------------------------------------------------------------------------|---------------------------------|--------------------------|---------------|-----------|-----------------------|----------|-----------|----------------------------|----------|-------------------------|--------|------------|-------------------------|----------------------------------|-----------------|-------------------------|
| E                                          | Num                | of mines                | 21                                                                         | 105                             |                          | H 5           | 11        | 21                    | <b>%</b> | 30        | 238                        | 20       | ಕಾ ಆ                    | 88     | 67         | 01 27 4                 | 11                               |                 | 1                       |
| Less than 10,000                           | tons<br>ber Quan-  | - 1                     | 55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55 | 117                             |                          | 8 4           | 18        | 23                    | = 1      | 34        | Ι×                         | 18       | 191                     | 16     |            | 20 10 5-                | 1,008                            | 688             | 9                       |
| Less tha                                   | Number             | of mines                | 15                                                                         | 22                              | : :                      | 114           | 2         | 4                     | N        | 9         | 100                        | က        | 14                      | 4      | !*         | -                       | 204                              | 153             | 1                       |
| 10,000 to 50,000                           | 8                  | tity                    | 68<br>488                                                                  | 299                             | : :                      | 26            | 26        | 100                   | 38       | 138       | 51<br>29                   | 80       | 282                     | 282    | 18         | 188                     | 5,753<br>3,879                   | 4,284           | 59                      |
| 10,000 t                                   | Number             | or mines                | 17                                                                         | 21                              |                          | ļø            | 2         | 10                    |          | 9         | 8181                       | 4        | 11                      | 11     | ļ∝         | œ                       | 230<br>151                       | 180             | 1                       |
| 100,000                                    | Quan-              |                         | $\frac{91}{1,193}$                                                         | 1,367                           |                          | 121           | 121       | . !                   | ! !      | !         | 159<br>269                 | 428      | 174<br>118              | 292    | 122        | 22                      | 4,004                            | 1,999           | 245                     |
| 50,000 to 100,000                          | Number             |                         | 17                                                                         | 19                              |                          | 12            | 2         | 1 1                   |          | :         | 67.4                       | 9        | 01 01                   | 4      | 11         | - !                     | 58<br>64<br>64                   | 11              | တ                       |
| 200,000 to 500,000 100,000 to 200,000 tons | Quan-              | - 1                     | $2,3\overline{60}$                                                         | 2,360                           | 1                        | 269           | 269       | 896<br>415            | 1 910    | 1,610     | 1 1                        |          | 340                     | 340    | 107        | 107<br>140              | 5,600<br>3,999                   | 2,504<br>12,103 | 105                     |
| 100,000 t                                  | Numb<br>of min     |                         | 11                                                                         | 17                              | 1                        | 100           | 24        | 9 ၈                   | 10       | <i>a</i>  | 11                         |          | 100                     | 8      | 1 !        |                         | 40<br>30                         |                 | Ħ                       |
| to 500,000 tons                            | Quan-              | 97                      | 3,045                                                                      | 4,185                           | :                        | 1 1           | ;         | 1,063                 | 1.063    | 2001      | 1,937                      | 7,001    | 1,091                   | 1,091  | 249        | 249<br>213              | 10,375<br>7,326<br>267           | 17,968          | 1,244                   |
| 200,000 t                                  | Number<br>of mines |                         | 11 -                                                                       | 14                              |                          | 1 1           |           | <b>4</b> ¦            | 1 4      |           | 110                        |          | 14                      | •      | ٦ :        |                         | 34<br>1                          | 1 11            | 4                       |
| 14 4                                       | Quan-              | 6.294                   | 4,351                                                                      | 10,645<br>694<br>3,247          |                          | 1 1           | :         | $\frac{1,279}{2,408}$ | 3,687    |           | 31,937<br>26,749<br>58,686 |          | 614<br>22,618<br>23,232 |        | 1 1        | 725                     | 13,813<br>3,527<br>              | 17,340          | 20,713                  |
| 500,00<br>and                              | Number<br>of mines | 9                       | 9                                                                          | 2                               |                          | 1 1           |           | 63 eo                 | 1 2      |           | 18<br>18<br>36             | 11       | 12 12                   |        | 1 !        | ¦                       |                                  | 22 1            | 16 2                    |
| State                                      |                    | Alabama:<br>Underground | Auger                                                                      | Alaska: Strip<br>Arizona: Strip | Arkansas:<br>Underground | Strip Total 1 | Colorado: | Strip Auger           | Total 1  | Illinois: | Strip Total Total          | Indiana: | Strip Total 1           | Iowa:  | StripTotal | Kansas: Strip Kentucky: | Eastern: Underground Strip Auger | Total           | Western:<br>Underground |

See footnote at end of table.

| 55 31,337<br>81 53,679 | 610 62,895<br>454 55,008<br>379 9,742<br>1,443 127,645 | 2 66<br>46 1,643<br>8 79<br>56 1,789<br>10 4,658        | 1<br>8 10,724<br>9 10,725                    | 1 733<br>5 8,336<br>6 9,069<br>12 6,906                 | 28 16,225<br>176 28,527<br>31 1,031<br>235 45,783<br>11 2,183 | 134 46,207<br>775 29,829<br>55 366<br>964 76,403 | 46 3,636<br>64 4,236<br>9 348<br>119 8,219<br>3 6,944<br>16 5,500                                | 300 23,437<br>242 8,700<br>108 1,824                         |
|------------------------|--------------------------------------------------------|---------------------------------------------------------|----------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| 58                     | 1,014<br>615<br>688<br>2,317 1,                        | 5<br>76<br>45<br>126<br>8                               | 1<br>26<br>27                                | 10 mg!                                                  | 23<br>173<br>47<br>243<br>5                                   | 127<br>774<br>224<br>1,125                       | 41<br>50<br>8<br>99                                                                              | 111<br>241<br>40                                             |
| 11                     | 205<br>132<br>153<br>490                               | 11<br>15<br>7<br>23                                     | 114 2                                        | 10 04                                                   | 28<br>10<br>42<br>2                                           | 26<br>142<br>46<br>214                           | 8<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 23 77                                                        |
| 209                    | 5,782<br>4,088<br>4,284<br>14,154                      | 501<br>34<br>535<br>53                                  | 111                                          | 1 1 1 1                                                 | 98<br>1,610<br>279<br>1,987<br>58                             | 351<br>12,743<br>143<br>13,236                   | 589<br>593<br>211<br>1,394                                                                       | 4,460<br>4,670<br>1,581                                      |
| 8 6                    | 231<br>159<br>180<br>570                               | 20<br>21<br>22<br>22                                    | 1111                                         |                                                         | 23<br>23<br>23                                                | 15<br>459<br>9<br>483                            | 22<br>22<br>6<br>6<br>6<br>3                                                                     | 182<br>183<br>99<br>464                                      |
| 413                    | 4,249<br>4,796<br>1,999<br>11,044                      | 62<br>601<br><br>663<br>72                              | 1 1 1                                        | 1 1 1 1                                                 | 131<br>2,675<br>301<br>3,107<br>138                           | 930<br>7,405<br><br>8,335                        | 792<br>1,282<br>128<br>2,203                                                                     | 3,006<br>1,133<br>81                                         |
| 9 6                    | 61<br>70<br>27<br>158                                  |                                                         | 111                                          | 1   1 1                                                 | 288 4 44 2                                                    | 14<br>112<br><br>126                             | 111<br>18<br>31<br>31                                                                            | 1 15                                                         |
| 1,505                  | 5,705<br>5,504<br>2,504<br>13,713                      | 464                                                     | 1:                                           | 192<br>192<br>291                                       | 122<br>3,990<br>403<br>4,515<br>424                           | 1,864<br>6,340<br><br>8,204                      | 150<br>1,500<br>1,650                                                                            | 1,583<br>1,571<br>121<br>3,275                               |
| 11                     | 41<br>40<br>18<br>99                                   |                                                         | 1 1 1                                        | 1                                                       | 27<br>27<br>31<br>31                                          | 14<br>55<br><br>69                               | 111 112 113                                                                                      | 12 12 12 25                                                  |
| 1,403                  | 11,619<br>8,729<br>267<br>20,616                       | 498                                                     | 313                                          | 814<br>814<br>934                                       | 576<br>4,838<br><br>5,414                                     | 8,534<br>1,311<br><br>9,845                      | 832<br>810<br>1,642<br>2,698                                                                     | 8,677<br>1,085                                               |
| 4 8                    | 38<br>32<br>1                                          | 1111-                                                   | 1                                            | 1000                                                    | 15                                                            | 26<br>5<br>                                      | 84                                                                                               | 27 8 30                                                      |
| 27,748<br>48,462       | 34,526<br>31,276<br><br>65,802                         | 4,027                                                   | 10,385                                       | 733<br>7,325<br>8,058<br>5,665                          | 15,275<br>15,240<br><br>30,515<br>1,557                       | 34,401<br>1,256<br><br>35,657                    | 1,231<br><br>1,231<br>6,700<br>2,324                                                             | 5,599                                                        |
| 17                     | 34<br>21<br>                                           |                                                         | 100                                          | HL 24                                                   | 15<br>13<br>28<br>2                                           | 39                                               | -                                                                                                | 0                                                            |
| Strip                  | Total Kentucky: Underground Strip Auger Total 1        | Maryland: Underground Strip Auger Total Missouri: Strip | Montana:<br>Underground Strip<br>Strip Total | New Mexico: Underground Strip Total North Dakota: Strip | Ohio: Underground Strip Auger Total Oklahoma: Strip           | Pennsylvania: Underground Strip Auger Total 1    | Tennessee: Underground Strip Auger Total Texas: Strip Utah: Underground                          | Virginia:<br>Underground<br>Strip<br>Agri<br>Agri<br>Total 1 |

Table 17.-Number and production of bituminous coal and lignite mines, in 1973, by State, size of output, and type of mining-Continued (Thousand short tons)

| •                             | 500,000 tor<br>and over | 500,000 tons<br>and over | 200,000 to E<br>tons | 500,000<br>s  | 200,000 to 500,000 100,000 to 200,000 tons | 200,000<br>s  | 50,000 to 100,000<br>tons | 100,001<br>s  | 10,000 to 50,000<br>tons | 50,000<br>s   | Less than 10,000<br>tons | 10,000 | Total 1            | 11      |
|-------------------------------|-------------------------|--------------------------|----------------------|---------------|--------------------------------------------|---------------|---------------------------|---------------|--------------------------|---------------|--------------------------|--------|--------------------|---------|
| State                         | Number<br>of mines      | Quan-<br>tity            | Number<br>of mines   | Quan-<br>tity | Number<br>of mines                         | Quan-<br>tity | Number<br>of mines        | Quan-<br>tity | Number<br>of mines       | Quan-<br>tity | Number<br>of mines       | Quan-  | Number<br>of mines | Quan-   |
| Washington:<br>Underground    |                         | 3,246                    | 11                   | 11            | 11                                         | 11            | 11                        | ! !           | - 1                      | 16            |                          | 100    | 1 62               | 3.254   |
| Total 1                       | 1                       | 3,246                    | ì                    | 1             | 1                                          | !             |                           | 3             | 1                        | 16            | 1                        | 8      | 80                 | 3,270   |
| West Virginia:<br>Underground | 49                      | 48.701                   | 700                  | 26.117        | 77                                         | 11.532        | 72                        | 5.353         | 135                      | 3 398         | 104                      | 186    | F99                | 9K K16  |
| Strip                         | 1                       | 1                        | 21                   | 6,256         | 24                                         | 3,228         | 51                        | 3,754         | 156                      | 4,153         | 52                       | 313    | 304                | 17,704  |
| Auger                         | I.                      | 1                        | 1                    | 1             | 2                                          | 228           |                           | 463           | 99                       | 1,385         | 31                       | 152    | 106                | 2,228   |
| Total 1                       | 49                      | 48,701                   | 106                  | 32,373        | 103                                        | 14,988        | 130                       | 9,570         | 357                      | 8,865         | 187                      | 950    | 932                | 115,448 |
| Wyoming:<br>Underground       | 1                       | 1                        | 1                    | 315           | !                                          | 1             | 1                         | 96            | 1                        |               | 60                       | 1 7    | 14                 | 425     |
| Strip                         | 6                       | 13,997                   | 1                    | 445           | !                                          | !             | ł                         | ;             | T                        | 19            | -                        | -      | 12                 | 14,461  |
| Total 1                       | 6                       | 13,997                   | 2                    | 160           | 1                                          | ;             | 1                         | 96            | 1                        | 19            | 4                        | 16     | 17                 | 14,886  |
| United States:                | 178                     | 189 014                  | 100                  | 770 63        | 186                                        | 976 66        | 917                       | 15 040        | 709                      | 7 60 7 7      | L C G                    | 6      | 100                |         |
| Ctuir                         | 2 7                     | 107,314                  | 130                  | 447,70        | 100                                        | 24,040        | 777                       | 10,040        | # 00 o                   | 14,954        | 100                      | 1,873  | 1,737              | 299,353 |
| American                      | GAT                     | 161,400                  | 60T                  | 32,063        | 204                                        | 27,028        | 341                       | 23,609        | 1,099                    | 29,501        | 451                      | 2,476  | 2,309              | 276,645 |
| Wuger                         | - 1                     |                          | 1                    | 1.07          | 74                                         | 5,200         | 42                        | 3,056         | 9/.0                     | 4,955         | 255                      | 1,204  | 869                | 15,739  |
| Total 1                       | 280                     | 344,380                  | 308                  | 95,074        | 384                                        | 52,629        | 009                       | 41,707        | 2,079                    | 52,391        | 1,093                    | 5,553  | 4.744              | 591.738 |

<sup>1</sup> Data may not add to totals shown because of independent rounding.

Table 18.-Production, shipments, and value at bituminous coal and lignite mines, in 1973, by State and county (Thousand short tons)

6.57 W 6.71 6.84 8.12 5.45 5.45 11.79 W W W W 6.36 6.49 6.49 4.31 Average value 13.89 W W 11.01 W 13.37 per ton 4 159 174 174 21 818 8,607 270 1,528 5,899 434 Total 3 (e) 3,247 All other 2 9 € Mine-mouth generating 630 630 1111 plants 1 1 1 1 --879. ,915 ; Shipments 237 27 105 13 301 746 370 24 304 3,003 1 8 Truck  $\frac{148}{942}$ 1 100,82 1,161 805 6,458 2,830 1,867 4.853  $\frac{624}{263}$ 174 Rail or water 1 14,304 5791111 Quantity Auger Number of mines 1 1111  $\substack{3,1\overline{3}\overline{6}\\310}$ 2.595 2.834 Quan-tity 72 167 19 174 432 129 818 3,684 241 106 1,528 3,171 11,529 694 3.247 Production Number of mines Strip 2 230812211 10228 778 111 510 4,147 1,620 6,482 1,557 524 290 Quan-tity 3.361 1 က 7,618 2,729 Underground Number of mines 21 12 See footnotes at end of table. Montrose Pitkin Routt Delta Fremont Fremont Logan ------Sebastian -------Total ------Las Animas -------Alaska Arizona: Navajo Johnson ------Gunnison ------Marion .....Shelby ....Tuscaloosa ..... La Plata ....---Christian ...---State and county Franklin Total 3 Total 3 Jefferson Walker Winston Garfield Jackson Fayette Arkansas: Colorado: Alabama:

Table 18.-Production, shipments, and value at bituminous coal and lignite mines, in 1973, by State and county-Continued

|                      |                    |        |                    |            | anorth suort tons  | SHOLL CODE | •                  |           |                          |         |         |              |
|----------------------|--------------------|--------|--------------------|------------|--------------------|------------|--------------------|-----------|--------------------------|---------|---------|--------------|
| i                    |                    |        | Production         | ction      |                    |            |                    |           |                          |         |         |              |
| State and county     | Underground        | 밁      | Strip              | d          | Auger              | er         |                    |           | Shipments                |         |         | Average      |
|                      | Number<br>of mines | Quan-  | Number<br>of mines | Quan-      | Number<br>of mines | Quan-      | Rail or<br>water 1 | Truck     | Mine-mouth<br>generating | All     | Total 3 | value        |
| Illinois—Continued   |                    |        |                    |            | 200                | rity.      |                    |           | plants                   | orner * |         | ton 4        |
| Jackson<br>Leffonces | !                  | 1      | ¢.                 | 11         |                    |            |                    |           |                          |         |         |              |
|                      | eo                 | 6,626  | 1                  | 664        | ;                  | ŀ          | 92                 | Н         | i                        |         |         | į            |
| Kankakee             | !                  | ;      | -                  | 30         | : ;                | ł          | 7,117              | 163       | . 1                      | 6       | 7.289   | × 00         |
| Knox                 | !                  | ;      | н,                 | 414        | 1                  | !          | 75                 |           | ;                        | ł       | 10      | Δ.           |
| Macoupin             | ļ-                 | 9 605  | 7                  | 1,016      | ;                  | : :        | 955                | 924<br>61 | :                        | 1       | 414     | 9.05         |
| Mercer               |                    | 120    | -                  | ľ          | !                  | 1          | 2.686              | (3)       | ;                        | ľ       | 1,016   | A            |
| Poonis               | Н                  | 1.888  | 7                  | ٥          | 1                  | ;          | 9                  | 12        | 1                        | ລ       | 2,695   | A            |
| Parmy                | !                  | 1      |                    | 1 758      | ;                  | ;          | ;                  | 145       | 1.742                    | ;       | 18      | ×            |
| ١                    | 1                  | 1      |                    | 11,100     | !                  | ;          | 1,215              | 543       |                          | !       | 1,888   | ×            |
| St. Clair            | <b>7</b> 7         | 2,014  |                    | 2.833      | 1                  | 1          | 11,169             | 27        |                          | 191     | 11,758  | 6.76         |
| Saline               |                    | 2,354  |                    | 4.297      | l                  | ŀ          | 4,578              | 268       | ١;                       | 3       | 11,414  | 5.03<br>0.03 |
| Stark                | N                  | 1,391  | 4                  | 1,098      | !                  | ł          | 6,651              | 1         | :                        |         | 6,641   | 0.20         |
| Wabash               | ;-                 | 10     | 1                  | 379        | 1 1                | ŀ          | 2,322              | 118       | 44                       | 4       | 2,001   | 0.00         |
| Williamson           | ٦ ٥                | 8      | ľ                  | !          | : :                | ŀ          | 6/8                | 1;        | !                        | _<br>©  | 879     | 0.TO         |
|                      | ٥                  | 1,747  | 4                  | 1,799      | : <b>:</b>         | ;          | 2 944              | 17        | ;                        | 22      | 200     | ¥ B          |
|                      | 73                 | 32,570 | 32 2               | 29,002     |                    |            | **0,0              | 181       | -                        | 4       | 3.546   | - S          |
| Indiana :            |                    |        |                    |            | :                  | :          | 53,711             | 3,393     | 4,399                    | 70      | 61 579  | 00.1         |
| Tour to it.          | ;                  | i      | ď                  | 1 909      |                    |            |                    |           |                          |         | 210(20  | 0.71         |
| Gibson               | 1                  | ! ;    |                    | 1,430      | ł                  | ł          | 49                 | 1.236     |                          | d       | ,       |              |
| Greene               | -                  | 614    | •                  | 19         | 1                  | :          | ł                  | .68       | :                        | 0       | 1,293   | 6.31         |
| Parke                | ;                  | !      | 10                 | 1.059      | !                  | ł          | 614                | 16        | Ļ                        | ;       | 200     | ≱¦           |
| Pike                 | ľ                  | 1      | Н                  | 6          | ł                  | !          | 066                | 69        | : ;                      | :       | 080     | ×            |
| Spencer              | Н                  | 92     |                    | 5.697      | ;                  | !          | 1                  | 7         | 1 1                      | !       | 1,059   | 6.24         |
|                      | 1                  | ł      | တ                  | 542        | :                  | !          | 4,657              | 721       | 411                      | - (2)   | 700     | 8.20<br>120  |
| Vermillion           | 1                  | ŀ      |                    | 4,252      | 1 1                | ł          | 9 5 5 5 7          | 29        | ;                        | ;       | 542     | 10.0         |
|                      | -                  | 10     |                    | 3,044      | 1                  | 1 1        | 3,007              | 694       | ;                        | 81      | 4.252   | 9.10         |
| Warrick              | •                  | 70     | 1                  | 10         | ;                  | ! ;        | ***                | 18        | !                        | :       | 3,044   | 4.96         |
| Total 3              | er.                | 700    | ľ                  | 5,520      |                    | ;          | 7,743              | 756       | i                        | ŀ       | 82      | A            |
| Iowa:                |                    | 201    | 30 24              | 24,465     | -                  | ;          | 21,129             | 3.682     | 111                      | 17      | 8,520   | 5.99         |
| Lucas                | -                  | 107    |                    |            |                    |            |                    |           | 777                      | 31      | 25,253  | 90.9         |
| Wahaska              | ۱ :                | 5      | !*                 | 12         | ł                  | ;          | ;                  | 107       |                          |         |         |              |
| Monroe               | ;                  | 1 1    | † 4                | 621        | ł                  | i          | 26                 | 62        | ;                        | ı       | 107     | ×            |
| Wanelle              | 1                  | 249    | •                  | <b>*</b> 0 | ŀ                  | ;          | 59                 | ıc        | ;                        | ;       | 135     | 5.38         |
| Total 9              | :                  | ;      | ļ OI               | 46         | ŀ                  | ŀ          | 13                 | 249       | !                        | !       | 700     | 5.47         |
| TOTAL STREET         | 7                  | 356    | 10                 | 978        |                    | -          | 46                 | !         |                          | 1       | 249     | ≱;           |
| Kansas:              |                    |        |                    | 0#7        | -                  | !          | 161                | 439       |                          | :       | 040     | 6.10         |
| Cherokee             | i                  |        | ·c                 | 9          |                    |            |                    |           |                          | .       | TAG     | 5.46         |
| Digwiord             | 1                  | : ;    | 1 61               | 353        | ;                  | !          | 712                | 17        |                          | . •     | 00      |              |
| Total s              | :                  |        |                    | 900        | :                  |            | 297                | 22        | ! !                      | •       | 782     | ≱l           |
|                      |                    |        | ,                  | 000        | !                  | ;          | 1.009              | 17.4      |                          |         | 900     | >            |

| thitt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Renucky:<br>Eastern:  | 5                | #<br>#        | 4          | 9 641        | 9        | 141        | 767 8        | 234                      |          | ,        | 3.728   | 7.97      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------|---------------|------------|--------------|----------|------------|--------------|--------------------------|----------|----------|---------|-----------|
| 10   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       | 17 1             | 645           | 16<br>4    | 2,641<br>152 | 2 62     | 441        | 6,494<br>109 | *09                      | ; ;      | 1 1      | 169     | 6.60      |
| 100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100  | pitt                  | 1                | 1 1           | 36         | 4,585        | 31       | 1,769      | 6,227        | 127                      | 1        | ;        | 6,354   | 7.50      |
| 140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140   140  | Carter                | !'               | 1             | 40         | 12,          | ļ        | 100        | 30           | 41                       | 1        | 1        | 12      | 7.38      |
| 100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100  | Clay                  | ۵                | 145           | 9          | 175          | - ۵      | 208<br>807 | 177          | 90                       | {        | 1        | 177     | ****      |
| National Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Elliott               | 100              | 9 9 9 9       | ° E        | 1 910        | 7 6      | 102        | 4 014        | 390                      | :        | 1        | 4.404   | 7.24      |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Harlan                | 67               | 8.965         | 27         | 727          | 325      | 628        | 9,461        | 832                      | 1 1      | 26       | 10,319  | 11.94     |
| non         48         148         19         448         17         278         844         —         868           1         1         28         3078         19         418         19         448         —         868           1         1         28         647         17         204         678         248         —         867           1         1         20         650         19         214         26         248         —         867           1         1         20         650         16         616         16         248         —         244         4474           1         1         20         66         16         16         16         16         178         178         178         178         178         178         178         178         178         178         178         178         178         178         178         178         178         178         178         178         178         178         178         178         178         178         178         178         178         178         178         178         178         178         178         17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                     | ; ;              |               | -          | 01           | ! !      | ; ;        |              | 67                       | :        | 1        | 67      | ≱         |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       | 8                | 148           | 19         | 448          | 17       | 272        | 783          | 84                       | {        | 1        | 868     | 6.84      |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       | 48               | 3,078         | 17         | 491          | 23       | 403        | 3,758        | 214                      | i        | ;        | 3,972   | 9.07      |
| The control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the  |                       | က                | 16            | 28         | 647          | 17       | 204        | 619          | 248                      | ł        | ;        | 867     | 7.58      |
| The control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the  | Laurel                | ;                | ł             | 62         | 230          | <b>o</b> | 16         | 273          | 88                       | ;        | ł        | 306     | 89.7      |
| ret         14         1,400         16         19         13         2,143         2,66         2,400           ret         4         1,450         16         69         19         813         2,143         2,60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lawrence              | ļ                | 10            | .0         | 222          | 90       | 94         | 294          | 27.0                     | 1        | !        | 317     | 0.03<br>W |
| ret         6 9         4,774         4,774         4,774           ret         1,135         1,36         1,36         3,88         3,88         4,774         4,774           ret         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136         1,136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lee                   | ٦;               | 027           | 19         | 100          | 15       | 910        | 0 149        | 960                      | ł        | į        | 6 408   | 8 95      |
| The color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the |                       | 4 d              | 1,480         | 916        | 1 000        | A 0      | 616        | 7 286        | 007<br>008<br>008<br>008 | ł        | -        | 4.774   | 6.00      |
| The control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the  |                       | 60 7             | 9,102         | 90         | 196          | 9-       | 000        | 1,000        | 909                      | <b> </b> | ,        | 1,11    | 72.       |
| 12   2,674   15   3176   7   364   6,184   16   18   18   18   18   18   18   18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Menoffin              | *                | 100           | -:         | 675          | - 6      | 114        | 753          | 1 55                     | :        | !        | 789     | 7.40      |
| The color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the | Martin                | 12               | 2.674         | 115        | 3.176        |          | 304        | 6.148        | 9                        | : :      |          | 6.154   | 6.62      |
| y         28         2.54         15         28         1.035         6.832         1.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | ! !              |               | 2          | 127          | -        | 9          | 19           | 115                      | 1        | ;        | 133     | 4.69      |
| Ki         28         2.540         25         2.198         2.9         1,085         5,682         142          15/74         1           estie         2.540         2.5         2.198         2.9         1,085         1,075         176          1         10           estie          1         4         1         2         4         2         2.821         2.05         176          1         10           ey          1         4         1         2         4         2         2         4         2         2         4         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 1                | 1             | 10         | 151          | œ        | 72         | 121          | 102                      | 1        | ;        | 224     | 7.00      |
| ki         210         14,169         63         2,821         83         2,099         10,070         878         100         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,190         13,110         13,110         13,110         13,110         13,110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | 82               | 2,540         | 22         | 2,198        | 53       | 1,035      | 5,632        | 142                      | 1        | 16       | 5,774   | 8.58      |
| ce         2         00         1         614         1         3         20         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ٠.                    | $\tilde{z}_{10}$ | 14,169        | 63         | 2,821        | 83       | 2,099      | 18,075       | 87.8                     | ł        | 136      | 19,090  | 10.42     |
| The color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the | Pulaski<br>Pockesetle | N                | 99            | <b>⊣</b> – | 514<br>6     | !-       | ¦°         | ,<br>,       | 10                       | 1        | ł        | 10      | *         |
| ey         4         194         80         618         20         219         805         226         1,081         1,081           ey         1         684         40,653         389         28,671         879         9,742         69,071         4,729         1         17         73,966           figh         1         6         78         1         171         1         1         73,966           msn         1         6         7,80         1         171         1         1         73,966           risa         1         6         7,780         1         977         1         171         1         171           risa         1         6         7,780         13         4,266         1         2         6         7,036         1         1,312         1,312         1,312         1,312         1,312         1,312         1,312         1,413         1,414         8,080         1,313         1,413         1,414         1,414         1,312         1,414         1,414         1,414         1,414         1,414         1,414         1,414         1,414         1,414         1,414         1,414         1,414         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Warma                 | ;                | ;             | 10         | 47           | 16       | 86         | i<br>i       | 202                      | ł        | 1        | 20      | 2.00      |
| The color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the color of the | Whitley               | 4                | $1\tilde{94}$ | 28         | 618          | 202      | 219        | 802          | 226                      | <b>!</b> | <b>!</b> | 1,031   | 7.90      |
| The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The | Total 3               | 584              | 40,553        | 399        | 23,671       | 379      | 9,742      | 69,071       | 4,729                    | :        | 167      | 73,966  | 9.03      |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | cky:                  |                  |               |            |              |          |            |              |                          |          |          |         |           |
| ristian         1         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171         171 </td <td>estern :<br/>Butler</td> <td>-</td> <td>ď</td> <td>•</td> <td>84</td> <td></td> <td></td> <td>20</td> <td>14</td> <td></td> <td>20</td> <td>83</td> <td>5.96</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | estern :<br>Butler    | -                | ď             | •          | 84           |          |            | 20           | 14                       |          | 20       | 83      | 5.96      |
| vviess         -         1         977         -         850         -         627         -         977           monson         1         600         1         96         -         97         -         97           monson         1         600         1         96         -         96         -         96           pkins         -         9         5,780         13         2         -         10,046         -         600         -         600         -         600         -         600         -         600         -         600         -         600         -         600         -         600         -         600         -         600         -         600         -         600         -         600         -         600         -         600         -         600         -         600         -         1,483         -         1,483         -         1,483         -         -         24,827         -         -         1,483         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Christian             | ٠ :              | ۱ ۱           | · —        | 171          | ; ;      |            | 171          | ; ;                      | ; ;      | ; ;      | 171     | M         |
| nonson         1         96          93         600          3         96           pkins         1         600         13         4,266          9,783         268          10,046           pkins         1         6         5,223         15         1,312          1,237         7         6         0,046           pkins         1         1,6234         7         16,234         16         23         17         24,327           ion         2         2,192         1         5,302          1,450         31          1,483           ion         2         2,234         5         31          1,450         31          1,483           cotal Kentucky         610         62,396         454         65,008         379         9,742         112,565         6,094         8,707         190         127,645           n         1         2         6         30         1,426         99         1,004         273         1,277           cotal Kentucky         2         6         6         9,742         11,285         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Daviess               | !                | !             |            | 977          | 1        | }          | 350          | ţ                        | 627      | !        | 977     | ≱i        |
| pkins         9,783         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       | ŀ                | 10            |            | 96           | ;        | 1          | 93           | 18                       | ;        | m        | 96      | ≱≱        |
| Lean         Lean         Lean         1 237         75         1 237         75         1 237         75         1 237         75         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327         24,327 <td>Honking</td> <td>- 6</td> <td>2 200</td> <td>15</td> <td>4.266</td> <td>1</td> <td>1</td> <td>9.783</td> <td>263</td> <td>} }</td> <td>; ;</td> <td>10.046</td> <td>6.43<br/>V</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Honking               | - 6              | 2 200         | 15         | 4.266        | 1        | 1          | 9.783        | 263                      | } }      | ; ;      | 10.046  | 6.43<br>V |
| hienberg ————————————————————————————————————                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | McLean                | •                |               | ıc         | 1312         | !        | !          | 1.237        | 75                       | 1        | 1        | 1,312   | 5.77      |
| 10   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Muhlenberg            | ļ                | 5,223         | 15         | 19,104       | : 1      | : 1        | 16,234       | 14                       | 8,080    |          | 24,327  | 5.46      |
| below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ohio                  | က                | 2,192         | 12         | 5,302        | :        | 1          | 7,125        | 369                      | 1        | 1        | 7,493   | 5.83      |
| Octal 3     26     22,342     56     81,387      43,584     1,865     8,707     28     58,679       Octal Kentucky     610     62,895     464     55,008     379     9,742     112,555     6,094     8,707     190     127,645       13     10     231     280      1,754      1,277       13     10     231     280      1,277       13     10     273      1,277       13     1,643     8     79     1,285     563       14     1,643     8     79     1,285     563                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | i,                    | 9 -              | 7,093         | }-         | 155          | ł        | !          | 7,093        | 150                      | 1        | : :      | 7,093   | 6.52      |
| Otal Kentucky         Kentucky         610         62,896         454         55,008         379         9,742         112,655         6,094         8,707         190         127,645           13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | 26               | 22,342        | 22         | 31,337       | :        | 1          | 43,584       | 1,365                    | 8,707    | 23       | 53,679  | 5.93      |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Total Kentucky        | 610              | 62,895        | 454        | 55,008       | 879      | 9,742      | 112,655      | 6,094                    | 8,707    | 190      | 127,645 | 7.73      |
| s 2 66 30 1,142 5 69 1,004 273 1,277 s 2 66 46 1,643 8 79 1,235 553 1,789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | υλ                    | ;                | 1:            | 16         | 501          | 8        | 10         | . 231        | 280                      | :        |          | 511     | 6.75      |
| 2 66 46 1,643 8 79 1,235 553 1,789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       | 2                | 99            | 30         | 1,142        | 2        | 69         | 1,004        | 273                      | 1        | :        | 1,277   | 7.98      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Total 3               | 7                | 99            | 46         | 1,643        | 8        | 42         | 1,235        | 553                      | 1        |          | 1,789   | 7.63      |

See footnotes at end of table.

Table 18 .- Production, shipments, and value at bituminous coal and lignite mines, in 1973, by State and county-Continued (Thousand short tons)

\$5.13 6.83 6.83 8.30 W 2.60 28.7 2.07 7.69 7.00 5.91 8.46 5.37 2.83 ≱≽ **≱**≱≱ 3.51 925 469 7,676 4,658 10,725 Total 3 314 All other 2 106 1 : | 22 | | | 1 1 ⋈ 111 ł Mine-mouth generating plants 7,676 2.998 Shipments 3.307 Truck 20 1 1861 | 1 124 | 06 ¦≽≽ 22 23 က 3 Rail or water 1 120  $3\overline{13}$ 10.652 925 466 2,647 3,705 1.260 391 Quan-1 1 Number of mines 1 1 1 | 1 | 1 |4,101 108 108 452 8 Quan-192 469 7,676 906.9 4.658 313 10.724 8,336 314 Production Strip Number of mines 12 Quan-tity 733 Underground Number of mines Columbiana .....Coshocton Big Horn Musselshell Montana (lignite):
Powder River San Juan Total 3 Bowman ..... Rosebud -----Total 3 State and county Total Montana 3 North Dakota (lignite): Montana (bituminous): Putnam -Randolph Total 3 Richland New Mexico: Mercer Oliver . Stark . Ward .. Howard Henry

| 5.12<br>6.73<br>6.63<br>6.63<br>6.63<br>7.73<br>8 44<br>8 7.73<br>7.73<br>8 6.59<br>6.59<br>7.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13.93<br>W<br>W<br>W<br>6.67<br>7.69                 | 11.98<br>9.58<br>9.51<br>17.18<br>17.10<br>10.04<br>11.98<br>8.02<br>8.03<br>8.03<br>8.03<br>10.34<br>10.34<br>10.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 24<br>368<br>7,816<br>7,816<br>7,816<br>936<br>936<br>836<br>838<br>858<br>858<br>858<br>877<br>757<br>8,139<br>677<br>1,536<br>47<br>47<br>47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 763<br>341<br>54<br>1,020<br>2,183                   | 4,260<br>6,801<br>140<br>1,137<br>7,717<br>7,717<br>7,717<br>7,717<br>7,717<br>1,885<br>8,696<br>8,486<br>6,486<br>6,486<br>6,486<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,543<br>1,    |
| : : : : : : : : : : : : : : : : : : : :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (5)<br><br>1                                         | (e) (f) (g) (g) (g) (g) (g) (g) (g) (g) (g) (g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2,480<br>2,480<br>2,3480<br>2,3480<br>2,3480<br>2,3480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1::1:                                                | 2,886<br>187<br>187<br>187<br>4,122<br>17,246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 116<br>116<br>116<br>116<br>11,894<br>12,894<br>18,894<br>144<br>18,891<br>19,894<br>19,894<br>19,894<br>19,891<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19,894<br>19, | 100<br>2<br>2<br><br>20<br>122                       | 1,136<br>2,386<br>81<br>81<br>81<br>1,829<br>1,239<br>1,239<br>1,086<br>1,086<br>1,086<br>1,182<br>1,182<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,183<br>1,1 |
| 2,826<br>6,876<br>6,876<br>2,827<br>1194<br>1194<br>11,446<br>87<br>87<br>87<br>87<br>87<br>87<br>87<br>87<br>87<br>87<br>87<br>87<br>87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 663<br>339<br>54<br>4<br>1,001<br>2,060              | 3,126<br>59<br>67<br>68<br>686<br>686<br>686<br>686<br>686<br>1,220<br>220<br>220<br>220<br>1,689<br>8,614<br>8,614<br>1,300<br>1,300<br>1,300<br>1,148<br>1,148<br>1,148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2710<br>1118<br>1118<br>1119<br>119<br>119<br>119<br>119<br>119<br>119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ::::::                                               | 112   184   187   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   188   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11111                                                | 니큐    라니    4  600  4440    0    니니 [2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 18<br>2460<br>2460<br>22460<br>622<br>622<br>3,661<br>3,661<br>1757<br>1757<br>1757<br>1757<br>1757<br>1757<br>1757<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 763<br>341<br>54<br>4<br>1,020<br>2,183              | 618<br>12,586<br>12,586<br>14,650<br>1,650<br>1,650<br>1,408<br>1,408<br>1,408<br>1,408<br>1,408<br>1,239<br>1,239<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1,238<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1132<br>1132<br>1132<br>1132<br>1132<br>1132<br>1132<br>1132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 <del>4 - 1 - 1</del> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 112<br>122<br>141<br>141<br>160<br>171<br>172<br>173<br>173<br>173<br>174<br>175<br>175<br>175<br>175<br>175<br>175<br>175<br>175<br>175<br>175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 8,744<br>241<br>881<br>881<br>882<br>882<br>882<br>2,141<br>16,226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11111                                                | 3,631<br>128<br>128<br>128<br>6,054<br>469<br>771<br>771<br>1,329<br>1,329<br>1,329<br>1,329<br>1,329<br>1,348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4    700    614  -  -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                      | 141<br>1188<br>1188<br>1198<br>1194<br>1171<br>1171<br>1171<br>1171<br>1171<br>1171<br>1171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Gallia Guernsey Harrison Hocking Holmes Jackson Jefferson Jefferson Mayoning Meigs Monroe Morgan Morgan Muskingum Noble Perry Stark Tuscarswas Vinton Wayne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Oklahoma:                                            | Allegheny                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

See footnotes at end of table.

Table 18.-Production, shipments, and value at bituminous coal and lignite mines, in 1973, by State and county-Continued

| Average    | value            | per<br>ton 4         | \$7.65     | ≱\$      | 8.19          | ≱:                  | 8.14       | 9.70             | γ.το<br>Μ | 7 W            | 7.98<br>W            | 8.13    |                  | ≱≱       | W     | ¥       | 11 62           | ×               | 11.19 | 19.89                  | 11.37     | 8.54<br>11.27 | 9.08<br>10.35 | 9.18    | 11:16       | ≱₿            | 6.56  |
|------------|------------------|----------------------|------------|----------|---------------|---------------------|------------|------------------|-----------|----------------|----------------------|---------|------------------|----------|-------|---------|-----------------|-----------------|-------|------------------------|-----------|---------------|---------------|---------|-------------|---------------|-------|
|            |                  | Total a              | 1,874      | 50       | 2,081         | 22.5                | 25 2       | 403              | 66<br>68  | 289            | 406<br>218           | 8,219   |                  | ; ;      | : :   | 6,944   | 8 022           | 2,138           | 5,500 | 18 508                 | 4,796     | 2,485         | 1,651         | 10,382  | 100,001     | 3 254         | 8,270 |
|            | IIA              | other 2              | 1          | }        | 1 1           | :                   | 1 1        | ŀ                | 1 1       | ł              |                      |         |                  | 11       | : :   | :       | -               | ٠ ;             | 7     |                        | ! !       | : :           | ¦             | 20      |             | ŀ             |       |
| Shipments  | Mine-mouth       | generating<br>plants | ł          | 1        | 1 1           | !                   | 1 1        |                  | ;         | ;              |                      | 1       | i                | ≱ ¦      | Α     | A       |                 | 1 1             |       |                        | !!        | 11            | 1:            | -       |             | 3.246         | 3,246 |
| SO.        |                  | Truck                | 1,549      | 208      | <u>3</u><br>∞ | 22.6                | 25         | 70 OZ            | 66        | 20<br>22<br>23 | 14<br>24<br>24       | 2,618   |                  | ¦≱       | : ;   | M       | 513             | 703             | 1,492 | 595                    | 889       | 61            | 194           | 1 285   |             | 16            | 24    |
|            | Railor           | water 1              | 325        | 1 990    | 2,073         | 19                  | <b>3</b> ! | 398              | <b>:</b>  | 949            | 392<br>194           | 5,601   |                  | ; ;      | 1     | 1       | 2.503           | 1,436           | 4,001 | 12.907                 | 4,765     | 2,424         | 1,457         | 32,673  |             | } }           | :     |
|            |                  | Quan-<br>tity        | 177        | 177      | <b>#</b> :    | 1                   | 1 1        | 220              | ۰ ;       | 1              | : ; ;                | 348     |                  | ; ;      | 1     | 1       |                 | 11              | ;     | 946                    | 135       | 172           | 100 2         | 1 824   |             | 1 1           | 1     |
|            | Auger            | Number<br>of mines   | 4          | !°       | ۰ :           | 1                   | ; ;        |                  | 1 !       | 1              |                      | 6       |                  | : 1      | 1     |         | . !             | 1               | :     | 57                     | :::       | ာ             | 3             | 108     |             | 1 1           | 1     |
| tion       |                  | Quan-<br>tity        | 980        | 200      | 704           | 22                  | 28<br>28   | 450              | 2 li      | 695<br>695     | 161<br>218           | 4,236   | F                | ≱        | A     | 6,944   | :               | 1               |       | 1.828                  | 902       | 627           | 328           | 8.700   |             | 3.254         | 3,254 |
| Production | Strip            | Number<br>of mines   | 10         | 6        | 20            | 6                   | <b>1</b> ⊢ | 10               | - ¦       | 14             | 01 01                | 64      | ,                | <b></b>  | 1     | 89      | 1               | 1               | :     | 09                     | 325       | 121           | 120           | 242     |             | ļ             | 2     |
|            | puno.            | Quan-<br>tity        | 767        | 110      | 1,376         | 17                  | 53<br>53   | 381              | 96        | 305            | 245                  | 3,636   |                  | ! !      | ;     | ;       | 3.022           | 2,138           | 5,500 | 10.729                 | 3,758     | 1,686         | 1,320         | 23.437  |             | 16            | 16    |
|            | Underground      | Number<br>of mines   | 18         | 15       | - 4           | <u> </u> -          | 4 63       | 4                | ¦~        | ļ 60           | 9                    | 46      |                  |          | ;     | 1       | 6               | 9-              | 16    | }                      | 36        |               | -60           |         | 11          | - 1           | 1     |
|            | State and county |                      | Tennessee: | Gamphell | Claiborne     | Cumberland February | Grundy     | Marion<br>Morgan | Putnam    | Koane Scott    | Sequatchie Van Buren | Total 3 | Texas (lignite): | Harrison | Milan | Total 3 | Utah:<br>Carbon | Emery<br>Sevier |       | Virginia :<br>Buchanan | Dickenson | Russell       | Tazewell      | Total 3 | Washington: | King<br>Lewis | Total |

| 8.91<br>10.57<br>8.67<br>8.50             | 7.84                  | 1.46                   | 2.55<br>6.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.62<br>7.83             | 9.54<br>5.97 | 0.98<br>8.26          | 2.99<br>W        | 7.08              | 8.83         | ×   | 7.98<br>W    | 9.17               | 11.61        |                | ₩.21     | ≱≱     | ≱8                 | A         | 4.09       | 8.53                               |  |
|-------------------------------------------|-----------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------|-----------------------|------------------|-------------------|--------------|-----|--------------|--------------------|--------------|----------------|----------|--------|--------------------|-----------|------------|------------------------------------|--|
| 4,574<br>11,203<br>10,778<br>85<br>10,135 |                       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |              |                       |                  |                   |              |     | 1,258        | 296                | 115 448      | 110,11         | 1,623    | 2,899  | 2,947              | 108       | 14,886     | 591,738                            |  |
| 7<br>(5)                                  | ea ¦ ¦                |                        | ¦ <sup>63</sup> g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |              | (s)<br>6              | 14               | 122               | 2            | 1   | 1 1          | ;                  |              | 011            | 21       | ¦⊷     | :<br>( <u>@</u>    | -19       | 84         | 4,284                              |  |
| 520                                       | 1119                  | 1,444                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.770                    | 355          | 8                     | 8 1              | : :               | 1 1          | 1   | 1 1          | 1 1                | 100          | 6,188          | 214      | 2,897  | $2,5\overline{46}$ | 1 1       | 5,658      | 64,424                             |  |
| 494<br>408<br>132                         | 19<br>159<br>153      | 105                    | 222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20 g                     | ; ¦61        | 202<br>128<br>128     | 69               | 1,016             | 27.          | 81  | 107          | 23 or              | 238          | 3,776          | 10       | ا¦ ه   | -                  | (s)<br>26 | 46         | 57,268                             |  |
| 4,072<br>10,782<br>126<br>35              | 4,475<br>1,452<br>344 | 2,524<br>8,064         | 264<br>8,402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12,545<br>6,094<br>9,974 | 1.136        | 3,258                 | 11,209<br>5,980  | 701               | 5,984<br>863 | 200 | 1,213        | 578<br>273         | 10,163       | 105,174        | 1,378    | 6,842  | $4\overline{00}$   | 438<br>42 | 9,100      | 465,762                            |  |
| 132<br>310<br>22                          | 118                   | 63<br>541              | 40<br>225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 64                     | 18           | 187                   | 81<br>61         | ; ;               | စ္တမ         | 63  | 18           | 108                | 185          | 2,228          | 1        | 1 1    | 1 1                | 1         | :          | 15,739                             |  |
| 111                                       | -  -                  | -018                   | မြေ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ₹ ¦                      | 1            | , ire                 | 61 C             | 1 1               | 9 6          |     | 167          | · , <del>  -</del> | 6            | 106            | 1        | 1      | 1                  |           | 1          | 869                                |  |
| 3,116<br>1,992<br>120                     | 1,798                 | 729                    | 1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235<br>1,235 | 640<br>20                | 1 1          | 251<br>323            | 888<br>1.208     | 1988              | 843          | 200 | 180<br>888   | 200                | 399          | 17,704         | 1.623    | 6,530  |                    | 463       | 14 461     | 276,645                            |  |
| 3.5<br>2.2<br>7.2                         | 1202                  | 13                     | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17.                      | 1 1          | 165                   | . 6. 8.          | 198               | 4.5          | o 4 | 113          | - ¦¢               | ° 11         | 304            | 6        | 140    | 1   6              | 4 61      | 1 9        | 2,309                              |  |
| 1,326<br>8,901<br>636                     | 35<br>2,580<br>1,410  | 3,206                  | 0,097                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12,020<br>6,199          | 6,108        | 1,100<br>144<br>9,776 | 10,572           | 1,967             | 5,180        | 108 | 1 15         | 545<br>582         | 123<br>9.834 | 95,516         |          | 315    | 7                  |           | 103        | 299,353                            |  |
|                                           | 2 <mark>1</mark> 9    |                        | 8 - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          | -4-⊢         |                       | 19               |                   |              |     | ¦ ¦'         | - 67               | ∞ £          | 522            |          | ¦=     | ¦69                |           | 67         |                                    |  |
| nia:                                      | ClayFayette           | Greenbrier<br>Harrison | KanawhaLewis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Logan                    | Marshall     | Mercer Mineral        | Mingo Monongalia | NicholasOhio Ohio | Preston      | ą,  | TaylorTucker |                    | •            | WyomingTotal 3 | Wyoming: | Carbon | Converse           |           | Sweetwater | Total 3Total Total United States 3 |  |

in Arizona.

\*\*Includes coal used at mine for power and heat, made into beehive coke at mine, used by mine employees, used for all other purposes at mine and shipped by slury pipeline from Arizona.

\*\*Includes coal used at mine for power and heat, made into beehive coke at mine, a part of the producers at a producers at a verage of coal f.o.b. mine. Includes a value for coal a been sold commercially.

\*\*Includes at average prices that might have been received if such coal had been sold commercially.

\*\*Less than 500 tons. W Withheld to avoid disclosing individual company data.
Includes coal loaded at mine directly into railroad cars or river barges, hauled by trucks to railroad sidings, and hauled by trucks by slurry pipeline

Table 19.-Number of mines, men working daily, days active, and output per man per day at bituminous coal and lignite mines in the United States, in 1973, by State and county

| l a                   |                  | Total    | 23.95             | 11.75      | 24.96   | 18.64       | 21.98      | 12.88          | 32.79      | 33.60          | 22.60        | 15.79           | 67.90     |         | 13.24 $11.67$ | 11.35          | 12.35     | 1     | 11.42              | 24.13<br>6.61        | 13.66            | 4.31      | 19.66  | 22.47      | 12.49<br>64.86 | 15.68 | 17.46                  |         | 22.41    | 20.52    | 20.71<br>10.12<br>37.56 |
|-----------------------|------------------|----------|-------------------|------------|---------|-------------|------------|----------------|------------|----------------|--------------|-----------------|-----------|---------|---------------|----------------|-----------|-------|--------------------|----------------------|------------------|-----------|--------|------------|----------------|-------|------------------------|---------|----------|----------|-------------------------|
| 18 per ma             | day              | Auger    | 1                 |            | !       | 1           | 1 1        | 53.61          |            | ŀ              | 1 1          | 53.61           | 1 1       |         |               | 1              |           |       | 18                 | 43.62                | - 1              | ł         | 1 1    | 1          | 1 1            | 1     | 43.62                  |         | 1        |          | 111                     |
| verage tor            |                  | dirac    | 23.95             | 11.75      | 18.96   | # !<br>0.01 | 21.98      | 28.26<br>20.03 | 32.79      | 88.60<br>24.79 | 22.60        | 25.76<br>33.86  | 67.90     | 70 01   | 11.95         | 11.35<br>12.84 | 12.47     |       | 100                | 67:67                | ŀ                | !         | ! !    | 22.47      | 66.64          |       | 58.15                  |         | ; ;      | 17.96    | 19.06<br>37.56          |
| 4                     | Under-           | ground   | ;                 | !          | !       | 2.55        | 18         | 9.08           | 1          | 12.35          | 1            | 9.91            |           |         | 4.60          | 11             | 4.60      |       | 11.42              | 6.61                 | 13.66            | 5.72      | 19.56  | 19 56      | 8.75           | 10.68 | 10.93                  | 00 41   | 22.29    |          | 9.26                    |
| er of                 | Anger            |          | 1                 | !          | 1 1     |             | 196        | 007            | 1          | ; ;            | ł            | 360<br>1        | :         |         | ! !           | ! !            | :         |       | 186                | 3                    | 1                | ! !       | 1      | ;          |                | :  3  | 86                     |         | : :      | ! !      | 11                      |
| Average number of     | Strip            |          | 266               | 243<br>221 | 24      | 18          | 300<br>266 | 201            | 180<br>180 | 255            | 222          | 246<br>277      | 297       | 188     | 218           | 276            | 228       |       | 244                | 1                    | 1 1              | 1         | 18     | 282        | 314            | 1 000 | 707                    | 1       |          | 245      | 1 <b>53</b><br>103      |
| Aver                  | Under-           | ground   | ŀ                 | ! !        | ;       | 43          | 234        | 139            | 1          | 260            |              | 535             | :         | ŀ       | 109           | : :            | 109       |       | 2 <b>44</b><br>231 | 189                  | 7 <del>4</del> 7 | 261       | 243    | 260        | 231<br>234     | 951   | 107                    | 241     | 234      | 107      |                         |
| ıen                   | Total            |          | 130               | 139        | 2.      | 102         | 2,793      | 85             | 18<br>241  | 1,352          | 28           | 74              | ToT       | 29      | 69            | 49             | 197       | ;     | 76<br>48           | 1                    | 8∞               | 418       | 101    | 266        | 129<br>139     | 1.418 | 7,710                  | 892     | 311      | 479      | ,<br>20<br>20           |
| Average number of men | Auger            |          | 1                 |            | !       | !           | 9          | 1              | ! !        | 1              | 10           | ۱ ۹             | :         | 1       | 1 1           |                | :         |       | 16                 | 1                    |                  | ŀ         | ŀ      | 1 1        |                | L     |                        | ;       | ŀ        | 1 1      | 11                      |
| verage nu<br>worki    | Strip            |          | 130               | 139        | L       | 124         | 490        | 2 60           | 241        | 205            | 1 818        | 74              |           | 53      | 10            | 49             | 707       |       | 18                 | 1 1                  | !                | ŀ         | 191    | 528        | 124            | 186   |                        | !       | ŀ        | 479      | 20                      |
| Ą                     | Under-<br>ground |          | 11                | ł          | 15      | 3 !         | 2,297      | 77             | 1 15       | 890            | 8.274        |                 |           | 1,      | ۱ ۹           | 1              |           | 37    | 227                | 256                  | <b>∞</b>         | 418<br>61 | ; ;    | 238        | 139            | 1,223 |                        | 768     | 311      | 640      |                         |
| nines                 | Auger            |          | 11                | 1          | : :     |             | -          |                | 1          | 1 1            | -            | 11              |           | 1       | ! ;           | 1              |           |       | -                  |                      | ł                | 1 1       | 1      | !          | 1 1            | -     |                        | 1       | 1 1      | 1        | 11                      |
| Number of mines       | Strip            |          | <b>61</b> FG (    | <b>∍</b> – | ٠ ;     |             | 22 6       | <b>7</b> ←     | ∞ 8        | 3 00           | 88           |                 |           | C1 CC   | 010           | 10             |           |       | 87                 |                      | ł                |           |        | <b>⊣</b> ₹ | ' ;            | ∞     |                        | !       |          | eo       | 61                      |
| Nn                    | Under-<br>ground |          | 11                | 1 1        | 1       | 13          | 4. 6.      | ۱ ۱            | ١«         | ۱ ۱            | 21           | 1 1             |           | -       | 1             | -              |           | 87    | <b>∜</b> ⊢         | თ ,                  | ٦,               | 81        | 1      | 4          | 27             | 21    |                        | - 6     | ı eo     | 61       | ŀ                       |
| State and county      |                  | Alabama: | Blount<br>Cullman | . '        | Tayette | Jefferson   | Marion     | Tuscaloga      | Walker     | Winston        | Alaska Total | Arizona: Navajo | Arkansas: | Johnson | Sebastian     | Total          | Colorado: | Delta | Garfield           | Gunnison<br>La Plata | Las Animas       | Montac    | Pitkin | Routt      | WeldTotal      |       | Illinois:<br>Christian | Douglas | Franklin | Gallatin | e acason                |

| 18.34<br>35.02<br>16.64<br>16.64<br>25.44<br>16.52<br>25.53<br>25.03<br>25.06<br>25.06<br>25.03<br>17.90<br>17.90        | 27.99<br>17.02<br>18.35<br>20.81<br>3.94<br>3.94<br>3.94<br>3.83<br>18.37<br>44.00                   | 14.20<br>19.78<br>19.67<br>31.23<br>16.58 | 21.03<br>10.98<br>16.20 | 23.71<br>28.31<br>46.66<br>20.83<br>21.15<br>34.52<br>14.81<br>15.87             |
|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------|----------------------------------------------------------------------------------|
| :::::::::::::::::::::::::::::::::::::::                                                                                  |                                                                                                      | 11111                                     | 1 1 1                   | 53.02<br>54.90<br>15.85<br>15.85<br>15.85<br>16.48                               |
| 66.57<br>35.02<br>16.64<br>32.40<br>32.40<br>37.51<br>25.93<br>89.12<br>22.35<br>22.35<br>35.80                          | 27.99<br>17.02<br>37.93<br>20.81<br>3.94<br>3.94<br>33.41<br>73.26<br>44.00                          | 19.78<br>19.67<br>16.58<br>19.06          | 21.03<br>10.98<br>16.20 | 28.45<br>28.56<br>42.87<br>20.83<br>27.82<br>37.26<br>52.65                      |
| 17.10<br>25.42<br>18.15<br>22.31<br>18.28<br>16.16<br>16.50<br>14.24<br>18.27                                            | 18.11<br>25.05<br>18.37<br>18.37                                                                     | 14.20                                     | 1 1 1                   | 11.51<br>10.01<br>14.35                                                          |
| 1111111111111111                                                                                                         | 111111111111                                                                                         | 11111                                     | 1 1 1                   | 144<br>90<br>248<br>169<br>125<br>121<br>135                                     |
| 232<br>471<br>190<br>150<br>150<br>203<br>202<br>202<br>203<br>203<br>203<br>203<br>203<br>203<br>20                     | 275<br>275<br>275<br>286<br>284<br>284<br>286<br>286<br>265<br>270                                   | 200<br>121<br>198<br>198                  | 295<br>293<br>294       | 215<br>97<br>248<br>76<br>100<br>110<br>44                                       |
| 260<br>246<br>246<br>247<br>247<br>247                                                                                   | 168<br>168<br>204<br>224<br>175                                                                      | 300<br>285<br>292                         | : 1 :                   | 155<br>135<br>174<br>242                                                         |
| 1,533<br>8 8<br>8 8<br>165<br>165<br>431<br>21<br>336<br>334<br>750<br>750<br>725<br>1,011<br>526<br>84<br>822<br>10,500 | 168<br>111<br>207<br>237<br>237<br>237<br>617<br>101<br>1453<br>183<br>20<br>731<br>2,680            | 25<br>34<br>27<br>28<br>14<br>128         | 118<br>110<br>228       | 852<br>62<br>561<br>45<br>195<br>1,843<br>2,792                                  |
|                                                                                                                          |                                                                                                      |                                           | :    :                  | 58<br>130<br>25<br>1<br>172<br>85                                                |
| 43<br>885<br>1665<br>10<br>10<br>10<br>270<br>270<br>416<br>181<br>181<br>84<br>84<br>825<br>325<br>325                  | 168<br>11<br>11<br>2237<br>2859<br>101<br>463<br>133<br>133<br>731<br>2,440                          | 27<br>27<br>14<br>16                      | 118<br>110<br>228       | 432<br>55<br>431<br>455<br>63<br>32<br>300<br>125<br>3                           |
| 1,490<br>431<br>431<br>111<br>860<br>845<br>845<br>845<br>845<br>7,229                                                   | 202<br>118<br>118<br>119<br>20<br>20<br>20<br>240                                                    | 23   28   22                              | : : :                   | 362<br>                                                                          |
|                                                                                                                          | 111111111111                                                                                         | 11111                                     | 1 1 1                   | 10<br>28<br>1 28<br>1 33<br>1 35<br>1 35<br>1 35<br>1 35<br>1 35<br>1 35<br>1 35 |
| -                                                                                                                        | 8 41 188881116                                                                                       | 144   2   10                              | 9 9 4                   | 97 4 8 4 9 8 8 2 7 T L                                                           |
| 8                                                                                                                        | 11-11-11-1                                                                                           | -    -                                    | 1 1                     | 21<br>103<br>67                                                                  |
| Jefferson Johnson Kankakee Knox Macoupin Marcer Montgomery Perry Perry Randolph Saline Saline Stark Williamson Total     | Indiana:  Clay  Clay  Fountain  Gibson  Greene  Parke  Pike  Spencer  Sullivan  Vigo  Warrick  Total | Iowa:                                     | Kansas:<br>Cherokee     | Kentucky: Esstern: Badd Boyd Breathitt Carter Clarter Floyd Floyd Harlan Jackson |

Table 19.-Number of mines, men working daily, days active, and output per man per day at bituminous coal and lignite mines in the United States, in 1973, by State and county-Continued

| State and county               | Nun              | Number of mines | nines            | Av               | erage nu<br>worki | Average number of men<br>working daily | nen         | Avera            | Average number of days worked | er of | Av               | Average tons per man<br>per day | is per ma |       |
|--------------------------------|------------------|-----------------|------------------|------------------|-------------------|----------------------------------------|-------------|------------------|-------------------------------|-------|------------------|---------------------------------|-----------|-------|
|                                | Under-<br>ground | Strip           | Auger            | Under-<br>ground | Strip             | Auger                                  | Total       | Under-<br>ground | Strip                         | Auger | Under-<br>ground | Strip                           | Auger     | Total |
| Kentucky:<br>Eastern—Continued |                  |                 |                  |                  |                   |                                        |             |                  |                               |       |                  |                                 |           |       |
| Johnson                        | 65               | 19              | 17               | 8                | 101               | 9                                      | 000         | 27.0             | ;                             | ;     | ,                |                                 |           | ;     |
|                                | 48               | 11              | 23               | 1,086            | 828               | 61                                     | 1.229       | 195<br>195       | 111                           | 195   | 9.42             | 30.00                           | 35.00     | 22.60 |
| Knox                           | က                | <b>5</b> 8      | 17               | 12               | 237               | 89                                     | 320         | 253              | 110                           | 62    | 4.19             | 24.80                           | 48.45     | 25 43 |
| Lawrence                       | 1                | ы<br>50 го      | <b>o</b> c       |                  | 112               | 52                                     | 137         | ł                | 23                            | 89    | 1                | 29.31                           | 45.09     | 32.10 |
| Lee                            | ¦=               | • ¦             | ۱ ۰              | 191              | 0 i               | 0 1                                    | - 44<br>- 6 | 234              | 98                            | 178   | 16               | 87.87                           | 53.31     | 32.48 |
| Leslie                         | 14               | 16              | 19               | 313              | 111               | 19                                     | 484         | 251              | 150                           | 129   | 18.84            | 36.60                           | 40.49     | 23.34 |
| McCreary                       | 59               | 89 88<br>80 88  | 89 -             | 1,540            | 332               | 113                                    | 1,985       | 215              | 159                           | 149   | 9.46             | 19.00                           | 38.03     | 11.92 |
|                                | ۱ ۱              | ï               | 1 E-             | 107              | 123               | o 45                                   | 157         | 77.77            | 727                           | 27 6  | 13.43            | 20.85                           | 22.23     | 14.15 |
| Martin                         | 12               | 12              | -                | 764              | 345               | 98                                     | 1,145       | 256              | 167                           | 182   | 13.67            | 52.02                           | 427.54    | 31.77 |
| Oweley                         | ŀ                | 64 r            | <del>, ,</del> , | ;                | 19                | 87                                     | 21          | 1                | 233                           | 200   | ; ;              | 28.75                           | 15.41     | 27.65 |
| Perry                          | 182              | e 75            | . o              | 077              | 944<br>070        | 18                                     | 202         | 15               | 132                           | 132   | 15               | 26.19                           | 30.10     | 27.33 |
| Pike                           | 210              | 8               | 8                | 5.147            | 300               | 374                                    | 5.920       | 207              | 157                           | 120   | 19.90            | 27.79                           | 46.39     | 16.85 |
| Pulaski                        | N                |                 | 11               | 87               | 42                | 1                                      | 79          | 192              | 240                           | į     | 9.34             | 31.17                           | 40.40     | 22.14 |
| Wayne                          | !                | <b>⊣</b> 6      | <b>⊣</b> c       | ł                | ∢ 0               | eo -                                   | ۲,          | !                | 77                            | 12    | 1                | 20.74                           | 14.17     | 17.97 |
| Whitley                        | <b>1</b> 4.      | 30              | <b>7</b> 2       | 16               | 190               | 43                                     | 323         | 250              | 145                           | 145   | 8 63             | 53.88                           | 40.35     | 48.47 |
| Total                          | 584              | 399             | 379              | 14,868           | 4,153             | 1,478                                  | 20,499      | 215              | 164                           | 139   | 19.70            | 84 75                           | 47.46     | 18 19 |
| Kentucky:                      |                  |                 |                  |                  |                   |                                        |             |                  |                               |       |                  |                                 |           | 10.1  |
| Western:                       |                  |                 |                  |                  |                   |                                        |             |                  |                               |       |                  |                                 |           |       |
| Butler<br>Christian            | -                | 9-              | 1                | 19               | 8                 | ;                                      | 20          | 80               | 88                            | ł     | 3.85             | 28.44                           | !         | 20.65 |
| Daviess                        | 1 1              | -               | 1                | <b>¦</b>         | 76                | 1                                      | 0.0         | 1                | 240                           | ł     | 1                | 35.66                           | ;         | 35.66 |
| Edmonson                       | 1                | -               | 1                | 1 1              | 202               | 1 1                                    | 20          | 1 1              | 240                           | 1     | 1                | 19 97                           | 1         | 10 07 |
| Honking                        |                  | 10              | ŀ                | 92               | 100               | 1                                      | 36          | 284              | 1                             | 1     | 22.25            | 1                               | 1 1       | 22.25 |
| McLean                         | ۱ -              | 3 10            | 1 1              | 1,00,1           | 151               | ł                                      | 1,740       | 243              | 210                           | }     | 17.60            | 52.20                           | 1         | 24.50 |
| Muhlenberg                     | 10               | 15              | 1                | 1,044            | 1,539             | 1 1                                    | 2,583       | 263              | 267                           | ! !   | 19.02            | 46.50                           | ł         | 35.49 |
| Union                          | <b>70</b> 4      | 12              | !                | 420              | 202               | ł                                      | 922         | 269              | 267                           | 1     | 19.43            | 39.59                           | 1 1       | 30.37 |
| Webster                        | -                | ¦               | 1 1              | 1,612            | 14                | 1 1                                    | 1,612       | 263<br>293       | 166                           | ;     | 16.73<br>28.23   | 20 66                           | ł         | 16.73 |
| Total                          | 26               | 55              | 1                | 4,716            | 2,760             | !                                      | 7,476       | 259              | 252                           | :  :  | 18.32            | 45.01                           |           | 28 02 |
| Total Kentucky                 | 610              | 454             | 879              | 19,584           | 6,913             | 1,478                                  | 27,975      | 225              | 199                           | 139   | 14.25            | 39.94                           | 47.46     | 91 99 |
| Maryland:<br>Allegany          | 1                | 16              | 89               | 1                | 85                | 9                                      | 101         |                  | 203                           | 95    |                  | 00 96                           | 18.90     | 97.79 |
| Garrett                        | 27               | 30              | 20               | 12               | 197               | 6                                      | 221         | 199              | 195                           | 253   | 22.84            | 29.73                           | 30.24     | 29.30 |
| T0t81                          | 7                | 46              | ×                | 15               | 292               | 15                                     | 322         | 194              | 198                           | 190   |                  | 28.48                           | 27.83     | 28.20 |

| 89.98<br>28.07<br>28.47<br>17.48<br>8.72<br>8.72<br>8.22<br>30.39      | 153.99<br>34.18<br>122.20<br>132.26                      | 9.32<br>56.85<br>55.55<br>127.11               | 14.83<br>74.25<br>65.60<br>48.84      | 7.50<br>38.49<br>52.37<br>116.72<br>115.08<br>169.76<br>44.43<br>82.36<br>31.32<br>102.36                              | 21.16<br>22.30<br>19.85<br>21.74<br>19.03<br>39.83<br>31.95<br>32.03<br>82.03<br>897                            |
|------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| 1111111                                                                |                                                          |                                                | 1 1 1                                 |                                                                                                                        | 112.53<br>35.03<br>39.28<br>39.13<br>60.00<br>60.40<br>51.82<br>78.74<br>113.65                                 |
| 39.98<br>38.07<br>28.47<br>17.43<br>23.00<br>8.72<br>49.98<br>32.27    | 153.99<br>49.85<br>122.20<br>132.68                      | 9.32<br>56.85<br>55.55<br>127.50               | 36.87<br>74.25<br>65.60<br>64.86      | 7.50<br>38.49<br>52.37<br>16.72<br>115.08<br>44.43<br>82.36<br>31.32<br>102.36                                         | 38.<br>21.68<br>21.68<br>31.07<br>10.87<br>10.87<br>10.88<br>32.44<br>42.90<br>86.83<br>86.83<br>86.83<br>86.83 |
| 11111111                                                               | 4.06                                                     | 4.06                                           | 12.82                                 |                                                                                                                        | 13.30<br>13.24<br>12.82<br>12.82<br>9.47<br>11.67                                                               |
| 11111111                                                               | 1 : 1 1                                                  |                                                |                                       |                                                                                                                        | 76<br>183<br>101<br>230<br>50<br>50<br>50<br>132<br>132<br>66<br>77                                             |
| 300<br>344<br>344<br>282<br>219<br>199<br>285<br>237<br>215<br>265     | 365<br>56<br>280<br>296                                  | 155<br>262<br>257<br>298                       | 248<br>210<br>273<br>268              | 164<br>253<br>271<br>271<br>150<br>263<br>202<br>202<br>202<br>202<br>203<br>203<br>203<br>203<br>203<br>20            | 279<br>279<br>284<br>284<br>198<br>181<br>284<br>284<br>284<br>288<br>288                                       |
| 11111111                                                               | 52                                                       | 25                                             | 239                                   |                                                                                                                        | 221<br>176<br>265<br>1178<br>1153<br>1153                                                                       |
| 50<br>74<br>215<br>215<br>157<br>29<br>43<br>6<br>6                    | 74<br>14<br>182<br>270                                   | 21<br>22<br>292                                | 260<br>30<br>429<br>719               | 119<br>84<br>85<br>139<br>12<br>12<br>21<br>22<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 3,299<br>42<br>190<br>466<br>2,029<br>42<br>42<br>144<br>897                                                    |
|                                                                        |                                                          |                                                | 1 1 1                                 | 1111111                                                                                                                | 88888   8   22   18                                                                                             |
| 50<br>74<br>74<br>215<br>157<br>29<br>48<br>6<br>6<br>6<br>79          | 74<br>9<br>182<br>265                                    | 21<br>22<br>287                                | 21<br>30<br>429<br>480                | 119<br>34<br>34<br>139<br>129<br>21<br>21<br>21<br>265                                                                 | 836<br>230<br>230<br>230<br>310<br>422<br>422<br>10<br>10                                                       |
| 1111111                                                                | מן                                                       | ام ا ا ا                                       | 239                                   |                                                                                                                        | 2,427<br>14<br>228<br><br>1,711<br><br>58<br>887                                                                |
|                                                                        |                                                          | : : : : :                                      |                                       |                                                                                                                        | ו היים ויים מיים                                                                                                |
| 10 211112                                                              | 1881                                                     | 2 2                                            | 100                                   | 88                                                                                                                     | 84420881102241                                                                                                  |
|                                                                        |                                                          | 1 1 1                                          | - !                                   |                                                                                                                        | r   60 m     4     10 m                                                                                         |
| Missouri: Barton Bates Bates Henry Howard Mason Putnam Randolph Vernon | Montana (pituminous): Big Horn Musselshell Rosebud Total | Montana (lignite): Powder River Richland Total | Colfax Colfax McKinley San Juan Total | Adema (lighte): Adema Bowman Burke Grant Mercer Oliver Stark Ward Williams                                             | Ohio: Belmont Carroll Columbians Coshocton Gallis Guernecy Harrison Hocking Jackson Jackson Lawrence            |

Table 19.-Number of mines, men working daily, days active, and output per man per day at bituminous coal and lignite mines in the United States, in 1973, by State and county-Continued

|                    | Nun              | Number of mines | nines    | Av               | erage nu<br>worki | Average number of men<br>working daily | ien         | Avers            | Average number of days worked | er of      | Av               | Average tons per man<br>per day | s per mar |                |
|--------------------|------------------|-----------------|----------|------------------|-------------------|----------------------------------------|-------------|------------------|-------------------------------|------------|------------------|---------------------------------|-----------|----------------|
| State and county   | Under-<br>ground | Strip           | Auger    | Under-<br>ground | Strip             | - Auger                                | Total       | Under-<br>ground | Strip                         | Auger      | Under-<br>ground | Strip                           | Auger     | Total          |
| Ohio-Continued     |                  | •               |          |                  | ;                 |                                        |             |                  |                               |            |                  |                                 |           |                |
| Meigs              | 188              | ٥               | 1        | 202              | 62                | !                                      | 207<br>207  | 18               | 220                           | ;          | 9                | 29.20                           | ł         | 29.20          |
| Monroe             | 1 ==             | 1               | 1        | 482              | 1 1               | 1 1                                    | 482         | 212              | ! !                           | <b>!</b> ! | 8.63             | 1 1                             | 1 1       | 8.63           |
| Morgan             | 17               | <b>⊶</b> ∞      | loa      | 121              | 56<br>414         | 15                                     | 56<br>442   | 167              | 239<br>100                    | 150        | 17.50            | 56.60<br>72.70                  | 40 56     | 56.60          |
|                    | !-               | 64 F.           | 1        | 100              | 81                | 1                                      | 81          | 100              | 131                           | 1          | 1=               | 63.85                           | 1         | 63.85          |
| Stark              | ۱ ۱              | -               | 1 1      | 8 1              | 117               |                                        | 117         | 2                | 158                           |            | 1 1              | 17.90                           | 1 1       | 17.90          |
| Tuscarawas         | :                | 19              | ಣ        | 1                | 308               | 9                                      | 31 <b>4</b> | ŀ                | 248<br>927                    | 192        | ;                | 19.21                           | 58.70     | 19.79          |
| Wayne              |                  |                 | 1 1      | 11               | 4                 | 1                                      | 4           | <b>!</b>         | 216                           | 1 1        | 1 1              | 57.98                           | 1 1       | 57.98          |
| Total              | 28               | 176             | 31       | 5,982            | 3,587             | 131                                    | 9,700       | 228              | 216                           | 114        | 11.89            | 36.88                           | 69.15     | 21.26          |
| Oklahoma:<br>Craig | :                | 61              | 1        | ;                | 97                |                                        | 97          |                  | 280                           |            | 1                | 28.09                           |           | 28.09          |
| Haskell            | ;                | ₹,              | 1        | 1                | 107               | 1                                      | 107         | 1                | 293                           | 1 1        | ! !              | 10.89                           |           | 10.89          |
| Muskogee Nowete    | ŀ                |                 | i        | 1                | 56                | 1                                      | 56          | +                | 251                           | ł          | ŀ                | 82.5                            | }         | 8.28           |
| Rogers             |                  | ∞               | 1 1      | 1 1              | 136               | 1 1                                    | 136         | 1 1              | 330                           | 1 1        | 1 1              | 19.02<br>22.74                  | 1         | 19.02<br>22.74 |
| Total              | 1                | 11              | ł        | ŀ                | 380               | 1                                      | 380         |                  | 290                           | :          | 1                | 19.82                           |           | 19.82          |
| Pennsylvania:      |                  |                 |          |                  |                   |                                        |             |                  |                               |            |                  |                                 |           |                |
| Allegheny          | 2                | 13              | ۳;       | 1,389            | 103               | 84                                     | 1,494       | 239              | 243                           | 156        | 10.94            | 24.70                           | 34.78     | 11.93          |
| Beaver             | T -              | <b>∵</b> °      | 4        | 1,305            | 441<br>99         | 45                                     | 1,791       | 23.7             | 166<br>21                     | 63         | 13.38            | 35.33                           | 27.31     | 17.65          |
| ·                  | ۱ ۱              | 1-              | 1 1      | <b>?</b> !       | 101               | 1 1                                    | :2          | ) I              | 245                           |            | 1 1              | 23.42                           | ! !       | 23.42          |
| Butler             | တ္               | 35              | 2,       | 96               | 283               | 32,                                    | 411         | 225              | 202                           | 74         | 10.42            | 17.00                           | 41.40     | 17.39          |
| Centre             | ς-<br>-          | 12              | <b>⊣</b> | 3,527            | 354               | ۵                                      | 3,886       | 255<br>257       | 022<br>026                    | 62         | 10.01            | 21.20                           | 34.77     | 7.89           |
| Clarion            | ۱ ۱              | 38              | : :      | 101              | 748               | !                                      | 748         | 177              | 211                           | [ ]        | 10.01            | 29.10                           | !         | 29.10          |
| Clearfield         | ro               | 141             | 4        | 259              | 1,092             | 12                                     | 1,363       | 237              | 265                           | 92         | 11.61            | 19.70                           | 22.42     | 18.30          |
| Elk                | 1                | - 11            | 00       | 1                | 181               | 12                                     | 187         | 1                | 316                           | 12         | 1                | 16.50                           | 100       | 16.50          |
|                    | ļ∞               | 28              | 0        | 604              | 175               | 120                                    | 784         | 248              | 230                           | 383        | 5.15             | 34.98                           | 37.66     | 11.49          |
| Greene             | 16               | 18              | ľ        | 3,468            | 62                | 1                                      | 3,530       | 245              | 120                           |            | 9.69             | 62.87                           | ; ;       | 10.15          |
| Indiana            | 4, 7             | 4 1             | 4 -      | 3,156            | 406               | 200                                    | 3,582       | 232              | 526                           | 88         | 88.6             | 19.00                           | 24.25     | 10.91          |
| Lawrence           | * !              | 16              | 4 70     | 08               | 234<br>115        | <b>.</b>                               | 353<br>122  | 7.7.7            | 228<br>273                    | 2 E        | 8.50             | 21.69                           | 34.15     | 16.67          |
| ng .               | 1                | 60              | ·        |                  | 18                | • !                                    | 181         | 1 1              | 265                           | ; ;        | ! !              | 27.74                           | 10.14     | 27.74          |
| Mercer Somerest    | 141              | ا<br>ا          | 14       | 10               | 35                | 10                                     | 32          | 100              | 263                           | 16         | 15               | 25.92                           | 15        | 25.92          |
| Tioga              | ; ;              | 9 63            | •        | 9 1              | 97                | - ;                                    | 1,061       | 07 1             | 744<br>768                    | 8 1        | 9.9I             | 21.33                           | 42.07     | 21.33          |
| Venango            | 1:               | 228             | ;        | 18               | 69                | °                                      | 69          | į                | 220                           | 1, 18      | ;<br>;           | 29.02                           | 1 13      | 29.02          |
| wasnington         | 41               | Š               | 7        | 4,093            | 797               | ×                                      | 4,378       | 7.7              | 19.                           | 63         | 10.74            | 32.00                           | 26.28     | 11.45          |

| 12.09          | 19.42<br>21.19<br>21.19<br>27.08<br>115.48<br>116.92<br>21.10<br>20.21<br>20.22<br>20.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 173.20<br>37.15<br>56.77<br>100.75   | 12.57<br>15.93<br>41.45<br>14.36 | 10.96<br>11.72<br>15.81<br>12.19<br>7.37<br>10.92<br>16.87  | 5.26<br>40.19<br>38.90 | 21.95<br>12.19<br>13.56<br>14.25<br>12.77<br>11.83        |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------|-------------------------------------------------------------|------------------------|-----------------------------------------------------------|
|                | 46.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      | 1 1 1 1                          | 51.67<br>33.80<br>26.62<br>63.96<br>27.73<br>49.32          | 1 1 1                  | 32.30<br>45.00<br>54.38<br>39.33<br>23.08                 |
|                | 19.44<br>19.25<br>27.68<br>30.79<br>24.02<br>24.03<br>39.46<br>22.27<br>22.28<br>30.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 173.20<br>37.15<br>56.77<br>100.75   | 1 1 1                            | 24.82<br>29.99<br>24.80<br>30.00<br>30.00<br>37.57<br>34.27 | 40.19                  | 34.66<br>35.35<br>25.00<br>40.00<br>7.08<br>29.90         |
| 9.41           | 20.02<br>12.30<br>14.52<br>6.95<br>6.95<br>15.94<br>15.05<br>14.48<br>8.59<br>8.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 1 1                                | 12.57<br>15.93<br>41.45<br>14.36 | 9.41<br>10.02<br>13.70<br>9.35<br>6.14<br>9.27<br>11.00     | 5.26                   | 11.59<br>10.40<br>12.19<br>14.25<br>8.48<br>13.08<br>6.83 |
| 78             | 206<br>205<br>105<br>111<br>168<br>168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1111                                 | 1111                             | 149<br>104<br>157<br>126<br>52<br>169<br>145                | 1 1 1                  | 97<br>73<br>133<br>100<br>55                              |
| 173            | 232<br>206<br>206<br>208<br>208<br>185<br>251<br>105<br>105<br>165<br>258<br>258<br>188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 295<br>365<br>335<br>321             | 1 1 1                            | 208<br>218<br>193<br>211<br>30<br>194<br>242<br>224         | 268                    | 198<br>125<br>140<br>163<br>256<br>157                    |
| 192<br>247     | 182<br>260<br>284<br>284<br>165<br>212<br>212<br>199<br>250<br>250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1111                                 | 235<br>244<br>273<br>239         | 217<br>224<br>212<br>237<br>138<br>218<br>225               | 194                    | 243<br>259<br>236<br>45<br>235<br>250<br>178              |
| 828<br>5,873   | 323<br>5 5 16<br>5 16<br>5 16<br>5 10<br>1 124<br>5 7<br>3 3 3<br>7 7<br>3 2 3<br>1 3 4<br>1 1 3 4<br>1 1 3 4<br>1 1 3 4<br>1 1 3 4<br>1 1 3 4<br>1 1 3 4<br>1 1 3 4<br>1 1 3 4<br>1 1 3 4<br>1 1 3 4<br>1 1 3 4<br>1 1 3 4<br>1 1 3 4<br>1 1 3 4<br>1 1 3 4<br>1 1 3 4<br>1 1 3 4<br>1 1 3 4<br>1 1 3 4<br>1 1 3 4<br>1 1 3 4<br>1 1 3 4<br>1 1 3 4<br>1 1 3 4<br>1 3 4<br>1 3 4<br>1 3 4<br>1 3 4<br>1 3 4<br>1 3 4<br>1 3 4<br>1 3 4<br>1 3 4<br>1 3 4<br>1 3 4<br>1 3 4<br>1 3 4<br>1 3 4<br>1 3 4<br>1 3 4<br>1 3 4<br>1 3 4<br>1 3 4<br>1 3 4<br>1 3 4<br>1 3 4<br>1 3 4<br>1 3 4<br>1 3 4<br>1 3 4<br>1 3 4<br>1 3 4<br>1 3 4<br>1 3 4<br>1 3 4<br>1 3 4<br>1 3 4<br>1 3 4<br>1 3 4<br>1 3 4<br>1 3 5<br>1 3 4<br>1 3 4<br>1 3 5<br>1 5<br>1 5<br>1 5<br>1 5<br>1 5<br>1 5<br>1 5<br>1 5<br>1 5<br>1 | 92<br>18<br>105<br>215               | 1,023<br>550<br>30<br>1,603      | 5,731<br>1,850<br>349<br>881<br>10<br>700<br>2,705          | 16<br>302<br>318       | 967<br>3,850<br>258<br>55<br>1,601<br>179                 |
| 2 161 25,      | 44.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1111                                 | 1111                             | 123<br>38<br>22<br>21<br>21<br>77<br>57                     | 1 1 1                  | 942<br>942<br>33<br>30<br>5                               |
| 135            | 95<br>172<br>110<br>110<br>8<br>8<br>6<br>6<br>6<br>7<br>7<br>7<br>7<br>7<br>720<br>720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 92<br>18<br>105<br>215               | 1111                             | 354<br>138<br>50<br>99<br>2<br>45<br>575<br>1,263           | 30 <u>2</u><br>302     | 454<br>451<br>34<br>37<br>276<br>111<br>80                |
| 691<br>,440 5, | 210<br>1131<br>405<br>13<br>13<br>118<br>33<br>33<br>114<br>114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1111                                 | 1,023<br>550<br>30<br>1,603      | 5,254<br>1,674<br>277<br>761<br>8<br>653<br>2,073           | 16                     | 471<br>8,305<br>221<br>55<br>1,295<br>431<br>94           |
| 1 55 19,       | 4   60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1111                                 | 1111                             | 577<br>111<br>6<br>6<br>11<br>11<br>108                     |                        | -II  -  I                                                 |
| 31             | 10<br>11<br>10<br>10<br>10<br>11<br>11<br>11<br>12<br>12<br>13<br>14<br>14<br>15<br>16<br>17<br>17<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                      | 111                              | 60<br>32<br>10<br>15<br>11<br>119                           |                        | 22<br>7<br>20<br>7<br>11                                  |
| 7              | 8 1 - 4   1   2   2   2   3   3   3   3   3   3   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      | 9 1 16                           | 195<br>36<br>12<br>4<br>4<br>43<br>43                       |                        | 2<br>2<br>2<br>3<br>3<br>4<br>6<br>8<br>7                 |
| Westmoreland   | Tennessee:     Anderson     Bledsoe     Campbell     Clairborne     Cumberland     Fentress     Grundy     Marion     Morgan     Putnam     Roane     Scott     Scott     Van Buren                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Texas (lignite):  Freestone Harrison | Utah:  Otahon  Bary  Savier      | Virginia: Buchanan Dickenson Lee Rusell Soott Tazewell      | Total                  | West Virginia: Barbour Boone Brooke Clay Fayette Grant    |

Table 19.-Number of mines, men working daily, days active, and output per man per day at bituminous coal and lignite mines in the United States, in 1973, by State and county-Continued

Total 18 62 29.67 9.053 9.053 9.058 10.013 8.86 10.01 11.40 11.40 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 11.73 120.49 7.45 42.87 56.33 6.69 Average tons per man Auger 45.33 111111 1 per day Strip 35.00 36.03 28.68 30.89 26.49 46.39 11 24.10 14.51 22.24 29.26 32.81 42.39 106.45 59.74 120.49 42.87 36.30 64.11 Under-ground 16.64 9.99 9.84 8.94 112.22 116.01 8.67 8.67 16.98 9.92 9.95 16.36 17.53 17.53 9.17 11.62 12.02 12.72 8.44 0.53 6.69 10.49Auger 111111 Average number of days worked : 22 Strip 160 120 87 135 122 122 73 73 ---281 96 96 222 222 ---162 223 Under-ground 251 251 224 224 112 241 Total 44,765 53 458 97 7 302 37 57 148,121 Average number of men working daily Auger 118 118 118 118 118 118 118 118 147 728 2,835 11111 3.900 53 354 97 302 37 34,203 Under-ground 162 193 193 96 5,199 57 40.137 168 111,083 Auger 869 90 Number of mines 1 1 1 1 1 1 1 Strip 304 2,309 Under-ground ខា∞ស 522 1,737 Wyoming ----- Monongolia .... Ohio -----Mason -----Preston ------Carbon -----Marshall Nicholas -----Converse Hot Springs Harrison -----West Virginia-Continued raylor -----United States State and county ------Sheridan Sweetwater Raleigh ... Randolph Kanawha McDowell Wyoming: Campbell Webster Mineral Tucker Upshur Mingo Total ewis Mercer Wayne Total Lincoln

Table 20.-Underground mine data for bituminous coal, in 1973, by State

| State   Der duc-   Cut by   Num.   Are-   Mined   Mined   Num.   Face or coal drills   Roof bolting   Roof bolting   Cut by   Num.   Are-   Mined   Mined   Num.   Race   Roof mines   Ro |                        |                            |                                  |                       | +                                  | hy mark                               | ines                               |                                     |                                  |                                   |                  |                         | Number         | of pow                           | er drills                | and pr  | Number of power drills and production |             |           |                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------|----------------------------------|-----------------------|------------------------------------|---------------------------------------|------------------------------------|-------------------------------------|----------------------------------|-----------------------------------|------------------|-------------------------|----------------|----------------------------------|--------------------------|---------|---------------------------------------|-------------|-----------|--------------------------------------|
| Num. Properties   Part   Par |                        |                            |                                  |                       |                                    | To The second                         |                                    | į                                   | ٠.<br>;                          |                                   |                  | ce or cos               | al drills      |                                  |                          | Rood    | f or roc                              | drills      |           |                                      |
| Num.   Pro- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan.   Cut- and quan. |                        |                            |                                  | Cut by                |                                    | Num-<br>ber of                        |                                    | Mined<br>by con-                    | Mined                            | Num-                              | Handhe           | ald and                 | Mob            | Je                               | Roof                     | boltin  | 50                                    | Othe        | r uses    |                                      |
| 21         7,618         18         6,768         68         107         847          16         12         818         62         6,940         69         4         8         6         1         6         8         8         2,982         312         3         1         8          40         2         40         6         8         8         8         2,982         312         3         6         6         6         2         6         8         8         2         9         2         2         386         2         4         8         6           6         6         8         8         2         9         2         2         3891         16         17         8         7          1         8                                       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28                     | Num-<br>ber<br>of<br>mines |                                  | shot<br>from<br>solid | •                                  | coal<br>cut-<br>ting<br>ma-<br>chines |                                    | tinuous-<br>mining<br>ma-<br>chines | long-<br>wall<br>ma-<br>chines   | mines<br>using<br>power<br>drills | Num-             | Quan-<br>tity           | 1 -            | Quan-<br>tity                    | Ro-<br>tary              |         | Ro-<br>tary-<br>per-<br>cus-<br>sion  | Ro-<br>tary | - 1       | Ro-<br>tary-<br>per-<br>cus-<br>sion |
| n 584 40,568 8,296 23,288 401 58 13,831 187 470 461 11,748 112 11,431 176 23 48 8 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | 21<br>23<br>23<br>33<br>33 | 7,618<br>3,361<br>32,570<br>789  | E   1   1             | 6,758<br>66<br>5,716<br>174<br>356 | 63<br>28 8 1 88                       | 107<br>3<br>8<br>204<br>222<br>155 | 847<br>2,982<br>26,833<br>614       | 312                              | 16<br>20<br>33<br>20              | 11 6 11 12       | 818<br>3<br>66<br>1,825 | 2   12 00      | 5,940<br><br>3,891<br>174<br>356 | 59<br>40<br>160<br>6     | 4  0    | ∞                                     | re     6    | 5     124 | 111111                               |
| The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The column   The | # E = '                | 584<br>26<br>610           | 40,553<br>22,342<br>62,895<br>66 | 11 1                  | 23,238<br>22,342<br>45,580         | 401<br>102<br>503                     | 58<br>219<br>91                    | 13,831<br><br>13,831<br>66          | 187                              | 470<br>26<br>496<br>              |                  | 11,748                  | 1              | 11,431<br>22,064<br>33,496       | 176<br>148<br>324<br>    | 23   23 | £4 :   £3 :                           | es   es     | 11 11 1   | 13                                   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | inous)<br>xico<br>ania | 1 28<br>134                | 733<br>16,225<br>46,207          | 4,4                   | 1,843                              | 1<br>525<br>54<br>54                  | 1<br>102<br>33<br>33               | 611<br>10,933<br>41,611<br>1.366    | 122<br>2,749                     | 1 1 2 2 2 4<br>1 1 2 2 2 1 1      | 1 8<br>8 8<br>59 | 647<br>415<br>1,249     | 39: 1<br>6     | 4,646<br>1,422<br>1,020          | 239<br>239<br>259<br>259 | 169     | 129                                   | 1111        | 121       | 61  61                               |
| 2 426 - 110 8 14 816 - 5 427 70 178,600 9,442 1,866 1,082 81,763 706 76,383 2,059 419 290 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ton                    | 300<br>300<br>1<br>523     | 3,650<br>5,500<br>23,437<br>16   |                       | 9,756<br>9,756<br>28,635           | 283<br>462                            | 34                                 | 4,217<br>11,317<br>63,057           | $814$ $1,733$ $3,5\overline{03}$ | $\frac{14}{246}$                  | 254<br>6<br>225  | 5,509<br>16<br>9,453    | 70<br>272<br>4 | 469<br>4,814<br>20,002<br>103    | 256<br>717<br>8          | 103     | 186                                   | 00  61      |           | 1   6                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | g                      | 34 24                      | 425                              | - 1                   | 110                                | 1,535                                 | 14                                 | 315<br>178,600                      | 9,442                            | 1,366                             | 1,082            | 31,763                  | 202            | 76,333                           | 2,059                    | 419     | 290                                   | 19          | 31        | 26                                   |

Data may not add to totals shown because of independent rounding.

Table 21.-Haulage units in use in bituminous coal underground mines in the United States, in 1973, by State

|                           | 1        | Railroa     | d      |           | Rubb          | er-tired v    | ehicles      |                    | Gat                 | hering           |
|---------------------------|----------|-------------|--------|-----------|---------------|---------------|--------------|--------------------|---------------------|------------------|
| State                     | Locom    | otives      | -Mines | Trac-     | m             | Shuttl        | e cars       |                    | and                 | haulag<br>veyors |
|                           | Trolley  | Bat<br>tery | - cars | tors      | Trail-<br>ers | Cable<br>reel | Bat-<br>tery | Shuttle<br>buggies |                     |                  |
| AlabamaArkansas           | 124      |             | 1,759  | 46        | 92            | 160           | 2            |                    |                     |                  |
| Colorado                  | 43       | 1           | - 5    |           |               |               |              |                    | 95                  | 36               |
| Illinois                  | 43<br>70 | 6           | 671    | 20        |               | 98            | - <u>ī</u>   |                    | .4                  |                  |
| ndiana                    |          | 37          | 98     | 120       | 137           | 388           | 22           | 2<br>1             | 48                  | 12               |
| owa                       | 2<br>6   |             | 34     |           |               | 15            |              | 1                  | 293                 | 153              |
|                           |          |             | 48     |           |               | -6            |              |                    | 14                  | 4                |
| entucky:                  |          |             |        |           |               |               |              |                    |                     |                  |
| Eastern                   | 162      | 90          | 3,109  | 050       |               |               |              |                    |                     |                  |
| Western                   | 30       | 47          | 116    | 353<br>95 | 381           | 551           | 294          | 106                | 417                 | 160              |
| Total                     | 192      |             |        |           | 54            | 237           | 35           |                    | 194                 | 81               |
| laryland                  | 192      | 137         | 3,225  | 448       | 435           | 788           | 329          | 106                |                     |                  |
| Iontana                   |          |             |        |           |               |               | 2            | 100                | 611                 | 242              |
| (bituminous)<br>ew Mexico | 1        |             | 12     |           |               |               |              |                    | 1                   |                  |
| h10                       | 115      | 18          | 0.055  |           |               | 10            |              |                    | $\overline{12}$     | ć                |
| ennsylvania               | 1.015    | 29          | 2,301  | 98        | 83            | 215           | 43           |                    | 145                 | 6<br>54          |
| ennessee                  | 25       | 10          | 11,876 | 346       | 693           | 1,103         | 23           | - <u>ē</u>         | 717                 | 279              |
| tah                       | 56       | 10          | 184    | 74        | 102           | 42            | 18           | 4                  | 46                  |                  |
| irginia                   | 172      | 52          | 1,450  | 26        | 45            | 92            | 3            | -                  | 66                  | 15.              |
| ashington                 | 2        |             | 2,259  | 399       | 392           | 522           | 8            | 42                 | 465                 | 18.              |
| est Virginia              | 1.113    | 48          | 20     |           |               |               |              |                    | ±09                 | 181.             |
| yoming                    | -,110    |             | 22,828 | 398       | 411           | 2,054         | 215          | $1\overline{67}$   | $1,3\bar{7}\bar{6}$ | E10              |
| Grand total               | 0.007    |             | 20     | 5         | 6             | 14            |              | 1                  | 9                   | 513.<br>2.       |
| CILLIA LOCAL              | 2,937    | 339         | 46,790 | 1,980     | 2,396         | 5.507         | 666          |                    | 3,902               | 1,521.           |

Table 22.-Number and production of underground bituminous coal mines using gathering and haulage conveyors, and number and length of units in use, by State 1

| State                                                                                                                           | n                                                                        | nber o                               | th<br>sho                                                                                                      | duction<br>ousand<br>rt tons)                                                                                      | u:                                                                               | nber of<br>nits<br>use                                                      | le                                                                                                                       | erage<br>ngth<br>eet)                                                                           | Total<br>(m                                                                                                       | length                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
|                                                                                                                                 | 1972                                                                     | 1978                                 | 3 1972                                                                                                         | 1973                                                                                                               | 1972                                                                             | 1973                                                                        | 1972                                                                                                                     | 1973                                                                                            | 1972                                                                                                              | 1973                                                                          |
| Alabama Arkansas Colorado Illinois                                                                                              | 8<br>1<br>13<br>22                                                       | 7<br>1<br>8<br>21                    | 6,016<br>8<br>3,070<br>31,593                                                                                  | 6,266<br>3<br>1,822<br>30,259                                                                                      | 46                                                                               | 4<br>48                                                                     | 1,925<br>500<br>1,467                                                                                                    |                                                                                                 |                                                                                                                   |                                                                               |
| Indiana<br>Kentucky:                                                                                                            | 2                                                                        | 1                                    | 1,256                                                                                                          | 614                                                                                                                | 286<br>34                                                                        | 293<br>14                                                                   | 2,723 $1,794$                                                                                                            | 2,758<br>1,500                                                                                  | r 147.5<br>11.6                                                                                                   | 153.<br>4.                                                                    |
| Eastern Western Total Maryland New Mexico Dhio klahoma eennsylvania lennessee Utah Tirginia Vyst Virginia Vyoming Grand total 2 | 94<br>22<br>116<br>1<br>1<br>27<br>2<br>96<br>10<br>14<br>71<br>285<br>1 | 116<br>24<br>140<br>1<br>1<br>19<br> | 18,781<br>18,091<br>36,872<br>28<br>1,014<br>16,155<br>88<br>32,201<br>1,989<br>4,248<br>17,111<br>87,667<br>3 | 24,606<br>22,239<br>46,845<br>5<br>733<br>13,894<br>28,519<br>2,173<br>1,940<br>16,754<br>83,800<br>415<br>234,042 | 349<br>182<br>531<br>3<br>12<br>171<br>8<br>634<br>39<br>71<br>421<br>1,426<br>8 | 417<br>194<br>611<br>1<br>12<br>145<br>717<br>46<br>66<br>465<br>1,376<br>9 | 2,216<br>2,221<br>2,218<br>800<br>3,000<br>2,005<br>1,750<br>2,010<br>1,892<br>1,276<br>2,136<br>2,219<br>1,813<br>2,160 | 2,030<br>2,230<br>2,500<br>3,000<br>1,967<br>2,059<br>1,796<br>1,507<br>2,063<br>1,970<br>1,689 | 146.5<br>76.6<br>223.1<br>.5<br>6.8<br>64.9<br>2.7<br>241.4<br>14.0<br>17.2<br>170.3<br>r 599.3<br>2.7<br>1,545.1 | 160.<br>81.<br>242.:<br>6.8<br>54.(<br>15.6<br>18.8<br>181.7<br>513.4<br>2.99 |

r Revised.

F. Revised.

1 Includes all mines using belt conveyors, 500 feet long or more for transporting coal underground. Excludes mainslope conveyors.

2 Data may not add to totals shown because of independent rounding.

Table 23.-Number and production of bituminous coal and lignite strip mines and units of stripping and loading equipment in 1972, by State

|                          |                      | , e                          |               | Number                  | of        | power sl | shovels and       | and dr                          | dragline excavators        | excava             | tors                                                                             |                                  |             | N.m.                               |                       |           |          |            |             |            |
|--------------------------|----------------------|------------------------------|---------------|-------------------------|-----------|----------|-------------------|---------------------------------|----------------------------|--------------------|----------------------------------------------------------------------------------|----------------------------------|-------------|------------------------------------|-----------------------|-----------|----------|------------|-------------|------------|
|                          | Num-                 | duc-                         | By            | type of                 | f power   |          | By ca             | By capacity of<br>bucket, cubic | y of dipper<br>cubic yards | er or              | By type of<br>machine                                                            | •                                |             |                                    |                       |           |          | l<br>Power | Mot-        | Coal       |
| State                    | of<br>strip<br>mines | (thou-sand<br>short<br>tons) | Elec-<br>tric | Diesel<br>elec-<br>tric | Diesel    | Gaso-    | Less<br>than<br>6 | 6-15                            | 16-50                      | More<br>than<br>50 | Pow-<br>er<br>shov<br>els                                                        | Drag-<br>line<br>exca-<br>vators | Total e     | carry-<br>all l<br>scra- d<br>pers | of<br>bull-<br>dozers | load- ers | exca- br |            |             | rills      |
| Alabama                  | 83                   | 11,529                       | 14            | 13                      | 98        | -        | 62                | 27                              | 22                         | က                  | 70                                                                               | 44                               | 114         | ro (                               | 192                   | 161       | ;        | က          | 20          | 9,         |
| Alaska Arizona           |                      | 694                          | 100           | -                       | 1         | 1 1      | ! ;               | : :                             | 100                        | =                  | 67                                                                               | 67                               | 4           | 27                                 | ၀ က                   | 4 03      | ; ;      | 1 1        | <b>7</b> —  |            |
| Arkansas                 | 10                   | 432                          | 1             | က                       | 4         | 1        | -                 | 2                               | ŀ                          | ;                  | <del>, -</del> 1                                                                 | <u>-</u>                         | <b>∞</b>    | 1                                  | 17                    | 01;       | ;        | 87         | က           | 10         |
| Colorado                 | ∞ 8                  | 2,834                        | <b>₹</b>      | 87 9                    | eo ;      | 1        | eo 3              | ر<br>ا                          | ٦ ;                        | 10                 | رر<br>دی و                                                                       | စ ဌ                              | 6 [         | 27 2                               | 178                   | 15<br>7   | 15       | 10         | 80 FG       | 8 Z        |
| Illinois                 | 36.                  | 29,002                       | 7.9           | 5 65                    | 202       | ٦        | 5. 5.<br>4. 65.   | 34<br>34                        | 14                         | 727                | 52<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50 | 5.4                              | 113         | 2                                  | 172                   | 45        | : :      | 3 <u>1</u> | 22          | 100        |
| 1 1                      | 54                   | 1.086                        | 19            | 1 1                     | 20        | 1 1      | 17                | ∞ 61                            | ¦                          | ļ-                 | t~ e0                                                                            | 13                               | 8<br>8<br>8 | 4 ;                                | 15<br>16              | ලා වෙ     | ; ;      | ! !        | က <b>က</b>  | <b>= 1</b> |
|                          |                      |                              |               |                         |           |          |                   |                                 |                            |                    |                                                                                  |                                  |             |                                    |                       |           |          |            |             |            |
| Kentucky:<br>Eastern     |                      | 23,671                       | 1 2           | 81 6                    | 518       | 44       | 535<br>89         | 29                              | 16                         | ۱œ                 | 558                                                                              | 7                                | 565<br>153  | 11                                 | 411                   | 318<br>91 | ; ;      | 13         | 33          | 11 8       |
|                          | . '                  | 1                            | 2 02          | , =                     | 604       | 44       | 694               | 69                              | 17                         | o                  | 670                                                                              | 48                               | 718         | 15                                 | 652                   | 409       |          | 14         | 114         | 19         |
| Maryland                 |                      | 1,643                        | 3 12          | : :-                    | 13        | : ; ;    | 828               | <b>∞</b> ∞                      | : 16                       | ¦¤                 | 18                                                                               | 25                               | 66<br>27    | 61                                 | 65<br>47              | 21        | 1 1      | ļ-1        | 92-         | 7 ;        |
|                          |                      | 11                           |               |                         |           |          |                   |                                 |                            |                    |                                                                                  |                                  |             |                                    |                       |           |          |            |             | '          |
| Bituminous               | 9 87                 | 10,410<br>314                | <i></i>       |                         | 61        |          | ¦67               | က 🗝                             | 4 ¦                        | 1 1                | 4 67                                                                             | ∞ –                              | <b>~</b> ∞  | 70 H                               | 4.<br>8               | တ က       | 1 1      | 1-         | <b>4</b> ⊢  | 1 6        |
|                          |                      | 10,724                       | 8             | 1                       | 2         | ;        | 2                 | 4                               | 4                          | 1                  | 9                                                                                | 4                                | 10          | 9                                  | 17                    | 12        | ;        | 1          | က           | 7          |
| New Mexico               |                      | 8,336                        | ro            | -                       | က         | ;        | -                 | က                               | 10                         | ;                  | 4                                                                                | ro                               | 6           | 61                                 | 16                    | 10        | 1        | i          | œ           | ıo.        |
| (lignite)                | 12                   |                              | 16            | -                       | 7         | က        | 14                | <b>∞</b>                        | ro.                        | 1                  | 17                                                                               | 10                               | 27          | Π,                                 | 29                    | 13        | !        | 01         | 13          | · ·        |
| Ohio                     | 176                  |                              | 37            | 20                      | 267       | က        | 229               | 81                              | 13                         | 9 6                | 225<br>8                                                                         | 107                              | 329<br>18   | 114                                | 576<br>32             | 301       | ;        | 6T 8       | 7 6<br>6    | 4 63       |
| Oklanoma                 | 775                  |                              | ~ ~           | 45.4                    | 702       | 20       | 604               | 174                             | 1 1-                       | ן כ                | 470                                                                              | 315                              | 785         | 90                                 | 600                   | 899       | 1 1      | -          | 62          | Ϊ          |
| Tennessee                |                      |                              | 1             | 7                       | 77        | 1        | 02                | 6                               | 1                          | 10                 | 74                                                                               | រប                               | 79          | <b>-</b> 0                         | 135                   | 129       | ļ        | 12         | 52          | 6          |
| Texas (lignite)          |                      |                              | œ             | 10                      | က္မ       | 19       | 2 2               | က်                              | 4,                         | 71                 | 9 60                                                                             | ٠<br>ت                           | II          | 7 0                                | 77                    | 90.5      | ;        | 1 1        | 9 9         | 15         |
| Virginia                 |                      |                              | 14            | 24                      | 277       | S.       | 215               | 77.                             | ٦ ٥                        | 10                 | 773<br>7                                                                         | G &                              | 252         | 92                                 | 200                   | 107       | 1        | o T        | <b>2</b> 00 | 17         |
| Washington West Virginia | 304                  | 17,704                       | 15            | 67                      | 284<br>10 | ¦∞ -     | 264               | $\frac{30}{11}$                 | 1  4                       | 1 101              | 273                                                                              | $\frac{21}{10}$                  | 294<br>27   | 222                                | 504<br>38             | 338<br>21 | ; ; ;    | 16<br>1    | 84<br>19    | 220        |
| Grand total 1- 2,3       | 2,309                | 104                          | 351           | 122                     | 2,466     | 92       | 2,287             | 545                             | 135                        | 64                 | 2,259                                                                            | 772                              | 3,031       | 390 4                              | 4,070 2               | 2,520     | 11       | 92         | 280         | 182        |
|                          |                      |                              |               |                         |           |          |                   |                                 | -                          | -                  |                                                                                  | -                                |             | -                                  |                       |           |          | -          |             |            |

<sup>1</sup> Data may not add to totals shown because of independent rounding.

| Table 24.—Equipment used at bituminous coal and lignite | auger | mines | in the |
|---------------------------------------------------------|-------|-------|--------|
| United States in 1973, by number of units               |       |       |        |

| State              | Augers | Power<br>shovels | Power<br>drills | Bull-<br>dozers | Front-end<br>loaders | Power<br>brooms | Motor<br>graders |
|--------------------|--------|------------------|-----------------|-----------------|----------------------|-----------------|------------------|
| AlabamaColorado    | 1<br>1 |                  |                 | 2               |                      |                 |                  |
| Kentucky:          |        |                  |                 |                 |                      |                 |                  |
| Eastern<br>Western | 386    | 16               | 8               | 222             | 46                   | 1               | 9                |
|                    |        |                  |                 |                 |                      |                 |                  |
|                    | 386    | 16               | 8               | 222             | 46                   | 1               | 9                |
| Maryland           | 7      |                  |                 | 2               | 3                    | -               | •                |
| Ohio               | 31     |                  |                 | 21              | 14                   |                 |                  |
| Pennsylvania       | 47     |                  |                 | 16              | -6                   |                 | -                |
| Tennessee          | 11     |                  |                 | 12              | 5                    |                 |                  |
| Virginia           | 117    |                  | 18              | 101             | 50                   | 2               | ÷                |
| West Virginia      | 93     | 1                | 4               | 53              | 14                   | 4               | 7                |
| Grand total        | 694    | 17               | 30              | 429             | 138                  | 3               | $\frac{3}{21}$   |

Table 25.—Bituminous coal mechanically loaded underground in the United States, by type of loading equipment

| Type of loading equipment                 | 1972    | 1973    |
|-------------------------------------------|---------|---------|
| Mobile loading machines:                  |         |         |
| Directly into mine cars or onto conveyors | 15,483  | 13,537  |
| Continuous-mining machines:               | 99,508  | 95,804  |
| Onto conveyors                            | 11.673  | 10.178  |
|                                           | 132,792 | 140,207 |
| Onto bottom                               | 33,911  | 28,215  |
| Total mechanically loaded 1               | 7,763   | 9,442   |
| Trouble Todated                           | 301,129 | 297,384 |

<sup>&</sup>lt;sup>1</sup> Data may not add to totals shown because of independent rounding.

Table 26.—Comparative changes in underground mechanical loading of bituminous coal by principal types of loading devices in the United States, by State

| State                     |                            | loading<br>chines     | m                          | inuous-<br>ining<br>chines |                    | gwall<br>hines      | mech                    | Cotal<br>anically<br>aded 1 |
|---------------------------|----------------------------|-----------------------|----------------------------|----------------------------|--------------------|---------------------|-------------------------|-----------------------------|
|                           | 1972                       | 1973                  | 1972                       | 1973                       | 1972               | 1973                | 1972                    | 1973                        |
| Alabama<br>Colorado       | 6,636<br>147               | 6,729                 | 891                        | 847                        |                    |                     | 7,527                   | 7,576                       |
| Illinois<br>Indiana       | 7,295<br>373               | 54<br>5,716<br>174    | 2,598<br>24,411<br>1,073   | 2,982<br>26,833<br>614     | 308<br>15          | 312<br>21           | 3,053<br>31,721         | 3,347<br>32,570             |
| Iowa                      | 352                        | 356                   | 1,010                      |                            |                    |                     | 1,446<br>352            | 789<br>35 <b>6</b>          |
| Kentucky: Eastern Western | 23,631<br>18,465           | 25,522<br>22,342      | 12,699<br>83               | 13,831                     |                    | 187                 | 36,329                  | 39,540                      |
| Total                     | 42,095                     | 47,864                | 12,781<br>128              | 13,831<br>66               |                    | 187                 | 18,547<br>54,877<br>135 | 22,342<br>61,883<br>66      |
| Montana New Mexico Ohio   | 7                          |                       | $1,0\overline{14}$         | 611                        |                    | 122                 | 7<br>1,014              | 733                         |
| Oklahoma<br>Pennsylvania  | $5,692$ $3,6\overline{47}$ | 5,292                 | 10,568                     | 10,933                     |                    |                     | 16,260<br>88            | 16,225                      |
| Tennessee<br>Utah         | 4,376<br>442               | 1,743<br>2,230<br>469 | 42,997<br>1,311            | 41,611<br>1,366            | 2,354              | 2,749               | 48,998<br>5,687         | 46,103<br>3,596             |
| Virginia<br>Washington    | 11,480<br>29               | 10,116<br>16          | 3,604 $11,269$             | 4,217<br>11,317            | $723 \\ 1,217$     | 814<br>1,733        | 4,770<br>23,967         | 5,500<br>23,167             |
| West Virginia<br>Wyoming  | 32,309<br>103              | 28,474<br>107         | $65,3\overline{06} \\ 335$ | $63,0\overline{57} \\ 315$ | $3,1\overline{46}$ | $3,5\bar{0}\bar{3}$ | 100,762                 | 16<br>95,034                |
| Grand total 1             | 114,990                    | 109,342               | 178,375                    | 178,600                    | 7,763              | 9,442               | 438<br>301,129          | 297,384                     |

<sup>&</sup>lt;sup>1</sup> Data may not add to totals shown because of independent rounding.

Table 27.—Number of bituminous coal and lignite underground mines using mechanical loading devices and number of units in use in the United States, by State

|                                                    |                            |                                     |                              | Number of mines                                 | f mines                  |                                                     |                     |                     |                         | Num                           | ber of loa                     | Number of loading devices         | es<br>sə             |              |
|----------------------------------------------------|----------------------------|-------------------------------------|------------------------------|-------------------------------------------------|--------------------------|-----------------------------------------------------|---------------------|---------------------|-------------------------|-------------------------------|--------------------------------|-----------------------------------|----------------------|--------------|
| State                                              | Using<br>load<br>macl      | Using mobile<br>loading<br>machines | Using<br>tinu<br>mir<br>macl | Using continuous-<br>mining<br>machines<br>only | Using<br>than o<br>of lo | Using more<br>than one type<br>of loading<br>device | Ĭ                   | Total               | Mc<br>load              | Mobile<br>loading<br>machines | Continuou<br>mining<br>machine | Continuous-<br>mining<br>machines | Longwall<br>machines | wall<br>ines |
|                                                    | 1972                       | 1973                                | 1972                         | 1973                                            | 1972                     | 1973                                                | 1972                | 1973                | 1972                    | 1973                          | 1972                           | 1973                              | 1972                 | 1973         |
| Alabama<br>Colorado<br>Illinois<br>Indiana<br>Iowa | 2<br>2<br>2<br>2<br>2<br>3 | ଫ ଉ ଦ ପ ପ                           | 1221<br>  1                  | 12<br>12<br>1                                   | 4444                     | 1   0.00 m                                          | 13<br>23<br>26<br>4 | 14<br>19<br>23<br>8 | 1 28<br>1 28<br>42<br>6 | 72<br>14<br>29<br>8           | 7<br>39<br>139<br>7            | 9<br>41<br>156<br>5               | ]==                  | [44   ]      |
| Kentucky:<br>Eastern<br>Western                    | 377<br>25                  | 368<br>26                           | 54                           | 42                                              | 10                       | ∞ ¦                                                 | 441                 | 430<br>26           | r 536<br>130            | r 551<br>139                  | 139                            | 152                               | 11                   | - :          |
| Total Total Maryland                               | 402                        | 394                                 | 55                           | 5 <sub>4</sub> 2 <sub>2</sub>                   | = 1                      | ∞ ¦                                                 | 468                 | 456<br>2            | r 666                   | r 690                         | 142<br>2                       | 152<br>2                          | 11                   | <b>-</b> 1   |
| Montana<br>New Mexico<br>Ohio                      | 13                         | -                                   | 1 12                         | 1 !91                                           | 1-10                     | 11.0                                                | 33 7 7              |                     | 91 o 88                 | 122                           | _6<br>112                      | 108                               | 111                  | -            |
| Oklahoma<br>Pennsylvania                           | 16                         | 122                                 | 88                           | 18                                              | 181                      | 123                                                 | 127                 | 116                 | 109                     | 122                           | 498<br>498                     | 494                               | 121                  | 171          |
| Tennessee<br>Utah<br>Virginia                      | 202 r                      | 202<br>207                          | 122<br>122<br>123            | $13 \\ 167$                                     | 1 57                     | 1<br>16                                             | 84<br>21<br>316     | 290<br>290          | 115<br>r 19<br>814      | 294<br>294                    | 37<br>161                      | 35<br>180                         | ¦ co co              | 18.11        |
| Washington West Virginia Wyoming                   | 206<br>3                   | 199                                 | 134                          | 148                                             | 1 <b>%</b> 1             | 188 1                                               | 428<br>4            | 435<br>4            | r 753<br>4              | r 697<br>5                    | 882                            | 673                               | 12 1                 | 181          |
| Grand total                                        | r 971                      | 068                                 | r 390                        | 1 415                                           | r 196                    | 147                                                 | 1,557               | 1,452               | r 2,208                 | r 2,015                       | 1,849                          | 1,866                             | 40                   | 20           |
|                                                    |                            |                                     |                              |                                                 |                          |                                                     |                     |                     |                         |                               |                                |                                   |                      |              |

r Revised. Includes 3 mines using longwall machines only.

Table 28.—Production at underground bituminous coal mines, by State and method of loading

| State         | Hand  | -loaded      |         | anically<br>aded | Total und |         |
|---------------|-------|--------------|---------|------------------|-----------|---------|
|               | 1972  | 1973         | 1972    | 1973             | 1972      | 1973    |
| Alabama       | 61    | 42           | 7,527   | 7,576            | 7,588     | 7,618   |
| Arkansas      | 8     | 3            |         |                  | 8         | . 3     |
| Colorado      | 17    | 13           | 3,053   | 3,347            | 3,070     | 3,361   |
| Illinois      |       |              | 31,721  | 32,570           | 31,721    | 32,570  |
| Indiana       |       |              | 1,446   | 789              | 1,446     | 789     |
| Iowa          |       |              | 352     | 356              | 352       | 356     |
| Kentucky:     |       |              |         |                  |           |         |
| Eastern       | 1.617 | 1,012        | 36,329  | 39,540           | 37,946    | 40,553  |
| Western       | 1,01. | 1,012        | 18,547  | 22,342           | 18,547    | 22,342  |
| Total 1       | 1,617 | 1,012        | 54,877  | 61,883           | 56.494    | 62,895  |
| Maryland      | 7     | 1,014        | 135     | 66               | 141       | 66      |
| Montana       | 9     | - <u>-</u> - | 7       | 00               | 17        | 1       |
| New Mexico    | v     | -            | 1,014   | 733              | 1,014     | 733     |
| Ohio          | 10    |              | 16,260  | 16,225           | 16,269    | 16,225  |
| Oklahoma      |       |              | 88      | 10,220           | 88        | 10,220  |
| Pennsylvania  | 135   | 104          | 48,998  | 46,103           | 49.133    | 46,207  |
| Tennessee     | 179   | 40           | 5,687   | 3,596            | 5,866     | 3,636   |
| Utah          |       |              | 4,770   | 5,500            | 4,770     | 5,500   |
| Virginia      | 27    | 270          | 23,967  | 23,167           | 23,993    | 23,437  |
| Washington    |       |              | 29      | 16               | 29        | 16      |
| West Virginia | 901   | 482          | 100,762 | 95,034           | 101,662   | 95,516  |
| Wyoming       | 3     | 3            | 438     | 422              | 442       | 425     |
| Grand total 1 | 2,974 | 1,970        | 301,129 | 297,384          | 304,103   | 299,353 |

<sup>&</sup>lt;sup>1</sup> Data may not add to totals shown because of independent rounding.

Table 29.—Mechanical cleaning at bituminous coal and lignite mines, in 1973, by State (Thousand short tons)

|                                                    | _                          |                                               | Mechanica                  | l cleaning                |                          |
|----------------------------------------------------|----------------------------|-----------------------------------------------|----------------------------|---------------------------|--------------------------|
| State                                              | Total<br>production        | Number<br>of<br>cleaning<br>plants            | Raw<br>coal                | Cleaned<br>coal           | Refuse                   |
| Alabama Alaska Colorado Illinois Indiana           | 19,230                     | 19                                            | 18,433                     | 11,705                    | 6,728                    |
|                                                    | 694                        | 1                                             | 70                         | 50                        | 20                       |
|                                                    | 6,233                      | 3                                             | 1,933                      | 1,662                     | 270                      |
|                                                    | 61,572                     | 36                                            | 62,386                     | 48,091                    | 14,295                   |
|                                                    | 25,253                     | 10                                            | 25,330                     | 19,699                    | 5,631                    |
| Kentucky: Eastern Western                          | 73,966                     | 33                                            | 30,359                     | 22,264                    | 8,095                    |
|                                                    | 53,679                     | 18                                            | 26,004                     | 20,005                    | 5,999                    |
| TotalOhioOklahoma                                  | 127,645                    | 51                                            | 56,363                     | 42,269                    | 14,094                   |
|                                                    | 45,783                     | 17                                            | 20,799                     | 14,588                    | 6,211                    |
|                                                    | 2,183                      | 3                                             | 381                        | 312                       | 69                       |
| Pennsylvania                                       | 76,403                     | 68                                            | 63,041                     | 45,731                    | 17,310                   |
| Tennessee                                          | 8,219                      | 2                                             | 1,575                      | 1,145                     | 430                      |
| Utah                                               | 5,500                      | 7                                             | 4,156                      | 3,575                     | 581                      |
| Virginia Washington West Virginia                  | 33,961<br>3,270<br>115,448 | $\begin{array}{c} 32 \\ 2 \\ 124 \end{array}$ | 26,559<br>4,460<br>107,520 | 17,696<br>3,262<br>75,672 | 8,863<br>1,198<br>31,848 |
| Other States <sup>1</sup> Grand total <sup>2</sup> | 60,344                     | 7                                             | 4,639                      | 3,460                     | 1,179                    |
|                                                    | 591,738                    | 382                                           | 397,646                    | 288,918                   | 108,728                  |

<sup>&</sup>lt;sup>1</sup> Includes Arizona, Arkansas, Iowa, Kansas, Maryland, Missouri, Montana (bituminous coal and lignite), New Mexico, North Dakota (lignite), Texas (lignite), and Wyoming.

<sup>2</sup> Data may not add to totals shown because of independent rounding.

Table 30.-Mechanical cleaning of bituminous coal and lignite, by type of equipment (Thousand short tons)

| Type of equipment                       | 1972                 | 1973              |
|-----------------------------------------|----------------------|-------------------|
| Wet methods:                            | r 130.331            | 132.655           |
| Jigs                                    | r 38.232             | 34,935            |
| Concentrating tablesClassifiers         | 2,980                | 3,297             |
| ClassifiersLaunders                     | 5,467                | 5,121             |
| Dense medium processes:  Magnetite      | r 74,073             | 74,605            |
| Sand                                    | 15,273               | 12,617            |
| Calcium chloride                        | r 1,712              | 981               |
| Total <sup>1</sup> Flotation            | r 91,058<br>r 13,050 | 88,203<br>14,201  |
| Total, wet methods 1Pneumatic methods 2 | 281,119<br>11,710    | 278,413<br>10,505 |
| Grand total 1                           | 292,829              | 288,918           |

Table 31.-Mechanical cleaning at bituminous coal and lignite mines, by State, and type of mining

|                | Underground<br>mines     |         | Strip                    | mines   | Auger mines              |         | Total, all<br>mines <sup>1</sup> |         |
|----------------|--------------------------|---------|--------------------------|---------|--------------------------|---------|----------------------------------|---------|
| State          | Total<br>produc-<br>tion | Cleaned | Total<br>produc-<br>tion | Cleaned | Total<br>produc-<br>tion | Cleaned | Total<br>produc-<br>tion         | Cleaned |
| Alabama        | 7.618                    | 7,613   | 11.529                   | 4,009   | 84                       | 84      | 19,230                           | 11,705  |
| Alaska         |                          |         | 694                      | 50      |                          |         | 694                              | 50      |
| Colorado       | 3,361                    | 1,662   | 2.834                    |         | 38                       |         | 6,233                            | 1,662   |
| Illinois       | 32,570                   | 22,990  | 29,002                   | 25,100  |                          |         | 61,572                           | 48,091  |
| Indiana        | 789                      | 82      | 24,465                   | 19,616  |                          |         | 25,253                           | 19,699  |
| Kentucky:      |                          |         |                          |         |                          |         |                                  |         |
| Eastern        | 40,553                   | 21,563  | 23,671                   | 489     | 9,742                    | 211     | 73,966                           | 22,264  |
| Western        | 22,342                   | 8,286   | 31,337                   | 11,719  | ·                        |         | 53,679                           | 20,005  |
| Total          | 62,895                   | 29,849  | 55,008                   | 12,208  | 9,742                    | 211     | 127,645                          | 42,269  |
| Ohio           | 16,225                   | 10,138  | 28,527                   | 4,450   | 1,031                    |         | 45,783                           | 14,588  |
| Oklahoma       | ·                        |         | 2,183                    | 312     |                          |         | 2,183                            | 312     |
| Pennsylvania   | 46,207                   | 38,479  | 29,829                   | 7,248   | <b>36</b> 6              | 4       | 76,403                           | 45,781  |
| Tennessee      | 3,636                    | 1,145   | 4,236                    |         | 348                      |         | 8,219                            | 1,145   |
| Utah           | 5,500                    | 3,575   |                          |         |                          |         | 5,500                            | 3,575   |
| Virginia       | 23,437                   | 17,696  | 8,700                    |         | 1,824                    |         | 33,961                           | 17,696  |
| Washington     | 16                       | 16      | 3,254                    | 3,246   |                          |         | 3,270                            | 3,262   |
| West Virginia  | 95,516                   | 71,914  | 17,704                   | 3,479   | 2,228                    | 279     | 115,448                          | 75,672  |
| Other States 2 | 1,584                    | 806     | 58,680                   | 2,653   | 79                       |         | 60,344                           | 3,460   |
| Grand total 1  |                          | 205,967 | 276,645                  | 82,372  | 15,739                   | 579     | 591,738                          | 288,918 |

<sup>&</sup>lt;sup>1</sup> Data may not add to totals shown because of independent rounding.

<sup>2</sup> Includes Arizona, Arkansas, Iowa, Kansas, Maryland, Missouri, Montana (bituminous and lignite), New Mexico, North Dakota (lignite), Texas (lignite), and Wyoming.

r Revised.

Data may not add to totals shown because of independent rounding.

Table 32.-Mechanical crushing of bituminous coal and lignite at mines, by State

| State                | crushi | of plants<br>ng coal | Coal cr |              |
|----------------------|--------|----------------------|---------|--------------|
|                      | 1972   | 1973                 | 1972    | 1973         |
| Alabama              | 22     | 27                   | 13,879  | 13,741       |
| Alaska               | 1      | i                    | 526     | 644          |
| Arizona              | 1      | ī                    | 2,954   | 3.247        |
| Arkansas             | 5      | 5                    | 383     | 416          |
| Colorado             | 17     | 15                   | 7.942   | 5.814        |
| Illinois             | 43     | 47                   | 56.171  | 57.316       |
| Indiana              | 23     | 25                   | 25,259  |              |
| Iowa                 | 9      | 10                   | 696     | 24,328       |
| Kansas               | ž      | 2                    | 1.219   | 454          |
| Kentucky             | 148    | 104                  | 74,139  | 1,079        |
| Maryland             | - 9    | 5                    | 523     | 61,248       |
| Missouri             | 7      | 5                    | 2,958   | 621<br>1,831 |
| Montana:             |        |                      |         | 1,001        |
| Bituminous           |        |                      |         |              |
| Lignite              | 3      | 2                    | 7,109   | 6,225        |
|                      | 1      | 1                    | 320     | 313          |
| New Mexico           | 4      | 3                    | 7,429   | 6.538        |
| Mandle Dalanta (11 ) | 4      | 4                    | 8.007   | 8.142        |
|                      | 9      | 8                    | 4.710   | 5.186        |
| 0111                 | 95     | 72                   | 32.276  | 27,589       |
|                      | 9      | 8                    | 791     | 2.133        |
| Pennsylvania         | 149    | 188                  | 57.512  | 59,642       |
| TennesseeUtah        | 25     | 19                   | 3,456   | 3,235        |
|                      | 12     | 9                    | 4.130   | 4.868        |
| Virginia             | 58     | 51                   | 20.584  | 20,636       |
| Washington           | 3      | 2                    | 2,634   | 3,262        |
| West Virginia        | 257    | 235                  | 106,334 | 91,236       |
| Wyoming              | 13     | 13                   | 10,902  | 11,993       |
| Grand total          | 925    | 859                  | 445,414 | 415,194      |

Table 33.—Thermal drying of bituminous coal and lignite, by type of drying equipment

| Type of dryer                                               |                            | of thermal<br>y units      | (tho                              | ally dried<br>usand<br>t tons)    |
|-------------------------------------------------------------|----------------------------|----------------------------|-----------------------------------|-----------------------------------|
|                                                             | 1972                       | 1973                       | 1972                              | 1973                              |
| Fluidized-bed Multilouver Rotary Screen Suspension or flash | 79<br>17<br>40<br>14<br>31 | 66<br>16<br>36<br>12<br>31 | 34,118<br>2,861<br>6,924<br>2,776 | 30,907<br>1,616<br>5,519<br>2,484 |
| Vertical tray and cascade                                   | 3                          | 1                          | 6,098<br>459                      | 5,575<br>100                      |
| Total 1                                                     | 184                        | 162                        | 53,235                            | 46,202                            |

<sup>&</sup>lt;sup>1</sup> Data may not add to totals shown because of independent rounding.

Table 34.—Comparison of thermal drying of bituminous coal and lignite with mechanical cleaning at mines, by State

|                        | Numb            | er of cle        | aning p | lants           | Prod    | uction          |                |        |  |
|------------------------|-----------------|------------------|---------|-----------------|---------|-----------------|----------------|--------|--|
| State                  | Total           |                  |         | thermal<br>ying |         | nically<br>aned | Thermally drie |        |  |
|                        | 1972            | 1973             | 1972    | 1973            | 1972    | 1973            | 1972           | 1973   |  |
| Alabama                | 20              | 19               | 1       | 1               | 11,690  | 11.705          | 1,254          | 818    |  |
| Colorado               | 3               | 3                | 1       | 1               | 1,240   | 1.662           | 324            | 391    |  |
| Illinois               | 38              | 36               | 9       | 7               | 48,837  | 48.091          | 7.163          | 5.155  |  |
| Indiana                | 11              | 10               | 1       | 2               | 19,577  | 19,699          | 1,337          | 2,181  |  |
| Kentucky:              |                 |                  |         |                 |         |                 |                |        |  |
| Eastern                | 32              | 33               | 13      | 9               | 20.382  | 22,264          | 3.936          | 3,358  |  |
| Western                | 18              | 18               | 2       | 3               | 18,226  | 20,005          | 297            | 547    |  |
| Total 1                | 50              | 51               | 15      | 12              | 38,608  |                 |                |        |  |
| North Dakota (lignite) |                 | 91               | 2       | 2               | 99,009  | 42,269          | 4,233          | 3,904  |  |
| Ohio                   | $\overline{21}$ | $\bar{1}\bar{7}$ |         |                 | 14 100  | 44 - 55         | 164            | 115    |  |
| Pennsylvania           | 71              | 68               | 4<br>13 | 4<br>9          | 14,163  | 14,588          | 1,275          | 1,381  |  |
| Utah                   | '7              | ٠,               | 2       | 9               | 45,612  | 45,731          | 5,569          | 5,393  |  |
| Virginia               | 31              | 7                |         | 1               | 3,333   | 3,575           | 720            | 982    |  |
| West Virginia          |                 | 32               | 10      | 10              | 17,763  | 17,696          | 4,496          | 4,421  |  |
| Other States           | 136             | 124              | 54      | 45              | 83,325  | 75,672          | 26,700         | 21,461 |  |
|                        | 20              | 15               |         |                 | 8,683   | 8,230           | ·              | ,      |  |
| Total 1                | 408             | 382              | 112     | 94              | 292,829 | 288,918         | 53,235         | 46,202 |  |

<sup>&</sup>lt;sup>1</sup> Data may not add to totals shown because of independent rounding.

Table 35.—Thermal drying of bituminous coal and lignite at mines, by State (Thousand short tons)

| State                  | Numi<br>therma<br>uni | drying |         | d total<br>uction | Thermally dried |        |
|------------------------|-----------------------|--------|---------|-------------------|-----------------|--------|
| <del></del>            | 1972                  | 1973   | 1972    | 1973              | 1972            | 1973   |
| Alabama                | 3                     | 3      | 20,814  | 19,230            | 1,254           | 818    |
| Colorado               | 1                     | 1      | 5,522   | 6,233             | 324             | 391    |
| Illinois               | 24                    | 11     | 65,523  | 61,572            | 7,163           | 5,155  |
| Indiana                | 7                     | 11     | 25,949  | 25,253            | 1,337           | 2,181  |
| Kentucky:              |                       |        |         |                   |                 |        |
| Eastern                | 15                    | 11     | 68,858  | 73,966            | 3,936           | 3,358  |
| Western                | 5                     | 7      | 52,330  | 53,679            | 297             | 547    |
| Total 1                | 20                    | 18     | 121,187 | 127,645           | 4,233           | 3,904  |
| North Dakota (lignite) | 2                     | 2      | 6,632   | 6,906             | 164             | 115    |
| Ohio                   | 8                     | 13     | 50,967  | 45,783            | 1,275           | 1,381  |
| Pennsylvania           | 21                    | 13     | 75,939  | 76,403            | 5,569           | 5,393  |
| Utah                   | 2                     | 1      | 4,802   | 5,500             | 720             | 982    |
| Virginia               | 20                    | 21     | 34,028  | 33,961            | 4,496           | 4,421  |
| West Virginia          | 76                    | 68     | 123,743 | 115,448           | 26,700          | 21,461 |
| Other States           |                       |        | 60,280  | 67,805            |                 |        |
| Total 1                | 184                   | 162    | 595,386 | 591,738           | 53,235          | 46,202 |

<sup>&</sup>lt;sup>1</sup> Data may not add to totals shown because of independent rounding.

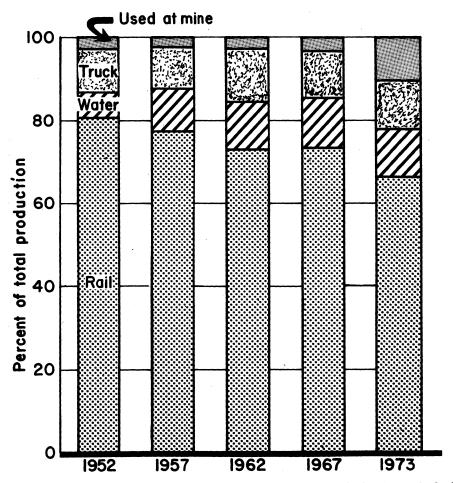



Figure 5.—Percentage of total production of bituminous coal and lignite, by method of shipment from mines and percentage used at mines.

Table 36.—Bituminous coal and lignite loaded for shipment by railroads and waterways in the United States, in 1973, as reported by mine operators (Thousand short tons)

| Route   State   By State   Total for Protect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (Tnousa                                         | nd short tons)        |                |                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------|----------------|-----------------------|
| Alaska                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Route                                           | State                 | By State       | Total for<br>route 1  |
| Atchison, Topeka & Santa Fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                 | Alaska                | 579            | 579                   |
| Baltimore & Ohio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                 | (Illinois             | 45)            |                       |
| Baltimore & Ohio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Atchison, Topeka & Santa re                     |                       |                | 1,430                 |
| Baltimore & Ohio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                 |                       |                |                       |
| Pennsylvania   3,000   West Virginia   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121   14,121  | Baltimore & Ohio                                |                       |                | 24.561                |
| Bevier & Southern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 | Pennsylvania          | 3,000          | ,                     |
| Bessemer & Lake Erie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D                                               | West Virginia         |                |                       |
| Burlington Northern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bessemer & Lake Erie                            |                       |                |                       |
| Burlington Northern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dessemer & Lake Dile                            |                       |                | 2,022                 |
| Montana (Bit. and Lig.)   10,647   10,647   10,647   10,647   10,647   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10,750   10 |                                                 | Iowa                  | 89             |                       |
| North Dakota (Lig.)   2,877   Wyoming                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Burlington Northern                             | Missouri              |                | 23.884                |
| Cambria & Indians                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 | North Dakota (Lie)    | 2 877          | 20,002                |
| Cambria & Indiana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 | Wyoming               |                |                       |
| Carbon County                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cambria & Indiana                               | Pennsylvania          | 3,274          | 3,274                 |
| Chesapeake & Ohio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Carbon County                                   |                       |                |                       |
| Chicago & Eastern Illinois                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Channaska & Ohio                                | Ohio                  |                | 60 606                |
| Chicago & Eastern Illinois   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   2,907   | Onesapeake & Onto                               | West Virginia         |                | 00,098                |
| Chicago & Illinois Midland                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Chicago & Eastern Illinois                      | Illinois              |                | 2,907                 |
| Chicago, Milwaukee, St. Paul and Pacific   Montana (Bit. and Lig.)   147   3,607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Chicago & Illinois Midland                      |                       |                |                       |
| Chicago & North Western                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Chicago Milwaukee St Paul and Pacific           | Montana (Rit and Lie) |                | 0.007                 |
| Chicago & North Western                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Officago, Milwaukee, Dr. 1 auf and 1 acinc 2222 | North Dakota (Lig.)   |                | 3,607                 |
| Chicago, Rock Island & Pacific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Chicago & North Western                         | Illinois              |                | 3.827                 |
| Colorado & Wyoming                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Chicago, Rock Island & Pacific                  | Iowa                  | 46             |                       |
| Colorado & Wyoming                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Clinchfield                                     | Kentucky              |                | 5.617                 |
| Denver & Rio Grande Western   Colorado   4,021   4,769     Erie-Lackawanna   Ohio   94   94     Gulf, Mobile & Ohio   Illinois   2,986   2,986     Illinois Central                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Colorado & Wyoming                              | Colorado              |                |                       |
| Utah   748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 | (Colorado             |                |                       |
| Gulf, Mobile & Ohio   Illinois   2,986   2,986   2,986   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 | Utah                  | 7485           |                       |
| Illinois Central                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Culf Mobile & Ohio                              | Ohio                  |                |                       |
| Interstate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |                       |                |                       |
| Interstate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |                       | 12.030         | 34,055                |
| Kentucky & Tennessee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                 |                       |                |                       |
| Lake Erie, Franklin & Clarion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Kansas City Southern                            | Oklahoma              |                |                       |
| Louisville & Nashville                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                 |                       |                |                       |
| Louisville & Nashville                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                 | Alabama               |                | 121                   |
| Tennessee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T                                               |                       | 3,805          |                       |
| Mary Lee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Louisville & Nashville                          | Kentucky              |                | 42,234                |
| Mary Lee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 | Virginia              |                |                       |
| Missouri-Kansas-Texas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 | Alabama               |                | 726                   |
| Missouri Pacific   Arkansas   240   Ar | Missouri Illinois                               | Illinois              |                | 2,209                 |
| Missouri Pacific   Arkansas   240   Ar | Missouri-Venses-Toyes                           | Missouri              |                | 1 101                 |
| Missouri Pacific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Missyuli-Malisas-16Aas                          | Oklahoma              |                | 1,101                 |
| Oklahoma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 | Arkansas              |                |                       |
| Montour   Pennsylvania   6,899   6,899   Montour   Pennsylvania   2,721   2,721   2,721                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Missouri Pacific                                | Illinois              |                | 4,546                 |
| Montour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Monongahela                                     | West Virginia         |                | 6 900                 |
| Norfolk & Western                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 | Pennsylvania          |                |                       |
| Norfolk & Western                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 | Iowa                  |                | _,                    |
| Virginia   18,967   West Virginia   28,228     Penn Central (includes coal shipped over Kanawha & Michigan, Kelley's Creek, Toledo & Ohio Central and Zanesville & Indiana   7,686   Ohio   9,577   Pennsylvania   19,331   West Virginia   6,337   Pittsburgh & Shawmut   Pennsylvania   2,170   2,170   2,170   St. Louis-San Francisco   Alabama   253   Arkansas   297   Oklahoma   1,634   Soo Line   North Dakota (Lig.)   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   6 | Manfalla & Wastons                              |                       | 14,516         |                       |
| West Virginia   28,228   Penn Central (includes coal shipped over Kanawha & Michigan, Kelley's Creek, Toledo & Ohio Central and Zanesville & Indiana   7,686 Ohio   9,577 Pennsylvania   19,331 West Virginia   6,337 Pittsburgh & Shawmut   Pennsylvania   2,170   2,170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Nortolk & Western                               |                       |                | 67,220                |
| Penn Central (includes coal shipped over Kanawha & Michigan, Kelley's Creek, Toledo & Ohio Central and Zanesville & Indiana 7,686 Ohio 9,577 Pennsylvania 19,331 West Virginia 6,337 Pennsylvania 2,170 Alabama 258 Arkansas 9 Kansas 9 Kansas 9 Kansas 1,634 Soo Line North Dakota (Lig.) 681 681 Alabama 4,582 Indiana 2,305 Kentucky 788 Tennessee 3,889 Virginia 5,205 Alabama 2,305 Kentucky 788 Tennessee 3,889 Virginia 5,205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                 |                       |                |                       |
| Toledo & Ohio Central and Zanesville & Indiana   7,686   Western                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Penn Central (includes coal shipped over        |                       |                |                       |
| Vestern   Chic   9,577   45,273   Pennsylvania   19,331   West Virginia   6,337   2,170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Kanawha & Michigan, Kelley's Creek,             |                       | 2,342          |                       |
| Pennsylvania                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Western                                         |                       | 9,586          | 45 272                |
| West Virginia   6,337   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,170   2,17 | Western)                                        |                       |                | 40,210                |
| St. Louis-San Francisco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                 | West Virginia         |                |                       |
| St. Louis-San Francisco   Arkansas   9   2,193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pittsburgh & Shawmut                            |                       |                | 2,170                 |
| Kansas   297   2,175   Collaboras   1,634   Soo Line   North Dakota (Lig.)   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   681   | <b>.</b>                                        |                       |                |                       |
| Oklahoma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | St. Louis-San Francisco                         |                       |                | 2,193                 |
| Soo Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 | Oklahoma              | 1,634          |                       |
| Southern   Indiana   2,305   Kentucky   738   Tennessee   3,889   Virginia   5,205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Soo Line                                        | North Dakota (Lig.)   |                | 681                   |
| Kentucky 788   16,719   Tennessee 3,889   Virginia 5,205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 | Indiana               | 4,082<br>2 305 |                       |
| Tennessee 3,889<br>Virginia 5,205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Southern                                        | Kentucky              |                | 16,719                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 | Tennessee             | 3,889          | <b>,</b> <del>-</del> |
| See footnotes at end of table.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 | (Virginia             | <b>5,205</b> ) |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | See footnotes at end of table.                  |                       |                |                       |

Table 36.-Bituminous coal and lignite loaded for shipment by railroads and waterways in the United States, in 1973, as reported by mine operators-Continued

| (The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ousand short wils)               |             |                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------|-------------------|
| Route                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | State                            | By State    | Total for route 1 |
| - AV POAD Continued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  | 58          | 58                |
| RAILROAD—Continued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tennessee                        | 1,574       | 1,574             |
| ennessee Reflered Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  | 208)        |                   |
| ennessee Coal, Iron & Railroad Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (Colorado                        | 7,722       | 7,930             |
| Inion Pacific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (Wyoming                         | 847         | 847               |
| , in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second |                                  | 1.066       |                   |
| tah                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maryland                         | 1,055 }     | 5,242             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pennsylvania                     | 3,118       |                   |
| Vestern Maryland                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | West Virginia                    | 842         | 842               |
| - 1 T Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Alabama                          | 1,961       | 1,961             |
| Voodward Hon Oo 222222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Indiana                          | 397,158     | 397,158           |
| ankeetownshipments 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |             |                   |
| Total ranroad simplification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                  |             | 710               |
| WATERWAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pennsylvania                     | 710         | •                 |
| Allegheny River                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (Arkansas                        | 165)<br>57( | 222               |
| 1 Diror                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | )Oklahoma                        | 400         | 109               |
| Arkansas River                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Kentucky                         | - = ::      | 2,743             |
| Big Sandy River                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  | 2,120       | 63                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17                               |             | 14.018            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |             | 291               |
| Green River                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Illinois                         | - =         | 3,764             |
| Illinois River                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | West Virginia                    |             | 24,488            |
| Kanawha River                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pennsylvania                     | 8,231       | 24,400            |
| Monongahela River                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | West Virginia                    | 1,000       |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Illinois                         |             |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Indiana                          |             | 21,618            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tennessee                        | _ 0,000 [   | ,                 |
| Ohio River                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Donneylyania                     |             |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | West Virginia                    | _ 0,000     |                   |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (Alahama                         | _ 10}       | 588               |
| Tonnessee River                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tennessee                        |             | 68,604            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  | - 00,001    |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |             | 465,765<br>57,265 |
| Total loaded at mines for snipmer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | etination                        | _ 57,268    | 64,42             |
| Shipped by truck from mine to man de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | to adjacent to or near the mine  | 64,424      | 4,28              |
| Coal transported to electric utility plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | us wag                           | 4,284       |                   |
| All other 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | 591,738     | 591,73            |
| Toal production                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |             |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | because of independent rounding. | _           | 1 1               |

<sup>&</sup>lt;sup>1</sup> Data may not add to totals shown because of independent rounding.

<sup>2</sup> Includes coal used at mine for power and heat, made into beehive coke at mine, used by mine employees, used for all other purposes at mine, shipped by slurry pipeline.

Table 37.-Bituminous coal and lignite shipped by unit train in the United States

(Thousand short tons) 1973 1972 State 3,930 4,253 2,391 1,210 21,777 Alabama 22,155 Colorado -----3,048 5,493 Illinois Indiana -----190 214 Iowa Kansas 12,197 7,291 9,522 6,706 Kentucky: Eastern 19,489 Western 16,228 Total 1 122 60 10,115 778 7,698 Maryland Montana (bituminous) 623 1.607 1.577 18,266 18,063 489 462 18,228 22,262 1,208 2,094 1,171 1,905 Pennsylvania Tennessee -----4,477 3,301 Iltah 34,203 5,826 33,449 2,889 Virginia Virginia \_\_\_\_\_ 155,093 136,534 Wyoming Total -----

<sup>&</sup>lt;sup>1</sup> Data may not add to totals shown because of independent rounding.

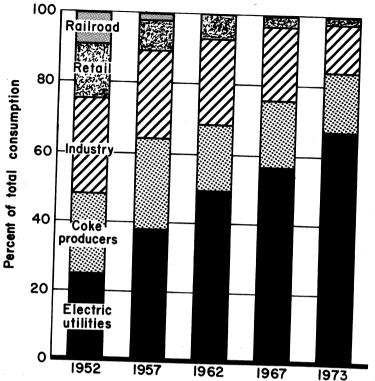



Figure 6.—Percentage of total consumption of bituminous coal and lignite, by consumer class and retail deliveries in the United States.

Table 38.-Consumption of bituminous coal and lignite, by consumer class, and retail deliveries in the United States

|                                                                               |                                                                                                                                  | (Thou                                                        | isand shor                                                                      | t tons)                                                                                                            |                                                                                           |                                                                                                                    |                                                                                               |                                                                                                                       |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
|                                                                               |                                                                                                                                  |                                                              | Manufac                                                                         | turing an                                                                                                          | d mining i                                                                                | ndustries                                                                                                          |                                                                                               |                                                                                                                       |
| Year and month                                                                | Electric<br>power<br>utilities 1                                                                                                 | Bunker<br>lake<br>vessel<br>and<br>foreign <sup>2</sup>      | Beehive<br>coke<br>plants                                                       | Oven<br>coke<br>plants                                                                                             |                                                                                           | Other<br>manu-<br>facturing<br>and<br>mining<br>indus-<br>tries 4                                                  | Retail<br>deliv-<br>eries<br>to other<br>con-<br>sumers <sup>5</sup>                          | Total<br>of<br>classes<br>shown                                                                                       |
| 1969                                                                          | 308,461<br>318,921<br>326,280                                                                                                    | 313<br>298<br>207                                            | 1,158<br>1,428<br>1,278                                                         | 91,743<br>94,581<br>81,531                                                                                         | 5,560<br>5,410<br>5,560                                                                   | 85,374<br>82,909<br>68,655                                                                                         | 14,666<br>12,072<br>11,351                                                                    | 507,275<br>515,619<br>494,862                                                                                         |
| 1971                                                                          | 326,280<br>30,074<br>28,790<br>28,261<br>25,908<br>26,648<br>27,600<br>30,088<br>31,470<br>28,967<br>29,720<br>32,286<br>348,612 | 1<br>2<br>111<br>20<br>23<br>18<br>24<br>20<br>17<br>19<br>8 | 82<br>86<br>85<br>85<br>82<br>84<br>79<br>87<br>88<br>87<br>102<br>112<br>1,059 | 6,790<br>6,689<br>7,373<br>7,338<br>7,557<br>7,126<br>7,276<br>7,273<br>6,952<br>7,258<br>7,063<br>7,518<br>86,213 | 510<br>540<br>492<br>416<br>378<br>244<br>290<br>298<br>306<br>381<br>457<br>538<br>4,850 | 5,190<br>6,075<br>6,817<br>5,988<br>5,580<br>5,166<br>4,970<br>4,969<br>4,996<br>5,438<br>5,772<br>6,160<br>67,131 | 1,304<br>998<br>743<br>402<br>323<br>262<br>350<br>577<br>840<br>902<br>971<br>1,076<br>8,748 | 43,951<br>43,178<br>43,773<br>40,158<br>40,505<br>43,071<br>44,698<br>42,002<br>43,050<br>44,104<br>47,698<br>516,776 |
| February March April May June July August September October November December | 30,533<br>28,868<br>29,655<br>31,824<br>34,620<br>35,933<br>32,735<br>32,268<br>31,962                                           | 13<br>17<br>15<br>13<br>14<br>12<br>12<br>12                 | 103<br>102<br>106<br>96<br>101<br>113<br>105<br>132<br>124<br>127               | 7,847<br>7,625<br>7,943<br>7,678<br>7,863<br>7,781<br>7,498<br>7,755<br>7,612<br>7,921                             | 540<br>525<br>550<br>558<br>450<br>425<br>430<br>410<br>575<br>660                        | 5,106<br>5,160<br>4,997<br>4,563<br>4,237<br>4,128<br>4,019<br>5,051<br>5,487<br>6,520                             | 396<br>360<br>381<br>431<br>446<br>672<br>804<br>932<br>1,009                                 | 42,689<br>43,628<br>45,115<br>47,715<br>48,840<br>45,471<br>46,427<br>46,703<br>50,130                                |
| Total                                                                         | 000 070                                                                                                                          | 116                                                          | 1,310                                                                           | 92,324                                                                                                             | 6,356                                                                                     | 60,837                                                                                                             | 8,200                                                                                         |                                                                                                                       |

Table 39.-Stocks of bituminous coal and lignite held by commercial consumers and in retail dealer's yards in the United States, 1973

|                                                                                          | Total                                                                                                                 | Days'                                                           | supply at                                                | current rat<br>of stockt                                       | e of consump<br>aking                                                | tion on d                                             |                                                                      |
|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------|
| Date                                                                                     | stocks<br>(thousand<br>short<br>tons)                                                                                 | Electric<br>power<br>util-<br>ities                             | Oven<br>coke<br>plants                                   | Steel and<br>rolling<br>mills                                  | Other<br>manu-<br>facturing<br>and mining<br>industries              | Retail<br>dealers                                     | Average                                                              |
| Jan. 31 Feb. 28 Mar. 31 Apr. 30 June 30 July 31 Aug. 31 Sept. 30 Oct. 31 Nov. 30 Dec. 31 | 111,120<br>108,870<br>111,490<br>112,585<br>116,890<br>109,960<br>107,390<br>106,230<br>107,490<br>107,110<br>102,200 | 82<br>82<br>94<br>96<br>102<br>86<br>81<br>81<br>86<br>84<br>78 | 34<br>33<br>33<br>34<br>33<br>24<br>26<br>26<br>28<br>28 | 17<br>16<br>24<br>23<br>24<br>32<br>32<br>31<br>84<br>30<br>24 | 49<br>58<br>62<br>60<br>61<br>65<br>72<br>72<br>75<br>58<br>51<br>43 | 6<br>11<br>19<br>24<br>16<br>14<br>16<br>11<br>8<br>9 | 69<br>68<br>77<br>79<br>83<br>73<br>70<br>68<br>70<br>72<br>69<br>63 |

<sup>1</sup> Federal Power Commission.
2 Bureau of the Census, U.S. Department of Commerce, Ore and Coal Exchange.
3 Estimates based upon reports collected from a selected list of representative steel and rolling

mills.

4 Estimates based upon reports collected from a selected list of representative manufacturing <sup>5</sup> Estimates based upon reports collected from a selected list of representative retailers. Includes some coal shipped by truck from mine to final destination. plants.

Table 40.-Distribution of bituminous coal and lignite, in 1973, by method of movement and consumer use

| Shipments                                                                                                                                                       | Electric<br>utilities                                              | Coke and<br>gas<br>plants | Retail<br>dealers                                | All<br>others                             | Rail-<br>road<br>fuel                      | Used a mines and sales to em |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------|--------------------------------------------------|-------------------------------------------|--------------------------------------------|------------------------------|
| CL:                                                                                                                                                             |                                                                    |                           |                                                  |                                           |                                            | ployee                       |
| Shipments to all destinations in the United States, Canada, and Mexico, by specific method of movement and consumer use:  Method of movement:                   |                                                                    |                           |                                                  |                                           |                                            |                              |
| All-rail                                                                                                                                                        | 195,008                                                            | 54.285                    | 4 401                                            | 1 00 000                                  |                                            |                              |
| Kiver and ex-river                                                                                                                                              | 76.490                                                             | 23,203                    | 4,431<br>277                                     | <sup>1</sup> 36,329                       |                                            | _                            |
| Great Lakes                                                                                                                                                     | 17,628                                                             | 23,203<br>13,767          |                                                  | 4,709                                     |                                            | _                            |
| 11dewater 3                                                                                                                                                     | 2.357                                                              | 4.955                     | 975                                              | 6,478                                     |                                            | _                            |
| Truck                                                                                                                                                           | 48.397                                                             | 1,724                     | 0.000                                            | 43                                        |                                            | _                            |
|                                                                                                                                                                 | 40,001                                                             | 1,724                     | 2,332                                            | 15,661                                    |                                            | _                            |
| Method of movement and/or consumer                                                                                                                              | 42,284                                                             | 61                        |                                                  | 1,860                                     |                                            | _                            |
| unknown                                                                                                                                                         |                                                                    |                           |                                                  |                                           | 229                                        | 1,600                        |
| Total                                                                                                                                                           | 382,164                                                            | 97,995                    | 8,015                                            |                                           | 229                                        | 1,600                        |
|                                                                                                                                                                 | Canadia<br>Great<br>Lakes<br>com-<br>mercial<br>docks <sup>4</sup> | Great<br>Lakes<br>dock    | U.S.<br>tide-<br>water<br>dock<br>stor-<br>age 4 | Over-<br>seas ex-<br>ports <sup>5 6</sup> | Net<br>change<br>in mine<br>inven-<br>tory | Total                        |
| hipments to all destinations in the United<br>States, Canada, and Mexico by specific<br>method of movement and consumer use:<br>Method of movement:<br>All-rail |                                                                    |                           |                                                  |                                           |                                            |                              |
| River and ex-river                                                                                                                                              |                                                                    |                           |                                                  |                                           | 1                                          | 290.053                      |
|                                                                                                                                                                 |                                                                    |                           |                                                  |                                           |                                            | 104,679                      |
| 1 idewater •                                                                                                                                                    |                                                                    |                           |                                                  |                                           |                                            | 38,848                       |
| TIUCK                                                                                                                                                           |                                                                    |                           |                                                  |                                           |                                            | 7,355                        |
|                                                                                                                                                                 |                                                                    |                           |                                                  |                                           |                                            | 68,114                       |
| road                                                                                                                                                            |                                                                    |                           |                                                  |                                           |                                            | 44,205                       |
|                                                                                                                                                                 | 174                                                                | 116                       |                                                  | 07 770                                    |                                            |                              |
| Total                                                                                                                                                           | 174                                                                | -117                      |                                                  | 35,570                                    | 922                                        | 36,524                       |

<sup>1</sup> Includes overseas exports from producing districts 13 and 14.
2 Excludes shipments to Canadian Great Lakes commercial docks and U.S. dock storage for which consumer uses are not available; however, includes vessel fuel, the destinations of which are not available overseas exports for which consumer uses are not available.
3 Excludes overseas exports for which consumer uses are not available.
4 Consumer use unknown.
5 Excludes Canada; consumer use unknown.
6 Excludes overseas exports from producing districts 13 and 14.

Table 41.-Distribution of bituminous coal and lignite, in 1973, by district of origin consumer use

|                                 | (Inousan                                                            | id Bilor o com                                         | -,                                                     |                                  |                                    |                                               |
|---------------------------------|---------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|----------------------------------|------------------------------------|-----------------------------------------------|
| District of origin <sup>1</sup> | Electric<br>utilities                                               | Coke and<br>gas plants                                 | Retail<br>dealers                                      | All<br>others                    | fuel                               | Used at<br>mines and<br>sales to<br>employees |
|                                 |                                                                     |                                                        |                                                        | 4.001                            | 23                                 | 224                                           |
|                                 | 34,362                                                              | 5,135                                                  | 394                                                    | 4,001                            | 20                                 | 11                                            |
| 1                               | 9,403                                                               | 20,643                                                 | 224                                                    | 3,518                            |                                    | 7                                             |
| 2                               | 34,818                                                              | 2,677                                                  | 166                                                    | 3,382                            | 10                                 | 27                                            |
| 3 and 6                         | 38,926                                                              |                                                        | 891                                                    | 7,203                            | 18                                 |                                               |
| 4                               | 789                                                                 | 14,388                                                 | 280                                                    | 1,284                            | 50                                 | 1,030                                         |
| 7                               |                                                                     | 38,969                                                 | 4,114                                                  | 21,491                           | 110                                | 104                                           |
| 8                               | 65,747                                                              | 30,303                                                 | 200                                                    | 3,084                            | 3                                  | 77                                            |
| 9                               | 52,894                                                              | 4,438                                                  | 663                                                    | 7,736                            | 8                                  | 44                                            |
| 10                              | 49,705                                                              | 4,450                                                  | 109                                                    | 4,492                            | 3                                  |                                               |
| 11                              | 20,454                                                              |                                                        | 3                                                      | 37                               |                                    |                                               |
| 12                              | 618                                                                 |                                                        | 166                                                    | 2 2.527                          |                                    |                                               |
|                                 | 11,628                                                              | 5,879                                                  | 100                                                    | <sup>2</sup> 502                 |                                    |                                               |
|                                 | ·                                                                   | 271                                                    | ==                                                     |                                  | - <u>ī</u>                         | 1                                             |
| 14                              | 12,665                                                              | 164                                                    | 22                                                     | 2,296                            | •                                  | <b>2</b> .                                    |
| 15                              | 492                                                                 |                                                        | 9                                                      | 7                                |                                    | <u> </u>                                      |
| 16                              | 2,974                                                               | 3,263                                                  | 202                                                    | 464                              |                                    |                                               |
| 17                              | 11,008                                                              |                                                        |                                                        | 29                               | -:                                 | - <del>-</del> 7                              |
| 18                              | 14,113                                                              | 61                                                     | 71                                                     | 783                              | 1                                  | 25                                            |
| 19                              | 14,110                                                              | 2,107                                                  | 398                                                    | 1,106                            | 1                                  |                                               |
| 20                              | 1,903                                                               |                                                        | 87                                                     | 623                              |                                    | 116                                           |
| 21                              | 6,098                                                               |                                                        | 16                                                     | 515                              | 1                                  |                                               |
| 22 and 23                       | 13,567                                                              |                                                        |                                                        |                                  | 229                                | 1,600                                         |
|                                 | 382,164                                                             | 97,995                                                 | 8,015                                                  | 65,080                           | 220                                |                                               |
| Total                           |                                                                     |                                                        |                                                        |                                  |                                    |                                               |
| District of origin <sup>1</sup> | Canadian<br>Great<br>Lakes<br>com-<br>mercial<br>docks <sup>3</sup> | U.S.<br>Great<br>Lakes<br>dock<br>storage <sup>3</sup> | U.S.<br>tide-<br>water<br>dock<br>storage <sup>3</sup> | Overseas<br>exports <sup>4</sup> | Net change<br>in mine<br>inventory | Total                                         |
| _                               |                                                                     |                                                        |                                                        | 2,738                            | 181                                | 47,107                                        |
| 1                               | 49                                                                  |                                                        |                                                        | 2,.00                            | 154                                | 33,685                                        |
| 2                               | 40                                                                  |                                                        |                                                        | $1,7\overline{16}$               | -251                               | 42,569                                        |
| 3 and 6                         | 53                                                                  | 9                                                      |                                                        | 1,.10                            | 643                                | 47,715                                        |
|                                 | 8                                                                   | -1                                                     |                                                        | $13,4\overline{21}$              | 63                                 | 31,179                                        |
|                                 |                                                                     |                                                        |                                                        | 17,695                           | <b>—708</b>                        | 147,439                                       |
| 7                               | 24                                                                  | -107                                                   |                                                        | 11,000                           | 88                                 | 56,269                                        |
| 8                               |                                                                     |                                                        |                                                        |                                  | -644                               | 61,950                                        |
| 9                               |                                                                     |                                                        |                                                        |                                  | 48                                 | 25,010                                        |
| 10                              |                                                                     |                                                        |                                                        |                                  | 40                                 | 658                                           |
| 11                              |                                                                     |                                                        |                                                        |                                  |                                    | 20,131                                        |
| 12                              |                                                                     |                                                        |                                                        | ( <sup>5</sup> )                 | <b> 69</b>                         |                                               |
| 13                              |                                                                     |                                                        |                                                        | ( <sup>5</sup> )                 |                                    | 773                                           |
| 14                              |                                                                     |                                                        |                                                        | `                                | -120                               | 15,029                                        |
| 15                              |                                                                     |                                                        |                                                        |                                  | -1                                 | 509                                           |
|                                 |                                                                     |                                                        |                                                        |                                  | 53                                 | 6,958                                         |
|                                 |                                                                     |                                                        |                                                        |                                  | 81                                 | 11,118                                        |
| 17                              |                                                                     |                                                        |                                                        |                                  | 39                                 | 15,075                                        |
| 18                              |                                                                     |                                                        |                                                        |                                  | 58                                 | 5,598                                         |
| 19                              |                                                                     |                                                        |                                                        |                                  | -6                                 | 6,918                                         |
| 20                              |                                                                     |                                                        |                                                        |                                  | -0<br>-1                           | 14,098                                        |
| 21                              |                                                                     |                                                        |                                                        |                                  |                                    |                                               |
| 22 and 23                       |                                                                     | -117                                                   |                                                        | 35,570                           | - 922                              | 589,788                                       |
| Total                           | 174                                                                 | -117                                                   |                                                        |                                  |                                    |                                               |
| 10041                           |                                                                     |                                                        |                                                        | G1                               | 4 Lianite                          | Distribution                                  |
|                                 |                                                                     |                                                        |                                                        |                                  |                                    |                                               |

<sup>&</sup>lt;sup>1</sup>Producing districts are defined in Bureau of Mines Bituminous Coal and Lignite Distribution Calendar Year 1973, Mineral Industry Survey, Apr. 12, 1974, 41 pp.

<sup>2</sup>Includes overseas exports.

<sup>3</sup>Consumer use unknown.

<sup>4</sup>Excludes Canada; consumer use unknown.

<sup>5</sup>Included with all others.

Table 42.-Distribution of bituminous coal and lignite, in 1973, by destination and consumer use

| Destination                                                           | Total  | Electric<br>utilities | Coke<br>and gas<br>plants | Retail<br>dealers | All     |
|-----------------------------------------------------------------------|--------|-----------------------|---------------------------|-------------------|---------|
| New England:                                                          |        |                       | P141165                   |                   |         |
| Massachusetts                                                         |        |                       |                           |                   |         |
|                                                                       | 106    | 22                    |                           | 23                |         |
|                                                                       | 118    | 69                    |                           | 45                | 61      |
|                                                                       |        |                       |                           |                   | 49      |
| Middle Atlantic:                                                      | 1,109  | 1,071                 |                           | 7                 |         |
| New York<br>New Jersey                                                |        |                       |                           | •                 | 31      |
| New JerseyPennsylvania                                                | 13,290 | 5,469                 | 5,444                     | 59                |         |
| Pennsylvania East North Central                                       | 2,524  | 2,425                 | -,                        |                   | 2,318   |
| East North Central:                                                   | 64,469 | 34,963                | 23,177                    | 21<br>657         | 78      |
| Uhio .                                                                | C= === |                       | -,                        | 007               | 5,672   |
| Indiana<br>Illinois                                                   | 65,557 | 41,745                | 13,410                    | 1,056             | 0.040   |
| IllinoisMichigan                                                      | 45,061 | 25,753                | 13,605                    | 450               | 9,346   |
|                                                                       | 40,628 | 32,465                | 2,968                     | 934               | 5,253   |
| WisconsinWest North Central                                           | 31,685 | 20,294                | 4,876                     | 561               | 4,261   |
| West North Central:                                                   | 12,634 | 9,322                 | 239                       | 458               | 5,954   |
| Minnesota                                                             | 0.101  |                       |                           | 400               | 2,615   |
| Iowa<br>Missouri                                                      | 9,161  | 6,862                 | 1,082                     | 247               | 050     |
| Missouri North Dakota and South Dakota                                | 6,889  | 5,359                 | ,                         | 71                | 970     |
| North Dakota and South Dakota Nebraska and Kansas                     | 17,385 | 15,451                | 319                       | 191               | 1,459   |
| Nebraska and KansasSouth Atlantic:                                    | 5,816  | 5,381                 |                           | 114               | 1,424   |
| South Atlantic:                                                       | 3,527  | 3,086                 |                           | 27                | 321     |
| Delaware and Maryland District of Columbia                            | 10     |                       |                           | 21                | 414     |
| District of Columbia                                                  | 10,596 | 4,789                 | 4,850                     | 32                | 00=     |
| Virginia                                                              | 548    | 265                   |                           | 24                | 925     |
| West VirginiaNorth Carolina                                           | 7,910  | 4,944                 |                           | 450               | 259     |
| North Carolina South Carolina                                         | 32,305 | 22,502                | 5,196                     | 243               | 2,516   |
| South Carolina<br>Georgia and Florida                                 | 19,820 | 17,999                |                           | 381               | 4,364   |
| Georgia and FloridaEast South Central:                                | 6,999  | 5,663                 |                           | 230               | 1,440   |
| East South Central:                                                   | 16,894 | 16,434                |                           | 72                | 1,106   |
| Kentucky                                                              | 95.050 |                       | _ <del>_</del>            | 14                | 388     |
| TennesseeAlabama and Mississippi                                      | 25,078 | 21,734                | 1,162                     | 314               | 1 000   |
| Alabama and Mississippi West South Central: Arkansas Louisi           | 22,238 | 19,588                | 193                       |                   | 1,868   |
| West South Central: Arkansas, Louisiana, Oklahoma, and Toyog          | 27,695 | 18,189                | 7,105                     | 2.3               | 2,099   |
| Oklahoma, and Texas                                                   |        |                       |                           | 00                | 2,311   |
|                                                                       | 8,049  | 4,840                 | 953                       | 4                 | 9 9 5 9 |
| Colorado<br>Utah                                                      | 0.400  |                       |                           | 7                 | 2,252   |
| Utah<br>Montana and Idaho                                             | 6,490  | 4,672                 | 1,114                     | 168               | 536     |
| Montana and Idaho                                                     | 3,957  | 1,202                 | 1,814                     | 187               | 754     |
| WyomingNew Mexico                                                     | 1,395  | 889                   |                           | 211               | 295     |
| New Mexico Arizona and Nevada                                         | 6,200  | 5,932                 |                           | 22                |         |
| Arizona and Nevada                                                    | 7,343  | 7,325                 |                           |                   | 246     |
| acific:                                                               | 4,451  | 4,313                 |                           | 1                 | 18      |
| Washington and OregonCalifornia                                       |        |                       |                           | -                 | 137     |
| Californialaska                                                       | 3,510  | 3,246                 |                           | 32                | 232     |
| laskaanada 2                                                          | 2,398  |                       | 2,385                     | 02                |         |
| anada 2 exico                                                         | 707    | 231                   |                           | 13                | 13      |
| exicoestinations not revealable                                       | 16,052 | 7,439                 | 7.376                     | 270               | 463     |
|                                                                       | 305    |                       | 126                       | 210               | 967     |
| estinations and/or consumer uses not available: Great Lakes movement: | 1,755  | 231                   | 601                       | 37 2              | 179     |
| Great Lakes movement:                                                 |        |                       |                           | 01                | 886     |
| Vallatilan commondial 1. 1                                            |        |                       |                           |                   |         |
| Vessel fuelU.S. dock storage                                          | 174    |                       |                           |                   |         |
| U.S. dock storage Tidewater movement                                  | 600    |                       |                           |                   |         |
| Tidewater movement:                                                   | 117    |                       |                           |                   |         |
| Uverseas exports (                                                    |        |                       |                           |                   |         |
| Bunker fuel 4 3 U.S. dock storage                                     | 5,570  | ~                     |                           |                   |         |
| U.S. dock storage                                                     |        |                       |                           |                   |         |
| Railroad fuel:                                                        |        |                       |                           |                   |         |
| U.S. companies                                                        |        |                       |                           |                   |         |
| Canadian companies                                                    | 224    |                       |                           |                   |         |
| Coal used at minor                                                    | 5      |                       |                           |                   |         |
| Net change in mine inventory                                          | 1,600  |                       |                           |                   |         |
| Total 589                                                             | -922   |                       |                           |                   |         |
| 1 Otal                                                                |        |                       |                           |                   |         |

<sup>&</sup>lt;sup>1</sup> Excludes vessel fuel and bunker fuel, the destinations of which are not available.
<sup>2</sup> Excludes shipments to Canadian Great Lakes commercial docks and Canadian railroad com-

Fixched Suppliers of Canada, 12.

Sincludes overseas exports from producing districts 13 and 14.

Excludes overseas exports from producing districts 13 and 14.

Table 43.-Total bituminous coal and lignite shipments and percent of grand total shipments, by geographic division and State of destination Percent of total

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | ļi             |                      | 1       |         |          | Percent     | Percent of total |             |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------|----------------------|---------|---------|----------|-------------|------------------|-------------|-------------|
| State of destination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1080    | Thousand short | 1 short tons<br>1971 | 1972    | 1978    | 1969     | 1970        | 1971             | 1972        | 1973        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | COST    |                |                      |         |         |          |             |                  | 000         | 100         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 000     | 000            | EE9 199              | 595.214 | 589.788 | 100.0    | 100.0       | 100.0            | 0.001       | 9.6         |
| [***B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 559,880 | 266,180        | 9,445                | 1.522   | 1,333   | 1.0      | 9.          | <b>4.</b> (      | ۶! (        | 1.5         |
| 10041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,009   | 000,0          | 100                  | 147     | 106     | ₹.       | ٦:          | £,               | D:E         | )=          |
| New England                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,22    | 1 099          | 1 271                | 109     | 118     | 4.       | ಲೆ (        | si e             | ÷           | 6           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,235   | 1,000          | 100                  | 1 266   | 1.109   | oj.      | Ņ           | ,                | į           | 12.         |
| Maine New Hampshire, Vermont, and Rhode Island.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,139   | 1,120          | 77 552               | 78.998  | 80,283  | 16.0     | 15.2        | 14.0             | 19.7<br>0   | 9.0         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 89,460  | 90,992         | 15,596               | 13,177  | 13,290  | 4.3      |             | ,<br>10, 1       | 40          | i           |
| Middle Avantar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24,324  | 4 051          | 20,07                | 1.303   | 2,524   | 1.0      | 90,         | Ģ                | , ç         | 10.9        |
| Now Iongov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0,000   | 4,301          | 580 85               | 64.518  | 64,469  | 10.1     | 10.5        | 10.7             | 77.0        | 600         |
| Demonstrania                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100,60  | 00,000         | 187,060              | 206,504 | 195,565 | 35.6     | 34.5        | 34.0             | 1.4.1       | 11.5        |
| Tellibyivalia Contral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 199,349 | 206,011        | 201,303              | 67.795  | 65,557  | 11.1     | 11.3        | 11.4             | 11.4        | 11:1        |
| Obio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 62,160  | 0,0,0          | 90,110               | 46,618  | 45.061  | 7.4      | 7.1         | 7.0              | 0.          |             |
| Taking the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state o | 41,299  | 42,330         | 00,000               | 49,098  | 40,628  | 8.1      | 7.1         | 6.9              | ::          | , r         |
| Title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45,244  | 42,310         | 00,00                | 2K,08K  | 31,685  | 6.3      | 6.1         | 5.9              | o c         | * 0         |
| Mishigan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35,674  | 36,633         | 15,040               | 14.978  | 12,634  | 2.7      | 2.9         | 2.0<br>20.0      | 9 10        | 1 6         |
| Wisconsin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14,972  | 1,000          | 25,407               | 39.587  | 42.778  | 5.4      | 9.0         | 6.<br>4. 7       | -           | 9           |
| Treet North Contral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30,337  | 00,000         | 0,12                 | 8,639   | 9,161   | 1.4      | 1.5         | o:,              | * 0         |             |
| West Indian Center at the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of the content of | 8,100   | 8,708          | 0,010                | 926     | 6.889   | 1.0      | 1:0         | 1;               | 7 5         | 10          |
| INTINITIES OF STREET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5,673   | 6,159          | 0,700                | 15,210  | 17,385  | 2.0      | 2.3         | 7.7              | - c         | , c         |
| 10W8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11,098  | 13,397         | 10,000               | F 834   | 5.816   | ۲.       | œ.          | 1.0              | o. <u>.</u> |             |
| Missouri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3,996   | 4,799          | 9,212                | 9,004   | 3,527   | e.       | બ           | 4.               | 4.6         |             |
| NORTH Dakota and Dough Dates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,470   | 1,974          | 2,770                | 200,00  | 95 072  | 16.0     | 15.3        | 16.3             | 16.3        | 101         |
| Valled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 89,574  | 91,559         | 90,354               | 20,20   | 10,596  | 2.7      | 2.3         | 2.1              | 1.6         | 6. <u>1</u> |
| South Atlantic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15,008  | 13,928         | 11,599               | 44.0    | 548     | c.       | 64          | <b>-</b> :       | ۲.          | -: <b>;</b> |
| Delaware and maryland                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,235   | 1,113          | 550                  | 0 097   | 7 910   | 2.3      | 1.9         | 1.7              | E. 1        | <br>        |
| District of Columnia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12,994  | 11,065         | 9,7,00               | 99,450  | 20,305  | 4.4      | 4.1         | 4.8              |             | 0.0         |
| Virginia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 24,356  | 24,395         | 26,606               | 92,409  | 19,820  | 60       | 3.6         | 3.6              |             |             |
| West Virginia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18,711  | 21,696         | 19,73                | 6 015   | 666.9   | 1.0      | 1.0         | 1:1              | 7.5         | 4.0         |
| Courth Contains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5,319   | 6,143          | 16,905               | 17,815  | 16,894  | 2.1      | 2.2         | 6.2              | 200         | 10.0        |
| Course ond Florida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11,951  | 13,219         | 10,633               | 78 843  | 75,011  | 11.2     | 11.6        | 13.0             | 15.2        | - 6 7       |
| The Court Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 62,730  | 09,100         | 95,590               | 27.389  | 25,078  | 3.6      | 4.0         | 9.6              | 9. c        | i c         |
| Kentucke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20,355  | 10,012         | 18,907               | 21,390  | 22,238  | 3.0      | <br>        | 4.0              | , r         | 7.4         |
| Tennessee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 95,130  | 27,198         | 27,694               | 30,064  | 27,695  | 4.6      | 4.0         | 9.0              | 3           | i           |
| sippiiqdis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100,00  |                |                      |         |         | c        | c           | 2                | 67          | 1.4         |
| West South Central: Arkansas, Louisiana, Oklanoma,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 929     | 1,144          | 887                  | 930     | 8,049   | 2.6      | . &<br>4. & | 3.9              | 4.4         | 5.1         |
| and Texas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16,418  | 20,232         | 21,581               |         |         | œ.       | 6.          | œ.               | ون          | Ι.          |
| Mountain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4,687   | 5,136          | 9,470                |         |         | rė       | τċ          | rė e             | ΰc          | - 6         |
| Titah                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,6,2   | 3,010<br>1,065 | 1,348                |         |         | <b>.</b> | બં          | ,                | i٥          | ! -         |
| Montana and Idaho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,000   | 3,809          | 3.728                |         |         | œ΄.      | 9.5         | - 6              | ·           | 1.2         |
| Wyoming                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3,263   | 6,032          | 6,713                |         |         | ٥        | 0.6         | 1                | 00.         | œ.          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,103   | 1,180          | 2,324                |         |         | 4        | •           | !                |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                |                      |         |         |          |             |                  |             |             |
| See footnotes at end of table.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                |                      |         |         |          |             |                  |             |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                |                      |         |         |          |             |                  |             |             |

Table 43.-Total bituminous coal and lignite shipments and percent of grand total shipments, by geographic division and State and destination-Continued

| Pacific         1969         1700         1972         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1974         1973         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974         1974 | 1978 1969 .5 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 | Percent of total 1971 1971 1971 1971 1971 1971 1971 197 | 1972<br>1972<br>1973<br>1973<br>1974<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975<br>1975 | 1.0<br>.6<br>.4<br>.1<br>.2.7<br>.7<br>.1<br>.2.7<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1<br>.1 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| 890 (188)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22<br>23<br>25                                      | (1)                                                     | જાં છાં                                                                                              | ا<br>ئىن دا                                                                                                                     |

docks and railroad companies.

Includes submercial docks includes overseas exports from producing districts 13 and 17.
Includes overseas exports from producing districts 13 and 17.
Includes overseas exports from producing districts 13, 14, 17, a findudes overseas exports from producing districts 13, 14, and 5 findudes overseas exports from producing districts 13 and 14.
Excludes overseas exports from producing districts 13 and 14.
Excludes overseas exports from producing districts 13 and 17.
Excludes overseas exports from producing districts 13, 14, 17, b Excludes overseas exports from producing districts 13, 14, 17, 10 Excludes overseas exports from producing districts 13, 14, and 10 Excludes overseas exports from producing districts 13, 14, and 14.

, and 20. 20.

Table 44.-Shipments of bituminous coal and lignite in 1973, by average sulfur content and by consumer use

| 1                                        |                           |                           |                                        |                      |                                        |                            |                                       | Average                   | sulfur content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                    | (percent)                              |                       |
|------------------------------------------|---------------------------|---------------------------|----------------------------------------|----------------------|----------------------------------------|----------------------------|---------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------|-----------------------|
|                                          |                           | Quantity s                | Quantity shipped (thousand short tons) | nsand sho            | rt tons)                               |                            |                                       | TATAL PROPERTY.           | Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                                        |                       |
| District                                 | Electric<br>utilities     | Coke<br>and gas<br>plants | Other industrial uses and retail       | All<br>other<br>uses | Exports<br>(overseas<br>and<br>Canada) | Total                      | Electric<br>utilities                 | Coke<br>and gas<br>plants | indus-<br>trial uses<br>and<br>retail<br>dealers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | All<br>other<br>uses | Exports<br>(overseas<br>and<br>Canada) | Total                 |
|                                          |                           |                           | dealers                                | 5<br>7               | 1 726                                  | 35.261                     | 2.2                                   | 1.0                       | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.8                  | 1.6                                    | 2.0                   |
| 1. Eastern Pennsylvania                  | 24,075<br>5,501<br>16,860 | 4,298<br>12,480<br>1,895  | 2,547<br>3,116<br>1,656                | 2,194<br>579<br>647  | 4,239                                  | 23,931<br>25,229<br>35,022 | 2.2.8<br>5.8.1                        | 1.25                      | 25.5<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>25.50<br>2 | 9.00                 | 12.21                                  | 3.4                   |
| 4. Mornern west                          | 28,508                    |                           | 0,000                                  | 123                  | 272                                    | 7,109                      | 16.6                                  | *                         | .0°<br>8.0°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      | 2.8                                    | 8.5.                  |
| 6. Panhandle                             | 6,728<br>734<br>95 134    | 7,376                     | 772<br>4,657                           | 1,260 5,446          | 5,904<br>6,590                         | 16,046<br>60,974           | 6.1.4<br>6.2.1.4                      | ∞. ¦                      | ်<br>တွင်္                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.6                  | ۲.                                     | 0.14°<br>0.1°<br>0.1° |
| 8. Southern Number 2<br>9. West Kentucky | 36,188                    |                           | 1,436<br>7,035                         | 113                  | 1 1                                    | 46,071                     | . e. e.                               | œ ¦                       | 2.8<br>3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2. 6.<br>8. 4.       | : :                                    |                       |
| 10. Illinois                             | 15,893                    |                           | 3,902                                  | 171<br>6             | 1 1                                    | 570                        | <br>                                  | 15                        | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.0<br>7.            | 1.4                                    | 4.                    |
| 12. Iowa                                 | 8,027                     | 4,616                     | 455                                    | 598                  | 569<br>132                             | 14,265                     | ֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓ | 7.1                       | 8.8<br>8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.2                  | e ¦                                    | <br>                  |
| 14. Arkansas-Oklahoma                    | 6,893                     |                           | 195                                    | 32<br>16             | 1 1                                    | 7,178                      | i<br>i                                | ; ¦«                      | ۳                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ယံ ကဲ                | 1 1                                    | نڻ                    |
| 16. Northern Colorado                    | 493<br>3,025              | 1,890                     | 277                                    |                      | ŀ                                      | 5,257                      | ė rė                                  | ? !'                      | , roʻt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ró n                 | 1                                      | က်က်                  |
| 17. Southern Colorado                    | 11,374                    |                           | 10<br>639                              | 28                   | <b>!</b>                               | 8,877                      | ະບໍ່ ະຕ                               | r- 00                     | ·. •.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,<br>ini             | <u> </u>                               | r. r                  |
|                                          | 1,747                     | 1,286                     | 1,323                                  | 158<br>34            | ۱۳                                     | 6,784                      | ; <b>-</b> ; °                        | : 1                       | ∞.∘                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.9                  | e; :                                   | . 6.                  |
| 21. North-South Dakota                   | 5,975<br>6,384            | 1 1                       | 16                                     | 13                   | 1                                      | 6,413<br><b>694</b>        | 2.0<br>2.0                            | ; ;                       | ; ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.0                  |                                        | 20.0                  |
| 22. Montana                              | 089                       | 1                         | 1 2                                    | 14 976               | 19 829                                 | 374,415                    | 2.7                                   | 1.0                       | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.4                  | 1.1                                    | 1.0                   |
|                                          | 248,820                   | 56,341                    | 35,149                                 | 14,610               | 2001                                   |                            |                                       |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                                        |                       |

1 Total shipments by producers reporting sulfur content (63% of total U.S. production).

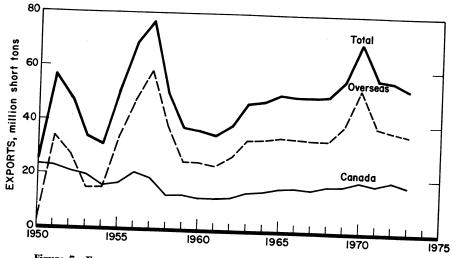



Figure 7.-Exports of bituminous coal and lignite from the United States to Canada and overseas.

Table 45.-Exports of bituminous coal, by country group (Thousand short tons and thousand dollars)

| Country group                                                                          |                             | 71                                 | 1                         | 972               | -                                | 1973              |
|----------------------------------------------------------------------------------------|-----------------------------|------------------------------------|---------------------------|-------------------|----------------------------------|-------------------|
|                                                                                        | Quantity                    | Value                              | Quantity                  | Value             | Quantity                         |                   |
| Canada (including Newfoundland and Mexico)                                             |                             |                                    |                           |                   | Quantity                         | Valu-             |
| Overseas (all other asset )                                                            | 17,852                      | 208,795                            | 18,627                    | 264,575           | 16,569                           | 253,01            |
| West Indies and Central America<br>Bermuda, Greenland, Miquelon,<br>St. Pierre Islands |                             |                                    |                           |                   | (1)                              | 1                 |
| South America Curope Asia                                                              | $2,673 \\ 16,403 \\ 19,705$ | 10<br>49,092<br>280,943<br>352,644 | 2,651<br>16,679<br>18,039 | 51,497<br>307,647 | 2,654 $14,253$                   | 54,154<br>290,327 |
| Oceania<br>Total                                                                       | (¹)<br>38,781               | (1)<br>682,689                     | (1)                       | * 349,453<br>(1)  | 19,381<br>( <sup>1</sup> )<br>44 | 403,954<br>973    |
| Grand total                                                                            | 56,633                      |                                    |                           | r 708,614         | 36,334                           | 749,446           |
| r Revised.                                                                             | 90,033                      | 891,484                            | r 55,997                  | r 973,189         | 52,903                           | 1,002,4           |

r Revised.
Less than ½ unit.

Table 46.-Bituminous coal exported from the United States, by country 1 (Thousand short tons and thousand dollars)

| <b>G</b>                        | 19       | 71      | 19                 | 972            | 19                | 73                  |
|---------------------------------|----------|---------|--------------------|----------------|-------------------|---------------------|
| Country                         | Quantity | Value   | Quantity           | Value          | Quantity          | Value               |
| Australia                       | (2)      | (2)     |                    |                | 44                | 973                 |
| Argentina                       | `539     | 9,754   | 394                | 7,655          | 772               | 15,400              |
| Belgium-Luxembourg              | 765      | 15,005  | 1,144              | 22,214         | 1,205             | 25,461              |
| Brazil                          | 1.869    | 34,619  | 1,917              | 37,067         | 1,645             | 33,482              |
| Canada                          | 17,565   | 202,922 | 18,161             | 254,243        | 16,231            | 246,247             |
| Chile                           | 207      | 3,843   | 240                | 5.315          | 194               | 4,481               |
| France                          | 3,106    | 50,623  | 1.575              | 30,632         | 1,866             | 39,882              |
| Germany:                        | •,       | ,       | -,                 | ,              | -,                | ,                   |
| East                            | 77       | 1.448   | 19                 | 411            |                   |                     |
| West                            | 2.911    | 43,091  | 2,399              | 39,780         | 1.633             | 30.589              |
| Greece                          | 65       | 1.130   | _,                 |                | 33                | 646                 |
| Ireland                         | 17       | 349     | 22                 | 416            |                   |                     |
| Italy                           | 2,680    | 50.257  | 3,673              | 69.584         | 3.294             | $64.5\overline{43}$ |
| Japan                           | 19,706   | 352,629 | r 18,038           | r 349,444      | 19,190            | 399,573             |
| Korea, Republic of              | 20,.00   | 002,020 | 20,000             | 0.0,           | 191               | 4,377               |
| Mexico                          | 285      | 5.835   | 466                | 10.332         | 338               | 6,764               |
| Miquelon and St. Pierre Islands | 200      | 38      | 200                | 20,002         | 1                 | 22                  |
| Netherlands                     | 1,625    | 27,386  | 2.289              | 39.925         | 1.780             | 36,111              |
| Norway                          | 83       | 1,597   | 167                | 3,361          | 126               | 2,757               |
| Peru                            | 26       | 277     | 67                 | 792            | 22                | 380                 |
| Portugal                        | 12       | 243     | 304                | 5,813          | 395               | 8,267               |
| Romania                         |          | 240     | 001                | 0,010          | 284               | 5,879               |
| Spain                           | 2,556    | 48,562  | 2,139              | 42,928         | 2.234             | 47.252              |
| Sweden                          | 618      | 12,149  | 425                | 8,260          | 342               | 6.815               |
| Switzerland                     | 32       | 433     | 720                | 0,200          |                   | 0,010               |
| United Kingdom                  | 1.669    | 25.897  | $2.3\overline{81}$ | $41.7\bar{93}$ | $9\bar{4}\bar{1}$ | 19.932              |
| Uruguay                         | 31       | 597     | 32                 | 653            | 21                | 406                 |
| Yugoslavia                      | 185      | 2,774   | 142                | 2,530          | 120               | 2.193               |
| OUT.                            | 2        | 2,114   | 3                  | 2,550<br>41    | 120               | 2,195               |
| Total                           | 56,633   | 891,484 | r 55,997           | r 973,189      | 52,903            | 1,002,457           |

Table 47.-Bituminous coal exported from the United States, by customs district (Thousand short tons and thousand dollars)

| Charterna distanta | 19       | 71      | 19          | 972       | 19       | 73        |
|--------------------|----------|---------|-------------|-----------|----------|-----------|
| Customs district - | Quantity | Value   | Quantity    | Value     | Quantity | Value     |
| Baltimore          | 3,374    | 53,560  | 3,751       | 66,061    | 4,402    | 85,646    |
| Buffalo            | 21       | 280     | 13          | 183       | 13       | 226       |
| Chicago            | 57       | 639     | 65          | 759       | 81       | 974       |
| Cleveland          | 17,146   | 195,975 | 17,802      | 248,305   | 15,933   | 240,980   |
| Detroit            | 93       | 1,624   | 94          | 1,676     | 106      | 1,888     |
| Duluth             | 4        | 85      | 9           | 175       | 7        | 119       |
| El Paso            | 53       | 844     | 42          | 721       | 22       | 401       |
| Houston            |          |         | 1           | 9         |          |           |
| Laredo             | 231      | 4,990   | 424         | 9.611     | 315      | 6,354     |
| Los Angeles        | 385      | 4,975   | r 174       | r 3.826   | (1)      | 3         |
| Mobile             | 745      | 10,406  | 1,142       | 17.384    | 1.123    | 19.277    |
| New Orleans        | 656      | 9,271   | 774         | 12,300    | 653      | 11,734    |
| New York City      | (1)      | 4       | (1)         | 7         | 1        | 6         |
| Nogales            | ` ′      |         | `           |           | (¹)      | 9         |
| Norfolk            | 33.396   | 603,471 | 31,585      | 609,936   | 30,192   | 633,815   |
| Ogdensburg         | 16       | 262     | 50          | 778       | 23       | 460       |
| Pembina            | 8        | 166     | 13          | 256       | 8        | 157       |
| Philadelphia       | 66       | 1.035   | (1)         | 2         | 22       | 377       |
| Port Arthur        | 380      | 3,862   | <b>`5</b> 7 | 1.180     |          |           |
| Portland, Oreg     |          | -,      |             | -,        | (¹)      | ī         |
| San Diego          | (1)      | (1)     | (1)         | 3         | (1)      | ī         |
| San Francisco      | ` /      | `       | (1)         | 2         | (1)      | 3         |
| San Juan           |          |         |             |           | (1)      | Ĭ         |
| Seattle            | 2        | 35      | 1           | 15        | `´2      | 25        |
| Total              | 56,633   | 891,484 | r 55,997    | r 973,189 | 52,903   | 1,002,457 |

r Revised.

¹ Amounts stated do not include fuel or bunker coal on vessels engaged in foreign trade, which aggregated 44,010 tons (\$676,487) in 1971; 30,718 tons (\$545,146) in 1972; and 11,898 tons (\$231,789) in 1973.

² Less than ½ unit.

r Revised.

1 Less than ½ unit.

Table 48.—Bituminous coal <sup>1</sup> imported for consumption in the United States, by country and customs district

|                                 | 19'                         | 71                                  | 19                          | 72                                  | 19                          | 73                                  |
|---------------------------------|-----------------------------|-------------------------------------|-----------------------------|-------------------------------------|-----------------------------|-------------------------------------|
| Country and customs<br>district | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sand<br>dollars) | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sand<br>dollars) | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sand<br>dollars) |
| Country:                        |                             |                                     |                             |                                     |                             |                                     |
| Australia                       |                             |                                     | 1.120                       | 49                                  |                             |                                     |
| Canada                          | 87,447                      | 1,044                               | 44.821                      | 621                                 | 113.884                     | 1,491                               |
| Colombia                        | 171                         | $\binom{2}{2}$                      |                             |                                     | 0,001                       | 1,101                               |
| Germany, West                   | 103                         | `´1                                 | ===                         |                                     | 59                          | ĩ                                   |
| India                           | 37                          | 3                                   |                             |                                     | ••                          | -                                   |
| Japan                           |                             |                                     | 20                          | -2                                  |                             |                                     |
| Poland                          |                             |                                     | 20                          | 4                                   | 12,698                      | 115                                 |
| South Africa, Republic of       | 11,417                      | 434                                 | $1.1\overline{27}$          | 18                                  | 12,000                      | 110                                 |
| Sweden                          | 11,861                      | 290                                 | -,,                         | 10                                  |                             |                                     |
| United Kingdom                  | ,                           | 200                                 | 10                          | -ī                                  |                             |                                     |
| Other                           | (2)                         | (2)                                 |                             | -                                   |                             |                                     |
| Total                           | 111,036                     | 1,772                               | 47,098                      | 691                                 | 126,641                     | 1,607                               |
| Customs district:               |                             |                                     |                             |                                     |                             |                                     |
| Boston                          |                             |                                     |                             |                                     |                             |                                     |
| Buffalo                         | $9\bar{7}\bar{7}$           | 77                                  |                             |                                     | 12,698                      | 115                                 |
| CI.                             |                             | 10                                  |                             |                                     | 437                         | 8                                   |
| Detroit                         | 73                          | (2)                                 |                             |                                     | 403                         | 6                                   |
| D. 1 (1                         | 47,698                      | 525                                 |                             |                                     | 73,152                      | 897                                 |
| Great Falls                     | 9,584                       | 142                                 | 16,393                      | 246                                 | 25,076                      | 377                                 |
|                                 | 11,844                      | 109                                 | 7,492                       | 61                                  | 2,143                       | 13                                  |
|                                 |                             |                                     | 20                          | 2                                   |                             |                                     |
| Houston<br>New Orleans          | 00.0==                      | _===                                | 1,120                       | 49                                  |                             |                                     |
|                                 | 23,278                      | 724                                 | 1,127                       | 18                                  |                             |                                     |
| New York City                   | 37                          | 3                                   | 10                          | 1                                   |                             |                                     |
| Norfolk                         |                             |                                     |                             |                                     | 12,521                      | 188                                 |
| Ogdensburg                      | =                           |                                     |                             |                                     | 144                         | 2                                   |
| Pembina                         | 16,902                      | 253                                 | 20,921                      | 313                                 | 59                          | 1                                   |
| Portland, Maine                 | .==                         |                                     | 15                          | 1                                   | 8                           | (2)                                 |
| Portland, Oreg                  | 171                         | (2)                                 |                             |                                     |                             |                                     |
| San Francisco                   | 30                          | (2)                                 | (2)                         | (2)                                 |                             |                                     |
| Seattle                         | 442                         | 6                                   |                             |                                     |                             |                                     |
| Total                           | 111,036                     | 1,772                               | 47.098                      | 691                                 | 126,641                     | 1.607                               |

 $<sup>^1</sup>$  Includes slack, culm, and lignite.  $^2$  Less than  $\frac{1}{2}$  unit.

Table 49.—Bituminous coal and lignite coal: World production by country (Thousand short tons)

| <b>(</b> =                                                    |                               |                    |                   |
|---------------------------------------------------------------|-------------------------------|--------------------|-------------------|
| Country 1                                                     | 1971                          | 1972               | 1973 р            |
| North America:                                                |                               |                    |                   |
| Canada:                                                       | 15,132                        | 17.427             | 18,010            |
| Bituminous<br>Lignite                                         | 3,300                         | 3,283              | 3,950             |
| Greenland: Bituminous                                         | 18                            | 4                  | e 5               |
| Mexico: Bituminous                                            | 3,915                         | 3,984              | 4,663             |
| United States:                                                | F4F 7700                      | 584,387            | 577,574           |
| Bituminous                                                    | 545,790<br><sup>2</sup> 6,402 | 10,999             | 14,164            |
| LigniteSouth America:                                         | 0,10=                         | •                  |                   |
| Argentina: Bituminous                                         | 697                           | 744                | e 507             |
| Brazil: Bituminous (marketable)Chile: Bituminous (marketable) | 2,754                         | 2,752 $1,472$      | 2,773<br>1,426    |
| Chile: Bituminous (marketable)Colombia: Bituminous 3          | $^{1,676}_{2,756}$            | e 3,500            | e 3,600           |
| Peru · Rituminous                                             | 101                           | r e 83             | e 83              |
| Venezuela: Bituminous                                         | 47                            | 44                 | 55                |
| Europe:                                                       | 744                           | r e 843            | e 952             |
| Albania: Lignite 4Austria: Lignite 5                          | 4,156                         | 4,139              | 4,005             |
| Belgium: Bituminous                                           | 8,365                         | 8,316              | 6,988             |
| Rulgaria:                                                     |                               |                    | 0.40              |
| Bituminous                                                    | 251<br>r 29,343               | 252<br>29,094      | 246<br>29,025     |
| Lignite 4                                                     | - 40,040                      | 25,054             | 20,020            |
| Czechoslovakia: Bituminous                                    | 31,639                        | 30,668             | 30,621            |
| Lignite 4                                                     | 93,466                        | 94,320             | 89,562            |
| France:                                                       | 00.074                        | 23,455             | 20,591            |
| Bituminous                                                    | $26,274 \\ 3,032$             | 3,267              | 3,056             |
| LigniteGermany, East:                                         | -                             | 0,201              |                   |
| Bituminous e                                                  | 1,320                         | 1,100              | 880               |
| Lignite 4                                                     | r 289,703                     | 273,870            | 271,436           |
| Germany, West:                                                | 117,909                       | 110,757            | 100,288           |
| Bituminous<br>Lignite                                         | 115,167                       | 121,712            | 130,797           |
| Pooh                                                          | 75                            |                    | 14 455            |
| Greece: Lignite                                               | r 12,067                      | 12,764             | 14,460            |
| Hungary:                                                      | r 3,659                       | 3,309              | 3,759             |
| Bituminous<br>Lignite <sup>4</sup>                            | 25,886                        | 24,439             | 25,761            |
| Ireland: Bituminous                                           | 99                            | 83                 | e 86              |
| Italy:                                                        | 282                           | 166                | 6                 |
| Bituminous<br>Lignite                                         | 1,462                         | 952                | 1,429             |
| Poland:                                                       | •                             |                    |                   |
| Bituminous                                                    | r 160,376                     | 166,115            | 172,654<br>43,229 |
| Lignite 4                                                     | 38,048                        | 42,131             | 40,220            |
| Romania:<br>Bituminous <sup>6</sup>                           | 7,852                         | 7,288              | • 7,900           |
| Lignite 4                                                     | r 15,221                      | 18,241             | • 19,400          |
| Spain:                                                        | 8,610                         | 8,820              | 7,656             |
| Bituminous                                                    | 3,396                         | 3,369              | 3,304             |
| Lignite Syalhard (Spitzbergen): Bituminous 7                  | 480                           | 502                | 457               |
| Syalbard (Spitzbergen): Bituminous 7U.S.S.R.:                 |                               | FF0 FF0            | e 562,000         |
| Bituminous                                                    | r 537,419<br>169,030          | 550,570<br>171,651 | • 174,000         |
| Lignite 4<br>United Kingdom: Bituminous                       | r 157,607                     | 128,312            | 140,703           |
| Yugoslavia:                                                   | •                             |                    |                   |
| Bituminous                                                    | 779                           | 660<br>33,446      | 636<br>35,135     |
| Lignite 4                                                     | г 33,284                      | 33,440             | 35,135            |
| Africa: Algeria: Bituminous 3                                 | r 15                          | 13                 | 22                |
| Magambiana Pituminone                                         | r 363                         | 370                | 434               |
|                                                               | r 214                         | 376<br>3.045       | 360<br>3,373      |
|                                                               | r 3,408<br>62,639             | 62,946             | 67,179            |
|                                                               | 163                           | 139                | 154               |
| Swaziland: Bituminous Tanzania: Bituminous                    | 3                             | . 3                | 2                 |
|                                                               | 126                           | 141                | 127<br>1,036      |
| Zambia: Bituminous                                            | 895                           | 1,033              | -                 |
| Asia: Afghanistan: Bituminous 10                              | 149                           | • 150              | • 150             |
| Purma : Rituminous                                            | 22                            | 23                 | 150 000           |
| China, People's Republic of: Bituminous and lighte            | r 410,000                     | r 420,000          | 450,000           |
| India ·                                                       | 78,814                        | 82,421             | 84,878            |
| Bituminous<br>Lignite                                         | 4,034                         | 3,381              | 3,638             |
| Indonesia: Bituminous                                         | 218                           | 197                | 164               |
| Iran: Bituminous                                              | r 661                         | 1,102              | 1,157             |
| a                                                             |                               |                    |                   |

See footnotes at end of table.

Table 49.-Bituminous coal and lignite coal: World production by country-Continued (Thousand short tons)

| Country 1                           | 1971        | 1972         | 1973 р    |
|-------------------------------------|-------------|--------------|-----------|
| Asia—Continued                      |             |              |           |
| Japan:                              |             |              |           |
| Bituminous                          | r 36,852    | 00.000       |           |
| Lignite                             | * 146       | 30,966       | 24,709    |
| Korea, North:                       | 140         | 106          | 93        |
| Bituminous e                        | 6,600       | <b>7</b> 000 |           |
| Lignite 6                           |             | 7,200        | 7,700     |
| Mongolia:                           | 220         | 220          | 220       |
| Bituminous                          | 111         |              |           |
| Lignite                             |             | 117          | e 120     |
| Pakistan: Bituminous and lignite 11 | r 2,183     | 2,367        | e 2,400   |
| Fullippines: Bitiminous             | r 1,452     | 1,379        | 1,456     |
| Taiwan: Bituminous                  | 44          | 43           | 43        |
| Thailand: Lignite                   | 4,516       | 4,313        | 3,667     |
| Turkey:                             | 491         | 380          | 398       |
| Bituminous                          | F 11.4      |              |           |
| Lignite                             | 5,114       | 5,116        | 5,118     |
| Oceania:                            | 4,648       | 5,151        | 5,296     |
| Australia:                          |             |              |           |
| Bituminous                          | T F 4 01 F  | 25 - 12      |           |
| Lignite                             | r 54,015    | 65,748       | 66,914    |
| New Zealand:                        | 25,775      | 26,121       | 27,202    |
| Bituminous                          | 0.100       |              |           |
| Lignite                             | 2,163       | 2,237        | 2,561     |
|                                     | r 179       | 168          | 160       |
| World total:                        |             |              |           |
| Bituminous                          | r 1.892.912 | 1,922,469    | 1,934,050 |
| Lignite (including Pech)            | r 881,458   | 886.414      | 903.072   |
| Mixed grades 12                     | r 411,452   | 421.379      | 451,456   |
| Total, all grades                   | r 3.185.822 |              |           |
|                                     | 0,100,022   | 3,230,262    | 3,288,578 |

e Estimate. p Preliminary.  $^{\mathbf{r}}$  Revised.

Estimate.
 Preliminary.
 Revised.
 In addition to the countries listed, Ecuador produces coal, but output was less than 500 tons annually in the years covered by this table.
 Excludes production from the State of Texas.
 May include a small amount of anthracite.
 Includes materials reported in natural sources as brown coal.
 Available sources report only lignite production; a small amount of bituminous coal may also be produced. Available sources report only lignite production; a small amount of bituminous coal may also be produced.

Official sources report the aggregate of bituminous coal and anthracite; distribution to these separate grades is estimated from reported total.

Output from Norwegian controlled portion only. Output of that portion of Svalbard controlled by the U.S.S.R. is presumably included in the total output recorded for that country.

Run-of-mine output.

<sup>8</sup> Run-or-mine output.

9 Sales, for year ending August 31 of that stated.

10 Year beginning March 21 of that stated.

11 Year ending June 30 of that stated.

12 Bituminous coal plus lignite for the People's Republic of China and Pakistan.

# Coal—Pennsylvania Anthracite

# By Dorothy R. Federoff 1

Data in this chapter refer only to anthracite or hard coal, produced in 12 counties in northeastern Pennsylvania. The anthracite region is divided geologically into four fields: Northern, Eastern Middle, Western Middle, and Southern. The area is also grouped into three trade regions: Wyoming, Lehigh, and Schuylkill.

The production of anthracite continued to decline in 1973, but at a decelerated rate. Increased world demand for steel, shortages of metallurgical bituminous coal, and the curtailed availability of oil supplies in the last quarter of 1973 all combined to open additional markets for anthracite, creating a demand greater than

the supply.

Total production of anthracite in 1973 was 6.8 million short tons, a decrease of approximately 3.9% from that of 1972. Of the total output, 48% was produced at strip pits, 35% at culm and silt banks, 11% at underground mines, and 6% at dredging operations. When compared with tonnages produced in 1972, underground production declined 23%; strip production, 6%; and dredge coal, 8%; however, culm and silt production increased 8%.

Total value of the 1973 output was \$90.3 million, a 5.9% increase over that of 1972. The average value f.o.b. preparation plants for all sizes of anthracite, including dredge coal, was \$13.22 per ton, compared with \$12.00 per ton in 1972. The average value of pea and larger sizes increased \$1.58 to \$18.76 per ton, and the average value of buckwheat No. 1 and smaller sizes increased \$1.16 to \$11.30 per ton. Although production was less in 1973, value was greater due to the increase in prices.

Apparent consumption of Pennsylvania anthracite in the United States in 1973, calculated as production minus exports, excluding that exported to West Germany for use by the U.S. Armed Forces, totaled

approximately 5.7 million tons compared with 5.9 million tons in 1972—a decrease of 4.1%. Although use data are incomplete for anthracite, slight declines occurred in all categories.

Exports of Pennsylvania anthracite, according to the U.S. Bureau of the Census, totaled 716,546 tons shipped to Canada, Europe, and other foreign countries. A more accurate measurement of exports can be obtained by adding the quantity shipped for use by the U.S. Armed Forces in West Germany to the tonnage reported by the Bureau of the Census. This computation indicates that approximately 1,159,000 tons was actually exported, or 2.7% less than in 1972.

The Pennsylvania anthracite mining industry worked an average of 234 days in 1973, compared with 216 days in the preceding year. The work force averaged 4,083 men, a drop of 14.6% below the 1972 level. Of that total, 40% were employed at strip pits, 21% at underground mines, 8% at culm and silt recovery, 1% on dredges, and 30% at breakers. Although there was a slight decline in total production and the number of men working daily, the productivity rate in average tons per man-day increased from 6.88 tons in 1972 to 7.15 tons in 1973. The rise was due primarily to an increase in surface mining. One fatality occurred in 1973 (2 in 1972), and 370 nonfatal injuries, compared with 272 in 1972.

The Bureau of Mines publishes a series of weekly reports containing estimates of weekly and monthly production based on carloadings reported by railroads, and monthly production statements of truck shipments provided by the Commonwealth of Pennsylvania.

<sup>&</sup>lt;sup>1</sup> Mineral specialist, Division of Fossil Fuels-Mineral Supply.

| Table 1.—Salient | statistics | of | the | Pennsylvania | anthracite | industry |
|------------------|------------|----|-----|--------------|------------|----------|
|                  |            |    |     |              |            |          |

|                                                        |                 |           |           | /                             |            |
|--------------------------------------------------------|-----------------|-----------|-----------|-------------------------------|------------|
|                                                        | 1969            | 1970      | 1971      | 1972                          | 1973       |
| Production:                                            |                 |           |           |                               |            |
| Preparation plantsshort tons_                          | 0.000.400       |           |           |                               |            |
|                                                        | 9,920,130       | 9,304,221 | 8,323,168 | 6,618,205                     | 6,377,51   |
| Used at collieries for power and heat                  | 535,369         | 409,354   | 389,609   | 476,792                       | 441.07     |
|                                                        |                 |           | -         |                               | ,.         |
| do                                                     | 17,417          | 15.823    | 14.548    | 11,298                        | 11.05      |
| Total productiondo<br>Valuethousands                   | 10.472 916      | 9 720 200 | 0.707.005 | 11,230                        |            |
| Valuethousands_                                        | \$100,770       | 8105 041  | 8,727,325 |                               |            |
|                                                        | <b>4100,110</b> | φ105,341  | \$103,469 | \$85,251                      | \$90,26    |
|                                                        |                 |           |           |                               | ,          |
| diedge coal):                                          |                 |           |           |                               |            |
| Pea and larger                                         | 010 FC          |           |           |                               |            |
|                                                        | \$13.56         | \$15.06   |           | \$17.18                       | \$18.7     |
|                                                        | \$7.93          | \$8.92    | \$9.90    | \$10.14                       | \$11.3     |
|                                                        | \$9.91          | \$11.03   | \$12.08   | \$12.40                       | \$13.6     |
| SHIPHIELIS (EXCITION droders ass)                      |                 |           |           | 7                             | Ψ10.0      |
| rea and larger                                         |                 |           |           |                               |            |
|                                                        | 35.1            |           |           | 32.0                          | 31.4       |
|                                                        | 64.9            | 65.6      | 66.4      | 68.0                          | 68.6       |
|                                                        | 627,492         | 789,499   | 671,024   | 743,451                       | 716,54     |
| Average number of days worked                          | 8,809,000       | 8.248.000 | 7 338 000 | 5 015 000                     | F CET 1 00 |
| Average number of men working daily                    | 232             | 234       | 239       | 216<br>4,783<br>6.88<br>1,486 | 5,671,000  |
| Output per man per dayshort tons                       | 5,927           | 5,938     | 5 800     | 4709                          | 234        |
| Output per man per wayshort tons-                      | 7.45            | 7.10      | 6.30      | 4,100                         | 4,083      |
| Output per man per yeardo                              | 1,728           | 1.661     | 1 505     | 1 400                         | 7.15       |
| Quantity cut by machinesdo                             | 68.300          | 125,779   | 6,010     | 1,400                         | 1,678      |
| Quantity mined by strippingdo                          | 4,578,732       | 4,541,452 | 4,478,350 | 2 400 050                     |            |
| Quantity loaded by machines underground                | , ,             | -,011,102 | 4,410,000 | 3,483,076                     | 3,278,977  |
| Distribution: do                                       | 1,326,598       | 1 150 596 | 669,691   | F00.00=                       |            |
|                                                        | , >,000         | -,-00,000 | 009,691   | 593,997                       | 421,202    |
| Exports to Canada 1 Loaded into vessels at Lake Frie 2 | 472,763         | 438,008   | 466 090   | F00 00-                       |            |
| Loaded into vessels at Lake Erie 3                     | 209,000         | 154,002   | 466,039   | 500,306                       | 477,692    |
|                                                        | _00,000         | 104,002   | 51,402    | 39,177                        | 19,244     |

<sup>&</sup>lt;sup>1</sup> U.S. Department of Commerce, 1968—73 export data does not include shipments to U.S. Military Forces. See NOTE, tables 4 and 25.

<sup>2</sup> Excludes shipments to U.S. Armed Forces.

<sup>3</sup> Ore and Coal Exchange, Cleveland, Ohio.

Table 2.-Standard anthracite specifications approved and adopted by the Anthracite Committee, effective July 28, 1947

|                                          |      |                  | Perce            | nt                        |                  |                  |
|------------------------------------------|------|------------------|------------------|---------------------------|------------------|------------------|
| Size Round tes                           |      | Und              | lersize          | Maxim                     | ım impu          | rities 1         |
| (inche                                   | mum) | Maxi-<br>mum     | Mini-<br>mum     | Slate                     | Ash <sup>2</sup> | Bone             |
| BrokenThrough 4 3/8                      |      |                  |                  |                           |                  |                  |
|                                          |      | $\overline{15}$  | $7\frac{1}{2}$   | $1\frac{1}{2}$            | 2                | 11               |
| LissThrough 3 1/4                        | to 3 |                  | 172              | $1\overline{\frac{1}{2}}$ | <b>2</b>         |                  |
| Stove Over 2 7/16Through 2 7/16          |      | 15               | $7\frac{1}{1/2}$ | 172                       | 3                | 11<br>11         |
| Over 15/8                                | /    |                  |                  | 2                         | 3                | 11               |
| onesthatThrough 15/5                     | 71/  | 15               | $7\frac{1}{2}$   |                           |                  |                  |
|                                          |      | $\overline{15}$  | $7\frac{1}{1/2}$ | 3                         | 4                | 11               |
|                                          | 10   |                  | 172              | 4                         | - <u>-</u>       | 77               |
| Buckwheat No. 1Through 9/16              |      | 15               | $7\frac{1}{2}$   | *                         | 9                | 12               |
|                                          |      | 72               |                  |                           |                  | $\bar{1}\bar{3}$ |
| Buckwheat No. 2 (rice) - Through 5/16    | 10   | 15               | $7\frac{1}{2}$   |                           |                  | .=-              |
|                                          |      | $\bar{1}\bar{7}$ | 71/2             |                           |                  | 13               |
| Buckwheat No. 3 (barley) Through 3/16    | 10   | ••               | 1 7/2            |                           |                  | 7.5              |
| Over 3/32<br>Buckwheat No. 4Through 3/32 |      | 20               | 10               |                           |                  | 15               |
|                                          | 20   | 77               |                  |                           |                  | 15               |
| Buckwheat No. 5Through 3/64              | 30   | 30               | .10              |                           |                  |                  |
|                                          | 30   | No lim           | iit              |                           |                  | 16               |

¹ When slate content in sizes from broken to chestnut, inclusive, is less than the above standards, bone content may be increased by 1½ times the decrease in slate content under the allowable limits, but slate content specified above shall not be exceeded in any event.
A tolerance of 1% is allowed on maximum percentage of undersize and maximum percentage of ash content.

Maximum percentage of undersize is applicable only to anthracite as it is produced at prepara-

Maximum percentage of undersize is applicable to plants.

Slate is defined as any material that has less than 40% fixed carbon.

Bone is defined as any material that has 40% or more, but less than 75%, fixed carbon.

2 Ash determinations are on a dry basis.

Legislation and Government Programs.—Federal and State government programs in the environmental area continued through 1973, and included control and extinguishment of fires at abandoned underground and surface mines, prevention of surface subsidence above abandoned mines, reclamation of old strip pits and culm banks, and mine-water control projects designed to secure the safety and livelihood of mine personnel and to protect anthracite reserves from the hazards of adjoining abandoned mine pools and possible inundation by surface floodwaters.

Hydrologic studies to evaluate minewater problems were continued. They involved determination of the varying heights of underground mine pools, their hydrostatic pressures and possible effect upon barrier pillars and mine dams protecting active mining operations, acid mine-water drainage into surface streams, and the unconsolidated valley fill. A comprehensive series of mine pool monitoring stations has been installed in the Western Middle and Southern Fields. The time available for project work particularly in map work related to subsidence, mine-water, and levee studies, was severely limited because of additional assignments resulting from the flood in 1972.

Table 3.-Project report

| Project location                                       | Project description                                                                                                                                                                                                                                                                   | Sponsor                                                            | Status of report                                                                       |  |  |  |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|--|--|
| ACID COAL MINE DRAINAGE                                |                                                                                                                                                                                                                                                                                       |                                                                    |                                                                                        |  |  |  |
| Anthracite fields Lackawanna County:                   | Monthly measurements of mine water levels and overflows.                                                                                                                                                                                                                              | U.S. Geological<br>Survey.                                         | Continuous.                                                                            |  |  |  |
|                                                        | Stream pollution abatement _                                                                                                                                                                                                                                                          | Commonwealth of<br>Pennsylvania.                                   | Work in progress 1973.                                                                 |  |  |  |
|                                                        | SURFACE SUBSIDE                                                                                                                                                                                                                                                                       | NCE                                                                |                                                                                        |  |  |  |
| Lackawanna County:                                     |                                                                                                                                                                                                                                                                                       |                                                                    |                                                                                        |  |  |  |
| Scranton, Green<br>Ridge.                              | Demonstration project for fill<br>of mine voids under approxi-<br>mately 35 acres of Green<br>Ridge section of Scranton.                                                                                                                                                              | Commonwealth of<br>Pennsylvania<br>and U.S.<br>Bureau of<br>Mines. | Work started 1972.<br>Still in progress.                                               |  |  |  |
| Scranton, Minooka section.                             | Filling mine voids. Blind flush-<br>ing approximately 17 acres<br>of area. Pilot demonstra-<br>tion project.                                                                                                                                                                          | do                                                                 | Work in progress<br>1973.                                                              |  |  |  |
| Scranton, Southside section.                           | Hydraulic flushing of mine voids, Project 11.                                                                                                                                                                                                                                         | do                                                                 | Do.                                                                                    |  |  |  |
| Scranton, Hill section.                                |                                                                                                                                                                                                                                                                                       | do                                                                 | Do.                                                                                    |  |  |  |
| Carbondale                                             | Appalachian subsidence con-<br>trol, Project 8.                                                                                                                                                                                                                                       | qo                                                                 | Do.                                                                                    |  |  |  |
| Luzerne County: City of Wilkes-Barre, Parsons section. | •                                                                                                                                                                                                                                                                                     | do                                                                 | Work started in 1973 project completed.                                                |  |  |  |
|                                                        | UNDERGROUND MINE                                                                                                                                                                                                                                                                      | FIRES                                                              |                                                                                        |  |  |  |
| Columbia County:                                       |                                                                                                                                                                                                                                                                                       |                                                                    |                                                                                        |  |  |  |
| Centralia Borough _                                    | Appalachia mine fire control, which includes Phase I exploratory drilling, Phase II (1) underground barrier pillars formed by injecting fly ash into mine void of west barrier, and Phase II (2) underground barrier pillars formed by injecting fly ash into mine void east barrier. | Commonwealth of<br>Pennsylvania<br>and U.S.<br>Bureau of<br>Mines. | Work in progress<br>1973.                                                              |  |  |  |
| Luzerne County: Hazleton Borough                       | Appalachia mine fire control<br>at site of former Hill mine<br>property, which includes<br>Phase I exploratory drilling<br>and Phase II seal blocking<br>with sand and total fire ex-<br>cavation.                                                                                    | do                                                                 | Phase I completed<br>1969; Phase II<br>work in progress<br>1972. Completed in<br>1973. |  |  |  |

Table 3.-Project report-Continued

| Project location                         | Project description                                                                                                                                                                                                               | Sponsor                                                            | Status of report                                                                      |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|                                          | UNDERGROUND MINE FIRE                                                                                                                                                                                                             | ES—Continued                                                       |                                                                                       |
| Luzerne County—<br>Continued             |                                                                                                                                                                                                                                   |                                                                    |                                                                                       |
| Laurel Run Borough                       | Appalachia mine fire control, which included Phase I exploratory activities, Phase II (1) sealing three tunnels, Phase II (2) reinforcing East and West barriers with sand seals, and Phase II (3) additional sand barrier seals. | Commonwealth of<br>Pennsylvania<br>and U.S.<br>Bureau of<br>Mines. | All phases completed 1973.                                                            |
| Swoyersville Borough                     | Appalachia mine fire control<br>at site of former Forty Fort<br>Mine property, which in-<br>cludes Phase I exploratory<br>drilling and Phase II exca-<br>vation.                                                                  | do                                                                 | Completed in 1973.                                                                    |
| Warrior Run<br>Borough.                  | Appalachia mine fire control<br>at site, which includes ex-<br>ploratory drilling to deter-<br>mine extent of fire.                                                                                                               | do                                                                 | Work started in 1971.<br>Still in progress<br>1973.                                   |
| Schuylkill County:<br>Shenandoah Borough | Appalachia mine fire control<br>at site of former Kehley Run<br>colliery, Phase I exploratory<br>drilling only; control work<br>taken over by Common-<br>wealth of Pennsylvania in<br>1970.                                       | do                                                                 | Completed in 1973.                                                                    |
|                                          | SURFACE MINE RECLAMATI                                                                                                                                                                                                            | ON PROJECTS                                                        |                                                                                       |
| Lackawanna County:<br>Taylor Borough     | Keyser Valley strip mine area reclamation demonstration project.                                                                                                                                                                  | Commonwealth of<br>Pennsylvania<br>and U.S.<br>Bureau of<br>Mines. | Part I started 1972,<br>completed 1973.<br>Part II started<br>and completed,<br>1973. |
| Luzerne County: Preston                  | Conservation and Develop-<br>ment—Refuse bank reclama-<br>tion demonstration project.                                                                                                                                             | do                                                                 |                                                                                       |

The development of new technology to backfill underground mine voids to prevent subsidence was demonstrated successfully. The work consisted of drilling exploratory boreholes, sonar caliper surveying of mine beds, receiving crushed culm or breaker material from a mixer-blender plant, and flushing the material as a water slurry through the boreholes into the inundated and dry mine voids of the demonstration mines. When the project is completed, the boreholes are then pulled and sealed with concrete.

An overall program aimed at controlling fires in anthracite and other coal refuse banks included investigations into the cause and environmental effects of these fires, attempts at their early detection and inventorying, and the development of economic techniques for quenching and removing burning coal refuse banks. Two demonstration projects have been completed—one evaluating the most effective use of relatively conventional means of extinguishment, and the other involving a technique of simultaneously quenching

burning material by surface sprinklers and a subsurface water injection system. Work was judged successful in terms of the amount of water utilized in extinguishment and material removed. Under the two phases of the project, a total of 390,000 cubic yards of bank material was quenched, excavated, and leveled.

The value of the longstanding map folio program to the public was demonstrated by the numerous requests received by the Bureau of Mines from various local authorities to evaluate subsurface conditions in relation to subsidence potential for proposed civic improvements and investigations of possible structural failure in bridges and highways. The data accumulated by the program have also proved an invaluable aid in evaluations made by the U.S. Army Corps of Engineers for the maintenance, and possible expansion, of flood control projects under its jurisdiction in the Northern anthracite field.

In a continuation of the project to record the maps of underground workings at anthracite mines, maps of a total of 301 major and 20 independent mines located in the 4 anthracite fields have been photographed. Work continued on compiling surface and bed maps in stratigraphic sequence for selected areas in the Northern field.

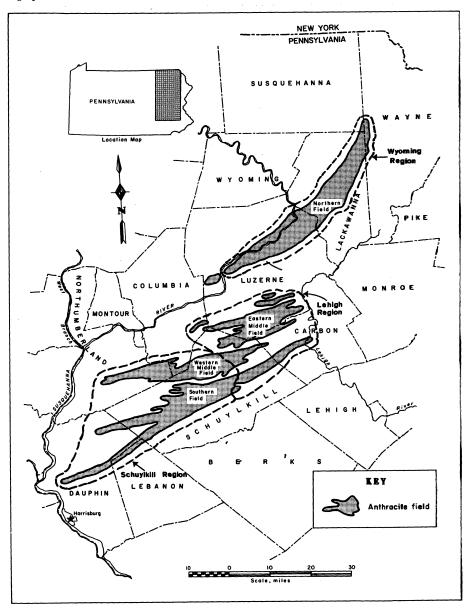



Figure 1.-Coalfields, regions, and counties of the Pennsylvania anthracite area.

#### DOMESTIC PRODUCTION

Production of Pennsylvania anthracite totaled 6.8 million short tons in 1973, a decrease of approximately 3.9% from that of 1972. Underground production accounted for 11% of the total output, compared with 13% in 1972. The decline in underground mining was due to health and safety consideration, manpower shortages, and the high cost of pumping water from flooded mines. Strip production totaled 48% (49% in 1972); culm and silt recovery, 35% (31% in 1972); and river coal, 6% (7% in 1972).

Two of the producing regions showed losses in 1973. In the Schuylkill region, total production was 0.8% less than that in 1972, and the total production in the Wyoming region showed a decrease of 24%. However, production in the Lehigh region indicated a slight gain of 5% over that in 1972. The Schuylkill region contributed 59% of the total production; the Lehigh region, 26%; and the Wyoming region, 15%.

The two leading counties in the production of anthracite were Schuylkill County with a total of 3 million tons, and Luzerne County with approximately 2 million tons. Other counties producing anthracite were Berks, Carbon, Columbia, Dauphin, Lackawanna, Lancaster, Northumberland, Snyder, Sullivan, and Susquehanna.

In operation at strip pits and in culm recovery were 138 front-end loaders, 50 power shovels, and 112 draglines.

Underground production in 1973 totaled 725,789 tons, a decrease of 23% from that in 1972. The Schuylkill region accounted for 77% of the output, and the Wyoming region for the remainder. Output in the Schuylkill region decreased by approximately 13%; the Wyoming region output dropped 44%.

Of the total underground anthracite produced, 58% was loaded mechanically, compared with approximately 63% in 1972. The mechanical loading of anthracite declined 29% from the level of 1972, with a concurrent decrease of approximately 14% in the number of loading units. The total mechanical equipment consisted of 72 scraper loaders, 4 mobile loaders, and 47 conveyor and pit-car loaders.

Production from strip mines totaled approximately 3.3 million tons, a decrease of 5.9% from that of 1972, and accounted for 48% of the total production in 1973. Output in the Schuylkill region totaled 1.4 million tons, a decrease of 7.4%; and in the Wyoming region, approximately 683,000 net tons, a decrease of 20.6%. However, the Lehigh region, with approximately 1.2 million tons, indicated an increase of 8.1% over that in 1972.

Culm and silt recovery totaled 2.4 million tons, an increase of approximately 182,000 tons, or 8% above the 1972 output. The Schuylkill region indicated a slight increase, 68% of the total recovered in 1973, compared with 64% in 1972. However, the percent of recovery decreased in the Lehigh region, to 26% compared with 28% in 1972; and in the Wyoming region, to 7% compared with 8% in 1972.

Dredging operations produced approximately 441,000 tons in 1973, a decrease of 8% from that in 1972, and a significant drop from the 1.5 million tons recovered in 1941. In the preceding decades, many dredges worked the rich coal deposits on the river beds; a significant portion was consumed in the generating of electricity. After 50 years of river dredging, the Pennsylvania Power and Light Co. will discontinue their river mining because of insufficient coal remaining on the riverbed to make the salvage operation economically feasible.

#### DISTRIBUTION

Shipments of Pennsylvania anthracite reported for the calendar year January 1, 1973, to December 31, 1973, totaled 6,341,928 net tons, a decrease of approximately 5.8% from the 1972 calendar year. Of this amount, 81.7% was shipped to markets within the United States (a decrease of 6.5%), 7.5% was exported to Canada (a decrease of 1.4%), and 10.8% was exported

to countries other than Canada (a decrease of 1.4% from 1972).

In the U.S. market, shipments of pea and larger sizes decreased by 4.2%, and buckwheat No. 1 and smaller decreased by 7.5%. In the Canadian market, the pea and larger sizes dropped 36.3%, while the total buckwheat No. 1 and smaller sizes increased by 5.5%. Exports to countries

other than Canada indicated an increase of 3.3% in the pea and larger sizes, but a decline of 8.6% in the buckwheat No. 1 and smaller sizes.

All market areas in the United States indicated losses, except the South Atlantic and the Lake States, which showed increases of 91.7% and 17.5%, respectively.

In 1973, shipments to West Virginia were included in the South Atlantic States instead of the "Other States" category as they were in 1972, which accounts for the greater percentage increase in that area. Shipments to the New England States and the Middle Atlantic States decreased by 2.5% and 9.3%, respectively.

# CONSUMPTION AND USES

Apparent consumption of Pennsylvania anthracite in the United States in 1973, calculated as production minus exports, including shipments to the U.S. Armed Forces in West Germany, totaled 5.6 million tons, compared with 5.9 million tons in 1972. Of the total anthracite consumed, 51% was used for space heating, 25% by the electric utilities, and 13% by the iron and steel industry; the remaining 11% was distributed among cement plants, colliery fuel, and other uses.

Although use data are incomplete, all categories indicated slight declines in the consumption of anthracite. The declining

market for anthracite in space heating and electric utilities is attributable to the conversion from anthracite to the more convenient and less costly fuels. However, due to the curtailed availability, and the rising cost of oil and gas in the near future, the decline in the space-heating market for anthracite may decelerate.

The Federal Government continued to supplement the fuel needs of the U.S. Armed Forces in West Germany with purchases of anthracite. Shipments in 1973 were approximately 443,000 net tons, compared with 448,000 tons in 1972, a 1% decrease.

#### **STOCKS**

The electric utilities reported an increase in their inventory of 171,000 short tons of anthracite to 1,066,000 tons at yearend 1973, compared with 895,000 tons at yearend 1972, an increase of 19.1%

Stocks at coke plants totaled 97,000 tons at yearend 1973, compared with 84,000 tons at yearend 1972, an increase of 15.5%.

Monthly data on stocks held in retail yards indicated an inventory of 106,000 tons at yearend 1973, a decrease of 13.9% from yearend 1972.

Stocks at Upper Lake docks (Lake Superior and Lake Michigan) comprised less than 500 tons at yearend 1973, relatively comparable to yearend 1972.

## PRICES AND SPECIFICATIONS

Based on total production, including colliery fuel and dredge coal, the average value of Pennsylvania anthracite for 1973 was \$13.22 per ton, compared with \$12.00 per ton in 1972. Total value of production was approximately \$90.3 million, an increase of 6% over that in 1972. Although production had declined, the value was greater than in 1972 because of increases in the price of coal. Anthracite producers increased prices on all sizes during the year to compensate for additional taxes to cover black lung benefits, increased workmen's compensation taxes, and higher costs of mining.

The average value per ton of the larger sized groups was \$18.76 f.o.b. preparation plants, an increase of \$1.58. The price increase per ton for the larger sizes was egg, \$1.44, stove, \$1.78, chestnut, \$1.64, and

pea, \$1.26. The average value per ton of the smaller sizes increased by \$1.16, to \$11.30 per ton. The individual prices of the smaller sizes were as follows: Buckwheat No. 1, \$16.60 (an increase of \$1.22); buckwheat No. 2 (rice), \$16.77 (an increase of \$1.65); buckwheat No. 3 (barley), \$14.11 (an increase of \$1.14); buckwheat No. 4, \$10.78 (an increase of \$1.67); buckwheat No. 5, \$8.39 (an increase of \$2.36); and other, \$5.78 (an increase of \$0.63). All of these prices exclude dredge coal.

Average wholesale prices as quoted in the Black Diamond magazine f.o.b. preparation plants were as follows: Egg and stove, \$19.75 to \$23.50; chestnut, \$19.50 to \$22.50; pea, \$17.50 to \$19.60; buckwheat No. 1, \$17.50 to \$19.60; buckwheat No. 2 (rice), \$17.50 to \$19.60; and buckwheat No. 3 (barley), \$16.50 to \$18.50.

## FOREIGN TRADE

According to the data released by the Bureau of the Census, U.S. Department of Commerce, 716,546 tons of Pennsylvania anthracite were exported in 1973, a decrease of approximately 4% from that exported in 1972. Of the total, 67% was shipped to Canada (5% less than in 1972), 26% to Europe, 5% to South America, and the remainder to other countries. However, this does not fully reflect the total ship-

ments to Europe because the Bureau of the Census does not include in its figures coal shipped abroad for use by the U.S. Armed Forces in West Germany. A more accurate measure of the export trade can be obtained by adding the military tonnage (442,699 net tons) to the Bureau of the Census data. Consequently, 1,159,000 net tons of anthracite were exported in 1973.

## WORLD REVIEW

World production in 1973 totaled 191.9 million short tons, compared with 192.6 million tons in 1972. The combined production of the U.S.S.R., the People's Republic of China (PRC), and North Korea totaled approximately 138.3 million tons, or 72% of the total.

Anthracite imports by Japan totaled 1,057,675 short tons in an 11-month period (January-November) of 1973, and represented an increase of 41.6% over imports in the same period in 1972. The PRC supplied 319,471 tons, or 30.2% of the total. The Republic of Korea increased its exports to Japan by 231,767 tons for the same period, and shipments of 154,611 tons of anthracite from the Republic of South Africa was an 84.8% increase over the same period in 1972. Imports from Canada decreased slightly for the January-November period; 112,749 short tons were shipped in 1973, compared with 118,233 tons in 1972.

Exports from North Vietnam to Japan increased significantly after the shipping blockade was lifted in August. Since shipments resumed, Japan has purchased approximately 190,000 tons of Honggai anthracite, compared with 74,000 tons in 1972. A group of Japanese companies has negotiated a contract with North Vietnam for the purchase of 500,000 to 700,000 tons of anthracite for 1975.

Anthracite continued to be the Republic of Korea's most valuable mineral, representing 70% of the total value of minerals produced. Despite the heavy storm that flooded several major coal mines in August 1972, production totaled 13.7 million tons, and increased to approximately 15.0 million tons in 1973.

The Republic of South Africa showed

an increase in the production of anthracite to 1.6 million short tons in 1973, compared with 1.5 million tons in 1972. Exports increased by 135,982 tons, totaling 998,114 tons. Prices registered increases of 14.6% for domestic sales and 9.3% for exports.

The U.S.S.R. production of anthracite in 1973 was approximately 83.2 million tons, a slight increase over that in 1972. Exports totaled approximately 4.8 million tons. The major markets for Soviet coal are Japan, Italy, France, and Austria. Most coal exports are shipped under relatively long-term trade agreements and usually vary slightly from the agreed tonnages reported.

France produced approximately 7.7 million tons of anthracite in 1973, a decline of 17.7% from that in 1972. Of the total anthracite imported (2.8 million tons), the Soviet Union supplied 33%; the Federal Republic of Germany, 23%; the Republic of South Africa, 14%; and the Netherlands, 12%. The United States and the United Kingdom completed the list of the more significant suppliers.

During the first 6 months of 1973, Yugo-slavia's imports of solid fuels increased slightly from the corresponding period of 1972. Anthracite imports increased from 83,057 tons in 1972 to 96,717 tons in 1973, and accounted for 16.5% of the solid fuels imported.

Anthracite production for the United Kingdom and West Germany, decreased by 19% and 20%, respectively in 1973.

As Italy has insignificant coal resources of its own, it is almost entirely dependent on imports for its coal requirements. The Soviet Union, the United States, and France supplied Italy with anthracite in 1973.

### **TECHNOLOGY**

The use of anthracite as a molecular sieve was investigated. Several coal gasification processes now under development require a supply of oxygen. If air is used for gasification, not only is the product gas of lower calorific value because of dilution with nitrogen, but also the volume of gas to be cleaned of sulfur is much larger, and therefore, the cleaning is more expensive. Studies at Pennsylvania State University indicated that anthracite has the possibility of making a cheaper separation of oxygen and nitrogen, as well as other important industrial gases.2 Anthracites, as they occur naturally, have a large volume within their pore structures, but the pore entrances are so small that few gases can enter, and those only slowly. However, if a small part of the anthracite is gasified, the pore entrances can be enlarged in a controlled manner. In several anthracite samples, 6.9%, 8.0%, and 9.1% of carbon was gasified by heating each sample in air to 425° C, and then in nitrogen to 950° C.

This small difference in amount gasified was enough to make a large difference in the rate at which methane could enter the porous structure. For carbon dioxide the amount that could enter and be absorbed within the 9.1% sample was only 1.6 times the amount within the 6.9% sample. For the hydrocarbon neopentane, which has a larger molecule than carbon dioxide, the amount that could be adsorbed under the same conditions increased by a factor of 100.

The results demonstrate that the production of effective molecular sieves from anthracites is feasible. They also show that the fine control over pore entrance sizes that is provided by slight gasification gives a means of tailormaking molecular sieves to perform a variety of important separations.

Consumption of anthracite for molecular sieve production would obviously be less than consumption of coal for direct fuel uses, but it would be enough to make a significant contribution to the total utilization of anthracite resources.

<sup>&</sup>lt;sup>2</sup> Pennsylvania State University, Coal Research Section. Preparation of Molecular Sieve Materials From Anthracite. Res. and Devel. Rept. 61, Interim Rept. 6, Mar. 15, 1973, pp. 1-2.

Table 4.-Summary of monthly developments in the Pennsylvania anthracite industry in 1973 (Thousand short tons, except as otherwise indicated)

Total 1972  $\frac{1,584}{895}$ 3.9 -51.327.9 -27.2 + 43.3 - 3.2-13.81 6,830 Total 1973 1,442 1,066467 97 31 106 430 258 388 1.076 179 286 3 114 1,066 Dec. 65 31 106 41 62 33 31 126 Nov. (6) (8) **4**7 252 380 582 125 63 10 34 6 Oct. 614 317  $\frac{122}{1,080}$ 28 82 9 74 9 36 Sept. 532111 ,053 30 28 23 Aug.  $\frac{138}{1,026}$ 587 323 85 10 32 127 38 22348 July 434 258 226 960 960 38 78 9 1202 121 June 609 350 267 13599 $\frac{41}{50}$ 76 8 40 31 31 22 24 May 641 (6) (9) 126 897 69 7 37 37 48 Apr. 270 267 581 36 60 7 37 104 20 31 31 69 Mar. 641 285 310 6 58 34 98 31 37 37 83 Feb. 568 182 379 3 101 841 30  $\frac{55}{48}$ Jan. 522 146 367 2  $\frac{126}{852}$ --(<sub>9</sub>) 37 222 Lake Erie loadings 4
Upper Lake dock trade: 5
Receipts
Deliveries (reloadings) By rail <sup>1</sup>
By truck <sup>2</sup>
Carloadings <sup>3</sup> Stocks on Upper Lake docks: 5 Lake Michigan \_\_\_\_\_\_Stocks in retail dealer yards: 9 Chestnut and larger Buckwheat No. 1 and rice Production (including mine fuel, local Retail dealer deliveries: 9 Chestnut and larger ------Exports 7 Industrial consumption and stocks by-Electric utilities; 8 Shipments (breakers and washeries Pea Buckwheat No. 1 and rice Coke plants: Used for carbonizing sales, and dredge coal Lake Superior

| =62-261 |   |
|---------|---|
| indexes |   |
| price   |   |
| 88      | 4 |

|          | r 138.9<br>r 167.1                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | $^{+10.3}_{+10.7}$ r                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | $\frac{153.2}{185.0}$                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | $165.3 \\ 197.0$                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | $\frac{161.1}{193.9}$                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | $\frac{158.3}{191.7}$                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | $\frac{158.3}{191.7}$                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | 156.4<br>189.2                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | 151.7<br>181.6                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | 149.8<br>181.6                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | 149.8<br>181.6                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | 149.8<br>181.6                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | 146.1<br>176.5                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | 146.1                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | 146.1<br>176.5                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 100): 10 | F.o.b. car at mines:<br>Chestnut Ruckwheat No. 1 | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |

Turnished by initial carriers.

The peartment of Mines and Mineral Industries.

Pennaylvania Department of Mines and Mineral Industries.

Association of American Railroads.

One and Coal Exchange, Cleveland, Ohio.

Less than ½ unit.

1.G.S. Department of Commerce. Does not include shipments to the U.S. military forces.

Estimated from reports submitted by a selected list of retail dealers located outside the producing region.

Estimated from reports submitted by a selected list of anthonized from authorized trade publications.

Furnished by the Bureau of Labor Statistics from data obtained from authorized trade publications.

NOTE:—According to the Association of American Railroads, 659,516 short tons of anthracite were exported to Europe during 1973 compared with 697,092 short tons for 1972. Of this total 485,607 short tons with 464,680 short tons for 1972.

Table 5.-Commercial production of Pennsylvania anthracite in 1973, by region and size

| 64                                          | 19.69 19.51 |          |       | 18.56 18.76          | 1               |                        |                          | 8.58 10.68      |                 |         | 11.15 10.90                          | 3.15              |
|---------------------------------------------|-------------|----------|-------|----------------------|-----------------|------------------------|--------------------------|-----------------|-----------------|---------|--------------------------------------|-------------------|
| 519.61                                      | 19.44       | 18.87    | 16.71 | 18.99                | 16.38           | 16.68                  | 14.23                    | 11.69           | 8.47            | 7.30    | 10.55                                | 13.30             |
| 1                                           | ! !         | 1        | ł     | 1                    | :               | ;                      | :                        | 4.03            | 4.00            | 8.10    | 6.96                                 | 96.9              |
| 1                                           | 1 1         | ł        | ł     | 1                    |                 | ł                      | !                        | 4.03            | 4.00            | 4.50    | 4.03                                 | 4.03              |
| ł                                           | !!          | 1        | ł     | 1                    |                 | ;                      | ł                        | !               | 4.00            | 8.17    | 8.14                                 | 8.14              |
| 100                                         | 19.51       | 19.30    | 16.98 | 18.76                | 16.60           | 16.77                  | 14.11                    | 10,78           | 8.39            | 5.78    | 11.30                                | 13,65             |
| 21.0                                        | 19.69       | 20.59    | 17.06 | 18.56                | 16.73           | 16.78                  | 14.06                    | 8.80            | 8.19            | 5.88    | 11.49                                | 3.45              |
| 19 61                                       | 19.44       | 18.87    | 16.71 | 18.99                | 16.38           | 16.68                  | 14.23                    | 11.69           | 8.49            | 5.05    | 11.01                                | 3.95              |
| •                                           | •           |          |       | 19.42                | 1               | 17.93                  | 13.91                    | 10.40           | 8.96            | 7.15    | 3.85                                 | 6.3               |
| 210 84                                      | 20.00       | 20.40    | 17.84 | 19.13                | 17.46           | 17.93                  | 13.88                    | 10.00           | 7.74            | 7.48    | 14.6                                 | 16.3              |
| 610 02                                      | 20.11       | 20.21    | 17.64 | 19.90                | 17.50           | 18.15                  | 14.07                    | 10.82           | 9.05            | 6.31    | 10.88                                | 16.26             |
| 217 25                                      | 19.35       | 18.96    | 16.86 | 18.52                | 16.00           | 16.34                  | 13.82                    | 10.87           | 8.34            | 5.83    | 10.66                                | 12.67             |
| 27 77                                       | 19.56       | 19.09    | 16.83 | 18.39                | 16.17           | 16.34                  | 13.95                    | 7.93            | 8.06            | 6.03    | 10.87                                | 14.10 12.52 12.78 |
| 11 713                                      | 19.21       | 18.71    | 16.95 | 18.70                | 15.62           | 16.33                  | 13.54                    | 12.00           | 8.47            | 4.69    | 10.35                                | 12.52             |
| 77 013                                      | 19.37       | 19.11    | 16.36 | 18.64                | 16.87           | 16.89                  | 14.99                    | 10.68           | 8.49            | 5.13    | 11.55                                | 14.10             |
| 10 41                                       | 19.86       | 19.49    | 16.42 | 18.24                | 16.87           | 16.86                  | 14.68                    | 10.03           | 8.60            | 5.13    | 10.83                                |                   |
| 27 013                                      | 19.30       | 18.64    | 16.25 | 18.86                | 16.87           | 17.12                  | 15.26                    | 10.99           | 8.45            | ;       | 12.54                                | 15.46             |
| Average value per ton: *<br>Lump and broken | Stove       | Chestnut | Pea   | Total pea and larger | Buckwheat No. 1 | Buckwheat No. 2 (rice) | Buckwheat No. 3 (barley) | Buckwheat No. 4 | Buckwheat No. 5 | Other 3 | Total buckwheat No. 1<br>and smaller | Grand total       |

lncludes Sullivan County.

Includes may not add to fotals shown because of independent rounding.

Includes various mixtures of buckwheat Nos. 2 to 5 and coal of relatively low dollar value.

Average value derived from actual, rather than rounded, data.

Table 6.—Sizes of Pennsylvania anthracite (excluding dredge coal) prepared at plants, by region

(Percent)

| Size                            | 1969 | 1970  | 1971      | 1972                                    | 1973 | 1969       | 1970   | 1971      | 1972 | 1973 |
|---------------------------------|------|-------|-----------|-----------------------------------------|------|------------|--------|-----------|------|------|
|                                 |      | Lehig | h region  |                                         |      |            | Schuyl | kill regi | on   |      |
| Lump 1 and broken               |      |       |           |                                         |      |            |        |           |      |      |
| Egg                             | 4.6  | 4.0   | 4.6       | 2.4                                     | 4.6  | 1.2        | 1.0    | 0.9       | 0.3  | 0.3  |
| Stove                           | 10.0 | 9.4   | 10.9      | 10.8                                    | 12.9 | 9.8        | 10.7   | 10.4      | 10.2 | 9.1  |
| Chestnut                        | 13.1 | 11.1  | 11.0      | 10.6                                    | 9.9  | 11.3       | 12.3   | 10.7      | 10.1 | 9.4  |
| Pea                             | 12.2 | 11.5  | 12.7      | 12.9                                    | 14.4 | 7.4        | 8.3    | 7.4       | 6.9  | 6.8  |
| Total pea and                   |      |       |           | 00.0                                    | AF 0 | 00.7       | 00.0   |           | 05.5 | 25.0 |
| larger                          | 38.4 | 33.7  | 36.4      | 32.3                                    | 35.9 | 29.7       | 32.3   | 29.4      | 27.5 | 25.6 |
| Buckwheat No. 1 Buckwheat No. 2 | 11.7 | 10.2  | 10.6      | 12.1                                    | 11.3 | 11.2       | 11.0   | 10.2      | 9.0  | 8.7  |
| (rice)<br>Buckwheat No. 3       | 11.2 | 9.4   | 10.7      | 9.0                                     | 9.0  | 9.2        | 9.8    | 8.9       | 8.8  | 8.3  |
| (barley)                        | 10.8 | 11.9  | 10.1      | 9.1                                     | 9.4  | 14.5       | 13.1   | 12.7      | 12.2 | 11.2 |
| Buckwheat No. 4                 | 8.0  | 7.2   | 5.6       | 5.9                                     | 5.6  | 7.0        | 6.8    | 9.6       | 10.3 | 8.5  |
| Buckwheat No. 5                 | 16.9 | 14.7  | 12.1      | 14.5                                    | 14.5 | 13.2       | 13.5   | 20.4      | 22.0 | 20.4 |
| Other 2                         | 3.0  | 12.9  | 14.5      | 17.1                                    | 14.3 | 15.2       | 13.5   | 8.8       | 10.2 | 17.3 |
| Total buck-<br>wheat No. 1      |      |       |           |                                         |      |            |        |           |      |      |
| and smaller_                    | 61.6 | 66.3  | 63.6      | 67.7                                    | 64.1 | 70.3       | 67.7   | 70.6      | 72.5 | 74.4 |
|                                 |      | Wyom  | ing regio | n                                       |      |            | ,      | Total     |      |      |
| Lump 1 and broken               |      |       | (3)       |                                         |      |            | ~-     | (3)       |      |      |
| Egg                             | 3.1  | 2.4   | 1.9       | 1.7                                     | 2.1  | $2.5^{-2}$ | 2.1    | 2.1       | 1.1  | 1.7  |
| Stove                           | 12.0 | 10.3  | 13.0      | 13.6                                    | 14.1 | 10.4       | 10.3   | 11.1      | 11.0 | 11.0 |
| Chestnut                        | 15.9 | 15.5  | 12.7      | 15.6                                    | 13.8 | 12.8       | 12.7   | 11.2      | 11.4 | 10.2 |
| Pea                             | 12.2 | 11.5  | 12.7      | 12.9                                    | 14.4 | 9.4        | 9.3    | 9.2       | 8.5  | 8.5  |
| Total pea and                   |      |       |           |                                         |      |            |        |           |      |      |
| larger                          | 43.2 | 39.7  | 40.3      | 43.8                                    | 44.4 | 35.1       | 34.4   | 33.6      | 32.0 | 31.4 |
| Buckwheat No. 1 Buckwheat No. 2 | 14.7 | 15.4  | 17.1      | 16.4                                    | 15.9 | 12.2       | 11.8   | 11.8      | 11.2 | 10.7 |
| (rice)<br>Buckwheat No. 3       | 9.4  | 8.7   | 8.8       | 9.8                                     | 9.1  | 9.7        | 9.4    | 9.3       | 9.1  | 8.6  |
| (barley)                        | 9.7  | 10.7  | 11.0      | 11.5                                    | 13.1 | 12.4       | 12.2   | 11.6      | 11.3 | 11.0 |
| Buckwheat No. 4                 | 3.6  | 5.3   | 4.3       | 4.4                                     | 5.4  | 6.4        | 6.6    | 7.4       | 8.0  | 7.2  |
| Buckwheat No. 5                 | 2.6  | 4.5   | 3.4       | 2.5                                     | 2.7  | 11.6       | 11.8   | 14.6      | 16.1 | 15.9 |
| Other 2                         | 16.8 | 15.7  | 15.1      | 11.6                                    | 9.4  | 12.6       | 13.8   | 11.7      | 12.3 | 15.2 |
| Total buck-<br>wheat No. 1      |      |       | -         | *************************************** |      |            |        |           |      |      |
| and smaller _                   | 56.8 | 60.3  | 59.7      | 56.2                                    | 55.6 | 64.9       | 65.6   | 66.4      | 68.0 | 68.6 |

 $<sup>^1</sup>$  Quantity of lump included is insignificant.  $^2$  Includes various mixtures of buckwheat Nos. 2 to 5 and coal of relatively low dollar value.  $^3$  Less than 0.05%.

Table 7.-Production of Pennsylvania anthracite in 1973, by region and county (Thousand short tons and thousand dollars)

|                                                                        | n 11 11                              |                 | Two ch                                  | inments                                                 | Collier                     | y fuel                   | Total production                                       |                                                                   |  |
|------------------------------------------------------------------------|--------------------------------------|-----------------|-----------------------------------------|---------------------------------------------------------|-----------------------------|--------------------------|--------------------------------------------------------|-------------------------------------------------------------------|--|
| Source                                                                 | Quan-Value 2                         |                 | Truck shipments  Quan- tity  Value 2    |                                                         | Quan- Value                 |                          |                                                        | Value <sup>2</sup>                                                |  |
|                                                                        |                                      | R               | EGIONS                                  |                                                         | :                           | ,                        |                                                        |                                                                   |  |
| Lehigh: Preparation plants                                             | 886                                  | 13,704          | 884                                     | 11,246                                                  | 2                           | 40                       | 1,773                                                  | 24,991                                                            |  |
| Schuylkill: Preparation plants                                         | 1,464<br>314                         | 18,332<br>2,560 | 2,134<br>127                            | 27,268<br>510                                           | 6                           | 84                       | 3,605<br>441                                           | 45,684<br>3,070                                                   |  |
| Total Schuylkill 1                                                     |                                      | 20,892          | 2,261                                   | 27,778                                                  | 6                           | 84                       | 4,046                                                  | 48,754                                                            |  |
| Wyoming: Preparation plants 3                                          |                                      | 4,643           | 723                                     | 11,825                                                  | 3                           | 47                       | 1,011                                                  | 16,515                                                            |  |
| Total: <sup>1</sup> Preparation plants Dredges                         | 2,636<br>314                         | 36,679<br>2,560 | 3,741<br>127<br>3,868                   | 50,339<br>510<br>50,849                                 | 11<br><br>11                | 172<br><br>172           | 6,389<br>441<br>6,830                                  | 87,190<br>3,070<br>90,260                                         |  |
| Grand total 1                                                          | 2,951                                | 39,239          |                                         |                                                         |                             |                          |                                                        |                                                                   |  |
|                                                                        |                                      |                 | OUNTIES                                 |                                                         |                             |                          |                                                        | 3,070                                                             |  |
| Berks, Lancaster, Snyder — Carbon ———————————————————————————————————— | 5<br>1<br>110<br>760<br>412<br>1,250 | 12,133<br>4,660 | 7<br>38<br>123<br>1,218<br>546<br>1,747 | 106<br>501<br>1,917<br>17,449<br>7,265<br>22,630<br>381 | (4)<br>(4)<br>(5)<br>1<br>5 | 1<br>2<br>82<br>16<br>72 | 441<br>116<br>12<br>40<br>232<br>1,982<br>959<br>3,003 | 1,621<br>184<br>510<br>3,795<br>29,663<br>11,940<br>39,081<br>381 |  |
| Susquehanna Total 1                                                    |                                      |                 |                                         | 50,849                                                  | 11                          | 172                      | 6,830                                                  | 90,260                                                            |  |

Table 8.-Pennsylvania anthracite produced, by field

(Thousand short tons) 1973 1972 1970 1971 1969 Field 1,288 1,221 1,519 1,583 1,511 Eastern Middle: Breakers and washeries 1,663 1,741 W Western Middle: 2,540 2,167 2,806 Breakers and washeries w Dredges ----w w w w 2.811 Total -----2,427 W 2,333 2,849 W 3,183 Southern: Breakers and washeries 3,183 530 Dredges ----w w 3,713 1,011 1,334 1.802 Total 2,086 Northern: Breakers and washeries 1 2,366 6,629 6,389 9,320 8,337 Total: 9,938 Breakers and washeries 441 477 390 \_\_\_\_\_ 535 6,830 7,106 8,727 9.729 10,473

<sup>&</sup>lt;sup>1</sup> Data may not add to totals shown because of independent rounding.

<sup>2</sup> Value given for shipments is that at which coal left possession of producing company; does not include selling expenses.

<sup>3</sup> Includes Sullivan County.

<sup>4</sup> Less than 1,000 short tons.

W Withheld to avoid disclosing individual company confidential data. 1 Includes Sullivan County.

Table 9.-Pennsylvania anthracite produced in 1973, classified as fresh-mined, culm-bank, and river coal, by field and region

(Thousand short tons)

|                                                                                             |                                  |                    | ined coal        |                            |                          |                        |                          |
|---------------------------------------------------------------------------------------------|----------------------------------|--------------------|------------------|----------------------------|--------------------------|------------------------|--------------------------|
| <b>G</b>                                                                                    | $\underline{\hspace{1cm}}$ Under | ground r           | nines            |                            | From                     | $\mathbf{From}$        |                          |
| Source                                                                                      | Mechan-<br>ically<br>loaded      | cally Hand Total 1 |                  | Strip<br>pits              | culm<br>banks            | river<br>dredg-<br>ing | Total 1                  |
|                                                                                             |                                  | F                  | 'IELD            |                            |                          |                        |                          |
| Eastern Middle<br>Western Middle<br>Southern<br>Northern <sup>2</sup><br>Total <sup>1</sup> | 32<br>222<br>167<br>421          | 67<br>237          | 99<br>460<br>167 | 865<br>620<br>1,110<br>683 | 422<br>944<br>857<br>161 | w<br>w                 | 1,288<br>W<br>W<br>1,011 |
| 10001                                                                                       | 421                              | 305                | 726              | 3,279                      | 2,384                    | 441                    | 6,830                    |
|                                                                                             |                                  | RI                 | EGION            |                            |                          |                        |                          |
| Lehigh Schuylkill Wyoming                                                                   | 254<br>167                       | 305                | 559<br>167       | 1,162<br>1,434<br>683      | 611<br>1,612<br>161      | 441                    | 1,773<br>4,046<br>1,011  |
| Total                                                                                       | 421 305                          |                    | 726              | 3,279                      | 2,384                    | 441                    | 6,830                    |

W Withheld to avoid disclosing individual company confidential data.

Data may not add to totals shown because of independent rounding.

Includes Sullivan County.

Table 10.-Production of Pennsylvania anthracite from strip pits

|                                                                                   | Mined by<br>stripping<br>(thousand<br>short tons) | Percent<br>of fresh-<br>mined<br>total | Number<br>of men<br>employed     | Average<br>number<br>of days<br>worked |
|-----------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------|----------------------------------|----------------------------------------|
| 969                                                                               | 4,579<br>4,541<br>4,478<br>3,483                  | 68.5<br>72.3<br>77.7<br>78.7           | 1,787<br>1,855<br>1,800<br>2,011 | 256<br>234<br>273<br>261               |
| 973: Lehigh region Schuylkill region Wyoming region <sup>1</sup> Total or average | 1,162<br>1,434<br>683<br>3,279                    | 29.0<br>35.8<br>17.1<br>81.9           | NA<br>NA<br>NA<br>P 1,633        | NA<br>NA<br>NA                         |

Preliminary. NA Not available.
 Includes Sullivan County.

Table 11.-Employment at operations producing Pennsylvania anthracite (including strip contractors) in 1973

|                                      | Lehigh | Schuyl-<br>kill | Wyoming  | Tot                 | tal       |
|--------------------------------------|--------|-----------------|----------|---------------------|-----------|
|                                      | region | region          | region 1 | 1973 р              | 1972      |
| Average number of men working daily: |        |                 | 27.4     | 710                 | 650       |
| Underground                          | NA     | NA              | NA       | 716                 | 2,011     |
| In strip pits                        | NA     | NA              | NA       | $\frac{1,633}{327}$ | 314       |
| At culm banks                        | NA     | NA              | NA       | 1,214               | 1,471     |
| At preparation plants                | NA     | NA              | NA       | 1,214               | 287       |
| Other surface                        | NA     | NA              | NA       |                     |           |
| Total excluding dredge operations    | NA     | NA              | NA       | 4,033               | 4,733     |
| Dredge operations                    | NA     | NA              | NA       | 50                  | 50        |
|                                      | NA     | NA              | NA       | 4,083               | 4,783     |
| Total                                | NA_    | NA              |          | 1,000               |           |
| Average number of days active:       |        |                 |          |                     |           |
| All operations except dredges        | NA     | NA              | NA       | 233                 | 215       |
| Dredge operations                    | NA     | NA              | NA       | 300                 | 300       |
|                                      | NA     | NA              | NA       | 234                 | 216       |
| Average, all operations              | - NA   |                 |          |                     |           |
| Man-days of labor:                   |        |                 |          |                     |           |
| All operations except dredges        | NA     | NA              | NA       | 940,000             | 1,018,000 |
| Dredge operations                    | NA     | NA              | NA       | 15,000              | 15,000    |
|                                      | NA     | NA              | NA       | 955,000             | 1.033,000 |
| Total, all operations                | INA    | 1177            |          |                     |           |
| Average tons per man-day:            |        |                 |          |                     |           |
| All operations except dredges        | NA     | NA              | NA       | 6.80                | 6.51      |
| Dredge operations                    | NA     | NA              | NA       | 29.41               | 31.79     |
| Average, all operations              | NA     | NA              | NA       | 7.15                | 6.88      |

Preliminary. NA Not available.
 Includes Sullivan County.

Table 12.—Production of Pennsylvania anthracite from culm banks, by region

(Thousand short tons)

| · Year            | Lehigh<br>region                | Schuylkill<br>region                      | Wyoming<br>region               | Total 1                                   |
|-------------------|---------------------------------|-------------------------------------------|---------------------------------|-------------------------------------------|
| 969<br>970<br>971 | 775<br>921<br>729<br>614<br>611 | 1,815<br>1,591<br>1,544<br>1,411<br>1,612 | 662<br>524<br>300<br>177<br>161 | 3,253<br>3,036<br>2,573<br>2,202<br>2,384 |

<sup>&</sup>lt;sup>1</sup> Data may not add to totals shown because of independent rounding.

| Table 13Estimated production   | of | Pennsylvania | anthracite | in | 1973, | by | week 1 |
|--------------------------------|----|--------------|------------|----|-------|----|--------|
| Table 13.—Estimated production | of | Pennsylvania | anthracite | in | 1973, | by | week 1 |

|      | Week<br>ended—        | Thousand<br>short tons   | Week<br>ended—          | Thousand short tons      | Week<br>ended—           | Thousand<br>short ton          |
|------|-----------------------|--------------------------|-------------------------|--------------------------|--------------------------|--------------------------------|
| Jan. | 6<br>13<br>20<br>27 - | 107<br>82<br>114<br>126  | May 12<br>19<br>26      | 150<br>158<br>141        | Sept. 15<br>22<br>29     | 132<br>148<br>140              |
| Feb. | 3<br>10<br>17         | 155<br>133<br>140        | June 2<br>9<br>16<br>23 | 132<br>124<br>127<br>150 | Oct. 6<br>13<br>20<br>27 | 133<br>133<br>146              |
| Mar. | 3<br>10<br>17         | 161<br>120<br>98<br>130  | July 7<br>14<br>21      | 152<br>85<br>67<br>113   | Nov. 3<br>10<br>17       | 138<br>116<br>138<br>129       |
| Apr. | 31<br>7<br>14<br>21   | 187<br>178<br>137<br>142 | Aug. 4<br>11<br>18      | 122<br>131<br>132<br>115 | Dec. 1<br>8<br>15<br>22  | 111<br>152<br>163<br>144<br>97 |
| May  | 28                    | 134<br>139<br>145        | Sept. 25<br>1<br>8      | 129<br>127<br>112        | 29<br>Total              | 115<br>6,830                   |

 $<sup>^1</sup>$  Estimated from weekly carloadings as reported by the Association of American Railroads and other factors; adjusted to annual production from Bureau of Mines canvass.

Table 14.—Estimated monthly production of Pennsylvania anthracite <sup>1</sup> (Thousand short tons)

| Month     | 1969   | 1970  | 1971  | 1972  | 1978  |
|-----------|--------|-------|-------|-------|-------|
| January   |        |       |       |       |       |
| February  | 978    |       | 725   | 583   | 522   |
| March     | 911    |       | 654   | 542   | 568   |
| April     | 898    |       | 780   | 622   | 641   |
| May       | 916    |       | 795   | 487   | 581   |
| June      | 869    |       | 782   | 706   | 641   |
| July      | 812    | 809   | 740   | 515   | 609   |
| August    | 704    |       | 620   | 465   | 434   |
| September | 877    | 898   | 813   | 688   | 587   |
| October   | 947    |       | 767   | 611   | 532   |
| November  | 985    | 895   | 710   | 682   | 614   |
| December  | 831    | 815   | 685   | 650   | 582   |
|           | 750    | 811   | 656   | 555   | 519   |
| Total     | 10,473 | 9,729 | 8,727 | 7.106 | 6,830 |

<sup>&</sup>lt;sup>1</sup> Production is estimated from weekly carloadings, as reported by the Association of American Railroads, and includes mine fuel, coal sold locally, and dredge coal.

Table 15.—Power shovels, front-end loaders, and draglines used in recovering coal from culm banks and stripping Pennsylvania anthracite, by type of power

|                                                            | N                                          | 197                                |                    | 1972     |                                            |                    |                                  | 1973                      |                                            |                                    |                          |                           |
|------------------------------------------------------------|--------------------------------------------|------------------------------------|--------------------|----------|--------------------------------------------|--------------------|----------------------------------|---------------------------|--------------------------------------------|------------------------------------|--------------------------|---------------------------|
| Type of power                                              | Num-<br>ber of<br>front-<br>end<br>loaders | Num-<br>ber of<br>power<br>shovels | ber of drag-       | Total    | Num-<br>ber of<br>front-<br>end<br>loaders | ber of             | Num-<br>ber of<br>drag-<br>lines | Total                     | Num-<br>ber of<br>front-<br>end<br>loaders | Num-<br>ber of<br>power<br>shovels | ber of drag-             | Total                     |
| Gasoline<br>Electric<br>Diesel<br>Diesel-electric<br>Total | <br>77<br>77                               | 1<br>18<br>43<br><br>62            | 2<br>36<br>85<br>1 | 205<br>1 | 103<br><br>103                             | 19<br>41<br><br>60 | 1<br>42<br>75<br>                | 1<br>61<br>219<br><br>281 | 138<br><br>138                             | 16<br>34<br><br>50                 | 1<br>34<br>77<br><br>112 | 1<br>50<br>249<br><br>300 |

Table 16.-Pennsylvania anthracite loaded mechanically underground

|      |      | Scraper               | loaders                                  | Mobile l              | oaders                                   | Conveyor<br>pit-car   |                                          | Total <sup>2</sup> l<br>mechan |                                          |
|------|------|-----------------------|------------------------------------------|-----------------------|------------------------------------------|-----------------------|------------------------------------------|--------------------------------|------------------------------------------|
|      | Year | Number<br>of<br>units | Thou-<br>sand<br>short<br>tons<br>loaded | Number<br>of<br>units | Thou-<br>sand<br>short<br>tons<br>loaded | Number<br>of<br>units | Thou-<br>sand<br>short<br>tons<br>loaded | Number<br>of<br>units          | Thou-<br>sand<br>short<br>tons<br>loaded |
| 1969 |      | 106                   | 567                                      | 25                    | 190                                      | 158                   | 570                                      | 289                            | 1,327                                    |
| 1970 |      | 103                   | 491                                      | 20                    | 183                                      | 147                   | 476                                      | 270                            | 1,151                                    |
| 1971 |      | 95                    | 319                                      | 18                    | 151                                      | 91                    | 199                                      | 204                            | 670                                      |
| 1972 |      | 81                    | 347                                      | 16                    | 136                                      | 46                    | 111                                      | 143                            | 594                                      |
| 1973 |      | 72                    | 220                                      | 4                     | 106                                      | 47                    | 96                                       | 123                            | 421                                      |

Table 17.-Trends in mechanical loading,1 hand loading, and stripping of Pennsylvania anthracite

|                                      |                                            |                                            |                                                | Fresh-min                                  | ed coal                                   |                                           |                                         |                                           |
|--------------------------------------|--------------------------------------------|--------------------------------------------|------------------------------------------------|--------------------------------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------|-------------------------------------------|
| -                                    |                                            |                                            | Undergroun                                     | d                                          |                                           | Stri                                      | p pits                                  |                                           |
| Year                                 | Mechan- ical loading (thousand short tons) | Percent<br>of<br>total<br>under-<br>ground | Hand<br>loading<br>(thousand<br>short<br>tons) | Percent<br>of<br>total<br>under-<br>ground | Total<br>(thou-<br>sand<br>short<br>tons) | Quantity (thousand short tons)            | Percent<br>of<br>fresh<br>mined<br>coal | Total<br>(thou-<br>sand<br>short<br>tons) |
| 1969<br>1970<br>1971<br>1972<br>1973 | 1,327<br>1,151<br>670<br>594<br>421        | 63.0<br>66.1<br>52.1<br>62.9<br>58.0       | 779<br>591<br>617<br>350<br>305                | 37.0<br>33.9<br>47.9<br>37.1<br>42.0       | 2,106<br>1,742<br>1,287<br>944<br>726     | 4,579<br>4,541<br>4,478<br>3,483<br>3,279 | 68.5<br>72.3<br>77.7<br>78.7<br>81.9    | 6,685<br>6,283<br>5,765<br>4,427<br>4,005 |

<sup>&</sup>lt;sup>1</sup> Mechanical loading includes coal handled on pit-car loaders and hand-loaded face conveyors.

 <sup>&</sup>lt;sup>1</sup> Includes duckbills and other self-loading conveyors.
 <sup>2</sup> Data may not add to totals shown because of independent rounding.

Table 18.-Distribution of Pennsylvania anthracite, by calendar year, by State, Province, and country of destination

181,699 742,907 3,816,208 Total all sizes 59,954 4,740,814 64,848 298,877 378,357 151,839 346,788 500,306 690,873 5,542,850 6,734,029 1,191 1,916 6,215 1,245 1,245 4,241 105,436 364,037 2,886,235 3,355,708 382,365 272,529 4,465 1,894 5,571 1,846 173,034 356,57652,711 328,674 980 Total 13.776 3,914,028 4,568,922 80 21 **1,479** 48 126 87,905 173,410 1,423,273 Other 1.754 Buckwheat No. 1 and smaller 1,684,588 25 72 2,983 1,578 4.658 13,037 26,056 111,071 10,147 40,999 6,370 107,680 268,752 27,007 150,045 595 2,494,364 177,647 249,285 2,067,432 Buck-wheat No. 3 barley) 1,432 80,429 476,802 11 1 9 2,705 1,171 20,995558,663 583,580 141,765 22,639 747,984 Buck-wheat No. 2 (rice) 3,744 5,022 24,938 533,164 12,951 3,916 46 918 891 161 2.016 13,908 217 9.501 563,124 591,508 4,803 8,734 371 605,633 Buck-wheat No. 1 757 270 504 605 11,077 85,260 452,996 3,633  $^{1,761}_{888}$   $^{1,648}_{100}$  $\frac{8}{23,181}$ 51,232 62,913 15,731 33,312 49,045 388 497 549,333 4,397 671,508 720,941 5,604 5,987 21,623 3,783 1,138 6,885 76,263 378,870 929,973 12,120 5,119 31,785 2,048 45.020 1,385,106 51.072 61,758 2,012125,843 21,781 117,941 418,344Total ,628,822 2,165,107 1972 7,836 180,998 331,517 Pea 67 67 787 1 144 1,738 259 3,927 1376,387 159299 20,414 21,172 $13,992 \\ 9,805$ 23,801 21,016 520,351 6,061 569,297 Pea and larger Chestnut 3,793 3,553 8,760 1,923 619 2,738 5,429 2,291 11,514 448 437 2,055 5,108 424,932 19,682 928 1,144 9,678 25,865 4,526 487 30,878 116,171536.792 588,118 735,167 Stove 1,810 2,367 11,672 1,860 519 3,703 20,878 129,449 168,002 318,329 4,285 2,569 16,160 1,463 24,477 60,012 226,320 150,856 21.931 Broken and 1,166 2,946 5,522104 9,634 1 : 404 852 9,5509,661 2,771 4793,250 54,83778,638 184 20,551 Connecticut New Hampshire New Jersey Pennsylvania 1 Massachusetts Rhode Island ndiana .... Other countries Other Provinces District of Columbia South Atlantic States: 2 Virginia -----Illinois -----Middle Atlantic States: Total United States New England States: Ontario -----Destination Total Canada Grand total Delaware Other States Maryland Michigan /ermont Lake States: Total Total Total Maine United States: Quebec Canada

|                                                                                               | 7 58,439 | 9 152,149<br>0 663,994<br>7 3,483,134<br>6 4,299,277             |                                                                                         | 124,341     | 63,978<br>0 40,857<br>55 99,969<br>81 10,595<br>127,865     |                              | 11 5,182,883        |                                                | 15 477,692<br>32 681,353    | 38 6,341,928 |
|-----------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------|------------------------------|---------------------|------------------------------------------------|-----------------------------|--------------|
| 1,117<br>1,971<br>1,971<br>5,578<br>720<br>61<br>4,870                                        | 14,317   | 90,709<br>334,010<br>2,566,037<br>2,990,756                      | 3,203<br>1,951<br>17,097<br>3,391<br>39,823                                             | 65,465      | 45,548<br>29,810<br>13,765<br>10,581                        |                              | 3,621,911           |                                                | 402,615<br>249,062          | 4,273,588    |
| 47<br>242<br>242<br>15 <del>0</del><br>14                                                     | 484      | 78,975<br>142,545<br>1,349,070<br>1,570,590                      | 48<br>1<br>15,025<br>2,200<br>39,742                                                    | 57,016      | 14,680<br>28,146<br>11,573<br>10,557                        | 794<br>140,376<br>264,470    | 2,032,936           | 2,331<br>186,939<br>909                        | 190,179<br>203,736          | 2,426,851    |
| 10 10 11 11                                                                                   | 13       | 715<br>65,375<br>389,124<br>455,214                              | 2,432<br>47<br>203<br>50                                                                | 2,732       | 334<br>1,556<br>26<br>9                                     | 2,095<br>19,548              | 479,602             | 3,283<br>156,433                               | 159,716<br>1,061            | 640,379      |
| 269<br>1,438<br>4,202<br>238<br>4,247                                                         | 10,394   | 3,908<br>29,793<br>465,748<br>499,449                            | 343<br>343<br>956<br>886<br>4                                                           | 2,189       | 12,347<br>82<br>82<br>175<br>2<br>2<br>2.536                | 158<br>15,300<br>3,391       | 530,723             | 1,179<br>3,662<br>108                          | 4,949<br>356                | 536,028      |
| 796<br>504<br>1,132<br>326<br>47<br>621                                                       | 3,426    | 7,111<br>96,297<br>362,095<br>465,503                            | 723<br>1,607<br>1,069<br>102<br>201                                                     | 3,528       | 18,187<br>26<br>1,991<br>13                                 | 1,381<br>51,889<br>54,304    | 578,650             | 16,063<br>31,634<br>74                         | 47,771<br>43,909            | 670,330      |
| 5,231<br>6,296<br>21,892<br>2,749<br>1,238<br>6,716                                           | 44,122   | 61,440<br>329,984<br>917,097<br>1,308,521                        | 8,075<br>3,404<br>18,240<br>5,423<br>23,734                                             | 58,876      | 18,430<br>11,047<br>86,204<br>20,346                        | 5,377<br>141,418<br>8,035    | 1,560,972           | 58,362<br>15,990<br>725                        | 75,077<br><b>4</b> 32,291   | 2,068,340    |
| 192<br>63<br>695<br><br>487                                                                   | 1,437    | 7,078<br>161,163<br>289,149<br>457,390                           | 857<br>405<br>2,341<br>3,850<br>20,973                                                  | 28,426      | 16,712<br>9,816<br>9,676<br>1,415                           | 37,726<br>7,402              | 532,381             | 2,944<br>3,099                                 | 6,043<br>19,966             | 558,390      |
| 3,104<br>4,070<br>8,693<br>1,497<br>685<br>2,599                                              | 20,648   | 37,070<br>54,200<br>399,675<br>490,945                           | 3,768<br>1,342<br>6,682<br>501<br>2,739                                                 | 15,032      | 1,027 $1,231$ $32,193$ $8$                                  | 480<br>35,316<br>420         | 562,361             | 20,615<br>1,556<br>343                         | $22,514 \\ 109,032$         | 693,907      |
| 1,935<br>2,110<br>11,950<br>1,252<br>553<br>3,607                                             | 21,407   | 16,628<br>111,859<br>201,938<br>330,425                          | 2,627<br>1,657<br>9,141<br>934                                                          | 14,381      | 330<br>43,037<br>11.899                                     | 4,796<br>60,062<br>13        | 426,288             | 34,286<br>10,898<br>382                        | 45,566<br>236,187           | 708,041      |
| 5533                                                                                          | 630      | 664<br>2,762<br>26,335<br>29,761                                 | 823<br>76<br>138                                                                        | 1,037       | 361<br>1,298<br>6,655                                       | 8,314                        | 39,942              | 517<br>437<br>                                 | 954<br>67,106               | 108,002      |
| United States: New England States: Connectiont Maine Massachusetts New Hampshire Rhode Island | Total    | Middle Atlantic States: New Jersey New York Pennsylvania 1 Total | South Atlantic States: 2 Delaware District of Columbia Maryland Viriginia West Virginia | Total Total | Lake States:  Illinois Indians Michigan Minnesota Ohinesota | Wisconsin Total Other States | Total United States | Canada<br>Ontario<br>Queber<br>Other Provinces | Total CanadaOther countries | Grand total  |

1973

<sup>1</sup> Includes "Local sales."
<sup>2</sup> Shipments to other States in the South Atlantic area are included in "Other States."

Table 19.-Truck shipments of Pennsylvania anthracite in 1973, by month, and by State of destination 1

(Thousand short tons)

| Destination    | Jan. | Feb.   | Mar.      | Apr. | . Мау | June             | July | Aug.     | Sept. | Oct. | Nov. | Dec. | Total | Percent<br>of total<br>trucked |
|----------------|------|--------|-----------|------|-------|------------------|------|----------|-------|------|------|------|-------|--------------------------------|
| Pennsylvania:  |      |        |           |      |       |                  |      |          |       |      |      |      |       |                                |
| Within region  | 143  | 145    | 118       | 129  | 123   | 103              | 88   | 130      | 143   | 127  | 144  | 118  | 1.511 | 40.1                           |
| Outside region | 172  | 175    | 154       | 100  | 147   | 129              | 111  | 154      | 112   | 182  | 192  | 130  | 1,758 | 46.6                           |
| New York       | 37   | 46     | 28        | 33   | 37    | 29               | 23   | 31       | 25    | 33   | 33   | 25   | 380   | 10.1                           |
| New Jersey     | 9    | 8      | 7         | 4    | 5     | 5                | 4    | 6        | 6     | 7    | 7    | 9    | 77    | 2.0                            |
| Delaware       | 2    | 2      | 1         | (2)  | 1     | 1                | (2)  | 1        | (2)   | 1    | 1    | i    | 11    | .3                             |
| Maryland       | 3    | 2<br>2 | $\bar{2}$ | ìí   | 1     | ( <sup>2</sup> ) | (2)  | 1        | ` ź   | 7    | 2    | 2    | 26    | .7                             |
| District of    |      | _      | _         | _    |       | ( /              | ` '  |          | -     | •    | _    | _    |       | •                              |
| Columbia       |      |        |           |      | 5.7   |                  |      |          |       |      |      |      |       |                                |
| Other States   | 1    | 1      | (2)       | (2)  | (2)   | (2)              | (2)  | $(^{2})$ | 1     | 3    | 1    | 1    | 8     | .2                             |
| Total:         | -    |        |           |      |       |                  |      |          |       |      |      |      |       |                                |
| 1973           | 367  | 379    | 310       | 267  | 314   | 267              | 226  | 323      | 292   | 360  | 380  | 286  | 3,771 | 100.0                          |
| 1972           | 356  | 403    | 439       | 299  | 318   | 230              | 216  | 304      | 301   | 384  | 380  | 336  | 3,966 | 100.0                          |

 $<sup>^1</sup>$  Compiled from reports of Pennsylvania Department of Mines and Mineral Industries; does not include dredge coal.  $^2$  Less than  $\frac{1}{2}$  unit.

Table 20.-Shipments of Pennsylvania anthracite, by destination <sup>1</sup>

(Thousand short tons)

| Destination           | 1969            | 1970            | 1971       | 1972         | 1973  |
|-----------------------|-----------------|-----------------|------------|--------------|-------|
| TRUCK SHIPMEN         | ITS             |                 |            |              |       |
| Pennsylvania:         |                 |                 |            |              |       |
| Within region         | 1,918           | 1,847           | 1,880      | 1,584        | 1,511 |
| Outside region        | 2.151           | 1.979           | 2,050      | 1,793        | 1.758 |
| New York              | 369             | 418             | 373        | 441          | 380   |
| New Jersey            | 247             | 198             | 126        | 89           | 77    |
| Delaware              | 22              | 18              | 17         | 15           | 11    |
| Maryland              | 94              | 50              | 29         | 23           | 26    |
| District of Columbia  | 2               | 2               | (2)        | (2)          |       |
| Other States          | 17              | 15              | 12         | `´21         | -8    |
| Total 3               | 4,821           | 4,527           | 4,487      | 3,966        | 3,771 |
| RAIL SHIPMEN          | rs              |                 |            |              |       |
| New England States    | 107             | 102             | 100        | 49           | 45    |
| New York              | 645             | 455             | 532        | 281          | 299   |
| New Jersey            | 291             | 173             | 113        | 85           | 55    |
| Pennsylvania          | 940             | 847             | 819        | 830          | 856   |
| Delaware              | (2)             | 1               | 1          | 5            | (2)   |
| Maryland              | `´34            | 19              | 24         | 2            | ` 1   |
| District of Columbia  | 4               | 7               | 3          | 3            | 2     |
| Virginia              | 6               | 9               | 7          | 3            | 8     |
| Ohio                  | 215             | 151             | 122        | 124          | 122   |
| Indiana               | 70              | 66              | 54         | 42           | 43    |
| Illinois              | 102             | 93              | 57         | 47           | 56    |
| Wisconsin             | 6               | 12              | 8          | 10           | 8     |
| Missouri              |                 |                 |            | 30           | 26    |
| Minnesota             | $\overline{25}$ | $\overline{51}$ | 1          | 10           | 11    |
| Iowa                  |                 |                 | _          | 31           | 36    |
| Michigan              | 33              | 53              | 70         | 49           | 98    |
| Other States          | 312             | 408             | 455        | 290          | 311   |
|                       |                 |                 |            |              | 1.977 |
| Total United States 3 | 2,792           | 2,447           | 2,366      | 1,891<br>386 | 389   |
| Canada                | 373             | 384             | 411<br>572 | 386<br>374   | 384   |
| Other countries       | 853             | 691             |            |              |       |
| Grand total 3         | 4,018           | 3,522           | 4 3,349    | 2,651        | 2,750 |

<sup>&</sup>lt;sup>1</sup>Compiled from reports of Pennsylvania Department of Mines and Mineral Industries; does not include dredge coal.

2 Less than ½ unit.

3 Data may not add to totals shown because of independent rounding.

4 Corrected figure; erroneously reported in years 1971 and 1972.

Table 21.-Average sales realization of Pennsylvania anthracite (excluding dredge coal) at preparation plants, by region and size

(Per short ton)

|                                                                                                                   |                                                        |                                                         |                                                                   |                                                          |                                                           |                                                                |                                                         |                                                         | -                                                        |                                                           |
|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------|
|                                                                                                                   |                                                        | Leh                                                     | Lehigh region                                                     |                                                          |                                                           |                                                                | Schuyl                                                  | Schuylkill region                                       |                                                          |                                                           |
| Size                                                                                                              | 1969                                                   | 1970                                                    | 1971                                                              | 1972                                                     | 1973                                                      | 1969                                                           | 1970                                                    | 1971                                                    | 1972                                                     | 1973                                                      |
| Lump <sup>1</sup> and broken Egg Stove Chestnut                                                                   | \$14.16<br>14.05<br>14.08                              | \$14.90<br>14.98<br>15.19                               | \$17.59<br>16.62<br>16.47                                         | \$18.32<br>17.67<br>17.39                                | \$19.77<br>19.37<br>19.11                                 | \$13.66<br>13.92<br>13.84                                      | \$14.27<br>15.35<br>15.29                               | \$6.00<br>16.83<br>16.65                                | \$16.58<br>17.56<br>17.23                                | \$17.32<br>19.35<br>18.96                                 |
| Total ness and larger                                                                                             | 13.43                                                  | 14.65                                                   | 16.14                                                             | 17.08                                                    | 18.64                                                     | 13.38                                                          | 14.81                                                   | 16.21                                                   | 16.87                                                    | 18.52                                                     |
| Buckwheat No. 1 Buckwheat No. 2 (rice) Buckwheat No. 3 (barley) Buckwheat No. 4 Buckwheat No. 6 Other wheat No. 6 | 11.18<br>11.49<br>9.42<br>5.92<br>5.80<br>3.55         | 12.78<br>12.94<br>11.07<br>7.16<br>6.20                 | 14.55<br>14.33<br>12.71<br>8.51<br>6.64<br>4.04                   | 15.29<br>15.29<br>13.82<br>8.82<br>6.28<br>4.81          | 16.87<br>16.89<br>14.99<br>10.68<br>8.49<br>5.13          | 11.56<br>11.30<br>9.54<br>6.67<br>5.34                         | 13.26<br>12.99<br>11.05<br>7.60<br>5.54<br>8.68         | 14.77<br>14.45<br>12.30<br>8.00<br>5.88<br>3.50         | 14.85<br>14.95<br>12.36<br>9.15<br>5.71                  | 16.00<br>16.34<br>13.82<br>10.87<br>8.34<br>5.83          |
| Total buckwheat No. 1 and smaller                                                                                 | 8.39                                                   | 8.51                                                    | 9.78                                                              | 10.09                                                    | 11.55                                                     | 7.76                                                           | 8.77                                                    | 9.39                                                    | 9.43                                                     | 10.66                                                     |
| Total all sizes                                                                                                   | 10.33                                                  | 10.74                                                   | 12.10                                                             | 12.35                                                    | 14.09                                                     | 9.43                                                           | 10.72                                                   | 11.40                                                   | 11.48                                                    | 12.67                                                     |
| 1                                                                                                                 |                                                        | W                                                       | Wyoming region                                                    | rion 3                                                   |                                                           |                                                                | •                                                       | Total                                                   |                                                          |                                                           |
| Lump <sup>1</sup> and broken  Egg Stove Chestnut Pea                                                              | \$13.86<br>14.32<br>14.58<br>12.81                     | \$15.62<br>16.00<br>16.75                               | \$19.29<br>16.67<br>17.56<br>16.30                                | \$18.46<br>18.13<br>18.63<br>16.38                       | \$19.88<br>20.08<br>20.36<br>17.82                        | \$13.95<br>14.06<br>12.14                                      | \$14.93<br>15.41<br>15.67<br>13.87                      | \$6.00<br>17.76<br>16.65<br>16.79<br>15.28              | \$18.11<br>17.73<br>17.66<br>15.72                       | \$19.55<br>19.51<br>19.30<br>16.98                        |
| Total pea and larger                                                                                              | 13.96                                                  | 15.93                                                   | 16.96                                                             | 17.81                                                    | 19.42                                                     | 13.56                                                          | 15.06                                                   | 16.39                                                   | 17.18                                                    | 18.76                                                     |
| [8]     ta                                                                                                        | 11.77<br>11.79<br>9.43<br>7.55<br>4.65<br>1.98<br>7.88 | 13.62<br>13.77<br>11.07<br>7.16<br>4.41<br>4.50<br>9.56 | 15.15<br>15.15<br>15.17<br>13.13<br>7.78<br>6.61<br>6.24<br>11.50 | 16.23<br>15.60<br>13.87<br>9.39<br>7.22<br>6.60<br>12.71 | 17.46<br>17.93<br>13.91<br>10.40<br>8.96<br>7.15<br>13.85 | 11.53<br>11.47<br>9.49<br>6.56<br>6.47<br>5.47<br>3.16<br>7.93 | 13.26<br>13.14<br>11.06<br>7.40<br>5.65<br>4.00<br>8.92 | 14.83<br>14.56<br>12.56<br>8.07<br>6.08<br>4.44<br>9.90 | 15.38<br>15.12<br>12.97<br>9.11<br>5.98<br>5.16<br>10.14 | 16.60<br>16.77<br>14.11<br>10.78<br>8.39<br>5.78<br>11.30 |
|                                                                                                                   |                                                        |                                                         |                                                                   |                                                          |                                                           |                                                                |                                                         |                                                         |                                                          |                                                           |

 $^1$ Quantity of lump included is insignificant.  $^2$  Includes various mixtures of buckwheat Nos. 2 to 5 and coal of relatively low dollar value.  $^3$  Includes Sullivan County.

| Table 22.—Average | value o | f Pennsylvania | anthracite | from | all | sources, | by | region 1 |
|-------------------|---------|----------------|------------|------|-----|----------|----|----------|
|                   |         | (Per shor      | t ton)     |      |     |          |    |          |

| _                                            |                                    | 1972                               |                                    |                                    |                                    | 19                                 | 73                                 |                                    |
|----------------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| Region                                       | Shipped<br>by rail                 | Shipped<br>by truck                | Colliery<br>fuel                   | Total                              | Shipped<br>by rail                 | Shipped<br>by truck                | Colliery<br>fuel                   | Total                              |
| Lehigh Schuylkill Wyoming <sup>2</sup> Total | \$13.41<br>10.04<br>14.92<br>11.56 | \$11.50<br>11.52<br>14.95<br>12.29 | \$15.61<br>14.36<br>15.94<br>15.21 | \$12.35<br>10.88<br>14.94<br>12.00 | \$15.46<br>11.75<br>16.26<br>13.30 | \$12.72<br>12.29<br>16.35<br>13.15 | \$16.31<br>14.01<br>16.39<br>15.11 | \$14.10<br>12.05<br>16.33<br>13.22 |

<sup>&</sup>lt;sup>1</sup> Value given for shipments is that at which coal left possession of producing company; does not include selling expenses.

<sup>2</sup> Includes Sullivan County.

Table 23.-Wholesale prices of Pennsylvania anthracite in 1973, by size 1

(Per short ton)

| Size                                                                                       | Winter          | Spring          | Summer-Fall     | End of year     |
|--------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|-----------------|
| Egg and stove Chestnut Pea Buckwheat No. 1 Buckwheat No. 2 (rice) Buckwheat No. 3 (barley) | \$19.75-\$19.90 | \$20.75-\$20.85 | \$21.75-\$22.50 | \$22.50-\$23.50 |
|                                                                                            | 19.50           | 20.00           | 21.00- 21.50    | 21.50- 22.50    |
|                                                                                            | 17.50           | 18.00           | 19.00           | 19.40- 19.60    |
|                                                                                            | 17.50           | 18.00           | 19.00           | 19.40- 19.60    |
|                                                                                            | 17.50           | 18.00           | 19.00           | 19.40- 19.60    |
|                                                                                            | 16.50           | 17.00           | 18.00           | 18.50           |

<sup>&</sup>lt;sup>1</sup> As quoted in the Black Diamond Magazine. All prices are per short ton f.o.b at mines.

Table 24.-Consumption of Pennsylvania anthracite in the United States, by consumer category

(Thousand short tons)

|                                                | Year | Residential<br>and                        | Colliery             | Electric                                  | Cement -                |                                   | and steel<br>lustry                          |                                       |
|------------------------------------------------|------|-------------------------------------------|----------------------|-------------------------------------------|-------------------------|-----------------------------------|----------------------------------------------|---------------------------------------|
|                                                |      | commercial<br>heating e                   | fuel                 | utilities 1                               | plants                  | Coke<br>making                    | Sintering<br>and<br>pelletizing <sup>2</sup> | Other uses e                          |
| 1969 _<br>1970 _<br>1971 _<br>1972 _<br>1973 _ |      | 4,209<br>4,042<br>3,850<br>2,960<br>2,917 | 17<br>16<br>15<br>11 | 1,849<br>1,897<br>1,646<br>1,584<br>1,442 | 213<br>W<br>W<br>W<br>W | 543<br>472<br>421<br>474<br>r 467 | 623<br>464<br>339<br>283<br>231              | 1,355<br>1,357<br>1,037<br>603<br>603 |

<sup>&</sup>lt;sup>e</sup> Estimate. <sup>r</sup> Revised. W Withheld to avoid disclosing indivincluded in "Other uses." <sup>l</sup> Federal Power Commission. <sup>2</sup> Annual Statistical Report, American Iron and Steel Institute. W Withheld to avoid disclosing individual company confidential data;

Table 25.-U.S. exports of anthracite, by country and customs district

|                    | 1972                     |                           | 1973                     |                           |
|--------------------|--------------------------|---------------------------|--------------------------|---------------------------|
| _                  | Quantity<br>(short tons) | Value<br>(thou-<br>sands) | Quantity<br>(short tons) | Value<br>(thou-<br>sands) |
| COUNTRY            |                          |                           |                          |                           |
| Argentina          | 2,721                    | <b>\$68</b>               | 2,216                    | \$28                      |
| ingenome           | 1,477                    | 90                        | 2,373                    | 156                       |
|                    | 3,496                    | 237                       | 2,475                    | 175                       |
| BrazilCanada       | 500,306                  | 6,641                     | 477,692                  | 6,897                     |
|                    | 4,288                    | 81                        | 4,712                    | 61                        |
| Chile              | 893                      | 70                        | 512                      | 14                        |
| Colombia           |                          |                           | 279                      | 3                         |
| Denmark            |                          |                           | 545                      | 7                         |
| Dominican Republic |                          |                           | 532                      | 9                         |
| Finland            | $154.9\overline{18}$     | 2,291                     | 105.511                  | 1,500                     |
| France             | 55                       | 1,201                     | 4.257                    | 136                       |
| India              | 30                       | -                         | 653                      | 8                         |
| Indonesia          | 55                       | - <u>-</u> -              | 122                      | 12                        |
| [ran               |                          | 499                       | 28.008                   | 395                       |
| Italy              | 32,463                   | 184                       | 8,303                    | 240                       |
| Mexico             | 6,903                    | 104                       | 39,221                   | 548                       |
| Netherlands        | 8                        |                           | 1.213                    | 4                         |
| Philippines        | 662                      | 29                        | 250                      | 17                        |
| Surinam            | 263                      | 17                        |                          | 214                       |
| Sweden             | 9,240                    | 146                       | 9,604                    | 748                       |
| Venezuela          | 13,894                   | 345                       | 26,796                   | 140                       |
| Yugoslavia         | 10,987                   | 198                       | ==                       | 3                         |
| Other              | 822                      | 19                        | 1,272                    |                           |
| Total              | 743,451                  | 10,922                    | 716,546                  | 11,24                     |
| CUSTOMS DISTRICT   |                          |                           |                          |                           |
| COSTOMS DISTRICT   | 748                      | 37                        | 2,207                    | 15                        |
| Baltimore          | 115,669                  | 1.838                     | 83,506                   | 1,74                      |
| Buffalo            | 17,772                   | 369                       | 00,000                   | _                         |
| Cleveland          |                          | 83                        | 12,477                   | 18                        |
| Detroit            | 5,675                    | 56                        | 14,211                   |                           |
| Houston            | 1,091                    | 184                       | $7.7\overline{62}$       | 23                        |
| Laredo             | 6,903                    | 104                       | 179                      | 20                        |
| Miami              | ==                       | (1)                       | 12                       |                           |
| Mobile             | 10                       | (1)                       | 3,457                    | 25                        |
| New Orleans        | 3,486                    | 236                       |                          | 29                        |
| New York City      | 1,343                    | 44                        | 3,028                    | _                         |
| Norfolk            | 4,856                    | 78                        |                          |                           |
| Ogdensburg         | 33,216                   | 590                       | 27,220                   | 52                        |
| Pembina            | 695                      | 20                        | 3,131                    | 7.00                      |
|                    | 551,987                  | 7,387                     | 571,603                  | 7,92                      |
|                    |                          |                           | 1,045                    | •                         |
| Port Arthur        |                          |                           | 355                      |                           |
| Savannah           |                          |                           | 564                      |                           |
| Seattle            | 749 451                  | 10,922                    | 716,546                  | 11,24                     |
| Total              | 743,451                  | 10,922                    | 110,040                  |                           |
|                    |                          |                           |                          |                           |

<sup>&</sup>lt;sup>1</sup>Less than <sup>1</sup>/<sub>2</sub> unit.

NOTE:—According to the Association of American Railroads, 659,516 short tons of anthracite NOTE:—According to the Association of American Railroads, 659,516 short tons for 1972. Of this total were exported to Europe during 1973, compared with 697,092 short tons for 1972. Of this total 436,507 short tons were consigned to West Germany and the Netherlands, including exports to the U.S. military forces. This compares with 464,688 short tons for 1972.

Table 26.-Anthracite: 1 World production, by country

(Thousand short tons)

| Country 2                                    | 1971      | 1972    | 1070 -        |
|----------------------------------------------|-----------|---------|---------------|
| Belgium                                      |           | 1312    | 1973 P        |
| Bulgaria                                     | 3,715     | 3,258   | 9 75          |
| China, People's Republic of e                | 176       | 171     | 2,759<br>141  |
| rance                                        | 22,000    | 22.000  | 22,000        |
| Grance<br>Germany, West                      | 10,118    | 9,353   | e 7,700       |
| relandapan                                   | 10,935    | 8,793   | 7,700         |
| apan<br>Korea, North e                       | 30        | r e 22  | *,010<br>* 22 |
| Korea, North <sup>e</sup> Lorea, Republic of | 549       | 504     | 239           |
|                                              |           | 30,100  | 33,100        |
| Aorocco<br>letherlands                       | 14,093    | 13,672  | 14,959        |
| letherlands                                  | 524       | 603     | 623           |
| eruortugal                                   | 4,183     | 3,174   | e 2,100       |
| ortugalomania e                              | 12        | r e 11  | e 11          |
| omania e outh Africa, Republic of            | 279       | 278     | 301           |
| outh Africa, Republic of                     | 16        | 16      | 16            |
|                                              | 2,029     | 1,473   | 1,552         |
| S.S.R                                        | 3,170     | 3,312   | 3.272         |
| nited Kingdom nited States (Pennsylvania)    | 83,511    | 83,133  | e 83,200      |
| nited States (Pennsylvania)                  | r 4,546   | 3,433   | 2.784         |
| ietnam, North e                              | 8,727     | 7.106   | 6,830         |
| Total                                        | 3,300     | 2,200   | 3,300         |
| Total                                        | r 198.713 | 192,612 | 191,919       |

e Estimate. P Preliminary. Revised.

An unspecified amount of semianthracite is included in figures for some countries.

I naddition to the countries listed, Canada, Colombia, New Zealand, and South Vietnam produce anthracite, but the level of production is not recorded and available information is inadequate to make reliable estimates; in Colombia output may total 100,000 tons annually, while in New Zealand and South Vietnam output is insignificant.

# Cobalt

## By John D. Corrick 1

Demand for cobalt in 1973 continued the upward trend that began in 1972 and reflected a general increase in the industrial activities of the Nation. High-purity metal including cobalt powder, and salts and driers were in greatest demand during 1973. Consumer stocks in 1973 began to rebound from their low levels of 1971 and 1972. Government releases of cobalt from the strategic stockpile were again a significant source of supply during 1973 with over 8.5 million pounds released.

Legislation and Government Programs.— General Services Administration (GSA) continued to offer specification-grade cobalt metal in various forms for sale during 1973. Sales were on an unrestricted-bid basis except that total sales of specification-grade material were limited to approximately 1 million pounds per month and 500,000 pounds per bidder per month. Government sales of cobalt for the year totaled 7,500,589 pounds compared with 8,629,692 pounds sold in 1972. The stockpile objective for cobalt was lowered from 38,200,000 to 11,945,000 pounds in 1973. The action was taken under Section 2 (a) of Public Law 520 (79th Congress), Reorganization Plan No. 1 of 1958, as amended, and Executive Order 11051.

As of December 31, 1973, total U.S. Government stockpile inventory was 62,930,793 pounds of cobalt. Of this quantity, 62,380,307 pounds was stockpile grade.

Table 1.—Salient cobalt statistics (Thousand pounds of contained cobalt)

|                                                                                                                                   | 1969                             | 1970                                          | 1971                             | 1972                                          | 1973                   |
|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------|----------------------------------|-----------------------------------------------|------------------------|
| United States:  Consumption  Imports for consumption  Stocks, Dec. 31: Consumer  Price: Metal, per pound  World: Production, mine | 12,911<br>2,191<br>\$1.85-\$2.20 | 13,367<br>12,417<br>1,890<br>\$2.20<br>52,590 | 10,912<br>1,411<br>\$2.20-\$2.45 | 14,130<br>13,915<br>1,193<br>\$2.45<br>51,850 | 2,451<br>\$2.45-\$3.10 |

## DOMESTIC PRODUCTION

There was no domestic mine production of cobalt in 1973. Nevertheless, Amax Nickel, a division of American Metal Climax Inc., continued to renovate its Port Nickel, La., refinery. When the refinery becomes operational early in 1974 it will have a capacity to produce over 80 million

pounds of nickel per year plus substantial quantities of cobalt, copper, and associated byproduct metals depending on feed material.

<sup>&</sup>lt;sup>1</sup> Physical scientist, Division of Ferrous Metals—Mineral Supply.

## CONSUMPTION AND USES

Consumption of cobalt in the United States in 1973 was 18.7 million pounds, 33% above that of 1972 and exceeded the 1969 record consumption by 20%. Increased consumption was a direct result of a rise in industrial activity that began in the latter half of 1972 and continued strong through 1973. The pattern of cobalt consumption was little changed from that of 1972 with major consumption occurring in magnetic alloys, salts and driers, superalloys, and cutting and wear-resistant materials. Data reported by consumers showed that of the cobalt consumed in the United States in 1973, 75% was as metal, 19% was as salts and driers, 4% was as oxide, and 2% was as purchased scrap.

Huntington Alloys Products Division, of International Nickel Co. of Canada Ltd. (Inco), marketed a new nickel iron-cobalt alloy, Incoloy 903. Principal uses for the low thermal expansion alloy will be in rocket engines, gas turbines, and special instruments in which high stresses are a problem. According to company officials, Incoloy 903, hardened with additions of aluminum, columbium, and titanium, has greater thermal conductivity than many other highstress alloys and performs over a temperature range of minus 43° to plus 1,200° F.2 General Electric Co. introduced a new superalloy in 1973 designated Rene 95. Company officials believed the alloy would find wide

use in turbine blades and compressor discs. Forgings of the alloy offered extremely high strengths up to temperatures of 1,200° F.

A National Aeronautics and Space Administration (NASA) fluoride-metal composite impregnated into porous nickel, cobalt, or iron alloys was to be marketed for the first time in 1973 by Astro Met Associates of Cincinnati, Ohio. The self-lubricating alloy may find applications in rotary engines like the Wankel.3

Hitachi Magnetics Corp. of Japan announced their first commercial production of samarium-cobalt material for use in making powerful magnets having strengths of 16 to 23 million gauss-oersteds. Hitachi Metals, America, acquired the magnetic materials facilities of General Electric at Edmore, Mich., in March 1973. The magnets will be marketed worldwide under the name Hicorex 4

E. I. du Pont de Nemours & Co. introduced a new intermetallic compound and designated it Tribaloy. The new material was reportedly resistant to wear, friction, and corrosion. Tribaloy was expected to compete with stainless steel types 304 and 316, nickel base alloys, tungsten carbide, and some superalloys. The cobalt-based alloy was expected to be used in plasma flame spraying of heavy duty brakes, journal or sleeve bearings, ball and roller bearings, cams, pump and valve parts, and seals.5

## **PRICES**

The producer price of \$2.45 per pound for cobalt metal granules (shot) or broken cathodes in 551-pound (250-kilogram) drums was increased to \$3 in February and to \$3.30 on August 13. Eighteen days later the price was adjusted downward to \$3.20 per pound where it remained until November 28, when the price was adjusted to \$3.10 per pound, f.o.b. New York or Chicago. A weighted average price for the year was calculated to be \$3 per pound of cobalt.

Sales of cobalt metal by the Government

on a "sealed-bid" basis ranged in price from \$2.3851 to \$2.988 per pound for specificationgrade material. All prices were f.o.b. carrier's conveyance at Government storage locations.

<sup>&</sup>lt;sup>2</sup> American Metal Market. Nickel-Iron-Cobalt Forms Incoloy 903. V. 80, No. 198, Oct. 11,

Forms Incoloy 900. v. 60, 200. 1973, p. 9.

<sup>3</sup> Metal Bulletin No. 5828, Aug. 24, 1973, 122, June 22, 1973, p. 7.
p. 20.

<sup>4</sup> American Metal Market. Hitachi Magnetics Starts Samarium Cobalt Production. V. 80, No. <sup>5</sup> Iron Age. Cobalt Materials Fight Wear and Corrosion V. 211, No. 16, Apr. 19, 1973. pp. 62-64

Table 2.-Cobalt materials consumed by refiners or processors in the United States (Thousand pounds of contained cobalt)

| (Industria Pour       |                         |                         |                         |                            |                   |
|-----------------------|-------------------------|-------------------------|-------------------------|----------------------------|-------------------|
| Form <sup>1</sup>     | 1969                    | 1970                    | 1971                    | 1972                       | 1973              |
| Alloy and concentrate | 516<br>2,819<br>25<br>1 | 274<br>2,639<br>32<br>9 | 356<br>2,899<br>18<br>9 | r 120<br>3,063<br>16<br>16 | 4,028<br>60<br>26 |
|                       |                         |                         |                         |                            |                   |

Table 3.-Cobalt products 1 produced and shipped by refiners and processors in the United States

(Thousand pounds)

|                                        |                              | 1972                       |                              |                            |                                 | 1973                       |                                   |                                     |
|----------------------------------------|------------------------------|----------------------------|------------------------------|----------------------------|---------------------------------|----------------------------|-----------------------------------|-------------------------------------|
|                                        | Dundy                        | Production Shipments       |                              | Produ                      | ction                           | Shipments                  |                                   |                                     |
| ·                                      | Gross<br>weight              | Cobalt                     | Gross<br>weight              | Cobalt<br>content          | Gross<br>weight                 | Cobalt<br>content          | Gross<br>weight                   | Cobalt<br>content                   |
| Oxide<br>Hydrate<br>Salts <sup>2</sup> | 651<br>830<br>5,354<br>9,623 | 459<br>513<br>1,336<br>834 | 824<br>788<br>5,382<br>9,771 | 581<br>487<br>1,361<br>843 | 880<br>1,021<br>8,503<br>11,002 | 622<br>631<br>1,944<br>922 | 1,161<br>1,036<br>8,373<br>11,589 | 819<br>640<br>1,962<br>967<br>4,388 |
| Total                                  | 16,458                       | 3,142                      | 16,765                       | 3,272                      | 21,406                          | 4,119                      | 22,159                            | 4,300                               |

 $<sup>^1\,\</sup>rm Figures$  on metal withheld to avoid disclosing individual company data.  $^2\,\rm Combined$  to avoid disclosing individual company confidential data.

Table 4.-Cobalt consumed in the United States, by end use

(Thousand pounds of contained cobalt)

| Use                                                   | 1973           |
|-------------------------------------------------------|----------------|
| Steel:<br>Carbon                                      | 2<br>32        |
| Carbon<br>Stainless and heat-resisting                | 226            |
| Full alloy                                            | 45<br><b>W</b> |
| High-strength, low-alloyElectric                      | 518            |
| Tool                                                  | w              |
| Tool                                                  | 3,282          |
| to an amount love) :                                  | 2,511          |
| Cutting and wear-resistant materials                  | 391            |
| Welding and alloy hard-facing rous and materials      | 4,302<br>789   |
| Magnetic alloysNonferrous alloys                      | 755            |
| Nonferrous alloys                                     | w              |
| Chemical and ceramic uses:                            | 217            |
| Pigments                                              | 1,150<br>165   |
| Catalysts                                             | 64             |
| Ground coat fritGlass decolorizer                     | 197            |
| Glass decolorizer Other Miscellaneous and unspecified | 526            |
| Miscellaneous and unspecified                         | 15,172         |
| Total                                                 | 3,569          |
| electroplating, etc                                   | 18,74          |

W Withheld to avoid disclosing individual company confidential data; included in "Miscellaneous and unspecified."

<sup>&</sup>lt;sup>1</sup> Total consumption is not shown because some metal and hydrate originated from alloy and concentrate and a total would involve duplication.

<sup>&</sup>lt;sup>1</sup> Includes cemented and sintered carbide and cast carbide dies or parts.

Table 5.-Cobalt consumed in the United States, by form

(Thousand pounds of contained cobalt)

|                                                    |                                         |                                        | ,                            |                               |                               |
|----------------------------------------------------|-----------------------------------------|----------------------------------------|------------------------------|-------------------------------|-------------------------------|
| Form                                               | 1969                                    | 1970                                   | 1971                         | 1972                          | 1973                          |
| Metal Oxide Purchased scrap Salts and driers Total | 12,057<br>646<br>328<br>2,577<br>15,608 | 10,056<br>626<br>69<br>2,616<br>13,367 | 9,006<br>625<br>125<br>2,744 | 10,509<br>733<br>197<br>2,691 | 14,050<br>668<br>454<br>3,569 |
|                                                    |                                         | 10,007                                 | 12,500                       | 14,130                        | 18,741                        |

## FOREIGN TRADE

Exports of unwrought cobalt metal and alloys and of waste and scrap totaled 2,492,730 pounds, gross weight, having a value of \$4,193,595 and went to 18 countries. Japan and the United Kingdom received the greater part, 1,498,246 pounds (\$2,484,652) and 374,385 pounds (\$399,825),

respectively. Exports of wrought cobalt metal and alloys, 1,396,938 pounds, gross weight, having a value of \$4,738,396, went to 26 countries. The imports of cobalt salts and compounds given in table 7 came principally from the United Kingdom and France.

Table 6.-U.S. imports for consumption of cobalt metal and oxide, by country (Thousand pounds, and thousand dollars)

| a                   |                    | Meta             | al              |        | Oxide           |       |                  |       |  |
|---------------------|--------------------|------------------|-----------------|--------|-----------------|-------|------------------|-------|--|
| Country             | 1:                 | 972              | 19              | 73     | 10              | 1972  |                  |       |  |
|                     | Gross              |                  |                 |        |                 | 112   | 19               | 73    |  |
|                     | weight             | Value            | Gross<br>weight | Value  | Gross<br>weight | Value | Gross<br>weight  | Value |  |
| Australia           |                    |                  | _               |        |                 |       |                  |       |  |
| Belgium-Luxembourg  | $3.3\overline{44}$ | 0.0.             | 5               | 5      | _               |       |                  |       |  |
| Canada              |                    | 8,242            | 4,209           | 13,616 | 878             | 1,913 | $8\overline{47}$ | 0.150 |  |
| Dominican Republic. | 633                | 1,540            | 502             | 1,458  | 221             | 342   |                  | 2,158 |  |
| Finland             |                    |                  | 23              | 74     |                 | 042   | 228              | 355   |  |
| rance               | 1,299              | 3,189            | 909             | 2,850  |                 |       |                  |       |  |
| ermany, West        | 500                | 1,035            | 197             | 404    |                 |       |                  |       |  |
|                     | 12                 | 25               | 39              | 76     | (1)             |       |                  |       |  |
|                     |                    |                  | 45              | 33     | (¹)             | 1     |                  |       |  |
| apan                | 45                 | 118              | 5               | 6      |                 |       |                  |       |  |
| Vetherlands         | 49                 | 67               | 16              | 27     |                 |       |                  |       |  |
| orway               | 915                | 2,083            | 972             |        |                 |       |                  |       |  |
| aiwan               |                    | -                | 55              | 2,995  |                 |       |                  |       |  |
| Inited Kingdom      | 131                | $1\overline{42}$ |                 | 224    |                 |       | 75               | 201   |  |
| aire                | 5,083              | 11.602           | 187             | 223    | (1)             | (¹)   |                  | 201   |  |
| ambia               | 1,071              | 2,607            | 11,196          | 31,634 | 35              | 74    |                  |       |  |
| Total               |                    |                  |                 |        |                 |       |                  |       |  |
| 1001                | 13,082             | 30,650           | 18,360          | 53,625 | 1,134           | 2,330 | 1,150            | 2,714 |  |

<sup>1</sup> Less than ½ unit.

Table 7.-U.S. imports for consumption of cobalt, by class

(Thousand pounds and thousand dollars)

| Year | Metal<br>Gross             |                            | Oxi                   | de                      | Salts<br>compo  |                | Т                          | otal                       |
|------|----------------------------|----------------------------|-----------------------|-------------------------|-----------------|----------------|----------------------------|----------------------------|
|      | weight                     | Value                      | Gross<br>weight       | Value                   | Gross<br>weight | Value          | Gross<br>weight            | Cobalt content             |
| 1971 | 10,381<br>13,082<br>18,360 | 22,377<br>30,650<br>53,625 | 726<br>1,134<br>1,150 | 1,426<br>2,330<br>2,714 | 40<br>82<br>58  | 27<br>44<br>50 | 11,147<br>14,298<br>19,568 | 10,912<br>13,915<br>19,200 |

COBALT 407

## WORLD REVIEW

Aided by United States Government stockpile releases, cobalt production in the Non-Communist countries was sufficient to meet demand in 1973. Zaire again led all countries in mine production of cobalt and accounted for 59% of the total world output. Cobalt production in 1973 increased in all major producing countries except Zambia and Morocco when compared with that of 1972.

Australia.—Development of the Greenvale nickeliferous laterite deposit by Freeport Queensland Nickel Inc., a wholly-owned subsidiary of Freeport Minerals Co. of the United States, and Metals Exploration N. L. of Australia continued on schedule during 1973. Early in 1973 a contract was let for the construction of the town of Greenvale in Queensland. At the same time the treatment plant foundation was poured at Yabulu, near the coast, 140 miles from the mine site. Stripping of the mine overburden began early in 1973 as did construction of a 140-mile-long railway connecting the mine at Greenvale with the Yabulu treatment plant. The plant was designed to treat a million dry tons of ore annually and produce over 50 million pounds of nickel and 2.75 million pounds of cobalt in the form of nickel-cobalt sulfide. The hydrometallurgical process to be used was based on ammoniacal leaching of the pyrometallurgically reduced ore. At yearend production was still scheduled for 1974. Ore reserves were officially stated as 44 million tons containing 1.57% nickel and 0.12% cobalt.

Belgium.—A 3-week strike at the Olen refinery in Hoboken, Belgium, operated by Société Générale de Belgique created a temporary shortage of cobalt metal powder in 1973. Settlement of the labor dispute was expected to increase wages by approximately 17%. The cobalt refinery at Olen had an annual capacity of approximately 11 million pounds.

Canada.—Mine production of cobalt increased in 1973 by 18% compared with that of 1972. Inco's deliveries of cobalt were 1,870,000 pounds in 1973 compared with the 2,210,000 pounds in 1972 and 1,980,000 pounds in 1971. In October Inco opened its new Copper Cliff nickel refinery in Sudbury, Ontario. The refinery and ancillary facilities cost approximately \$140 million. Annual capacity was placed at 100 million

pounds of nickel pellets and nickel-iron powder. Electrolytic copper, cobalt, and precious metals will be recovered from the refinery residue as a byproduct. Falconbridge Nickel Mines, Ltd., was able to increase deliveries of cobalt in 1973 to 1,614,000 pounds compared with 1,150,000 pounds in 1972 as a result of commissioning of a new cobalt refinery at Kristiansand, Norway. The Kristiansand cobalt refinery was destroyed by a fire in May 1972. According to company officials, the stockpile of cobalt residue that accumulated during the shutdown should be exhausted by the end of 1974. Reportedly Sherritt Gordon Mines Ltd. produced 616,000 pounds of cobalt in 1973 compared with 809,000 pounds in 1972. Cobalt sales for the 2 years were 569,000 and 713,000, respectively.

Cuba.—Cuba rearranged the sales price of cobalt to the U.S.S.R. to \$2.27 per pound of contained cobalt as part of the recent Cuban-U.S.S.R. plan to renovate and modernize both the Moa Bay and Nicaro nickel-cobalt facilities and develop the new Punta Gorda nickel deposits. Estimates are that the renovation and construction of a new plant will double Cuba's output of nickel and cobalt over the next 3 years.

Finland.—The completion in 1973 of a major long-term investment program by the Finnish company Outokumpu Oy should permit Finland to increase mine output of cobalt in the near future. Upon completion of the program, the concentrator and mine at Vuonos had a capacity to produce 72,000 tons per year of cobalt-rich iron-pyrites. The Kokkola refinery treated the nickel, copper, and zinc-bearing cobalt-rich pyrites (cobalt content of about 0.7%) using the Outokumpu process. The plant had an annual capacity of about 2.6 million pounds of cobalt or about 5% of the world's production. Cobalt was produced as a metal and sold in the form of powder or briquets.

India.—Reportedly work began in 1973 on the development of India's largest known nickel deposit at Sukinda, in the eastern state of Orissa. The project will cost approximately \$43 million and was expected to produce 5,300 tons per year of nickel, 200 tons per year of cobalt, and 19,000 tons per year of byproduct ammonium sulfate. The State-owned Hindustan Copper Ltd.

was to manage the project until a separate corporation could be formed.

Indonesia.—To date, the largest planned Indonesian nickel-cobalt operation was that of P. T. Pacific Nickel Indonesia in which Sherritt Gordon held a 10% interest. Activities in 1973 were limited to engineering studies pending development of a financing plan acceptable to shareholder companies. During the year Internatio-Muller N.V. withdrew from the project and sold its 10% interest to the other four participants. The project involved the development of a laterite deposit on Gag Island, Irian Barat.

P. T. International Nickel Indonesia, a wholly owned subsidiary of Inco, announced in April 1973 a decision to proceed with the first phase of a lateritic mining and processing project on the island of Sulawesi. At yearend construction had begun and contracts were awarded to the Dravo Corp. for engineering and construction of the processing plant and project infrastructure and to the Montreal Engineering Co., Ltd., for engineering of the town site. The plant, to become operational in 1976, was to have a production capacity of over 15,000 tons of nickel plus cobalt per year in the form of 75% nickel matte.

Morocco.—Cobalt production in 1973 was 1,567 tons in the form of 14% cobalt concentrate compared with 1,766 tons in 1972. Production came from one mine in southern Morocco, 65% owned by the French firm Omnium Nord-African and 35% by Bureau de Recherches et de Participations Minières (BRPM). Ore reserves were estimated as being sufficient to last 8 to 10 years at the current rate of production. Exports in 1972 were up 125% over those of 1971. Of the cobalt exported 7,800 tons went to France and 3,205 to the People's Republic of China. Under a prior agreement, Soviet geologists have combined a search for cobalt deposits in Morocco with a study of the Rif mountains.

Philippines.—Construction of the Nonoc nickel refinery by Marinduque Mining and Industrial Corp. made significant progress in 1973. Procurement of engineering equipment was completed in 1973. During the year, pier facilities for ocean-going tankers and a tank farm were completed, a three-quarter mile long airstrip became operational, all-weather roads were completed, and housing for junior and senior staff members neared completion. Also, nearing

completion at yearend was a dam on the Sabang River in northern Dinagat Island designed to provide water and standby power for the Nonoc operation. The first mining block was developed in 1973. Production was expected to begin in August 1974. With a designed capacity of 3.8 million dry tons of ore annually, the refinery will not only make the Philippines the largest producer of pure nickel in Southeast Asia but will produce 3.3 million pounds of cobalt per year in the form of mixed sulfides.

Pacific Metals Co., subsidiary of Nippon Steel, of Japan agreed to purchase Universal Oil Products Co.'s 40% interest in Rio Tuba Nickel Mining Corp. Rio Tuba expected to develop a mine on Palawan Island in the Philippines at an estimated cost of \$50 million. This included a 1million-ton-per-year ore operation, an ore treatment plant, and a ship-loading facility. Plans called for mining of 2 million tons of ore per year. The lower grade ore would require treatment such as smelting and would be considered at a later date. The higher-grade ore would be shipped to Japan for processing. A. Soriano Corp. continued their evaluation of an ore deposit on Palawan Island during 1973. A feasibility study completed in 1973 detailed a plant to produce 35 million pounds of nickel per year and 1.3 million pounds of cobalt per year at a cost of \$125 million, including infrastructure. The company was studying during 1973 a \$175 million leach plant with an annual capacity of 60 million pounds of nickel plus cobalt. Plant products would be in the form of a nickel sinter oxide 90 and a mixed nickel-cobalt sulfide.

Uganda.—The Ugandan Government offered new terms to Kilembe Copper Cobalt Ltd. for renewal or extension of the company's 21-year lease on the Kilembe mines which expired at the end of 1973. The Government owned 10% of Kilembe mines, and Falconbridge Nickel owned 72.8% of Kilembe Copper Cobalt which in turn owned 70% of Kilembe mines. Indications were that production increased in 1973 compared with 1972, following settlement of labor problems that arose from the expulsion of technicians by the Government in 1972.

Zaire.—Zaire, through the state holding company, La Générale des Carrières et Mines du Zaire (GECAMINES) and its operating company La Générale Congolaise COBALT 409

des Minérais (GECOMIN) produced over 33 million pounds of cobalt in 1973 and accounted for over 59% of the total world mine output. Early in 1973 GECAMINES increased the feed rate capacity of its concentrator at Kambove from 1.08 million tons of ore per year to 1.44 million tons per year. Ore for the concentrator was supplied principally from the Kambove underground mine, which had a capacity of 960,000 tons per year in 1973. The mine was being expanded in 1973 to a capacity of 1.44 million tons per year in order to supply the concentrator. The deficit between the concentrator capacity and mine capacity in 1973 was made up from open pit mines in the area. Officials of GECAMINES announced during 1973 that the company had discovered a new deposit estimated at 121.5 million tons of ore containing 3.8% copper and Dikuluwe-Mashamba, 0.4% cobalt near southwest of Kolwezi. At yearend the acting director general of GECAMINES announced details of its 1974-77 expansion plan. Under the plan two new open pit mines would be commissioned in the area of the newly discovered deposits. The major purchasing effort would be in the metallurgical processing field and would be aimed at increasing domestic refining capacity. The plan when completed was expected to increase cobalt production to 18,000 tons per year. The cost of the new 5-year expansion plan was estimated at \$160 million and included improvements to industrial and social infrastructure.

Société Minière de Tenke-Fungurume (SMTF) was formed in 1970 to explore and develop copper-cobalt deposits in the Tenke-Fungurume district of Zaire. The shareholders in the company and their respective interests were: Zairian Government, 20%; Charter Consolidated, Ltd. (UK), 28%; Amoco Minerals Co., a subsidiary of Standard Oil Co. of Indiana (U.S.), 28%; Mitsui & Co. (Japan), 14%; Géologiques et Bureau de Recherches Minières (BRGM) (France), 3.5%; Omnium de Mines S.A. (France), 3.5%; and Leon Templesman & Sons, Inc. (U.S.), 3%. At the end of 1972 SMTF had completed 350 test boreholes with a combined length of 153,845 feet. Ore reserves were estimated at 45.7 million tons of oxide mixed with sulfide and contained 5.5% copper and 0.44% cobalt. The oxide portion was estimated at 20.4 million tons of ore containing

5.6% acid soluble copper and 0.39% acid soluble cobalt. Parsons-Jurden Corp., a division of the Ralph M. Parsons Co. of Los Angeles, Calif., and Holmes & Narver, Inc. were awarded a contract as consultants to SMTF in 1973. The consultants began an independent review and validation of earlier technical and economic feasibility studies and were in an advanced state at yearend 1973. SMTF reportedly was concerned over the supply of adequate electrical power to the area and was attempting to coordinate its financing and construction plans with those of the Inga-Shaba high-voltage transmission project being planned by the Zairian Government. The company planned to begin production shortly after the completion of the power project, sometime in 1977. Capital expenditures for SMTF's copper-cobalt project were estimated at \$300 million. The company employed approximately 1,000 people in 1973.

Zambia.—On January 9, 1973, Rhodesia closed its common border with Zambia causing the latter country to seek alternate routes for shipping its copper and cobalt to world markets. The company instituted emergency plans which included expanding the road services to Dar es Salaam and Mombasa, and extending the use of the rail route to Lobito. While the task of rerouting the flow of materials presented some problems, the sale and movement of cobalt was not unduly affected. Cobalt sales for the period ending March 31, 1973, were reported at slightly over 6 million pounds of cobalt compared with sales of 5.4 million pounds in 1972.

The Zambian Government in 1973 appeared to be moving ahead with its plans to gain full control of the country's copper and cobalt mining operations. During the year President Kenneth Kaunda announced major policy changes that affected Zambia's mining sector. The immediate impact of President Kaunda's action toward the minority shareholders in Nchanga Consolidated Copper Mines Ltd. (NCCM) and Roan Consolidated Mines Ltd. (RCM) was not known at yearend. Although the president did remark that steps were to be taken to insure that RCM and NCCM provide for themselves all management and technical services which are now provided by the minority shareholders. One major step taken toward industrial nationalization in 1973 was the merging of the research and development units of NCCM and RCM. Plans were discussed during 1973 for the development of a new process to produce

cobalt from converter slag. The process would improve the efficiency of smelter

Table 8.-Cobalt: World production by country (Short tons)

| G                                                                                                                         |                                                                            | tput, metal                                                                                  | content 1                                                                                    |                                                                            | Metal 2                                                                   |                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Country                                                                                                                   | 1971                                                                       | 1972                                                                                         | 1973 р                                                                                       | 1971                                                                       | 1972                                                                      | 1973 р                                                                          |
| Australia Canada 3 Cuba e Finland e France 4 Germany, West 4 Morocco Norway U.S.S.R. e 6 United States Zaire Zambia Total | r 877 r 2,161 1,700 1,400 1,078 NA 1,750 W r 7 16,003 e r 8 2,330 r 27,299 | 830<br>1,676<br>1,700<br>1,400<br><br>1,766<br>NA<br>1,800<br>14,453<br>e \$ 2,300<br>25,925 | 840<br>1,978<br>1,800<br>1,400<br><br>1,567<br>NA<br>1,850<br>16,625<br>e \$ 2,200<br>28,255 | 1,204<br>1,020<br>635<br>662<br>5 958<br>1,750<br>154<br>16,003<br>r 2,293 | 1,323<br>885<br>853<br>504<br>5 353<br>1,800<br>14,377<br>2,263<br>22,358 | 1,146<br>1,113<br>* 880<br>408<br>* 5 820<br>1,850<br>16,592<br>2,143<br>24,952 |

e Estimate. P Preliminary. r Revised. NA Not available. W Withheld to avoid disclosing indi-

e Estimate. P Preliminary. P Revised. NA Not available. W Withheld to avoid disclosing individual company confidential data.

In addition to the countries listed, Bulgaria, Cyprus, East Germany, New Caledonia, Poland, Spain and Sweden are known to produce ores (copper, nickel and/or pyrite) that contain recoverable quantities of cobalt, but available information is inadequate to make reliable estimates of output levels. Other nations may also produce cobalt as a byproduct component of ores and concentrates of other metals.

In addition to the countries listed, the United Kingdom recovers cobalt metal from intermediate metallurgical products produced in Canada, but data on output is inseparable from the total reported by Canadian producers, and Czechoslovakia presumably recovers cobalt from materials imported from Cuba, but data are inadequate to estimate output. Belgium and Japan, both of which import substantial quantities of crude materials containing cobalt, have not recorded output in recent years, but may be producing metal and/or cobalt compounds. Poland also apparently processes cobalt-bearing copper ores but no data on cobalt recovery are available.

Actual output not reported. Data presented for mine output are total cobalt content of all products, including nickel oxide sinter shipped to the United Kingdom for further processing and nickel-copper matte shipped to Norway for further processing. Data presented for metal output are total cobalt content of all products less cobalt output recorded for Norway. Thus, the metal data include cobalt content of oxides and other compounds that are not produced as metal and total cobalt metal output in the United Kingdom as well as actual metal output in the United Kingdom as well as actual metal output in the United Kingdom as well as actual metal output in the United Kingdom as well as actual metal output in the United Kingdom as well as actual metal output in the United Kingdom as well as actual metal output in the United Kingdom as well as actual metal output

4 Domestic mine output, if any, is negligible.

5 Produced entirely from nickel-cobalt matte imported from Canada; domestic mine output is recovered abroad.

of Insufficient data are available to permit separate estimates for mine and metal production of Metal output, used in lieu of unreported mine production.

Sefigures include reported metal production plus an estimate for cobalt content of cobalt series.

hydroxide produced.

#### TECHNOLOGY

Bureau of Mines scientists filed an invention report in 1973 in which they described an efficient extraction and treatment process for low-grade lateritic ores. The oxide ore was selectively reduced and leached in an ammonia-ammonium sulfate system to recover 90% of the nickel and more than 80% of the cobalt. The nickel was selectively separated by liquid extraction and subsequently recovered by electrolysis; cobalt was precipitated from the leach solution as a cobalt sulfide. Bureau researchers continued investigations into the development of economic methods for beneficating lowgrade domestic ores containing cobalt in

1973. Bureau metallurgists reported on the preparation of samarium-cobalt permanent magnets. The method used to fabricate the magnets consisted of arc-melting, crushing and grinding the alloy, alining and pressing the powder, and sintering the green compacts. Optimum composition was reported to be  $36.7 \pm 0.3$  weight-percent samarium and 63.3 ± 0.3 weight-percent cobalt.6

A new process for the recovery of nickel and cobalt from limonites by aqueous chlorination in seawater was described in a

<sup>&</sup>lt;sup>6</sup> Walkiewicz, J. W., J. S. Winston, and M. M. Wong. Preparation of Samarium-Cobalt Permanent Magnets. BuMines RI 7784, 1973, 18 pp.

COBALT 411

joint paper by scientists of Dartmouth College at Hanover, N. H., and of Delft University of Technology at Delft, the Netherlands.7 The process was based on selective reduction of the ore pyrometallurgically and on aqueous chlorination in seawater. Reportedly, advantages gained from the process were high recovery of nickel and cobalt, rapid dissolution rates, and the use of saline in place of fresh water.

The second International Symposium on Superalloys was held in 1973. The subjects covered at the symposium were melting and casting of superalloys, primary working of superalloys, control of superalloy properties through thermal and deformation techniques, fabrication of superalloys, and new processes and alloy developments in superalloys. The latter session dealt with the ramifications of powder metallurgy as they applied to superalloys.

As in the past years, a large number of patents were issued in the United States and abroad, ranging from extractive metallurgy through smelting technology to the formation of new cobalt alloys. A large number of the patents issued during 1973 dealt with the extraction and recovery of cobalt from lateritic ores. Of the patents issued for extraction of cobalt from ores, a large portion dealt with the liquid extraction of cobalt values using an ammonia-ammonium process. A patent was assigned to Deepsea Ventures, Inc. for the extraction of manganese, copper, cobalt, and nickel from ocean-floor manganese nodules. The process described in the patent specified the pelletization of a mixture of nodules, coal, and sodium chloride. The pellets were contacted with chlorine gas under conditions that vaporize the metal chlorides along with water and oxides of carbon. The metal chlorides were condensed and leached with water to convert the iron chloride impurity to iron oxide, the remaining metal chlorides were separated by liquid ion exchange. The metal values were recovered by electrolyzing the metal chloride fractions. Technical papers were presented during 1973 on heat-resisting alloys, magnetic materials, tool and wearresistant steels and alloys, other alloys, metallic films and coatings, nonmetallic uses, unalloyed cobalt and cobalt compounds, cobalt alloy systems and phases, and analytic procedures.8

<sup>&</sup>lt;sup>7</sup>Roorda, H. J., and P. E. Queneau. Recovery of Nickel and Cobalt From Limonite by Aqueous Chlorination in Sea Water. Institution of Mining and Metallurgy (Section C), v. 182, No. 799, June 1973, pp. C79-C87.

<sup>8</sup>Cobalt. Battelle Memorial Inst., Cobalt Information Center, Columbus, Ohio, Nos. 1-4, 1973.

# Coke and Coal Chemicals

By Eugene T. Sheridan 1

Production of coal coke in the United States in 1973 was 6% greater than output in 1972. Most of the increase resulted from a greater demand for coke for use in iron blast furnaces. Also contributing to the increase was a larger demand for foundry coke. However, shipments of coke to other industrial plants declined significantly in 1973.

Production remained relatively stable throughout the year and averaged 5.4 million tons per month. The average daily output for all plants ranged from a low of 173,000 tons in July to a high of 179,000 tons in June. Average daily output for the year averaged 176,000 tons.

Except for August, monthly demand for coke exceeded production and producers month-end stocks of oven coke were 60% lower at the end of the year than when the year began. Stocks on hand at oven-coke plants at the end of 1973 were equivalent to a 7-day production at the December rate of output.

Blast furnaces continued to use the bulk of the Nation's coke production, receiving 92% of the 66.4 million tons of coke distributed by producers. However, consumption of coke per ton of hot metal produced at blast furnaces decreased because of a significant increase in the quantities of fuel oil, tar, and pitch used as supplemental fuels in blast furnaces.

Breeze production increased 15%, mainly because more coal was carbonized. Breeze is unsuitable for most metallurgical applications because of its small size and high ash

content, the larger part of the breeze production is used by producers for sintering iron ores and for other industrial purposes. However, 44% of the 1973 output was sold, mainly for use as a reductant in the electric furnace processing of phosphate rock to elemental phosphorus. Sales of breeze in 1973 remained at about the 1972 level.

The average delivered value of coals carbonized increased 16% in 1973 and averaged \$18.24 per ton. This increase was reflected directly in average coke prices which increased 6% to \$42.92 per ton. The largest price increases were made in coke sold to foundries. Foundry coke prices, which averaged \$54.73 per ton, f.o.b. plant, were 7% higher than in 1972.

Production of light oil and coke-oven gas increased, principally, because more coal was carbonized. However, output of both tar and ammonia declined.

Foreign trade was relatively small with coke exports of 1.4 million tons comprising only 2% of the production. The bulk of the exported coke was shipped to Canada and West Germany. Coke imports increased significantly in 1973, but exports exceeded imports by 317,000 tons.

The total value of all coals carbonized was \$1,716 million, and the total value of all products of carbonization was \$2,931 million. The combined value of coke and breeze, the principal products, accounted for 88% of the total value of all products.

<sup>&</sup>lt;sup>1</sup> Supervisory mineral specialist, Division of Fossil Fuels—Mineral Supply.

| Table 1.—Salier | ıt coke | statistics |
|-----------------|---------|------------|
|-----------------|---------|------------|

|                                                              | 1969        | 1970        | 1971        | 1972          | 1973        |
|--------------------------------------------------------------|-------------|-------------|-------------|---------------|-------------|
| United States:                                               |             |             |             |               |             |
| Production:                                                  |             |             |             |               |             |
| Oven cokethousand short tons                                 | 64,047      | 65,654      | EC CC4      | 50.050        |             |
| Beehive cokedo                                               | 710         |             |             | ,             | 00,100      |
| Totaldo                                                      | 64 757      |             |             |               |             |
| Exports                                                      | 1 600       |             |             | ,             |             |
| Imports                                                      | 150         |             |             | -,-02         | -,000       |
| Froducers' stocks, Dec. 31                                   | 9 100       | 4,113       | 3,510       |               | -,010       |
| Consumption, apparentdo                                      | 66,166      |             |             |               |             |
| Value of coal-chemical materials                             |             |             |             | 00,040        | 00,700      |
| Value of coke and breeze used                                |             |             |             | r \$294,905   |             |
| or soldthousands                                             | \$1,402,716 | \$1,899,116 | \$1,848,781 | r \$2,080,074 | \$2,575,150 |
| or sold 1thousands                                           | \$1,691,679 |             |             |               |             |
| Hard cokethousand short tons<br>Gashouse and low-temperature |             | 386,308     | r 377,744   | r 381,315     | 401,849     |
| cokedo                                                       | 30,738      | 28,415      | r 24,183    | r 21,671      | 20,787      |

r Revised.

## COKE AND BREEZE

#### DOMESTIC PRODUCTION

A substantial increase in pig iron and ferroalloys output in 1973 was accompanied by increased demand for blast-furnace coke and domestic coke production rose 6%. Output was stable throughout the year with monthly production varying between 5.0 million and 5.5 million tons, with the largest amount produced in May. Daily production for the year averaged 176,000 tons, up 7% from the average daily output of 1972.

Ninety-two percent of the oven coke in 1973 was produced at furnace plants. These plants, owned by or financially affiliated with iron and steel companies, are operated mainly to produce coke for use in blast furnaces. The remaining oven coke was produced by merchant plants. This is the segment of the coke industry that produces various grades of coke for sale on the open market. There were 48 furnace plants and 14 merchant plants in operation throughout the year.

Coke was produced in 19 States in 1973. The relative amounts of coke produced in the various States have changed little in the past decade, except that Connecticut and Massachusetts have ceased to be producing States and production was discontinued in New Jersey in 1971. Because coke is used principally for blast furnace fuel, the coke industry is concentrated in the major steelproducing areas of the Eastern and North

Central States. The bulk of the 1973 coke output was produced in 12 States east of the Mississippi River. Six States west of the Mississippi River produced coke.

Pennsylvania, the largest producer, accounted for 26% of the output and was followed by Ohio, Indiana, and Alabama in the order named. The combined output of these four States was 63% of the national

An average of 1,367 pounds of coke was produced for each ton of coal carbonized in the United States in 1973. The 1973 yield of coke from coal, which averaged 68.35%, has remained fairly constant during the past

Breeze is the term applied to the small sizes of coke that result from screening. Although there is no designated size, breeze refers generally to coke that passes through a 1/2-inch screen. Coke producers consumed 58% of the breeze produced in 1973, principally as a fuel in agglomerating plants. The remainder was sold, mainly for use as a fuel for smelting phosphate rock to produce elemental phosphorus. The amount of breeze sold has increased significantly in recent years and, in 1973, nearly one-half of the quantity produced was sold.

The breeze yield varies according to operating practices and the quality of the coals carbonized. The lowest yield, 3.7% was recorded for Pennsylvania, while the yield for Illinois averaged 7.2%. The na-

Data may not add to totals shown because of independent rounding.

tional average yield of 5.3% in 1973 has not varied significantly during the past decade.

An average of 105.6 pounds of breeze was produced for each ton of coal carbonized at oven-coke plants in 1973. Breeze yields at beehive-coke plants were substantially higher than those at oven plants, but beehive breeze production was negligible because only a few plants had recovery facilities.

## CONSUMPTION AND SALES

Apparent consumption of coke in the United States in 1973 totaled 65.8 million tons. This quantity (domestic production plus imports, minus exports and changes in stocks) was nearly 6 million tons more than that consumed in 1972 and the increase was attributed principally to greater demand for blast-furnace coke, caused by a 12-million-ton increase in blast-furnace pig iron and ferroalloys production.

Blast-furnace coke rates continued to decline and the amount of coke required to produce 1 ton of blast-furnace output decreased from 1,222 pounds in 1972 to 1,200 pounds in 1973. The net effect of this reduction is that the blast-furnace coke requirement of 60.7 million tons in 1973 would have been 1.1 million tons larger if the coke rate had remained at the 1972 level.

Although a variety of operating practices affect blast-furnace coke rates, the pronounced reduction in the 1973 coke rate resulted mainly from a substantial increase in the quantities of supplemental fuels and oxygen consumed over those used in 1972. The principal fuels used in blast furnaces to reduce coke consumption in 1973 were fuel oil; tar and pitch; and natural, coke oven, and blast furnace gas. Although the units of measurement differ, and the quantity of each fuel used varied greatly, the total calorific value of all supplemental fuels consumed in blast furnaces in 1973 was equivalent to approximately 11 million tons of coke. Oxygen consumption in blast furnaces, which increased 35% in 1973, further reduced blast-furnace coke requirements by making available more sensible heat for the reduction of iron ore to pig iron.

A total of 66.4 million tons of oven and beehive coke was sold and used for all purposes, of which 90% was oven coke supplied by furnace plants. The bulk of this

coke was retained by producers for use in their own blast furnaces. Furnace plants sold about 2 million tons of coke—30% of the total coke sold commercially. Fifty-seven percent of the furnace-plant sales was shipped to other blast-furnace plants.

Merchant plants distributed 5.6 million tons of coke in 1973, 96% of which was sold on the open market. Principal markets were blast-furnace operations without coke facilities, independent gray-iron foundries, nonferrous smelters, and chemical plants. A few merchant plants operated coke ovens to supply their own requirements; about 4% of the merchant coke distributed was used by producers. This coke was used principally in chemical plants and affiliated foundries.

One percent of the coke distributed was supplied by beehive plants. The bulk of the beehive coke also was sold to blast-furnace plants.

All States except Alaska, Hawaii, and Nevada received shipments of coke in 1973. Alabama, Illinois, Indiana, Maryland, Michigan, New York, Ohio, Pennsylvania, and West Virginia, which are the major ironand steel-producing States, received 89% of the total distributed.

The bulk of the coke distributed was blast-furnace coke that was consumed within the producing State, as most blast furnaces are integrated with coke ovens. A few companies shipped coke to affiliated blast furnaces in other States.

About 5% of the coke distributed was shipped to foundries. The chief recipients of foundry coke were the automotive, farmmachinery, machine-tool, heavy-machinery, railroad, and electrical-equipment industries. Most of these industries are concentrated in the East and Midwest. In 1973, the combined consumption of Alabama, Illinois, Iowa, Indiana, Michigan, New Jersey, New York, Ohio, Pennsylvania, Virginia and Wisconsin accounted for more than four-fifths of the foundry-coke shipments. Foundry coke also was consumed in 35 other States.

Coke used for miscellaneous applications was widely distributed, with 41 States receiving shipments of other industrial coke. The principal consumers were nonferrous smelters, alkali plants, and plants that manufacture calcium carbide and elemental phosphorus. Alabama, Idaho, Indiana, Michigan, Ohio, and Pennsylvania received

the largest quantities of other industrial coke.

Minor quantities of coke were used for residential heating. This market, which in past years received as much as 10 million tons of coke annually, is virtually non-existent at this time.

#### **STOCKS**

Yearend stocks of coke decreased 60% as the quantity of coke distributed exceeded production by about 2 million tons. Ovencoke plants ended the year with an average 7-day supply at the December rate of production. Normally, beehive plants do not stock coke.

The bulk of the stock was at furnace plants, which had roughly a 7-day supply compared with a 4.3-day supply at merchant plants. There were no producers' stocks of beehive coke at the end of 1973.

Stocks of coke breeze at producers' plants decreased 12% during 1973. Roughly, three-fourths of the breeze on hand was at furnace plants.

## VALUE AND PRICE

Coke prices increased again during 1973; the average value of receipts for all grades of oven coke reached \$42.92 per ton, and beehive coke averaged \$27.31 per ton. The 1973 values represented increases of 5% for oven coke and 24% for beehive coke.

All grades of coke increased in price. An increase of 7% raised the average price of foundry coke to \$54.73 per ton, while blast-furnace coke prices were increased an average of 6% to \$32.41 per ton. Coke used for

other industrial purposes increased, on the average, only slightly in price.

The large variance in the price of blast-furnace and foundry oven coke was attributed principally to lower recovery yields for foundry coke and to its superior properties, which make it a more valuable product. The differences in the average values of oven and beehive coke were due largely to additional transportation costs of coal delivered to oven-coke plants.

#### FOREIGN TRADE

There was a continuing demand for U.S. coke in foreign markets and exports increased 13% to 1.4 million tons. The bulk of the increase resulted from substantially larger shipments to Canada and West Germany.

Canada remained the principal foreign market, receiving nearly three-quarters of a million tons, 54% of the foreign shipments. Other countries receiving substantial amounts of U.S. coke were West Germany, Mexico, and the Netherlands. Although coke was shipped to more than 21 countries in 1973, the above countries, with Canada, received seven-eighths of the total exports.

The bulk of the coke exported was shipped from the Baltimore, Buffalo, Detroit, Laredo, Norfolk, and Philadelphia customs districts. However, coke was exported through at least 15 other ports.

Because of shortages of domestic coke in certain areas, imports increased nearly six times and totaled 1.1 million tons. This was the largest quantity of coke imported in a single year to date. About two-thirds of the imported coke came from West Germany, and most of the remainder, from Canada.

## COKING COALS

## QUANTITY AND VALUE OF COAL CARBONIZED

A total of 93.6 million tons of bituminous coal was carbonized at high temperatures for the production of coke in 1973. This quantity was 16% of the 1973 bituminous coal output of the United States, and coke production was the second largest coal market. In addition to bituminous coal 467,000 tons of anthracite was used in coking-coal blends. Anthracite was used principally in the production of foundry coke to achieve greater size and density, properties that are

desirable in coke used for the smelting of iron in foundry cupolas.

The delivered average value of all coal carbonized by oven-coke plants in 1973 was \$18.32 per ton, and the value of that carbonized by beehive-coke plants averaged \$12.42 per ton. The difference in value was attributed mainly to transportation charges for coal shipped to oven-coke plants, as all beehive plants are located at or near the source of the coal they consume. In some instances, transportation costs exceed the value of the coal at the mine; this partially

accounts for the high value of the coal consumed in some States.

The average value per ton of coal consumed for coke production at both ovenand beehive-coke plants was 17% greater than in 1972. Coals delivered to some States, however, had increases in average value per ton ranging up to 22%. The highest coal prices were recorded for Maryland and New York where the delivered value of coals used for coke production by all plants averaged \$22.59 per ton.

An overall average of 1.46 tons of coal, valued at \$26.75, was required for each ton of oven coke produced in 1973. Beehive ovens required an average of 1.58 tons of coal per ton of coke output, but coal costs averaged only \$19.62 per ton because of the lower unit value of the coals charged.

#### **BLENDING**

Blending of coals is standard practice at oven-coke plants because individual coals do not possess all of the properties required for the production of high-quality coke. In general, blending is used to improve the chemical and physical properties of coke, to control the pressure developed during carbonization, to regulate the yield of products, and to broaden the use of lowerquality coals which could not be used alone for metallurgical-grade coke production. Standard oven-coke operating practice is based upon the use of relatively small proportions of low-volatile coals and high percentages of high-volatile coals. High-volatile coals are not used alone because they produce low yields and weak coke. Low-volatile coals, when added to high-volatile coals improve the yield and the physical properties of the coke. However, the proportions of low-volatile coals used must be restricted because they are highly expanding and, if used alone or in large proportions, would damage oven walls when coke was discharged. Some plants add medium-volatile coals or other materials such as anthracite or coal-tar pitch to their high- and lowvolatile coals. Additions of medium-volatile coals can regulate the volatile matter in a mix to the desired content, while anthracite and pitch impart strength, size, and density to the coke.

Blending also permits the use of some high-sulfur coals which are otherwise unsuitable for coke production. Such coals can be blended with low-sulfur coals to the ex-

tent that the coal mix contains no more total sulfur than that contained in the coals normally used for producing high-quality coke.

The overall proportions of high-, medium-, and low-volatile coals used in coke mixes has varied little in the past decade, but there are wide variations in the proportions of the different types used by individual plants. West Virginia plants and those in the Western States used the largest percentages of high-volatile coals in their blends, while plants in Minnesota and Wisconsin used relatively high percentages of low-volatile coal. Compared with furnace plants, merchant plants used larger percentages of low-volatile coal because this type produces strong foundry coke, which is produced mainly by merchant plants.

#### SOURCES

Of the 23 States that produced bituminous coal in 1973, only 13 produced coal that was shipped to coke plants. Of this number, only 10 can be considered suppliers of coking coals as the combined shipments of 3 States were less than one-fourth million tons.

Of the coals received by oven-coke plants, 35% was produced in West Virginia and 27% in Pennsylvania. West Virginia shipments were principally low-volatile coals from McDowell, Wyoming, and Raleigh Counties; medium-volatile coals from Mc-Dowell and Nicholas Counties; and highvolatile coals from Boone, Fayette, Kanawha, Logan, Mingo and Nicholas Counties. Pennsylvania supplied mainly highvolatile coals from Allegheny, Green, and Washington Counties and low-volatile coals from Cambria and Somerset Counties. Pennsylvania and West Virginia coals were widely distributed and used in most of the coke producing States.

Kentucky, which supplied 15% of the shipments to coke plants, was another major supplier. All Kentucky coal shipped to coke plants was high-volatile coal produced mainly in Floyd, Harlan, Letcher, and Pike Counties.

Illinois produced high-volatile coking coals, mainly in Franklin and Jefferson Counties; other States with substantial production were Alabama, Colorado, Utah and Virginia. Most of the coal produced in these States was used within the State. Colorado

and Utah, however, supplied most of the coals that were carbonized in California.

#### CAPTIVE COAL

More than one-half of the coal received by oven-coke plants was produced by company-owned or affiliated mines. This captive coal, ordinarily, does not move in commercial channels. Iron and steel producing companies own the bulk of the captive mines and, in 1973, 57% of the coal received by furnace plants was captive. Some merchant plants also own coal mines, but only 24% of the coal they received in 1973 was their own production.

#### **STOCKS**

Stocks of bituminous coal at oven-coke plants, remained fairly constant throughout

the year, ranging from an average supply of 24 to 35 days at each plant. Bituminous stocks reached their highest yearly level during May when month-end quantities totaled 8.8 million tons. The lowest level, 6.1 million tons, was reported at the end of July.

Because of market competition for lowsulfur coals during the latter part of 1973, bituminous coal stocks at the end of 1973 were 24% lower than when the year began. The 7 million tons on hand at all plants on December 31, 1973, was equivalent to an average supply on hand at each plant of 27 days at the December 1973 rate of consumption.

Only small quantities of anthracite are stocked. Stocks at the end of 1973 totaled only 97,000 tons.

## **COAL CHEMICALS**

The term "coal chemicals" refers to the materials recovered from the volatile matter released from coal during carbonization. Normally, three basic materials-ammonia, tar, and light oil-are recovered at ovencoke plants through a series of complex condensation and absorption processes. The remaining material, which is rich in hydrogen and methane, is called coke-oven gas. Except for ammonia, which is recovered as an aqueous solution or converted to a salt and sold as produced, the basic materials are, in most instances, further processed to yield a number of primary organic chemicals or chemical mixtures of which the most important are benzene, toluene, xylene, solvent naphtha, crude chemical oil, and pitch. Although most oven-coke plants in the United States are equipped to process tar and light oil, the extent to which individual plants produce the various products depends upon economic conditions and the general size of the plant, as yields of the various chemicals are relatively low.

Yields of chemicals vary with the kind of coals carbonized, carbonizing temperatures, and operating techniques and equipment, but approximately 315 pounds of cokeoven gas, 90 pounds of tar, 20 pounds of light oil, and 5 pounds of ammonia are recovered for each ton of coal carbonized. In standard units of measure these quantities amount to about 10,500 cubic feet of coke-oven gas, 10 gallons of tar, and 3 gal-

lons of light oil. Ammonia is recovered as ammonium sulfate at most operations, and the yield per ton of coal presently averages about 16½ pounds.

In terms of calorific value, the products, excluding coke, recovered by oven-coke plants in 1973 totaled 567 trillion Btu's. This quantity was equivalent, roughly, to about one-fourth of the heating value of the coals carbonized.

#### COKE-OVEN GAS

Coke-oven gas has a relatively high calorific value and producers use most of it as fuel for heating coke ovens and other steeland allied-plant furnaces. Small quantities are also sold for distribution through city mains and for other industrial use.

Gas yields vary but the quantity of gas produced for each ton of coal carbonized in all slot ovens in 1973 was 10,720 cubic feet. This was slightly more than the yield of 10,570 cubic feet recorded for 1972. However, total gas production increased 9% because about 6 million more tons of coal was carbonized in 1973.

Thirty-nine percent of the coke-oven gas produced in 1973 was used for heating coke ovens. Gas used otherwise, called surplus gas, was used by producers to fire boilers, transferred to steel or allied plants to heat open-hearth and other metallurgical furnaces, sold for industrial use, or distributed

through city mains. A small part of the production was wasted because storage facilities at most plants are limited, and the gas was burned in the atmosphere when production exceeded demand.

Coke-oven gas was the principal fuel used for heating coking ovens in 1973 but some operators used blast-furnace gas, a mixture of coke-oven and blast-furnace gas, or natural gas for underfiring. A total of 428 billion cubic feet of coke-oven gas equivalent was so consumed, of which approximately 90% was coke-oven gas.

Surplus coke-oven gas used and sold in 1973 was valued at \$190 million, a 32% increase above the 1972 value. No value was reported by producers for coke-oven gas used to heat coke ovens, but applying the average value of \$0.319 per thousand cubic feet reported for surplus gas to the gas used for underfiring, the total value of all coke-oven gas used and sold in 1973 would be \$312 million. This amount is equivalent to nearly one-fifth of the total value of the coal carbonized at oven-coke plants.

## COKE-OVEN AMMONIA

Coal carbonized at high temperatures releases nitrogen which forms ammonia. Ammonia must be removed from the gas prior to processing and coke plant operators normally recover ammonia as an aqueous solution, or as ammonium sulfate or phosphate. However, 13 plants did not recover ammonia as a salable product in 1973.

Production of ammonia decreased 3%, mainly because of a lower yield but, also, because the number of recovery plants decreased by two. The average value per ton of both ammonium sulfate and ammonia liquor increased, however, as did the total value of sales. Ammonia products sold in 1973 represented 5% of the total value of all coal-chemicals sales.

## COAL TAR AND DERIVATIVES

All oven-coke plants produced tar but yields varied and ranged generally between 6 and 9 gallons per ton of coal carbonized. High-volatile coals normally evolve a larger percentage of tar and California, Colorado, and Utah—States that used large percentages of high-volatile coals—had the highest tar yields.

Despite the substantial increase in the quantity of coal carbonized at oven-coke plants, tar production decreased slightly

because of the lower yield in 1973. Both merchant and furnace plants had lower yields and also lower production.

Coke-plant operators consumed 53% of the tar produced. Of this quantity, 58% was processed (refined or "topped") while 42% underwent no processing and was burned for fuel. The remaining tar was sold, principally to tar-distilling plants which refine tar to produce a variety of derivatives.

Most of the coke plants that processed tar in 1973 partially refined the tar in a process called "topping." In this method, the low-boiling distillate fraction, consisting mainly of tar acids, bases, and naphthalenes, was separated from the crude tar. The residue, called soft pitch, was, in most instances, burned for fuel. Furnace plants in particular benefit from this method of operation since they can sell the distillate and retain the pitch for use as fuel. This reduces the amount of other fuels that they must normally purchase. However, the relative quantities of tar topped and burned, as well as the quantities sold, depend upon a number of economic factors, such as the availability and current market prices of tar, tar distillates, and other substitute fuels. Most of the merchant plant tar production was sold because these plants have no use for the pitch, which makes up the bulk of the products they recover through topping.

The majority of the plants that processed tar recovered only crude chemical oil and a residual tar, or soft pitch. However, some of the larger plants recovered a number of tar derivatives, including creosote oil, cresylic acid, cresols, naphthalene, phenol, pyridine, and medium and hard pitch. Statistics on some of these products could not be shown in this report, but the data were transmitted to the U.S. Tariff Commission, which publishes them along with similar data from tar distillers and petroleum refiners in monthly and annual reports on synthetic organic chemicals.

## CRUDE LIGHT OIL AND DERIVATIVES

Light oil is a liquid that contains a number of aromatic hydrocarbons that are extracted from the gas after tar, ammonia, and in some instances, naphthalene have been removed. Crude tar also contains a small amount of light oil, but this usually is not recovered at coke plants. Virtually

all light oil produced at coke plants is recovered by an absorption process in which the gas is sprayed with a higher boiling petroleum oil as the gas stream is channeled through absorption towers. After light oil is recovered, it is separated from the absorption oil by direct steam distillation. Approximately 3 gallons of light oil, equal to about 1% of the weight of the coal, is recovered for each ton of coal carbonized. Yields vary with the kind of coals carbonized and with operating conditions but an average of 2.63 gallons of light oil was recovered at plants that extracted light oil in 1973. Most plants recovered light oil, but some found it uneconomical to remove the light oil and left it in the gas to be burned as fuel. Yields per ton of coal decreased at both merchant and furnace plants in 1973.

Producers sold 45% of their crude light oil output. The large increase in light oil sales in recent years is attributed principally to the inability of some plants to produce derivatives that meet the more rigid specifications established for these products.

Such plants sell light oil to petroleumrefining companies which process it along with petroleum fractions into benzene, toluene, and a number of other chemical intermediates.

As with other coal-chemical materials, yields of products derived from light oil vary, but approximately seven-eighths of the light oil processed is recovered as salable products. Of the light-oil processed by coke plants in 1973, 61% was recovered as benzene; 11% as toluene; 3% as xylene; and the remainder, as other products.

the remainder, as other products.

Ninety-six percent of the benzene production was specification grades. In past years, large amounts of motor-grade benzene was produced for use in gasoline to increase anti-knock properties but present petroleum refining techniques have all but eliminated this use for benzene.

The unit value of all light oil derivatives sold in 1973 ranged from \$0.17 per gallon for other industrial-grade benzene to \$0.267 per gallon for specification-grade benzene. The average value of all light oil products sold increased 26% to \$0.255 per gallon.

## WORLD REVIEW

World production of metallurgical coke in 1973 was estimated at 402 million short tons. This quantity was 5% higher than the 1972 output and the increase was attributed largely to production gains in Japan, the United States, and the U.S.S.R.

Europe, with 55% of the total, led in world production. European output was 2% greater than in 1972, mainly because of larger output in the U.S.S.R. Asia, with eight producing countries, ranked second in output while North America, with only three producing countries, ranked third.

The Soviet Union, with nearly one-fourth of the world output, was the largest producer of coke. Soviet production increased 2% over that of 1972 and the estimated 90 million tons of coke and breeze produced in 1973 was a record output for the country. Metallurgical coke production, however, probably totaled about 85 million tons as an estimated 5 million tons of e production was breeze.

The United States, with 16% of the world total, ranked second in production, and Japan, with 13%, ranked third. The United States had a 6% production in-

crease, but Japan's output was 21% above the level recorded in 1972.

Other leading coke-producing countries in order of output were West Germany, the People's Republic of China, the United Kingdom, and Poland. The production of these countries combined with that of the U.S.S.R., the United States, and Japan accounted for more than three-quarters of the world production.

In addition to the metallurgical-grade coke, which is produced at high-temperatures in conventional slot- and beehivecoke ovens, there was 11 million tons of other coke that was produced at high, medium, and low temperatures in vertical and horizontal retorts and other types of carbonizing equipment. Commonly referred to as "gashouse" or "soft" coke, this material is not suitable for most metallurgical applications but is used principally for domestic heating, chemical processing, and gas production. Production of "gashouse" coke has been declining in recent years and the 1973 world output was only about onefourth as large as a decade ago.

## **TECHNOLOGY**

Developmental work at coke plants continued to be focused upon systems for the reduction of atmospheric pollution. In some instances, success has been realized; however, no device or combination of devices has proved totally effective.2

Current energy shortages and dislocations, as well as more stringent requirements for improved air quality at coke plants, has prompted new interest in the dry quenching of coke. This technique, developed after World War I in Switzerland, features a completely enclosed system that employs an inert gas which serves as a cooling and heat transfer medium. Quenching by this method also imparts a number of desirable physical properties to coke. Test results have revealed that dry quenched coke has

and greater stability. Moreover, the unit furnishes a return on the initial investment. This system, which features pollution control along with energy recovery, has been

a higher heating value, a higher strength

employed in the U.S.S.R. since the early 1960's.3

The effects of oven door leakage have also become the focal point of much concern. A technique has been refined that employs a system of vertical and horizontal chimneys within the lining of the oven door which has helped to alleviate ovengas pressure and leakage around sealing rings. Although the idea is not new, the technology and methods have been tuned to a point that renders these modifications feasible. Prior to success, the strength of the oven door was compromised because of the innovations. Also, the diameter of the chimneys was such that difficulty was encountered in keeping them clear of coal and char. However, with the above measures initiated, oven-gas pressure taken near the floor of the oven was reduced from 140 millimeters of water to levels in the range of 30 millimeters.

Many attempts have been made to control pollution which occurs during the charging of coke ovens and one method that has been successful is staged sequential charging. This operating practice limits the exposure of the free openings and simultaneously maintains a positive draft on the

openings, thus, curtailing smoke emissions. Unlike other approaches to the charging problem, this "system" does not employ any exotic equipment. In essence, the problem of smoke emissions is managed by the charging of one or two portals and closing them before the charging occurs from the other coal hoppers.4 5

The Calgon Corp. has developed a new method for the treatment of coke plant effluents. This is a sequential process that consists of chemical clarification of waste water for the removal of solids; adsorption with granular activated carbon for the removal of dissolved organics; and catalyic oxidation for the removal of cyanide. In the clarification step, suspended materials are removed and the pH of the water is adjusted so that an optimum adsorption rate can be achieved in the next step. Then, by means of activated carbon, dissolved organic chemicals are removed from the water after which free cyanide is removed by catalyic oxidation of the cyanide on granular carbon.6

In an effort to neutralize predicted future shortages of natural gas, heavy oil, and more important, metallurgical grade coal, the Japanese have developed a technology for producing a cheap reducing gas by reforming some of the hydrocarbons contained in blast-furnace top gas with carbon dioxide and water from the reforming raw material. The top gas of a blast furnace is thus reformed to a reducing gas which can be injected into the furnace stack and used in conjunction with other supplemental fuels. Introduced on a pilot scale, the Japanese were able to reduce the coke rate in an experimental furnace to less than 700 pounds per net ton of hot metal.7

<sup>&</sup>lt;sup>2</sup> Battelle Memorial Institute (Columbus, Ohio). Summary Report on Control of Coke-Oven Emissions to the American Iron and Steel Institute. Dec. 31, 1973, pp. 1-88.

<sup>3</sup> Kemmetmueller, R. Dry Coke Quenching—Proved, Profitable, Pollution-Free. Iron and Steel Engineer, v. 50, October 1973, pp. 71-77.

<sup>4</sup> Work cited in footnote 2.

<sup>5</sup> Edgar, W. D. Coke-Oven Air Emission Abatement. Iron and Steel Engineer, v. 49, October 1972, pp. 86-94. <sup>2</sup> Battelle Memorial Institute (Columbus, Ohio).

ment. Iron and Steel Engineer, v. 40, occoser 1972, pp. 86-94.

<sup>6</sup> Van Stone, R. G. Treatment of Coke Plant Waste Effluent. Iron and Steel Engineer, v. 49, April 1972, pp. 63-66.

<sup>7</sup> Iron and Steel Engineer. Reducing Gas Production Process. V. 50, September 1973, p. 137.

Table 2.-Statistical summary of the coke industry in the United States in 1973

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Slot<br>ovens                                         | Beehive<br>ovens | Total                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------|---------------------------|
| Coke produced:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                       |                  |                           |
| At merchant plantsthousand short tons_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5,271                                                 | (1)              | (1)                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 58,225                                                | (1)              | (1)<br>(1)                |
| Total 3dodo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 63,496                                                | 829              |                           |
| Breeze produceddo<br>Coal carbonized:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4,902                                                 | w                | 64,325<br>4,902           |
| Bituminous:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       | ••               | 4,502                     |
| Thousand short tons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                  |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 92,338                                                | 1,310            | 93,648                    |
| Average per ton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$1,693,082                                           | \$16,270         | \$1,709,352               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$18.34                                               | \$12.42          | \$18.25                   |
| Thousand short tons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 405                                                   |                  |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 467<br>\$7,175                                        |                  | 467                       |
| Average per ton Total coal carbonized: Thousand chaired:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$15.36                                               |                  | \$7,175                   |
| Total coal carbonized: 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | φ10.50                                                |                  | \$15.36                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 92,806                                                | 1,310            | 04110                     |
| Value (thousands)  Average per ton  Average yield in percent of total and analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$1,700,119                                           | \$16,270         | 94,116                    |
| Average per ton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$18.32                                               | \$12.42          | \$1,716,389               |
| Average yield in percent of total coal carbonized:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ψ10.02                                                | 912.42           | \$18.24                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 68.42                                                 | 63.28            | 68.35                     |
| Breeze (at plants actually recovering)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.28                                                  | <b>w</b>         |                           |
| Coke used by producing companies:  In blast furnaces:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                     | **               | 5.28                      |
| Thousand about                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                       |                  |                           |
| Thousand short tons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 57,360                                                |                  | 57,360                    |
| Value (thousands)In foundries:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$2,146,153                                           |                  | \$2,146,153               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . , ,                                                 |                  | <b>\$2,140,100</b>        |
| Thousand short tons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 371                                                   |                  | 371                       |
| Value (thousands)For other industrial uses:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$19,326                                              |                  | \$19.326                  |
| Thousand showt tone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                  | 420,020                   |
| Thousand short tons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 239                                                   |                  | 239                       |
| Breeze used by producing companies:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$8,391                                               |                  | \$8,391                   |
| In Steam plants:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |                  |                           |
| Thousand short tons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                  |                           |
| Value (thousands)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 234                                                   |                  | 234                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$1,943                                               |                  | \$1,943                   |
| Thousand short tons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                  |                           |
| value (thousands)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,689                                                 |                  | 1,689                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$19,842                                              |                  | \$19,842                  |
| Thousand short tons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 017                                                   |                  | 2.5                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 917                                                   |                  | 917                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$8,581                                               |                  | \$8,581                   |
| To blast furnaces:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |                  |                           |
| Thousand short tons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3,036                                                 | 829              | 9 005                     |
| value (thousands)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$98,398                                              | \$22,665         | 3,865                     |
| average per ton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$32.41                                               | \$27.31          | \$121,063                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ψ02.41                                                | φ41.01           | \$31.32                   |
| Thousand short tons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3,349                                                 |                  | 3,349                     |
| value (thousands)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$183,337                                             |                  | \$183,337                 |
| Average per ton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$54.73                                               |                  | \$54.73                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                                                     |                  | ψο 2.10                   |
| Thousand short tons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,204                                                 | (4)              | 1,204                     |
| Value (thousands)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$44,010                                              | (4)              | \$44,010                  |
| Average per ton<br>For residential heating:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$36.55                                               | (4)              | \$36.55                   |
| Thousand short tons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                  | ,                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (5)                                                   |                  | ( <sup>5</sup> )          |
| Average per ton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (5)                                                   |                  | (5)<br>(5)                |
| Average per ton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (5)                                                   |                  | (5)                       |
| Thousand short tons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                  |                           |
| Value (thousands)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,165                                                 | w                | 2,165                     |
| Average per ton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$22,505                                              | $\mathbf{w}$     | \$22,505                  |
| pal-chemical materials produced:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$10.39                                               | $\mathbf{w}$     | \$10.39                   |
| Crude tar:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |                  |                           |
| Thousand gallons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>200 122</b>                                        |                  |                           |
| Gallons per ton of coal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 732,455                                               |                  | 732,455                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.89                                                  |                  | 7.89                      |
| Animona:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 628                                                   |                  |                           |
| Ammona:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                       |                  | 628                       |
| Thousand short tons Pounds per ton of coal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |                  | 16.41                     |
| Thousand short tons Pounds per ton of coal Crude light oil:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16.41                                                 |                  |                           |
| Thousand short tons Pounds per ton of coal Crude light oil: Thousand sallons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16.41                                                 |                  | 000 -00                   |
| Thousand short tons Pounds per ton of coal  Crude light oil: Thousand gallons Gallons per ton of coal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16.41<br>226,109                                      |                  | 226,109                   |
| Thousand short tons Pounds per ton of coal  Crude light oil: Thousand gallons Gallons per ton of coal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16.41                                                 |                  | 226,109<br>2.63           |
| Thousand short tons  Pounds per ton of coal  Crude light oil:  Thousand gallons  Gallons per ton of coal  Significant country to the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the st | 16.41<br>226,109<br>2.63                              |                  | 2.63                      |
| Thousand short tons Pounds per ton of coal Crude light oil: Thousand gallons Gallons per ton of coal  S: Million cubic feet Thousand cubic feet per ton of coal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16.41<br>226,109<br>2.63<br>994,916                   |                  | 2.63<br>994,916           |
| Thousand short tons Pounds per ton of coal Crude light oil: Thousand gallons Gallons per ton of coal s: Million cubic feet Thousand cubic feet per ton of coal Percent burned in coking process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16.41<br>226,109<br>2.63<br>994,916<br>10.72          | <br>             | 2.63<br>994,916<br>10.72  |
| Thousand short tons Pounds per ton of coal Crude light oil: Thousand gallons Gallons per ton of coal  S: Million cubic feet Thousand cubic feet per ton of coal Percent burned in coking process Percent surplus used or cold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16.41<br>226,109<br>2.63<br>994,916<br>10.72<br>38.51 | <br><br>         | 994,916<br>10.72<br>38.51 |
| Thousand short tons Pounds per ton of coal Crude light oil: Thousand gallons Gallons per ton of coal  s: Million cubic feet Thousand cubic feet per ton of coal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16.41<br>226,109<br>2.63<br>994,916<br>10.72          | <br>             | 2.63<br>994,916<br>10.72  |

Table 2.-Statistical summary of the coke industry in the United States in 1973-Continued

|                                                | Slo                   | <br>Total            |
|------------------------------------------------|-----------------------|----------------------|
| Value of coal-chemical materials used or sold: |                       | 250 000              |
| Crude tar and derivatives:                     | $ousands_{-}$ \$53,   | \$53,082<br>\$56,678 |
| Used                                           | do \$56,              | \$16.419             |
| Ammonia products 7                             | do \$16,              | \$39.464             |
| Crude light oil and derivatives sSurplus gas   | do \$39,<br>do \$190, | \$190,02             |

Table 3.-Summary of oven-coke operations in the United States in 1973, by State

| State                             | Plants in<br>existence<br>Dec. 31 | Coal<br>carbonized<br>(thousand<br>short<br>tons) | Yield<br>of coke<br>from coal<br>(percent) | Coke produced (thousand short tons) |
|-----------------------------------|-----------------------------------|---------------------------------------------------|--------------------------------------------|-------------------------------------|
| labama                            | 7                                 | 7,280<br>5,384                                    | 70.49<br>62.89                             | 5,132<br>3,386                      |
| -lifernia Colorado Utah           | 3                                 | 10,304                                            | 68.61                                      | 7,070                               |
| forvland and New York             | 4                                 | 3,108                                             | 62.45                                      | 1,941                               |
| llinois                           | Ē                                 | 14,042                                            | 66.48                                      | 9,335                               |
| 11 1                              | 5                                 | 2,858                                             | 67.74                                      | 1,936                               |
| ontucky Missouri Tennessee, Texas | 3                                 | 5,297                                             | 73.08                                      | 3,871                               |
|                                   | 3                                 | 1.194                                             | 70.69                                      | 844                                 |
| finnesote and Wisconsin           | 12                                | 13,751                                            | 68.64                                      | 9,438                               |
| \Lio                              | 12                                | 24,108                                            | 69.31                                      | 16,710                              |
|                                   | 3                                 | 5,480                                             | 69.93                                      | 3,832                               |
| Vest Virginia                     |                                   | 92,806                                            | 68.42                                      | 1 63,496                            |
| Total 1973                        | 62<br>14                          | 7,334                                             | 71.87                                      | 5,271                               |
| t menchant plants                 | 48                                | 85,471                                            | 68.12                                      | 58,225                              |
| t furnace plants                  | 48                                |                                                   |                                            | 59,853                              |
| Total 1972                        | 62                                | 86,687                                            | 69.05                                      | 99,000                              |

<sup>&</sup>lt;sup>1</sup> Data does not add to total shown because of independent rounding.

Table 4.-Summary of beehive-coke operations in the United States in 1973, by State

| State                                                 | Plants in<br>existence<br>Dec. 31 | Coal<br>carbonized<br>(thousand<br>short<br>tons) | Yield<br>of coke<br>from coal<br>(percent) | Coke<br>produced<br>(thousand<br>short<br>tons) |
|-------------------------------------------------------|-----------------------------------|---------------------------------------------------|--------------------------------------------|-------------------------------------------------|
| Pennsylvania and Virginia<br>Total 1973<br>Total 1972 | 5                                 | 1.310                                             | 63.28                                      | 829                                             |
|                                                       | 5<br>6                            | 1,310<br>1,059                                    | 63.28<br>61.76                             | 829<br>654                                      |

W Withheld to avoid disclosing individual company confidential data.

Not separately recorded.
Plants associated with iron-blast furnaces.
Included with ottals shown because of independent rounding.
Included with beehive coke sold "to blast furnaces" to avoid disclosing individual company data.
Included with "To other industrial plants" to avoid disclosing individual company data.
Includes ammonium sulfate equivalent.
Includes ammonium sulfate, ammonia liquor (NH3 content), and diammonium phosphate.
Includes intermediate light oil.

Table 5.-Production of oven and beehive coke in the United States, by month (Thousand short tons)

| Month           | 1       | 972                           |                | 1973             |
|-----------------|---------|-------------------------------|----------------|------------------|
| Month           | Total 1 | Daily<br>average <sup>2</sup> | Total 1        | ·                |
| OVEN COKE       |         |                               |                |                  |
| JanuaryFebruary | 4,763   |                               |                |                  |
|                 |         | 154                           | 5,364          | 173              |
|                 | 4,651   | 160                           | 4,891          | 175              |
|                 | 5,076   | 164                           | 5,356          | 173              |
|                 | 5,091   | 170                           | 5,262          | 175              |
|                 | 5,237   | 169                           | 5,454          | 176              |
|                 | 4,976   | 166                           | 5,325          | 177              |
|                 | 5,024   | 162                           | 5,307          | 171              |
|                 | 5,088   | 164                           | 5,383          | 174              |
|                 | 4,822   | 161                           | 5,153          | 172              |
|                 | 5,026   | 162                           | 5,358          | 173              |
|                 | 4,914   | 164                           | 5,218          | 174              |
| December        | 5,183   | 167                           | 5,426          | 175              |
| Total 1         | 59,853  | 164                           |                |                  |
|                 | 00,000  | 104                           | 63,496         | 174              |
| BEEHIVE COKE    |         |                               |                |                  |
| January         | 40      |                               |                |                  |
|                 | 49      | 2                             | 63             | 2                |
|                 | 53      | 2<br>2                        | 62             | 2                |
|                 | 51      | 2                             | 65             | 2                |
|                 | 55      | 2                             | 64             | 2                |
|                 | 51      | 2                             | 66             | 2<br>2<br>2<br>2 |
|                 | 53      | 2<br>2                        | 60             | $\bar{2}$        |
|                 | 49      | 2                             | 64             | - 2              |
|                 | 54      | 2                             | 71             | 2<br>2<br>2<br>3 |
|                 | 54      | 2                             | 67             | 2                |
|                 | 53      | 2                             | 83             | 3                |
| December        | 62      | 2                             | 81             | 3                |
|                 | 70      | 2                             | 82             | 3                |
| Total 1         | 654     | 2                             | 829            |                  |
| <del></del>     |         |                               | 829            | 2                |
| TOTAL           |         |                               |                |                  |
| anuaryebruary   | 4.812   | 155                           | 5,427          | 100              |
|                 | 4.704   | 162                           | 4.953          | 175              |
|                 | 5,127   | 165                           | 5.421          | 177              |
| PIII            | 5.146   | 172                           |                | 175              |
|                 | 5,287   | 171                           | 5,326          | 178              |
| une             | 5.029   | 168                           | 5,520          | 178              |
|                 | 5.073   | 164                           | 5,382          | 179              |
|                 | 5,142   | 164                           | 5,371          | 173              |
| ptember         | 4.877   |                               | 5,454          | 176              |
|                 | 5,079   | 163                           | 5,220          | 174              |
| ovember         | 4,976   | 164                           | 5,441          | 176              |
| ecember         | 5,253   | 166<br>169                    | 5,299<br>5,508 | 177<br>178       |
| Total 1         | 60,507  | 165                           | 64,325         | 176              |

Data may not add to totals shown because of independent rounding.
Daily average calculated by dividing monthly production by number of days in month.

160

160

Table 6.-Production of oven coke in the United States, by type of plant

(Thousand short tons) 1973 Month Merchant Furnace Merchant Furnace plants plants plants plants PRODUCTION 4.904 460 482 4.281 \_\_\_\_\_ 4,484 4,900 4,827 4.191 407 460 February 490 456 March \_\_\_\_\_ 467 4,625 434 April \_\_\_\_\_\_ 4,751 5 019 486 434 432 468 4.508 4 893 \_\_\_\_\_ 4,869 438 4 558 467 463 4,626 435 4,948 August 453 4,369 438 4,715 September \_\_\_\_\_ 473 4,553 448 4,910 October \_\_\_\_\_November \_\_\_\_\_ 462 4,452 4,728 435 4,783 4,972 \_\_\_\_\_\_ 455 455 Total 1 54.228 5.271 58,225 5.626 DAILY AVERAGE 138 158 January -----16 16 16 160 February 145 184  $\frac{15}{15}$ 158 March \_\_\_\_\_ April May \_ June 154 161 16 153 162 150 14  $\frac{163}{157}$ \_\_\_\_\_ July \_\_\_\_\_\_ 15 147 14 160 15 15 14 149 157 September \_\_\_\_\_ 158 October \_\_ 15 148 159

Table 7.-Production of oven coke and number of plants in the United States, by type of plant

15

15

153

148

15

14

|        | Numb<br>active p |                     | Coke pr<br>(thousand |         | Percent of p | roduction |
|--------|------------------|---------------------|----------------------|---------|--------------|-----------|
| Year - | Merchant         | Furnace             | Merchant             | Furnace | Merchant     | Furnace   |
|        | plants           | plants <sup>2</sup> | plants               | plants  | plants       | plants    |
| 1969   | 3 16             | 49                  | 5,919                | 58,129  | 9.2          | 90.8      |
|        | 3 16             | 49                  | 5,915                | 59,739  | 9.0          | 91.0      |
|        | 16               | 49                  | 5,567                | 51,097  | 9.8          | 90.2      |
|        | 14               | 49                  | 5,626                | 54,228  | 9.4          | 90.6      |
|        | 14               | 49                  | 5,271                | 58,225  | 8.3          | 91.7      |

<sup>1</sup> Includes plants operating any part of year.

Average for year \_\_\_\_\_

November

December

Table 8.-Production of coke in the United States, by State

(Thousand short tons) State 1972 1973 OVEN COKE Alabama 5,132 5,355 California, Colorado, Utah \_\_\_\_ 2,955 3,386 2,085 1,941 Illinois Indiana 9,191 9,335 Kentucky, Missouri, Tennessee, 2.099 1.936 Texas \_\_\_\_\_\_ Maryland and New York \_\_\_\_\_ 7,070 5,435 3,677 3,871 Michigan \_\_\_\_\_\_ Minnesota and Wisconsin \_\_\_\_\_ 844 8,860 9,438 16,710 Ohio 15.869 3,832 3,510 59.853 63,496 Total 1 RECHIVE COKE 829 Pennsylvania 654 Virginia \_\_\_\_\_ 829 654 Grand total \_\_\_\_\_ 60,507 64,325

Data may not add to totals shown because of independent rounding.

Figure 2 Includes one tar-refining plant.
Includes one light oil refining plant.

<sup>1</sup> Data may not add to totals shown because of independent rounding.

2 Included with Pennsylvania to avoid disclos-

ing individual company data.

Table 9.-Breeze recovered at coke plants in the United States in 1973, by State

(Thousand short tons and thousand dollars)

|                                         | -                    |            |               |                 |                         |              |                  |                             |                 |              |            |
|-----------------------------------------|----------------------|------------|---------------|-----------------|-------------------------|--------------|------------------|-----------------------------|-----------------|--------------|------------|
|                                         | Yield                | Produced   |               |                 | Used by producers       | oducers      |                  |                             | ŭ.              | Sold         |            |
| State                                   | per ton<br>of coal 1 | Quantity   | In stea       | In steam plants | In agglomerating plants | nerating     | For o<br>Industr | For other<br>Industrial use | 1               |              | hand<br>On |
|                                         | (percent)            |            | Quantity      | Value           | Quantity                | Value        | Quantity         | Value                       | duantitud       | v alue       | 31<br>31   |
| OVEN COKE                               |                      |            |               |                 |                         |              |                  |                             |                 |              |            |
| Alabama Colombia Treat                  | 4.78                 | 348        | ;             | ;               | ( <del>2</del> )        | (3)          | 9.5              | 946                         | n<br>n          | t c          | ć          |
| Illinois                                | 4.35                 | 236        | ;             | 1               | 153                     | 1,807        | 23               | 260                         | (2)             | 1,976<br>(2) | 62.2       |
|                                         | 6.60                 | 981        | E)            | £               | Đ                       | £            | 14               | 127                         | 83              | 761          | 30         |
| Kentucky, Missouri, Tennessee, Texas    | 6.09                 | 174        | -<br>-<br>(%) | (2)             | Đ,                      | (*)          | 168              | 1,523                       | $\frac{371}{2}$ | 3,714        | 174        |
| Michigan                                | 6.23                 | 642        | (F)           | (S)             | (2)                     | ( <u>s</u> ) | (2)              | (2)                         | 92              | 1,249        | 889        |
| Minnesota, Wisconsin, West Virginia     | 6.08<br>6.08         | 275<br>406 | (8)           | - 6             | 1 6                     | ;<br>;       | (a)              | ( <u>s</u> )                | <u>.</u>        | D (R)        | 42         |
| í                                       | 5.75                 | 791        | ) (i)         | ) (E            | £ @                     | <u>.</u>     | 994              | 779                         | 197             | 1,720        | 53         |
| rennsylvania<br>Tradictuibuted          | 3.67                 | 882        | Đ             | \(\hat{2}\)     | 412                     | 5.543        | 176              | 1,696                       | 563             | 5,858        | 20         |
| Total 1079 3                            |                      | 1          | 234           | 1,943           | 1,124                   | 12,490       | 115              | 1,155                       | 252<br>452      | 2,981        | 91         |
| At merchant plants                      | 5.28                 | 4,902      | 234           | 1,943           | 1,689                   | 19,842       | 917              | 8,581                       | 2.165           | 22.505       | 788        |
| At furnace plants                       | 5.15                 | 4.404      | 198           | 948<br>848      | 249                     | 2,968        | 166              | 1,452                       | 245             | 4,029        | 182        |
| Total 1979                              | 90.7                 | .00,       |               | 000             | 1,440                   | 10,873       | 751              | 7,128                       | 1,919           | 18,476       | 553        |
| 1                                       | 4.32                 | 4,261      | 265           | 2,396           | 1,305                   | 16,095       | 704              | 6,759                       | 2,113           | 22,366       | r 841      |
| BEEHIVE COKE Pennsylvania and Virginia: |                      |            |               |                 |                         |              |                  |                             |                 |              |            |
| Total 1973                              | M                    | ×          | i             | }               | ŀ                       | ŀ            | 1                |                             | B               | Ĥ            |            |
|                                         | *                    | A          | ;             | !               | !                       | !            | i                | 1 1                         | :≱              | **           | !          |
| T Demiss 1                              |                      |            |               |                 |                         |              |                  |                             |                 |              | 1          |

<sup>7</sup> Revised. W Withheld to avoid disclosing individual company confidential data.

<sup>1</sup>Calculated by dividing production by coal carbonized at plants actually recovering breeze.

<sup>2</sup> Included with "Undistributed" to avoid disclosing individual company confidential data.

<sup>3</sup> Data may not add to totals shown because of independent rounding.

Table 10.-Oven- and beehive-coke breeze used and sold in the United States, by use

|                              |                                 | (220                                      |                                 |                                                 |                                           |
|------------------------------|---------------------------------|-------------------------------------------|---------------------------------|-------------------------------------------------|-------------------------------------------|
|                              |                                 | Used by producers                         |                                 |                                                 | Average                                   |
| Year                         | In<br>steam<br>plants           | In<br>agglomerating<br>plants             | For other industrial use        | Sold                                            | value<br>per ton                          |
| 1969<br>1970<br>1971<br>1972 | 439<br>366<br>309<br>265<br>234 | 1,650<br>1,948<br>1,582<br>1,305<br>1,689 | 775<br>704<br>650<br>704<br>917 | 1,538<br>1 2,067<br>1,879<br>1 2,113<br>1 2,165 | \$8.13<br>9.74<br>10.80<br>10.59<br>10.39 |
| 1310                         |                                 |                                           |                                 |                                                 | • • •                                     |

<sup>&</sup>lt;sup>1</sup> Does not include beehive-coke breeze sold (to avoid disclosing individual company data).

Table 11.-Apparent consumption of coke in the United States

|                                 |                                                |                                   |                                           |                                          |                                                  |                                                | Consum                                 | ption                                         |                                   |
|---------------------------------|------------------------------------------------|-----------------------------------|-------------------------------------------|------------------------------------------|--------------------------------------------------|------------------------------------------------|----------------------------------------|-----------------------------------------------|-----------------------------------|
|                                 | Total                                          | T                                 | Ex-                                       | Net<br>change                            | Appar-<br>ent                                    | In iron fu                                     | rnaces 2                               | All o                                         |                                   |
| Year                            | produc-<br>tion                                | Im-<br>ports                      | ports                                     | in<br>stocks                             | tion 1                                           | Quan-<br>tity                                  | Per-<br>cent                           | Quan-<br>tity                                 | Per-<br>cent                      |
| 969<br>970<br>971<br>972<br>973 | 64,757<br>66,525<br>57,436<br>60,507<br>64,325 | 173<br>153<br>174<br>185<br>1,078 | 1,629<br>2,478<br>1,509<br>1,232<br>1,395 | -2,865<br>+993<br>-588<br>-586<br>-1,757 | 66,166<br>63,207<br>56,689<br>• 60,046<br>65,765 | 60,176<br>58,151<br>51,498<br>54,607<br>60,720 | 90.9<br>92.0<br>90.8<br>r 90.9<br>92.3 | 5,990<br>5,056<br>r 5,191<br>r 5,439<br>5,082 | 9.1<br>8.0<br>9.2<br>7 9.1<br>7.7 |

Table 12.-Coke and coking coal consumed per short ton of pig iron, and ferroalloys produced in the United States

| Year | Coke per<br>short ton of<br>pig iron and<br>ferroalloys <sup>1</sup><br>(pounds) | Yield of<br>coke from<br>coal<br>(percent) | Coking coal<br>per short ton<br>of pig iron and<br>ferroalloys<br>(pounds,<br>calculated) |
|------|----------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------|
| 1969 | 1,260.4                                                                          | 69.4                                       | 1,816.1                                                                                   |
|      | 1,266.6                                                                          | r 69.0                                     | 1,833.0                                                                                   |
|      | 1,260.8                                                                          | 69.0                                       | 1,827.2                                                                                   |
|      | 1,221.6                                                                          | r 69.0                                     | 1,767.9                                                                                   |
|      | 1,200.0                                                                          | 68.4                                       | 1,754.4                                                                                   |

Production plus imports, minus exports, plus or minus net change in stocks.

Production plus imports, minus exports, plus or minus net change in stocks.

American Iron and Steel Institute; figures include coke consumed in manufacturing ferroalloys.

44,358 98,398 59,854 38,544 80,053

> 3,036 1,764 1,272 2,613

27,717 9,548 18,170 27,699

610 213 397 681

2,146,153 2,146,140

57,360 (3) 57,360

63,496 5,271 58,225 59,853

merchant plants ------

At

furnace plants Total 1973

Total 1972

1,705,269

1

Table 13.-Oven coke produced in the United States, used by producers, and sold in 1973, by State (Thousand short tons and thousand dollars)

To last-furnace plants 27,330 Commercial sales Quantity , 768 (2) 1.306 Value For other purposes 1 2,833 2,959 12,319 Used by producing companies Quantity 107,264 108,681 73,131 345,179 (2) 274,468 (2) Value 301,333 625,232 150,978 159,887 In blast furnaces Quantity 4,228 8,296 16,386 4,128 6,745 (2) 3,191 3,345 1,974 9,067 Produced Quantity 5,132 3,386 1,941 1,946 1,936 7,070 3,871 4,677 9,438 Pennsylvania Kentucky, Missouri, Tennessee, Texas Minnesota, West Virginia, Wisconsin State (Ilinois -----California, Colorado, Utah Maryland and New York Michigan Undistributed

|                                   |                  | •            |                              |                  | -,010     | 00,00        |
|-----------------------------------|------------------|--------------|------------------------------|------------------|-----------|--------------|
|                                   | E                |              | Commercial sales—Continued   | Continued        |           |              |
|                                   | TO TO            | To roundries | To other industrial plants 4 | triol plants 4   |           |              |
| A 3 - 1 - 1                       | Quantity         | Welling      | Short trans                  | dial plants      | Total 5   | 9            |
| California                        | formation .      | v arue       | Quantity                     | Value            | Quantity  | Value        |
| Tilistic Colorado, Utah           | 748              | 40,00        | 241                          | 10 979           | 100       |              |
| Talling                           | (2)              | (2)          | :<br>[2]                     | 60,61            | 1,951     | 77,708       |
| LUMBING                           | ;                | ;            | :                            |                  | •         | <del>2</del> |
| Missouri, Tennessee, Texas        | ( <del>2</del> ) | (2)          | 100                          | 100              | <b>•</b>  | <del>2</del> |
| Maryland and New York             | (3)              | (2)          | (2)                          | 2,032            | (2)       | (3)          |
| Michigan                          | (2)              | ્રહ          | D. E                         | •                | (3)       | (a)          |
| Minnesota, West Virginia Wissonii | (3)              | (3)          | D:                           | ( <del>2</del> ) | <u>(8</u> | <u>(</u> 2   |
| Ohio                              | . 402            | 99 905       | (e)                          | <del>?</del> )   | (S)       | <u></u>      |
| Pennsylvania                      | (2)              | (2)          | 141                          | 5,091            | 559       | 97 099       |
| Undistributed                     | 649              |              | (X)                          | (2)              | 1.230     | 77,04        |
|                                   | 1643             | 50,049       | (2)                          | (3)              | 770       | 141,00       |
|                                   | 1,04/            | 90,978       | 722                          | 26 714           | 700       | 44,247       |
| At merchant plants                | 3,349            | 183 337      | 1 904                        | #T1 00           | 2,904     | 125,727      |
| At furnace plants                 | 2,922            | 161,216      | 1,204                        | 44,010           | 7,589     | 325.745      |
|                                   | 427              | 22,121       | 000                          | 25,723           | 5,338     | 246,793      |
| 10tal 1972                        |                  |              | 100                          | 18,287           | 2.251     | 78 959       |
|                                   | 3,057            | 156.387      | r 1 992                      | 20007            |           | 20060        |
| r Revised.                        |                  |              | 1,020                        | 48,303           | 6,996     | 284.744      |
|                                   |                  |              |                              |                  |           |              |

Comprises 371,000 tons valued at \$19,326,000 used in foundries; 239,000 tons valued at \$8,391,000 for other purposes. Included with "Undistributed" to avoid disclosing individual company data.
I Less than "X unit.
I Includes coke used "For residential heating."
I Data may not add to totals shown because of independent rounding.

Table 14.—Production and sales of beehive coke in the United States in 1973
(Thousand short tons and thousand dollars)

|                           |            |                    |                  | Commercia    | l sales    |                    |                  |
|---------------------------|------------|--------------------|------------------|--------------|------------|--------------------|------------------|
| State                     | Produced   | To blast-i<br>plan |                  | To foun      | dries      | To ot<br>industria |                  |
| -                         | Quantity   | Quantity           | Value            | Quantity     | Value      | Quantity           | Value            |
| Pennsylvania and Virginia | 829        | 829                | 22,665           |              |            | (1)                | (1)              |
| Total 1973<br>Total 1972  | 829<br>654 | 829<br>669         | 22,665<br>14,745 |              |            | (1)<br>(1)         | (1)<br>(1)       |
|                           |            |                    |                  | Comme        | rcial sale | s-Continu          | ed               |
|                           |            |                    | -                | For resident |            | Tota               | al               |
|                           |            |                    | -                | Quantity     | Value      | Quantity           | Value            |
| Pennsylvania and Virginia |            |                    |                  |              |            | 829                | 22,665           |
| Total 1973<br>Total 1972  |            |                    |                  |              |            | 829<br>669         | 22,665<br>14,745 |

 $<sup>^{1}\,\</sup>mathrm{Included}$  with beehive coke sold "To blast-furnace plants" to avoid disclosing individual company data.

Table 15.-Distribution of oven and beehive coke and breeze in 1973 1 (Thousand short tons)

| Consuming State | To<br>blast-<br>furnace<br>plants | To<br>foundries | To<br>other<br>industrial<br>plants <sup>2</sup> | Total <sup>3</sup>  | Breeze     |
|-----------------|-----------------------------------|-----------------|--------------------------------------------------|---------------------|------------|
| Alabama         | 2,738                             | 355             | 67                                               | 3,160               | 338        |
| Arizona         | ,                                 | 10              | 4                                                | 14                  |            |
| Arkansas        |                                   | 2               | 3                                                | 5                   |            |
| California      | 1,438                             | 35              | 30                                               | 1.503               | 74         |
| Colorado        | 715                               | 8               | 24                                               | 747                 | 58         |
| Connecticut     |                                   | 10              |                                                  | 10                  | 00         |
| Delaware        |                                   |                 | (4)                                              | (4)                 | (4)        |
| Florida         |                                   | 2               | `´ 23                                            | `´ 25               | 14         |
| Georgia         |                                   | 12              | 5                                                | 17                  | 1          |
| Idaho           |                                   | (4)             | 124                                              | 124                 | •          |
| Illinois        | 3,610                             | 204             | 28                                               | 3,843               | 241        |
| Indiana         | 9.827                             | 201             | 83                                               | 10,111              | 882        |
| Iowa            | -,                                | 106             | 1                                                | 107                 | 002        |
| Kansas          |                                   | 13              | î                                                | 14                  |            |
| Kentucky        | 1,286                             | 41              | 36                                               | $1.3\overline{63}$  | 134        |
| Louisiana       | -,                                | 37              | 26                                               | 63                  | 1          |
| Maine           |                                   | i               |                                                  | í                   |            |
| Maryland        | 3,312                             | 19              | 2                                                | $3.33\overline{2}$  | 297        |
| Massachusetts   | 0,012                             | 30              | (4)                                              | 30                  | 201        |
| Michigan        | 4.679                             | 810             | 43                                               | 5,531               | 236        |
| Minnesota       | 2,010                             | 19              | 28                                               | 49                  | 108        |
| Mississippi     | -                                 | i               | ĩ                                                | 2                   | 6          |
| Missouri        |                                   | $2\overline{5}$ | 39                                               | 65                  | 26         |
| Montana         |                                   | (4)             | 38                                               | 38                  |            |
| Nebraska        |                                   | `´´ <b>2</b>    | 10                                               | 12                  | (4)<br>(4) |
| New Hampshire   |                                   | ī               | 10                                               | 1                   | (-)        |
| New Jersey      | (4)                               | 79              | 44                                               | $12\overline{2}$    | 36         |
| New Mexico      | ( )                               |                 | i                                                | 1 1                 | 90         |
| New York        | 3.530                             | 128             | 38                                               | $3,69\overline{6}$  | 386        |
| North Carolina  | (4)                               | 13              | 7                                                | 21                  | 9          |
| North Dakota    | (-)                               | 13              | 3                                                | 4                   | 9          |
| Ohio            | 10.758                            | 546             | 215                                              | 11.519              | 678        |
| Oklahoma        | 10,700                            | 4               | 1                                                |                     | (4)        |
| Oregon          |                                   | i               | 19                                               | 20<br>20            | (4)        |
| Pennsylvania    | $13.8\overline{95}$               | 295             | 250                                              | 14.441              | 825        |
| Rhode Island    | 10,000                            | 1               | 200                                              | 14,441              | 049        |
| South Carolina  |                                   | 7               | $\bar{50}$                                       | 57                  | īī         |
| South Dakota    | ••                                | í               | 90                                               | 1                   | 11         |
| Tennessee       | $\bar{3}\bar{2}$                  | 74              | 36                                               | $14\frac{1}{3}$     | 91         |
| Texas           | 878                               | 108             | 41                                               | 1.026               | 82         |
|                 | 1.208                             | 22              | 12                                               | 1,026               | 46         |
|                 | 1,200                             |                 | 12                                               |                     | 40         |
|                 |                                   | 1<br>95         | 3                                                | 1<br>98             | 143        |
|                 |                                   | 3<br>3          | 6                                                | 98                  | 143        |
| Washington      | 2 205                             |                 | 28                                               |                     | 205        |
| West Virginia   | 3,305                             | 68<br>172       | 28<br>5                                          | $\frac{3,401}{177}$ | 205<br>37  |
| Wisconsin       |                                   |                 | 6                                                | 6                   | 37         |
| Wyoming         |                                   |                 |                                                  |                     |            |
| Total 3         | 61,213                            | 3,561           | 1,380                                            | 66,154              | 4,962      |
| Exported        | 10                                | 158             | 65                                               | 233                 | 44         |
|                 | 61,223                            | 3,719           | 1.445                                            | 66,387              | 5,006      |

Based upon reports from producers showing destination and principle end use of coke used and sold. Does not include imported coke which totaled 1,078,000 tons in 1973.
 Includes coke used "For residential heating."
 Data may not add to totals shown because of independent rounding.
 Less than ½ unit.

Table 16.-Producers' stocks of coke and breeze in the United States on Dec. 31, 1973, by State

|                                                 |                                          | Coke                                         |                                          |                                          |                |
|-------------------------------------------------|------------------------------------------|----------------------------------------------|------------------------------------------|------------------------------------------|----------------|
| State                                           | Blast<br>furnace                         | Foundry                                      | Residen-<br>tial<br>heating<br>and other | Total 1                                  | Breeze         |
| Oven coke:<br>Alabama                           | 101<br>100                               | 3                                            | ( <sup>2</sup> )                         | 105<br>100<br>50                         | 29<br>72<br>30 |
| Illinois                                        | $\frac{50}{142}$                         | ī                                            | (2)                                      | 144                                      | 174<br>38      |
| Indiana<br>Kentucky, Missouri, Tennessee, Texas | 21                                       | 1                                            | 8                                        | $\begin{array}{c} 30 \\ 154 \end{array}$ | 183            |
| Maryland and New York                           | $\begin{array}{c} 154 \\ 72 \end{array}$ | 1                                            | - 1                                      | 74<br>5                                  | 42<br>28       |
| Michigan Minnesota and Wisconsin                | 3<br>188                                 | $\begin{smallmatrix} 1\\10\end{smallmatrix}$ | $\frac{1}{2}$                            | 200                                      | 50             |
| Ohio<br>Pennsylvania                            | 182                                      | 33                                           | 28                                       | 243<br>80                                | 91<br>(²)      |
| West Virginia                                   | 80                                       | 50                                           | 41                                       | 1.184                                    | 738            |
| Total 1973 1                                    | $\substack{1,093\\2}$                    | 38                                           | 25                                       | 65                                       | 185<br>553     |
| At merchant plantsAt furnace plants             | 1,091                                    | 12                                           | 17                                       | 1,120                                    | r 841          |
| Total 1972                                      | 2,690                                    | 137                                          | 113                                      | 2,941                                    | * 841          |

 $<sup>^{\</sup>circ}$  Neviseu.  $^{1}$  Data may not add to totals shown because of independent rounding.  $^{2}$  Less than  $\frac{1}{2}$  unit.

Table 17.-Producers' month-end stocks of oven coke in the United States (Thousand short tons)

|                                                                              |                          | -t mlants                                                        | At furnac                                                                                                | e plants                                                                                        | Tota                                                                                   |                                                                                        |
|------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
|                                                                              | At merchai               |                                                                  |                                                                                                          | 1973                                                                                            | 1972                                                                                   | 1973                                                                                   |
| Month                                                                        | 1972                     | 1973                                                             | 1972                                                                                                     | 1919                                                                                            | 3,585<br>3,611<br>3,323<br>3,111<br>3,022<br>2,907<br>3,089<br>3,185<br>3,202<br>3,089 |                                                                                        |
| January February March April May June July August September October November | 227<br>263<br>340<br>355 | 326<br>291<br>252<br>206<br>159<br>148<br>150<br>126<br>96<br>76 | 3,437<br>3,454<br>3,139<br>2,900<br>2,795<br>2,643<br>2,748<br>2,831<br>2,818<br>2,729<br>2,662<br>2,590 | 2,497<br>2,269<br>2,039<br>1,829<br>1,638<br>1,572<br>1,367<br>1,375<br>1,339<br>1,236<br>1,113 | 3,611<br>3,323<br>3,111<br>3,022<br>2,907<br>3,089<br>3,185<br>3,202                   | 2,824<br>2,566<br>2,29<br>2,03<br>1,79<br>1,71<br>1,51<br>1,52<br>1,50<br>1,43<br>1,31 |

<sup>&</sup>lt;sup>1</sup> Data may not add to totals shown because of independent rounding.

Table 18.-Average receipts per short ton of coke sold (commercial sales) in the United States, by use

| Year                    | To blast-<br>furnace<br>plants              | To<br>foundries                             | To other industrial plants                    | For<br>residential<br>heating           | Total                                       |
|-------------------------|---------------------------------------------|---------------------------------------------|-----------------------------------------------|-----------------------------------------|---------------------------------------------|
| OVEN COKE  1969         | \$19.14<br>25.05<br>30.49<br>30.64<br>32.41 | \$35.29<br>40.83<br>47.98<br>51.16<br>54.73 | \$18.25<br>22.74<br>29.75<br>r 36.43<br>36.55 | \$18.67<br>20.19<br>21.46<br>(1)<br>(1) | \$24.50<br>29.97<br>37.41<br>40.70<br>42.92 |
| 1973 BEEHIVE COKE  1969 | 16.31<br>19.77<br>21.24<br>22.01<br>27.31   | 6.84<br>18.98<br><br>                       | 15.93<br>23.01<br>W<br>W                      | 16.52<br><br><br>                       | 16.23<br>19.89<br>21.45<br>22.04<br>27.31   |

 $<sup>^{\</sup>rm r}$  Revised.  $\,$  W Withheld to avoid disclosing individual company confidential data.  $^{\rm l}$  Included with "To other industrial plants."

Table 19.-Coke exported from the United States, by country and customs district

|                                  |                             | 971                            |                             | 1972                    |                      | 1973                    |  |
|----------------------------------|-----------------------------|--------------------------------|-----------------------------|-------------------------|----------------------|-------------------------|--|
|                                  | Quantity<br>(Short<br>tons) | Value<br>(Thou<br>sands)       | - (Short                    | Value<br>(Thou<br>sands | Quantity (Short      | Value<br>(Thou<br>sands |  |
| COUNTRY                          |                             |                                |                             |                         |                      | Sanus                   |  |
| Algeria Argentina                | 40,678                      | \$692                          |                             |                         | 101                  |                         |  |
| Belgium-Luxembourg               | - 6,680                     | 300                            |                             |                         | 191                  | \$1                     |  |
| Drazii                           | 27 801                      | 320<br>1.630                   | 34,041                      | \$608                   | 84,714               | 1.72                    |  |
| Bulgaria                         | 29 126                      | 1,774                          | 11,775                      | 699                     | 8,465                | 53                      |  |
| Canada<br>Dominican Republic     | 492,391                     | 16,289                         | 488,006                     | 14,996                  | 747 740              |                         |  |
| Germany, West                    |                             | 5                              | 448                         | 11,330                  | 747,543<br>373       | 18,210                  |  |
| India                            | - 85,411<br>- 271           | 1,402                          | 141,021                     | 1,989                   | 265,084              | 5,27                    |  |
| ran                              | 688                         | 12<br>51                       | 614                         | 26                      | 1,123                | 5,210                   |  |
| taly                             | 94 594                      | 414                            | $\frac{68}{7,652}$          | 4                       | 184                  | i                       |  |
| Japan                            | 100 400                     | 2,210                          | 88,236                      | $106 \\ 1,412$          | 00 000               |                         |  |
| Liberia<br>Mexico                |                             | 187                            | 00,200                      | 1,412                   | 32,338               | 611                     |  |
| Netherlands                      | 80,248                      | 2,831                          | 105,181                     | 4.049                   | $102,2\overline{84}$ | 3,874                   |  |
| Vorway                           |                             | 1,628                          | 129,654                     | 1,172                   | 104,845              | 1,728                   |  |
| anama                            | 19,397<br>(¹)               | 366                            | 8,471                       | 215                     | 8,019                | 140                     |  |
| 'eru                             | 90,714                      | $\substack{\substack{3.888}\\$ | 1 000                       | ==                      | 755                  | 21                      |  |
| ortugal                          | 50,000                      | 2.090                          | 1,383                       | 86                      | 141                  | 15                      |  |
| tomania                          | 28,043                      | 1,357                          | $57.9\bar{50}$              | $1.3\bar{13}$           |                      |                         |  |
| ingaporeouth Africa, Republic of |                             |                                | 805                         | 25                      | $\overline{52}$      |                         |  |
|                                  | (1)                         | (1)                            | 160                         | 3                       | 759                  | 2<br>16                 |  |
| weden                            |                             |                                | 106,839                     | 1,683                   | 23.821               | 405                     |  |
| inted Kingdom                    | $23.2\overline{44}$         | $2\overline{63}$               | 169                         | 4                       | 5,480                | 135                     |  |
| enezueia                         | 119,014                     | 6,039                          | 3,704 $32,174$              | 229                     | 838                  | 75                      |  |
| ugoslavia<br>ther                | 37,579                      | 998                            | 12,270                      | $\frac{1,664}{383}$     | 543                  | 22                      |  |
|                                  | 1,222                       | 72                             | 1.012                       | 43                      | 6,527<br>901         | 237                     |  |
| Total                            | 1,508,639                   | 44,819                         | 1,231,633                   | 30,720                  | 1,394,980            | 33,138                  |  |
| CUSTOMS DISTRICT                 |                             |                                |                             |                         |                      | 00,100                  |  |
| altimore                         | 199,103                     | 5,333                          | 127,156                     | 2,572                   | 105 500              |                         |  |
|                                  | 295,761                     | 9,191                          | 230,965                     | 8,796                   | 107,709 $424,922$    | 2,609                   |  |
| hicago                           | 7,569                       | 65                             | 64,037                      | 753                     | 78,190               | 11,236<br>635           |  |
| etroit                           | 67,714 $243,407$            | 565                            | 133,412                     | 1,051                   | 10,052               | 111                     |  |
| uluth                            | 2.028                       | 6,287                          | 189,723                     | 4,683                   | 188,367              | 4.510                   |  |
| Paso                             | 2,028                       | 91<br>1                        | 14,163                      | 185                     | 65,022               | 773                     |  |
| reat rails                       | 859                         | 18                             | $\frac{158}{170}$           | 8<br>9                  | 188                  | 3                       |  |
| ouston                           | 1,191                       | 27                             | 2,047                       | 93                      | $701 \\ 1.420$       | 13                      |  |
| os Angeles                       | 79,084                      | 2,781                          | 96,899                      | 3,852                   | 100,856              | $\frac{101}{3,829}$     |  |
| lami                             | 50<br>204                   | 3                              | 53,054                      | 588                     | 20,349               | 226                     |  |
| obile                            | 394<br>291,529              | 13<br>7 970                    | 367                         | 7                       |                      | 220                     |  |
| W ()rleans                       | 1,517                       | $\substack{7,970\\70}$         | 146,551                     | 3,235                   | 42,056               | 938                     |  |
| w fork City                      | 214                         | 7                              | 5,050<br>580                | 297                     | 41,459               | 1,067                   |  |
| ovales                           | 401                         | 22                             | 514                         | $\frac{20}{24}$         | 378<br>821           | 10                      |  |
| orfolk<br>densburg               | 121,618                     | 4,347                          | 53,650                      | 887                     | 821<br>122,222       | $\frac{26}{1.954}$      |  |
| mbina                            | 17,455                      | 518                            | 3,312                       | 77                      | 2,282                | 1,954<br>59             |  |
| Hadelphia                        | 17,164<br>154,556           | 815                            | 16,563                      | 875                     | 17,332               | 933                     |  |
| ruang Maina                      | 241                         | 6,388<br>4                     | 81,667                      | 2,357                   | 164,885              | 3,794                   |  |
| Albans                           | 160                         | 6                              |                             |                         |                      |                         |  |
| n Diego                          | 733                         | 28                             | $9\overline{4}\overline{8}$ | $\bar{3}\bar{1}$        | 700                  |                         |  |
| n Francisco                      | (1)                         | 1                              | 6,744                       | 136                     | 522                  | 17                      |  |
| ner                              | 5,818                       | 255                            | 3,882                       | 183                     | 5.208                | 292                     |  |
| Total                            | 43                          | 13                             | 21                          | 1                       | 39                   | 292<br>2                |  |
|                                  | 1,508,639                   | 44,819 1                       | ,231,633                    |                         |                      |                         |  |

 $<sup>^1</sup>$  Less than  $\frac{1}{2}$  unit.

Table 20.-U.S. imports for consumption of coke by country and customs district

|                           | 19                          | 971                       | 19                          | 1972                      |                             | 3                         |
|---------------------------|-----------------------------|---------------------------|-----------------------------|---------------------------|-----------------------------|---------------------------|
|                           | Quantity<br>(Short<br>tons) | Value<br>(Thou-<br>sands) | Quantity<br>(Short<br>tons) | Value<br>(Thou-<br>sands) | Quantity<br>(Short<br>tons) | Value<br>(Thou-<br>sands) |
| COUNTRY                   |                             |                           |                             |                           |                             |                           |
| Australia                 |                             |                           |                             |                           | 123                         | \$2                       |
| Canada                    | 170,784                     | \$4,593                   | 171,297                     | \$4,276                   | 289,618                     | 9,099                     |
| Czechoslovakia            |                             |                           |                             |                           | 11,574                      | 355                       |
| Germany, West             | 3,036                       | 444                       | 268                         | 42                        | 732,084                     | 27,969                    |
| Hungary                   |                             |                           |                             |                           | 3,190                       | 108                       |
| Italy                     |                             |                           |                             |                           | 31,945                      | 1,271                     |
| South Africa, Republic of | 94                          | 1                         | 13,457                      | 331                       |                             | .==                       |
| United Kingdom            |                             |                           | 1                           | (¹)                       | 9,203                       | 459                       |
| Total                     | 173,914                     | 5,038                     | 185,023                     | 4,649                     | 1,077,737                   | 39,268                    |
| CUSTOMS DISTRICT          |                             |                           |                             |                           |                             |                           |
| Baltimore                 |                             |                           |                             |                           | 225,368                     | 9,749                     |
| Boston                    |                             |                           | 1                           | (1)                       |                             |                           |
| Buffalo                   | 967                         | 25                        | 3,110                       | 66                        | 45,746                      | 1,548                     |
| Charleston                |                             |                           | 13,457                      | 331                       |                             |                           |
| Chicago                   | 11,498                      | 339                       | 20,276                      | 730                       | 76,045                      | 2,79                      |
| Cleveland                 | ·                           |                           | 25,768                      | 298                       |                             |                           |
| Detroit                   | 88,835                      | 2,471                     | 21,437                      | 342                       | 134,937                     | 4,592                     |
| Duluth                    | 330                         | 3                         |                             |                           |                             |                           |
| Great Falls               | 69,022                      | 1,749                     | 100,187                     | 2,814                     | 102,754                     | 2,88                      |
| Honolulu                  | 110                         | 7                         | 165                         | 11                        | 165                         | 13                        |
| New Orleans               | 3,031                       | 439                       | 103                         | 31                        | 94,932                      | 3,576                     |
| Ogdensburg                | ·                           |                           | 229                         | 13                        | 2,352                       | 128                       |
| Pembina                   | 58                          | 1                         |                             |                           |                             |                           |
| Philadelphia              |                             |                           |                             |                           | 384,966                     | 13,454                    |
| Portland, Maine           | 33                          | 1                         | 34                          | 1                         |                             |                           |
| St. Albans                | 15                          | (1)                       | 256                         | 12                        | 10,472                      | 523                       |
| San Juan                  | 15                          | 3                         |                             |                           |                             |                           |
| Total                     | 173,914                     | 5,038                     | 185,023                     | 4,649                     | 1,077,737                   | 39,26                     |

<sup>&</sup>lt;sup>1</sup> Less than ½ unit.

Table 21.—Coke: World production by type and country (Thousand short tons)

| Kind of coke and country 1      | 1971    | 1972    | 1973 P   |
|---------------------------------|---------|---------|----------|
| METALLURGICAL COKE <sup>2</sup> |         |         |          |
| North America:                  |         | r 005   |          |
| Canada 3 4                      | 5,105   | 5,207   | 5,919    |
| Mexico                          | r 1,650 | 1,913   | 2,132    |
| United States                   | 57,436  | 60,507  | 64,325   |
| South America:                  |         |         |          |
| Argentina 3 e                   | 397     | 397     | 397      |
| Brazil                          | 1,483   | 1,841   | 1,973    |
| Chile                           | 345     | 340     | e 340    |
| Colombia                        | 513     | 578     | • 650    |
| Peru                            | 37      | e 12    | e 12     |
| Europe:                         |         |         |          |
| Austria 3                       | 1.806   | 1.836   | 1.894    |
|                                 | 7.477   | 7,980   | 8,608    |
| Belgium                         | 11.543  | 11.770  | e 11.800 |
| Czechoslovakia                  | 123     | 95      | 74       |
| Finland 4                       |         |         | e 13.000 |
| France 3                        | 13,784  | 12,723  |          |
| Germany, East                   | 2,553   | 1,769   | e 1,500  |
| Germany, West                   | 41,379  | 37,977  | 37,475   |
| Greece                          | 193     | 295     | 309      |
| Hungary                         | 862     | 856     | e 860    |
| Italy                           | 7,668   | 7,744   | 8,457    |
| Netherlands 3                   | 2,094   | 2.198   | 2,927    |
| Norway                          | 363     | 342     | e 350    |
| Poland                          | 15,631  | 17.502  | • 18.000 |
|                                 | 1.221   | 1.250   | e 1.179  |
| Romania                         | 5 4.482 | 5 4.900 | e 5,000  |
| Spain                           | 550     | 713     | e 550    |
| Sweden 3 4                      | 86.340  | 87.909  | * 90.000 |
| U.S.S.R.3                       |         |         | 19,622   |
| United Kingdom                  | 21,066  | 18,967  |          |
| Yugoslavia 3                    | r 1,433 | 1,430   | e 1,400  |
| Africa:                         |         |         |          |
| Egypt, Arab Republic of         | ге 386  | 390     | • 391    |
| Rhodesia. Southern e            | 270     | 270     | 270      |
| South Africa, Republic of       | 3,959   | 3,950   | • 3,970  |
| See footnotes at end of table.  |         |         |          |

Table 21.-Coke: World production by type and country-Continued (Thousand short tons)

| (Thousand short wits)               |                |               |         |
|-------------------------------------|----------------|---------------|---------|
| Kind of coke and country 1          | 1971           | 1972          | 1973 р  |
| Asia:                               |                |               |         |
| China, People's Republic of e       | r 24,000       | r 26.500      | 28,700  |
| India 6                             | 9,893          | 10.132        | e 8,860 |
| Iran 7                              | 63             | e 66          | 69      |
| Japan <sup>3</sup>                  | r 42,676       | 41.898        | 50,858  |
| Korea, North e                      | 2,400          | 2,400         | 2,400   |
| Korea, Republic of                  | -,             | 2,100         | 356     |
| Taiwan                              | 280            | 274           | 240     |
| Turkey                              | 1,420          | r e 1,400     | 1,579   |
| Oceania:                            |                | -,            | 2,010   |
| Australia                           | 4,856          | 4.980         | e 5.400 |
| New Zealand                         | e 7            | 4             | 6 3     |
| Total metallurgical coke            | r 377,744      | 381,315       | 401,849 |
| GASHOUSE COKE 8                     |                |               |         |
| South America:                      |                |               |         |
| Brazil                              | 90             | 49            | e 55    |
| Uruguay                             | 17             | 15            | 15      |
| Europe:                             |                | 10            | 10      |
| Czechoslovakia                      | 13             | e 13          | e 13    |
| Denmark                             | 149            | e 125         | e 180   |
| France                              | 4              | e 4           | e 4     |
| Germany, West                       | 2.220          | $1.89\bar{4}$ | 1.705   |
| Greece                              | 15             | e 15          | e 15    |
| Hungary                             | 417            | 400           | • 400   |
| Italy                               | 125            | 51            | 285     |
| Poland                              | 1,466          | r e 1,500     | e 1,500 |
| Spain                               | <sup>'</sup> 8 | 5             | e 7     |
| Sweden 9                            | 409            | r e 130       | e 170   |
| Switzerland                         | 115            | 100           | e 110   |
| United Kingdom                      | 1,056          | 251           | 206     |
| Africa:                             |                |               |         |
| Egypt, Arab Republic of e           | 33             | 33            | 33      |
| South Africa, Republic of           | 111            | 111           | 109     |
| Asia:                               |                |               |         |
| India                               | 88             | e 88          | e 75    |
| Japan <sup>3</sup>                  | 5,283          | 4,873         | 5,197   |
| Sri Lanka                           | 9              | 8             | e 8     |
| Taiwan<br>Turkey <sup>e</sup>       | 9              | 1             | (10)    |
| Turkey e<br>Oceania:                | r 110          | r 110         | 110     |
|                                     |                |               |         |
|                                     | 772            | 772           | 772     |
|                                     | e 40           | 24            | 30      |
| Total gashouse coke                 | r 12,559       | 10,572        | 10,999  |
| ALL OTHER TYPES 12                  |                |               |         |
|                                     |                |               |         |
| Czechoslovakia                      | 891            | 475           | e 440   |
| Germany, East <sup>13</sup> Romania | 6,806          | 6,225         | ° 6,100 |
| Romania                             | 15             | e 15          | e 15    |
|                                     |                |               |         |
| _                                   | 3,852          | 4,314         | e 1,140 |
| Japan                               | - 77           | . ==          | 2,013   |
| Turkey e                            | r 60           | r 70          | 80      |
| Total all other types               | r 11,624       | 11,099        | 9,788   |
| Grand total                         | r 401,927      | 402,986       | 422,636 |
|                                     |                | 102,000       |         |

<sup>&</sup>lt;sup>p</sup> Preliminary. r Revised.

In addition to the countries listed, Algeria, Malaysia, People's Republic of China, Mexico, Norway, Romania, and the U.S.S.R. have produced gashouse coke in previous years and may have continued production during the time period covered by this table. However, no official statistics are available and information is inadequate to make reliable estimates of production levels. Except where otherwise noted, coke breeze has been excluded from this table.

2 Coke produced at high temperature in conventional carbonizing equipment (including slot and

beehive coke ovens). Includes breeze.

Includes relatively small amounts of gas coke.

Includes relatively small amounts of low-temperature coke.

Data are total of so-called hard coke production from collieries and coke plants (including those at steelworks).

those at steelworks).

<sup>1</sup> Data are for years beginning March 21 of that stated.

<sup>8</sup> Includes coke produced at high temperatures in carbonizing equipment designed primarily for gas manufacture (horizontal and vertical coal-gas retorts). In addition to the countries listed, Canada and Finland produce gas coke. However, this figure is not reported separately and has been included with metallurgical coke.

<sup>9</sup> Excludes small quantities of gashouse coke which are included with metallurgical coke.

<sup>&</sup>lt;sup>9</sup> Excludes small quantities of gashouse 10 Less than 1/2 unit.

10 Less than 1/2 unit.

11 Data are for years beginning March 31 of that stated.

12 Includes coke produced at low and medium temperatures, as well as that produced in unconventional equipment (chain-grate cokers).

13 Includes coke produced from lignite at high temperatures.

Table 22.—Quantity and value at ovens of coal carbonized in the United States in 1973, by State

|                                                                    | Co                                 | Coal per ton<br>of coke                                                |                               |                              |                                  |
|--------------------------------------------------------------------|------------------------------------|------------------------------------------------------------------------|-------------------------------|------------------------------|----------------------------------|
| State                                                              | Thousand                           | Valu                                                                   | ie                            | - C1 /                       |                                  |
|                                                                    | short<br>tons                      | Total<br>(thousands)                                                   | Average                       | Short<br>tons                | Value                            |
| OVEN COKE                                                          |                                    |                                                                        |                               |                              |                                  |
| AlabamaCalifornia, Colorado, UtahIllinois                          | 7,280<br>5,384<br>3,108            | \$125,460<br>87,544<br>50,177                                          | \$17.24<br>16.26<br>16.14     | 1.41<br>1.59<br>1.60         | \$24.31<br>25.85<br>25.82        |
| Indiana Kentucky, Missouri, Tennessee, Texas Maryland and New York | 14,042<br>2,858<br>10,304<br>5,297 | $\begin{array}{c} 258,249 \\ 50,611 \\ 232,784 \\ 112.845 \end{array}$ | 18.39 $17.71$ $22.59$ $21.30$ | 1.50<br>1.48<br>1.46<br>1.37 | 27.59<br>26.21<br>32.98<br>29.18 |
| Michigan Minnesota and Wisconsin Ohio                              | 1,194<br>13,751<br>24,108          | 25,420<br>241,533<br>432,725                                           | 21.29<br>17.56<br>17.95       | 1.41<br>1.46<br>1.44         | 30.02<br>25.63<br>25.85          |
| Pennsylvania                                                       | 5,480                              | 82,772                                                                 | 15.10                         | 1.43                         | 21.59                            |
| Total 1973 <sup>1</sup> At merchant plants                         | 92,806<br>7,334<br>85,471          | 1,700,119<br>144,995<br>1,555,125                                      | 18.32<br>19.77<br>18.19       | 1.46<br>1.39<br>1.47         | 26.75<br>27.48<br>26.74          |
| Total 1972                                                         | 86,687                             | 1,363,945                                                              | 15.74                         | 1.45                         | 22.81                            |
| BEEHIVE COKE Pennsylvania and Virginia                             | 1,310                              | 16,270                                                                 | 12.42                         | 1.58                         | 19.62                            |
| Total: 1973 1972                                                   | 1,310<br>1,059                     | 16,270<br>10,428                                                       | 12.42<br>9.85                 | 1.58<br>1.62                 | 19.62<br>15.96                   |

<sup>&</sup>lt;sup>1</sup> Data may not add to totals shown because of independent rounding.

Table 23.—Bituminous coal carbonized in coke ovens in the United States, by month (Thousand short tons)

| 3.5       |        | 1972    |        | 1973   |         |        |  |
|-----------|--------|---------|--------|--------|---------|--------|--|
| Month —   | Slot   | Beehive | Total  | Slot   | Beehive | Total  |  |
| January   | 6.790  | 82      | 6,872  | 7,718  | 102     | 7,820  |  |
| February  | 6,689  | 86      | 6,775  | 7,118  | 99      | 7,217  |  |
| March     | 7.373  | 85      | 7,458  | 7.847  | 103     | 7,950  |  |
| April     | 7,338  | 85      | 7.423  | 7.625  | 102     | 7,727  |  |
| May       | 7,557  | 82      | 7,639  | 7,942  | 106     | 8,048  |  |
| June      | 7,126  | 84      | 7,210  | 7,678  | 94      | 7,772  |  |
| July      | 7.276  | 79      | 7.355  | 7.854  | 101     | 7,955  |  |
| August    | 7.273  | 87      | 7.360  | 7.781  | 113     | 7,894  |  |
| September | 6,952  | 88      | 7,040  | 7.497  | 105     | 7,602  |  |
| October   | 7.258  | 87      | 7.345  | 7.755  | 132     | 7,887  |  |
| November  | 7.063  | 102     | 7.165  | 7.612  | 124     | 7,736  |  |
| December  | 7,518  | 112     | 7,630  | 7,909  | 127     | 8,036  |  |
| Total 1   | 86,213 | 1,059   | 87,272 | 92,338 | 1,310   | 93,648 |  |

<sup>&</sup>lt;sup>1</sup> Data may not add to totals shown because of independent rounding.

Table 24.—Anthracite carbonized at ovencoke plants in the United States, by month

| Month     | 1972 | 1973             |
|-----------|------|------------------|
| January   | 40   | 45               |
| February  | 42   | 38               |
| March     | 42   | 42               |
| April     | 38   | 36               |
| May       | 37   | 37               |
| June      | 41   | 41               |
| July      | 36   | 36               |
| August    | 37   | 38               |
|           | 38   | 36               |
| September | 40   | 34               |
| October   | 41   | 43               |
| November  | 42   | 43               |
| December  | 42   |                  |
| Total     | 474  | <sup>1</sup> 467 |

<sup>1</sup>Data does not add to total shown because of independent rounding.

Table 25.—Average value per short ton of coal carbonized at oven-coke plants in the United States, by State

| State                      | 1972    | 1973    |
|----------------------------|---------|---------|
| Alabama                    | \$14.16 | \$17.24 |
| California, Colorado, Utah | 13.82   | 16.26   |
| Illinois                   | 14.94   | 16.14   |
| Indiana                    | 15.73   | 18.39   |
| Kentucky, Missouri,        |         |         |
| Tennessee, Texas           | 15.28   | 17.71   |
| Maryland and New York -    | 20.52   | 22.59   |
| Michigan                   | 19.38   | 21.30   |
| Minnesota and              |         |         |
| Wisconsin                  | 18.16   | 21.29   |
| Ohio                       | 15.49   | 17.56   |
| Pennsylvania               | 14.88   | 17.95   |
| West Virginia              | 13.50   | 15.10   |
| Average                    | 15.73   | 18.32   |
| Value of coal per ton      |         |         |
| of coke                    | 22.81   | 26.75   |

Table 26.-Average volatile content of bituminous coal carbonized by oven-coke plants in the United States

|                                      | F                                              | Iigh                                 | Medium Low                                    |                                      | Medium                                         |                                      | ow                                               | T                                    | 'otal |
|--------------------------------------|------------------------------------------------|--------------------------------------|-----------------------------------------------|--------------------------------------|------------------------------------------------|--------------------------------------|--------------------------------------------------|--------------------------------------|-------|
| Year                                 | Quantity                                       | Volatile<br>content<br>(percent)     | Quantity                                      | Volatile<br>content<br>(percent)     | Quantity                                       | Volatile<br>content<br>(percent)     | Quantity                                         | Volatile<br>content<br>(percent)     |       |
| 1969<br>1970<br>1971<br>1972<br>1973 | 59,284<br>62,703<br>53,542<br>60,536<br>64,486 | 35.1<br>34.0<br>35.1<br>34.7<br>34.6 | 12,785<br>11,660<br>12,085<br>8,754<br>10,090 | 26.8<br>26.3<br>25.2<br>26.4<br>26.6 | 19,674<br>20,217<br>15,904<br>16,923<br>17,762 | 18.6<br>17.2<br>18.3<br>16.8<br>16.2 | 91,743<br>1 94,581<br>81,531<br>86,213<br>92,338 | 30.4<br>29.4<br>30.4<br>30.3<br>30.2 |       |

<sup>&</sup>lt;sup>1</sup> Data does not add to total shown because of independent rounding.

Table 27.-Coal received by oven-coke plants in the United States in 1973, by consuming State and volatile content 1

(Thousand short tons)

| _                                                                                            | High-volatile                                               |                                                      | Medium-volatile                          |                                           | Low-volatile                                          |                                                      | Total                                                 |  |
|----------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|--|
| Consuming State                                                                              | Quantity                                                    | Per-<br>cent of<br>total                             | Quantity                                 | Per-<br>cent of<br>total                  | Quantity                                              | Per-<br>cent of<br>total                             | coal<br>re-<br>ceipts                                 |  |
| Alabama California, Colorado, Utah Illinois Indiana Kentucky, Missouri, Tennessee,           | 2,625<br>4,200<br>2,420<br>9,429                            | 34.8<br>78.6<br>78.8<br>69.0                         | 4,406<br>1,076<br>1,390                  | 58.3<br>20.1<br>10.2                      | 524<br>66<br>650<br>2,851                             | 6.9<br>1.3<br>21.2<br>20.8                           | 7,555<br>5,342<br>3,071<br>13,672                     |  |
| Texas Maryland and New York Michigan Minnesota and Wisconsin Ohio Pennsylvania West Virginia | 1,873<br>6,416<br>3,362<br>781<br>10,138<br>15,377<br>4,402 | 67.4<br>63.8<br>68.2<br>58.8<br>76.3<br>65.8<br>81.8 | 421<br>663<br>273<br>137<br>614<br>2,458 | 15.1<br>6.6<br>5.6<br>10.3<br>4.6<br>10.5 | 486<br>2,981<br>1,293<br>410<br>2,528<br>5,536<br>977 | 17.5<br>29.6<br>26.2<br>30.9<br>19.1<br>23.7<br>18.2 | 2,780<br>10,059<br>4,928<br>1,328<br>13,280<br>23,371 |  |
| Total 19732  At merchant plants  At furnace plants  Total 1972                               | 61,023<br>2,671<br>58,352<br>57,997                         | 67.2<br>39.2<br>69.5                                 | 11,438<br>1,900<br>9,537<br>14,468       | 12.6<br>27.9<br>11.4                      | 18,301<br>2,249<br>16,053                             | 20.2<br>33.0<br>19.1                                 | 5,379<br>90,763<br>6,820<br>83,944<br>87,962          |  |

<sup>&</sup>lt;sup>1</sup> Volatile matter on moisture-free basis: High-volatile—over 31%; medium-volatile—22 to 31%; and low-volatile—14 to 22%.

<sup>2</sup> Data may not add to totals shown because of independent rounding.

Table 28.-Origin of coal received by oven-coke plants in the United States in 1973, by producing county and volatile content 1

| Source of coal                 |       |        |     |         |
|--------------------------------|-------|--------|-----|---------|
|                                | High  | Medium | Low | Total 2 |
| Alabama:                       |       |        |     |         |
| Bibb                           | 289   |        |     | 289     |
| Jefferson                      | 1.336 | 4,205  |     |         |
| Walker                         | 406   | 85     |     | 5,541   |
| Arkansas:                      | 400   | 00     |     | 491     |
| Sebastian                      |       |        | 010 |         |
| Colorado:                      |       |        | 216 | 216     |
| Gunnison                       | 794   |        |     |         |
| Las Animas                     |       |        |     | 794     |
| D:41.*                         | 624   |        |     | 624     |
| Pitkin                         |       | 1,000  |     | 1,000   |
| 17 1-1*                        |       |        |     |         |
| T. M                           | 1,393 |        |     | 1,393   |
| Jefferson                      | 2,440 |        |     | 2,440   |
| Saline                         | 85    |        |     | 85      |
| Kentucky:                      |       |        |     |         |
| Floyd                          | 1,802 |        |     | 1,802   |
| Greenup                        | 3     |        |     | 3       |
| Harlan                         | 4.475 |        |     |         |
| Knott                          | 657   |        |     | 4,475   |
| See footnotes at end of table. | 991   |        | ~-  | 657     |

Table 28.-Origin of coal received by oven-coke plants in the United States in 1973, by producing county and volatile content 1-Continued

| g                          | v                  | olatile conten | t                  | Total 2            |  |
|----------------------------|--------------------|----------------|--------------------|--------------------|--|
| Source of coal             | High               | Medium         | Low                |                    |  |
| Kentucky—Continued         |                    |                |                    |                    |  |
| Knox                       | 8                  |                |                    | 8                  |  |
| Letcher                    | 3,369              |                |                    | 3,369              |  |
| Perry                      | 13                 |                |                    | 13                 |  |
| Pike                       | 3.515              |                |                    | 3,515              |  |
| Whitely                    | 28                 |                |                    | 28                 |  |
| New Mexico:                |                    |                |                    |                    |  |
| Colfax                     | 771                |                |                    | 771                |  |
| Oklahoma:                  |                    |                |                    |                    |  |
| Haskell                    | 7                  | 265            |                    | 270                |  |
| Rogers                     | 163                |                |                    | 163                |  |
| Pennsylvania :             |                    |                |                    |                    |  |
| Anthracite                 |                    |                | 489                | 489                |  |
| Bituminous:                |                    |                |                    |                    |  |
| Allegheny                  | 2,331              |                |                    | 2,331              |  |
| Blair                      | _,001              |                | 11                 | 11                 |  |
| Cambria                    |                    | 396            | 2,960              | 3,356              |  |
| Clearfield                 |                    | 16             | (3)                | 16                 |  |
| Fayette                    | $1\overline{61}$   |                | ( )                | 161                |  |
| Greene                     | 5,932              |                |                    | 5,932              |  |
|                            |                    | 48             |                    | 48                 |  |
| Indiana<br>Somerset        |                    | 208            | $1.3\overline{67}$ | 1,575              |  |
|                            | $9.8\overline{46}$ |                | 1,001              | 9,846              |  |
| Washington<br>Westmoreland | 736                |                |                    | 736                |  |
| Tennessee:                 | 190                |                |                    | 100                |  |
|                            | 3                  |                |                    | 3                  |  |
| Clairborne                 | ъ                  |                |                    | v                  |  |
| Texas:                     |                    |                | 5                  | 5                  |  |
| Randall                    |                    |                | Э                  | Э                  |  |
| Utah:                      | 0.011              |                |                    | 0.011              |  |
| Carbon                     | 2,011              |                |                    | 2,011              |  |
| Virginia:                  |                    | 404            | 4.05               | 0.000              |  |
| Buchanan                   | 22                 | 491            | 1,487              | 2,000              |  |
| Dickenson                  | 341                | 154            |                    | 495                |  |
| Russell                    | 233                | 662            |                    | 896                |  |
| Tazewell                   | ,                  | 20             |                    | 20                 |  |
| Wise                       | 1,091              |                |                    | 1,091              |  |
| West Virginia:             |                    |                |                    |                    |  |
| Barbour                    | 298                |                |                    | 298                |  |
| Boone                      | 2,161              |                |                    | 2,161              |  |
| Fayette                    | 1,697              | 713            | 523                | 2,933              |  |
| Gilmer                     | 199                |                |                    | 199                |  |
| Greenbrier                 |                    | 70             |                    | 70                 |  |
| Harrison                   |                    | 3              |                    | 3                  |  |
| Kanawha                    | 2.513              |                |                    | 2,513              |  |
| Logan                      | 5,252              | 320            |                    | 5,571              |  |
| McDowell                   | 11                 | 1,480          | 5,954              | 7,446              |  |
| Marion                     | 636                | -,             | -,                 | 636                |  |
| Mercer                     | 000                |                | 1.053              | 1.053              |  |
| Mingo                      | $1.5\overline{17}$ | 35             | -,                 | 1,552              |  |
|                            | 4                  |                |                    | 4                  |  |
|                            | 99                 |                |                    | 99                 |  |
| Monongalia                 | 838                | 967            |                    | 1,806              |  |
| Nicholas                   | 128                | 58             | 1.542              | 1,729              |  |
| Raleigh                    | 86                 | 90             | -,                 | 86                 |  |
| Upshur                     | 80                 | 18             |                    | 18                 |  |
| Webster                    | 200                |                | 9 409              |                    |  |
|                            | 698                | 225            | 2,493              | 3,416              |  |
| Wyoming                    |                    |                |                    |                    |  |
| Canada:                    |                    |                | 100                | 100                |  |
|                            |                    |                | 198                | 198                |  |
| Canada:                    |                    |                | 198<br>3<br>18,301 | 198<br>3<br>90,763 |  |

<sup>&</sup>lt;sup>1</sup>Volatile matter on moisture-free basis: high-volatile—over 31%; medium-volatile—22 to 31%; and low-volatile—14 to 22%.

<sup>2</sup> Data may not add to totals shown because of independent rounding.

<sup>3</sup> Less than  $\frac{1}{2}$  unit.

Table 29.—Origin of coal received by oven-coke plants in the United States in 1973, by State (Thousand short tons)

|                                     |                 |              |                  | Prod          | ucing S       | tate                      |               |               |
|-------------------------------------|-----------------|--------------|------------------|---------------|---------------|---------------------------|---------------|---------------|
| Consuming State                     |                 | Ala-<br>bama | Arkan-<br>sas    | Colo-<br>rado | Illi-<br>nois | Ken-<br>tucky             | New<br>Mexico | Okla-<br>homa |
| Alabama                             |                 | 5,980        |                  |               |               | 115                       |               |               |
| California, Colorado, Utah          |                 |              | 66               | 2,418         |               |                           | 771           | 76            |
| Illinois<br>Indiana                 |                 | .==          | 150              |               | 1,150         | 1,084                     |               |               |
|                                     |                 | 265          |                  |               | 2,768         | 3,554                     |               |               |
| Kentucky Missouri, Tennessee, Texas |                 | 68           |                  |               |               |                           |               | 357           |
| Maryland and New York               |                 |              |                  |               |               | 2,168                     |               |               |
| Minnesota and Wisconsin             |                 |              |                  |               |               | 1,664                     | '             |               |
| Ohio                                |                 | 8            |                  |               |               | 386                       |               |               |
| Pennsylvania                        |                 | -            |                  |               | (1)           | 2,020<br>2,317            |               | 1             |
| West Virginia                       |                 |              |                  |               | (1)           | 572                       |               |               |
| -                                   | _               |              |                  | 0.410         |               |                           |               |               |
| Total 1973 At merchant plants       |                 | 6,320<br>639 | 216              | 2,418         | 3,917         | 13,870                    | 771           | 434           |
| At furnace plants                   |                 | 5,682        | $2\overline{16}$ | $2,4\bar{18}$ | 9 017         | 209                       | 221           | 1             |
| -                                   |                 | 5,002        | 410              | 2,410         | 3,917         | 13,661                    | 771           | 433           |
| Total 1972                          |                 | 6,758        | 115              | 2,013         | 3,697         | 13,480                    | 625           | 447           |
|                                     |                 |              | Produ            | cing Sta      | te—Co         | ntinued                   |               |               |
|                                     | Pennsy<br>vanis |              | Vir-<br>ginis    |               |               | West<br>xas Vir-<br>ginia | Can           | Total 2       |
| Alabama                             | 127             |              | 923              |               | _             | _ 412                     |               | 7,555         |
| California, Colorado, Utah          |                 | 2,011        |                  |               | _             |                           |               | 5,341         |
| Illinois                            | 53              |              | 42               |               |               | 592                       |               | 2 071         |

| 2,011<br><br><br> | 923<br>42<br>239<br>271 |                                                           |                                                | 412<br>592<br>5,488                                  |                                                      | 7,555<br>5,341<br>3,071                              |
|-------------------|-------------------------|-----------------------------------------------------------|------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| ·                 | 42<br>239<br>271        |                                                           |                                                | 592                                                  |                                                      | 3,071                                                |
|                   | 239<br>271              |                                                           |                                                |                                                      |                                                      |                                                      |
|                   | 271                     |                                                           |                                                | 5.488                                                |                                                      |                                                      |
|                   |                         |                                                           |                                                |                                                      |                                                      | 13,672                                               |
|                   |                         |                                                           | 5                                              | 1.928                                                |                                                      | 2,780                                                |
|                   | 749                     |                                                           |                                                | 3,340                                                | 192                                                  | 10.059                                               |
|                   | 224                     | 3                                                         |                                                | 2.996                                                |                                                      | 4,928                                                |
|                   | 98                      | Ü                                                         |                                                | 641                                                  |                                                      | 1.328                                                |
|                   |                         |                                                           |                                                |                                                      | 0                                                    | 13.280                                               |
|                   |                         |                                                           |                                                |                                                      |                                                      |                                                      |
|                   |                         |                                                           |                                                |                                                      |                                                      | 23,371                                               |
|                   |                         |                                                           |                                                | 2,101                                                |                                                      | 5,379                                                |
| 2,011             | 4,504                   | 3                                                         | 5                                              | 31,594                                               | 200                                                  | 90.763                                               |
|                   | 1.047                   | 3                                                         | 5                                              | 4.501                                                |                                                      | 6.820                                                |
| 2,011             | 3,457                   |                                                           |                                                | 27,093                                               | 200                                                  | 83,944                                               |
| 1 872             | 4.118                   |                                                           |                                                | 31,009                                               |                                                      | 87,962                                               |
| :                 | 2,011                   | 779<br>1,118<br>61<br>2,011 4,504<br>1,047<br>2,011 3,457 | 779 1,118 61 2,011 4,504 3 1,047 3 2,011 3,457 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

Table 30.-Quantity and percentage of captive coal received by oven-coke plants in the United States

| Year |  | At me            | rchant pl     | ants         | At fu            | irnace pla    | nts          | Total                     |                     |              |
|------|--|------------------|---------------|--------------|------------------|---------------|--------------|---------------------------|---------------------|--------------|
|      |  | Total            | Captiv        | e coal       | Total C          |               | Captive coal |                           | Captive coal        |              |
|      |  | coal<br>received | Quan-<br>tity | Per-<br>cent | coal<br>received | Quan-<br>tity | Per-<br>cent | Total<br>coal<br>received | Quan-<br>tity       | Per-<br>cent |
| 1969 |  | 8,232            | 2,895         | 35.2         | 83,416           | 52,447        | 62.9         | 91,648                    | 55,342              | 60.4         |
| 1970 |  | 7,866            | 2,320         | 29.5         | 86,869           | 51,379        | 59.2         | 94,735                    | 53,699              | 56.7         |
| 1971 |  | 5,284            | 2,235         | 42.3         | 74,113           | 44,319        | 59.8         | 79,397                    | 46,554              | 58.6         |
| 1972 |  | 7,804            | 2,325         | 29.8         | 80,158           | 45,354        | 56.7         | 87,962                    | 47.679              | 54.3         |
| 1973 |  | 7,052            | 1,753         | 24.4         | 83,722           | 47,412        | 56.6         | 90,774                    | <sup>1</sup> 49,134 | 54.1         |

<sup>&</sup>lt;sup>1</sup> Day does not add to total shown because of independent rounding.

 $<sup>^1</sup>$  Less than  $^{1\!\!/}_2$  unit.  $^2$  Data may not add to totals shown because of independent rounding.

Table 31.-Month-end stocks of bituminous coal at oven-coke plants in the United States

Table 32.-Month-end stocks of anthracite at oven-coke plants in the United States

| Month     | 1972   | 1973  |
|-----------|--------|-------|
| January   | 7,850  | 8,498 |
| February  | 8,118  | 8,381 |
| March     | 8.560  | 8,439 |
| April     | 9.343  | 8.500 |
| May       | 10.014 | 8.821 |
| June      | 10.138 | 8,544 |
| July      | 8.259  | 6.059 |
| August    | 8,558  | 6.493 |
| September | 8.777  | 6,575 |
| October   | 9.052  | 7.097 |
| November  | 9,460  | 7.171 |
| December  | 9,032  | 6,875 |

| 1972 | 1973                                                       |
|------|------------------------------------------------------------|
| 107  | 80                                                         |
| 125  | 62                                                         |
| 79   | 46                                                         |
| 68   | 45                                                         |
| 66   | 53                                                         |
| 61   | 52                                                         |
| 60   | 54                                                         |
| 68   | 60                                                         |
| 70   | 66                                                         |
| 90   | 78                                                         |
| 96   | 97                                                         |
| 84   | 97                                                         |
|      | 107<br>125<br>79<br>68<br>66<br>61<br>60<br>68<br>70<br>90 |

Table 33.-Coal-chemical materials, exclusive of breeze, produced at oven-coke plants in the United States in 1973 i

|                                                                                                                                              |                  |                                                                | Sold                                |                              |                            |
|----------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------------------------------|-------------------------------------|------------------------------|----------------------------|
|                                                                                                                                              | Pro-             |                                                                | 7                                   | alue                         | On hand                    |
| Product                                                                                                                                      | duced            | Quantity                                                       | Total<br>(thou-<br>sands)           | Average<br>per unit          | Dec. 31                    |
| Tar, crudethousand gallons Tar derivatives:                                                                                                  | 732,455          | 336,342                                                        | \$41,705                            | \$0.124                      | 50,771                     |
| Sodium phenolate or carbolatedo<br>Crude chemical oil (tar acid oil)do                                                                       | 2,922<br>7,065   | 2,716 $7.027$                                                  | $\frac{202}{1,999}$                 | .075 $.171$                  | 138<br>157                 |
| Pitch of tar: 2 Softthousand short tons                                                                                                      | 218              | 13                                                             | 527                                 | 40.539                       | 3                          |
| Harddo<br>Other tar derivatives <sup>3</sup>                                                                                                 | 307<br>XX        | 203<br>XX                                                      | 8,989<br>4,146                      | 43.833<br>XX                 | $\mathbf{x}\mathbf{x}^{4}$ |
| Ammonia products: Sulfatethousand short tons_ Liquor (NH <sub>3</sub> content)do                                                             | 600<br>7         | 616<br>8                                                       | 16,009<br>410                       | 25.989<br>51.250             | 32<br>1                    |
| Diammonium phosphatedo                                                                                                                       |                  | (4)                                                            | (4)                                 | (4)                          | (4)                        |
| Totaldodo<br>Sulfate equivalent of all formsdo<br>NH <sub>3</sub> equivalent of all formsdo                                                  | XX<br>628<br>162 | XX<br>646<br>167                                               | 16,419<br>XX<br>XX                  | XX<br>XX<br>XX               | XX<br>36<br>9              |
| Gas: Used under boilers, etc. million cubic feet Used in steel or allied plantsdo Distributed through city mainsdo Sold for industrial usedo | 5 994,916        | $\begin{cases} 98,919\\ 471,714\\ 12,135\\ 13,149 \end{cases}$ | 31,340<br>151,313<br>4,519<br>2,852 | .316<br>.321<br>.372<br>.217 |                            |
| Totaldo Crude light oilthousand gallons_                                                                                                     | 5 994,916        | 6 595,918<br>93,819                                            | 190,024<br>13,183                   | .319<br>.141                 | $9,0\overline{54}$         |
| Light oil derivatives:  Benzene:  Specification grades (1°, 2°, 90%)                                                                         |                  | ,                                                              |                                     |                              |                            |
| do                                                                                                                                           | 85,876           | 76,823                                                         | 20,504                              | .267                         | 3,359                      |
| Other industrial gradesdo                                                                                                                    | 3,299<br>14,496  | 3,165 $14,127$                                                 | $\frac{538}{3.160}$                 | .170 $.224$                  | $131 \\ 1,067$             |
| Toluene (all grades)dod<br>Xylene (all grades)do                                                                                             | 3,104            | 3.040                                                          | 689                                 | .227                         | 274                        |
| Solvent naphtha (all grades)do                                                                                                               | 2,806            | 2,514                                                          | 513                                 | .204                         | 214                        |
| Other light oil derivativesdo                                                                                                                | 4,297            | 3,005                                                          | 777                                 | .259                         | 358                        |
| Totaldo                                                                                                                                      | 113,878<br>5.118 | 6 102,673<br>1,029                                             | 26,181<br>100                       | .255<br>.097                 | 5,403<br>161               |
| Grand total                                                                                                                                  | XX               | XX                                                             | 302,584                             | XX                           | XX                         |

XX Not applicable.

<sup>1</sup> Includes products of tar distillation conducted by oven-coke operators under the same cor-

Includes products of tar distrilation conducted by oven-coke operators under the same corporate names.

2 Soft-water-softening point—less than 110° F; medium—110° to 160° F; hard-oven—160° F. Figures on hard pitch includes small amount of medium-pitch.

3 Creosote oil, cresols, cresylic acid, naphthalene, phenol, pyridine, refined tar, tar paint.

4 Included with sulfate to avoid disclosing individual company data.

5 Includes gas used for heating oven and gas wasted.

6 Data may not add to totals shown because of independent rounding.

7 130,009,000 gallons refined by coke-oven operators to make derived products shown.

Table 34.-Coal equivalent of the thermal materials, except coke, produced at oven-coke plants in the United States

|                              |      |                                                    | Material                 | s produce                                | ed                                         | Estimated equivalent in heating value (billion Btu) |                                          |                                          | value 1                              | Coal                                     |                                                     |
|------------------------------|------|----------------------------------------------------|--------------------------|------------------------------------------|--------------------------------------------|-----------------------------------------------------|------------------------------------------|------------------------------------------|--------------------------------------|------------------------------------------|-----------------------------------------------------|
|                              | Year | Coke<br>breeze<br>(thou-<br>sand<br>short<br>tons) | (Dillion                 | ther.                                    | Light<br>oil<br>(thou-<br>sand<br>gallons) | Coke<br>breeze                                      | Sur-<br>plus<br>gas                      | Tar                                      | Light<br>oil                         | Total                                    | equiv-<br>alent<br>(thou-<br>sand<br>short<br>tons) |
| 1969<br>1970<br>1971<br>1972 |      | 4,401<br>4,665<br>4,048<br>4,261                   | 595<br>585<br>507<br>534 | 768,766<br>760,926<br>679,377<br>747,186 | 258,910<br>244,107<br>201,626<br>214,201   | 88,020<br>93,300<br>80,960<br>85,220                | 327,250<br>321,750<br>278,850<br>293,700 | 115,315<br>114,139<br>101,907<br>112,078 | 33,658<br>31,734<br>26,211<br>27,846 | 564,243<br>560,923<br>487,928<br>518,844 | 21,536<br>21,409<br>18,623<br>r 19,803              |
| 1973                         |      | 4,902                                              | 599                      | 732,455                                  | 226,110                                    | 98,040                                              | 329,450                                  | 109,868                                  | 29,394                               | 566,752                                  | 21,632                                              |

Table 35.-Average value of coal-chemical materials used or sold and of coke and breeze per short ton of coal carbonized in the United States

|                                                  | 1969    | 1970    | 1971    | 1972      | 1973    |
|--------------------------------------------------|---------|---------|---------|-----------|---------|
| Ammonia products                                 | \$0.173 | \$0.151 | \$0.136 | r \$0.141 | \$0.177 |
| Light oil and its derivatives                    | .435    | .405    | .365    | .350      | .418    |
| Surplus gas used or sold                         | 1.502   | 1.561   | 1.640   | 1.660     | 2.052   |
| Tar and its derivatives (including naphthalene): |         |         |         |           |         |
| Tar burned by producers 1                        | .317    | .398    | .341    | .366      | .572    |
| Sold                                             | .685    | .623    | .721    | r.720     | .611    |
| Total                                            | 3.112   | 3.138   | 3.203   | r 3.237   | 3.830   |
| Coke produced 2                                  | 12.560  | 19,208  | 21.135  | 22,978    | 26.315  |
| Breeze produced                                  | .388    | .481    | .534    | .533      | .558    |
| Grand total                                      | 16.060  | 22.827  | 24.872  | r 26.748  | 30.719  |

Table 36.-Percentage of coal costs recovered from the recovery of coal-chemical materials in the United States

|                                      | 1969    | 1970    | 1971    | 1972    | 1973    |
|--------------------------------------|---------|---------|---------|---------|---------|
| Product:                             |         |         |         |         | _       |
| Ammonia products                     | 1,8     | 1.3     | 1.1     | 1.0     | 1.0     |
| Light oil and its derivatives        | 4.4     | 4.3     | 3.8     | 3.2     | 2.3     |
| Surplus gas used or sold             | 14.4    | 12.8    | 11.7    | 10.6    | 11.2    |
| Tar and its derivatives used or sold |         |         |         |         |         |
| (including naphthalene)              | 10.5    | 9.0     | 8.0     | 8.0     | 6.5     |
| Total                                | 31.1    | 27.4    | 24.6    | 22.8    | 21.0    |
| Value of coal per short ton          | \$10.42 | \$12.21 | \$14.00 | \$15.74 | \$18.32 |

<sup>&</sup>lt;sup>r</sup> Revised. <sup>1</sup> Breeze, 10,000 Btu per pound; gas, 550 Btu per cubic foot; tar, 150,000 Btu per gallon; and light oil, 130,000 Btu per gallon.

r Revised.
 l Includes pitch-of-tar.
 Average value of coke used or sold.

Table 37.—Production and disposal of coke-oven gas in the United States in 1973, by State
(Million cubic feet)

|                                | Prod    | uced                                        |                             | Surpl         | us used o      | r sold                                      |        |
|--------------------------------|---------|---------------------------------------------|-----------------------------|---------------|----------------|---------------------------------------------|--------|
|                                |         | Thou-                                       | •                           |               | V٤             | lue                                         |        |
| State                          | Total   | sand<br>cubic<br>feet<br>per ton<br>of coal | Used in<br>heating<br>ovens | Quan-<br>tity | Thou-<br>sands | Average<br>per<br>thousand<br>cubic<br>feet | Wasted |
| Alabama                        | 70,894  | 9.74                                        | 33,778                      | 35,079        | \$8,341        | \$0.238                                     | 2.037  |
| California, Colorado, Utah     | 70,079  | 13.02                                       | 21,144                      | 48.782        | 15,498         | .318                                        | 153    |
| Illinois                       | 31.841  | 20.24                                       | 12,888                      | 17,755        | 4,407          | .248                                        | 1,148  |
| Indiana                        | 152,681 | 10.87                                       | 58,467                      | 93.504        | 29,495         | .315                                        | 711    |
| Kentucky, Missouri, Tennessee, | 102,001 | 10.0.                                       | 00,101                      | 00,001        | 20,200         |                                             |        |
| Texas                          | 25,951  | 9.08                                        | 13,466                      | 9.814         | 2,226          | .227                                        | 2,670  |
| Maryland and New York          | 109,673 | 10.64                                       | 38,001                      | 69,833        | 26,524         | .380                                        | 1,839  |
| Michigan                       | 57,312  | 10.82                                       | 11.938                      | 43,314        | 14,456         | .334                                        | 2,060  |
| Minnesota and Wisconsin        | 12,606  | 10.56                                       | 6.081                       | 6.019         | 2,449          | .407                                        | 506    |
| Ohio                           | 145,767 | 10.60                                       | 54,977                      | 87,765        | 26,704         | .304                                        | 3,074  |
| Pennsylvania                   | 254,749 | 10.57                                       | 112,611                     | 140,687       | 45,346         | .322                                        | 1,450  |
| West Virginia                  | 63,363  | 11.56                                       | 19,813                      | 43,365        | 14,578         | .336                                        | 186    |
| Total 1973 1                   | 994,916 | 10.72                                       | 383,163                     | 595,918       | 190,024        | .319                                        | 15,835 |
| At merchant plants             | 65,557  | 8.94                                        | 31,772                      | 28,562        | 7,175          | .251                                        | 5,223  |
| At furnace plants              | 929,360 | 10.87                                       | 351,391                     | 567,356       | 182,848        | .322                                        | 10,612 |
| Total 1972                     | 916,011 | 10.57                                       | 361,887                     | 534,491       | 143,893        | .269                                        | 19,632 |

<sup>&</sup>lt;sup>1</sup> Data may not add to totals shown because of independent rounding.

Table 38.—Surplus coke-oven gas used by producers in the United States and sold in 1973, by State

|                                |          | Used by producers |                                             |          |                |                                             |  |  |  |
|--------------------------------|----------|-------------------|---------------------------------------------|----------|----------------|---------------------------------------------|--|--|--|
|                                | Unde     | er boilers,       | etc.                                        | In stee  | l or allied    | plants                                      |  |  |  |
|                                |          | 7                 | Value                                       |          | V              | alue                                        |  |  |  |
| State                          | Quantity | Thou-<br>sands    | Average<br>per<br>thousand<br>cubic<br>feet | Quantity | Thou-<br>sands | Average<br>per<br>thousand<br>cubic<br>feet |  |  |  |
| Alabama                        | 11,647   | \$2,534           | \$0.218                                     | 19,692   | \$4,928        | \$0.250                                     |  |  |  |
| California, Colorado, Utah     | (1)      | (1)               | (1)                                         | (¹)      | (1)            | (1)                                         |  |  |  |
| Illinois                       | 3,896    | 823               | .211                                        | 13,374   | 3,501          | .262                                        |  |  |  |
| Indiana                        | 15,342   | 5,196             | .339                                        | 75,183   | 22,868         | .304                                        |  |  |  |
| Kentucky, Missouri, Tennessee, |          |                   |                                             |          |                |                                             |  |  |  |
| Texas                          | 5,733    | 1,424             | .248                                        | (1)      | (1)            | (1)                                         |  |  |  |
| Maryland and New York          | 954      | 302               | .317                                        | 62,608   | 23,924         | .382                                        |  |  |  |
| Michigan                       | (1)      | (1)               | (¹)                                         | (1)      | (¹).           | ( <del>1</del> )                            |  |  |  |
| Minnesota and Wisconsin        | (1)      | (1)               | (1)                                         | (1)      | (1)            | ( <sup>1</sup> )                            |  |  |  |
| Ohio                           | 9,330    | 2,858             | .303                                        | 73,609   | 22,486         | .306                                        |  |  |  |
| Pennsylvania                   | 10,650   | 2,836             | .266                                        | 128,380  | 42,207         | 329                                         |  |  |  |
| West Virginia                  | (1)      | (¹)               | (¹)                                         | (1)      | (1)            | (¹)                                         |  |  |  |
| Undistributed                  | 41,368   | 15,366            | .371                                        | 98,869   | 31,400         | .318                                        |  |  |  |
| Total 1973 2                   | 98,919   | 31,340            | .316                                        | 471,714  | 151,313        | .321                                        |  |  |  |
| At merchant plants             |          | 2,575             | .224                                        | (3)      | (3)            | (3)                                         |  |  |  |
| At furnace plants              | 87,402   | 28,765            | .329                                        | 471,714  | 151,313        | .321                                        |  |  |  |
| Total 1972                     | 102,360  | 27,241            | .266                                        | 364,896  | 101,307        | .278                                        |  |  |  |

See footnotes at end of table.

Table 38.-Surplus coke-oven gas used by producers in the United States and sold in 1973, by State-Continued

|                                                 |                                      |                                    | Sc                                          | ld                        |                       |                                             |  |  |  |  |
|-------------------------------------------------|--------------------------------------|------------------------------------|---------------------------------------------|---------------------------|-----------------------|---------------------------------------------|--|--|--|--|
|                                                 | Distributed                          | through o                          | ity mains                                   | For                       | industrial            | use                                         |  |  |  |  |
| State                                           |                                      |                                    | Value                                       |                           | V                     | alue                                        |  |  |  |  |
|                                                 | Quantity                             | Thou-<br>sands                     | Average<br>per<br>thousand<br>cubic<br>feet | Quantity                  | Thou-<br>sands        | Average<br>per<br>thousand<br>cubic<br>feet |  |  |  |  |
| AlabamaCalifornia, Colorado, UtahIllinois       |                                      |                                    |                                             | (1)                       | (¹)                   | (¹)<br>(1)                                  |  |  |  |  |
| Indiana Kentucky, Missouri, Tennessee, Texas    | (1)                                  | (1)                                | (1)                                         | (1)                       | (1)                   | (1)                                         |  |  |  |  |
| Maryland and New York Michigan                  | (1)                                  | (1)                                | (1)                                         | (1)<br>(1)                | (1)<br>(1)            | (1)                                         |  |  |  |  |
| Minnesota and Wisconsin Ohio Pennsylvania       | (1)                                  | (1)<br>(1)                         | (1)<br>(1)                                  | (1)<br>(1)<br>(1)         | (1)<br>(1)<br>(1)     | (1)<br>(1)<br>(1)                           |  |  |  |  |
| West VirginiaUndistributed                      | $12,1\overline{35}$                  | \$4,519                            | \$0.372                                     | (¹)<br>13,149             | (¹)<br>\$2,852        | (1)<br>\$0.217                              |  |  |  |  |
| Total 1973 2At merchant plantsAt furnace plants | 12,135<br>( <sup>3</sup> )<br>12,135 | 4,519<br>( <sup>3</sup> )<br>4,519 | .372<br>( <sup>3</sup> )<br>.372            | 13,149<br>11,113<br>2,036 | 2,852<br>2,395<br>457 | .217<br>.216<br>.224                        |  |  |  |  |
| Total 1972                                      | 11,392                               | 3,947                              | .347                                        | 55,843                    | 11,397                | .204                                        |  |  |  |  |

 <sup>&</sup>lt;sup>1</sup> Included with "Undistributed" to avoid disclosing individual company confidential data.
 <sup>2</sup> Data may not add to totals shown because of independent rounding.
 <sup>3</sup> Included with furnace plants to avoid disclosing individual company confidential data.

Table 39.-Coke-oven gas and other gases used in heating coke ovens in the United States in 1973, by State 1

(Million cubic feet)

| State                          | Coke-<br>oven<br>gas | Blast-<br>furnace<br>gas | Natural<br>gas   | Total<br>coke-oven<br>gas<br>equivalent |
|--------------------------------|----------------------|--------------------------|------------------|-----------------------------------------|
| Alabama                        | 33,778               |                          |                  | 33,778                                  |
| California, Colorado, Utah     | 21,144               |                          | $\overline{45}$  | 21.189                                  |
| Illinois                       | 12,888               | $1.6\overline{50}$       |                  | 14.538                                  |
| Indiana                        | 58,467               | 5,664                    | 2.065            | 66,196                                  |
| Kentucky, Missouri, Tennessee, | 00,201               | 0,004                    | 2,000            | 00,100                                  |
| Texas                          | 13.466               |                          |                  | 19 400                                  |
| Maryland and New York          | 38.001               | 9,999                    | $5\overline{21}$ | 13,466                                  |
| Michigan                       | 11,938               | 12,636                   | 041              | 48,521                                  |
| Minnesota and Wisconsin        | 6,081                | 12,030                   |                  | 24,574                                  |
| Ohio                           |                      | 4 100                    | 22               | 6,103                                   |
| Pennsylvania                   | 54,977               | 4,106                    |                  | 59,083                                  |
| West Vincinia                  | 112,611              | 1,569                    |                  | 114,180                                 |
| West Virginia                  | 19,813               | 6,122                    |                  | 25,935                                  |
| Total 1973 2                   | 383,163              | 41,746                   | 2.654            | 427,563                                 |
| At merchant plants             | 31,772               | ,                        | 22               | 31.794                                  |
| At furnace plants              | 351,391              | 41,746                   | 2,632            | 395,769                                 |
| Total 1972                     | 361,887              | 31,377                   | 3,322            | 396,586                                 |

Adjusted to an equivalent of 550 Btu per cubic foot.
 Data may not add to totals shown because of independent rounding.

Table 40.-Coke-oven ammonia produced in the United States and sold in 1973, by State (Thousand short tons and thousand dollars)

|                               |                               |                            | Produc                                | ed                                       |                          |
|-------------------------------|-------------------------------|----------------------------|---------------------------------------|------------------------------------------|--------------------------|
| State                         | Active<br>plants <sup>1</sup> | Sulfate<br>equiva-<br>lent | Pounds<br>per ton<br>of coal<br>coked | As<br>sul-<br>fate <sup>2</sup>          | As liquor (NH3 content   |
| Alabama                       | 7                             | 67<br>33                   | 18.41<br>12.26                        | 67<br>30                                 | (3)                      |
| California, Colorado, Utah    | 3<br>4                        | 23<br>124                  | 14.80<br>14.96                        | $\begin{array}{c} 23 \\ 119 \end{array}$ | $(\overline{3})$         |
| ndiana and Michigan           | 6<br>4                        | 17<br>101                  | 13.46<br>19.60                        | 10<br>99                                 | (3)<br>(3)<br>(3)<br>(3) |
| faryland and New York         | 10                            | 104                        | 16.28<br>18.16                        | 94<br>118                                | (3)                      |
| Pennsylvania<br>Vest Virginia |                               | 118<br>41                  | 14.96                                 | 41                                       | - <del>-</del> 7         |
| Indistributed                 |                               | 628                        | 16.41                                 | 600                                      | 7                        |
| Total 1973 4                  |                               | 37<br>591                  | 16.80<br>16.39                        | ( <sup>5</sup> )<br>600                  | (6)                      |
| t furnace plants              | 51                            | r 650                      | r 18.76                               | г 599                                    | 13                       |
| Total 1972                    |                               | Solo                       | 3                                     | On h                                     | and Dec. 31              |
|                               |                               | 5010                       | An liquor                             |                                          | As                       |

|                                                                |                | Sol                                                  | ld                  |             | On hand       |                       |
|----------------------------------------------------------------|----------------|------------------------------------------------------|---------------------|-------------|---------------|-----------------------|
|                                                                | As su          | lfate                                                | As liqu<br>(NH3 cor | ntent)      | As<br>sulfate | As<br>liquor<br>(NH3  |
| ;                                                              | Quantity       | Value                                                | Quantity            | Value       |               | content)              |
| Alabama                                                        | 67<br>30       | 1,220<br>777                                         | (3)                 | $(\bar{3})$ | $\frac{3}{1}$ | (3)                   |
| Alabama                                                        | 91             | 524<br>4,371                                         | (3)<br>(3)          | (3)         | 6<br>1        | (3)<br>(3)            |
| Kentucky, Minnesota, Tennessee, Texas<br>Manyland and New York |                | $\begin{array}{c} 192 \\ 2,713 \\ 2,376 \end{array}$ | (3)<br>(3)          | (3)         | 1<br>6        | (3)<br>(3)<br>(3)     |
| Ohio                                                           | 134            | 3,086<br>749                                         | (3)                 | (3)         | 11<br>1       | (°)<br>- <del>1</del> |
| West Virginia                                                  |                | 16,009                                               |                     | 410         | 32            | 1                     |
| Total 1973 <sup>4</sup> At merchant plants                     | (5)            | (5)<br>16,009                                        | . (6)               | 410<br>(6)  | 32<br>(6)     | ( <sup>6</sup> )      |
| At furnace plants  Total 1972                                  | - 616<br>- 504 | r 11.622                                             | 13                  | 614         | 84            | 2                     |

r Revised.

Number of plants that recovered ammonia.

Number of plants that recovered ammonia.

Includes diammonium phosphate to avoid disclosing individual company data.

Included with "Undistributed" to avoid disclosing individual company data.

Data may not add to totals shown because of independent rounding.

Included with furnace plants to avoid disclosing individual company data.

Included with merchant plants to avoid disclosing individual company data.

Table 41.-Coke-oven tar produced in the United States, used by producers, and sold in 1973, by State

|                                                               | III 13/J                     | , by state                             |                         |                    |                |
|---------------------------------------------------------------|------------------------------|----------------------------------------|-------------------------|--------------------|----------------|
|                                                               | Thousand ga                  |                                        |                         |                    |                |
|                                                               | Pr                           | oduced                                 | Use                     | ed by produce      | rg             |
| State Alabama                                                 | Total                        | Gallons<br>per ton<br>of coal<br>coked | For refining or topping | As<br>fuel         | Other-<br>wise |
| California, Colorado, Utah<br>Illinois<br>Indiana             | 49,949<br>49,519<br>21,488   | 6.86<br>9.20<br>6.91                   | (1)<br>(1)              | (1)<br>(1)         | (1)<br>(1)     |
| Kentucky, Missouri, Tennessee, Texas<br>Maryland and New York | 101,338                      | 7.22<br>6.50                           | (3)                     | (1)<br>24,940      | (1)<br>(1)     |
| Minnesota and Wisconsin                                       | 37,393<br>7,328              | 7.91<br>7.06<br>6.14                   | (1)                     | 30.645             |                |
| West Virginia                                                 | 117,826<br>202,762<br>44,800 | 8.57<br>8.41<br>8.18                   | (1)<br>(1)<br>(1)       | 54,685<br>39,485   | (1)<br>        |
| Total 1973 2  At merchant plants                              | 732,455                      | 7.89                                   | 225,801<br>225,801      | 13,982             | 925            |
| Total 1070                                                    | 39,875<br>692,580            | 5.43<br>8.10                           | (3)<br>225,801          | 163,736<br>163,736 | 925<br>925     |
| 10tal 1972                                                    | r 739,383                    | r 8.53                                 | r 265,584               | 119.030            | 4 996          |

| F 739,383                                           | r 8.53                     | r 265,584                   | 119,030                  | 4,286                 |
|-----------------------------------------------------|----------------------------|-----------------------------|--------------------------|-----------------------|
|                                                     |                            | Sold for refin<br>tar produ | ing into                 | 4,280                 |
|                                                     | _                          | v                           | alue                     | On hand               |
| Alabama                                             | Quantity                   | Thou-<br>sand<br>dollars    | Average<br>per<br>gallon | Dec. 31               |
| January Colorado, Utan                              | 28,119<br>30,198           | \$3,642                     | \$0.130                  | 2,218                 |
| Indiana                                             | 17,331                     | 5,328<br>1,923              | .176<br>.111             | 3,122                 |
|                                                     | 35,469<br>18,600           | 4,106                       | .116                     | $\frac{1,505}{3,922}$ |
| Michigan                                            | 32,413                     | 2,137<br>3,853              | .113<br>.119             | 606                   |
| Ol . Wisconsin                                      | 38,018<br>2,449            | 4,161                       | .109                     | 6,369<br>2,026        |
| Pennsylvania                                        | 52,080                     | $275 \\ 6.551$              | .112<br>.126             | 561                   |
| TT 11                                               | 66,299<br>15,365           | 7,985                       | .120                     | 5,375 $21,842$        |
| Total 1973 2                                        | 10,000                     | 1,744                       | .114                     | 3,224                 |
| Total 1973 2  At merchant plants  At furnace plants | 336,342                    | 41.705                      | .124                     | 50,771                |
| F                                                   | 39,579<br>296,7 <b>6</b> 3 | 4,559                       | .115                     | 1,280                 |
| Total 1972                                          |                            | 37,146                      | .125                     | 49,490                |
| r Revised.                                          | 340,875                    | 39,634                      | .116                     | 51,436                |

r 265,584

Table 42.-Coke-oven crude light oil produced in the United States and derived products produced and sold in 1973, by State

|                                                                                                            |                                                            |                                  |                                 | rude light                    | oil                                                   | De                    | rived produ                        | ıcts                                                                 |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------|---------------------------------|-------------------------------|-------------------------------------------------------|-----------------------|------------------------------------|----------------------------------------------------------------------|
| State                                                                                                      | Active<br>plants                                           |                                  | Gallons                         |                               | 01                                                    |                       | Sol                                | d 3                                                                  |
| Alabama                                                                                                    | 7                                                          | duced<br>15,037                  | of coal                         | on prem-<br>ises <sup>2</sup> | On hand<br>Dec. 31                                    |                       | Quantity                           | Value<br>(thou-<br>sands)                                            |
| California, Colorado, Utah Illinois, Indiana, Michigan Kentucky, Missouri, Tennessee, Texas, West Virginia | 3<br>10                                                    | 17,413<br>41,398                 | 2.07<br>3.23<br>1.82            | 5,378<br>11,043<br>533        | 1,608<br>300<br>1,919                                 | 3,422<br>8,641<br>(4) | 3,333<br>8,337<br>( <sup>4</sup> ) | \$759<br>1,836<br>(4)                                                |
| Maryland and New York                                                                                      | 6<br>46<br>52<br>red cruc<br>terial a<br>crude l<br>ew Yor | lso repo<br>ight oil<br>k to avo | orted in<br>valued<br>oid discl |                               | 1,010<br>8,044<br>10,151<br>crude light<br>3,000 sold | as suc                | h.                                 | 613<br>3,835<br>3,597<br>15,540<br>26,181<br>(6)<br>26,181<br>20,727 |

r Revised.

Included with "Undistributed" to avoid disclosing individual company data.

Data may not add to totals shown because of independent rounding.

Included with furnace plants to avoid disclosing individual company data.

Table 43.-Yield of light oil derivatives from refining crude light oil at oven-coke plants in the United States (Percent)

| Year | Benzene<br>(all<br>grades) | Toluene<br>(all<br>grades) | Xylene<br>(all<br>grades) | Solvent naphtha (crude and refined) | Other light oil pro-ducts |
|------|----------------------------|----------------------------|---------------------------|-------------------------------------|---------------------------|
| 1969 | 67.0                       | 13.1                       | 3.5                       | 2.9                                 | 4.4                       |
| 1970 | 63.0                       | 12.1                       | 3.2                       | 3.3                                 | 5.2                       |
| 1971 | 65.6                       | 12.4                       | 2.8                       | 3.2                                 | 5.0                       |
| 1972 | 59.3                       | 12.8                       | 3.1                       | 3.0                                 | 4.7                       |
| 1973 | 61.2                       | 11.3                       | 2.8                       | 2.7                                 | 5.5                       |

Table 44.-Benzene and toluene produced at oven-coke plants in the United States, by grade

(Thousand gallons)

|      |      | В                                  | enzene                        |                         |
|------|------|------------------------------------|-------------------------------|-------------------------|
| 3    | Year | Specification grades (1°, 2°, 90%) | Other<br>industrial<br>grades | Toluene<br>(all grades) |
| 1969 |      | 97,503                             | 4,192                         | 19,603                  |
| 1970 |      | 89,517                             | 3,975                         | 17,401                  |
| 1971 |      | 68,756                             | 3,391                         | 13,345                  |
| 1972 |      | 76,317                             | 3,532                         | 14,571                  |
| 1973 |      | 85,876                             | 3,299                         | 14,496                  |

Table 45.-Light oil derivatives produced at oven-coke plants in the United States and sold in 1973, by State

(Thousand gallons and thousand dollars)

| Yield<br>from<br>crude<br>crude<br>light<br>oil re<br>fined<br>(per-<br>cent) | S<br>C<br>C<br>C<br>Quanti                             | old<br>ity Valu                                       | Pro-<br>duced                                                                                                                                               | Yield<br>from<br>crude<br>light<br>oil re-<br>fined<br>(per-<br>cent)                                                                                                                              | So                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| oil re<br>fined<br>(per-<br>cent)                                             | -<br>l Quanti<br>-                                     | ity Valu                                              | duced                                                                                                                                                       | oil re-<br>fined<br>(per-                                                                                                                                                                          | Quan-                                                                                                                                                                                                                                 | Value                                                                                                                                                                                                                                                                        |
| 26 52 0                                                                       |                                                        |                                                       |                                                                                                                                                             |                                                                                                                                                                                                    |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                              |
| 98 57.1<br>05 77.6<br>31 64.0<br>15 57.4<br>75 61.2                           | 2,400<br>6,583<br>14,655<br>13,500<br>42,849<br>79,987 | 604<br>1,432<br>3,734<br>2,914<br>12,358<br>21,042    | 545<br>1,401<br>606<br>2,469<br>9,475                                                                                                                       | 13.9<br>12.3<br>8.0<br>12.7<br>12.5                                                                                                                                                                | 526<br>1,239<br>626<br>2,484<br>9,251<br>14,127                                                                                                                                                                                       | 99<br>273<br>131<br>483<br>2,173<br>3,160<br>2,501                                                                                                                                                                                                                           |
| )<br>[                                                                        | 331 64.0<br>015 57.4                                   | 331 64.0 13,500<br>015 57.4 42,849<br>175 61.2 79,987 | 505     77.6     14,655     3,734       331     64.0     13,500     2,914       915     57.4     42,849     12,358       175     61.2     79,987     21,042 | 505     77.6     14,655     3,734     606       331     64.0     13,500     2,914     2,469       115     57.4     42,849     12,358     9,475       175     61.2     79,987     21,042     14,496 | 505     77.6     14,655     3,734     606     8.0       381     64.0     13,500     2,914     2,469     12,7       105     57.4     42,849     12,358     9,475     12,5       175     61.2     79,987     21,042     14,496     11.3 | 505     77.6     14,655     3,734     606     8.0     626       381     64.0     13,500     2,914     2,469     12.7     2,484       915     57.4     42,849     12,358     9,475     12.5     9,251       175     61.2     79,987     21,042     14,496     11.3     14,127 |

|                                                                              |                                  |                                    | (all grades                      | )                            |                                   |                                             | naphtha<br>d refined              |                                |
|------------------------------------------------------------------------------|----------------------------------|------------------------------------|----------------------------------|------------------------------|-----------------------------------|---------------------------------------------|-----------------------------------|--------------------------------|
|                                                                              | Pro-                             | Yield<br>from<br>crude<br>light    | Sold                             |                              | _                                 | Yield<br>from<br>crude                      | So                                | ld                             |
|                                                                              | duced                            | oil re-<br>fined<br>(per-<br>cent) | Quantity                         | Value                        | Pro-<br>duced                     | light<br>oil re-<br>fined<br>(per-<br>cent) | Quan-<br>tity                     | Value                          |
| Alabama Colorado, Indiana, Utah Maryland, Tennessee, Texas Ohio Pennsylvania | 108<br>295<br>81<br>559<br>2,062 | 3.7<br>3.6<br>1.8<br>3.6<br>2.7    | 154<br>335<br>92<br>544<br>1,914 | 32<br>80<br>20<br>113<br>444 | (3)<br>489<br>595<br>(4)<br>1.721 | (3)<br>3.9<br>3.8<br>(4)<br>2.3             | (3)<br>229<br>571<br>(4)<br>1,715 | (3)<br>38<br>106<br>(4)<br>369 |
| Total 1973 1 2<br>Total 1972                                                 | 3,104<br>3,351                   | 2.8<br>3.1                         | 3,040<br>3,208                   | 689<br>578                   | 2,806<br>2,815                    | 2.7<br>3.0                                  | 2,514<br>2,596                    | 513<br>462                     |

Data may not add to totals shown because of independent rounding.

Data not broken down into merchant and furnace plants to avoid disclosing individual company confidential data.

3 Included with Colorado, Indiana, and Utah to avoid disclosing individual company confidential

data.

4 Included with Maryland, Tennessee, and Texas to avoid disclosing individual company con-



# Columbium and Tantalum

By Joseph A. Sutton 1

Demand for columbium in steelmaking increased 9% to a new record high as consumption in the ferrocolumbium form totaled 3.2 million pounds. High strengthlow alloy steel continued to be in high demand and was the dominating end-use category for columbium. Higher prices for columbium and tantalum raw materials were the result of increased demand and inflationary trends that prevailed during 1973. Imports of columbium- and tantalummineral concentrates were about 12% and 11% below those of the previous year, respectively. Government stockpile objectives were revised downward during the year for columbium carbide powder, ferrocolumbium, columbium metal, tantalum minerals, tantalum carbide powder, and tantalum metal. Columbium and tantalum materials continued to be released from the stockpile. Superconductors made of columbium alloyed to other metals continued to be one of the most interesting and important areas for the future growth of columbium. Tantalum continued to be primarily used in capacitors and other electronic devices.

Legislation and Government Programs.— The General Services Administration (GSA) continued its columbium and tantalum disposal program and sold to industry 1,855,103 pounds of columbium and 217,203 pounds of tantalum in the forms of ores, concentrates, and minerals, 457,515 pounds of columbium in the form of ferrocolumbium, and 75,537 pounds of columbium in the form of columbium in the form of columbium oxide powder.

Total value of all sales of columbium-bearing materials was \$4,591,453 in 1973, and for tantalum-bearing materials, it was \$2,121,845. The quantities of columbium and tantalum materials reported in Government inventories as of December 31, 1973, are given in table 3.

Pursuant to Section 2(a) of Public Law 520 (79th Congress), Reorganization Plan No. 1 of 1958, as amended, and Executive Order 11051, GSA stockpile objectives for columbium and tantalum materials were revised in accordance with Office of Emergency Preparedness (OEP) Stockpile Objective Action 368 issued April 12, 1973. Objectives were revised downward as follows: Columbium carbide powder from 20,000 pounds of contained columbium (Cb) to 16,000 pounds; ferrocolumbium, from 930,000 pounds of contained Cb to 748,000 pounds; columbium metal, from 45,000 pounds of contained Cb to 36,000 pounds; tantalum minerals, from 2,947,045 pounds of contained tantalum (Ta) to 312,000 pounds; tantalum carbide powder, from 26,750 pounds of contained Ta to 2,900 pounds; and tantalum metal, from 360,000 pounds of contained Ta to 45,000 pounds.

The Office of Minerals Exploration (OME), U.S. Geological Survey, continued to offer financial assistance of 50% and 75% of costs for exploration of approved columbium and tantalum resources, respectively.

<sup>&</sup>lt;sup>1</sup> Physical scientist, Division of Ferrous Metals —Mineral Supply.

Table 1.-Salient columbium statistics

(Thousand pounds)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Poulius) |        |         |              |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|---------|--------------|--------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1969     | 1970   | 1971    | 1972         | 1973         |
| United States:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |        |         | 1012         | 1976         |
| Mine production of columbite-tantalite concentrates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |        |         |              |              |
| Releases from Government stocks (Cb content)12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | W        |        |         |              |              |
| Consumption of raw motorials (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,810    | 1,042  | 36      | 700          |              |
| - route tion of Drimary products.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,918    | 3,289  | 2,346   | 799<br>2,489 | 2,34<br>2,80 |
| Columbium metal (Cb content)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | w        | w      | 337     |              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r 2,556  | 1,430  | W 1 000 | W            | 7            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1,100  | 1,020   | r 1,474      | 1,49         |
| Ferrocolumbium ferrotents and a selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selectio | 179      | 261    | 459     | 218          | 25           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |        |         |              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,328    | 2,591  |         |              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,020    | 2,591  | 2,880   | 3,676        | 4,05         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 41       | 46     |         |              | -            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ••       | 40     | 21      | 29           | 9            |
| Mineral concentrate (Cb content)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.081    | 2,505  | 1.000   |              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,001    | 2,505  | 1,289   | 1,558        | 1,31         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5        | 2      |         |              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,430    | 1,300  | 1       | . 1          |              |
| Tin slags (Cb content) 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 454      | 498    | 710     | 1,530        | 2,12         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 404      | 498    | 526     | 547          | 60           |
| Production of columbium-tantalum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |        |         |              |              |
| concentrates (Cb content) e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14,579   | 18,639 | 8,252   | 13,121       | 20,898       |

e Estimate. r Revised. W Withheld to avoid disclosing individual company confidential data.

1 Includes columbium content in raw materials from which columbium is not recovered.

2 Includes material released as payment-in-kind for upgrading.

3 Receipts reported by consumers.

Table 2.—Salient tantalum statistics

(Thousand pounds)

| (Indusand po                                                   | unas) |       |            |           |       |
|----------------------------------------------------------------|-------|-------|------------|-----------|-------|
|                                                                | 1969  | 1970  | 1971       | 1972      | 1973  |
| United States:                                                 |       |       |            |           |       |
| Mine production of columbium-tantalum concentrates             |       |       |            |           |       |
| Releases from Government stocks (Ta content) 1                 | w     |       |            |           |       |
|                                                                | 215   | 161   | . 6        | 87        | 266   |
|                                                                | 928   | 1,733 | 1,116      | 1,280     | 2.221 |
|                                                                | 1,046 | 916   | 892        | 1,352     | 1,619 |
| Islitation metal (Ta content)                                  |       |       |            | -,        | -,010 |
|                                                                | 751   | 417   | 649        | 922       | 1,096 |
| columpium and other columbians a                               |       |       |            |           | -,000 |
|                                                                | 3,328 | 0.504 |            |           |       |
|                                                                | 0,040 | 2,591 | 2,880      | 3,676     | 4,056 |
| Tantalum ore and concentrate (gross weight)                    | 85    | 100   |            |           | ,     |
|                                                                | 00    | 122   | <b>4</b> 8 | r 19      | 16    |
|                                                                | 124   | 640   | •••        |           |       |
| Tantalum and tantalum alloy powder (Ta                         | 104   | 040   | 194        | 146       | 344   |
|                                                                | 100   | 139   | 0.5        |           |       |
|                                                                |       | 100   | 85         | 171       | 202   |
| Mineral concentrate (Ta content)                               | 412   | 448   | 502        | 450       |       |
|                                                                |       | 110   | 302        | 458       | 428   |
| (Ta content) Tin slags (Ta content) 2 Tin slags (Ta content) 2 | 11    | 51    | 40         | m.,       |       |
| Vorld:                                                         | 371   | 470   | 481        | 74<br>695 | 101   |
| Production of columbian to the                                 |       |       | 401        | 625       | 719   |
| Production of columbium-tantalum concentrates (Ta content) e   |       |       |            |           |       |
| (18 content) e                                                 | 856   | 701   | 1,093      | 813       | 770   |
| e Estimate. Prevised W. W.                                     |       |       | 1,000      | 019       | 770   |

Estimate. r Revised. W Withheld to avoid disclosing individual company confidential data.
 Includes material released as payment-in-kind for upgrading.
 Receipts reported by consumers.

Table 3.-Columbium and tantalum materials in Government inventories as of Dec. 31, 1973

(Thousand pounds, columbium and tantalum content)

| Material                                                  | Objective | National<br>(strategic)<br>stockpile | Defense<br>Production<br>Act (DPA)<br>inventory | Supple-<br>mental<br>stockpile | Total              |
|-----------------------------------------------------------|-----------|--------------------------------------|-------------------------------------------------|--------------------------------|--------------------|
|                                                           | COLUMBIUM |                                      |                                                 |                                |                    |
|                                                           |           | 3,939                                | 1,066                                           | 39                             | 5,044<br>21        |
| Concentrates Carbide powder: Stockpile grade              | 16        | 21                                   |                                                 |                                |                    |
| Ferrocolumbium:                                           | 748       | 623                                  |                                                 |                                | 623<br><b>34</b> 7 |
| Nonstockpile grade<br>Metal: Stockpile grade              | 36        | 347<br>45                            |                                                 |                                | 45                 |
| Metal: Buckpile grant                                     | TANTALUM  |                                      |                                                 | •                              |                    |
|                                                           |           | 2,821                                | 736                                             | 1                              | 3,558              |
| Tantalum minerals: Stockpile grade                        | 312<br>3  | 29                                   |                                                 |                                | 29<br>201          |
| Carbide powder: Stockpile grade<br>Metal: Stockpile grade | 45        | 201                                  |                                                 |                                |                    |

## DOMESTIC PRODUCTION

Domestic mining activity was insignificant during the year. One company produced a few pounds of columbium and tantalum while doing exploration and development work in Larimer County, Colo., but none of the material was marketed.

Production of columbium metal powder increased 16% in 1973, but data continued to be withheld to avoid disclosing individual company confidential information. Production of columbium metal ingot increased 23%, but again specific information was withheld. Production of tantalum metal powder (including capacitor-grade powder) increased 20% to 810 tons in 1973; production of tantalum metal ingot increased 38%

Ferrocolumbium was produced by the thermite process by the Reading Alloys Co., Inc., and Shieldalloy Corp. Kawecki Berylco Industries, Inc., and Union Carbide Corp. produced the material in electric furnaces. The Foote Mineral Co., a former producer of ferrocolumbium, did not produce ferrocolumbium in 1973. In December, an official of Foote Mineral Co. announced that production and sales operations for all grades of ferrocolumbium were to be discontinued as of January 1, 1974. During the last 4 years production of ferrotantalumcolumbium has not been reported by the industry.

Table 4.-Major domestic columbium and tantalum processing and producing companies in 1973

|                                                                         | Producting 1                                            |           |             |                     |                     |
|-------------------------------------------------------------------------|---------------------------------------------------------|-----------|-------------|---------------------|---------------------|
| Company                                                                 | Location                                                | Columbium | Tantalum    | Tantalum<br>carbide | Ferro-<br>columbiun |
| Allegheny-Ludlum Industries,                                            | _                                                       |           |             |                     |                     |
| Inc                                                                     | Brackenbridge, Pa<br>Watervliet, N.Y                    | ,         |             |                     |                     |
| Fansteel, Inc                                                           | N. Chicago, Ill<br>Muskogee, Okla                       | l x       | X           | X                   |                     |
| Ceneral Electric Co                                                     |                                                         |           |             | X                   |                     |
| Kawecki Division, Kawecki<br>Berylco Industries, Inc                    | Bovertown, Pa                                           | <u>X</u>  | X<br>X<br>X | X<br>X              | <b>X</b>            |
| Kennametal, Inc<br>Mallinckrodt Chemical Works                          | Latrobe, Pa<br>St. Louis, Mo                            | X         | x           |                     |                     |
| Mining and Metals Div.,<br>Union Carbide Corp                           | Niagara Falls, N.Y<br>Marietta, Ohio<br>Greenville, S.C | .} - ▲    | x           |                     | x                   |
| Metals Division, Norton                                                 | Newton, Mass                                            | <b>x</b>  | x           |                     |                     |
| Molybdenum Corp. or                                                     | Washington, Pa                                          |           |             | $\bar{\mathbf{x}}$  | <br><del></del>     |
| America Newcomer Products, Inc Reading Alloys Co., Inc Shieldalloy Corp | Pohoronia Pa                                            | X         |             |                     | X                   |
| Shieldalloy Corp<br>Wah Chang Albany<br>(A Teledyne Company)            |                                                         |           | x           | x                   |                     |

### CONSUMPTION AND USES

The quantity of columbium consumed in the form of high-purity metal was 17% above that reported in 1972 and totaled 253,882 pounds. High-purity columbium metal in powder and ingot forms continued to be used to make high-temperature ferrous and nonferrous superalloys required by the aerospace industry.

Tantalum metal (including capacitor-grade powder) consumed during the year increased from the 921,851 pounds reported in 1972 to 1,095,694 pounds. Tantalum metal continued to be used primarily in powder or ingot form in the manufacture of capacitors, other electronic equipment, and corrosion-resistant chemical equipment.

Columbium and tantalum used in ferroalloys for adding to steels to control grain size accounted for 80% of the ferrocolum-(FeCb), ferrotantalum-columbium (FeTa-Cb), and other columbium and tantalum materials consumed. Consumption of FeCb, FeTa-Cb, and other columbium and tantalum materials increased in all end-use categories except electric steel, tool steel and miscellaneous and unspecified. The largest increase in the consumption of columbium plus tantalum occurred in the carbon steel category, but the largest quantity required was in the high strengthlow alloy steels category.

Domestic consumption of columbium and tantalum in ferroalloy forms of FeCb, FeTa-Cb, and of other columbium and tantalum materials, by major end-use categories, was as follows: High strength-low alloy steel (29%); carbon steel (25%); stainless and heat resisting steel (18%); superalloys (17%); full alloy steel (9%); alloys other than alloy steels and superalloys (1%); and miscellaneous and unspecified (1%).

The total quantity of columbium consumed in steelmaking (excluding electric and tool steels) in the FeCb form was approximately 3.1 million pounds, an in-

crease of 13% over the total for 1972. Consumption of columbium and tantalum in the ferroalloy form of FeTa-Cb continued to be small and amounted to less than 1% of the columbium and tantalum consumed in the forms of FeCb, FeTa-Cb, and other columbium and tantalum materials. The major end-use category for columbium and tantalum consumed in the form of FeTa-Cb was superalloys.

Kawecki Berylco Industries, Inc., reported that the use of tantalum powder and wire was on the increase in electronic capacitors.<sup>2</sup> For example, a new Interstate Highway Emergency Call Box System was reported to rely on 30 tantalum capacitors in the main electronic system of each call box. Superconducting materials of columbium-titanium coated with tin and columbium-titanium filaments embedded in a high-purity copper matrix were, also, reported as being considered for use in levitated trains and for electrical generator and motor applications.

The 10,000-square-foot facility in North Chicago, used by Fansteel, Inc., for production of mill forms such as wire, sheet and foil, rod, tubing, as well as powder, was modernized to conform to present needs.<sup>3</sup> Major metal rolling and handling equipment from Fansteel's Baltimore plant, closed in July 1972, was relocated in the plant. The refurbished plant has the capability for producing refractory materials in sheet gages to precision tolerances in thicknesses down to 0.003 inch.

Teledyne Wah Chang was reported to be another source of supply to the electronics industry for capacitor-grade tantalum wire.<sup>4</sup>

 $<sup>^2</sup>$  Kawecki Berylco Industries, Inc. 1973 Annual Report. 13 pp.

<sup>&</sup>lt;sup>3</sup> American Metal Market. Fansteel Metals Completes Plant Modernization. V. 80, No. 73, Apr. 13, 1973, p. 7.

<sup>&</sup>lt;sup>4</sup> American Metal Market. Wah Chang Develops Capacitor Tantalum. V. 80, No. 96, May 11, 1973, p. 11.

Table 5.—Reported shipments of columbium and tantalum materials

(Pounds of metal content)

| Material                                                                                                                       | 1972                                                                            | 1973                                                                            | Percent<br>change                                               |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Columbium products: Compounds, including alloys Metal, including worked products All other Total Cb                            | 925,200<br>101,900<br>62,800<br>1,089,900                                       | 1,216,800<br>143,000<br>300<br>1,360,100                                        | +31.5<br>+40.3<br>-99.5<br>+24.8                                |
| Tantalum products: Oxides and salts Alloy additive Carbide Powder and anodes Ingot (unworked consolidated metal) Mill products | 54,900<br>43,000<br>146,900<br>540,700<br>1 — 1,900<br>246,400<br>58,100<br>300 | 142,300<br>17,300<br>173,400<br>790,500<br>16,000<br>321,200<br>40,500<br>1,300 | $+159.2 \\ -59.8 \\ +18.0 \\ +46.2 \\ -30.4 \\ -30.3 \\ +333.3$ |
| Scrap<br>Other<br>Total Ta                                                                                                     | 1,088,400                                                                       | 1,502,500                                                                       | +38.0                                                           |

<sup>&</sup>lt;sup>1</sup> As reported by source.

Source: Tantalum Producers Association.

Table 6.—Consumption of ferrocolumbium, ferrotantalum-columbium, and other columbium and tantalum materials in the United States in 1973, by end use

| End use                                                                  | Pounds of<br>contained<br>columbium<br>plus tantalum |
|--------------------------------------------------------------------------|------------------------------------------------------|
|                                                                          | 998,204                                              |
| teel: CarbonStainless and heat resisting                                 | 712.525                                              |
| Carbon best posisting                                                    |                                                      |
| Stainless and heat resisting Full alloy High strength-low alloy Electric | 1,181,950                                            |
| Full alloy                                                               | 1,161,300<br>W                                       |
| High strength-low alloy                                                  | w                                                    |
| ElectricTool                                                             | 685.743                                              |
| Tool                                                                     | 67.853                                               |
| uperallovs                                                               | 48.969                                               |
| uperalloyslloys (exclude alloy steels and superalloys)                   |                                                      |
|                                                                          | 4,056,387                                            |
| Total                                                                    |                                                      |

W Withheld to avoid disclosing individual company confidential data; included in "Miscellaneous and unspecified."

#### **STOCKS**

The following columbium and tantalum materials (in pounds) were reported in yearend inventories:

| yearend miremonan                                     |                  |                  |
|-------------------------------------------------------|------------------|------------------|
| Mineral                                               | Dec. 31,<br>1972 | Dec. 31,<br>1973 |
| COLUMBIUM                                             |                  |                  |
| Primary metal                                         | 55,984           | 108,697          |
| Primary metal                                         | 62,826           | 51,290           |
| Ingot                                                 | 75,483           | 80,025           |
| Scrap                                                 | 553,800          | 495,451          |
| OxideOther compounds                                  | r 15,052         | 13,946           |
| TANTALUM                                              |                  |                  |
| Drimary metal                                         | 267,975          | 224,261          |
| Capacitor-grade powder                                | 154,871          | 135,098          |
| Ingot                                                 | 56,074           | 65,088           |
| Scrap                                                 | 232,039          | 258,568          |
| Oxide                                                 | 90,386           | 37,101           |
| Potassium tantalum fluoride                           |                  |                  |
| Potassium tantalum nuoriue                            | 163,606          | 130,763          |
| (K <sub>2</sub> TaF <sub>7</sub> )<br>Other compounds | * 35,255         | 31,051           |
|                                                       |                  |                  |

r Revised.

Stocks of columbium and tantalum raw materials, as reported by consumers and dealers at yearend 1973 (in short tons-1972 figures in parentheses) were as follows: Columbite, 1,310 (1,104); tantalite, 745 (1,120); pyrochlore, 229 (501); tin slag, 34,691 (33,775); and other, none (61).

Consumers inventories of ferrocolumbium and ferrotantalum-columbium as of December 31, 1973, were as follows (with 1972 yearend stocks in parentheses): Ferrocolumbium 1,456,283 pounds contained columbium (814,607); ferrotantalum—columbium, 22,867 pounds contained columbium plus tantalum (18,592); and other columbium and tantalum materials, 47,182 pounds con-

tained columbium plus tantalum (40,061). Producer stocks of ferrocolumbium at year-

end 1973 were 680,320 pounds contained columbium (638,000).

#### **PRICES**

Prices for pyrochlore and columbite were higher at the end of 1973 than at the end of 1972. Contract rates for Canadian pyrochlore, f.o.b. mine and mill, went from \$1.39 per pound of  $CB_2O_5$  content to \$1.44. Those for Brazilian pyrochlore similarly went from \$1.37 to \$1.42. Columbite ore, c.i.f U.S. ports, increased from \$1.10 to \$1.15 per pound of contained pentoxides for material having a  $Cb_2O_5$ —to  $Ta_2O_5$  ratio of 10 to 1 at the beginning of the year to \$1.35 to \$1.45 per pound at yearend.

Tanco tantalite, Bernic Lake concentrate produced by Tantalum Mining Corp. of Canada, at the beginning of the year was quoted at \$7.00 per pound of  $Ta_2O_5$ , and at yearend, \$10.00. Spot prices for other tantalite ores or concentrates at the beginning of the year were quoted at \$5.25 to \$6.00 per pound of  $Ta_2O_5$ , 60% basis, c.i.f. U.S. ports, and at yearend, \$7.50 to \$8.50.

Thailand tin slag, Union Carbide-Billiton tin smelter 12% Ta<sub>2</sub>O<sub>5</sub> content, at the beginning of the year was quoted at \$4.00 per pound of Ta<sub>2</sub>O<sub>5</sub> content, and at yearend \$4.50.

Price quotations for various grades of ferrocolumbium per pound of columbium content, ton lots, f.o.b. shipping point, at the beginning of the year were as follows: Low alloy, standard grades, \$2.80 per pound of columbium content; high-purity grades, \$4.12 to \$6.81. Quotations at yearend increased to \$3.10 for low-alloy grades and narrowed to \$5.00 to \$5.26 for high-purity grades.

The price of columbium metal remained unchanged during the year. Columbium powder was quoted at \$11 to \$22 per pound for metallurgical-grade material, and \$12 and \$23 per pound for reactor-grade material. Columbium ingot was quoted at \$16 to \$27 per pound for metallurgical-grade material and \$17.50 to \$28.00 per pound for reactor-grade material.

Prices for tantalum metal in the forms of powder and rod were lower at the end of 1973 than at the end of 1972. Tantalum metal at yearend was quoted at \$30 to \$37 per pound for powder, \$30 to \$40 per pound for rod, and \$36 to \$60 per pound for sheet.

Table 7.—Average grade of concentrate received by U.S. consumers and dealers in 1973, by country of origin

(Percent contained pentoxides)

|                    | _Colur                         |           | Tant                           | alite                          |
|--------------------|--------------------------------|-----------|--------------------------------|--------------------------------|
|                    | Cb <sub>2</sub> O <sub>5</sub> | $Ta_2O_5$ | Ta <sub>2</sub> O <sub>5</sub> | Cb <sub>2</sub> O <sub>8</sub> |
| Australia          |                                |           | 45                             |                                |
| Belgium            |                                |           | 45                             | 31                             |
| D                  | - ==                           |           | 35                             | 44                             |
| Canada             | _ 58                           |           | 37                             | 28                             |
|                    |                                |           | 50                             | -4                             |
| Congo (Brazzaville | )                              |           | 30                             | 32                             |
| French Guiana      |                                |           | 56                             | 25                             |
| Malaysia           | _ 52                           | 11        | 16                             | 38                             |
| Nigeria            | _ 63                           | 10        | 34                             |                                |
| rortugai           | - "                            | 10        |                                | 4                              |
| Rwanda             |                                |           | 33                             | 36                             |
| South Africa.      |                                |           | 29                             | 43                             |
| Republic of        |                                |           |                                |                                |
|                    |                                |           | 32                             | 30                             |
| Zaire              |                                |           | 25                             | 31                             |
| Daire              |                                |           | 31                             | 39                             |

<sup>&</sup>lt;sup>1</sup> Material reported from Brazil as columbite represents primarily pyrochlore.

## FOREIGN TRADE

West Germany, Japan, and the United Kingdom received the majority of the columbium and tantalum exported during the year. Unwrought tantalum alloys in crude form and scrap, the largest export item by volume, were shipped to West Germany (36%), Belgium-Luxembourg (21%), Japan (14%), and Italy (6%). The remainder of this material (1% of the total) was exported to France, Austria, Mexico, Brazil, and Sweden. Tantalum and

tantalum alloy powder, the largest export item by value, was shipped to Japan (27%), West Germany (21%), the United Kingdom (20%), France (9%), Italy (9%), and Canada (8%). The remainder of the tantalum and tantalum alloy powder (6% of the total) was destined for Switzerland, the Netherlands, Yugoslavia, India, and Sweden. Wrought tantalum and tantalum alloys, the second largest export item by value, were exported to Japan (27%), the

United Kingdom (23%), West Germany (13%), Canada (12%), France (12%), the Netherlands (6%). Switzerland (3%), and Italy (2%). The remainder of the tantalum material (2% of the total) was exported to Mexico, Nicaragua, Brazil, Argentina, Belgium-Luxembourg, Yugoslavia, Israel, India, Australia, and the Republic of South Africa. Tantalum ores and concentrates, believed not to be of domestic origin, were shipped to Japan. Wrought columbium and columbium alloys were mostly exported to the Netherlands (39%), Japan (32%), the United Kingdom (12%), West Germany (8%), France (4%), and Canada (3%). The rest of this material was exported to Mexico, Austria, Switzerland, Italy, India, and the Republic of South Africa. Unwrought columbium alloys in crude form and scrap were shipped mostly to West Germany (61%), the United Kingdom (27%), and Japan (9%); the remainder (3% of the total) went to the Netherlands, Switzerland, and Trinidad and Tobago.

Imports for consumption of unwrought columbium metal, waste, and scrap, all from West Germany, increased from 400 pounds valued at \$3,714 in 1972 to 3,974 pounds valued at \$11,794 in 1973. Imports for consumption of wrought columbium

metal decreased from 265 pounds valued at \$14,876 in 1972 to 25 pounds valued at \$1,988 in 1973. This import item was supplied by the U.S.S.R. (96%) and the United Kingdom (4%). Unwrought columbium alloys were not imported in 1973.

Imports for consumption of unwrought tantalum metal, including waste and scrap, were 100,808 pounds valued at \$727,665 in 1973. The material was imported from West Germany (55%), Mexico (23%), France (9%), the United Kingdom (8%), Canada (3%), and the Netherlands and Belgium-Luxembourg (2%). Imports of wrought tantalum from Austria (56%), Switzerland (33%), and the United Kingdom (11%) decreased from 90 pounds valued at \$3,664 in 1972 to 18 pounds valued at \$2,098 in 1973. Imports of unwrought tantalum alloys, all from Japan, totaled 93 pounds valued at \$3,800 and represented a sharp decrease from the 2,000 pounds valued at \$13,183 that were imported in 1972.

In 1973, imports for consumption of columbium-mineral concentrates and tantalum-mineral concentrates were 12% and 11%, respectively, below those of 1972.

Receipts in tin slags came primarily from Thailand.

Table 8.—U.S. exports of columbium and tantalum, by class (Thousand pounds, gross weight, and thousand dollars)

|                                                                                                              | 19             | 72                   | 19             | 73                 |
|--------------------------------------------------------------------------------------------------------------|----------------|----------------------|----------------|--------------------|
| Class                                                                                                        | Quan-<br>tity  | Value                | Quan-<br>tity  | Value              |
| Columbium and columbium alloys, unwrought and waste and scrap                                                | 2              | 40                   | 20             | 140                |
| Columbium and columbium alloys, wrought Tantalum ores and concentrates Tantalum and tantalum alloys, wrought | 27<br>19<br>24 | 413<br>29<br>r 1.267 | 76<br>16<br>44 | 650<br>13<br>2.368 |
| Tantalum metals and alloys, in crude form and scrap Tantalum and tantalum alloy powder                       | 122<br>171     | 1,014<br>3,572       | 300<br>202     | 1,581<br>5,312     |

r Revised.

Table 9.—Receipts of tin slags reported by consumers

| (Thousand | pounds) |
|-----------|---------|
|-----------|---------|

| Year |  | Gross<br>weight | Cb <sub>2</sub> O <sub>5</sub><br>content | Ta <sub>2</sub> O <sub>5</sub> content |
|------|--|-----------------|-------------------------------------------|----------------------------------------|
| 1969 |  | 8,327           | 649                                       | 453                                    |
| 1970 |  | 10.275          | 713                                       | 573                                    |
| 1971 |  | 9,064           | 753                                       | <b>59</b> 6                            |
| 1972 |  | 9,782           | 783                                       | 762                                    |
| 1973 |  | 8,607           | 863                                       | 878                                    |

Table 10.-U.S. imports for consumption of columbium-mineral concentrates, by country (Thousand pounds and thousand dollars)

|                      |                 | 1972             |                 |       |                 | 1973             |                 |       |
|----------------------|-----------------|------------------|-----------------|-------|-----------------|------------------|-----------------|-------|
| Country              | Gross<br>weight | Cb e<br>content  | Ta e<br>content | Value | Gross<br>weight | Cb ° content     | Ta e<br>content | Value |
| Angola               |                 |                  |                 |       |                 |                  |                 |       |
| Belgium-Luxembourg 1 | 5               | 1                | - 1             |       |                 |                  |                 |       |
| Brazil               | 2.347           | 951              | •               | 1.363 | 0.001           | 055              |                 | ==    |
| Canada               |                 |                  |                 |       | 2,361           | 957              |                 | 1,686 |
|                      | 65              | 26               |                 | 52    | 1               | ( <sup>2</sup> ) |                 | 1     |
| Congo (Brazzaville)  |                 |                  |                 |       | 17              | 4                | 5               | 54    |
| Germany, West        | 2               | ( <sup>2</sup> ) | 1               | 2     | 39              | 8                | 10              | 13    |
| Malaysia             | 75              | 35               | <u>-</u>        | 44    | 232             | 84               | 21              |       |
| Mozambique           |                 | -                | Ū               | **    | 202             | 04               | 21              | 154   |
|                      | 648             | 281              |                 | 0.00  | ==              | ==               |                 |       |
|                      |                 |                  | 21              | 362   | 67              | 30               | 5               | 60    |
| Portugal             | 14              | 4                | 4               | 24    | 31              | 8                | 8               | 49    |
| Rwanda               | ~-              |                  |                 |       | 8               | 3                | 1               | 19    |
| Singapore            |                 |                  |                 |       | _               | _                | •               | 10    |
| Spain                | -6              | 2                |                 | - 9   | 8               | 2                |                 | ==    |
| TY 1-                | 15              | 6                | 1               |       | 0               | Z                | 2               | 16    |
| Uganda               |                 |                  | 3               | 11    |                 |                  |                 |       |
| United Kingdom       | 50              | 14               | 16              | 51    |                 |                  |                 |       |
| Zaire                |                 |                  |                 |       | 62              | 15               | 17              | 149   |
| Total                | 3,227           | 1,320            | 53              | 1,927 | 2,826           | 1,111            | 69              | 2,201 |

Table 11.-U.S. imports for consumption of tantalum-mineral concentrates, by country (Thousand pounds and thousand dollars)

|                           |                 | 1972            |                 |       |                 | 1973             |                 |       |
|---------------------------|-----------------|-----------------|-----------------|-------|-----------------|------------------|-----------------|-------|
| Country                   | Gross<br>weight | Cb e<br>content | Ta e<br>content | Value | Gross<br>weight | Cb e<br>content  | Ta e<br>content | Value |
| Argentina                 |                 |                 |                 |       |                 |                  |                 |       |
| Australia                 | 404             | 88              | 146             | 852   | 325             | 70               | 120             | 986   |
| Belgium-Luxembourg 1      | 16              | 4               | 4               | 27    | 0=0             |                  |                 | 200   |
| Brazil                    | 362             | 73              | 119             | 787   | 206             | 40               | $\overline{62}$ | 482   |
| Canada                    | 119             | š               | 50              | 416   | 236             | 7                | 97              |       |
| Congo (Brazzaville)       | 33              | _               | 6               | 78    | 230             | 7                | 97              | 832   |
| French Guiana             | 99              |                 | 0               | 18    |                 |                  | ~-              |       |
|                           |                 |                 | 77              |       | 3               | ( <sup>2</sup> ) | 1               | 5     |
| Germany, West             | 48              | 9               | 12              | 109   |                 |                  |                 |       |
| Malaysia                  |                 |                 |                 |       |                 |                  |                 |       |
| Mozambique                | 30              | 6               | 10              | 65    |                 |                  |                 |       |
| Nigeria                   | 3               | 1               | 1               | 2     |                 |                  |                 |       |
| Portgual                  |                 |                 |                 | _     |                 |                  |                 |       |
| Rwanda                    | 66              | 19              | 16              | 81    | 39              | 11               | - 9             | 49    |
| South Africa, Republic of | • •             | 10              | 10              | 01    | 12              | 3                |                 |       |
|                           | 5               | -;              |                 | -9    |                 |                  | 3               | 20    |
|                           |                 | 1               | ĭ               |       | 58              | 13               | 12              | 117   |
|                           | 26              | 6               | . 6             | 33    |                 |                  |                 |       |
| Uganda                    | 2               | 1               | (1)             | 1     |                 |                  |                 |       |
| United Kingdom            | 27              | 7               | 9               | 37    |                 |                  |                 |       |
| Zaire                     | 88              | 20              | 25              | 166   | 218             | 59               | 55              | 367   |
| Total                     | 1,229           | 238             | 405             | 2,663 | 1,097           | 203              | 359             | 2,858 |

Table 12.-U.S. import duties

| Classifi-<br>cation<br>number | Article                                              | Rate of duty per pound <sup>1</sup><br>Effective Jan. 1, 1973—1974 |
|-------------------------------|------------------------------------------------------|--------------------------------------------------------------------|
| 601.21                        | Columbium concentrate                                | Free                                                               |
| 601.42                        | Tantalum concentrate                                 | Do                                                                 |
| 607.80                        | Ferrocolumbium and ferrotantalum-columbiumColumbium: | 5% ad valorem.                                                     |
| 628.15                        | Unwrought, waste and scrap                           | _ Do.                                                              |
| 628.20                        | Wrought                                              | 9% ad valorem                                                      |
| 628.17                        | Unwrought Cb alloys                                  | 7 5% ad valorem                                                    |
|                               | Tantalum:                                            | 2 1.0 /6 du valorem.                                               |
| 629.05                        | Unwrought, waste and scrap                           | _ 5% ad valorem.                                                   |
| 629.10                        | Wrought                                              | 90% ad valorem                                                     |
| 629.07                        | Unwrought Ta alloys                                  | 75% ad valorem                                                     |
| 423.00                        | Columbium and tantalum chemicals                     | 5% ad valorem.                                                     |

<sup>&</sup>lt;sup>1</sup> Not applicable to certain specified Communist countries.

Estimated by Bureau of Mines.
 Presumably country of transshipment rather than original source.
 Less than ½ unit.

 $<sup>^{\</sup>rm e}$  Estimated by Bureau of Mines.  $^{\rm l}$  Presumably country of transshipment rather than original source.  $^{\rm l}$  Less than  $\frac{1}{2}$  unit.

#### WORLD REVIEW

Australia.-On January 31, the government of Australia imposed export controls on all Australian minerals to be exported in raw or semiprocessed form. The objective for such an action was to insure that Australia's export prices are at reasonable levels in relation to export prices in other countries and to encourage more domestic processing of Australia's mineral resources before being exported.

Brazil.—During 1973 Brazil maintained its standing as the major world producer of columbium minerals. Companhia Brasileira de Metalúrgia e Mineração (CBMM), the country's leading producer, continued to recover columbium concentrate from rich pyrochlore ores at its Axará mine and mill operations and to produce ferrocolumbium (FeCb) at its pyrometallurgical plant by the thermite process.

Columbium and tantalum associated with columbite-tantalite and microlite continued to be produced in limited quantities from relatively small pegmatite operations located principally in Minas Gerais.

Canada.—St. Lawrence Columbium and Metals Corp. produced concentrates from its underground mining operations and milling facilities near Oka, Quebec, and continued to be Canada's sole columbium producer. In spite of labor problems that resulted in work slowdowns and a 1-month strike, the firm milled 612,487 tons of ore, which represented a 4% increase over that milled in fiscal year 1972 (ended September 30, 1972).

Two new pyrochlore ore zones were reported to be within easy reach of the present mine workings at the St. Lawrence Columbium and Metals Corp.<sup>5</sup> A development drift and two crosscuts were advanced on the 500-foot level of the Main Oka ore body that passes through the two new zones. Ore mined from these areas was used in a 1,750-ton mill test conducted by the company. Results of the test showed the new ore to be amenable to the company's concentration process and to be superior to ore presently being mined from the Main Oka ore body in regards to calcite content.

Ore reserves available to St. Lawrence Columbium and Metals Corp. at the end of the fiscal year (September 30, 1973) were reported to be 10,700,000 tons of proven ore, 6,500,000 tons of probable ore, and

8,200,000 tons of possible ore, giving a total of 25,400,000 tons of ore reserves at 0.443% Cb<sub>2</sub>O<sub>5</sub>.6

Chemalloy Minerals Ltd., which holds 75% of Tantalum Mining Corp. of Canada, confirmed that it offered to buy back from the Manitoba Development Corp. the 25% interest that it sold to the government agency in 1971.7 Government action on the offer was still pending at yearend.

Copperfields Mining Corp. Ltd. and Quebec Mining Exploration Co. (SOQUEM) completed its exploration, definition drilling, and underground bulk sampling, and 11-month pilot plant program on its St. Honore carbonatite deposit, near Chicoutimi, Quebec.8 Negotiations were initiated to finance into production the St. Honore columbium venture. Senior financing terms were arranged in principle and include \$6,650,000 from a consortium of Canadian chartered banks and \$3,000,000 from a customer with the balance to be provided by the sponsors. Long-term sales contracts for the pyrochlore concentrate to be produced at the mill were negotiated with companies in Europe, Japan, and the United States, and these markets were supposed to require about 95% of the anticipated mill production. The ore reserve of 40 million tons of 0.76% columbium pentoxide, based on a 0.5% cutoff, was to be mined underground.9 Present plans call for a 1,500-ton-per-day mining and milling operation by mid-1975.

Japan.-According to the Ministry of International Trade and Industry (MITI), Japanese production of tantalum metal was 143% above that of 1972 for the period January through September and was equal to 63,933 pounds.

Mozambique.—In 1972 Mozambique's production of tantalite and microlite was reported to be 92,593 and 134,480 pounds,

<sup>5</sup> Northern Miner (Toronto). St. Lawrence Columbium Gets Lift From Fine New Ore Area. V. 59, No. 14, June 21, 1973, p. 1. St. Lawrence Columbium and Metals Corp.

<sup>1973</sup> Annual Report. 19 pp.

<sup>6</sup> St. Lawrence Columbium and Metals Corp. 1973 Annual Report. 19 pp.

American Metal Market. Chemalloy Seeks Mine Repurchase. V. 80, No. 102, May 24, 1973,

<sup>&</sup>lt;sup>9</sup> Copperfields Mining Corp. Ltd. 1973 Annual Report. 8 pp.

<sup>&</sup>lt;sup>9</sup> Metals Sourcebook. Other Metals. No. 10, May 21, 1973, p. 4.

respectively. The main pegmatite deposits, which have been the source of Mozambique's tantalum ores (columbo-tantalite), occur in the Alto Ligonha region.

Nigeria.—Two Japanese companies, Sumitomo Metal Mining Co. and Mitsubishi Corp., acquired a 76% interest in Tin and Associated Minerals, Ltd., the company that manages the 600-ton-per-year columbite mine at Odegi, Nigeria. The acquired interest was obtained from Quebec Iron and Titanium Corp., a Canadian subsidiary of the U.S. Kennecott Copper Corp., of Sorel, Quebec, and Anthony Coshinos, an American. The Odegi columbium mine at

Jos in the northern part of Nigeria accounts for about one-third of the country's total output of columbite concentrate.

Zaire.—As a byproduct of tin mining, Zaire-Etain produced 143,299 pounds of columbium-tantalum concentrate in 1972. The mining operations from which the columbium-tantalum concentrate were produced are located in north central Shaba where cassiterite is mined from an ore bed approximately 3 miles long and from 328 to 1,312 feet wide.

Philips Brothers Sobaki (PHIBRAKI), continued to produce mixed cassiterite/ columbium-tantalum ore from deposits at

Table 13.-Columbium and tantalum: World production of mineral concentrates by country 1

(Thousand pounds)

|                           | Gr        | Gross weight <sup>3</sup> Columbium content <sup>4</sup> |         |         |                    |                    |                 |                 |        |
|---------------------------|-----------|----------------------------------------------------------|---------|---------|--------------------|--------------------|-----------------|-----------------|--------|
| Country 2                 | 1971      |                                                          | 1973 P  | 1971    |                    |                    |                 | talum c         | ontent |
| Argentina:                |           |                                                          | 1313 P  | 1971    | 1972               | 1973 Р             | 1971            | 1972            | 1973   |
| 0.1.14                    |           |                                                          |         |         |                    |                    |                 |                 |        |
| Tontolit.                 | 4         |                                                          |         | 5 1     |                    |                    |                 |                 |        |
| Australia: Columbite-     | 6         |                                                          |         | î       |                    |                    | 5 1             |                 |        |
|                           |           |                                                          |         | -       |                    |                    | 3               |                 |        |
| Brazil:                   | 165       | 558                                                      | 441     | 5 42    | 121                | 96                 | F 0-            |                 |        |
|                           |           |                                                          |         |         | 121                | 90                 | <sup>5</sup> 87 | 200             | 163    |
| Columbite                 | 139       |                                                          |         | 35      | 36                 | )                  |                 |                 |        |
| Tantalite                 | r 640     |                                                          | 6 287   | 121     |                    |                    | 35              | 36)             | 6 87   |
| Pyrochlore Canada:        | 13,435    | 21,242                                                   | 42,827  | 5,307   |                    |                    | 210             | 216             | - 01   |
|                           |           | -                                                        | ,02,    | 0,001   | 0,003              | 17,345             |                 |                 |        |
| Tantalite                 |           | e 77                                                     | e 215   | 34      |                    |                    |                 |                 |        |
| Pyrochlore                | r e 4,669 | e 7.756                                                  | e 5,739 | 7 1 691 |                    |                    | 7 368           | <sup>7</sup> 34 | 7 94   |
| Malaysia: Columbite-      | •         | .,                                                       | 0,105   | 1,001   | <sup>7</sup> 2,708 | <sup>7</sup> 2,004 |                 |                 |        |
| tantalite                 | 54        | 196                                                      | 202     | 25      |                    |                    |                 |                 |        |
| Mozambique:               |           |                                                          | 202     | 20      | 90                 | 74                 | 8               | 12              | 18     |
| Tantalite                 | r 128     | 93                                                       | 64      | 10      |                    |                    |                 |                 |        |
| Microlite (tantalum       |           | 00                                                       | 04      | 19      | 19                 | 13                 | 40              | 30              | 21     |
| concentrate)              | 117       | 134                                                      | 123     | _       | -                  |                    |                 |                 |        |
| Nigeria :                 |           | 194                                                      | 123     | 5       | 5                  | 5                  | 64              | 74              | 68     |
| Columbite                 | r 3.031   | 3.000                                                    | 2,734   | 00.     |                    |                    |                 |                 | •      |
| Tantalite                 | 9         | 2                                                        |         | 891     | 1,299              | 1,203              | 124             | 84              | 224    |
| ortugal: Tantalite        | 24        | 26                                                       | 2       | 3       | 1                  | (8)                | 2               | 1               | ĩ      |
| tnodesia: Columbite       | 24        | 20                                                       | 26      | 6       | 7                  | 7                  | <sup>5</sup> 6  | 56              | 5 6    |
| tantalite e               | 90        | 90                                                       |         |         |                    |                    | _               | •               | U      |
| wanda: Columbite          | 71        | e 82                                                     | 90      | 11      | 11                 | 11                 | 34              | 34              | 34     |
| outh Airica, Republic of  | *1        | ° 82                                                     | e 90    | 20      | e 23               | e 27               | 15              | e 19            | e 21   |
| Tantalite                 | r 1       | (0)                                                      |         |         |                    |                    |                 | 10              | - 41   |
| nailand:                  | - 1       | (8)                                                      |         | (8)     | (s)                |                    | (8)             | (8)             |        |
| Columbite                 | r 46      |                                                          |         |         |                    |                    | • •             | (-)             |        |
| Tantalite                 |           | 15                                                       | 44      | 22      | 7                  | 16                 | 7               | 1               |        |
| ganda: Columbite-         | r 46      | 15                                                       | 9       | 10      | 3                  | 2                  | 1 i             | 4               | 4      |
| tantalite                 |           |                                                          |         |         |                    | _                  | **              | 4               | 2      |
| aire: Columbite-          | 17        | 6                                                        | e 6     | 7       | 2                  | e 2                | 3               | 1               |        |
| tantalite                 |           |                                                          |         |         | _                  | ~                  | 3               | 1               | e 1    |
| M-4-1                     | r 262     | 214                                                      | 102     | 61      | 49                 | 28                 | 75              | <b>C</b> +      |        |
| Total                     | r 23,797  | 34,309                                                   | 53,001  | 8,252   |                    |                    |                 | 61              | 26     |
| e Estimate. P Preliminary |           | -,                                                       | 55,001  | 0,202   | 13,121             | 20,898             | 1,093           | 813             | 770    |

e Estimate. P Preliminary. r Revised.

1 Excludes columbium and tantalum-bearing tin concentrates and slags.

2 In addition to the countries listed, Burundi, Spain, South-West Africa and the U.S.S.R. also produce or are believed to produce columbium and tantalum mineral concentrates, but available information is inadequate to make reliable estimates of output levels.

3 Data on gross weight generally has been presented as reported in sources, divided into concentrates of columbite, tantalite, pyrochlore and microlite where information is available to do so, and reported in groups such as columbite-tantalite where it is not.

4 Unless otherwise specified, content is estimated on the basis of the content reported for U.S. imports from the country in question. Entries specifically marked as estimates are based on estimated gross weights.

Scontent calculated on basis of data in source publication recording gross weight.

<sup>7</sup> Metal content calculated from data reported in source publication (in terms of contained pentoxide) 8 Less than ½ unit.

Kabili and in 1972 produced 194,181 pounds of the ore, which was 11,729 pounds less than that produced in 1971.

Cobelmin-Zaire (COBELMIN), a subsidiary of Compagnie Belge d'Enterprises Minières, continued to operate concessions owned by Compagnie Minière Des Grands Lacs (MGL) and Minerga. In 1972, production of columbium-tantalum-bearing materials was down 41%.

#### **TECHNOLOGY**

One phase of Bureau of Mines research was directed toward improving the methods of preparing metals and alloys from ores and compounds. A kinetics study of the reduction of Cb<sub>2</sub>O<sub>5</sub> with NH<sub>8</sub> was conducted at 600° to 1,300°C, using vertical fixed-bed, flow-through reactors, with the goal of using the nitride as an intermediate in the preparation of columbium metal by way of a thermal decomposition step.10 The effects of such reactor materials as stainless steel, nickel, molybdenum, graphite, alumina, and Vycor upon ammonia reactivity toward Cb<sub>2</sub>O<sub>5</sub> were investigated. Columbium pentoxide was shown to form three types of reactor products, o-oxynitride at temperatures below 800°C, CbO2 between 800° and 850°C, and hexagonal CbN at higher temperatures. The most rapid and complete reaction occurred with molybdenum or alumina reactors at 1,200°C.

A new high-strength corrosion-resistant alloy was added to the Latrobe Steel Co.'s specialty alloys production line.11 The new alloy, known as MultiPhase MP 159 (U.S. Patent 3,767,385), was reported to be particularly suitable for such applications as jet engine components and high-stress parts and components in marine and petrochemical machinery and equipment. Its nominal composition includes 35.7% cobalt, 25.5% nickel, 19.0% chromium, 9.0% iron, 7.0% molybdenum, 3.0% titanium, 0.6% columbium, and 0.2% aluminum. Tests have shown the alloy to be extremely resistant to crevice corrosion and stress-corrosion cracking in hostile environments.

Columbium pentoxide and tungstic oxide have been used for a number of years as additives to titania enamels for the purpose of adjusting the color of these materials to a bluer shade of white. Prior to a study conducted by R. A. Eppler of Pemco Products, Glidden-Durkee Division of SCM Corp., Baltimore, Md., the exact role these additives played in adjusting the shade of titanic enamel was not known.12 X-ray diffraction data reported, indicates

that columbium pentoxide and tungsten oxide have pronounced effects on the solubility of titania in a titania opacified porcelain enamel. Columbium pentoxide depresses the solubility of titania at firing temperatures, and tungsten oxide lowers the temperature at which the minimum titania solubility occurs so that high concentrates of small anatase crystals can be obtained.

A new ion exchanger, tantalum antimonate, was synthesized and reported to be reproducible and chemically stable.13 The ion exchanger was synthesized by mixing O.1M tantalum and antimony pentachloride solution in the ratio of 1:2 at room temperature and by adjusting the pH of the solution to 1 with ammonia and by refluxing the precipitate obtained with the mother liquor for 16 hours. Quantitative separations of such mixtures as VO2+-Al3+-Ti4+, VO2+-Fe3+-Ti4+, and UO22+-Ti4+ were reported to be made with the tantalum antimonate ion exchanger.

The superconductivity field continued to be one of the most interesting and important areas for the future growth of columbium. Superconductors made of columbium alloyed to other metals are being considered for use in such commercial applications as electromagnets, electrical machinery, power transmission lines, and high-speed magnetic suspended trains.14

Use of Nitride Intermediates in the Preparation of Metals. A Study of the Reduction of Nb205 with NH3. Met. Trans., v. 4, No. 5, May 1973, pp. 1233-1237.

11 American Metal Market. Latrobe Claims New Strong, Corrosion-Resistant Alloy. V. 80, No. 244, Dec. 18, 1973, p. 16.

<sup>12</sup> Eppler, R. A. Niobium and Tungsten Oxides in Titania-Opacified Porcelain Enamels. Am. Cer. Soc. Bull., v. 52, No. 12, December 1978, pp. 879-881.

<sup>13</sup> Qurechi, M., J. P. Gupta, and V. Sharma. Synthesis of a Reproducible and Chemically Stable Tantalum Antimonate. Anal. Chem., v. 45, No. 11, September 1973, pp. 1901-1906.

<sup>14</sup> Popular Science. Cryogenic Power Lines: Cool Aid for Our Energy Crisis. October 1972, pp. 69-71 and 130.

An important step toward wider application in this field was made by a Westinghouse research worker. By means of a new sputtering process, John R. Gavaler produced a columbium-germanium compound Cb<sub>3</sub>Ge, which becomes superconducting at 22.3K, thus allowing the use of a cooling system employing liquid hydrogen instead of lower boiling liquid helium.15

The first new piezoelectric material to be developed in many years was lithium tantalate. Single crystals of ferroelectric lithium tantalate for use in piezoelectric resonator and filter devices are being grown at Western Electric's Merrimack Valley Works by the Czochralski crystal-pulling technique.16

The continuing interest in methods of extraction and beneficiation of columbium and tantalum values was reflected by some

of the patents issued during the year.17

15 Science. Superconductivity: Surpassing the Hydrogen Barrier. V. 183, Jan. 25, 1974, pp.

Chemical and Engineering News. Science: A Superconductor with a High Critical Temperature. V. 51, No. 38, Sept. 17, 1973, p. 15.

16 Rudd, D. W., and A. A. Ballman. Growth of Lithium Tantalate Crystals for Transmission Resonator and Filter Devices. The Western Electric Engineer, v. 17, No. 2, April 1973, pp. 14.10

14-18.

17 Gomes, J. M., K. Uchida, and M. M. Wong. Recovery of Niobium and Tantalum. U.S. Pat. 3, 725,221, Apr. 3, 1973.

Gustison, R. A. (assigned to Kawecki Berylco Industries, Inc.). Electric Furnace Method of Beneficiating Tantalum. And Niobium-Containing Tin Slags and the Like. U.S. Pat. 3,721,727, Mar. 20, 1973.

Gammill, A. M., T. C. Runion, and W. R. Householder (assigned to Nuclear Fuel Services Inc.). Ore Separation Process. U.S. Pat. 3,740,199, June 19, 1973.

Capps, R. H., and G. S. Harman (assigned to Union Carbide Corp.). Method for Recovering Tantalum and/or Columbium. U.S. Pat. 3,712,939, Jan. 23, 1973.

## Copper

## By Harold J. Schroeder 1

World mine production of copper increased 7% to 7.86 million tons, a record high for the sixth consecutive year. All major producing countries except Peru and Zambia contributed to the increase. Production from new mines or expansions to operating properties that were completed during 1972 and 1973 more than offset losses to production from strikes, political events, and transport difficulties.

In the United States consumption of refined copper increased substantially to a new record-high quantity. There was a modest increase in mine production and smelter production from primary materials with the latter category a new record high. Refinery output from primary materials declined but the output from scrap increased significantly with the total showing a slight decrease. Foreign trade in unmanufactured copper was characterized by a small reduction in net imports as exports rose significantly and imports were only slightly higher. Industrial stocks of refined copper were drawn down during the year to compensate for a level of consumption in excess of supplies from production and net imports. Changing market conditions were reflected in price increases of approximately 91/2 cents per pound in three steps during the first quarter of the year and 8 cents in December for yearend quotations for electrolytic wirebar copper in a range of 68.15 to 69.25 cents per pound.

Legislation and Government Programs.— Copper in the national stockpile on January 1, 1973, was 60,112 tons of oxygen-free, high-conductivity (OFHC) copper, 7,067 tons of copper in beryllium-copper master alloys,

and 191,480 tons of copper in "other" classifications, for a total of 258,659 tons, 33% of the objective of 775,000 tons. In March the copper stockpile objective was reduced to zero and on December 28, the President signed into law Public Law 93–214, authorizing the sale of 251,600 tons of stockpile copper. The General Services Administration decided to transfer 85,000 tons of the excess metal to the U.S. Bureau of the Mint and to sell the balance for domestic consumption on a sealed bid basis.

The Office of Minerals Exploration continued to offer up to 50% government participation in the authorized cost of exploration for copper deposits. There were no contracts executed in 1973 that involved copper.

Defense set-asides for copper controlled materials were unchanged during 1973. The controlled items and their percent set-asides were: Unalloyed brass mill products—sheet (2); rod (9), and tube (2); alloyed brass mill products—sheet (4) and rod (10); copper wire mill products (2); and copper foundry products (3).

The suspension of duties on unwrought copper and copper-base scrap, which had expired on June 30, 1972, after being in effect since February 9, 1966, was reinstated by Public Law 93–77, effective from July 1, 1973, to June 30, 1974. In addition to reinstating the duty suspension, the law also revised the peril point for automatically revoking the suspension from 36 to 51 cents per pound.

<sup>&</sup>lt;sup>1</sup> Physical scientist, Division of Nonferrous Metals—Mineral Supply.

Table 1.-Salient copper statistics

|                                                                         | 1969                   | 1970                                  | 1971                             | 1972                       | 1973                               |
|-------------------------------------------------------------------------|------------------------|---------------------------------------|----------------------------------|----------------------------|------------------------------------|
| United States:                                                          |                        |                                       |                                  |                            | 1910                               |
| Ore producedthousand short tons<br>Average yield of copper              | 223,752                | 257,72                                | 9 242,650                        | 266,831                    | 289.9                              |
| Primary (new) copper produced— From domestic ores, as                   | 0.60                   | 0.59                                  | 9 0.55                           | 0.55                       | 0.1                                |
| reported by— Mines ————————————————————————————————————                 | 1,547,496<br>24        | 1,719,657<br>\$1,984,484<br>1,605,265 | \$1,583,071<br>5 1,470,815<br>22 | \$1,704,796<br>1,649,130   | 1,717,94<br>\$2,044,34<br>1,705,06 |
| From foreign ores, matte, etc., as reported by refineries_do            | , ,                    | 1,521,183                             | 1,410,523                        | 1,680,412                  | 1,698,33                           |
| Total new refined, domestic                                             | 273,926                | 243,911                               | 181,259                          | 192,821                    | 170,15                             |
| Secondary copper recovered for                                          | 1,742,815              | 1,765,094                             | 1,591,782                        |                            | 1,868,48                           |
| old scrap onlydo                                                        | 574,890                | 504,071                               | 445,194                          | 458,194                    | 441,84                             |
| Metallic copperdo<br>Refineddo<br>Imports, general:<br>Unmanufactureddo | 241,254<br>200,269     | 273,577<br>221,211                    |                                  | 241,600<br>182,743         | 292,50<br>189,39                   |
| Refineddo<br>Stocks Dec. 31: Producers:                                 | 413,860<br>131,171     | 392,480<br>132,143                    | 359,479<br>163,988               | 415,611<br>192,379         | 417,43<br>201.51                   |
| Blister and materials in                                                | 39,000                 | 130,000                               | 75,000                           | 57,000                     | 37,00                              |
| solutiondo                                                              | 291,000                | 340,000                               | 303,000                          | 281,000                    | 965 00                             |
| Totaldo Withdrawals (apparent) from total supply on domestic account:   | 330,000                | 470,000                               | 378,000                          | 338,000                    | 265,000<br>302,000                 |
| Primary and old copper (old                                             |                        | 1,585,000                             | 1,623,000                        | 1,901,000                  | 1,901,000                          |
| Price: Weighted average                                                 | 2,258,000              | 2,089,000                             | 2,068,000                        | 2,359,000                  | 2,342,000                          |
| per pound                                                               | 47.9                   | 58.2                                  | 52.0                             | 51.2                       | 59.5                               |
| Mineshort tons_                                                         | 6,223,820<br>6,413,940 | 6,638,042<br>6,751,531                | r 6,688,634<br>r 6,591,741       | r 7,329,378<br>r 7,339,607 | 7,856,682<br>7,837,966             |
| *                                                                       | 66.24                  | 62.96                                 | 48.49                            |                            |                                    |

# DOMESTIC PRODUCTION

#### PRIMARY COPPER

Mine Production.—Domestic mine production of recoverable copper was 1.72 million tons, an increase of 3% and only slightly below the record high of 1970. Principal copper-producing States were Arizona, with 54% of the total, Utah (15%), New Mexico (12%), Montana (8%), Nevada (5%), and Michigan (4%). These six States accounted for 98% of the total production.

Open pit mines accounted for 83% of mine output and underground mines for 17%. The production of copper from dump and in-place leaching, mainly recovered by precipitation with iron, was 159,022 tons or 9% of mine output. Total copper recovered by leaching methods was 241,917 tons, of which 211,859 tons was precipitated with iron and 35,058 tons was electrowon.

Duval Corp., a subsidiary of Pennzoil Co., operated the Duval Sierrita mine near Tucson, Ariz., at a steadily increasing rate during the year and in December a new high average daily operating rate of 89,000 tons of ore was achieved. Duval's Esperanza property adjacent to Sierrita resumed operations early in 1973 following a 1-year shutdown owing to a shortage of smelting capacity to treat stockpiled concentrate. Plant modifications initiated during the shutdown made possible a 25% increase in throughput.

The Anaconda Company produced 127,800 tons of copper from underground and open pit operations at Butte, Mont., compared with 125,800 tons in 1972. Production included 1,650 tons from the Continental East pit which reached operational status late in the year and is designed to

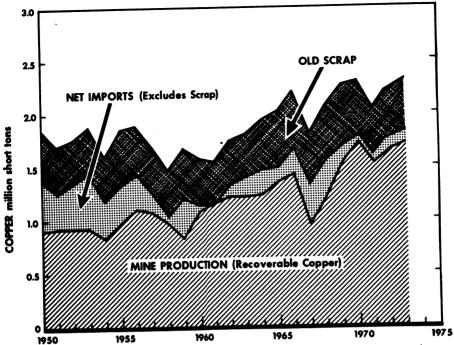



Figure 1.-Sources of copper supply for United States copper consumption.

produce at an annual rate of 24,000 tons. A modification of the copper concentrator at Butte was completed, increasing capacity from 40,000 to 50,000 tons of ore per day. The concentrator at Anaconda was reactivated to treat 14,000 tons of ore per day from the new Continental East pit. Production at the Yerington, Nev., property declined from 41,200 to 35,800 tons of copper. Development of the Victoria open pit mine and concentrator in eastern Nevada was initiated with production at an annual rate of 9,000 tons of copper in concentrates scheduled to start early in 1975. Exploration and feasibility planning continued toward development of a large underground mine at Carr Fork in the Bingham District of Utah.

Anamax Mining Company, formed January 1 as a joint venture of The Anaconda Company and American Metal Climax, Inc., operated the Twin Buttes, Ariz., open pit mine and produced 73,648 tons of copper in concentrates compared with 66,486 tons in 1972. A \$200 million expansion program at Twin Buttes, including open pit expansion, an enlargement of the concentrator, and a leach-electrowinning plant for oxide ore,

will increase capacity from 75,000 to 130,000 tons of copper with completion expected in 1975.

Kennecott Copper Corp. operated mines in Arizona, Nevada, New Mexico, and Utah; these mines produced a combined total of 471,700 tons of copper, compared with 460,600 tons in 1972. The Utah Copper Div. accounted for 255,000 tons of the total followed by the Ray Mines Div. (Arizona) with 98,900 tons, the Chino Mines Div. (New Mexico) with 67,800 tons, and the Nevada Mines Div. with 50,000 tons. Smelter capacity continued to be the limiting factor on Kennecott's mine production in 1973. At the Nevada Mines Div. replacement of flotation equipment to increase production was underway and will be completed by mid-1974. At the other operating divisions engineering studies to expand production capacities were in progress.

The American Smelting and Refining Company (Asarco) operated three copper mines in the vicinity of Tucson, Ariz. The Mission unit produced 46,600 tons of copper in concentrates compared with a 1972 output of 45,400 tons. Output at the Silver Bell unit increased slightly to 23,800 tons

of copper in concentrates and precipitates. Production at the San Xavier mine as copper-bearing flux ore for use at Asarco's Hayden smelter and as precipitates from a new leach plant completed in May totaled 2,700 tons of copper. The new leach plant cost \$12 million and has a design capacity to treat 4,000 tons per day of oxide ore that will yield approximately 12,000 tons of copper in precipitates per year. Construction work continued at the Sacaton mine at Casa Grande with an open pit mine and mill expected to be in operation early in 1974 and underground mining of deeper ore anticipated in 1979. The rated annual capacity of the Sacaton project is 21,000 tons of copper contained in concentrates.

Mines of the Phelps Dodge Corp. produced 319,600 tons of copper, a new record high that exceeded the previous 1970 record by 6,000 tons. The greater output reflected an increase at its Tyrone, N. Mex., operation from 78,800 to 104,000 tons which resulted from completion of an expansion program in July 1972. Production from the Arizona mines of Phelps Dodge declined from 226,200 to 215,300 tons. Of the total, 119,500 tons was produced at Morenci, 53,800 tons at Ajo, and 42,000 tons at Bisbee. The Bisbee open pit operations are expected to cease about mid-1974 owing to exhaustion of ore reserves and the underground operations are expected to continue at least through 1974 if copper prices are favorable. Removal of overburden and mill construction work continued at the Metcalf property near Morenci. This project has a rated capacity of 60,000 tons of copper per year with initial production planned for early 1975. Underground development work continued at Safford, Ariz., to determine the feasibility of mining a deep ore body containing an estimated 400 million tons of ore with an average grade of 0.72% copper. Reserves at producing mines and at the two properties under development were estimated at 1.9 billion tons of ore containing about 12 million tons of recoverable copper.

Cities Service Co., through its North American Chemicals and Metals Group, operated mines in Arizona and Tennessee that produced 39,600 tons of copper compared with 44,900 tons in 1972. Output from the Tennessee mines was reduced as a result of roasting and pelletizing problems encountered in early 1973 during startup operations of new facilities built for expansion of production. The 350 million ton, low-grade Pinto Valley copper deposit

near Miami, Ariz., was under development with startup scheduled for mid-1974. A production rate of 40,000 tons of mill feed per day is expected by early 1975. Construction continued for underground mining from the high-grade Miami East ore body with production to start in 1975 and to reach a level of 2,000 tons of ore per day by 1978.

The White Pine, Mich., operations of White Pine Copper Co. milled a record 8,884,000 tons of copper ore averaging 1.0% copper with an 86.22% copper recovery in concentrate. Research on improved mining practices continued to be emphasized in an effort to reduce unit mining costs. One promising experiment was the use of a mobile crushing machine to reduce vehicle haulage and conveyor belt maintenance. With an average haul distance from the mine face to the mill of 3.3 miles in 1973 compared with 2.9 miles in 1972 it is apparent that haulage factors are becoming a more important cost consideration each year.

Magma Copper Co. operated the San Manuel and Superior mines in Arizona with a combined output of 158,300 tons of copper compared with 149,500 tons in 1972. At San Manuel the average daily production was a record high 61,553 tons of ore but somewhat below rated capacity owing to limitations in labor availability. At Superior the mine was shut down during July to enable transfer of haulage and hoisting operations to the new tunnel and shaft. By yearend mine production was near 3,000 tons of ore per day, about double the previous rate and the planned level of 3,300 tons is expected in 1974.

The Inspiration Consolidated Copper Co. operated open pit copper mines in the vicinity of Inspiration, Ariz.; 16.5 million tons of waste and 8.5 million tons of ore were mined for a combined record high 25 million tons of material handled. Approximately 6.7 million tons of the ore was treated in the concentrator with about 46% of the concentrator feed first processed in leaching tanks to recover acid soluble copper. The combined production was 43,134 tons of copper. Heap leaching of ore too low in copper content for in-plant treatment yielded an additional 8,198 tons of copper. In January, mining of the upper Ox Hide pit was almost completed and mining of the lower Ox Hide pit began. Copper production from the Ox Hide pits was 4,356 tons, a slight reduction from the previous year but the rate of production

was increasing at yearend. At the Christmas open pit mine, southeast of Miami, Ariz., output was 9,508 tons, a 10% decline caused mostly by the lower copper content of ores treated. The ratio of waste removed per ton of ore mined rose from 4.94 to 5.77. Total mine production from all operating mines was 65,196 tons of copper.

Cyprus Mines Corp., through the Cyprus Pima Mining Co. (formerly Pima Mining Co.) operated the Pima mine near Tucson which produced 88,140 tons of copper in concentrates from milling 20.3 million tons of ore averaging 0.51% copper. The expanded plant facilities, including semiautogenous grinding mills, completed early in 1973, resulted in increased capacity and reduced cost per ton. At yearend ore reserves were estimated at 221 million tons grading 0.49% copper. Exploration was in progress to test a mineralized area to the east and southeast of the present pit. The Cyprus Bruce Copper and Zinc Co. (formerly Bruce Mine Div.) operated its underground copper-zinc mine near Bagdad, Ariz., and produced about 3,000 tons of copper in concentrates from 93,000 tons of ore averaging 3.68% copper and 12.7% zinc. Reserves were estimated at 467,000 tons, sufficient for about 5 years of operation. The Cyprus Johnson Copper Company (formerly Johnson Camp Div.) is developing an oxide-copper ore deposit near Johnson, Ariz., with production scheduled for early 1975 at a rate of 4,000 tons of ore per day. Reserves were estimated at 14.7 million tons averaging 0.80% copper.

Cyprus Bagdad Copper Company, formed in 1973 by a merger of Cyprus Mines Corp. and Bagdad Mining Company, operated its Arizona mine and produced 12,000 tons of copper in concentrate and 7,133 tons as cathode copper, the latter obtained from oxide ore by a leach-electrowinning process. Sulfide ore mined in 1973 averaged 0.70% copper. A study was in progress to determine the feasibility of a major mine-mill expansion program and the possible construction of a smelter-refinery. Ore reserves for the expanded operation were estimated at 300 million tons averaging 0.49% copper with prospective additional reserves from exploration in progress.

Ranchers Exploration and Development Co. produced a record 7,382 tons of copper cathodes by a leaching-solvent extraction-electrowinning process at its Bluebird mine near Miami, Ariz. A fourfold enlargement of production capacity which would include

a change from heap to vat or agitation leaching is under consideration. The in situ leaching operation at the Old Reliable deposit near San Manuel, Ariz., had an initial flow of copper-bearing solutions late in 1972 and by February 1973 output stabilized at about 250 tons of copper recovered in precipitates per month. Heap-leaching operations from mixed oxide-sulfide ore stockpiled during mining of high grade copper ore in 1970 at Ranchers' Big Mike mine near Winnemucca, Nev., yielded about 1,000 tons of cement copper. During the latter half of 1973 approximately 550,000 tons of copper ore and rock was blasted into the bottom of the old pit and the surface of the broken material was prepared for a leaching operation to recover copper from the copper-bearing solutions.

Hecla Mining Co. essentially completed the 7,500-foot twin 15-degree declines at its Arizona Lakeshore copper mine south of Casa Grande. Over 45,000 feet of underground openings have been driven and other facilities were under construction for a scheduled 1975 production with a designed capacity of 69,000 tons per year of copper. Poor ground conditions in the oxide ore body necessitated a change in plans to provide separate crushing facilities and hoisting of the ore through a vertical shaft instead of transfer by ore passes to the sulfide crushing-conveyor belt haulage system. Design engineering for the roast-leachelectrowinning plant, the oxide vat-leach plant, the sponge iron plant, and the byproduct sulfuric acid plant was in progress.

UV Industries Inc. operated its Continental mine near Bayard, N. Mex., and milled approximately 1,668,000 tons of copper ore compared with 875,000 tons in 1972. The increased quantity reflects completion of a mill expansion project. At yearend the company estimated ore reserves at 19.5 million tons of 2.0% copper amenable to underground mining plus 13.9 million tons of 0.8% copper amenable to open pit mining. An exploration program is planned to expand underground reserves both laterally and at greater depth.

Smelter Production.—Output of copper at primary smelters in the United States was 1.82 million tons, a 4% increase and a record high quantity for the second successive year. The record high was achieved despite some disruptions to production at several smelters caused by construction programs to modify existing facilities to meet air quality standards.

Asarco installed an anode casting plant at its Hayden, Ariz., smelter to eliminate casting blister copper cakes, previously remelted and cast into anodes at a refinery. A 1,000foot smelter stack, the tallest in the country, was completed and when it becomes operational in 1974 the ambient-air quality will be improved by better dispersion of the weak sulfur dioxide gases that cannot be handled by the acid plant. At the El Paso, Tex., smelter a new sulfuric acid plant was dedicated in May and at the Tacoma, Wash., smelter a 200-ton-per-day liquid sulfur dioxide plant was under construction with startup scheduled for the spring of 1974.

Anaconda's smelter renovation program at Anaconda, Mont., to reduce emissions to the atmosphere and increase capacity from 30 million to 35 million pounds of copper per month was completed during the year. Construction of other facilities for dust control was underway. Kennecott had work in progress at its Hurley, N. Mex., smelter towards a mid-1974 completion of converter hoods, duct work, an electrostatic precipitator, and an acid plant; investigation of a low-fuel, direct smelting process was conducted on a pilot plant scale. At the McGill, Nev., smelter a 750-foot stack to improve dispersion of effluents was under construction; at the Hayden, Ariz., smelter an improved air quality control system, including an expanded acid plant and a computer monitored variable emissions control, was completed for full operation in 1974. A similar air quality monitoring network was placed in operation at the Garfield, Utah, smelter and construction was started on a new 1,200-foot smelter stack.

Phelps Dodge was constructing a new smelter in Hidalgo County, N. Mex., with a scheduled startup early in 1975. The facility will be required for treatment of concentrates from the Tyrone mine since the Morenci smelter presently handling the Tyrone output will be used to smelt concentrates from the new Metcalf mine. Cost of the new smelter project is estimated at \$200 million, including \$55 million for emission control facilities. It will be the first smelter in the United States to utilize the flash smelting process. At the Ajo, Ariz., smelter new emission control facilities, including a 600-ton-per-day sulfuric acid plant, were essentially completed. The company was about halfway through a \$92 million program at the Morenci smelter which included a new reverberatory furnace, a ninth converter, waste heat boilers, electrostatic precipitators, and a 2,500-ton-per-day acid plant.

Magma Copper Co. experienced some output restrictions at its San Manuel, Ariz., smelter owing to anode casting problems and the necessity of installing water-cooled converter hoods as part of the air quality control program. An electrostatic precipitator and an acid plant were under construction and scheduled for operation in mid-1974. To provide a basis for comparison of conditions before and after installation of emission control facilities, an air monitoring network has been in operation for over a year.

Inspiration Consolidated Copper Co. essentially completed a \$54 million construction program to replace much of its existing smelter at Miami, Ariz., and the facilities should become operational in 1974. The program replaced the reverberatory furnace with an electric furnace and the horizontal rotary converters with siphon-type converters, and it provides new sulfuric acid production facilities.

White Pine Copper Co. operated its slag recovery plant for the second year from April until the winter shutdown in December. The plant processed 881,000 tons of slag and recovered about 4.2 million pounds of copper for return to the smelter. Total 1973 smelter output was 157 million pounds of copper. It is estimated that 3 months of operation in 1974 will process all of the remaining slag.

Refined Production.—Production of refined copper from primary materials was 1.87 million tons, a slight decline from the record high of 1972. Refined copper produced from scrap was 465,100 tons compared with 423,243 tons in 1972. Total production of refined copper in the United States was 2.33 million tons, derived 80% from primary and 20% from scrap sources.

Asarco was constructing a new refinery of 420,000 tons of annual copper capacity at Amarillo, Tex., with completion scheduled for late 1975. This facility will replace the Baltimore refinery which will be phased out after 1975. Together with the necessary infrastructure and related facilities the new project will cost on the order of \$100 million and will employ 700 people. At the Tacoma, Wash., refinery Asarco started construction of facilities for purifying the refining solution which will permit recovery of nickel salts.

Anaconda was enlarging its Great Falls, Mont., copper refinery to a capacity of 41 million pounds of cathode copper per month from the present 30 million pounds capacity.

Copper Sulfate.—Copper sulfate was produced from primary and/or secondary metal by companies with plants located as follows:

|                                                                                                                            | Plant location                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Company                                                                                                                    | I lant location                                                                                                                            |
| The Anaconda Company<br>Chevron Chemical Co<br>Cities Service Co<br>Phelps Dodge Refining Corp.<br>Van Waters & Rogers Inc | Great Falls, Mont. Richmond, Calif. Copperhill, Tenn. Laurel Hill, N.Y. El Paso, Tex. Wallace, Idaho. Midvale, Utah. Metaline Falls, Wash. |

Copper sulfate production advanced 14% to 43,360 tons, the second successive increase following the slump in output during 1971. Shipments exceeded production and ending stocks were 4,580 tons. Of the total 44,090 tons shipped, producers' reports indicated that 19,840 tons was for agricultural uses, 23,220 tons was for industrial uses, and 1,030 tons was for other uses.

Phelps Dodge placed a new plant for producing copper sulfate from tankhouse electrolyte solutions at its El Paso copper refinery into operation.

Byproduct Sulfuric Acid.—Sulfuric acid

was produced at eight copper smelters from the sulfur contained in offgases, and output increased for the 6th consecutive year from 1,010,600 to a record 1,088,300 tons, on a 100% acid basis. A 600-ton-per-day sulfuric acid plant was placed in operation during the year at the Anaconda, Mont., smelter of Anaconda. New sulfuric acid plants or expansions of existing plants were under construction at copper smelters at Ajo, Ariz., Hurley, N. Mex., Miami, Ariz., Morenci, Ariz., and San Manuel, Ariz.

## SECONDARY COPPER AND BRASS

Domestic recovery of copper in all forms from all classes of purchased scrap totaled 1.36 million tons in 1973, a 5% increase from the 1972 total and the largest quantity since 1969. Recovery from copper-base scrap increased from 1.28 to 1.34 million tons. Brass mills accounted for 47% of the recovered copper, primary producers for 25%, and secondary smelters for 22%. The remaining 6% was reclaimed at chemical plants, foundries, and manufacturers.

Consumption of purchased copper-base scrap in 1973 was 1.86 million tons consisting of 63% new scrap and 37% old scrap. The major categories of brass mill products, refined copper, and brass and bronze ingots obtained from scrap all registered significant increases.

#### CONSUMPTION

Consumption of refined copper rose 7% to a record 2.40 million tons, reflecting the greater activity of the general economy. Wire mills accounted for 68% of refined copper consumption, brass mills for 30%, and all other consumer categories for the

remaining 2%.

Apparent withdrawals of primary refined copper on domestic account was 1.70 million tons compared with 1.90 million tons in 1972.

#### **STOCKS**

Stocks of refined copper at primary producers decreased from 57,000 tons at the start of the year to 29,000 tons by the end of June, increased to 39,000 tons during July, trended down to 28,000 tons by the end of November, then rose to 37,000 tons

by yearend. The trend of fabricators' stocks of copper in all forms was similar to that of the primary producers with stocks of 460,000 tons at the start of the year, drawn down to 419,000 tons by yearend.

#### **PRICES**

Domestic copper price quotations for electrolytic wirebar copper increased by 91/2 cents per pound in three steps during the

first quarter of 1973 to a quoted price of 60 to 60.25 cents per pound. Price controls prohibited any price increase between early June and December 6 after which quotes were increased by approximately 8 cents to a range of 68.15 to 69.25 cents per pound. Prices on the London Metal Exchange in-

creased from an average 50.7 cents per pound equivalent for January to 102.9 cents for November and then declined to 100.9 cents for December.

# **FOREIGN TRADE**

U.S. exports of unmanufactured copper increased 18% to 277,600 tons. The largest category, refined copper, was 189,400 tons compared with 182,700 tons the preceding year. Exports of ore, concentrates, matte, and blister increased from 26,200 tons in 1972 to 30,900 tons and exports of copper scrap rose from 17,400 to 42,300 tons. Scrap exports were particularly large during June, July, and August following the domestic price ceilings imposed in early June and the escalation of foreign copper prices. Copper-base scrap was exempted from price

controls, effective August 6, and there was a significant reduction in exports following this action.

U.S. imports of unmanufactured copper were 417,400 tons, a slight increase and the largest quantity since 1968. The largest category, refined copper, increased from 192,400 to 201,500 tons and the second largest category, blister copper, declined from 157,400 to 154,100 tons. Of the total imports Canada supplied 37%, Peru 24%, and Chile 14%.

# **WORLD REVIEW**

World mine production of copper attained 7.86 million tons, an increase of 7% and a record high for the 6th consecutive year. All of the major producing countries except Peru and Zambia contributed to the increased output. Production from new mines or expansions to operating properties that were completed during 1972 and 1973 more than offset losses to production from strikes, political events, and transport difficulties.

The United States continued to lead the world in mine production with 22% of the total, followed by Canada with 11%, and Chile, Zambia, and the U.S.S.R. with 10% each.

Australia.—Mount Isa Mines, I.td., operated its copper-lead-zine-silver mine at Mount Isa and a copper smelter at Townsville to produce 129,300 tons of blister copper for the fiscal year ending June 30, 1973. An expansion program was completed by mid-1973 which gave a rated mine-mill-smelter productive capacity of 170,000 tons of copper per year. In the first 28 weeks of fiscal 1974, output of blister copper was 28% above the 1973 rate.

Mount Lyell Mining and Railway Co., Ltd., for the year ended June 30, 1973, produced a record 25,400 tons of copper in concentrate from 2.4 million tons of ore grading 1.19% copper mined and milled at its Tasmania operation. The transition of production from open pit to underground operations continued with 66% of produc-

tion for the year from underground mining; compared with 41% in 1972. Reserves in all ore zones were estimated at 35 million tons of proven ore grading 1.48% copper and 10.6 million tons of probable ore grading 1.39% copper.

A joint Phelps Dodge Corp. St. Joe Minerals Corp. exploration project on the Woodlawn deposit near Tarago, New South Wales, indicated 10 million tons of reserves averaging 1.5% copper, 3.0% lead, 7.5% zinc, and 1.5 ounces of silver per ton that may be minable by open pit methods. Pilot plant testing of bulk samples of the ore showed that processing will present considerable difficulties. Further drilling to test an indicated mineralized zone outside the proposed open pit limits is planned for 1974.

Botswana.—Bamangwato Concessions, Ltd. (BCL), brought its Selebi-Pikwe nickelcopper mining and smelting project into production in December, approximately 33 months after construction began. Initially, 2 million tons per year of ore from the Pikwe open pit and underground mines will yield about 17,000 tons of refined copper and 19,000 tons of refined nickel. In addition to the direct costs of the mining-smelting project, an estimated \$82 million was expended by the Botswana Government to provide the needed infrastructure consisting of a dam on the Shashe River, a 50-milelong water pipeline to the mine, a 50-megawatt coal-fired power station, a spur rail-

road track to the mine site, and a town for 12,000 people. Also there was an associated \$4.5 million venture to provide a colliery and spur track to serve the smelter and power station.

The smelter product will be coppernickel matte that will be refined at the American Metal Climax, Inc. (AMAX), rehabilitated nickel refinery at Braithwaite, La. A West German firm, Metallgesellschaft A.G., will purchase most of the copper production and more than half of the nickel output. Approximately 140,000 tons of byproduct sulfur will be marketed in southern Africa.

Ownership of BCL is 15% by the Government of Botswana and 85% by Botswana Roan Selection Trust, Ltd. (BRST), which in turn is owned 40% by the public and about 30% each by AMAX and the Anglo American Corp./Charter Consolidated Group.

A joint exploration project by Newmont Mining Corp., Tsumeb Corp., and United States Steel Corp. discovered moderategrade copper intersections in a very large geologic structure.

Canada.—Production from mines that came onstream during 1972 and 1973 more than offset losses due to mine strikes and disruptions to rail transportation so that output rose 13% to 899,500 tons, a record high for the 4th successive year. British Columbia became the leading copper producing Province with 39% of the total followed by Ontario with 31%, Quebec 17%, Manitoba 8%, and the remaining Provinces,

Falconbridge Nickel Mines Ltd. operated nickel-copper mines and treatment plants in the Sudbury, Ontario, area during 1973 and metal deliveries of copper were 26,900 tons compared with 28,200 tons in 1972. Ore reserves at yearend were 93 million tons averaging 1.37% nickel and 0.68% copper. Falconbridge's Opemiska Div. mined and milled 1.1 million tons of 2.14% copper ore, which yielded 21,576 tons of copper in concentrate, compared with 1,074,000 tons of 2.3% copper ore in 1972. Ore reserves at yearend were 6.5 million tons with an average grade of 2.42% copper. The Lake Dufault Div. milled 555,000 tons of 3.65% copper to produce 18,890 tons of copper in concentrate. Reserves at yearend were estimated at 2.8 million tons grading 2.8% copper and 3.5% zinc.

Ecstall Mining Ltd., a subsidiary of Texasgulf Inc., mined 3.6 million tons of

copper-lead-zinc-silver ore from the Kidd Creek mine near Timmins, Ontario, which yielded 205,600 tons of 25% copper concentrate and 1,300 tons of a copper-silver concentrate. Underground mining commenced in 1973 and by midyear supplied about 2,000 tons of ore per day, replacing an equivalent production from the open pit mine which will be phased out over the next few years. From start of operations in 1966 the mine has produced 25 million tons of ore averaging 1.53% copper. Remaining ore reserves above the 2,800-foot level are estimated at 95 million tons with a copper content somewhat above that previously mined. Deep drilling indicates a substantial tonnage of ore from the 2,800-foot level to well below the 4,000-foot level. A study is being made on the feasibility of constructing a copper smelter and electrolytic refinery with a capacity to produce 100,000 tons of copper per year from Kidd Creek concentrates.

The International Nickel Co. of Canada Ltd. (INCO) mined 19.7 million tons of nickel-copper ore from 16 mines in Ontario and Manitoba compared with 19 million tons from 14 mines in 1972. Improved grade control in mining operations increased the average grade from 1.33% nickel and 0.91% copper to 1.41% nickel and 0.98% copper. Copper deliveries from the Copper Cliff refinery were 163,560 tons with 154,090 tons in 1972. At yearend INCO estimated that proven ore reserves were 399 million tons containing 4.1 million tons of copper.

Noranda Mines Ltd. operated the Horne mine in Quebec and produced 550,000 tons of ore averaging 2.42% copper and 0.145 ounce of gold per ton. The mill treated 480,000 tons of sulfide ore and 130,000 tons of smelter slag which yielded 79,000 and 25,500 tons of copper concentrates, respectively. Sulfide ore reserves at yearend were 500,000 tons grading 2.40% copper, sufficient to maintain production into 1975. The company's Geco mine produced 1.5 million tons of copper-zinc-silver ore averaging 1.70% copper which yielded 22,900 tons of copper in concentrates. Output was curtailed by a 65-day strike which ended June 10 and by a shortage of skilled labor following the strike. Ore reserves at yearend were 29 million tons averaging 1.9% copper, 4.0% zinc, and 1.66 ounces of silver per ton. Noranda's smelter achieved a record high production of 260,000 tons of anode copper from smelting its own and custom concentrates. The Noranda Continuous Smelting Process prototype smelter, designed to treat 800 tons of copper concentrate per day, came onstream in midyear and contributed to the increased production.

Gaspé Copper Mines Ltd. operated the Needle Mountain and Copper Mountain mines and associated mills and smelter near Murdochville, Quebec. The Needle Mountain mine produced 11,400 tons of copper in concentrate from milling 1.2 million tons of ore averaging 1.12% copper. The Copper Mountain mine produced 22,730 tons of copper from milling 5.6 million tons of 0.56% copper ore. A new 22,500-ton-per-day sulfide concentrator started up in July and attained rated capacity in December. Feed to the smelter consisted of 107,400 tons from the Gaspé operation and 99,800 tons from custom sources for production of 49,300 tons of copper in anodes compared with 63,800 tons in 1972. The smelter was shutdown in May and June to install new equipment designed to increase annual capacity by 27,000 tons of blister copper. Startup difficulties hampered production and about 40,000 tons of concentrate were diverted for smelting elsewhere. The new acid plant was completed in December and the oxide ore leach plant is expected to be completed in the second quarter of 1974.

Madeleine Mines, Ltd., operated its copper mine and mill in Quebec, milling 714,000 tons of 1.31% copper ore to produce 8,797 tons of copper in concentrate. The shaft sinking project below the 2,720-foot level was completed and ore hoisting from the 2,400-foot level began in October. Reserves at yearend were 4.2 million tons with an average 1.1% copper content.

Hudson Bay Mining & Smelting Co., Ltd., operated nine mines along the Manitoba-Saskatchewan boundary and milled I.8 million tons of ore to produce approximately 41,000 tons of copper in concentrates. The Centennial mine, whose discovery was announced in 1970, was under development in 1973. Exploration discovered a new ore body named the Western mine which is scheduled for development in 1974. Total ore reserves at yearend were 18 million tons with an average grade of 3.11% copper, 2.9% zinc, and 0.52 ounce of silver per ton.

Sheritt-Gordon Mines Ltd. operated the Fox, Lynn Lake, and Ruttan Lake mines in Manitoba with a combined output of 35,800

tons of copper in concentrates compared with 20,700 tons in 1972. The increase reflected the new Ruttan Lake copper-zinc open pit operation which commenced production in April. Shortage of skilled personnel and severe winter weather prevented achievement of the 10,000-ton-per-day rated capacity at the mine and mill on a sustained basis. The Lynn Lake nickel-copper mine had high production costs and continued operation is problematical.

The Granduc mine of Granduc Operating Co. north of Stewart, British Columbia, produced 33,500 tons of copper in concentrate from 2.8 million tons of ore grading 1.25% copper. An average 7,540 tons of ore was milled daily, the first year since operations started in 1970 that the design capacity of 7,000 tons was achieved. The sublevel caving system, the principal mining method, and an experimental cut-and-fill method are under analysis to improve efficiency and reduce dilution. Ore reserves, before dilution, are estimated at 33 million tons averaging 1.64% copper.

Similkameen Mining Co. Ltd., a subsidiary of Newmont Mining Corp., operated its mine near Princeton, British Columbia, at rates approaching the design capacity of 15,000 tons of ore per day. Output for the year was 20,600 tons of copper in concentrate from milling 5.4 million tons of 0.45% copper ore. Milling capacity is to be increased to 22,000 tons per day by early 1975 to enable treatment of material grading about 0.25% copper which is now mined and stockpiled. Ore reserves were estimated at 66 million tons averaging 0.53% copper.

Utah International Inc. shipped approximately 48,500 tons of copper in concentrate during the first full year of operation of its Island Copper mine on the northern end of Vancouver Island. The mill design capacity of 33,000 tons per day was exceeded by yearend after initial startup difficulties which required new equipment and modifications. Ore reserves were estimated at 280 million tons containing 0.52% copper and 0.025% molybdenum.

Brenda Mines Ltd. milled 8.9 million tons of ore averaging 0.20% copper and 0.06% molybdenum. This was 6% below that of 1972 and reflected the loss of production during a 40-day strike. Metal recoveries in concentrates were 89% for copper and 82% for molybdenum. An additional 2.8 million tons of low-grade ore was stockpiled for

469

future treatment and 4.5 million tons of waste was stripped from the deposit.

Bethlehem Copper Corp. Ltd. mined a record 6.3 million tons of copper ore from open pit mines at Highland Valley, British Columbia, and produced concentrates containing 33,500 tons of copper. Proven ore reserves available to the present mill, including an extension south of the closed Jersey mine, total 61 million tons of 0.47% copper. Estimated reserves for other ore zones were 286 million tons of coppermolybdenum ore with an average grade of 0.43% copper and 0.017% molybdenum for the J-A ore body, 190 million tons of 0.48% copper for the Lake zone project, and at least 200 million tons of 0.40% copper equivalent for the Maggie ore zone.

Lornex Mining Corporation Ltd. began commercial production in October 1972 at its large, low-grade copper-molybdenum property in the Highland Valley of British Columbia and reached its mill design capacity of 38,000 tons of ore per day in March 1973. Approximately 14 million tons of ore were milled to produce 51,000 tons of copper and 1,740 tons of molybdenum in concentrates. The project was based on ore reserves estimated to be 293 million tons with an average grade of 0.427% copper and 0.014% molybdenum.

Gibralter Mines Ltd. during the first full year of operation at its copper-molybdenum deposit in the Cariboo District of British Columbia milled 15.1 million tons of ore at an average grade of 0.48% copper which yielded a total of 60,900 tons of copper in concentrate. The average daily throughput at the mill was 41,300 tons with a 83.4% copper recovery compared with 39,500 tons and 80.4%, respectively, during 1972.

Craigmont Mines Ltd. in the fiscal year ended October 31, 1973, produced 22,135 tons of copper in concentrate from 1.7 million tons of ore containing 1.38% copper from its mine near Merritt, British Columbia. Production was adversely affected by a strike at the mine, effective September 16 and output for the year was 6% below that of 1972.

Bell Copper Co. completed the first full year of production at its Babine Lake, British Columbia, property. Open pit mining consisted of 2.4 million tons of stripping, 1.0 million tons of low-grade ore stockpiled for future treatment, and 4.1 million tons of ore averaging 0.59% copper for delivery

to the concentrator. The concentrator, with a rated capacity of 10,000 tons per day, averaged 11,270 tons and produced 77,800 tons of concentrate containing 20,300 tons of copper with an average 84.1% copper recovery.

Coast Copper Co., Ltd., suspended operations at its Benson Lake mine on northern Vancouver Island in November because of rising costs and unsatisfactory market conditions. During the 10 years of operations, 2.8 million tons of ore were mined to produce 157,000 tons of copper concentrate.

Chile.—Political turmoil associated with the military overthrow of the Allende Government in early September had a major impact on the copper industry in Chile. Problems of management, labor, and supply contributed to curtailment of production at levels far below the capacity that was available as a result of past substantial expansion programs. However, despite the disruptions, production for the year increased 2% to 818,800 tons of copper and by yearend the military junta, which had assumed operation of the Government, succeeded in increasing the annual rate of output to about 1,000,000 tons. If the problems of obtaining necessary foreign credits, replenishment of depleted supplies and equipment, and improvement in the general economy can be surmounted, the goal of achieving an output of approximately 1,000,000 tons may be attained in 1974. The Government indicated that the large copper mines, completely nationalized in 1971, will remain in that status but that the matter of compensation for the expropriated properties was subject to review.

Production from the large mines was as follows: Chuquicamata, 292,500 tons compared with 258,300 tons in 1972; El Teniente, 196,400 tons compared with 209,800 tons; El Salvador, 92,600 tons compared with 91,400 tons; Exótica, 35,100 tons, compared with 34,400 tons; and Andina, 61,900 tons compared with 59,400 tons.

Output at Chuquicamata was limited by a shortage of converter capacity at the smelter, and the developing instability of the pit walls may result in future mining problems. At El Teniente the shortage of water was being corrected and the associated Caletones smelter started up a third furnace in December to increase capacity to about 240,000 tons of copper per year. At Andina there were some initial rock mechanics difficulties in the block-caving min-

ing system but by yearend the production goal of 65,000 tons per year was achieved.

British credit, contingent on insurance coverage, has been approved for construction of a new 220,000-ton-per-year smelter-refinery complex for El Salvador. A feasibility study was in progress for development of the large El Abra porphyry copper deposit about 45 miles northeast of Chuquicamata. Indicated reserves from preliminary drilling were 25 million tons of copper oxide ore underlain by 400 million tons of sulfide ore grading between 0.8% to 1.0% copper. Tentative plans would require a \$450 million investment for a 330,000-ton-per-year copper facility to be placed in operation about 1980.

Cyprus.—The Cyprus Island Div. of Cyprus Mines Corp. operated open pit mines at Lefka and Skouriotissa and a pressure-leach plant for reprocessing of mill tailings. Output of copper contained in concentrates and precipitates totaled about 10,300 tons. Milled ore averaged 1.16% copper but reserves of this grade were exhausted during 1973. However, a deposit of lower grade in an adjoining area with reserves estimated to extend the life of the mining operations about 5 years was brought into production.

Indonesia.—Freeport Indonesia Inc., a subsidiary of Freeport Minerals Co., completed development of the 11,500-foot-high Ertsberg copper deposit in West Irian late in 1972 and the mine was considered operational on February 1, 1973. However, there were serious startup problems which required substantial modifications before the design capacity of 250,000 tons of copper concentrate per year was approached by yearend. Output for the year was 125,600 tons of concentrates containing 41,800 tons of copper plus quantities of gold and silver. The ore mined from the enriched upper part of the deposit averaged nearly 3.5% copper compared with the estimated ore reserve of 33 million tons averaging 2.5% copper; also 0.025 ounce gold and 0.265 ounce silver per ton.

Malaysia.—The Mamut Mines Development Co., a consortium of Japanese firms in a joint venture with the Sabah Government and other Malaysian interests, continued development of a copper deposit near Mamut, Sabah. Production is scheduled for early 1975 at a rate of 30,000 tons per year of copper in concentrate.

Mauritania.—Société Minière de Mauritanie (SOMIMA) operated their open pit

copper oxide mine at Akjoujt and produced 23,450 tons of copper in concentrates, a 46% increase from 1972 but below the design capacity of about 30,000 tons of copper per year. The oxide ore is concentrated by use of the Torco segregation process.

Mexico.—Asarco Mexicana, S.A., increased the output of blister copper 3%, to 37,100 tons. Cía Mexicana de Cobre, 49% owned by Asarco Mexicana, continued plans toward construction of a 130,000- to 160,000-ton-per-year mine-mill-smelter-refinery complex to exploit a porphyry copper deposit at the La Caridad property near Nacozari in the State of Sonora. The deposit has an estimated ore reserve of 770 million tons grading 0.7% copper and 0.016% molybdenum.

Compañía Minera de Cananea, S.A., operated the Cananea mine and smelter to produce 45,412 tons of blister and refined copper compared with 44,574 tons in 1972. Production was hampered by mechanical problems in the metallurgical facilities. An expansion program in progress is designed to achieve an output of 70,000 tons of copper in 1976.

Panama.—Canadian Javelin Ltd. announced that exploration had disclosed reserves in excess of 2 billion tons of 0.8% copper ore in the Cerro Colorado project in western Panama. Feasibility studies to develop the ore body were in progress with a goal of 400,000 tons of copper production per year, half to be exported as concentrate and the remainder to be split between blister and refined copper. Copper exploration at the Petaquilla concession, about 90 miles east of the Cerro Colorado deposit, will be undertaken by Cobre Panama, a consortium of Japanese companies.

Papua New Guinea.—Bougainville Copper Pty., Ltd., in the first full year of operation of its open pit copper mine on Bougainville Island in the Territory of Papua New Guinea produced approximately 202,000 tons of copper in concentrate. Initial mining was in an enriched, mixed oxide-sulfide portion of the deposit. This large copper development, consisting of an open pit mine, a 90,000-ton-per-day concentrator, two towns, port facilities, a power station, and other ancillary facilities, has an annual rated productive capacity of 162,500 tons of copper in concentrate. The project is based on a porphyry copper deposit calculated to contain approximately

471

1 billion tons of ore grading 0.48% copper and 0.02 ounce of gold per ton.

COPPER

Peru.—Production of Southern Peru Copper Corp., in terms of blister copper produced and export of copper in concentrates, was 133,500 tons compared with 148,300 tons in 1972. The reduced output was caused by strikes at both the Toquepala mine and the Ilo smelter. At the smelter 62 production days were lost compared with 43 days in 1972. Cerro Corp. mining-milling-smelting facilities were operated without interruptions and production of copper at its La Oroya smelter increased 10% to a record high 63,127 tons, with 46% of the output from purchased ores.

Progress on Southern Peru's Cuajone project in 1973 included stripping of 37 million tons of mine overburden, driving 24,800 feet of railroad tunnels, and start of construction on the concentrator, town sites, and other facilities. In November, Southern Peru concluded an agreement with a consortium of 29 United States, Canadian, European, and Japanese banks for a \$200 million loan to help finance the project. Total cost of the project is estimated to be \$550 million, and it is designed to have an annual output of 180,000 tons of blister copper, with production commencing late in 1976.

Compañía Minera del Madrigal, a subsidiary of Homestake Mining Co., processed 153,000 tons of ore at its Madrigal copperlead-zinc mine in southern Peru during the first full year of operation. Ore grade averaged 1.8% copper, 3.2% lead, and 5.8% zinc. Approximately 26,000 tons of concentrates containing 7,600 tons of copper were produced and shipped to Japan.

Philippines.—Atlas Consolidated Mining & Development Corp., the largest copper producer in the Philippines, operated mines and mills on Cebu Island with a rated capacity of about 66,000 tons of ore per day. An expansion program was in progress to expand capacity to 100,000 tons of ore per day by early 1976. Atlas also planned to construct a 130,000-ton-yer-year smelter-refinery facility costing an estimated \$148 million.

Marinduque Mining and Industrial Corp. planned an expansion program at its Sipalay copper mine on Negros Island from 13,500 to 18,000 tons per day of ore with completion scheduled for 1975. Benquet Consolidated began construction of the Tayson mine-mill, 20,000 tons of ore per

day, project on Luzon Island with completion expected by the end of 1975. Philex Mining Corp. had an expansion program in progress to increase milling capacity at its operation near Tuba, Benquet Province, from 21,000 to 24,000 tons per day of ore. Western Minolco Corp. had under construction a 15,000-ton-per-day mining-milling project at its Boneng copper project near Baguio, Benquet Province, with initial output anticipated early in 1974.

Rhodesia, Southern.-M.T.D. Mangula Ltd. during the year ending September 30, 1973, produced 19,000 tons of copper in concentrates and precipitates from the Mangula mine about 80 miles northwest of Salisbury. Concentrates containing 16,000 tons of copper were produced from milling 1.3 million tons of sulfide ore and precipitates containing 3,000 tons of copper were produced from treating 440,000 tons of an oxidized ore in the leach plant. Proved sulfide ore reserves were 16.5 million tons averaging 1.27% copper and oxidized ore reserves amounted to 0.6 million tons of 0.72% oxide copper. The Norah and Silverside mines in the first full year of operation produced 2,600 and 2,200 tons of copper in concentrates, respectively. Proven sulfide ore reserves were 1.9 million tons of 1.35% copper at the Norah mine and 440,000 tons of 1.77% copper at the Silverside mine.

Lomagundi Smelting and Mining Ltd. produced 2,700 tons of copper in concentrate from mining and milling 300,000 tons of ore from the Alaska mine. The Shackleton mine yielded 9,700 tons of copper in concentrate from 610,000 tons of 1.68% copper ore. Proved reserves at yearend were 410,000 tons of 1.72% copper at the Alaska mine and 260,000 tons of 1.94% copper at the Shackleton mine. The Shackleton mine had an additional 2.9 million tons of probable ore averaging 1.99% copper.

Gwai River Mines Ltd. produced 1,700 tons of copper in concentrate from mining and milling 190,000 tons of 1.11% copper ore. Proved ore reserves were 260,000 tons of 1.12% copper.

South Africa, Republic of.—O'okiep Copper Co. Ltd. mined and milled 3.3 million tons of ore with an average grade of 1.34% copper which yielded 37,800 tons of blister copper compared with 40,700 tons in 1972. Ore reserves at O'okiep mines at the end of 1973 were estimated at 26.9 million tons averaging 1.58% copper. Exploration in

progress indicated additional significant tonnages at deeper levels. An important development was the completion in October of an 80-mile pipeline from the Orange River to correct a water problem which has hampered operations in the past. O'okiep and the Tsumeb Corp. (South-West Africa) commissioned a feasibility study for a joint project to construct a 150,000-tonper-year copper refinery at some suitable site in southern Africa to treat all of the blister copper production from their respective smelters.

Palabora Mining Co. Ltd. had a smelter production of 105,700 tons of copper, a 4% decline from 1972. Ore milled was 21.1 million tons of 0.57% copper compared with 21.3 million tons of 0.56% copper in 1972. Under the present plant the Palabora pit will have a life of about 16 to 18 years. Alternative plans are being studied to extend the pit life before conversion to underground mining occurs.

Messina (Transvaal) Development Co. mined and milled 1.27 million tons of 1.12% copper ore from its Messina mine which yielded 11,900 tons of copper in concentrate. The tonnage of proved ore reserves at yearend was estimated at 5.9 million tons averaging 1.45% copper.

Africa Triangle Mining Prospecting and Development Co. operated its copper-zinc mine near Prieska in northwestern Cape Province for the first full year following initial output in October 1972. Startup problems are expected to delay reaching the rated capacity of 250,000 tons of ore per month until about mid-1974. The development is based on an ore deposit with proven reserves estimated at 25 million tons grading between 1.5% to 2.0% copper and 3% zinc.

Phelps Dodge Corp. continued drilling and development work at two copper-leadzinc-silver discoveries (Aggeneys project) about 3.5 miles apart in Cape Province. One deposit has an estimated 33 million tons of ore averaging 0.6% copper, 2.3% lead, 0.5% zinc, and 0.8 ounce of silver per ton that may be minable by open pit methods. In addition, possible reserves minable by underground methods were estimated at 53 million tons averaging 0.8% copper, 2.9% lead, 0.6% zinc, and 1.8 ounces of silver per ton. The other deposit has open pit reserves estimated at 41 million tons of 0.4% copper, 4.5% lead, 2.3% zinc, and 1.7 ounces of silver per ton and

possible underground reserves of 28 million tons averaging 0.36% copper, 3.0% lead, 2.2% zinc, and 1.0 ounce of silver per ton.

South-West Africa, Territory of.-The Tsumeb Corp. Ltd. mined 494,000 tons of ore from the Tsumeb mine averaging 4.10% copper, 11.51% lead, and 2.65% zinc. At the Kombat mine 401,000 tons of ore grading 1.67% copper and 1.88% lead was mined. The Matchless mine, near Windhoek, was reopened in February and for 1973 produced 112,000 tons of ore averaging 2.23% copper. Smelter production at Tsumeb was 40,000 tons of blister compared with 28,800 tons in 1972 when feed to the smelter was reduced by a first quarter strike at the Tsumeb mine and a lower copper content in the ore from the Kombat mine. Tsumeb has contracted to custom-smelt additional copper concentrates from South-West Africa and is considering expanding its copper smelter to an annual productive capacity of 79,000 tons. Ore reserves as of the end of 1973 were estimated at 5.5 million tons assaying 4.68% copper, 8.52% lead, and 2.15% zinc for the Tsumeb mine; 1.3 million tons of 1.93% copper and 3.07% lead for the Kombat mine; and 1.0 million tons of 2.37% copper at the Matchless mine.

Oamites Mining Co. Ltd. operated the Oamites mine at capacity and produced 7,713 tons of copper in concentrate from milling 556,000 tons of 1.35% copper ore. A second decline from the surface and other development work accelerated output by 15% during the last quarter of 1973.

Uganda.—Kilembe Mines, Ltd., 70% owned by Falconbridge Nickel Mines Ltd. (Canada), processed 821,000 tons of ore to produce 10,000 tons of blister copper compared with 14,000 tons in 1972. Production was severely restricted in the latter half of the year due to numerous breakdowns in the electric furnace. There was also a scarcity of trained personnel and a supply problem. Ore reserves at yearend in the proven and probable category were estimated to be 5.8 million tons of 1.95% copper.

Zaire.—La Générale des Carrières et des Mines du Zaire (Gécamines), the Government-owned mining company, increased copper output 8% to 508,000 tons. A \$250 million expansion program designed to increase production of copper to about 625,000 tons by 1978 was started. Included in the program were the opening of two open pit mines, a new concentrator, a flash

smelting plant, and a refinery. An additional expansion is planned to increase capacity to about 660,000 tons copper output by 1980.

A joint Japanese corsortium, Zairian Government concern, Société de Développement Industriel et Minièr du (SODIMIZA), completed the first full year of operating the Mushoshi mine in Shaba Province. Technical difficulties continued to hamper production which was approximately 30,000 tons of copper contained in concentrates, about 70% of rated capacity. A second mine site at Kinsenda is in preliminary stages of development but a firm schedule for production has not been determined. Exploration was conducted at two and Kilelalocations-Mokambo Balanda.

Société Minière de Tenke-Fungurume (SMTF), a consortium of companies which includes Amoco Minerals Co., Charter Consolidated Ltd., and Leon Tempelsman & Son Inc., continued feasibility studies on mining copper deposits in their concession area of Shaba Province. The mining-milling-refining complex with the related infrastructure for a production capacity of about 150,000 tons of copper per year is estimated to cost \$500 million to \$600 million. Production is planned for 1977 to coincide with completion of the Inga-Shaba power transmission line.

Zambia.—In January, Rhodesia closed the Zambia/Rhodesia border to Zambian imports, and the Government of Zambia decided to discontinue the use of routes through Rhodesia for all of its trade. A shift to alternate routes, chiefly an expansion of the road service to Dar es Salaam, Tanzania and Mombasa, Kenya and the rail route to Lobito, Angola caused little disruption in the export of copper. However, the reorganized routes for imports resulted in additional transport costs, delay in arrival of some supplies, and occasional spot shortages.

In August, the President of Zambia announced measures that will have a major impact on the copper mining industry. The provisions included redeeming outstanding external bonds issued in payment for the 51% ownership of the copper mines acquired by Zambia in 1970; making the dividends for minority owners subject to exchange control regulations; making the Minister of Zambia responsible for mines chairman of the two copper mining com-

panies and having the Government appoint their managing directors; and establishing a new marketing company wholly owned by the Government.

Roan Consolidated Mines, Ltd. (RCM), operated the Mufulira, Chibuluma, Chambishi, Kalengwa, and Luanshya mines that produced 307,000 tons of refined copper in the year ended June 30, 1973, compared with 268,000 tons in the previous year. Rehabilitation of the Mufulira mine continued and by yearend was at 80% of the capacity prior to the 1970 cave-in and flooding.

Luanshya production continued to be hampered by poor ground conditions which both slowed the mining rate and increased dilution of the ore. The Baluba extension was brought into production in January but oxide ore from the upper levels caused handling and concentrating difficulties during the year. The Chibuluma mine also experienced mining problems and a lower ore grade. Exploration at Chibuluma West increased ore reserves by over 4 million tons and a new shaft to exploit this area is planned. At the Chambishi mine, a conveyor system from the open pit and additions to the crushing-concentrating plant were completed; also development for underground mining continued.

Consolidated Copper Mines Rokana, the through (NCCM), Chingola, and Konkola Divs., operated copper mines, a smelter, and a refinery. For the year ending March 31, 1973, output of refined copper increased 10% to 486,000 tons. Production in 1974 is projected to decline to about 455,000 tons as a consequence of production disruptions during implementation of an expansion program designed to achieve an annual rate of 550,000 tons by mid-1975. At the Rokana Div. construction of the oxide concentrator and development of the Mindola North open pit to provide feed to the concentrator were proceeding toward the scheduled yearend 1973 completion. The introduction of periodic current reversal in the refinery tankhouse to increase capacity was delayed due to technical problems but was expected to be operational late in 1973. At the Chingola Div. the Nchanga pit was extended to the east, the Chingola "C" pit was brought into production, and the "C" shaft deepening was completed. The leach precipitation plant operation was curtailed early in 1973 owing to a shortage of acid. Initial output of the solvent extraction-ion exchange process plant began in August 1973 and was expected to be fully operational by mid-1974. The level of produc-

tion, shaft sinking, and other underground developments continued at a satisfactory rate at Konkola despite difficult ground and water problems.

## **TECHNOLOGY**

Articles published on copper resources included results of research on geologic comparisons for most producing porphyry copper deposits of South America; a statistical analysis of physical dimensions and economic characteristics of 58 commercial porphyry deposits to provide assistance in exploration planning, engineering studies, and financial analysis; and an evaluation, in terms of geologic parameters, of the apparent variation in copper, molybdenum, and gold in porphyry copper deposits. Research was conducted on the phase relationships of the copper-antimony sulfide mineral, tetrahedrite.

A study was made to evaluate the potential supply of copper from identified domestic resources that could be produced at various copper prices and the rates of return on the required capital investment.6 Other mineral extraction studies included an estimate of production costs to mine a group of vein copper deposits in Alaska,7 the influence of rock fracture patterns on the cavability of a copper ore,8 a simulated in situ leaching technology for a deeply buried sulfide deposit, and a description of the recovery of byproducts related to copper production.10 Chemical and physical property analysis of tailings and mine waste at a copper mine were determined in a planned program to improve stabilization and revegetation of tailing dikes.11

Research related to copper pyrometallurgy included a study of oxidizing conditions during copper smelting to predict the optimum quantity of converter slag to be recycled to the reverberatory furnaces 12 and use of pure oxygen in an experimental furnace to produce blister copper and a concentrated SO<sub>2</sub> gas from copper sulfide concentrate.13 The Smelter Control Research Association (SCRA) concluded from information obtained in its pilot plant studies and a review of commercial prototype systems in other industries that, at its present state of development, wet-limestone scrubbing is not a reliable process for removal of sulfur dioxide from copper reverberatory furnace gas. Accordingly, SCRA has decided to devote its future efforts to other

processes that offer promise of greater reliability and better sulfur recoveries.

Research was conducted on recovering copper from scrap by preferential melting in molten salt baths, 14 by leaching in a cupric ammonium carbonate solution, 15 and by the use of cryogenic techniques. 16

Tests, on an industrial scale, demonstrated the feasibility of using high-current densities of at least 480 amperes per square

- <sup>2</sup> Hollister, V. F. Regional Characteristics of Porphyry Copper Deposits of South America. Min. Eng., v. 25, No. 8, August 1973, pp. 51-56.
- <sup>3</sup> DeGeoffroy, J., and T. K. Wignall. Statistical Models for Porphyry-Copper-Molybdenum Deposits of the Cordilleran Belt of North and South America. Can. Min. and Met. Bull., v. 66, No. 733, May 1973, pp. 84–90.
- <sup>4</sup> Kesler, Stephen E. Copper, Molybdenum and Gold Abundances in Porphyry Copper Deposits. Econ. Geol., v. 68, No. 1, January-February 1973, pp. 106-112.
- <sup>5</sup>Tatsuka, K., and N. Morimoto. Composition Variation and Polymorphism of Tetrahedrite in the Cu-Sb-S System Below 400° C. Am. Mineralogist, v. 58, Nos. 5-6, May-June 1973, pp. 425-434.
- <sup>6</sup> Bennett, H. J., L. Moore, L. E. Welborn, and J. E. Toland. An Economic Appraisal of the Supply of Copper From Primary Domestic Sources. BuMines IC 8598, 1973, 156 pp.
- <sup>7</sup> Maloney, R. P., and R. C. Bottge. Estimated Costs to Produce Copper at Kennicott, Alaska. BuMines IC 8602, 1973, 35 pp.
- \*Mahtab, M. A., D. D. Bolstad, and F. S. Kendorski. Analysis of the Geometry of Fractures in San Manuel Copper Mine, Arizona. BuMines RI 7715, 1973, 24 pp.
- <sup>9</sup> Carnahan, T. G., and H. J. Heinen. Simulated In Situ Leaching of Copper From a Porphyry Ore. BuMines TPR 69, 1973, 11 pp.
- <sup>10</sup> Petrick, A., Jr., H. J. Bennett, K. E. Starch, and R. C. Weisner. The Economics of Byproduct Metals (In Two Parts). 1 Copper System. BuMines IC 8569, 1973, 105 pp.
- <sup>11</sup> Ludeke, K. L. Soil Properties of Materials in Copper Mine Tailing Dikes. Min. Cong. J., v. 59, No. 8, August 1973, pp. 30-37.
- 12 Oudiz, J. J. Control of Oxidizing Conditions in Copper Smelting. J. Metals, v. 25, No. 5, May 1973, pp. 22-25.
- <sup>13</sup> Worthington, R. B. Autogenous Smelting of Copper Sulfide Concentrate. BuMines RI 7705, 1973, 21 pp.
- <sup>14</sup> Leak, V. G., M. M. Fine, and H. Dolezal. Separating Copper From Scrap by Preferential Melting. Laboratory and Economic Evaluation. BuMines RI 7809, 1973, 48 pp.
- <sup>15</sup> Oden, L. L., A. Adams, and A. D. Fugate. Reducing Copper and Tin Impurities in Ferrous Scrap Recovered From Incinerated Municipal Refuse. BuMines RI 7776, 1973, 11 pp.
- <sup>16</sup> Valdez, E. G., K. C. Dean, and W. J. Wilson. Use of Cryogens to Reclaim Nonferrous Scrap Metals. BuMines RI 7716, 1973, 13 pp.

meter in electrowinning of copper.17 An article reviewed the factors involved in the choices of using various reducing agents such as wood, ammonia, natural gas, and propane for production of fire-refined copper.18

Research on the use of hydrometallurgy to recover copper was reported in papers describing the mechanism of copper cementation on iron in an aqueous solution;19 flash roasting of cement copper as part of a postulated process for refining cement copper by oxidation roasting, acid leaching, and electrowinning;23 dissolution of copper sulfide minerals in an aqueous chlorine solution;21 sulfation roasting of chalcopyrite concentrates, followed by a water or dilute acid leach;22 dissociation of chalcopyrite into simple sulfides by heating with elemental sulfur to enhance selective leaching of the copper;23 and use of a substituted quinoline reagent to extract copper from leach solutions of copper-nickel concentrates.24

Table 2.-Copper produced from domestic ores, by source

(Thousand short tons)

| Year | Mine  | Smelter | Refinery |
|------|-------|---------|----------|
| 1969 | 1,545 | 1,547   | 1,469    |
| 1970 | 1,720 | 1,605   | 1,521    |
| 1971 | 1,522 | 1,471   | 1,411    |
| 1972 | 1,665 | 1,649   | 1,680    |
| 1973 | 1,718 | 1,705   | 1,698    |

<sup>17</sup> Liekens, Henry A., and Philippe D. Charles. High Current Density Electrowinning. World Min., v. 26, No. 4, April 1973, pp. 40-43.

Refining. J. Metals, v. 25, No. 12, December 1973, pp. 35-38.

<sup>19</sup> Biswas, A. K., and J. G. Reid. Investigation of the Cementation of Copper on Iron at Elevated Temperatures. Inst. Min. and Met., v. 82, No. 802, September 1973, pp. C127-C131. Fisher, W. W., and R. D. Groves. Physical Aspects of Copper Cementation on Iron. BuMines RI 7761, 1973, 9 pp.

<sup>29</sup> Fisher, W. W., and R. D. Groves. Oxidation of Cement Copper by Flash Roasting. BuMines RI 7794, 1973, 11 pp.

<sup>21</sup> Groves, R. D., and P. B. Smith. Reactions of Copper Sulfide Minerals With Chlorine in an Aqueous System. BuMines RI 7801, 1973, 10 pp.

<sup>22</sup> Haskett, P. R., D. J. Bauer, and R. E. Lindstrom. Copper Recovery From Chalcopyrite by a Roast-Leach Procedure. BuMines TPR 67, 1973, 12 pp.

<sup>23</sup> Subramanian, K. N., and H. Kanduth. Activation and Leaching of Chalcopyrite Concentrate. Can. Min. and Met. Bull., v. 66, No. 734, June 1973, pp. 88-91.

<sup>24</sup> Ritcey, G. M. Recovery of Copper From Concentrated Solution by Solvent Extraction Using Kelex 100. Can. Min. and Met. Bull., v. 66, No. 732, April 1973, pp. 75-83.

Table 3.-Copper ore and recoverable copper produced, by mining method

(Percent)

|                                      | 0                          | pen pit                    | Underground                |                            |  |
|--------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--|
| Year                                 | Ore                        | Copper 1                   | Ore                        | Copper 2                   |  |
| 1969<br>1970<br>1971<br>1972<br>1973 | 88<br>89<br>88<br>85<br>89 | 84<br>84<br>82<br>80<br>78 | 12<br>11<br>12<br>15<br>11 | 16<br>16<br>18<br>20<br>22 |  |

Table 4.-Mine production of recoverable copper in the United States, by month

| Month                                                                                              | 1972                                                                      | 1973                                                                                 |
|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| January February March April June July                                                             | 131,306<br>140,106<br>147,458<br>140,714<br>144,623<br>137,566<br>123,176 | 136,641<br>135,050<br>151,336<br>149,893<br>151,598<br>146,998<br>129,706<br>141,785 |
| August           September           October           November           December           Total | 141,714<br>139,410<br>140,640<br>136,597<br>141,530                       | 141,785<br>139,878<br>153,299<br>140,844<br>140,912<br>1,717,940                     |

<sup>&</sup>lt;sup>1</sup> Includes copper from dump leaching. <sup>2</sup> Includes copper from in-place leaching.

Table 5.-Mine production of recoverable copper in the United States, by State (Short tons)

| State                                                                                                                                 | 1969                                                                                                                                    | 1970                                                                                                                                                  | 1971                                                                                                                                            | 1972                                                                                                                                               | 1973                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Arizona California Colorado Idaho Maine Michigan Missouri Montana Nevada New Mexico Pennsylvania Pennessee Jitah Other States 1 Total | 801,363<br>1,129<br>3,598<br>3,332<br>1,320<br>75,226<br>12,664<br>103,314<br>104,924<br>119,956<br>3,382<br>15,353<br>296,699<br>2,319 | 917,918<br>2,308<br>3,749<br>3,612<br>2,703<br>67,543<br>12,184<br>120,412<br>106,688<br>166,278<br>2,539<br>15,535<br>295,738<br>2,5600<br>1,719,657 | 820,171<br>515<br>3,938<br>3,776<br>2,510<br>56,005<br>8,445<br>88,581<br>96,928<br>157,419<br>3,349<br>18,916<br>268,451<br>3,179<br>1,522,183 | 908,612<br>598<br>3,944<br>2,942<br>1,220<br>67,260<br>11,509<br>123,110<br>101,119<br>168,034<br>2,611<br>11,310<br>259,507<br>3,064<br>1,664,840 | 927,277<br>363<br>3,121<br>3,621<br>1,107<br>72,221<br>10,273<br>132,466<br>93,702<br>204,742<br>1,845<br>8,500<br>256,589<br>2,107<br>1,717,940 |

<sup>&</sup>lt;sup>1</sup> Includes Oklahoma, Oregon, and Washington.

Table 6.—Twenty-five leading copper-producing mines in the United States in 1973, in order of output

| Rank                                 | Mine                                                           | County and State                                                   | Onwert                                                                                                                                                           |                                                                     |
|--------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
|                                      |                                                                |                                                                    | Operator                                                                                                                                                         | Source of copper                                                    |
| 1                                    |                                                                |                                                                    | Kennecott Copper Corp _                                                                                                                                          | Drecinitator mall                                                   |
| 2<br>3                               |                                                                |                                                                    |                                                                                                                                                                  | Silver ore. Copper ore. Copper ore and copper                       |
| 4<br>5<br>6<br>7<br>8<br>9           | Ray Pit<br>Pima<br>White Pine<br>Sierrita                      | Pinal, Ariz Pima, Ariz Ontonagon, Mich                             | The Anaconda Company Phelps Dodge Corp Kennecott Copper Corp Pima Mining Co White Pine Copper Co Duval Sierrita Corp Kennecott Copper Corp Kennecott Copper Corp | precipitates. Do.                                                   |
| 11<br>12                             | Twin Buttes<br>New Cornelia                                    | Pima, Ariz                                                         | The Anaconda Company<br>Phelps Dodge Corp                                                                                                                        | precipitates. Copper ore. Copper, gold-silver                       |
| 13                                   | Inspiration                                                    | Gila, Ariz                                                         | Inspiration Consolidated                                                                                                                                         | ores.<br>Copper ore and coppe                                       |
| 14                                   |                                                                |                                                                    | Copper Co.<br>American Smelting and                                                                                                                              | precipitates. Copper ore.                                           |
|                                      | Ruth Pit<br>Yerington                                          | White Pine, Nev<br>Lyon, Nev                                       | Refining Co. Kennecott Copper Corp - The Anaconda Company                                                                                                        | Do. Copper ore and coppe                                            |
| 17                                   | Silver Bell                                                    | Pima, Ariz                                                         | American Smelting and                                                                                                                                            | precipitates.                                                       |
| 20 ]<br>21 ]<br>22 (<br>23 (<br>24 ] | Mineral Park<br>Magma<br>Copper Queen<br>Continental<br>Bagdad | Mohave, Ariz Pinal, Ariz Cochise, Ariz Grant, N. Mex Yavapai, Ariz | Reining Co. The Anaconda Company Cities Service Co Duval Corp Magma Copper Co Phelps Dodge Corp UV Industries, Inc Bagdad Copper Corp                            | Do. Do. Do. Copper ore. Do. Do. Copper ore and copper precipitates. |

Table 7.-Mine production of recoverable copper in 1973, by method of treatment

|                                                | Ore treated              | Recoverabl                      | _                   |                                                |
|------------------------------------------------|--------------------------|---------------------------------|---------------------|------------------------------------------------|
| Method of<br>treatment                         | (thousand<br>short tons) | Thousand<br>pounds              | Percent<br>yield    | Remarks                                        |
| Copper ore: By concentration By smelting       | 272,688<br>337<br>16.973 | 2,893,091<br>9,433<br>1 165,788 | 0.53<br>1.40<br>.49 | See table 9.<br>See table 10.<br>See table 11. |
| By leaching  Total  Dump and in-place leaching | 289,998                  | 3,068,312<br>318,045            | .53<br>             | See table 11.                                  |
| Miscellaneous from cleanup, tailings,          |                          | 49,523                          |                     |                                                |
| and noncopper ores Total                       | XX                       | 3,435,880                       | XX                  |                                                |

Table 8.-Copper ore shipped directly to smelters or concentrated in the United States, by State in 1973, with copper, gold, and silver content in terms of recoverable metal

|                                          | Ore shipped                                                                                    | Recoverable metal content                                                                                       |                                                                        |                                                                                    | Value of                                                                                                     |                                                                          |
|------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
|                                          | or                                                                                             | Co                                                                                                              | pper                                                                   | Gold                                                                               | Silver                                                                                                       | gold and<br>silver per                                                   |
| State concentrated (thousand short tons) | Thousand pounds                                                                                | Percent                                                                                                         | (troy<br>ounces)                                                       | (troy<br>ounces)                                                                   | ton of ore                                                                                                   |                                                                          |
| Arizona                                  | 164,194<br>1<br>93<br>8,884<br>18,977<br>14,485<br>26,414<br>1,323<br>38,504<br>150<br>273,025 | 1,601,927<br>53<br>2,208<br>144,442<br>220,314<br>136,673<br>359,294<br>17,000<br>416,414<br>4,199<br>2,902,524 | 0.49<br>4.53<br>1.18<br>.81<br>.58<br>.47<br>.68<br>.64<br>.54<br>1.41 | 101,923<br>26<br>105<br>21,031<br>39,354<br>13,245<br>68<br>303,614<br><br>479,366 | 7,130,066<br>15,568<br>39,086<br>850,273<br>3,723,828<br>463,634<br>974,838<br>73,104<br>2,619,504<br>20,561 | \$0.17<br>42.37<br>1.19<br>.24<br>.61<br>.35<br>.14<br>.15<br>.95<br>.35 |

<sup>&</sup>lt;sup>1</sup> Copper-zinc ore.

Table 9.-Copper ore concentrated 1 in the United States, by State in 1973, with content in terms of recoverable copper

| State   | Ore<br>concen-<br>trated<br>(thou-                                             | Recoverable<br>copper<br>content                                                                          |                                                                |  |
|---------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--|
| Stave   | sand<br>short<br>tons)                                                         | Thousand pounds                                                                                           | Per-<br>cent                                                   |  |
| Arizona | 163,915<br>93<br>8,884<br>18,974<br>14,485<br>26,359<br>1,323<br>38,504<br>151 | 1,593,082<br>2,178<br>144,442<br>219,862<br>136,673<br>359,252<br>17,000<br>416,405<br>4,197<br>2,893,091 | 0.49<br>1.17<br>.81<br>.58<br>.47<br>.68<br>.64<br>.54<br>1.39 |  |

<sup>&</sup>lt;sup>1</sup> Includes following methods of concentration: "Dual process" (leaching followed by concentration); "LPF" (leach-precipitation-flotation); and froth flotation.

<sup>2</sup> Copper-zinc ore.

Table 10.-Copper ore shipped directly to smelters in the United States, by State in 1973, with content in terms of recoverable copper

|         | Ore                                            | shipped to sm                                                        | elters                                                |  |
|---------|------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------|--|
| State   | Short                                          | Recoverable copper                                                   |                                                       |  |
| Duale   | tons                                           | Pounds                                                               | Per-<br>cent                                          |  |
| Arizona | 278,955<br>588<br>524<br>2,843<br>54,500<br>31 | 8,844,059<br>53,331<br>30,381<br>452,335<br>41,975<br>9,348<br>1,219 | 1.59<br>4.54<br>2.90<br>7.96<br>1.04<br>15.08<br>1.32 |  |
| Total   | 337,487                                        | 9,432,648                                                            | 1.40                                                  |  |

<sup>&</sup>lt;sup>1</sup> Primarily smelter fluxing material.

XX Not applicable.

1 Includes 70,115,475 pounds of electrowon copper.

Table 11.—Copper precipitates (from dump or in-place leaching) shipped directly to smelters and copper ore leached (heap, vat, or tank) in the United States, by State in 1973, with content in terms of recoverable copper

| State                        | Precipitates<br>shipped<br>(short tons) | Recoverable<br>copper<br>content<br>(pounds) | Ore<br>leached<br>(short tons) | Recoverable<br>copper<br>content<br>(pounds) | Per-<br>cent                |
|------------------------------|-----------------------------------------|----------------------------------------------|--------------------------------|----------------------------------------------|-----------------------------|
| Arizona<br>Montana           | $80,511 \\ 28,977$                      | 119,057,841<br>44,338,703                    | 9,411,507                      | 1 126,650,951                                | 0.67                        |
| Nevada<br>New Mexico<br>Utah | 12,601<br>31,311                        | 17,757,186<br>48,952,027                     | $7,243,4\overline{49}$         | $31,791,9\overline{52}$                      | $.\overline{2}\overline{2}$ |
| Other States                 | 54,479<br>58                            | 87,865,914<br>73,315                         | 318,481                        | $7,345,1\overline{16}$                       | $1.\overline{15}$           |
| Total                        | 207,937                                 | 318,044,986                                  | 16,973,437                     | 165,788,019                                  | .49                         |

<sup>&</sup>lt;sup>1</sup> Includes 70,115,475 pounds of electrowon copper.

Table 12.—Copper ore smelted and copper ore concentrated in the United States, and average yield in copper, gold, and silver

| _                                    | Smelti                          | ng ore                               | Concentrating ore                                   |                                   | Total                                               |                                   |                                            |                                         |                                              |
|--------------------------------------|---------------------------------|--------------------------------------|-----------------------------------------------------|-----------------------------------|-----------------------------------------------------|-----------------------------------|--------------------------------------------|-----------------------------------------|----------------------------------------------|
| Year                                 | Thou-<br>sand<br>short<br>tons  | Yield<br>in<br>copper,<br>percent    | Thousand<br>short<br>tons <sup>1</sup> <sup>2</sup> | Yield<br>in<br>copper,<br>percent | Thousand<br>short<br>tons 1                         | Yield<br>in<br>copper,<br>percent | Yield<br>per ton<br>in gold,<br>ounce      | Yield<br>per ton<br>in silver,<br>ounce | Value<br>per ton<br>in gold<br>and<br>silver |
| 1969<br>1970<br>1971<br>1972<br>1973 | 485<br>542<br>453<br>484<br>337 | 2.17<br>3.51<br>1.76<br>1.68<br>1.40 | 204,704<br>235,586<br>222,121<br>248,663<br>272,688 | 0.62<br>.60<br>.56<br>.55         | 223,752<br>257,729<br>242,656<br>265,831<br>289,998 | 0.60<br>.61<br>.55<br>.55         | 0.0028<br>.0023<br>.0022<br>.0019<br>.0018 | 0.065<br>.067<br>.059<br>.059           | 0.23<br>.20<br>.18<br>.21                    |

 $<sup>^1</sup>$  Includes some ore classed as copper-zinc and minor amount of tailings (1971 excludes tailings).  $^2$  Excludes tank or vat and heap leaching. (See tables 7 and 11).

Table 13.—Copper produced by primary smelters in the United States

| Year | Domestic  | Foreign | Sec-<br>ondary | Total     |
|------|-----------|---------|----------------|-----------|
| 1969 | 1,547,496 | 37,995  | 77,329         | 1,6°2,820 |
| 1970 | 1,605,265 | 36,073  | 78,897         | 1,720,235 |
| 1971 | 1,470,815 | 29,181  | 66,333         | 1,566,329 |
| 1972 | 1,649,130 | 41,263  | 69,017         | 1,759,410 |
| 1973 | 1,705,065 | 38,898  | 77,815         | 1,821,778 |

Table 14.-Primary and secondary copper produced by primary refineries in the United States

(Short tons)

|                                                                                                  | 1969                                                  | 1970                                                  | 1971                                       | 1972                                                  | 1973                                                  |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|--------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| PRIMARY                                                                                          |                                                       |                                                       |                                            |                                                       |                                                       |
| From domestic ores, etc.:   Electrolytic  Lake  Casting  Total  From foreign ores, etc.:   Total | 1,296,749<br>76,417<br>95,723<br>1,468,889<br>225,714 | 1,359,751<br>63,091<br>95,341<br>1,521,183<br>215,088 | 1,274,084<br>57,218<br>79,221<br>1,410,523 | 1,520,943<br>70,025<br>89,444<br>1,680,412<br>160,781 | 1,536,819<br>78,179<br>83,339<br>1,698,337<br>159,786 |
| ElectrolyticCasting and best select                                                              | 48,212                                                | 28,823                                                | 14,046                                     | 32,040                                                | 10,365                                                |
| Total refinery production of primary copper                                                      | 1,742,815                                             | 1,765,094                                             | 1,591,782                                  | 1,873,233                                             | 1,868,488                                             |
| SECONDARY Electrolytic <sup>2</sup>                                                              | 410,749<br>2,094                                      | 433,394<br>17,623                                     | 323,913<br>18,599                          | 341,581<br>16,667                                     | 377,523<br>14,290                                     |
| Total secondary                                                                                  | 412,843                                               | 451,017                                               | 342,512                                    | 358,248                                               | 391,813                                               |
| Grand total                                                                                      | 2,155,658                                             | 2,216,111                                             | 1,934,294                                  | 2,231,481                                             | 2,260,301                                             |
| G                                                                                                |                                                       |                                                       |                                            |                                                       |                                                       |

<sup>&</sup>lt;sup>1</sup>The separation of refined copper into metal of domestic and foreign origin is only approximate, as accurate separation is not possible at this stage of processing.
<sup>2</sup>Includes copper reported from foreign scrap.

Table 15.—Copper cast in forms at primary refineries in the United States

|             | 197                            | 2            | 1973                           |              |  |
|-------------|--------------------------------|--------------|--------------------------------|--------------|--|
| _           | Thou-<br>sand<br>short<br>tons | Per-<br>cent | Thou-<br>sand<br>short<br>tons | Per-<br>cent |  |
| Billets     | 118                            | 5            | 133                            | 6            |  |
| Cakes       | 124                            | 6            | 147                            | 6            |  |
| Cathodes    | 552                            | 24           | 584                            | 26           |  |
| Ingots and  | 002                            |              |                                |              |  |
| ingot bars  | 218                            | 10           | 196                            | 9            |  |
| Wire bars   | 1.181                          | 53           | 1,179                          | 52           |  |
| Other forms | 38                             | 2            | 21                             | 1            |  |
| Total       | 2,231                          | 100          | 2,260                          | 100          |  |

Table 16.-Production, shipments, and stocks of copper sulfate

(Short tons)

|                                      | Produ                                          | ction                                        | Ship-                                          | Stocks                                    |
|--------------------------------------|------------------------------------------------|----------------------------------------------|------------------------------------------------|-------------------------------------------|
| Year                                 | Quantity                                       | Copper<br>content                            | ments                                          | Dec. 31 1                                 |
| 1969<br>1970<br>1971<br>1972<br>1973 | 50,568<br>45,352<br>34,648<br>38,052<br>43,360 | 12,642<br>11,338<br>8,662<br>9,513<br>10,840 | 49,556<br>40,324<br>36,852<br>37,964<br>44,092 | 4,248<br>8,812<br>5,936<br>5,828<br>4,580 |

<sup>&</sup>lt;sup>1</sup>Some small quantities are purchased and used by producing companies, so that the figures given do not balance exactly.

Table 17.-Byproduct sulfuric acid 1 (100% basis) produced in the United States

| Year | Copper<br>plants 2 | Lead and<br>zinc<br>plants <sup>3</sup> | Total     |
|------|--------------------|-----------------------------------------|-----------|
| 1969 | 685,775            | 1,086,938                               | 1,772,713 |
| 1970 | 747,784            | 1,090,817                               | 1,838,601 |
| 1971 | 803,284            | 971,946                                 | 1,775,230 |
| 1972 | 1,010,614          | 859,103                                 | 1,869,717 |
| 1973 | 1,088,322          | 4 966,128                               | 2,054,450 |

<sup>&</sup>lt;sup>1</sup> Includes acid from foreign materials. <sup>2</sup> Excludes acid made from pyrites concentrates in Arizona, Montana, Tennessee, and

Utah.

3 Excludes acid made from native sulfur.
4 Includes 146,591 tons produced at lead

Table 18.-Secondary copper produced in the United States

|                                                       | 1969               | 1970               | 1971               | 1972               | 1973                 |
|-------------------------------------------------------|--------------------|--------------------|--------------------|--------------------|----------------------|
| Copper recovered as unalloyed copper                  | 514,593<br>860,900 | 521,137<br>726,465 | 429,095<br>771,025 | 447,409<br>853,564 | 484,623              |
| Total secondary copperSource:                         | 1,375,493          | 1,247,602          | 1,200,120          | 1,300,973          | 827,682<br>1,312,305 |
| New scrap Old scrap Percentage equivalent of domestic | 800,603<br>574,890 | 743,531<br>504,071 | 754,963<br>445,157 | 842,779<br>458,194 | 870,464<br>441,841   |
| Includes conner in the sixty                          | . 89               | 73                 | 79                 | 78                 | 79                   |

<sup>&</sup>lt;sup>1</sup> Includes copper in chemicals, as follows: 1969—3,824; 1970—2,525; 1971—3,206; 1972—3,036; and 1973—3,704.

Table 19.—Copper recovered from scrap processed in the United States by kinds of scrap and form of recovery

(Short tons)

| Kind of scrap                                                    | 1972                                      | 1973                                      | Form of recovery                                                                     | 1972                                       | 1973                                       |
|------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------|
| New scrap: Copper-base Aluminum-base Nickel-base Zinc-base Total | 829,819<br>12,799<br>146<br>15<br>842,779 | 856,132<br>14,187<br>131<br>14<br>870,464 | As unalloyed copper: At primary plants _ At other plants _ Total In brass and bronze | 358,248<br>89,161<br>447,409               | 391,81<br>92,810<br>484,623                |
| Old scrap:  Copper-base Aluminum-base Nickel-base Tin-base       | 451,490<br>6,200<br>400<br>10             | 435,109<br>5,939<br>741<br>10             | In alloy iron and steel In aluminum alloys In other alloys In chemical compounds     | 815,191<br>2,791<br>32,346<br>198<br>3,038 | 783,399<br>2,712<br>37,581<br>286<br>3,704 |
| Zinc-base  Total  Grand total                                    | 94<br>458,194<br>1,300,973                | 42<br>441,841<br>1,312,305                | Total<br>Grand total                                                                 | 853,564<br>1,300,973                       | 827,682<br>1,312,305                       |

Table 20.—Copper recovered as refined copper, in alloys and in other forms from copper-base scrap processed in the United States

| Recovered by—                                                                                             | From new scrap                                           |                                                          | From old scrap                                             |                                                            | Total                                                         |                                                               |
|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|
| α ,                                                                                                       | 1972                                                     | 1973                                                     | 1972                                                       | 1973                                                       | 1972                                                          | 1973                                                          |
| Secondary smelters Primary copper producers Brass mills Foundries and manufacturers Chemical plants Total | 64,135<br>211,711<br>535,643<br>17,797<br>533<br>829,819 | 68,652<br>204,106<br>562,291<br>20,434<br>649<br>856,132 | 229,322<br>146,537<br>32,435<br>40,639<br>2,557<br>451,490 | 218,903<br>122,855<br>44,500<br>46,121<br>2,730<br>435,109 | 293,457<br>358,248<br>568,078<br>58,436<br>3,090<br>1,281,309 | 287,555<br>326,961<br>606,791<br>66,555<br>3,379<br>1,291,241 |

Table 21.—Production of secondary copper and copper-alloy products in the United States (Short tons)

| Item produced from scrap                          | 1972      | 1973      |
|---------------------------------------------------|-----------|-----------|
| UNALLOYED COPPER PRODUCTS                         |           |           |
| Refined copper by primary producers               | 358,248   | 391,813   |
| Refined copper by secondary smelters              | 64,995    | 73,310    |
| Copper powder                                     | 24,073    | 19,438    |
| Copper castings                                   | 93        | 62        |
| Total                                             | 447,409   | 484,623   |
|                                                   |           |           |
| ALLOYED COPPER PRODUCTS                           |           |           |
| Brass and bronze ingots:                          | 40,994    | 41,949    |
| Tin bronzes<br>Leaded red brass and semired brass | 154,607   | 149,165   |
|                                                   | 26.803    | 29,368    |
| High-leaded tin bronzeYellow brass                | 21,027    | 20,857    |
| Manganese bronze                                  | 10,596    | 12,126    |
| Aluminum bronze                                   | 7.117     | 6,963     |
| Nickel silver                                     | 3,657     | 3,744     |
| Silicon bronze and brass                          | 4,071     | 4,586     |
| Copper-base hardeners and master alloys           | 11,041    | 15,724    |
| Total                                             | 279.913   | 284,482   |
| Brass-mill products                               | 732,502   | 764,372   |
| Brass and bronze castings                         | 36,244    | 36,570    |
| Brass powder                                      | 560       | 906       |
| Copper in chemical products                       | 3,038     | 3,704     |
| Grand total                                       | 1,499,666 | 1,574,657 |

Table 22.—Composition of secondary copper-alloy production (Short tons)

Alumi-Tin Lead Zinc Nickel Total Copper num Brass and bronze production: 1
1972 \_\_\_\_\_
1973 \_\_\_\_\_ 56 101 279,913 284,482 33,906 29,357 560 210,082 19,106 16,203 17,968 1,309 12,530 223,217 Secondary metal content of brass-mill products:
1972
1973 732,502 764,372  $^{4,112}_{10,470}$ 44 99 568,081 3,609 3,584 156,158 149,188 600,543 488 Secondary metal content of brass and bronze castings: 36,244 36,570 29,942 30,422 1,030 2,450 2,330 2,758 2,711 1972 1973 1,026 -----

 $<sup>^1\,\</sup>mathrm{About}$  93% from scrap and 7% from other than scrap.

Table 23.-Stocks and consumption of purchased copper scrap in the United States in 1973

| Class of consumer and type of scrap                                        | Stocks              |                   | . <u> </u>          | Stocks             |                 |              |
|----------------------------------------------------------------------------|---------------------|-------------------|---------------------|--------------------|-----------------|--------------|
|                                                                            | Jan. 1              |                   | New scrap           | Old<br>scrap       | Total           | Dec. 3       |
| SECONDARY SMELTERS                                                         |                     |                   |                     |                    |                 |              |
| No. 1 wire and heavy copper<br>No. 2 wire, mixed heavy and                 | 1,992               | 28,123            | 4,892               | 23,166             | 28,058          | 2,05         |
| light copperComposition or red brass                                       | 3,195               | 77,128            | 21,942              | 55,427             | 77,369          | 2,95         |
| Railroad-car boxes                                                         | 3,850               | 79,226            | 18,672              | 60,497             | 79,169          | 3,90         |
| 1 enow brass                                                               | 354<br>5,214        | 2,445             | ~ a==               | 2,395              | 2,395           | 40           |
| Cartridge cases and byess                                                  | 69                  | 60,620<br>115     | 7,357               | 53,134             |                 | 5,34         |
| Auto radiators (unsweated)                                                 | 2,935               | 58.919            |                     | 144<br>58,220      |                 | 4            |
| Dionze                                                                     | 2,179               | 28,039            | 4,820               | 23,324             |                 | 3,63<br>2,07 |
| Nickel silver and cupronickel                                              | 639                 | 4,664             | 582                 | 4,099              |                 | 62           |
| Low brassAluminum bronze                                                   | 676                 | 3,005             | 2,544               | 815                | 3,359           | 32           |
| Low-grade scrap and residues                                               | $\frac{137}{9,028}$ | 904               | 817                 | 100                |                 | 12           |
| Total                                                                      | 30,268              | 63,175            | 49,289              | 9,887              | 59,176          | 13,02        |
|                                                                            | 30,268              | 406,363           | 110,915             | 291,208            | 402,123         | 34,50        |
| PRIMARY PRODUCERS                                                          |                     |                   |                     |                    |                 |              |
| No. 1 wire and heavy copper<br>No. 2 wire, mixed heavy and                 | 3,076               | 128,679           | 64,048              | 64,883             | 128,931         | 2,82         |
| light copperRefinery brass                                                 | 3,908               | 199,981           | 150,895             | 44,917             | 195,812         | 8,07         |
| Low-grade scrap and residues                                               | 28,761              | 5,513<br>263,006  | 3,812               | 1,300              |                 | 18,19        |
| Total                                                                      | 35,745              |                   | 91,520              | 182,455            | 273,975         |              |
| BRASS MILLS 1                                                              | 35,145              | 597,179           | 310,275             | 293,555            | 603,830         | 29,09        |
| No. 1 wire and heavy copper                                                |                     |                   |                     |                    |                 |              |
| No. 2 wire, mixed heavy and<br>light copper                                | 8,168<br>1,709      | 228,083           | 189,041             | 39,042             | 228,083         | 16,66        |
| iellow brass                                                               | 16,973              | 60,275 $340,110$  | 58,407<br>340,110   | 1,868              | 60,275          | 3,88         |
| Cartridge cases and brass                                                  | 7,412               | 88,909            | 83,112              | $5,7\overline{97}$ | 340,110         | 20,95        |
| bronze                                                                     | 732                 | 5,492             | 5,492               |                    | 88,909<br>5,492 | 5,60         |
| Nickel silver and cupronickel                                              | 5,589               | 28,208            | 28,208              |                    | 28,208          | 86<br>3,71   |
| Low brassAluminum bronze                                                   | 6,538               | 25,315            | 25,315              |                    | 25,315          | 4,43         |
|                                                                            |                     | 322               | 322                 |                    | 322             |              |
|                                                                            | 47,244              | 776,714           | 730,007             | 46,707             | 776,714         | 56,14        |
| FOUNDRIES, CHEMICAL PLANTS, AND OTHER MANUFACTURERS                        |                     |                   |                     |                    |                 |              |
| No. 1 wire and heavy copper<br>No. 2 wire, mixed heavy and                 | 2,464               | 37,757            | 13,203              | 23,295             | 36,498          | 3,72         |
| light copperComposition or red brass                                       | 1,202               | 13,151            | 3,819               | 9,091              | 12,910          | 1,44         |
|                                                                            | $^{1,065}_{927}$    | 5,247             | 2,650               | 2,873              | 5,523           | 789          |
|                                                                            | 653                 | 6,273<br>4,785    | 0.070               | 7,032              | 7,032           | 168          |
| Auto radiators (unsweated)                                                 | 988                 | 11,118            | 2,278               | 2,496 $10,524$     | 4,774           | 66           |
| JIONEC                                                                     | 196                 | 877               | 174                 | 765                | 10,524<br>939   | 1,582<br>13  |
| Nickel Silver and cupronickel                                              | 3                   | 4                 |                     | 6                  | 6               | 19           |
| Low brass                                                                  | 28                  | 770               | 322                 | 423                | 745             | 5            |
| Aluminum bronze<br>Low-grade scrap and residues                            | 59                  | 720               | 302                 | 422                | 724             | 5            |
| Total                                                                      |                     | 1,009             | 230                 | 557                | 787             | 410          |
|                                                                            | 7,779               | 81,711            | <sup>2</sup> 22,978 | 257,484            | 280,462         | 9,028        |
| GRAND TOTAL                                                                | 45 50-              |                   |                     |                    |                 |              |
| No. 1 wire and heavy copper<br>No. 2 wire, mixed heavy and<br>light copper | 15,700<br>10,014    | 422,642           | 271,184             | 150,386            | 421,570         | 25,26        |
| light copper                                                               | 4.915               | 350,535<br>84,473 | $235,063 \\ 21,322$ | 111,303            | 346,366         | 16,360       |
| tanioad-car boxes                                                          | 1,281               | 8,718             | 41,044              | $63,370 \\ 9,427$  | 84,692<br>9,427 | 4,696<br>572 |
| tellow brass                                                               | 22,840              | 405,515           | 349,745             | 55,630             | 405,375         | 26.966       |
| Briringe cases and broce                                                   | 7,481               | 89,024            | 83,112              | 5,941              | 89,053          | 5,64         |
| Auto radiators (unsweated)                                                 | 3,923               | 70,037            |                     | 68,744             | 68,744          | 5,21         |
| Bronze<br>Nickel silver and cupronickel                                    | 3,107               | 34,408            | 10,486              | 24,089             | 34,575          | 3,07         |
| JOW Drass                                                                  | $6,231 \\ 7,242$    | 32,876            | 28,790              | 4,105              | 32,895          | 4,340        |
| luminum bronze                                                             | 319                 | 29,090<br>1,946   | 28,181<br>1,441     | 1,238              | 29,419          | 4,809        |
| ow-grade scrap and residues 3                                              | 37,983              | 332,703           | 1,441               | 522<br>194,199     | 1,963           | 188          |
| Total                                                                      |                     |                   |                     |                    | 339,050         | 31,636       |
|                                                                            | 121,000             | 1,001,307         | 1,174,175           | 688,954            | 1,863,129       | 128,772      |

<sup>&</sup>lt;sup>1</sup> Brass-mill stocks include home scrap; purchased scrap consumption assumed equal to receipts, so lines in brass-mill and grand total sections do not balance.

<sup>2</sup> Of the totals shown, chemical plants reported the following: Unalloyed copper scrap, 681 tons new and 2,857 tons old.

<sup>3</sup> Includes refinery brass.

Table 24.—Consumption of copper and brass materials in the United States by principal consuming group

|                                                                                        | ,                    |                                         |                       |                                                                   |                                         |                                                        |  |
|----------------------------------------------------------------------------------------|----------------------|-----------------------------------------|-----------------------|-------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------|--|
| Year and item                                                                          | Primary<br>producers | Brass<br>mills                          | Wire<br>mills         | Foundries,<br>chemical<br>plants, and<br>miscellane-<br>ous users | Secondary<br>smelters                   | Total                                                  |  |
| 1972:  Copper scrap  Refined copper <sup>1</sup> Brass ingot  Slab zinc  Miscellaneous | 533,729<br><br><br>  | 746,764<br>667,218<br>16,691<br>179,781 | 1,526,296             | 71,699<br>35,400<br>2284,581<br>2,613<br>200                      | 429,082<br>9,953<br><br>9,435<br>10,016 | 1,781,274<br>2,238,867<br>301,272<br>191,829<br>10,216 |  |
| Miscellaneous                                                                          | 603,830<br><br><br>  | 776,714<br>714,438<br>14,473<br>185,878 | 1,672,255<br><br><br> | 80,462<br>39,760<br>2285,531<br>3,137<br>200                      | 402,123<br>10,595<br>8,635<br>12,987    | 1,863,129<br>2,437,048<br>300,004<br>197,650<br>13,187 |  |

 $<sup>^{1}\,\</sup>mathrm{Detailed}$  information on consumption of refined copper will be found in table 28.  $^{2}\,\mathrm{Shipments}$  to foundries by smelters plus decrease in stocks at foundries.

Table 25.-Foundry consumption of brass ingot, by type, in the United States (Short tons)

| (Snot                                                                 | (cuita)                                      |                                   |                                  |                                   |                                   |
|-----------------------------------------------------------------------|----------------------------------------------|-----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|
|                                                                       | 1969                                         | 1970                              | 1971                             | 1972                              | 1973                              |
| Tin bronzes                                                           | 43,772<br>155,895                            | 47,474<br>128,798                 | 44,279<br>132,474                | 52,365<br>148,182                 | 61,254<br>139,649                 |
| Tin bronzes Leaded red brass and semired brass High-leaded tin bronze | 20,278)                                      | 79,960                            | 107,700                          | 114,332                           | 133,493                           |
| Yellow brass Manganese bronze Hardeners and master alloys             | 32,998)<br>10,680<br>4,315<br>4,041<br>8,498 | 14,545<br>5,196<br>3,265<br>7,903 | 8,555<br>5,545<br>3,466<br>7,478 | 10,229<br>7,257<br>2,838<br>6,947 | 11,262<br>6,879<br>2,908<br>8,488 |
| Aluminum bronze                                                       | 000 477                                      | 287,141                           | 309,497                          | 342,150                           | 363,928                           |

Table 26.—Foundry consumption of brass ingot by types, refined copper, and copper scrap, in the United States in 1973, by geographic division and State

|                                                                                                 |                       |                                               |                                 | (Silot t tolls)     | •                        |                            |                  |                         |                         |                 |                         |
|-------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------|---------------------------------|---------------------|--------------------------|----------------------------|------------------|-------------------------|-------------------------|-----------------|-------------------------|
| Geographic division and State                                                                   | Tin<br>bronzes        | Leaded<br>red brass<br>and semi-<br>red brass | High<br>leaded<br>tin<br>bronze | Yellow<br>brass     | Man-<br>ganese<br>bronze | Hardeners<br>and<br>master | Nickel<br>silver | Alumi-<br>num<br>bronze | Total<br>brass<br>inget | Refined copper  | Copper<br>scrap<br>con- |
| New England: Connecticut Massachusetts Maine. New Hannshive Dr. 34                              | 791                   | 3,766<br>5,543                                | 93                              | 1,064               | 86                       | 77                         | 1100             | 400                     |                         | sumed<br>598    | sumed<br>753            |
| Island, Vermont                                                                                 | 136                   | 2,321                                         | 73                              | 230                 | 257                      | į                          | 9                | 24<br>42 14             | 8,703                   | 480             | 72                      |
| Middle Atlantic:                                                                                | 2,749                 | 11,630                                        | 409                             | 1,775               | 683                      | 47                         | 375              | 465                     | 18,133                  | 1.090           | 1 89 K                  |
| New Jersey<br>New York<br>Pennsylvania                                                          | 781<br>4,998<br>8,446 | 1,796<br>4,241<br>12,682                      | 66<br>832<br>1.264              | 220<br>633<br>1,696 | 216                      | 143                        | 87<br>235        | 91                      | 3,265<br>12,628         | 2,935           | 2,961                   |
| East North Central:                                                                             | 14,225                | 18,719                                        | 2,162                           | 2,549               | 2,383                    | 1,550                      | 510<br>832       | 1,464                   | 28,322                  | 6,271           | 6,626                   |
| Illinois<br>Indiana<br>Wichigan                                                                 | 3,329<br>996          | 18,158<br>11,102                              | 688<br>453                      | 810                 | 840                      | 305                        | 25               | 4,069                   | 25,224                  | 1.610           | 3 494                   |
| Ohio Wisconsin                                                                                  | 27,495                | $\{12,162\}$ $\{13,086\}$                     | 19,882                          | A                   | (2,221)                  | 2,144<br>678               | 284<br>284       | 49<br>2,280}            | 16,031                  | 1,185<br>§9,868 | 9,917                   |
| Total                                                                                           | 32,894                | 63.144                                        | 2,223                           | 1,621<br>2 W        | 168                      | 1,375                      | 453              | 265<br>265              | 15,815                  | (3,228<br>5,377 | 9,529                   |
| North Central:                                                                                  |                       |                                               | 1016                            | *                   | 4,820                    | 4,502                      | 784              | 4,208                   | 226,603                 | 21,268          | 24,958                  |
| Jowa, Kansas, Minnesota<br>Missouri, Nebraska, South Dakota<br>Total                            | 325<br>222            | 5,545<br>1,179                                | 79<br>598                       | 286<br>1,347        | 854)<br>330 f            | 89                         | 21               | 136                     | 7,308                   | 338             | 1,721                   |
| Atlantic:                                                                                       | 94.(                  | 6,724                                         | 677                             | 1,633               | 1,184                    | 89                         | 21               | 208                     | 11,062                  | 502             | 2,360                   |
| Delaware, District of Columbia,<br>Florida, Georgia, Maryland<br>North Carolina, South Carolina | 798                   | 1,059                                         | ŀ                               | 170                 | 141                      | 63                         | 767              | 190                     | 600                     |                 | 100                     |
| t Virg                                                                                          | 3,136                 | 4,933                                         | 319                             | 474                 | 136                      | 101                        | ; -              | 6                       | 7,000                   | 688             | 314                     |
| East South Central:                                                                             | 3,934                 | 5,992                                         | 819                             | 474                 | 277                      | 193                        | 495              | 339                     | 9,220                   | 564             | 3,895                   |
| Tennessee  West South Central: Arkansas. Louisians Oblehome                                     | 2,361                 | 12,222                                        | 1,067                           | 1,075               | 627                      | 84                         | 149              | 39                      | 17,614                  | 1,737           | 11,879                  |
| Texas                                                                                           | 2,145                 | 3,841                                         | 376                             | 2,654               | 395                      | 19                         | 149              | 1,006                   | 10,585                  | 1,313           | 1,907                   |

| 644                                                                   | 12,439              | 15,106 | 76,924    |
|-----------------------------------------------------------------------|---------------------|--------|-----------|
| 122                                                                   | 32<br>329           | 361    | 38,535    |
| 693                                                                   | 21,920<br>1,080     | 23,000 | 363,928   |
| ∞                                                                     | 261<br>154          | 415    | 8,483     |
|                                                                       | 94                  | 103    | 2,908     |
| က                                                                     | 85<br>328           | 413    | 6,879     |
| 118                                                                   | 666<br>109          | 775    | 11,262    |
| 42                                                                    | 1,913               | 1,914  | 2 W       |
| 9                                                                     | 113                 | 120    | 1 133,493 |
| 297                                                                   | 16,932              | 17,080 | 139,649   |
| 219                                                                   | 1,856               | 2,180  | 61,254    |
| Mountain: Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, Utah | Pacific: California | Total  |           |

W Withheld to avoid disclosing individual company confidential data. <sup>1</sup>Total includes yellow brass.
<sup>2</sup>Total includes high-leaded tin bronze.

Table 27.-Primary refined copper supply and withdrawals on domestic account (Short tons)

|                                                                                                      | 1969                 | 1970                           | 1971                            | 1972                           | 1973                           |
|------------------------------------------------------------------------------------------------------|----------------------|--------------------------------|---------------------------------|--------------------------------|--------------------------------|
| Production from domestic and foreign ores, etc<br>Imports <sup>1</sup><br>Stocks Jan. 1 <sup>1</sup> | 131,171<br>48,000    | 1,765,094<br>132,143<br>39,000 | 1,591,782<br>163,988<br>130,000 | 1,873,233<br>192,379<br>75,000 | 1,868,488<br>201,513<br>57,000 |
| Total available supply                                                                               | 1,921,986            | 1,936,237                      | 1,885,770                       | 2,140,612                      | 2,127,001                      |
| Copper exports <sup>1</sup> Stocks Dec. 31 <sup>1</sup>                                              |                      | 221,211<br>130,000             | 187,654<br>75,000               | 182,743<br>57,000              | 189,396<br>37,000              |
| Total Apparent withdrawals on domestic account 2                                                     | 239,269<br>1,683,000 | 351,211<br>1,585,000           | 262,654<br>1,623,000            | 239,743<br>1,901,000           | 226,396<br>1,901,000           |

Table 28.-Refined copper consumed by class of consumers

| Year and class<br>of consumer | Cathodes | Wire<br>bars            | Ingots<br>and<br>ingot<br>bars | Cakes<br>and<br>slabs | Billets             | Other  | Total     |
|-------------------------------|----------|-------------------------|--------------------------------|-----------------------|---------------------|--------|-----------|
| 1972:                         |          |                         |                                |                       |                     |        |           |
| Wire mills                    | 222,894  | 1.295.401               | w                              | W                     | w                   | 8.001  | 1,526,296 |
| Brass mills                   |          | 34,402                  | 119,710                        | 160,201               | 160,642             | 0,001  | 667.218   |
| Chemical plants               | ,        |                         | 35                             | 100,201               |                     | 819    | 854       |
| Secondary smelters            |          | $\overline{\mathbf{w}}$ | 4.129                          |                       | $\bar{\mathbf{w}}$  | 222    | 9.953     |
| Foundries                     |          | 1.494                   | 9,705                          | $\bar{\mathbf{w}}$    | ŵ                   | 1,236  | 15.225    |
| Miscellaneous 1               | 1,789    | 632                     | 7,860                          | 312                   | 797                 | 7.931  | 19,321    |
| Total                         | 425,338  | 1,331,929               | 141,439                        | 160,513               | 161,439             | 18,209 | 2,238,867 |
| 1973:                         |          |                         |                                |                       |                     |        |           |
| Wire mills                    | 334,317  | 1,315,130               | w                              | w                     | w                   | 22,808 | 1,672,255 |
| Brass mills                   |          | 37,985                  | 124,147                        | 193,094               | 172,752             | 350    | 714,438   |
| Chemical plants               |          | ,                       | 23                             |                       |                     | 1,202  | 1,225     |
| Secondary smelters            | 6,193    |                         | 4.212                          | w                     | w                   | 190    | 10.595    |
| Foundries                     | 2,230    | 1,241                   | 10,425                         | ŵ                     | $\ddot{\mathbf{w}}$ | 905    | 14,801    |
| Miscellaneous 1               | 2,375    | 1,675                   | 8,992                          | 351                   | 1,909               | 8.432  | 23,734    |
| Total                         | 531,225  | 1,356,031               | 147,799                        | 193,445               | 174,661             | 33,887 | 2,437,048 |

W Withheld to avoid disclosing individual company confidential data; included in "Other." <sup>1</sup> Includes iron and steel plants, primary smelters producing alloys other than copper, consumers of copper powder and copper shot, and miscellaneous manufacturers.

### Table 29.-Stocks of copper at primary smelting and refining plants in the United States, Dec. 31

(Thousand short tons)

| Year  | Refined copper 1 | Blister and<br>materials in<br>process of<br>refining <sup>2</sup> |
|-------|------------------|--------------------------------------------------------------------|
| 1969  | 39               | 291                                                                |
|       |                  |                                                                    |
| 1970  | 130              | 340                                                                |
| 1971  | 75               | 303                                                                |
| 1972  | 57               | 281                                                                |
| 1973, | 37               | 265                                                                |

 $<sup>^{1}\,\</sup>mathrm{May}$  include some copper refined from scrap.  $^{2}\,\mathrm{Includes}$  copper in transit from smelters in the United States to refineries therein.

May include some copper refined from scrap.
 Includes copper delivered by industry to the Government stockpiles.

Table 30.-Stocks of copper in fabricators' hands Dec. 31

| G                                                   |                                                 |                                                                                              |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| refined<br>copper 1                                 | purchases<br>of refined<br>copper from          | Working<br>stocks                                                                            | Unfilled sales to                        | Excess<br>stocks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (1)                                                 | producers                                       |                                                                                              | customers                                | over<br>orders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| F00 000                                             | (=)                                             | (3)                                                                                          | (4)                                      | booked:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 502,300<br>515,096<br>510,810<br>460,062<br>419,006 | 99,232<br>86,925<br>96,209<br>91,845<br>87,590  | 412,734<br>438,925<br>431,348<br>392,920                                                     | 256,299<br>156,007<br>187,688<br>178,121 | -67,501<br>7,089<br>-12,017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                     | (1)<br>502,300<br>515,096<br>510,810<br>460,062 | Stocks of refined copper 1   Unfilled purchases of refined copper from producers   (1)   (2) | Stocks of refined copper 1               | Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Comparison   Com |

<sup>&</sup>lt;sup>1</sup> Includes in-process metal and primary fabricated shapes. Also includes small quantities of refined copper held at refineries for fabricators' account.

<sup>2</sup> Columns (1) plus (2) minus (3) and minus (4) equal column (5).

Table 31.-Dealers' monthly average buying price for copper scrap and consumers' alloy-ingot prices at New York in 1973 (Cents per pound)

|                                                  | (Cents           | per pou        | nd)            |                | 19/3                    |                         |                         |
|--------------------------------------------------|------------------|----------------|----------------|----------------|-------------------------|-------------------------|-------------------------|
| No. 2 copper scrap                               | Jan.             | Feb.           |                | Mar,           | Apr.                    |                         |                         |
|                                                  | 31.84            | 35.68          | 19             | 2.93           |                         | May                     | June                    |
| No. 1 composition ingot                          | 32.50<br>52.87   | 33.29<br>56.56 | 37             | 7.45<br>2.41   | 44.21<br>40.21<br>63.33 | 44.50<br>40.50          | 46.50<br>40.50          |
| No. 2 copper scrap                               | July             | Aug.           | Sept.          | Oct.           | Nov.                    | 63.50                   | 63.69                   |
| No. 1 composition scrap  No. 1 composition ingot | $46.50 \\ 40.50$ | 52.07          | 58,50          | 61.77          |                         | Dec.                    | Average                 |
| Source: Metal Statistics, 1974.                  | 63.50            | 41.54<br>69.21 | 44.50<br>72.25 | 45.32<br>72.39 | 68.26<br>48.40<br>75.92 | 66.50<br>48.70<br>76.55 | 49.80<br>40.87<br>66.02 |
|                                                  |                  |                |                |                |                         |                         |                         |

Table 32.-Average monthly quoted prices of electrolytic copper for domestic delivered, in the United States and for spot copper at London (Cents per pound)

| Month                                      | Domestic                                                             | 1972                                                                 |                                                                               |                                                                      | 1000                                                        |                                                   |
|--------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------|
| MOHEN .                                    | Amani                                                                | delivered                                                            | London                                                                        | Domesti                                                              | 1973                                                        |                                                   |
|                                            | American<br>Metal                                                    | Metals                                                               | spot 1                                                                        | Domestic o                                                           | lelivered                                                   | T 1                                               |
| January                                    | Market                                                               | Week                                                                 | Metals<br>Week                                                                | American<br>Metal<br>Market                                          | Metals<br>Week                                              | Lond<br>spot<br>Meta                              |
| February                                   | 50.38                                                                | 50.32                                                                |                                                                               |                                                                      |                                                             | Wee                                               |
| pril lay une uly ugust ptember tober       | 50.66<br>52.62<br>52.62<br>52.62<br>52.62<br>50.67<br>50.62<br>50.62 | 50.60<br>52.57<br>52.57<br>52.57<br>52.57<br>50.63<br>50.61<br>50.61 | 48.84<br>50.42<br>52.51<br>51.33<br>50.16<br>48.06<br>46.91<br>47.46<br>48.09 | 52.41<br>54.55<br>59.85<br>60.12<br>60.12<br>60.12<br>60.12<br>60.12 | 52.39<br>54.57<br>59.81<br>60.08<br>60.08<br>60.08<br>60.08 | 50.<br>56.:<br>68<br>71.:<br>70.:<br>79.2<br>91.6 |
| cember                                     | 50.62<br>50.62<br>51.44                                              | 50.61<br>50.61                                                       | 46.57<br>45.62<br>46.34                                                       | 60.12<br>60.12                                                       | 60.08<br>60.08<br>60.16                                     | 87.7<br>93.6<br>102.9                             |
| Based on average monthly rat<br>Suspended. | 01.44                                                                | 51.24                                                                | 48.53                                                                         | 66.56<br>59.53                                                       | 66.37                                                       | 100.9                                             |
| Suspended monthly rat                      | tes of exchan                                                        | ~-                                                                   |                                                                               |                                                                      | 59.49                                                       | 80.86                                             |

Table 33.-U.S. exports of copper by class and country

| ter                          | (thousands) \$6,680 \$6,680 1,385 1,385 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,275 1,27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blister                      | Quantity (short tons) (short tons) (short tons) (short tons) (short tons) (1,099 (1,099 (1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,099 (1,1,09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ş                            | \$18,397<br>\$18,397<br>\$18,397<br>\$18,397<br>\$18,576<br>\$1,456<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$1,486<br>\$                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                              | Screan Screan (Short tons)   17,440   17,440   17,440   17,440   17,440   17,440   17,440   17,440   17,440   17,440   17,440   17,440   17,440   17,440   17,440   17,440   17,240   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   17,264   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                              | \$182,430<br>\$182,430<br>\$182,430<br>\$7,222<br>\$3,855<br>\$1,105<br>\$1,105<br>\$25,034<br>\$25,034<br>\$25,034<br>\$25,034<br>\$46,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,105<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,316<br>\$1,31         |
|                              | Refined (short tons)  (short tons)  182,743  4,718  4,718  2,301  12,767  1755  23,301  17,659  46,269  46,269  46,269  46,269  46,269  46,269  46,269  46,269  46,269  46,269  46,269  46,269  46,269  46,269  46,269  11,669  11,669  11,699  11,699  11,699  11,699  11,699  12,996  12,996  12,996  13,996  14,4  1,162  11,699  11,699  11,699  11,699  11,699  11,699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| o or carr                    | \$5,701<br>\$5,701<br>\$5,701<br>\$5,341<br>\$1,682<br>\$2,853<br>\$2,853<br>\$2,853<br>\$2,853<br>\$2,853<br>\$2,853<br>\$2,853<br>\$2,853<br>\$3,701<br>\$1,682<br>\$2,853<br>\$2,853<br>\$3,701<br>\$1,682<br>\$2,853<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,701<br>\$2,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3,853<br>\$3 |
| Table 33U.S. exports of cerr | Ash and residues (copper content) (copper content) (the (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (short tons) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Table 33                     | trates, trent) Value (Value Sands) (1) (1) (1) (255 26,068 2255 26,068 20,147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                              | Ore, concentrates, and matter (copper content) Quantity (Value) (short (short tons)) r 17,662 \$14,1  1 1 651 651 651 651 19,243 287 287 28,568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              | Year and country  72  Africa Africa Africa Begium-Luxembourg Brazil Conada Conada Conada Guatemala India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India India Ind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                              | Africant Para Para Para Para Para Para Para Par                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| opper                       | value<br>(thou-  | sands)             | \$7,400  | 4       | 1     | 76              | 2,040     | 194          | 8      | 1       | 14            | 2,863      | 157              | က                 | 760          | 137         | 10             | 75          | !           | 319         | 4 290  | 632      | 12,160    |            |
|-----------------------------|------------------|--------------------|----------|---------|-------|-----------------|-----------|--------------|--------|---------|---------------|------------|------------------|-------------------|--------------|-------------|----------------|-------------|-------------|-------------|--------|----------|-----------|------------|
| Other copper manufactures 2 | Quantity         | tons)              | 6,299    | c       | o —   | 10              | 1.235     | 1            | C1     | 1       | ¦°            | 1,332      | 195              | 227               | T 0          | 101         | 19             | 318<br>62   | ! !         | 19          | 9 770  | 445      | 7,431     |            |
| d cable,<br>ated            | Value            | sands)             | \$88,310 | 1       | 2,598 | 1.893           | 1,228     | 209          | 1,873  | 212     | 121           | 1,212      | 131              | 18,210            | 839          | 36          | 212            | 573         | 3,152       | 235         | 4,247  | 17.270   | 108,344   |            |
| Wire and cable, insulated   | Quantity         | (short tons)       | 28,660   |         | 830   | 44<br>740       | 299       | 17,332<br>52 | 409    | 161     | 21            | 369<br>564 | 57               | 5,884             | 583<br>783   | 9 6         | 62<br>62       | 140         | 46<br>2 012 | 105         | 096    | 317      | 40 046    |            |
| Wire and cable,             |                  | (thou-sands)       | \$4.261  |         | 113   | 112             | 279       | 830<br>11    | 20     | 89      | 2.694         | 88         | 30               | 1,016             | 4 rc<br>6 rc | 13          | 14             | 5 <u>7</u>  | 60          | 4           | 164    | 960 1    | 1,000     | 700,1      |
| Wire a                      | Onantity         | (short             | 9 787    | 7,101   | 42    | 71              | 51<br>161 | 445          | 22     | $^{26}$ | 9 290         | 13         | <b>ω</b> ∝       | 266               | 35           | ÷ -         | <del>ဖ</del> ွ | 21 2        | - 5         | 106         | . 52   | 189      | 1,122     | 9,190      |
| d sheets                    | - T. J.          | (thou-             | Samus)   | \$99.0  | σ     | ۱ -             | 10        | 269          | 114    | 16      | က             | 11         | 73               | 31                | eo 1         | 17          | 20             | 60          |             | 4           | ¦°     | 58<br>28 | 83        | 1,013      |
| Dietes and sheets           | Lianes an        | Quantity<br>(short | tons)    | 279     | •     | N               | °         | 273          | 12     | 5 Z     | ŗ             | ļ          | , <del>, ,</del> | ļ∝                |              | (1)<br>(2)  | o 4            | 1           | 1 1         | 61          | ļ°     | . II     | 40        | 414        |
|                             | tubing           | Value<br>(thou-    | sands)   | \$2,461 |       | 154             | -4        | 3.144        | 11     | 172     | F0F'0         | 10         | 1,018            | 25                | 330          | ဗ           | 54<br>79       | 329         | 69          | 4 ro        | 9      | 827      | 1.304     | 15,797     |
|                             | Pipes and tubing | Quantity<br>(short | tons)    | 1,142   |       | 65              | ļ-        | 1908         | 2 1    | 75      | 2,691         | ;          | 31               | 2                 | 1,290        | 22          | 525            | 162         | 27          |             | ٠,-    | 435      | 129       | 7,744      |
| l                           |                  | l                  | 1        | 1079    | 7101  | 1973:<br>Africa | na        | Brazil       | Canada | France  | Germany, West | Guatemala  | Italy            | Korea Republic of | Mexico       | Netherlands | Pakistan       | Philippines | Sweden      | Switzerland | Taiwan | Thailand | Venezuela | OtherTotal |

r Revised. 1 Less than ½ unit. 2 Does not include wire cloth: 1972—908,651 square feet (\$450,713); 1973—2,017,365 square feet (\$458,740).

| Table 34U.S. | exports | of | copper, | by | class |
|--------------|---------|----|---------|----|-------|
|--------------|---------|----|---------|----|-------|

|                      |           | Ore, concentrate,<br>and matte (copper<br>content) |                             |                          | Blister                         |                                 | Refined copper<br>and<br>semimanufactures |  |
|----------------------|-----------|----------------------------------------------------|-----------------------------|--------------------------|---------------------------------|---------------------------------|-------------------------------------------|--|
|                      |           | Short<br>tons                                      | Value<br>(thousands)        | Shor<br>tons             |                                 | Short                           | Value<br>(thousands)                      |  |
| 1971<br>1972<br>1973 |           | 8,126<br>r 17,662<br>23,508                        | \$8,430<br>14,167<br>30,147 | 28,698<br>8,569<br>7,362 | 6,680                           | 215,705<br>215,591<br>242,856   | \$267,303<br>278,059<br>386,993           |  |
|                      | With some | Other copp                                         | er manufactui               | es 1                     | Tot                             | al .                            |                                           |  |
| 1971                 |           | Short tons                                         | Value<br>(thousan           |                          | Short tons                      | Value<br>(thousands             | :)                                        |  |
| 1972<br>1973         |           | 7,746<br>6,299<br>7,431                            | \$9,145<br>7,400<br>12,160  |                          | 260,275<br>r 248,121<br>281,157 | \$307,120<br>306,306<br>437,369 |                                           |  |

Table 35.-U.S. exports of copper-base alloy (including brass and bronze), by class

|                                                                                                                                                                                                                                                         | ${f Short}$                                                                                | Value                                                                                                       |                                                                                     |                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                         | tons                                                                                       | (thousands)                                                                                                 | Short<br>tons                                                                       | Value<br>(thousands)                                                                                             |
| Ingot Scrap and waste Bars, rods, and shapes Plates, sheets, and strips Pipes and tubing Pipe fittings Plumbers' brass goods Welding rods and wire Castings and forgings Powder and flakes Poril Articles of copper and copper-base alloys, n.e.c Total | 289<br>67,525<br>7,154<br>3,848<br>2,035<br>4,073<br>1,278<br>1,254<br>909<br>1,850<br>162 | \$1,074<br>51,155<br>9,211<br>11,617<br>4,060<br>12,297<br>4,258<br>3,238<br>1,491<br>2,967<br>488<br>3,730 | 443<br>110,355<br>8,711<br>6,099<br>6,854<br>10,036<br>1,792<br>701<br>2,487<br>414 | \$1,635<br>105,482<br>13,814<br>18,997<br>14,356<br>26,820<br>6,154<br>5,228<br>1,369<br>4,954<br>1,113<br>5,327 |

<sup>&</sup>lt;sup>1</sup> Quantity not reported.

Table 36.—U.S. exports of unfabricated copper-base alloy ingots, bars, rods, shapes, plates, sheets, and strip

|                     | Year | Short<br>tons      | Value<br>(thousands) |
|---------------------|------|--------------------|----------------------|
| $\frac{1971}{1972}$ |      | 8,727              | \$16,282             |
| 1973                |      | $11,291 \\ 15,253$ | $21,902 \\ 34,446$   |

<sup>&</sup>lt;sup>1</sup> Includes brass and bronze.

Table 37.-U.S. exports of copper sulfate (blue vitriol)

| Year | Short<br>tons | Value<br>(thousands) |
|------|---------------|----------------------|
| 1971 | 2,815         | \$2,078              |
| 1972 | 2,646         | 1,767                |
| 1973 | 1,716         | 2,043                |

r Revised.

1 Does not include wire cloth; 1971—1,472,504 square feet (\$495,858); 1972—908,651 square feet (\$450,713); 1973—2,017,365 square feet (\$458,740).

Table 38.-U.S. exports of copper scrap, by country

|                    | 1             | Unalloyed                 | copper sc     | rap                       |               | Copper alloy scrap        |                 |                           |  |  |
|--------------------|---------------|---------------------------|---------------|---------------------------|---------------|---------------------------|-----------------|---------------------------|--|--|
|                    | 1972          |                           | 1973          |                           | 1972          |                           | 19              | 73                        |  |  |
| Country            | Short<br>tons | Value<br>(thou-<br>sands) | Short<br>tons | Value<br>(thou-<br>sands) | Short<br>tons | Value<br>(thou-<br>sands) | Short<br>tons   | Value<br>(thou-<br>sands) |  |  |
| Belgium-Luxembourg | 940           | \$775                     | 9,795         | \$4,575                   | 1,089         | \$755                     | 8,079           | \$7,602                   |  |  |
| Brazil             |               |                           | 253           | 382                       |               |                           | 1,282           | 1,489                     |  |  |
| Canada             | 4,177         | 2,955                     | 8,074         | 8,164                     | 5,953         | 5,160                     | $10,564 \\ 170$ | 10,641<br>77              |  |  |
| El Salvador        |               |                           | ī             | ĩ                         | 47            | $\tilde{38}$              | 113             | 129                       |  |  |
| Germany:           |               |                           |               |                           |               |                           |                 |                           |  |  |
| East               | 161           | 144                       | 155           | 164                       | 66            | 42                        |                 |                           |  |  |
| West               | 495           | 430                       | 3.091         | 3,770                     | 2.993         | 2,382                     | 10,436          | 10,741                    |  |  |
| Hong Kong          | 100           |                           | 20            | 26                        | 59            | 50                        | 146             | 156                       |  |  |
|                    | 20            | $\tilde{20}$              |               |                           | 229           | 224                       |                 |                           |  |  |
|                    | 20            |                           | 20            | 23                        |               |                           | 428             | 423                       |  |  |
| Israel             | 950           | 692                       | 955           | 866                       | 8,254         | 5,433                     | 8,490           | 7,255                     |  |  |
| Italy              | 4,804         | 4.007                     | 5,310         | 5,769                     | 40,928        | 31,008                    | 44.947          | 43,585                    |  |  |
| Japan              |               | 1,505                     | 6,026         | 7.457                     | 3.583         | 3.163                     | 9.542           | 10,544                    |  |  |
| Korea, Republic of | 1,726         |                           | 737           | 957                       | 138           | 113                       | 238             | 209                       |  |  |
| Mexico             | 2,040         | 1,257                     |               | 701                       | 371           | 304                       | 1.394           | 1,450                     |  |  |
| Netherlands        |               |                           | 943           | 701                       | 3             | 2                         | 350             | 274                       |  |  |
| Pakistan           | ==            | - 455                     | 0.057         | 1 400                     |               |                           | 1.585           | 1.308                     |  |  |
| Spain              | 1,579         | 1,099                     | 2,324         | 1,486                     | 1,894         | 1,109                     |                 | 882                       |  |  |
| Sweden             |               |                           | 142           | 116                       | 1,078         | 715                       | 1,310           |                           |  |  |
| Taiwan             | 139           | 134                       | 1,264         | 925                       | 132           | 112                       | 3,649           | 1,862                     |  |  |
| United Kingdom     | 129           | 141                       | 2,870         | 2,906                     | 558           | 397                       | 7,229           | 6,599                     |  |  |
| Venezuela          | 1             | (1)                       |               |                           |               |                           | 153             | 45                        |  |  |
| Yugoslavia         |               |                           | 183           | 221                       |               | . 7.7                     | -==             |                           |  |  |
| Other              | 279           | 238                       | 123           | 166                       | 150           | 148                       | 250             | 211                       |  |  |
| Total              | 17,440        | 13,397                    | 42,286        | 38,675                    | 67,525        | 51,155                    | 110,355         | 105,482                   |  |  |

<sup>&</sup>lt;sup>1</sup> Less than ½ unit.

Table 39.-U.S. imports for consumption of copper scrap, by country

|                    | Unalloyed copper scrap (copper content) |                      |               |                      |  |  |  |
|--------------------|-----------------------------------------|----------------------|---------------|----------------------|--|--|--|
| Q.,                | 1972                                    |                      | 1973          |                      |  |  |  |
| Country            | Short<br>tons                           | Value<br>(thousands) | Short<br>tons | Value<br>(thousands) |  |  |  |
| Bahamas            | 39                                      | \$29                 | 41            | \$33                 |  |  |  |
| Belgium-Luxembourg |                                         | ·                    | 192           | 357                  |  |  |  |
| Bermuda            | 19                                      | 17                   |               |                      |  |  |  |
| Canada             | 7,831                                   | 7,393                | 11,280        | 15,042               |  |  |  |
| Chile              | 254                                     | 220                  |               |                      |  |  |  |
| Dominican Republic | 73                                      | 54                   | 316           | 345                  |  |  |  |
| rance              | 105                                     | 146                  | 136           | 222                  |  |  |  |
| Germany, West      | 56                                      | 42                   | 203           | 314                  |  |  |  |
| Juatemala          | 93                                      | 91                   | 149           | 126                  |  |  |  |
| Ionduras           | 42                                      | 55                   | 107           | 94                   |  |  |  |
| amaica             | 76                                      | 51                   | 141           | 123                  |  |  |  |
|                    | 322                                     | 68                   | 156           | 46                   |  |  |  |
| #* •               | 1.445                                   | 1,143                | 4,609         | 3,839                |  |  |  |
| Vetherlands        | 5                                       | 6                    | 88            | 158                  |  |  |  |
| Vetherlands        | •                                       |                      | 19            | 21                   |  |  |  |
| Antilles           | _2                                      | -1                   |               | 100                  |  |  |  |
| licaragua          | 72                                      | 59                   | 93            |                      |  |  |  |
| anama              | 189                                     | 157                  | 82            | 85                   |  |  |  |
| witzerland         |                                         |                      | 84            | 70                   |  |  |  |
| rinidad and Tobago |                                         | _==                  | 45            | 50                   |  |  |  |
| Inited Kingdom     | 155                                     | 219                  | 513           | 927                  |  |  |  |
| Other              | 9                                       | 15                   | 12            | 15                   |  |  |  |
| Total              | 10.787                                  | 9,766                | 18.266        | 21.967               |  |  |  |

Table 39.-U.S. imports for consumption of copper scrap, by country-Continued

|                     |                                  |                          | Copper a                  | lloy scrap                       |                                         |                           |  |
|---------------------|----------------------------------|--------------------------|---------------------------|----------------------------------|-----------------------------------------|---------------------------|--|
|                     |                                  | 1972                     |                           |                                  | 1973                                    |                           |  |
| C                   | Qu                               | antity                   |                           | Quantity                         |                                         |                           |  |
| Country -           | Gross<br>weight<br>short<br>tons | Content<br>short<br>tons | Value<br>(thou-<br>sands) | Gross<br>weight<br>short<br>tons | Content<br>short<br>tons                | Value<br>(thou-<br>sands) |  |
| Bahamas             | 73                               | 46                       | \$46                      | 114                              | 76                                      | \$69                      |  |
| Belgium-Luxembourg  |                                  |                          |                           | 45                               | 26                                      | 51                        |  |
| Canada              | 10,020                           | 6,524                    | 6,820                     | 10.154                           | 6,623                                   | 9,874                     |  |
| Dominican Republic  | 609                              | 510                      | 396                       | 295                              | 249                                     | 222                       |  |
| Finland             |                                  |                          |                           | 80                               | 58                                      | 95                        |  |
| France              | 13                               | 11                       | 11                        |                                  |                                         |                           |  |
| Germany, West       | 21                               | 14                       | - 9                       | 152                              | 95                                      | 167                       |  |
| Gibraltar           | 10                               | 7                        | 7                         |                                  | • • • • • • • • • • • • • • • • • • • • |                           |  |
| Guatemala           | 85                               | 69                       | 66                        | 140                              | 107                                     | 65                        |  |
| Haiti               | 28                               | 22                       | 19                        |                                  | 10.                                     | 00                        |  |
| Hong Kong           |                                  |                          |                           | 229                              | 200                                     | 244                       |  |
| Israel              | 34                               | 30                       | 27                        |                                  | 200                                     |                           |  |
| Jamaica             | 29                               | 28                       | 21                        |                                  | 8                                       | -6                        |  |
| Japan               | 17                               | 12                       | 10                        | 69                               | 43                                      | 61                        |  |
| Mexico              | 257                              | 142                      | 129                       | 436                              | 340                                     | 366                       |  |
| Netherlands         | 201                              | 144                      |                           | 88                               | 71                                      | 127                       |  |
| Netherlands         |                                  |                          |                           | 00                               | 11                                      | 121                       |  |
| Antilles            | 2                                | 1                        | (1)                       | 18                               | 15                                      | 19                        |  |
| Nicaragua           | 25                               | 18                       | 15                        | 37                               | 33                                      | 46                        |  |
| Panama              | 213                              | 163                      | 141                       | 69                               | 52                                      |                           |  |
| Spain               | 20                               | 165                      | 141                       |                                  |                                         | 47                        |  |
| Switzerland         |                                  | 10                       | 14                        | 1<br>58                          | (1)                                     | (1)                       |  |
| Trinidad and Tobago | 111                              | 88                       | $\bar{64}$                |                                  | 33                                      | 67                        |  |
| United Kingdom      | 318                              | 267                      | 269                       | 119<br>20                        | 83                                      | 84                        |  |
|                     | 918<br>1                         |                          |                           | 20                               | 17                                      | 17                        |  |
|                     |                                  | (1)                      | 1                         |                                  |                                         |                           |  |
| Total               | 11,886                           | 7,968                    | 8,065                     | 12,133                           | 8,129                                   | 11,627                    |  |

 $<sup>^1</sup>$  Less than  $\frac{1}{2}$  unit.

Table 40.—U.S. imports <sup>1</sup> of copper (unmanufactured), by class and country (Short tons, copper content, and thousand dollars)

| Year and country               | Ore, conc        | entrates | Ma               | tte   | Bli                | ster    |
|--------------------------------|------------------|----------|------------------|-------|--------------------|---------|
|                                | Quantity         | Value    | Quantity         | Value | Quantity           | Value   |
| 1971                           | 30,848           | 27,502   | 440              | 460   | 156,744            | 147,128 |
| 1972:                          |                  |          |                  |       |                    |         |
| Australia                      | 2.091            | 1.607    |                  |       | 44                 | 45      |
| Canada                         | 11,603           | 8,628    | 515              | 355   | 5.871              | 5,598   |
| Chile                          |                  | 0,020    | 71               | 36    | 33,208             | 31,197  |
| Colombia                       | 55               |          | ••               | 00    |                    | 01,101  |
| Finland                        |                  | -        | $\bar{1}\bar{1}$ | 11    |                    |         |
| Germany, West                  |                  |          |                  |       | - <u>-</u> -       | (2)     |
| India                          |                  |          |                  |       | 110                | 108     |
| Israel                         |                  |          |                  |       | 14                 | 12      |
| Japan                          |                  |          |                  |       | 18                 | 26      |
| Kenya                          |                  |          |                  |       | 1.804              | 1,653   |
| Mexico                         | 8                | 2        |                  |       | 9,544              | 9,868   |
| Nicaragua                      | 95               | 64       |                  |       | -,                 | •,•••   |
| Panama                         | 195              | 125      |                  |       |                    |         |
| Peru                           | 9,486            | 8,929    |                  |       | 81,559             | 71,806  |
| Philippines                    | 30,122           | 29,677   |                  |       | -                  | ,       |
| South Africa, Republic of      |                  | ,        |                  |       | 23,053             | 22,360  |
| United Kingdom                 |                  |          | 761              | 685   | 1                  | ,3      |
| Yugoslavia                     |                  |          |                  |       | 2,205              | 2,088   |
| Total                          | 53,655           | 49,036   | 1,358            | 1.087 | 157,432            | 144,764 |
| 1973:                          |                  |          |                  |       |                    |         |
| Australia                      | 1,531            | 1.466    |                  |       |                    |         |
| Canada                         | 11,291           | 9.419    | 292              | 123   | $1.1\overline{81}$ | 1,236   |
| Chile                          | 1.654            | 555      | 494              |       | 29.617             | 34,619  |
| Colombia                       | 7                | 3        |                  |       | 25,017             | 54,015  |
| Germany, West                  | •                | 9        |                  |       | 2                  |         |
| Italy                          | $\overline{28}$  | 10       |                  |       | _                  | •       |
| Japan                          |                  | 10       |                  |       | 11                 | 16      |
| Mexico                         | $6\overline{82}$ | 236      | 431              | 393   | 8,799              | 11,046  |
| Nicaragua                      | 200              | 226      | 401              |       | 0,100              | 11,040  |
| Peru                           | 8,697            | 13,846   |                  |       | 86,896             | 123,011 |
| See footnotes at end of table. | 5,001            | 20,040   |                  |       | 00,000             | 120,011 |

Table 40.—U.S. imports <sup>1</sup> of copper (unmanufactured), by class and country—Continued (Short tons, copper content, and thousand dollars)

| Voor and country          | Ore, conce       | entrates_          | Ma                 | tte               | Bl               | ister              |
|---------------------------|------------------|--------------------|--------------------|-------------------|------------------|--------------------|
| Year and country —        | Quantity         | Value              | Quantity           | Value             | Quantity         | Value              |
| 079 0                     |                  |                    |                    |                   |                  |                    |
| 973—Continued             | 17,842           | 27,360             |                    |                   |                  |                    |
| Philippines               | 11,044           | 21,500             |                    |                   | 26,279           | $27.5\overline{6}$ |
| South Africa, Republic of |                  |                    |                    |                   | 110              | 9                  |
| Uganda                    |                  |                    |                    |                   | 272              | 27                 |
| U.S.S.R                   |                  |                    | $\bar{2}\bar{3}$   | $\bar{2}\bar{6}$  |                  | 41                 |
| United Kingdom            | 2                |                    | 23                 | 26                | ( <sup>2</sup> ) |                    |
| Venezuela                 | 203              | 160                |                    |                   | .==              | .=                 |
| Yugoslavia                |                  |                    |                    |                   | 937              | 91                 |
| Total                     | 42,135           | 53,281             | 746                | 542               | 154,104          | 198,79             |
|                           | Ref              | ined               | Scra               | р                 | Tot              | al                 |
|                           | Quantity         | Value              | Quantity           | Value             | Quantity         | Valu               |
| 971                       | 163,988          | 165,300            | 7,459              | 6,679             | 359,479          | 347,06             |
| 972:                      |                  |                    |                    |                   |                  |                    |
| Australia                 | 388              | 394                |                    |                   | 2,523            | 2,04               |
| Brazil                    | 370              | 377                |                    |                   | 370              | 37                 |
| Canada                    | 124,983          | 123,494            | $7.8\overline{31}$ | 7.393             | 150,803          | 145.46             |
|                           |                  |                    |                    |                   |                  |                    |
| Chile                     | 26,598           | 25,520             | 254                | 220               | 60,131           | 56,97              |
| Colombia                  |                  |                    |                    |                   | 55               |                    |
| Finland                   |                  |                    |                    |                   | 11               | 1                  |
| France                    | 8                | 8                  | 105                | 146               | 113              | 15                 |
| Germany, West             | 1                | 3                  | 56                 | 42                | 58               | 4                  |
| Honduras                  | _                |                    | 42                 | 55                | 42               | 5                  |
| India                     |                  |                    |                    |                   | 110              | 10                 |
| Israel                    |                  |                    |                    |                   |                  |                    |
|                           | 1 105            | 1 0 7 7            |                    |                   | 14               |                    |
| Japan                     | 1,125            | 1,045              | 322                | 68                | 1,465            | 1,1                |
| Kenya                     |                  |                    |                    |                   | 1,804            | 1,6                |
| Mexico                    | 7,620            | 7,568              | 1,445              | 1,143             | 18,617           | 18.5               |
| Nicaragua                 |                  |                    | 72                 | 59                | 167              | 13                 |
| Norway                    | 208              | 201                |                    |                   | 208              | 20                 |
| Panama                    | 200              | 201                | 189                | $1\overline{57}$  | 384              | 2                  |
| Peru                      | 2.204            | $2.0\overline{47}$ | 100                |                   | 93.249           |                    |
|                           | 2,204            | 2,041              |                    |                   |                  | 82,78              |
| Philippines               | _==              | _===               |                    |                   | 30,122           | 29,6               |
| South Africa, Republic of | 556              | 519                |                    |                   | 23,609           | 22,8               |
| United Kingdom            | 3,938            | 4,172              | 155                | 219               | 4,855            | 5,0                |
| Yugoslavia                | 24,379           | 23,534             |                    |                   | 26,584           | 25,6               |
| Other                     | 1                | 1                  | 316                | $2\bar{6}\bar{4}$ | 317              | 2                  |
| Total                     | 192,379          | 188,883            | 10,787             | 9.766             | 415,611          | 393,5              |
| 973:                      | 102,010          | 100,000            | 10,181             | 9,700             | 415,011          | 393,3              |
|                           | 498              | 1 071              |                    |                   | 0.000            |                    |
|                           |                  | 1,071              |                    | .==               | 2,029            | 2,5                |
| Belgium-Luxembourg        | 9,458            | 16,653             | 192                | 357               | 9,650            | 17,0               |
| Canada                    | 130,523          | 157,486            | 11,892             | 15,933            | 155,179          | 184,1              |
| Chile                     | 27,492           | 38,703             |                    |                   | 58,763           | 73,8               |
| Colombia                  |                  |                    |                    |                   | 7                |                    |
| France                    | 805              | 1,388              | 136                | 222               | 941              | 1,6                |
| Germany, West             | 8,627            | 15,878             | 203                | 314               | 8,832            | 16,1               |
| Italy                     | 0,02.            | 10,010             | 200                | 914               | 28               | 10,1               |
| Japan                     | $\bar{2}\bar{2}$ | $\bar{\tilde{20}}$ | 156                | $\bar{46}$        |                  |                    |
|                           |                  |                    |                    |                   | 189              |                    |
| Mexico                    | 2,132            | 2,608              | 4,667              | 3,916             | 16,711           | 18,1               |
| Netherlands               | 1,585            | 2,331              | 88                 | 158               | 1,673            | 2,4                |
| Nicaragua                 |                  |                    | 93                 | 100               | 293              | 3                  |
| Norway                    | 306              | 365                |                    |                   | 306              | 3                  |
| Peru                      | 4,384            | 4,959              |                    |                   | 99,977           | 141,8              |
| Philippines               | -,00-            | -,000              |                    |                   | 17,842           | 27,3               |
|                           | 689              | $1.1\overline{40}$ |                    |                   |                  |                    |
|                           |                  |                    |                    |                   | 689              | 1,1                |
| South Africa, Republic of | 81               | 74                 |                    |                   | 26,360           | 27,6               |
| Sweden                    | 339              | 583                |                    |                   | 339              | 5                  |
| Tanzania                  | 901              | 1,621              |                    |                   | 901              | 1,6                |
| Uganda                    |                  |                    |                    |                   | 110              |                    |
| U.S.S.R                   |                  |                    |                    |                   | 272              | 2                  |
| United Kingdom            | 7,698            | 9,169              | 513                | 927               | 8,234            | 10.1               |
| Vonoguola                 | 1,000            | 0,100              | 010                | 341               | 203              | 10,1               |
| Venezuela                 | •==              | 00.7               |                    |                   |                  |                    |
| Yugoslavia                | 381              | 394                |                    |                   | 1,318            | 1,3                |
| Zambia                    | 5,455            | 5,279              |                    |                   | 5,455            | 5,2                |
| Other                     | 137              | 146                | 993                | 962               | 1,133            | 1,1                |
|                           |                  |                    | 18.936             | 22,935            | 417,434          | 535,4              |
| Total                     | 201.513          | 259,868            |                    |                   |                  |                    |

 $<sup>^1\,\</sup>mathrm{Data}$  are general imports, that is, they include copper imported for immediate consumption plus material entering the country under bond.  $^2\,\mathrm{Less}$  than  $\frac{1}{12}$  unit.

Table 41.-U.S. imports for consumption of copper (copper content) by class

|                      |      | Ore and concentrates          |                                                    | Ma                     | tte                   | Blister                      |                                 |  |
|----------------------|------|-------------------------------|----------------------------------------------------|------------------------|-----------------------|------------------------------|---------------------------------|--|
|                      | Year | Short<br>tons                 | Value (thou-<br>sands) Short (thou-<br>tons sands) |                        | Short<br>tons         | Value<br>(thou-<br>sands)    |                                 |  |
| 1971<br>1972<br>1973 |      | 5,547<br>80,740<br>19,582     | \$4,091<br>81,055<br>16,029                        | 119<br>1,453<br>139    | \$220<br>1,134<br>106 | 153,625<br>77,162<br>128,166 | \$144,395<br>72,514<br>159,922  |  |
|                      |      | Re                            | Refined                                            |                        | Scrap                 |                              | Total                           |  |
|                      |      | Short tons                    | Value<br>(thousands)                               | Short                  |                       | alue<br>usands)              | value<br>(thousands)            |  |
| 1971<br>1972<br>1973 |      | 163,988<br>175,703<br>206,297 | \$165,300<br>172,772<br>262,706                    | 7,45<br>10,78<br>18,26 | 7 (9                  | 5,679<br>9,766<br>.,967      | \$320,685<br>337,241<br>460,730 |  |

Table 42.-Copper: World mine production by country <sup>1</sup>

| Country                                   | 1971      | 1972      | 1973 р   |
|-------------------------------------------|-----------|-----------|----------|
| North and Central America:                |           |           |          |
| Canada <sup>2</sup>                       | 721,429   | 500.000   | 000 4=   |
| Cuba e                                    |           | 793,303   | 899,47   |
| Dominican Republic e                      | 3,300     | 3,300     | 5,500    |
| Haiti <sup>3</sup>                        | 500       | 500       | 50       |
| Mexico                                    | 7,300     | (4)       |          |
| Nicaragua 3                               | 69,611    | 86,774    | 88,73    |
|                                           | 4,037     | 2,412     | 1,70     |
| United States <sup>2</sup> South America: | 1,522,183 | 1,664,840 | 1,717,94 |
|                                           |           |           |          |
|                                           | r 557     | 1,250     | e 1,300  |
|                                           | 8,281     | 9,324     | e 9,50   |
| Brazil                                    | 6 5,622   | 4,745     | 6,71     |
| Chile                                     | 790,722   | 799,968   | 818,804  |
| Colombia                                  | 62        | 71        | e 80     |
| Ecuador                                   | 622       | 483       | 53       |
| Peru                                      | r 228,560 | 248,031   | 241,15   |
| Europe:                                   | ,         |           |          |
| Albania 7                                 | 6,504     | r e 6.970 | e 7.10   |
| Austria                                   | 2.920     | 2.539     | 3,02     |
| Bulgaria                                  | r 38,600  | 41,900    | e 44.10  |
| Czechoslovakia                            | r 5,180   | 5.180     | 6.60     |
| Finland                                   | 31.317    |           |          |
| France                                    |           | 32,121    | 41,19    |
| Germany, East e                           | r 368     | 520       | 45       |
| Germany, West 8                           | r 5,500   | r 3,300   | 1,70     |
| Greece                                    | r 1,636   | 1,456     | 1,58     |
|                                           | 1,577     | 1,715     | 1,58     |
| Hungary e                                 | 1,300     | 1,300     | 1,40     |
| Ireland                                   | r 13,104  | 14,560    | 14,33    |
| Italy 8                                   | 1,698     | 1,156     | 1,00     |
| Norway 8                                  | 23,889    | 27,971    | 31,32    |
| Poland                                    | 134,700   | 148,800   | 170,90   |
| Portugal 8                                | 4,362     | 6.744     | 6,40     |
| Romania e 2                               | 15,700    | 38,600    | 46,30    |
| Spain 8 9                                 | 37,514    | 39.812    | 33,37    |
| Sweden                                    | 33,313    | 33,752    | 35.71    |
| U.S.S.R. e 2 7                            | 680,000   | 733,000   | 772,00   |
| Yugoslavia                                | 104.049   | 113,685   | 162,85   |
| Africa:                                   | 101,010   | 110,000   | 102,00   |
| Algeria                                   | 567       | 472       | 44       |
| Congo (Brazzaville) 3                     | r 1.816   | 1.511     | e 1.50   |
| Kenya                                     | 80        |           | e 7      |
| Mauritania                                |           | 79        |          |
|                                           | 4,960     | 16,342    | 23,45    |
|                                           | r 4,234   | 4,220     | 4,76     |
| Mozambique 3                              | 456       | 198       | 26       |
| Rhodesia, Southern 10                     | 32,338    | 42,218    | 46,10    |
| South Africa, Republic of                 | 173,581   | 178,494   | 193,78   |
| South-West Africa, Territory of 3 11      | 35,317    | 23,830    | 30,28    |
| Uganda                                    | r 17,906  | 17,346    | 17,28    |
| Zaire                                     | 447,349   | 472,008   | 538,31   |
| Zambia                                    | r 718.040 | 791,128   | 778,86   |

See footnotes at end of table.

Table 42.-Copper: World mine production by country 1-Continued

| Country                       | 1971        | 1972      | 1973 р            |
|-------------------------------|-------------|-----------|-------------------|
|                               |             |           |                   |
| Asia:                         | 88          | 88        | 77                |
| - 10                          | 110,000     | 110,000   | 110,000           |
| Cuting Deeple's Popublic of e | r 21.491    | 20,884    | 16,799            |
| C                             | 11.867      | 12,856    | 16,085            |
| T 31a                         | ,           | 5,500     | 41,800            |
| T J                           | 1,106       | 1,323     | 3,300             |
| T 19                          | 11,161      | 12,318    | 11,202            |
| Taun al                       | 133,411     | 123,584   | 100,619           |
| Tamom 14                      | 14,000      | 14,000    | 14,000            |
| Korea, North *                | 1,955       | 2,295     | 2,558<br>55       |
| Trans Depublic of             | r 230       | 65        |                   |
| 7/-1                          | 217,787     | 235,558   | 243,825           |
| Philippines                   | r 2,650     | r 2,760   | 2,650<br>• 41,300 |
| Toimon 6                      | 24,736      | 27,514    | 41,500            |
| Turkey                        |             |           | 240,800           |
| Oceania:                      | r 195,397   | 205,925   | 240,000           |
| Australia                     |             | 3         | e 110             |
| AustraliaFiji                 | 94          | 136       | 201,502           |
| Man Zooland                   |             | 136,641   |                   |
| Panua New Guinea              | r 6,688,634 | 7,329,378 | 7,856,682         |
| Total                         |             |           |                   |

nich data are available has been used.

Recoverable.
Copper content of concentrate produced.

Finance Corp. Output of Tsumed Corp. Ltd. for the period July 1, 1971, chrough December 31, 1971, was 12,813 short tons.

12 Copper content of matte produced.

13 Year beginning March 21 of that stated.

14 Copper content of concentrate. Copper content of run of mine production was as follows in short tons: 1971—133,411; 1972—125,248; 1973—103,871.

e Estimate. P Preliminary. Revised.

1 Data presented represent copper content (recoverable where indicated) of ore mined wherever possible. If such data are not available, the nonduplicative total copper content of ores, concentrates, possible. If such data are not available, the nonduplicative total copper content of ores, concentrates, products measured at the least stage of processing for which data are available has been used.

<sup>4</sup> Revised to zero. 5 Corporación Minera de Bolivia (COMIBOL) production plus exports by medium and small mines. 5 Corporación Minera de Bolivia (COMIBOL) production plus exports by Companhia Brasileira de 6 Partly estimated, partly calculated on the basis of data furnished by Companhia Brasileira de Cobre.

<sup>7</sup> Smelter production.
8 Includes copper content of cupriferous pyrites.
9 Excludes an unreported quantity of copper in iron pyrites which may or may not be recovered.
10 Year ending September 30 of that stated.
10 Year ending September 30 of that stated.
11 Data are compiled from operating company reports of Tsumeb Corp. Ltd. and General Mining
11 Data are compiled from operating company reports of Tsumeb Corp. Ltd. for Klein Aub Loper Maatskappy Ltd.'s mine near Rehoboth. Data for 1971
11 and Finance Corp. Ltd. for Klein Aub Loper Maatskappy Ltd.'s mine near Rehoboth. Data for 1971
12 are a summation of company figures for are for fiscal year ending June 30, 1972, for General calendar year 1972 for Tsumeb Corp. Ltd. and for fiscal year ending June 30, 1973, for General Mining and 1973 for Tsumeb Corp. Ltd. and for fiscal year ending June 30, 1973, for General Mining and 1973 for Tsumeb Corp. Ltd. and for fiscal year ending June 30, 1973, for General Mining and Finance Corp. Output of Tsumeb Corp. Ltd. for the period July 1, 1971, through December 31, 1971, was 12,813 short tons.

Table 43.-Copper: World smelter production by country 1

(Short tons)

| Country                                                      | 1971        | 1972      | 1973 р    |
|--------------------------------------------------------------|-------------|-----------|-----------|
| North America:                                               |             | 1012      | 1973 p    |
| Canada                                                       |             |           |           |
|                                                              | r 509,598   | 522,200   | 545,64    |
| Mexico <sup>2</sup> United States <sup>3</sup> South America | 68,273      | 81,831    |           |
| South America:                                               | 1,499,996   | 1,690,391 | 77,713    |
|                                                              | . ,         | 2,000,001 | 1,743,96  |
|                                                              | r 44        | 90        |           |
|                                                              | 4 5,620     | 5.290     | 90        |
|                                                              | 704,462     | 725,437   | 4,630     |
| PeruEurope:                                                  | r 147,480   | 148,316   | 700,501   |
|                                                              | ,           | 140,010   | 152,199   |
|                                                              | r 6,504     | e 6.970   | 07100     |
| D 1 .                                                        | 1,653       | 1,433     | e 7,100   |
|                                                              | 19,800      | 14,300    | 33(       |
| Caralana                                                     | 50,000      | 53,000    | 17,600    |
|                                                              | 5,000       | 6,600     | 58,000    |
|                                                              | r 30,924    | 38,751    | 6,600     |
|                                                              | 2,200       | 2,650     | 45,836    |
| Trans, West                                                  | r 91,102    | 175,738   | 1,650     |
|                                                              | 1.300       |           | 264,122   |
| D.I. 10                                                      | 37,988      | 1,300     | 1,300     |
| D                                                            | 102,200     | 37,372    | 36,690    |
| Tortugal                                                     | r 4,960     | 144,403   | 172,401   |
| tomana -                                                     | 12,000      | 4,189     | 4,409     |
| Sparit                                                       | 73.047      | 38,600    | 46,300    |
| Trace and the second                                         | 41,268      | 88,317    | 104,082   |
| J.D.D.II.                                                    | 680,000     | 40,836    | 48,875    |
| Yugoslavia                                                   | 122,692     | 733,000   | 772,000   |
| 71 • • •                                                     | 122,092     | 164,296   | 174,628   |
| Rhodesia, Southern 10                                        | 30,764      | 45.0==    |           |
|                                                              | r 167,882   | 45,277    | e 46,000  |
|                                                              | 29,676      | 184,968   | 165,347   |
|                                                              | 17.340      | 28,791    | 39,737    |
|                                                              | r 445,995   | 15,618    | 10,684    |
|                                                              | r 709,528   | 472,009   | 507,591   |
| sia:                                                         | - 109,528   | 768,629   | 759,024   |
| China, People's Republic of eIndia                           | 110,000     | 440.000   |           |
|                                                              |             | 110,000   | 110,000   |
|                                                              | 10,668      | 11,538    | 12,070    |
|                                                              | 3,249       | 4,480     | e 5,000   |
|                                                              | r 646,836   | 765,885   | 960,332   |
| Korea, Republic of Taiwan 12                                 | 14,000      | 14,000    | 14,000    |
| Taiwan 12<br>Turkey                                          | r 7,562     | 11,354    | e 11,500  |
|                                                              | r 4,080     | 3,860     | 3,970     |
| ceania: Australia                                            | 18,566      | 18,433    | 27,242    |
|                                                              | r 157,484   | 159,455   | 178,816   |
| Total                                                        | r 6,591,741 | 7,339,607 | 7,837,966 |

<sup>p</sup> Preliminary.

e Estimate. P Preliminary. r Revised.

1 Unless otherwise noted, data presented for each country represent primary copper metal output, whether produced by thermal or electrowinning. To the extent possible, refined copper produced from imported blister or electrolytic anode copper has been excluded.

2 Copper content of impure bars and electrolytic copper.

3 Smelter output of domestic and foreign ores, exclusive of that produced from scrap. Production from domestic ores only was as follows: 1971—1,470,815; 1972—1,649,130; and 1973—1,705,065.

4 Includes secondary copper (production from scrap). Partly estimated, partly calculated on the basis of data furnished by Companhia Brasileira de Cobre.

5 Data are the nonduplicative sum of: (1) the copper content of blister copper production for sale as such; (2) the copper content of blister produced for refining in Chile at the Ventanas velectrowinning) excluding electrolytic output of the Ventanas refinery.

6 Series revised from refined to smelter basis.

7 Belgium reports a large output of refined copper, but this is produced largely from imported blister; domestic smelter production is reported output of blister copper from ores.

8 Reported Norwegian copper output is derived in part from copper-nickel matte imported from Canada, and reported Canadian smelter production may also include this material, Norwegian smelter output from domestic ores was as follows (approximately) in tons: 1971—6,700; 1972—

9 Refined output.

10 Year ending September 30 of that stated.

11 Year ending September 30 of that stated.

10 Year ending September 30 of that stated.

11 Year ending June 30 of that stated.

12 Includes secondary

13 Year beginning March 21 of that stated.

Table 44.-Copper: World refinery production by country 1 (Short tons)

| Country                       | 1971               | 1972               | 1973 Р    |
|-------------------------------|--------------------|--------------------|-----------|
| North America:                |                    |                    |           |
| Canada 2                      | 526,403            | 546,685            | 548,489   |
| Mexico                        | 57,956             | 65,688             | 68,233    |
| United States                 | 1.591,782          | 1.873,233          | 1,868,488 |
| South America:                | 2,002,102          | 2,0.0,200          | -,000,-00 |
| Argentina e                   | 44                 | 90                 | 90        |
| Brazil <sup>2</sup>           | 25,463             | 29,542             | 32,187    |
| Chile 3                       | 497,825            | 563,239            | 525,544   |
| Peru                          | 35,892             | 43,225             | 42,964    |
| Europe:                       | 00,002             | 10,220             | 12,001    |
| Albania e                     | 6,500              | 7,000              | 7,100     |
| Austria                       | 23.474             | 25,015             | 25.215    |
| Belgium <sup>4</sup>          | 359,205            | 360,762            | e 380,000 |
| Bulgaria                      | 45,195             | 49,604             | 52,911    |
| Czechoslovakia <sup>2</sup>   | 18,955             | 19.917             | 22,046    |
| Finland                       | 35,647             | 42.355             | 47,297    |
| France                        | 16.535             | 17.196             | e 17.200  |
| Germany, East e               | 44,000             | 44,000             | 44.000    |
| Germany, West 2               | 440.981            | 439,297            | 448.263   |
| Hungary e 2                   | 13.000             | 19.000             | 19.000    |
| Norway                        | 30,555             | 29,155             | 28,446    |
|                               | 102,184            | 144,403            | 172,401   |
| Poland<br>Portugal            | 4,630              | 1,990              | 2.406     |
|                               | 12,000             | 38,600             | 46,300    |
|                               | 122,050            | 150,254            | 135.478   |
| ~ .                           | 38,076             | 45,706             | e 47.400  |
| TT 0 0 D                      | 650,000            | 697,000            | 733.000   |
|                               | 54.582             | 65,674             | 83,619    |
| United Kingdom                |                    | 141.769            | 147.334   |
| YugoslaviaAfrica:             | 99,760             | 141,709            | 147,554   |
|                               | 25.683             | 33,069             | 33,069    |
| Rhodesia, Southern 5          |                    | 87,413             | 99,869    |
| South Africa, Republic of     | 87,303             |                    | 246.429   |
| Zaire 6                       | 229,106<br>589.007 | 238,430            | 703,835   |
| Zambia                        | 589,007            | 678,165            | 100,000   |
| Asia:                         | 110.000            | 100.000            | 130,000   |
| China, People's Republic of e | 110,000            | 120,000            |           |
| India                         | 10,582             | 11,574             | 9,590     |
| Iran                          | 1,100              | 1,100              | 1,300     |
| Japan                         | 786,295            | 892,821            | 1,048,057 |
| Korea, North e                | 14,000             | 14,000             | 14,000    |
| Korea, Republic of 2          | 7,550              | 9,988              | 10,192    |
| Taiwan                        | <sup>2</sup> 4,045 | <sup>2</sup> 5,156 | 1,743     |
| Turkey                        | 19,312             | 16,535             | 16,402    |
| Oceania: Australia            | 140,042            | 153,339            | 159,299   |
|                               |                    |                    | 8.019.191 |

e Estimate. P Preliminary.

1 Unless otherwise noted, data presented for each country represent total primary refined copper (both fire refined and electrolytically refined), including material refined from imported crude copper (blister and electrolytic anode).

2 Includes secondary.

3 Includes electrolytic output of the Ventanas refinery.

4 Data include leach cathodes from Zaire, secondary, and alloy material.

5 Year ending September 30 of that stated.

6 Excludes metal content of leach cathodes which are included in Belgium production.

Table 45.-Chile: Exports of copper, by type (Short tons)

|                 |                              |              | 1972 1                 | •               |         |                              |              | 1973    |                 |            |
|-----------------|------------------------------|--------------|------------------------|-----------------|---------|------------------------------|--------------|---------|-----------------|------------|
|                 | Ore                          |              | Re                     | fined           |         | Ore                          |              | Ref     | ined            |            |
| Destination     | and<br>con-<br>cen-<br>trate | Blis-<br>ter | Elec-<br>tro-<br>lytic | Fire<br>refined | Total   | and<br>con-<br>cen-<br>trate | con-<br>cen- |         | Fire<br>refined | Total<br>l |
| Argentina       |                              |              | 26,100                 | 5,000           | 31,100  |                              |              | 28,200  | 7,400           | 35,600     |
| Belgium         | 1,300                        | 3,900        | 1,700                  | 3,500           | 10,400  | 200                          | 5,100        |         | 5,200           | 10,700     |
| Brazil          |                              |              | 7,200                  | 1,500           | 8,700   |                              |              | 10,800  | 2,500           | 13,300     |
| Canada          |                              |              |                        |                 |         | 11,100                       |              |         |                 | 11,100     |
| China, People's |                              |              |                        |                 |         |                              |              |         |                 | -          |
| Republic of     |                              | 33,400       | 16,500                 |                 |         |                              | 39,100       | 22,000  |                 | 61,100     |
| France          |                              |              | 17,500                 | 17,800          |         | 3,000                        |              | 17,000  | 5,300           | 25,300     |
| Germany, West   |                              |              | 80,400                 | 20,300          | 153,100 | 16,800                       | 28,200       | 65,500  | 20,800          | 131,300    |
| Greece          | 7,900                        | 11,800       |                        |                 | 19,700  | 3,900                        | 26,000       |         |                 | 29,900     |
| Italy           |                              | 800          | 43,100                 | 16,100          | 60,000  |                              |              | 40,800  | 10,000          |            |
| Japan           | 40,900                       | 15,500       | 34,100                 |                 | 90,500  | 64,900                       | 14,300       | 23,500  |                 | 102,700    |
| Netherlands     |                              |              | 4,000                  | 1,100           | 5,100   | 2,000                        |              |         |                 | 2,000      |
| Spain           | 9,200                        |              | 4,300                  | 700             | 14,200  | 5,400                        | 2,200        | 4,900   | 2,000           | 14,500     |
| Sweden          | 800                          | 3,600        |                        | 5,400           | 23,200  |                              |              | 19,400  |                 | 19,400     |
| Switzerland     |                              |              | 1,700                  | 1,000           | 2,700   |                              |              | 900     |                 | 900        |
| U.S.S.R         |                              |              | 7,100                  | 1,800           | 8,900   | 8,900                        |              | 6,600   |                 | 15,500     |
| United Kingdom  | 222                          |              | 44,100                 | 12,400          | 91,000  | 1,600                        | 26,900       | 46,800  | 17,500          | 92,800     |
| United States   | 200                          |              |                        | 11,500          | 74,200  | 600                          | 17,900       | 42,400  | 3,900           | 64,800     |
| Other           | 4,000                        |              | 13,100                 | 300             | 17,400  | 2,100                        | 16,000       | 23,600  | 300             | 42,000     |
| Total           | 82,600                       | 165,000      | 349,400                | 98,400          | 695,400 | 120,500                      | 175,700      | 352,600 | 74,900          | 723,700    |

r Revised.

Source: Corporación del Cobre Chile. Indicadores del Cobre y Sub-Productos.

Table 46.—Canada: Copper production (all sources) by Province 1

(Short tons)

| Province              | 1972 г  | 1973 р  |
|-----------------------|---------|---------|
| British Columbia      | 233.506 | 354,271 |
| Manitoba              | 59.831  | 74.121  |
| New Brunswick         | 10.311  | 9,823   |
| Newfoundland          | 9.513   | 6.616   |
| Northwest Territories | 567     | 835     |
| Nova Scotia           |         | 15      |
| Ontario               | 289,723 | 277.261 |
| Quebec                | 176,432 | 155,345 |
| Saskatchewan          | 12.546  | 10,395  |
| Yukon Territory       | 874     | 10,793  |
| Total                 | 793,303 | 899,475 |

P Preliminary.
 P Revised.
 Blister copper plus recoverable copper in matte and concentrate exported.

Source: Dominion Bureau of Statistics, Department of Trade and Commerce, Canada. Canada's Mineral Production, Preliminary Estimate. 1973.

# **Diatomite**

## By Benjamin Petkof 1

Domestic diatomite production remained strong in 1973, increasing 6% in quantity compared with 1972 data; value declined 4%. The United States retained its position as a major world producer of processed diatomite. U.S. exports of processed diatomite.

mite to nations throughout the world increased in both quantity and value over those of 1972.

#### DOMESTIC PRODUCTION

All U.S. production was derived from open pit operations in the western States of California, Nevada, Washington, and Oregon. California remained the largest producing State. Arizona reported no production for the year.

During 1973, 8 companies, with a total of 10 operations, actively mined and prepared diatomite to supply the demand of various industrial end users. The following companies supplied the bulk of the processed diatomite production: Johns-Manville Products

Corp., with a quarry and processing plant near Lompoc, Calif.; Grefco, Inc., with operations near Lompoc, Calif., and Mina, Nev.; Eagle-Picher Industries, Inc., with facilities near Sparks and Lovelock, Nev.; and Kenite Corp., Division of Whitco Chemical Corp., with an operation near Quincy, Wash. The remaining producers were Basalt Rock Co. Inc., near Napa, Calif.; Airox, Inc., near Santa Maria, Calif.; Fernley Division, Cyprus Mines Corp., near Fernley, Nev.; and A. M. Matlock, near Christmas Valley, Oreg.

Table 1.-Diatomite sold or used by producers in the United States

|                                       | 1969    | 1970    | 1971    | 1972    | 1973    |
|---------------------------------------|---------|---------|---------|---------|---------|
| Domestic production (sales)short tons | 598,482 | 597,636 | 535,318 | 576,089 | 608,906 |
| Average value per ton                 | \$60.96 | \$54.63 | \$64.25 | \$65.19 | \$59.26 |

## **CONSUMPTION AND USES**

All major end uses reported significant gains in consumption. However, the quantities consumed for abrasives and industrial fillers declined. Filtration remained the major end use of diatomite and required slightly in excess of three-fifths of domestic

demand. Abrasives, industrial fillers and lightweight aggregates accounted for almost one-fourth of demand. The remainder was consumed for miscellaneous end uses such as a pozzolan, soil conditioner, inert carrier, and coating agent.

Table 2.-Domestic consumption of diatomite, by principal use

(Percent of total consumption)

| Use                      | 1969 | 1970      | 1971 | 1972 | 1973     |
|--------------------------|------|-----------|------|------|----------|
| FiltrationFillers        | 58   | <b>58</b> | 59   | 58   | 61       |
|                          | 20   | 19        | W    | W    | W        |
| Insulation Miscellaneous | 4    | 4         | 3    | 4    | <b>4</b> |
|                          | 18   | 19        | 38   | 38   | 35       |

W Withheld to avoid disclosing individual company confidential data; included with "Miscellaneous."

<sup>&</sup>lt;sup>1</sup> Physical scientist, Division of Nonmetallic Minerals—Mineral Supply.

#### **PRICES**

The weighted average value per ton of diatomite, for all end uses in 1973, declined 9% from that of 1972. This decline was caused by price decreases for major end uses such as filtration, industrial fillers, and miscellaneous uses. Uses such as insulation and lightweight aggregate showed price increases. The price of abrasive material varied only slightly.

Table 3.—Average annual value per ton of diatomite, by use

|                                                                          | -                          |
|--------------------------------------------------------------------------|----------------------------|
| 3.08 \$65.1<br>.02 50.3<br>.27 125.4<br>.37 62.0<br>.07 45.0<br>.01 36.9 | 39<br>16<br>01<br>02<br>09 |
| •                                                                        |                            |

#### **FOREIGN TRADE**

Exports of prepared diatomite increased 20% in quantity and 15% in value over those of 1972. Exports represented 29% of domestic production. Major countries of destination were Canada 27%, Japan 10%, Federal Republic of Germany 8%, the United Kingdom 8%, Australia 5%, Brazil 4%, Republic of South Africa 4%, Italy 3%, and Spain 3%. The remainder was shipped to many other developed and less-developed countries of the world for various end uses. The average value of exported material was \$81.64 per ton. Imports of

diatomite totaled 164 tons, valued at \$23,635. The bulk of the imports were received from Mexico; the remainder, from the United Kingdom.

Table 4.-U.S. exports of diatomite (Thousand short tons and thousand dollars)

| Year |  | Quantity | Value  |  |
|------|--|----------|--------|--|
| 1971 |  | 142      | 11,752 |  |
| 1972 |  | 148      | 12,603 |  |
| 1973 |  | 178      | 14,532 |  |

#### **WORLD REVIEW**

Overall world diatomite production, which varied only slightly from that of 1972, continued to meet the strong demand of the consuming nations.

Kenya.—Diatomite is a small but significant fraction of the mineral output of the country. Large diatomite deposits are found in the area of the Rift Valley. African Diatomite Industries, Ltd., a subsidiary of the

Government of Kenya's Industrial and Commercial Development Corp., mines diatomite from the Kariandusi deposit near Gilgil. This operation provides all of the country's diatomite output, which is marketed by the Johns-Manville Products Corp. for use as filter aid, insulation, and industrial filler.

Table 5.-Diatomite: World production by country

|                                                     | 1971        | 1972      | 1973 р    |
|-----------------------------------------------------|-------------|-----------|-----------|
| North America:                                      | 500         | 500       | NA        |
| Canada e                                            |             | e 23.000  | e 23,000  |
| Costa Rica                                          | 23,149      | 10.006    | e 17,000  |
| Mexico                                              | r 24,033    |           | 608,906   |
| United States                                       | 535,318     | 576,089   | 000,500   |
|                                                     |             | 0 000     | e 10.600  |
| South America: Argentina                            | 10,568      | e 10,600  | 386       |
| Argentina                                           | 331         | 394       |           |
| Colombia                                            | 4,162       | r e 4,400 | e 4,400   |
| Peru                                                |             |           |           |
| Europe:                                             | 3,400       | 2,704     | • 2,800   |
| Austria                                             | -,          |           |           |
| Denmark:                                            | 22,000      | 22,000    | 22,000    |
| Diatomite e                                         | 240,000     | 240,000   | 240,000   |
| Moler e                                             | (1)         | (1)       |           |
| Finland                                             | 185,703     | e 190,000 | e 190,000 |
| France                                              | 97.787      | 63,985    | e 50,700  |
| Germany West (marketable)                           | e 20.995    | 24,251    | e 24.250  |
| Iceland                                             | 65,000      | 65,000    | 65,000    |
| Italy e                                             |             | 1,820     | • 2,200   |
| Portugal                                            | r 5,149     | e 22,000  | e 22,000  |
| Spain                                               | 20,211      |           | 22,000    |
| Sweden                                              | 5,585       | (1)       | 430,000   |
|                                                     | 410,000     | 420,000   | e 11,000  |
| U.S.S.R. <sup>e</sup> United Kingdom                | 16,049      | 9,900     | • 11,000  |
|                                                     |             |           |           |
| Africa:<br>Egypt, Arab Republic of (diatomite clay) | 2,480       | 1,839     | • 1,900   |
|                                                     | 1,543       | 1,997     | 137       |
| Kenya                                               | 358         | 346       | e 680     |
| South Africa, Republic of                           | 3,486       | 2,155     | 4,389     |
| Asia: Korea, Republic of                            | .,          |           |           |
| Oceania:                                            | r 2,124     | 1,616     | e 1,650   |
| Australia                                           | 6,986       | 5,507     | e 5,50    |
| New Zealand                                         |             | 1.700,109 | 1.738,49  |
| Total                                               | r 1,706,917 | 1,700,109 | 1,100,40  |

e Estimate. P Preliminary.

NA Not available.

#### **TECHNOLOGY**

A recent Government publication reviewed the resource position of diatomite and concluded that domestic and other world diatomite resources are adequate for the foreseeable future. It was also indicated that the requirement for diatomite near markets and for particular uses encouraged the development of new sources. The paper

also proposed that studies relating the geologic setting and history of diatomite to the occurrence and properties of the host rock would assist in the location of undiscovered deposits.<sup>2</sup>

r Revised.

<sup>1</sup> Revised to zero.

<sup>&</sup>lt;sup>2</sup> Durham, D. L. United States Mineral Resources. U.S. Geol. Survey Prof. Paper 820, 1973, pp. 191-195.



# Feldspar, Nepheline Syenite, and Aplite

## By J. Robert Wells 1

Domestic production of crude feldspar, after several years of indecisive ups and downs, rose sharply in 1973 and exceeded the corresponding figure for the preceding year by 8% and that for 1969, the record year heretofore, by 5%. Coinciding imports of more Canadian nepheline syenite than ever before, supplemented by near-record production of domestic aplite, attested that 1973 domestic consumption of feldspathic materials was at the highest level in history.

The feldspar industry was faced in 1973 with a number of unaccustomed problems, some already full-grown and some only recently emerging. It was evident in 1972 that new legislative programs relating to air, water, and noise pollution, land-use restrictions, and mined-land rehabilitation were becoming major incremental factors in determining feldspar production costs. Price increases passed on to purchasers early in 1973 were a predictable consequence, and in a related development,

land-use and/or environmental ments were reported to have been decisive in the September 1973 termination of Del Monte Properties' long-established feldspar operations in California. Many major producers depend heavily upon heat from natural gas for the drying of flotation cake feldspar and also use substantial quantities of fuel oil both for that purpose and as a necessary reagent in the flotation process. Potential deficits in the supply of those hydrocarbons looming toward yearend 1973 gave rise to deep concern and uncertainty that carried over into 1974. Indirect consequences from such shortages-possible curtailment of the production of energyintensive (and feldspar consuming) glass and ceramics—could be foreseen as further unsettling influences in the industry's

Legislation and Government Programs.

-According to provisions of the Tax Re-

Table 1.-Salient feldspar statistics

|                                     | 1969                    | 1970            | 1971      | 1972      | 1973            |
|-------------------------------------|-------------------------|-----------------|-----------|-----------|-----------------|
| United States:                      |                         |                 |           |           |                 |
| Crude:                              |                         |                 |           |           |                 |
| Sold or used by producersshort tons | 754,863                 | 726,069         | 742,810   | 732,439   | 791,900         |
| Valuethousands                      | <b>\$</b> 8,8 <b>69</b> | <b>\$9</b> ,638 | \$9,969   | \$10,372  | \$12,830        |
| Average value per short ton         | \$11.75                 | \$13.27         | \$13.42   | \$14.16   | \$16.20         |
| Imports for consumptionshort tons   | 52                      | 252             | 134       | 187       | 264             |
| Valuethousands                      | \$7                     | \$23            | \$19      | \$23      | \$22            |
| Average value per short ton         |                         | \$91.27         | \$141.79  | \$123.00  | \$83.33         |
| Consumption, apparent 1short tons_  | 754.915                 | 726,321         | 742.944   | 732,626   | 792,164         |
| Ground:                             | .01,010                 | ,               |           |           | •               |
| Sold by merchant millsshort tons    | 793,052                 | 647.995         | 601,618   | 580,801   | 588,698         |
| Valuethousands_                     | \$10,465                | \$9,458         | \$8,716   | \$8,990   | \$10,628        |
| Average value per short ton         | \$13.20                 | \$14.60         | r \$14.49 | \$15.48   | <b>\$1</b> 8.05 |
| Exportsshort tons_                  | 6.325                   | 5.570           | 3,984     | 5,275     | 9,554           |
| Valuethousands_                     | <b>\$35</b> 8           | \$195           | \$141     | \$184     | \$466           |
| Average value per short ton         | \$56.60                 | \$35.01         | \$35.39   | \$34.88   | <b>\$4</b> 8.78 |
| Imports for consumptionshort tons   | 5,201                   | 3,637           | 2,375     | 945       | 103             |
| Valuethousands_                     | \$128                   | \$93            | \$65      | \$20      | \$4             |
| Average value per short ton.        | \$24.61                 | \$25.57         | \$27.38   | r \$21.16 | \$38.83         |
| World productionthousand short tons | 2.697                   | 2.786           | 2,815     | 2.805     | 2,794           |

r Revised.

<sup>&</sup>lt;sup>1</sup> Physical scientist, Division of Nonmetallic Minerals—Mineral Supply.

<sup>1</sup> Measured by quantity sold or used by producers plus imports.

form Act of 1969, which continued in force throughout 1973, the depletion rate al-

lowed on feldspar production (both domestic and foreign operations) was 14%.

#### **FELDSPAR**

#### **DOMESTIC PRODUCTION**

Crude Feldspar.—In 1973, crude feldspar was mined in eight States (one fewer than in 1972), with North Carolina the leader in tonnage, followed in descending order by California, Connecticut, Georgia, South Dakota, Arizona, Wyoming, and Colorado. The combined outputs of the first four

States named amounted to almost 94% of the U.S. total. South Carolina, after 14 years of inclusion in the list of feldsparproducing States, dropped out when Spartan Minerals Co. discontinued extraction of that mineral from fines generated in the crushing of Spartanburg County granite, switching instead to treatment of ore shipped from Bessemer City, N.C.

Table 2.-Crude feldspar sold or used by producers in the United States

(Thousand short tons and thousand dollars)

| Year                                 | Hand-c                     | obbed                           |                                 | Flotation concentrate                     |                                 | Feldspar-silica<br>mixtures <sup>1</sup>  |                                 | Total 2                                     |  |
|--------------------------------------|----------------------------|---------------------------------|---------------------------------|-------------------------------------------|---------------------------------|-------------------------------------------|---------------------------------|---------------------------------------------|--|
|                                      | Quantity                   | Value                           | Quantity                        | Value                                     | Quantity                        | Value                                     | Quantity                        | Value                                       |  |
| 1969<br>1970<br>1971<br>1972<br>1973 | 68<br>53<br>45<br>25<br>53 | 494<br>543<br>749<br>392<br>636 | 371<br>415<br>443<br>535<br>546 | 4,912<br>5,395<br>5,454<br>7,354<br>9,789 | 316<br>258<br>255<br>172<br>193 | 3,462<br>3,699<br>3,766<br>2,627<br>2,406 | 755<br>726<br>743<br>732<br>792 | 8,869<br>9,638<br>9,969<br>10,372<br>12,830 |  |

<sup>1</sup> Feldspar content.

Ground Feldspar.--Most of the feldspar used in glassmaking is ground no finer than 20 mesh, but feldspar to be used in ceramics and filler applications is usually pulverized to minus 200 mesh or finer. Nine companies, operating 14 plants in 8 States, ground feldspar for market in 1973, supplying ground material (total tonnage 1% more than in 1972) for shipment to destinations in at least 24 States, Puerto Rico, Canada, and Mexico. Listed in descending order of output tonnages, North Carolina had six grinding mills, while Connecticut, Georgia, and South Carolina had one each. These were the leaders in ground feldspar production and jointly accounted for 90% of the 1973 total. South Dakota with two mills, followed by California, Arizona, and Wyoming with one each, were the four States making up the remaining 10%. Colorado was the only crude feldspar-producing State in 1973 in which no grinding mill was operated.

#### CONSUMPTION AND USES

Crude Feldspar.—In 1973 there was no significant consumption of feldspar in the

raw, unprocessed state in which it is taken from the mine; the majority of users acquired their supplies already ground and sized either by the primary producers or by merchant grinders. Some manufacturers of pottery, soaps, and enamels, however, continued their customary practice of purchasing crude feldspar for grinding to their preferred specifications in their own mills. The Bureau of Mines canvass of producers and merchant grinders does not provide information concerning the enduse distribution of the material handled in this way.

Ground Feldspar.—The 1973 pattern of ground feldspar consumption in the United States was not strikingly different from that of the preceding year, but the confidential status of some of the data precludes a detailed comparison. The 1973 end-use distribution showed that 53% of the total was consumed for glassmaking and 47% went for pottery, enamel, and miscellaneous uses compared with 1972 data showing 50% for glass, 44% for pottery, and 6% for enamel and other uses.

<sup>&</sup>lt;sup>2</sup> Data may not add to totals shown because of independent rounding.

Table 3.-Production of ground feldspar, by use

(Short tons and thousand dollars)

| TI                         | 1972              |            | 197              | .973         |  |
|----------------------------|-------------------|------------|------------------|--------------|--|
| Use                        | Quantity          | Value      | Quantity         | Value        |  |
| Hand-cobbed:               |                   |            |                  |              |  |
| Glass                      | 1,800             | \$45       | 00 000           |              |  |
| Pottery<br>Enamel          | $12,186 \\ 8,371$ | 263<br>165 | 36,860<br>W      | \$1,000<br>W |  |
| Soap                       | 2,627             | 55         | 240              | 77           |  |
| Other                      | 168               | 4          | 17,018           | 495          |  |
| Total                      | 25,152            | 532        | 54,118           | 1,502        |  |
| Flotation concentrate:     |                   |            |                  |              |  |
| Glass                      |                   | 3,034      | 217,267          | 3,302        |  |
| Pottery                    |                   | 3,631      | 115,569          | 2,616        |  |
| Other                      | 5,614             | 127        | 11,512           | 249          |  |
| Total                      | 458,641           | 6,792      | 344,348          | 6,167        |  |
| Feldspar-silica mixture: 1 |                   |            |                  |              |  |
| Glass                      | 29,352            | 347        | 91,897           | 1,179        |  |
| Pottery                    |                   | 778        | 75,698           | 1,309        |  |
| Other                      | 18,372            | 543        | 22,637           | 471          |  |
| Total                      | 97,008            | 1,668      | 190,232          | 2,959        |  |
| Total:                     |                   |            |                  |              |  |
| Glass                      | 287,736           | 3,426      | 309,164          | 4.481        |  |
| Pottery                    |                   | 4,672      | 228,127          | 4.925        |  |
| Enamel                     |                   | 165        | · w              | W            |  |
| Soap                       | 2,627             | 55         | 240              | 7 7          |  |
| Other 2                    | 24,154            | 674        | 51,167           | 1,215        |  |
| Total                      | 580,801           | * 8,990    | 588, <b>69</b> 8 | 10,628       |  |

W Withheld to avoid disclosing individual company confidential data; included with "Other."

#### **STOCKS**

From a comparison of 1973 data on domestic production and sales of feldspar, it was estimated that U.S. producers had 283,000 short tons of feldspar (crude, ground, or in process) on hand on December 31, 1973.

#### **PRICES**

Engineering and Mining Journal, June through December 1973, quoted the following prices for feldspar, per short ton, f.o.b. mine or mill, carload lots, bulk, depending on grade (generally \$1 per ton higher than the respective quotations of the previous year):

| North Carolina:  20 mesh, flotation              | \$13.00<br>14.00- 21.00<br>22.50- 23.50<br>27.00 |
|--------------------------------------------------|--------------------------------------------------|
| Georgia: 40 mesh, granular 200 mesh 325 mesh     |                                                  |
| Connecticut: 20 mesh, granular 200 mesh 325 mesh | 16.50<br>23.50<br>24.50                          |

Feldspar prices were quoted by Industrial Minerals (London), December 1973, as follows (converted from pounds sterling per long ton to dollars per short ton):

Ceramic grade, powder, 200 mesh, bagged, Lump, imported, c.i.f. main European port 21- 27

#### FOREIGN TRADE

In 1973, U.S. exports classified as feldspar, leucite, nepheline, and nepheline syenite (but presumably all or mostly feldspar) amounted to 9,554 short tons valued at \$466,118, almost double the tonnage reported in 1972 and just over two and onehalf times the value. Chief recipients of the exported material were Canada, 67%, and Mexico, 23%; the remaining 10% was shared among nine other countries. In marked contrast to rising exports of feldspar, U.S. imports of the mineral fell off notably in 1972 and dropped even more sharply in 1973, bringing this statistic to the lowest point since it was first separately recorded 50 years ago. In addition to feldspar and nepheline syenite (table

<sup>&</sup>lt;sup>2</sup> Includes plastics, refractories, rubber, and data indicated by symbol W.
<sup>3</sup> Data does not add to total shown because of independent rounding.

6), U.S. imports in 1973 included 850 tons of material, probably feldspathic in nature, that was classified as "Natural mineral fluxes, crushed, ground, or pulverized" and valued at \$81,535.

The tariff schedule in force throughout 1973 provided for a 31/2% ad valorem duty on ground feldspar; imports of crude feldspar were admitted duty free.

Table 4.-U.S. imports for consumption of feldspar

| Countries                       | 1             | .972             | 1973  |         |  |
|---------------------------------|---------------|------------------|-------|---------|--|
| Country                         | Short<br>tons | Value            | Short | Value   |  |
| Crude:                          |               |                  |       |         |  |
| Canada<br>South Africa.         | 187           | <b>\$23</b> ,105 | 46    | \$3,725 |  |
| Republic of_                    |               |                  | 218   | 17,870  |  |
| Total                           | 187           | 23,105           | 264   | 21,595  |  |
| Ground, crushed, or pulverized: |               |                  |       |         |  |
| Ĉanada                          | 748           | 16,940           | 103   | 3.549   |  |
| Sweden<br>United                | 49            | 1,742            |       |         |  |
| Kingdom                         | 148           | 1,125            |       |         |  |
| Total                           | 945           | 19,807           | 103   | 3,549   |  |

#### WORLD REVIEW

An agency of the British Government issued a report tabulating world production and international trade statistics for many metals and industrial minerals for the years 1967 through 1971.2 Based on that compilation, a rough ranking of countries according to apparent consumption of feldspar (exports subtracted from production plus imports) shows that in 1971 the United States was in first place, followed in descending order by West Germany, U.S.S.R., France, Italy, and the United Kingdom. Taking into account imported nepheline syenite and domestically produced aplite, U.S. apparent consumption of feldspathic materials in 1971 was more than 1 million tons and approximately three times the corresponding figure for second-place West Germany.

Canada.—Commercial production feldspar in Canada was terminated, or at least suspended, in 1972, not because of any lack of exploitable mineral but as the result of a combination of unfavorable economic factors. Feldspar demand in Canada is not great—probably not over 8,000 tons per year-and the requirement most likely can be met with little difficulty by substitution of domestically produced nepheline syenite supplemented by limited quantities of imported mineral. In an article published in an industrial magazine, the Director of the Quebec Geological Exploration Service presented reasons, however, for concluding that a modestly profitable revival of the Canadian feldspar industry might be achieved with a limited expenditure of capital.3

Finland.—As is true in the United States, flotation concentrate now comprises the predominant part of Finland's feldspar production; hand-cobbed material, at one time the only form in which the mineral was recovered, amounted to less than 7% of Finland's 1972 total.

France.—French exports of feldspar outweighed imports in 1971, but only by a small margin; apparent consumption of the mineral thus came to slightly less than the figure of 212,000 tons reported for domestic production in that year.

Germany, West.-Feldspar consumption in West Germany in 1971 amounted to 477,000 tons, of which about four-fifths was supplied by domestic production and onefifth was imported.

Italy.—Italy was a net exporter of feldspar in 1971 even though domestic consumption of the mineral accounted for almost 94% of the domestic production.

Kenya.—Although potentially workable deposits of feldspar are plentifully distributed throughout Kenya, the nonexistence of an export market, combined with the meagerness of internal demand (mostly for the manufacture of glass, ceramics, and scouring powder), acts to limit production to the efforts of a few small-scale operators. Government policy is now being aimed toward encouraging expanded development of this and other mineral resources by both national and foreign investors.

Rhodesia, Southern.-A consignment of material, shipped to the United States in July 1973 and listed as feldspar originating in the Republic of South Africa, was found to be petalite ore that had been mined in Southern Rhodesia. The importing firm, a large U.S. producer of alumi-

1973, pp. 66-68.

<sup>&</sup>lt;sup>2</sup> Institute of Geological Sciences, Mineral Resources Division. Statistical Summary of the Mineral Industry-World Production, Exports and Imports 1967–1971. Her Majesty's Stationery Office (London), 1973, 407 pp.

<sup>3</sup> Maurice, O. D. Feldspar in Canada. Can. Min. and Met. Bull., v. 66, No. 738, October 1973, pp. 66, 68

Table 5.-Feldspar: World production, by country (Short tons)

| Country 1                    | 1971     | 1972           | 1973 р    |
|------------------------------|----------|----------------|-----------|
| North America:               |          |                |           |
| Canada (shipments)           | 10,774   | 11,684         | e 12,000  |
| Mexico                       | 109,506  | 108,426        | 107,042   |
| United States (sold or used) | 742,810  | 732,439        | 791,900   |
| South America:               | ,        | ,              | ,         |
| Argentina                    | 39,996   | 70.801         | e 71.000  |
| Chile                        | 992      | 1.771          | e 1,800   |
| Colombia                     | 27,377   | 29.055         | 33,069    |
| Peru                         | 1,582    | r • 1,650      | • 1,650   |
| Uruguay                      | 1,332    | 1.070          | 226       |
| Europe:                      | 1,002    | 1,010          | 220       |
| Austria                      | 2,928    | 3.391          | 2,296     |
| Finland                      | 70,616   | 65,982         | 64,285    |
| Finland                      | 212,000  | 162,000        | • 165,000 |
| France (crude)               |          | 385,198        | 338,432   |
| Germany, West                | 389,879  |                |           |
| Italy                        | 212,192  | 193,805        | 209,657   |
| Norway 2                     | 223,530  | r e 220,000    | e 220,000 |
| Poland e                     | 33,000   | 33,000         | 33,000    |
| Portugal                     | 20,691   | 19,854         | e 20,000  |
| Spain 3                      | r 68,048 | 82,673         | e 83,000  |
| Sweden                       | 30,541   | 37,579         | e 37,500  |
| U.S.S.R.•                    | 276,000  | 287,000        | 298,000   |
| United Kingdom (china stone) | 69,248   | <b>58,422</b>  | 53,809    |
| Yugoslavia                   | 59,103   | <b>53,2</b> 80 | e 55,000  |
| Africa:                      |          |                |           |
| Egypt, Arab Republic of      | 3,495    | 3,565          | e 3,500   |
| Kenya                        | 2.921    | 2,163          | 1,610     |
| Mozambique                   | (4)      | (4)            |           |
| Nigeria                      | ` NA     | 4,760          | e 5,500   |
| South Africa, Republic of    | 13.492   | 27.913         | e 17,400  |
| Zambia                       |          |                | 13        |
| Asia:                        |          |                |           |
| Burma                        | 5 766    | 881            | e 900     |
| Hong Kong                    | 1.262    | 1.267          | 1.477     |
| India                        | 48,762   | 54,990         | 43,872    |
| Japan 6                      | 57,843   | 63,662         | 56,766    |
| Korea, Republic of           | 18.615   | 31,939         | 31,372    |
| Pakistan                     | 336      | 265            | 1,333     |
|                              |          |                |           |
|                              | 61 520   | 50 774         | 27 556    |
| Philippines                  | 61,539   | 50,774         | 27,556    |
| Philippines                  | 284      | 638            | e 640     |
| Philippines                  |          |                |           |

of output.

2 Described in source as lump feldspar; does not include nepheline syenite as follows, in short tons: 1971—176,470; 1972—9 176,000; 1973—9 220,000.

3 Includes pegmatite.

4 Revised to zero.

5 Date and for years ending June 30 of that stated.

<sup>6</sup> Data are for years ending June 30 of that stated.
<sup>6</sup> In addition the following quantities of aplite and saba were produced: Aplite: 1971—448,162; 1972—501,648; 1973—547,665; saba: 1971—6,005; 1972—1,336; 1973—NA.

num, was indicted on a charge of violating import sanctions against Southern Rhodesia.4

United Kingdom.—In 1972 the United Kingdom produced 58,000 tons of "china stone" and also imported 131,000 tons of feldspar (from Norway, Finland, Sweden, and Portugal) as well as 57,000 tons of nepheline syenite (Norway and Canada), compared with the figures of 69,000 tons, 131,000 tons, and 70,000 tons, respectively, in the preceding year. Exports of feldspathic materials in 1971 amounted to less than 2% of the total quantity involved, indicating that the United Kingdom's net annual consumption approaches a quarter of a million tons or about one-fourth of the corresponding figure for the United States

#### **TECHNOLOGY**

The manufacturing of glass, especially container glass, has been for many years the largest outlet for feldspar in the United States. The modern technology of glassmaking was summarized in an article, part of which was devoted to the functions of the various raw materials involved and

<sup>&</sup>lt;sup>e</sup> Estimate. <sup>p</sup> Preliminary. <sup>r</sup> Revised. NA Not available. <sup>1</sup> In addition to the countries listed, Brazil, People's Republic of China, Czechoslovakia, Romania and Territory of South-West Africa produce feldspar, but available information is inadequate to make reliable estimates

<sup>&</sup>lt;sup>4</sup> Industrial Minerals (London). "Feldspar" for Aluminum Production. No. 74, November 1973,

dealt specifically with feldspar and nepheline syenite.5

Two other articles provided brief reviews of the advancing technology of container glass manufacturing as well as some forecast of the effects upon that industry that can be expected from the rapidly changing energy and environmental situations.6 A paper presented at the 1973 annual meeting of the Society of Mining Engineers (Chicago, February 25-March 1, 1973) discussed factors to be considered in compensating for changes in glass furnace feed materials including feldspar, nepheline syenite, aplite, and feldspathic sands.7

A number of notes in industrial journals dealt with investigations and developments that, by leading to the evolution stronger and lighter glass containers, may at least indirectly affect the feldspar industry.8

Bureau of Mines participation in the recycling of waste glass during 1973 included research on the production of concrete blocks, roof slabs, and curtain walls based on a novel type of lightweight aggregate in which the principal ingredient was waste glass. Bureau scientists were invited to present a paper on an allied subject before the Society of Mining Engineers at the annual meeting in February 1974 at Dallas, Tex.9 Financial considerations involved in reutilization schemes for salvaged waste were explored in glass а Bureau publication.10

The Glass Container Manufacturers Institute announced the start of construction at Franklin, Ohio, of the world's first waste glass reclamation plant. The facility, designed to subject an entering stream of municipal solid waste to the most modern techniques of treatment by high-intensity magnetism, air currents, screening, and optical sorting, will separate 4 tons of glass per day in a form suitable for remelting to make new containers.11 In Denver, Colo., a picnic pavillion for a city park was constructed with so-called ecological panels formed by mixing rubble from demolished buildings with a large proportion of salvaged container glass. This novel building material, in a variety of textures and color combinations, was described as being attractive in appearance and highly resistant to weathering while providing an advantageous outlet for what otherwise

would have been a burdensome accumulation of rubbish.12

Research carried out in England demonstrated the suitability of cement reinforced with coarsely crushed waste glass for such components as drain pipes, sewer linings, bridge decking, and marine hulls.13 In a related application, recycled glass was crushed and then blended with a liquid plastic monomer into a mixture that was cured in molds to form lengths of sewer pipe. This sewer pipe was stronger than the conventional product and potentially competitive with it on a technical and economic basis. It was not found necessary to color sort the waste glass nor to free it from accompanying labels and metal cap rings.14 The Midwest Research Institute, continuing an examination of various potentially profitable utilizations of waste glass in the building industry, undertook a study of ceramic foams and tile produced by firing mixtures of salvaged glass with dried residues from animal feedlots.15

Glasphalt is the name given to a street paving mixture composed of asphalt and crushed glass first introduced several years ago. Additional research on this material at the University of Missouri at Rolla

<sup>5</sup> Industrial Minerals (London). An Introduction to the Glass Industry. No. 74, November 1973, pp. 9-10, 12-13, 15, 17-19, 21-23.

<sup>6</sup> Fabianic, W. L. The Future of the Glass Container Industry. Ceram. Ind., v. 100, No. 4,

Container Industry. Ceram. Ind., v. 100, No. 4, April 1973, pp. 72–74.
Industry Week. More and More Soft Drinks in Nonreturnable Containers. V. 179, No. 4, July 23, 1973, pp. 50, 52.

Kephart, W. W. Glass Containers From

Thephart, W. W. Glass Containers From Varying Industrial Mineral Sources. Soc. Min. Eng., AIME, Preprint No. 73-H-21, 10 pp. 8 LaDue, A. W. Improving Glass Container Strength. Ceram. Ind., v. 100, No. 3, March 1073 pp. 18 Strength. C. 1973, p. 28.

Arrendale, R. Plastic Coated Bottles Make Inroads, Ceram, Ind., v. 101, no. 4, October 1973, pp. 50-51.

Materials Engineering. Powder Coated Glass. V. 77, No. 6, Lens. 1073

Materials Engineering. Powder Coated Glass. V. 77, No. 6, June 1973, p. 53.

The Glass Industry. New Coke Bottles Move to Market. V. 54, No. 11, October 1973, p. 26.

<sup>9</sup> Goode, A. H., and M. E. Tyrell. Utilization of Waste Glass in Clay Brick. Soc. Min. Eng., of AIME, Preprint No. 74-H-43, 12 pp.

<sup>10</sup> Johnson, P. W., and J. A. Barclay. Economic Studies of Uses of Glass Fractions From Municipal Incinerator Residues. BuMines IC 8567, 1973, 44 pp.

<sup>11</sup> American Ceramic Society Bulletin. Glass Reclamation Plant Under Construction. V. 52, No.

13 Action Plant Under Construction. V. 52, No. 1, January 1973, p. 152.

12 The Glass Industry. Recycled Glass Builds Civic Pride. V. 54, No. 2, February 1973, p. 17.

13 Rock Products. Glass-Reinforced Cement Makes Gains Abroad. V. 76, No. 11, November 1973, p. 17.

Makes Gams Articles. 1973, p. 17.

<sup>14</sup> Ceramic Age. Waste Glass Makes Debut as Sewer Pipe. V. 89, No. 3, March 1973, p. 5.

<sup>15</sup> Environmental Science & Technology. Technology. V. 7, No. 5, May 1973, p. 389.

showed that it was permissible as well as economical to use for this purpose waste glass that had not been subjected to a complete and costly separation from foreign solids. It was found that an acceptable and serviceable pavement could be premixing asphalt with by glass-rich fraction of the original residue even when that fraction still contained as much as 17% of a miscellany of metals, plastics, stones, bones, and ceramics.16

The fluxing action of feldspar or other feldspathic materials was the basis for the enamels, frits, and glazes developed by the ceramists of ancient Egypt and continues to be of fundamental importance in most of those products in use today. The intricate technology of glazes and of their utilization were among the principles considered in a newly published book.17 A radically new technique is being developed in the field of porcelain enamels, and an article was published discussing problems involved in applications of that innovation.18

The first white-burning body for ceramic wall tile on record as produced in the United States was of the classic clay-flintfeldspar type and most likely was compounded entirely from imported materials. Cornwall stone from England, the feldspathic material first used here in tile bodies, eventually yielded its place to Vermont feldspar, which was superseded in turn by feldspar from the large deposits of North Carolina. In more recent formulations, the tendency has been to replace at least part of the feldspar in this application by talc, pyrophyllite, or wollastonite. The changing technology of ceramic tile body mixtures was reviewed in a journal article.19

One of the less publicized applications for feldspar is in the production of porcelain for artificial dentures. Porcelain acceptable for this specialized service must combine to an extraordinary degree the properties of pleasing appearance and physical strength with the ability to resist

chipping and abrasion. Porcelain used in dentures must also remain chemically stable for many years under conditions of frequent or prolonged contact with a wide variety of solid substances and liquids, some of which are quite vigorous solvents. A journal article described the sophisticated techniques by which one manufacturer turns out natural-appearing porcelain teeth from carefully chosen raw materials including a select grade of potash feldspar from Wyoming.20

A number of research papers were published relating to various types of feldspar and summarizing investigations that may provide bases for advances in the practical utilization of those minerals.21

pp. 18 Hein, G. Electrostatic Deposition of Powdered Frit. Ceram. Ind., v. 100, No. 3, March 1973, pp. 20-21.

pp. 20-21.

19 Emrich, E. W. History and Development of Ceramic Wall Tile Bodies in the United States. Am. Ceram. Soc. Bull., v. 52, No. 9, September 1973, pp. 687-688.

20 Ceramic Age. Dentsply-Advocate of Top Pilicht Materials Engineering. V. 89, No. 10, Oc-

57, Nos. 11-12, November-December 1973, pp. 1860-1870.

Goodwin, J. H. Analcime and K-Feldspar in Tuffs of the Green River Formation, Wyoming. Am. Miner., v. 58, Nos. 1-2, January-February 1973, pp. 93-105.

Guidotti, C. V., H. H. Herd, and C. L. Tuttle. Composition and Structural State of K-Feldspars From K-Feldspar + Sillimanite Grade Rocks in Northwestern Maine. Am. Miner., v. 58, Nos. 7-8, July-August 1973, pp. 705-716.

Huang, W. H., and W. C. Kiang. Gibbs Free Energies of Formation Calculated From Dissolution Data Using Specific Mineral Analyses. II. Plagiclase Feldspars Am. Miner., v. 58, Nos. 11-12, November-December 1973, pp. 1016-1022.

———. Laboratory Dissolution of Plagioclase Feldspars in Water and Organic Acids at Room Temperature. Am. Miner., v. 57, Nos. 11-12, November-December 1972, pp. 1849-1859.

Phillips, M. W., and P. H. Ribbe. The Structures of Monoclinic Potassium-Rich Feldspars. Am. Miner., v. 58, Nos. 3-4, March-April 1973, pp. 263-270.

Scheidegger, K. F. Determination of Structural State of Calcic Plagioclases by an X-Ray Powder Technique. Am. Miner., v. 58, Nos. 1-2, January-February 1973, pp. 134-136.

<sup>&</sup>lt;sup>16</sup> Ceramic Age. Unrefined Glass Used for Glasphalt. V. 89, No. 1, January 1973, p. 4.

<sup>17</sup> Rhodes, D. Clay and Glazes for the Potter. Chilton Book Co., Philadelphia, Pa., 1973, 330

# NEPHELINE SYENITE

Nepheline syenite, a rock of igneous origin with a texture similar to that of granite, consists essentially of a mixture of nephelite with varying proportions of the alkali feldspars. Nepheline syenite found thus far in the United States has been of a quality suitable only for use as crushed stone, but an immense deposit in Canada (Blue Mountain, Ontario) has provided the United States with an abundance of imported material of higher grade. The Canadian material serves advantageously in glassmaking as an alumina-bearing ingredient in furnace feeds, in the whiteware industry either as a body component or as a fluxing agent in glazes, and increasingly in recent years as a filler for plastics, latex, paints, and paper. U.S. imports of Canadian nepheline syenite, which were first reported in the mid-1930's, have increased in all but a few of the years since, and now appear to be rising on a steepening curve. Starting at 10,000 tons per year (tpy) or less in 1936, the figure climbed to 100,000 tpy by 1955, to 200,000 tpy by 1964, to 300,000 tpy by 1968, and to 400,000 tpy by 1971. Further substantial increases in 1972 and 1973 have brought the half-millionton-per-year mark well within sight. Under the present U.S. tariff schedule, imports of nepheline syenite, crude or ground, are admitted duty free.

The price range quoted for nepheline syenite in Ceramic Industry Magazine, January 1974, was from \$10.25 to \$23.40 per ton. Price ranges for this commodity listed in Industrial Minerals (London), December 1973, were equivalent (with a minor degree of uncertainty because of the floating sterling/dollar exchange rate) to the following:

| Canadian, bagged ex-store: Glass grade, 30-mesh, 10-ton lots Ceramic grade, 200 or 325-mesh, sma lots Norwegian, ex-store: Glass grade, 32-mesh (Tyler), bulk Ceramic grade, 325-mesh (Tyler), bagge | \$41-\$47        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 10ts                                                                                                                                                                                                 | 57- 65           |
| Norwegian, ex-store:<br>Glass grade, 32-mesh (Tyler), bulk<br>Ceramic grade, 325-mesh (Tyler), bagged                                                                                                | 30- 33<br>43- 49 |

A British publication tabulated available data on world production, exports, and imports of nepheline syenite, 1967 through 1971.22

Table 6.-U.S. imports for consumption of nepheline syenite

|                      | Cru                         | ıde                       | Ground                        |                           |  |  |
|----------------------|-----------------------------|---------------------------|-------------------------------|---------------------------|--|--|
| Year                 | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands) | Quantity<br>(short<br>tons)   | Value<br>(thou-<br>sands) |  |  |
| 1971<br>1972<br>1973 | 3,027<br>258                | \$12<br>43<br>4           | 413,862<br>456,406<br>473,838 | \$4,912<br>5,681<br>6,022 |  |  |

#### **APLITE**

Aplite is a granitic rock with a high proportion of albite (soda feldspar) or plagioclase (lime-soda feldspar), either of which makes it potentially useful as a raw material for the manufacture of container glass. To become acceptable for that purpose, however, the mined material usually must be processed to eliminate most of the iron-bearing substances it commonly contains. Aplite of glassmaking quality was produced in the United States in 1973 from two open pit mines in central Virginia. The Feldspar Corp. mined aplite ore near Montpelier, Hanover County, and removed iron from it by an electrostatic process. Sobin Chemicals, Inc., an affiliate of International Minerals & Chemical Corp., operated a mine near Piney River,

Nelson County, and subjected the crude aplite to a high-intensity magnetic separation to eliminate iron minerals. Tonnage and total value of the 1973 output, respectively 5% and 61% above the corresponding figures for 1972, were the highest on record.

Specific annual data on aplite production, sales, and value have not been released for publication since 1962. The output for 1962 amounted to 140,000 short tons, valued at \$0.9 million. The price range for aplite quoted in Ceramic Industry Magazine, January 1974, was from \$12.70 to \$13.00 per ton, compared with \$6.30 to \$12.40 per ton quoted in January 1973.

<sup>22</sup> Page 400 of workcited in footnote 2.

# Ferroalloys

# By Norman A. Matthews 1

The overall structure of the domestic ferroalloy industry did not change basically during 1973. The abnormally high demand for ferroalloys resulted in capacity production throughout most of the year; nevertheless shortages persisted for ferrosilicon and some manganese alloys. Two older plants, scheduled to close because of emission control equipment costs, were purchased by new owners and granted another year to install emission controls. Most producers had made provisions for emission control facilities and expenditures for such capital improvements continued at a high level.

Ferroalloy exports nearly doubled as world demand exceeded capacity. Imports continued to increase substantially, but the rate of imports decreased somewhat late in the year as imports from Western Europe and Japan declined.

Prices increased generally in the first quarter and then remained essentially static during the balance of the year under phase IV price controls. Dual level (two-tier) pricing developed in some silicon alloys as the smaller producers were permitted price increases justified by cost increases.

Detailed information concerning utilization of individual elements in various alloy products can be found in the chromium, manganese, silicon, molybdenum, nickel, tungsten, and vanadium chapters.

Table 1.—Government inventory of ferroalloys (stockpile grade), December 31, 1973 (Thousand short tons)

| Alloy                                        | National<br>(stra-<br>tegic)<br>stock-<br>pile | CCC and<br>supple-<br>mental<br>stock-<br>pile | Total       |
|----------------------------------------------|------------------------------------------------|------------------------------------------------|-------------|
| Ferrochromium:<br>High-carbon                | 126<br>128                                     | 276<br>191                                     | 402<br>319  |
| Low-carbon Ferrochromium-                    | 128<br>26                                      | 32                                             | 58          |
| Ferrocolumbium (con-<br>tained columbium)    | 0.5                                            |                                                | 0.5         |
| Ferromanganese: High-carbon Medium-carbon -  | 126<br>29                                      | 985                                            | 1,111<br>29 |
| Ferromanganese-<br>silicon                   | 23                                             |                                                | 23          |
| Ferromolybdenum<br>(contained<br>molybdenum) | 2.5                                            |                                                | 2.5         |
| Ferrotungsten (con-<br>tained tungsten) _    | 1                                              |                                                | 1           |
| Ferrovanadium (con-<br>tained vanadium)_     | 1                                              |                                                | 1           |

<sup>&</sup>lt;sup>1</sup> Physical scientist, Division of Ferrous Metals —Mineral Supply.

| Table 2.—Ferroalloys produced as | nd shipped | from | furnaces | in | the | United | States |
|----------------------------------|------------|------|----------|----|-----|--------|--------|
|----------------------------------|------------|------|----------|----|-----|--------|--------|

|                                                                               |                                                | 1:                                                         | 972                                            |                                               |                                                | 1973                                        |                                                |                                                |  |  |  |
|-------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------|------------------------------------------------|-----------------------------------------------|------------------------------------------------|---------------------------------------------|------------------------------------------------|------------------------------------------------|--|--|--|
|                                                                               | Proc                                           | duction                                                    | Ship                                           | ments                                         | Pro                                            | duction                                     |                                                | Shipments                                      |  |  |  |
|                                                                               | Gross<br>weight<br>(short<br>tons)             | Alloy<br>element<br>con-<br>tained<br>(average<br>percent) | Gross<br>weight<br>(short<br>tons)             | Value<br>(thou-<br>sands)                     | Gross<br>weight<br>(short<br>tons)             | Alloy element con- tained (average percent) | Gross<br>weight<br>(short                      | Value<br>(thou-<br>sands)                      |  |  |  |
| Ferromanganese 1<br>Silicomanganese<br>Ferrosilicon 2<br>Silvery pig iron     | 800,723<br>153,234<br>841,386<br>163,073       | 78.3<br>65.3<br>59.8<br>20.8                               | 726,592<br>146,433<br>784,399<br>163,714       | \$126,598<br>28,440<br>182,100<br>14,800      | 683,075<br>183,702<br>877,798<br>135,009       | 78.8<br>66.3<br>58.0<br>22.0                | 779,459<br>195,956<br>906,542<br>156,287       | 39,439<br>243,151                              |  |  |  |
| Chromium alloys: Ferrochromium: High-carbon Low-carbon Ferrochromium: Silicon | 169,525<br>69,003<br>98,223                    | 65.0<br>69.1                                               | 162,718<br>81,043                              | 39,688<br>38,581                              | 241,667<br>88,085                              | 66.8<br>69.4                                | 261,624<br>104,329                             | 73,055<br>45,988                               |  |  |  |
| Other alloys 3                                                                | 15,554                                         | 42.4<br>53.0                                               | 90,986<br>17,293                               | 25,974<br>7,031                               | 80,788<br>16,306                               | 36.8<br>43.9                                | 89,799<br>16,816                               | 26,743<br>10,788                               |  |  |  |
| Total Ferrotitanium Ferrophosphorus Ferrocolumbium Other 4                    | 352,305<br>3,650<br>130,355<br>1,160<br>80,738 | 62.0<br>25.7<br>23.9<br>63.5<br>44.2                       | 352,040<br>4,133<br>118,454<br>2,431<br>81,598 | 111,274<br>4,566<br>5,739<br>11,656<br>82,416 | 426,846<br>1,784<br>129,646<br>1,167<br>80,928 | 60.8<br>39.9<br>16.5<br>64.1<br>39.0        | 472,568<br>2,176<br>143,257<br>2,758<br>96,799 | 156,574<br>2,417<br>7,681<br>15,316<br>104,088 |  |  |  |
| Grand total                                                                   | 2,526,624                                      | 61.8                                                       | 2,379,794                                      | 567,589                                       | 2,519,955                                      | 60.0                                        | 2,755,802                                      | 720,542                                        |  |  |  |

<sup>4</sup> Includes ferroboron, and other complex boron additive alloys, ferronickel, ferromolybdenum, ferrotungsten, ferrovanadium, spiegeleisen, ferrozirconium, and other miscellaneous alloys.

# **DOMESTIC PRODUCTION**

The number of ferroalloy producers increased by 1 to 26 during the year as the Steubenville, Ohio, plant of Foote Mineral Co. was sold to Satra Corp. at yearend. Subsequently Satra Corp. announced that a large furnace would be added to produce charge chromium and that an overall plant modernization would be carried out to incorporate emission control facilities. At yearend Hanna Mining Co. purchased the Wenatchee, Wash., plant of Foote Mineral Co. which Foote had scheduled for closing. Of the 26 producing companies, 6 produced ferrophosphorus in 9 plants as a byproduct of phosphorus production. Reynolds Metals Co. announced the expansion of its captive silicon metal facility at Sheffield, Ala.; a second furnace will raise capacity from 7,000 to 17,000 tons per year with startup scheduled in 1975.

Steel, cast iron, and aluminum production were at record levels in 1973 and demand for ferroalloys increased proportionately. The ferroalloy industry operated at capacity, but because of extraordinary demand and a decline in imports of some categories of alloys, shortages of manganese

and silicon alloys persisted throughout the last 6 to 8 months of the year. Substantial shipments of ferromanganese from the Government stockpile (65,000 tons) minimized the seriousness of the manganese shortage. Price controls under phase IV exaggerated the shortage of some alloys as producers concentrated on higher value alloys. An example was the continued shortage of 50% ferrosilicon grade traditionally utilized by foundries. Overall shipments of manganese, silicon, chromium alloys increased by 12%, 16%, and 34%, respectively, compared with 1972figures and producers inventories were reduced to low levels at yearend. Since no new ferroalloy capacity is scheduled until late 1974, the shortage of manganese and silicon alloys will probably persist as long as steel and foundry industries continue operating at capacity.

Several new ferroalloy facilities were planned or under construction. Northwest Alloys, Inc., a subsidiary of the Aluminum Company of America, completed plans for a magnesium and silicon alloy facility at Addy, Wash. but initial construction was

<sup>&</sup>lt;sup>1</sup> Includes briquets and fused-salt electrolytic.
<sup>2</sup> Includes silicon metal and inoculant type alloys.
<sup>3</sup> Includes chromium briquets, chromium metal, exothermic chromium additives, and other miscellaneous chromium alloys.

delayed by environmental considerations. The Magnétherm process, developed in France, will be utilized. It involves the reduction of calcined dolomite by ferrosilicon in the presence of alumina under reduced pressure. The volatilized magnesium collects in an auxiliary chamber. The silicon alloy will be produced conventionally in a submerged arc furnace. Startup will be delayed until 1976.

Foote Mineral Co. announced the installation of a new 20-megawatt electric furnace, auxiliary air pollution control equipment, and modernization throughout its Graham, W. Va., plant. The new furnace, principally for silicon alloys, and modernization were estimated to cost \$6.9 million with completion scheduled in mid-year 1975. Ohio Ferro-Alloys Corp. scheduled, for 1975, the installation of a modern 46-megavolt-ampere (MVA) furnace for silicon alloy production at its Philo, Ohio,

plant. The furnace and a modularly constructed baghouse, designed by Ohio Ferro-Alloys, are estimated to cost \$4.0 million. Union Carbide Corp. planned a new furnace for silicon alloys at its Alloy, W. Va., plant. Startup was anticipated for late 1974.

Tenn-Tex Alloy Corp. of Houston, Tex., announced plans for the installation of a second ferromanganese furnace of 35 MVA transformer capacity that will increase plant capacity 50,000 to 60,000 tons per year. Operation of the new furnace is scheduled for 1975. The National Metallurgical Division of Kawecki Berylco Industries announced a capital expansion program to cost \$5.5 million which will double the productive capacity of its silicon plant at Springfield, Oreg. Construction was to begin early in 1974 and was to be completed in the first half of 1975.

Table 3.-Producers of ferroalloys in the United States in 1973

| Producer                     | Plant location                                     | Product 1                 | Type of furnace     |
|------------------------------|----------------------------------------------------|---------------------------|---------------------|
|                              | Calvert City, Ky                                   |                           |                     |
| Airco Alloys & Carbido       | Charleston, S.C                                    | FeCr, FeCrSi,             |                     |
| Carbine                      | Mobile. Ala                                        | FeMn, FeSi.               | Electric.           |
| ·                            | Niagara Falls, N.Y                                 | SiMn.                     |                     |
| Bethlehem Steel Corp         | Johnstown, Pa                                      | FeMn                      | D1 .                |
| Chiomium willing &           |                                                    | remn                      | Blast.              |
| Smelting Co.                 | Woodstock, Tenn                                    | E-C- Tag                  | 70                  |
|                              |                                                    | FeCr, FeSi,               | Electric.           |
| Climax Molybdenum Co         | Langeloth, Pa                                      | FeCrSi.                   |                     |
|                              |                                                    | Lewo                      | Aluminothermic.     |
| FMC Corp                     | Pocatello, Idaho                                   | Mn                        | Electric.           |
|                              | . I ocatello, Idano                                | FeP FeB, FeCb,            | Do.                 |
| · ·                          | Cambridge, Ohio                                    | reB, reCb,                | 1                   |
|                              | Graham, W.Va<br>Keokuk, Iowa                       | FeTi, FeV,                | Ī                   |
| Foote Mineral Co             | Washala T.                                         | FeCr,                     |                     |
|                              | Neokuk, Iowa                                       | FeCrSi,                   | } <b>Do.</b>        |
|                              | Steubenville, Ohio<br>Wenatchee, Wash              | FeSi, sil-                | 1                   |
|                              | (Wenatchee, Wash                                   | very iron,                | 1                   |
| Hanna Nickal Smalting Co     | 7                                                  | other.2                   |                     |
| Hocker Chamical Com          | Riddle, Oreg                                       | FeNi                      | Do.                 |
| dooker Chemical Corp         | Columbia, Tenn                                     | FeP                       | Do.                 |
| Interlake Steel Corp         | Beverly, Ohio                                      | FeCr, FeCrSi,             | Do.                 |
| V                            | Columbia, Tenn  (Beverly, Ohio)  (Selma, Ala)      | FeSi, SiMn.               | 20.                 |
| Nawecki Berylco Industries   | Springfield, Oreg Easton, Pa                       | Si                        | Do.                 |
| Nawecki Chemical Co          | Easton, Pa                                         | FeCh                      | Aluminothermic.     |
| Mobil Chemical Co            | Nichols, Fla Washington, Pa                        | FeP                       | Electric            |
| Molybdenum Corp. of America_ | Washington, Pa                                     | FeMo, FeW,                | Electric and        |
|                              | ,                                                  | FeCb. FeB.                | aluminothermic.     |
| Monsanto Chemical Co         | (Columbia, Tenn) Soda Springs, Idaho               | ,                         |                     |
|                              | Soda Springs, Idaho                                | FeP                       | Electric.           |
| New Jersey Zinc Co           | Palmerton, Pa                                      | Snln                      | Do.                 |
|                              | (D ::::                                            | Spln                      | ъ.                  |
| Ohio Formo Alloria Com-      | Brilliant, Ohio                                    | FeCr. FeSi,<br>FeB, FeMn, |                     |
| onto refro-Amoys Corp        | Brilliant, Ohio                                    | SiMn,                     | Do.                 |
|                              | Pownatan. Uhio                                     | others.2                  |                     |
| Reading Alloys               | Dalaman t D                                        | From Fig.                 | A 1                 |
| hieldalloy Corp              | Newfield, N.J                                      | recb, rev                 | Aluminothermic.     |
|                              |                                                    | rev, rem,                 |                     |
|                              |                                                    | reb, recb,                | Do.                 |
|                              |                                                    | NiCb, CrMo,               |                     |
|                              | Tarpon Springs, Fla                                | other.2                   |                     |
| tauffer Chemical Co          | Tarpon Springs, Fla Mt. Pleasant, Tenn             | ·                         |                     |
|                              | Silver Bow, Mont                                   | FeP                       | Electric.           |
| lammana                      | (Bridgeport Ale                                    |                           |                     |
| ennessee Alloys Corp         | Wimbell Town                                       | FeSi                      | Do.                 |
| ennessee Valley Authority    | Bridgeport, Ala  Kimball, Tenn  Muscle Shoals, Ala |                           | ъ.                  |
| enn-Tex Alloy Corp. of       | muscle Shoals, Ala                                 | FeP                       | Do.                 |
| Houston.                     | Uonatan Man                                        |                           |                     |
|                              | Houston, Tex                                       | FeMn, SiMn .              | Do.                 |
|                              | Alloy, W.Va                                        | FeB, FeCr,                |                     |
|                              | Ashtabula, Ohio                                    | FeCrSi,                   |                     |
| nion Carbide Corp            | Marietta, Ohio                                     | FeCb, FeSi,               | D-                  |
|                              | INIAKATA FAIIS. N.Y                                | FeMn, FeTi,               | Do.                 |
|                              | Fortland, Oreg                                     | FeW, FeV.                 |                     |
| [                            | Snemeld, Ala                                       | SiMn, other.2             |                     |
|                              | Clairton, Pa                                       |                           |                     |
| .S. Steel Corp               |                                                    |                           |                     |
|                              |                                                    | FeMn 1                    | Blast.              |
| Joodward Iron Co             | mckeesport, Pa                                     | FeSi FoMn )               | Blast.<br>Electric. |

<sup>&</sup>lt;sup>1</sup> CrMo, Chromium molybdenum; FeMn, ferromanganese; Spln, spiegeleisen; SiMn, silicomanganese; FeSi, ferrosilicon; FeP, ferrophosphorus; FeCr, ferrochromium; FeMo, ferromolybdenum; FeNi, ferronickel; FeTi, ferrotitanium; FeW, ferrotungsten; FeV, ferrovanadium; FeB, ferroboron; FeCb, ferrocolumbium; NiCb, nickel columbium; Si, silicon metal.

<sup>2</sup> Includes zirconium alloys, ferrosilicon magnesium, calcium silicon, and miscellaneous ferroalloys.

# CONSUMPTION AND USES

Record raw steel production of 150.8 million tons and cast iron production of 18.1 million tons consumed record quantities of ferromanganese and silicon alloys. Aluminum castings production at a level of 1.0 million tons in 1973 also required a record quantity of silicon metal for alloying. Reported consumption of manganese

alloys was 1,173,458 tons, an increase of 15% compared with 1972 totals whereas the steel and cast iron production increase in volume was 13% compared with 1972 production. Reported total silicon alloy consumption was 1,164,723 tons, an increase of 24% compared with that of 1972, a higher increase than would be expected

from the 12% increase in cast iron and 7% increase in aluminum castings production. The additional requirements may well reflect a higher percentage of silicon killed steel production in the wrought steel total associated with the continuous casting process. Consumption of ferrotitanium and other forms of titanium for alloying and deoxidizing of steel almost doubled as formable high-strength steels became more widely accepted for automotive applications.

Chromium, molybdenum, and nickel consumption for stainless and alloy steels and other special alloys increased proportionately to the record production of these alloys in 1973. Chromium consumption increased 32% compared with that of 1972, molybdenum as ferromolybdenum increased 17%, and nickel as ferronickel increased 59%.

data for the alloying Consumption elements listed in table 5 understate total consumption of several elements since these data cover only the ferroalloy forms. The alloying elements nickel, molybdenum, tungsten, and vanadium may be added to metallic melts in any one of several forms. The practice varies as relative economics change and technological progress permits greater latitude in the choice of form of the alloying addition.

Table 4.-Consumption by end use of ferroalloys as additives in the United States in 1973 (Short tons of alloys)

|                                                                                                | (Short was of alloys)                                   |                                                       |                                                       |                                        |                                                 |                                    |                                                            |                                                           |                                                                           |  |  |  |
|------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|----------------------------------------|-------------------------------------------------|------------------------------------|------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------|--|--|--|
| Alloy                                                                                          | Stain-<br>less<br>steels                                | Other<br>alloy<br>steels                              | Carbon<br>steels                                      | Tool<br>steels                         | Cast<br>irons                                   | Super-<br>alloys                   | Alloys (excludes alloy steels and super- alloys)           | Other uses <sup>1</sup>                                   | Total                                                                     |  |  |  |
| Ferromanganese 2 Silicomanganese Silicon alloys 3 Ferrotitanium 4 Ferrophosphorus 5 Ferroboron | 17,924<br>12,458<br>30,964<br>970<br>16<br>13<br>62,345 | 192,374<br>39,092<br>102,662<br>1,153<br>1,860<br>325 | 904,893<br>94,630<br>183,308<br>3,753<br>13,476<br>27 | 2,474<br>51<br>4,023<br>W<br><br>6,548 | 30,673<br>4,907<br>704,373<br>124<br>5,772<br>9 | 689<br>W<br>586<br>583<br><u>W</u> | 21,042<br>2,785<br>89,417<br>2,075<br>270<br>54<br>115,643 | 3,389<br>5,096<br>49,390<br>2,488<br>7,868<br>1<br>68,232 | 1,173,458<br>159,019<br>1,164,723<br>11,146<br>29,262<br>429<br>2,538,037 |  |  |  |
| Total                                                                                          | 02,010                                                  | 001,111                                               |                                                       |                                        |                                                 |                                    |                                                            | : "                                                       | now 11000 "                                                               |  |  |  |

W Withheld to avoid disclosing individual company confidential data; included in "Other uses."

Table 5.-Consumption by end use of ferroalloys as alloying elements in the United States in 1973

| (Short | tons | of | contained | elements) |
|--------|------|----|-----------|-----------|
|        |      |    |           |           |

|                                                                                                                                                      | (Snoi                                            | et tons t                                           | or contain                              | ica cioi                                         | ,                                             |                                             |                                                     |                                                    |                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|-----------------------------------------|--------------------------------------------------|-----------------------------------------------|---------------------------------------------|-----------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------|
| Alloy                                                                                                                                                | Stain-<br>less<br>steels                         | Other<br>alloy<br>steels                            | Carbon<br>steels                        | Tool<br>steels                                   | Cast                                          | Super-<br>alloys                            | Alloys (excludes alloy steels and super- alloys)    | Other<br>uses <sup>1</sup>                         | Total                                                                |
| Ferrochromium <sup>2</sup><br>Ferromolybdenum <sup>3</sup><br>Ferrotungsten <sup>4</sup><br>Ferrocolumbium<br>Ferrotantalum-columbium<br>Ferronickel | 228,096<br>982<br>67<br>22<br>320<br>W<br>27,837 | 54,586<br>1,032<br>64<br>3,779<br>769<br>W<br>6,562 | 2,358<br>132<br>680<br>483<br><br>3,653 | 4,611<br>651<br>737<br>991<br>W<br><br><br>6,990 | 7,661<br>1,665<br>W<br>51<br><br>414<br>9,791 | 9,914<br>240<br>76<br>34<br>288<br>W<br>476 | 5,096<br>480<br>36<br>32<br>16<br>W<br>390<br>6,050 | 3,347<br>70<br>2<br>11<br>21<br>20<br>692<br>4,163 | 315,669<br>5,252<br>982<br>5,600<br>1,897<br>20<br>36,371<br>365,791 |
| 10041                                                                                                                                                | ,                                                |                                                     |                                         |                                                  |                                               |                                             |                                                     |                                                    |                                                                      |

W Withheld to avoid disclosing individual company confidential data. r Revised.

Includes unspecified uses.

Includes spiegeleisen, manganese metal, and briquets. Includes silicon metal, silvery iron, and inoculant alloys. Includes other forms such as scrap titanium metal.

<sup>&</sup>lt;sup>5</sup> Includes other phosphorus materials.

<sup>&</sup>lt;sup>1</sup> Includes unspecified uses. 2 Includes other chromium ferroalloys and chromium metal.

<sup>3</sup> Includes calcium molybdate but not molybdenum oxide.
4 Includes melting base self-reducing tungsten. Includes other vanadium-carbon-iron ferroalloys.

The following tabulation gives the proportion of the alloying elements added in the ferroalloy state in relation to other product forms. It refers only to metallic products, omitting chemicals and other end uses.

| Element    | Added as<br>ferroalloy <sup>1</sup><br>(Percent) | Added in<br>other forms<br>(Percent) |
|------------|--------------------------------------------------|--------------------------------------|
| Molybdenum | 28                                               | 72                                   |
| Nickel     | 20                                               | 80                                   |
| Tungsten   | 28                                               | 72                                   |
| Vanadium   | 90                                               | 10                                   |

<sup>&</sup>lt;sup>1</sup> Modified as in notes to table 5.

#### STOCKS

Producers stocks decreased substantially at yearend compared with stocks at the end of 1972 as might be expected in a period of great demand and scarcity in some alloys. Yearend silicon, manganese, and chromium alloy stocks decreased 68%, 50%, and 56% respectively, compared with stocks at the end of 1972. Consumer stocks

of chromium and silicon alloys showed a modest increase whereas manganese alloys showed a slight decline. Consumer stocks of the alloying elements molybdenum, nickel, and vanadium showed the greatest percentage increase amounting to 39%, 95%, and 82% respectively.

Table 6.-Stocks of ferroalloys held by producers and consumers in the United States, December 31, 1973

| (Short | +~~~ |
|--------|------|
|        |      |

|                                                                                                                                                                                              | Prod                          | ucer                      | Consu                                      | mer                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------|--------------------------------------------|-------------------------------------------------|
|                                                                                                                                                                                              | 1972,                         | 1973,                     | 1972,                                      | 1973,                                           |
|                                                                                                                                                                                              | gross                         | gross                     | gross                                      | gross                                           |
|                                                                                                                                                                                              | weight                        | weight                    | weight                                     | weight                                          |
| Manganese ferroalloys <sup>1</sup> Silicon alloys <sup>2</sup> Ferrochromium <sup>3</sup> Ferrotitanium <sup>4</sup> Ferrothanium <sup>4</sup> Ferrophosphorus <sup>5</sup> Ferroboron Total | 244,635                       | 122,098                   | 194,884                                    | 180,242                                         |
|                                                                                                                                                                                              | 130,637                       | 41,800                    | 133,581                                    | 145,413                                         |
|                                                                                                                                                                                              | 86,302                        | 37,690                    | 27,422                                     | 48,456                                          |
|                                                                                                                                                                                              | 1,163                         | 505                       | 1,206                                      | 7,622                                           |
|                                                                                                                                                                                              | 59,226                        | 52,325                    | 4,173                                      | 5,536                                           |
|                                                                                                                                                                                              | 413                           | 286                       | 47                                         | 91                                              |
|                                                                                                                                                                                              | 522,376                       | 254,704                   | 361,313                                    | 387,360                                         |
|                                                                                                                                                                                              | 1972,                         | 1973,                     | 1972,                                      | 1973,                                           |
|                                                                                                                                                                                              | contained                     | contained                 | contained                                  | containe                                        |
|                                                                                                                                                                                              | element                       | element                   | element                                    | element                                         |
| Perromolybdenum 6 Perronickel Perrotungsten 7 Perrotungsten 7 Perrocunadium Perrocolumbium Total                                                                                             | W<br>W<br>W<br>r 841<br>r 318 | W<br>W<br>W<br>271<br>340 | 793<br>3,990<br>145<br>623<br>407<br>5,958 | 1,105<br>7,792<br>170<br>1,135<br>728<br>10,930 |

r Revised. W Withheld to avoid disclosing individual company confidential data.

#### **PRICES**

Prices of manganese alloys were raised in April from \$190 to \$200 per gross ton for 78% high carbon ferromanganese; from 19.5 to 20 cents per pound for medium carbon ferromanganese; from 30.5 to 32.5 cents per pound for low-carbon ferromanganese. Prices of ferromanganese-silicon and other more specialized types were increased similarly.

Prices on several important chromium alloys were increased 1 to 2 cents per pound contained in March although prices were not published generally. Phase IV price controls then applied throughout the balance of the year and little additional price movement resulted. At yearend charge chromium (64% to 67%) was quoted at 20

Includes ferromanganese, siliconmanganese, spiegeleisen, and manganese metals.

Includes ferrosilicon, silvery iron, silicon metal, and miscellaneous silicon alloys.

Includes other chromium ferroalloys and chromium metal.

<sup>5</sup> Includes other phosphorus materials.
6 Includes calcium molybdate.
7 Includes melting base self-reducing tungsten.

cents and low-carbon ferrochromium (0.05 maximum carbon) at 33 cents per pound contained Cr.

Ferrosilicon price movement began in March and was reflected in an increase in published prices in April, for example, 50% ferrosilicon advanced from 15 to 16.5 cents per pound and 75% ferrosilicon advanced from 18.5 to 20 cents per pound. Two-tier pricing under Phase IV controls persisted during much of the second half of the year with the range of quoted prices

embracing the earlier and later price ranges. Prices of magnesium ferrosilicon, ferrocolumbium, ferrotungsten, ferrovanadium, and ferromolybdenum remained unchanged during the year.

Costs of production increased substantially during the year due to: (1) power cost increases; (2) increased prices for scrap iron and other supplies; and (3) increased labor costs. However, Phase IV price controls prevented general price increases.

#### **FOREIGN TRADE**

Quantity of U.S. exports of ferroalloys increased substantially in 1973 compared with 1972 as demand by the steel industries of the world increased. Canada was the largest overall customer for U.S. ferroalloy exports, involving principally ferromanganese, ferrochromium, and ferrovanadium. Japan was second with respect to value of U.S. ferroalloys purchased, principally for ferromolybdenum. The overall tonnage exported increased from 44,641 tons in 1972 to 83,669 tons in 1973 and was valued at \$33.8 million.

In general, imports continued to increase during 1973, although the rate of imports declined later in the year as Japan and some Western European countries reduced exports to the U.S. Overall tonnage of imports increased 26% compared with that of 1972 and value increased 39% compared with that of 1972. The largest increases were in the tonnage grades: (1) High-carbon ferromanganese; (2) highcarbon ferrochromium; (3) 75% ferrosilicon; and (4) ferrosilicon-manganese. Imports of nickel in ferronickel doubled, and the value of ferronickel imported was the largest of any single alloy at \$70.5 million.

The Republic of South Africa was the dominant ferroalloy exporter to the U.S. market.

In chromium alloys, shipments to the United States ranked by value were from: (1) Republic of South Africa; (2) Southern Rhodesia; (3) Japan; and (4) Sweden. In ferromanganese, receipts were from: (1)

Republic of South Africa; (2) France; (3) India; and (4) Japan. The value of silicon alloys imported more than doubled and was dominated by receipts from: (1) Norway; (2) France; (3) Canada; and (4) Yugoslavia. Spain, Yugoslavia and Greece became significant factors for the first time in ferroalloy exports to the United States; exports of ferromanganese from Spain will probably decline as new steelmaking capacity goes into operation there in 1975–76. The miscellaneous category of imports (n.e.c.) was dominated by ferrocolumbium imports from Brazil.

On May 4, 1973, the domestic ferroalloy industry petitioned the U.S. Tariff Commission for relief from imported alloy competition. The Ferroalloys Association, a 12-member group representing U.S. producers, submitted its request for higher duties, import quotas, or both, under Section 301(A) of the Trade Expansion Act of 1962. However, a few weeks later the association requested its bid be withdrawn with the unexpected steel and alloy demand that developed quickly. The commission agreed, cancelling scheduled hearings without prejudice to potential future actions.

Free world prices of ferroalloys increased substantially during 1973 whereas, except for silicon alloys, prices in the United States were under government control. By yearend considerable free market volume was diverted to countries other than the United States where higher prices and lower transportation costs prevailed.

| Table | 7U.S. | exports | of | ferroalloys |
|-------|-------|---------|----|-------------|
|-------|-------|---------|----|-------------|

|                                                                                                                                                               | 1                                                                                  | 971                                                                       | 19                                                                     | 972                                                                    | 1973                                                                                 |                                                                                  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|
| Alloys                                                                                                                                                        | Quantity<br>(short<br>tons)                                                        | Value<br>(thousand<br>dollars)                                            | Quantity<br>(short<br>tons)                                            | Value<br>(thousand<br>dollars)                                         | Quantity<br>(short<br>tons)                                                          | Value<br>(thousand<br>dollars)                                                   |  |
| Ferrocerium and alloys Ferrochromium Ferromanganese Ferromolybdenum Ferrophosphorus Ferrostlicon Ferrotungsten Ferrotungsten Ferrovanadium Ferroalloys, n.e.c | 30<br>9,164<br>4,526<br>677<br>35,111<br>25,506<br>60<br>1,351<br>10,905<br>87,330 | 164<br>3,620<br>1,205<br>1,978<br>1,419<br>5,603<br>411<br>3,490<br>5,249 | 101<br>12,861<br>6,842<br>454<br>1,179<br>7,367<br>11<br>269<br>15,557 | 610<br>4,342<br>1,512<br>1,163<br>111<br>2,196<br>85<br>1,256<br>8,495 | 55<br>15,164<br>8,574<br>1,112<br>19,030<br>15,984<br>6<br>1,416<br>22,328<br>83,669 | 286<br>5,091<br>2,137<br>3,151<br>773<br>4,051<br>50<br>8,734<br>9,485<br>33,758 |  |

Table 8.-U.S. imports for consumption of ferroalloys and ferroalloy metals

| _                                                                          |                                 | 1972                       |                                                       |                                 | 1973                       |                                |
|----------------------------------------------------------------------------|---------------------------------|----------------------------|-------------------------------------------------------|---------------------------------|----------------------------|--------------------------------|
| Alloy                                                                      | Gross<br>weight<br>(short tons) | Content<br>(short<br>tons) | Value<br>(thousand<br>dollars)                        | Gross<br>weight<br>(short tons) | Content<br>(short<br>tons) | Value<br>(thousand<br>dollars) |
| Chromium metal<br>Ferrocerium and other cerium                             | 1,894                           | (1)                        | 3,791                                                 | 2,690                           | (¹)                        | 6,080                          |
| alloys<br>Ferrochromium:                                                   | 14                              | (1)                        | 94                                                    | 19                              | (¹)                        | 127                            |
| Containing 3% or more carbonContaining less than 3%                        | 73,077                          | 44,017                     | 11,266                                                | 112,197                         | 69,534                     | 18,253                         |
| carbon<br>Ferromanganese:                                                  | 68,194                          | 46,249                     | 23,322                                                | 43,344                          | 30,224                     | 16,922                         |
| Containing less than 1% carbonContaining over 1% and less                  | 3,192                           | 2,703                      | 1,195                                                 | 1,939                           | 1,595                      | 810                            |
| than 4% carbon<br>Containing 4% or more                                    | 55,066                          | 44,889                     | 13,125                                                | 46,243                          | 37,496                     | 10,919                         |
| Ferronickel                                                                | 290,281<br>51,741               | 227,125<br>13,244          | 35,526<br>35,857                                      | 342,185<br>89,780               | 264,776<br>25,700          | 41,579<br>70,532               |
| 8% to 60% silicon<br>60% to 80% silicon<br>80% to 90% silicon              | 14,525<br>24,920                | 4,824<br>18,182            | 3,054<br>5,714                                        | 23,979<br>75,519                | 7,257<br>55,750            | 3,657<br>17,364                |
| Ferrosilicon-chromium                                                      | $1\overline{55}$ $8.427$        | 148<br>(1)                 | $\begin{array}{c} \overline{47} \\ 1,846 \end{array}$ | 396<br>39                       | 343<br>38                  | 47<br>19                       |
| rerrosilicon-manganese (Mn content)                                        | 38,674                          | 25,901                     | 4,828                                                 | 13,037<br>44,759                | (¹)<br>30,061              | 3,127<br>6,367                 |
| Ferrotitanium and ferrosilicon<br>titanium  Ferrotungsten and ferrosilicon | 91                              | (¹)                        | 76                                                    | 256                             | (¹)                        | 178                            |
| tungsten<br>Ferrovanadium                                                  | 508<br>454                      | 407<br>334                 | 2,169<br>2,007                                        | 696<br>277                      | 553<br>196                 | 3,105                          |
| Ferrophosphorus                                                            | 2,604<br>308                    | (1)<br>(1)                 | 1,159<br>15                                           | 1,249                           | (¹)                        | 1,174<br>627                   |
| Ferroalloys, n.e.c<br>Manganese metal<br>Silicon metal (less than 99.7%    | 1,668<br>4,121                  | $\binom{1}{1}$             | 4,766<br>1,675                                        | 2,246<br>2,452                  | (1)                        | 6,719<br>1,100                 |
| silicon)                                                                   | 3,523                           | 3,467                      | 1,346                                                 | 7,939                           | 7,588                      | 3,509                          |
| Total                                                                      | 643,437                         | XX                         | 152,878                                               | 811,241                         |                            | 212,215                        |

r Revised. XX Not applicable.
1 Not recorded.

#### WORLD REVIEW

Table 9 lists ferroalloy production in the world by country and furnace type for the years 1971 through 1973 from the most reliable sources. Production increased substantially overall as the steel industries of the world operated at capacity levels. The International Iron and Steel Institute reported steel production increased 10% in 1973 compared with 1972 production for the 24 countries reporting. The tabulated ferroalloy production figures show a more modest increase of 6.5% but, as in the United States, producers' inventories were reduced substantially at yearend so that shipment figures, if available, would correlate more closely with the increase in steel production.

New ferroalloy projects announced during 1973 are listed in the paragraphs that

follow:

Australia.—Garrick Agnew Pty., Ltd., announced plans for a vanadium oxide facility at Wundowie near Perth involving roasting, leaching, and pelletizing to produce 3,500 tons per year of vanadium pentoxide. British Oxygen Ltd. and Mitsui Co. Ltd. each have a 20% interest in the project. Operation is projected late in 1975 or early in 1976.

Canada.—Copperfields Mining Corp., Ltd., and Quebec Mining Exploration Co. announced financing had been arranged for mining and concentrating facilities at Chicoutimi, Quebec, to process 1,500 tons per day of ore containing 0.76% Cb<sub>2</sub>O<sub>5</sub>. Ore reserves are estimated at 40,000,000 tons and startup is planned in 1975. The columbium oxide product is to be marketed in Europe, Japan, and the United States.

Greece.—The Japanese companies Tekkosha Co., Ltd., and Mitsubishi Chemical Industries, Ltd., signed an agreement with the Government of Greece to construct a \$17 million, 12,000-ton-per-year plant to produce manganese dioxide electrolytically for dry cell batteries. The plant, scheduled for operation in mid-1975, will use manganese ore from the Chalkidiki area and can be expanded to a total capacity of 36,000 tons per year at a later date.

Iceland.—Union Carbide Corp. announced an agreement with the Government of Iceland for the construction of a \$28 million

ferrosilicon plant at Hvalfjördhar on the west coast. The plant, to be financed 65% by the Government of Iceland and 35% by Union Carbide, will have a capacity of 50,000 tons per year of 75% ferrosilicon and is expected to be operational by early 1976. Power will be provided from a new hydroelectric powerplant being constructed at Sigalda.

India.—The Industrial Development Corporation of Orissa, Orissa Province, announced a new ferrovanadium project. The facility, estimated to cost \$15.6 million, involves mining, concentrating, and reduction facilities to provide 480 tons per year of ferrovanadium. Startup date has not been announced but the project is included in a 5-year plan beginning in 1974.

Mexico.—Cia. Minera Autlan S.A. de C.V. of Mexico has placed a contract for \$15.5 million with Japan Metals and Chemicals Co., Ltd. for the first phase of a ferromanganese plant at Tamos near the Gulf port of Tampico. The first furnace with a 42 MVA transformer and a capacity of 50,000 tons per year is to be in operation late in 1975. Installation of additional furnaces is planned in stages to bring total capacity to 100,000 tons per year by 1977 and 200,000 tons per year by 1985.

South Africa, Republic of.—Johannesburg Consolidated Investment Co. Ltd. (JCI), African Metals Corp. Ltd. and Middleburg Steel and Alloys, Ltd., announced plans to raise ferrochromium capacity in the Republic to 500,000 tons per year. One specific project, utilizing the prereduced pellet process pioneered by Showa Denko K.K. of Japan was announced by JCI involving a 120,000-ton-per-year charge chromium plant in the Transvaal. The specific plant location had not been selected.

Union Carbide Corporation and General Mining and Finance Co. Ltd., announced a \$38 million high-carbon ferrochromium project, located in eastern Transvaal, with a capacity of 120,000 tons per year and to be operational late in 1976. General Mining and Finance will provide ore supply, Union Carbide will design and operate the plant and the two companies will share marketing of the product.

Table 9.-Ferroalloys: World production by country 1 and furnace type

(Thousand short tons)

| Country                       | 1971     | 1972      | 1973    |
|-------------------------------|----------|-----------|---------|
| BLAST FURNACE 2               |          |           |         |
| Europe:                       |          |           |         |
| Belgium<br>Denmark            | r 144    | 100       |         |
|                               | 8        | 136       | 12      |
|                               | 490      | 4         | • ,     |
| dermany, west                 |          | 495       | 60      |
|                               | 373      | 347       | 40      |
|                               | . 8      | 23        | e 22    |
|                               | 20       | 53        | 72      |
| I of tugat                    | 158      | 146       | e 137   |
| O.B.B.IL                      | 8        | 9         | e 11    |
|                               | 1,110    | r e 1,135 | e 1,124 |
|                               | 170      | 166       | 190     |
| South Africa, Republic of     |          |           |         |
| Asia:                         | 72       | 76        | • 76    |
| Korea, Republic of 4          |          |           |         |
| Korea, Republic of 4          | 16       | 18        | 40      |
| North America:                |          |           |         |
| Canada 2                      |          |           |         |
| Canada <sup>2</sup><br>Mexico | 213      | 251       | 221     |
|                               | 74       | 85        | e 85    |
| United States 2               | 2.331    | 2,527     | 2,520   |
|                               | _,       | 2,021     | 2,020   |
| Argentina                     | 31       | 47        | e 47    |
| D. ( D. )                     | r 140    | 153       | 187     |
| ChileCurope:                  | 14       | 15        |         |
|                               | **       | 10        | e 15    |
| Austria                       | 6        | 6         |         |
|                               | 47       | 49        | 6       |
|                               | 134      | 128       | e 50    |
|                               | 39       |           | ° 136   |
|                               | 386      | 27        | 44      |
|                               | 258      | 391       | e 391   |
|                               |          | 240       | e 291   |
|                               | 11       | 11        | e 11    |
| 1101 Way                      | 192      | 188       | 191     |
|                               | r 724    | 704       | 793     |
| Spain                         | 147      | 193       | e 173   |
|                               | 144      | 193       | 265     |
| Switzerland                   | 260      | 277       | e 247   |
|                               | 25       | e 23      | e 23    |
| frica:                        | 128      | 144       | 170     |
| South Africa, Republic ofsia: |          |           |         |
| sia:                          | 420      | 460       | e 460   |
|                               |          |           |         |
| India                         | r 240    | 217       | e 182   |
|                               | 2,083    | 1,921     | 2.243   |
|                               | 8        | 8         | 2,240   |
| Turkey eceania:               | 10       | 10        | 10      |
|                               |          | 10        | 10      |
|                               | 79       | r e 83    | e 94    |
| Total                         |          |           |         |
|                               | r 10,721 | 10,959    | 11,671  |

<sup>e</sup> Estimate.

e Estimate. PPreliminary. rRevised.

In addition to the countries listed, the People's Republic of China and North Korea are known to produce ferroalloys but output of these materials are included in estimates for pig iron in the iron and steel chapter, therefore, they have been omitted here to avoid duplication. East Germany also is known to produce ferroalloys but it is not clear from source publications whether output has been included together with that of pig iron in the iron and steel chapter. Also, Colombia, Greece, Peru, Venezuela, and Southern Rhodesia may produce ferroalloys and output, if any, is also included with pig iron in the iron and steel chapter.

Blast furnace ferroalloy production by Australia, Canada, and the United States included under electric furnace output; that of Czechoslovakia is included under pig iron.

Blast furnace ferromanganese, ferrosilicon and spiegeleisen only; other blast furnace ferroalloys are included with pig iron production in the iron and steel chapter.

In addition to the countries listed, the United Kingdom and the U.S.S.R. are known to have produced electric furnace ferroalloys and Romania may have produced some electric furnace ferroalloys and Romania may have produced some electric furnace ferroalloys and some produced some electric furnace ferroalloys but output is not reported and no basis for estimation is available.

May include small quantities of blast furnace ferroalloys, if any are produced.

#### TECHNOLOGY

The stainless steel industry continued to adapt post-furnace refining techniques to finishing of stainless steel heats thereby reducing costs and increasing productivity. The argon-oxygen-decarburization (A.O.D.) and vacuum-oxygen-decarburization (V.O.D.) processes have furthered the trend towards greater utilization of high-carbon ferrochromium, minimizing the need for the low-carbon varieties. The ratio of high-carbon to low-carbon tonnage produced in 1973 approached 4 to 1, in contrast to the 3 to 1 ratio in 1972.

A modification of the A.O.D. process has been developed by Creusot-Loire and Uddeholm and applied by Uddeholm in the production of more than 5,000 tons of Extra Low Carbon 18% Cr-8% Ni stainless steel at the Degersfors plant of Uddeholm. Steam is basically substituted for argon during much of the treatment cycle. The sequence involves: (1) oxygen blowing to remove carbon until a critical temperature is reached; (2) oxygen and steam injection in varying ratios; and (3) argon and nitrogen injection to remove the hydrogen absorbed by the molten metal. Steam dissociates into oxygen and hydrogen and the hydrogen acts to reduce the partial pressure of carbon monoxide, continuing the carbon reduction with minimum oxidation chromium. Dissociation of steam involving an endothermic reaction provides control of maximum temperatures and an overall recovery of over 98% of the chromium.

Inclusion shape control is essential to improve transverse ductility and raise toughness shelf energy values in high-strength low alloy steels for pipelines and automotive applications requiring high formability. Small additions of rare-earth metals, in conjunction with minimum sulfur levels and effective degassing prior to final deoxidation, are becoming increasingly necessary to meet the more stringent specifications. Rare-earth additions are made, generally during mold teeming, in the silicide form or as mischmetal.

The Japanese ferroalloy producer, Nippon Denko Co., Ltd., has been issued British Patent 1,317,523 covering a method of sintering chromite ore fines. A damp mixture of ore, coke, and forsterite or serpentine is sintered on a grate-type machine, cooled, and optionally broken. The low-melting magnesium silicate minerals provide a vitrified agglomerate with good strength. With power and capital investment costs increasing substantially, it is anticipated that prior treatment of ores, including partial reduction, will become more widespread as a means of increasing smelting furnace productivity and reducing unit power consumption.



# Fluorspar

By H. B. Wood 1

World supplies of fluorspar were ample during 1973. At the end of the year, major consuming countries such as the United States, Japan, and some European countries had adequate supplies. The 1973 output by the United States and the world showed no appreciable change from 1972. However, from the 1971 production (U.S. 272,000 tons and world 5,007,390 tons), which represented a 14-year peak, U.S. production in 1973 decreased about 9% and world production about 1%.

In 1973 most of the large producing companies were not operating at full capacity. Consequently, any emergency or uniform price increase could readily increase production. Some of the companies that discovered large deposits during the 1968–72 boom exploration years decided to continue development operations and bring these mines into production in anticipation of an increase in world consumption.

Overall, U.S. fluorspar consumption has not shown any significant increase since 1969. During this past 5-year period consumption of acid-grade fluorspar by hydrofluoric acid manufacturers decreased 8% to 664,000 tons, consumption of metallurgical-grade fluorspar by the iron and steel industry increased 11% to 649,400 tons, and ceramic-grade fluorspar consumption by the glass and ceramic industries decreased 30% to 18,000 tons.

The trend in consumption of fluorspar in primary aluminum and magnesium production is more difficult to determine. The direct use, shown in table 5, is only a small percentage of the total. Most of the fluorspar used by the aluminum industry is first converted to hydrofluoric acid and then to aluminum fluoride and sodium aluminum fluoride (synthetic cryolite) for use as an electroflux in the aluminum

potlines melt to produce aluminum.

Total fluorspar demand by the aluminum industry decreased during 1972 and increased slightly in 1973, as aluminum companies reduced fluorspar consumption per ton of aluminum. Pressure from the Environmental Protection Agency (EPA) and economic changes instituted by the companies helped speed up recycling programs. The major EPA required improvements will probably be completed by the end of 1974.

The 1973, reported consumption of 1,351,700 tons, almost equaled the 1972 reported consumption of 1,352,100 tons. The U.S. output provided 18% of reported U.S. consumption and 17% of apparent consumption. The apparent consumption, which includes U.S. shipments, plus imports, plus a decrease in consumers' stockpiles, minus exports, equaled 1,508,800 tons and exceeded reported consumption by about 157,100 tons.

U.S. shipments of finished fluorspar were about the same as in 1972, totaling about 248,600 tons. Production was almost equally divided between acid-grade fluorspar (acid-spar) and metallurgical-grade fluorspar (met-spar). Producers' and consumers' stockpiles combined were reduced over 56,800 tons, indicating that both producers and consumers realized the availability of adequate supplies.

During the year, eight mines and four flotation concentrating plants were closed down, and one flotation plant in Illinois was placed on a part-time operating basis. These closings could ultimately reduce U.S. output by 80,000 to 90,000 tons in 1974, if production from new or reopened mines or increased production from currently operating mines does not materialize.

<sup>&</sup>lt;sup>1</sup> Geologist, Division of Nonmetallic Minerals— Mineral Supply.

The available supply of fluosilicic acid, that was converted to aluminum fluoride and sodium aluminum fluoride, continued to increase slightly. Construction of new

phosphoric acid plants with built in circuits to recover H<sub>2</sub>S<sub>6</sub>F<sub>6</sub> probably will increase the supply in the near future.

Table 1.-Salient fluorspar statistics

|                            | 1969      | 1970      | 1971        | 1972      | 1973      |
|----------------------------|-----------|-----------|-------------|-----------|-----------|
| United States:             |           |           |             |           | 1919      |
| Production:                |           |           |             |           |           |
| Mine productionshort tons_ | F00 000   |           |             |           |           |
| Motorial Land Co.          | 533,030   |           | 815,046     | 710,668   | 561.149   |
| M-4                        | 520,084   | 698,232   | 758.169     | 771,411   | 663,361   |
| Ti                         | 160,000   | 252,128   | 247,250     | 245,047   | 232,891   |
| TT 1                       | 182,567   | 269,221   | 272,071     | 250,347   | 248.601   |
| Ethousands_                | \$8,411   | \$13,923  | \$17,263    | \$17,315  | \$17.337  |
| Wal-                       | 3,605     | 14,952    | 12,491      | 2,764     |           |
| Tthousands                 | \$213     | \$1,145   | \$525       | \$184     | 2,428     |
|                            | 1,149,546 | 1,092,318 | 1,072,405   | 1,181,533 | \$171     |
| Cthousands_                | \$32,818  | \$32,758  | \$34,530    | \$47.851  | 1,212,347 |
| Stocks Dec. 31:            | 1,356,624 | 1,372,404 | 1,344,742   |           | \$52,620  |
|                            | , ,       | -,012,101 | 1,011,144   | 1,352,149 | 1,351,705 |
| Domestic mines:            |           |           |             |           |           |
| Crudedo                    | 82.177    | 51,471    | 165,610     | 111       |           |
| rinisneddo                 | 9,751     | 12.370    |             | 111,565   | 57,901    |
| Consumerdo                 | 290,470   | 419,746   | 28,259      | 15,294    | 8,675     |
| World: Productiondo        | 4,285,010 |           | 436,759     | 377,942   | 327,703   |
|                            | 2,200,010 | 4,020,409 | 5,013,290 1 | 4,974,333 | 4,927,849 |
| r Revised.                 |           |           |             |           |           |

Legislation and Government Programs.— On April 16, 1973, the Office of Management and Budget submitted an "omnibus bill" (OMB No. 5) to the U.S. Congress which proposed disposing of many of the minerals in government stockpiles. Under section 2 of the bill, 890,000 tons of acidgrade fluorspar and 252,800 tons of metallurgical-grade fluorspar, now in government stock, were recommended for sale by the General Services Administration (GSA).

On May 14, 1973, GSA held a meeting with fluorspar producers and consumers in

Washington, D.C., and presented a plan to dispose of 1,142,800 tons of fluorspar over a 2-year period. Representatives of the fluorspar industry objected to the proposed plan. Thereupon, GSA agreed to take into consideration industry recommendations for selling the material over a longer period of time (10 to 15 years) and to present a revised disposal plan to industry before implementation. As of the yearend, no action had been taken on OMB No. 5.

Table 2.-Shipments of finished fluorspar, by State

|                                    |                             | 1972                   |                           | 1973                       |                          |                           |  |  |
|------------------------------------|-----------------------------|------------------------|---------------------------|----------------------------|--------------------------|---------------------------|--|--|
| State                              | Quantity -                  | Val                    | lue                       | <u> </u>                   | Val                      | 16                        |  |  |
|                                    | (short tons)                | Total<br>(thousands)   | Average<br>per ton        | Quantity<br>(short tons)   | Total<br>(thousands)     | Average                   |  |  |
| Illinois Utah Other States 1       | 132,405<br>2,977<br>114,965 | \$9,961<br>84<br>7,270 | \$75.23<br>28.22<br>63.24 | 160,305<br>4,778<br>83,518 | \$11,871<br>144<br>5,322 | \$74.05<br>30.14<br>63.72 |  |  |
| Total and average                  |                             | 17,315                 | 69.16                     | 248,601                    | 17,337                   | 69.74                     |  |  |
| <sup>1</sup> New Mexico, 1972; Ari | zona. Colorad               | o Kontuela             | - NT 1                    |                            |                          |                           |  |  |

<sup>&</sup>lt;sup>1</sup> New Mexico, 1972; Arizona, Colorado, Kentucky, Nevada, and Texas, 1972-73.

Table 3.-Shipments and mine stocks of finished fluorspar by grade, in the United States

|                                    |                             | 19                        | 72                    |                             | 1973                        |                  |                       |                     |
|------------------------------------|-----------------------------|---------------------------|-----------------------|-----------------------------|-----------------------------|------------------|-----------------------|---------------------|
| Grade                              | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands) | Average<br>per<br>ton | Stocks 1<br>(short<br>tons) | Quantity<br>(short<br>tons) |                  | Average<br>per<br>ton | Stocks (short tons) |
| Acid<br>Metallurgical<br>Total and | 133,348<br>116,999          | \$8,443<br>8,872          | \$63.32<br>75.83      | 9,867<br>5,427              | 116,104<br>132,497          | \$7,402<br>9,935 | \$63.75<br>74.98      | 3,619<br>5,056      |
| average                            | 250,347                     | 17,315                    | 69.16                 | 15,294                      | 248,601                     | 17,337           | 69.74                 | 8,675               |

<sup>&</sup>lt;sup>1</sup> Mine stocks as of Dec. 31.

| Table 4.—Fluorspa | r shipped from | mine | s in  | the  | Unite | d State | s, by gra | de and | use  |
|-------------------|----------------|------|-------|------|-------|---------|-----------|--------|------|
|                   |                | 1972 |       |      |       |         |           | 1973   |      |
|                   | Quantity       |      |       | Valu | ıe    | Qu      | antity    | V      | alue |
| Grade and use     | - quantity     |      | Total |      | Aver- | CIL     | Domoont   | Total  | Aver |

|                      |               | 197                 | 2                         |                         |               | 1973                |                           |                         |  |  |
|----------------------|---------------|---------------------|---------------------------|-------------------------|---------------|---------------------|---------------------------|-------------------------|--|--|
|                      | Qua           |                     |                           | alue                    | Qu            | antity              | Value                     |                         |  |  |
| Grade and use        | Short<br>tons | Percent<br>of total | Total<br>(thou-<br>sands) | Aver-<br>age per<br>ton | Short<br>tons | Percent<br>of total | Total<br>(thou-<br>sands) | Aver-<br>age per<br>ton |  |  |
| Ground and flotation |               |                     |                           |                         |               |                     |                           |                         |  |  |
| concentrates:        |               |                     | 00.005                    | \$75.01                 | 99.145        | 53.2                | \$7,300                   | \$73.63                 |  |  |
| Hydrofluoric acid    | 111,786       | 56.7                | \$8,385                   | 78.26                   | 23,505        | 12.6                | 1.854                     | 78.88                   |  |  |
| Glass                | 22,375        | 11.4                | 1,751                     | 46.21                   | 10.570        | 5.7                 | 599                       | 56.67                   |  |  |
| Ceramic and enamel_  | 10,625        | 5.4                 | 491                       |                         | 10,570        | 0.1                 | 000                       |                         |  |  |
| Nonferrous           | 715           | .4                  | 57                        | $79.72 \\ 73.32$        | 50,662        | 27.1                | 3,825                     | 75.50                   |  |  |
| Ferrous 1            | 49,619        | 25.2                | 3,638                     | 80.45                   | 2,625         | 1.4                 | 212                       | 80.76                   |  |  |
| Miscellaneous        | 1,877         | .9                  | 151                       |                         |               |                     |                           | 73.94                   |  |  |
| Total and average_   | 196,997       | 100.0               | 14,473                    | 73.47                   | 186,507       | 100.0               | 13,790                    | 73.94                   |  |  |
| Fluxing gravel and   |               |                     |                           |                         |               |                     |                           |                         |  |  |
| foundry lumps:       |               |                     |                           |                         | FO 074        | 96.4                | 3,367                     | 56.23                   |  |  |
| Ferrous              | 52,672        | 98.7                | 2,793                     | 53.03                   | 59,874        | 3.6                 | 180                       | 81.08                   |  |  |
| Miscellaneous        | 678           | 1.3                 | 49                        | 72.27                   | 2,220         |                     |                           |                         |  |  |
| Total and average_   | 53,350        | 100.0               | 2,842                     | 53.27                   | 62,094        | 100.0               | 3,547                     | 57.12                   |  |  |

<sup>1</sup> Includes exports.

# **DOMESTIC PRODUCTION**

U.S. shipments of finished fluorspar totaled 248,601 tons, of which 47% was acid grade and 53% metallurgical grade. Although overall output showed little change from 1972, acid-spar production decreased 13% whereas met-spar increased 13%. Mine stocks of finished fluorspar were down 6,600 tons, leaving less than 8,700 tons in stock at yearend. Mine production, material beneficiated, and material recovered were all down appreciably.

The fluorspar industry started to slow down production before the year was half over. At the start of 1973, there were 23 mines and 7 froth flotation plants in operation; during the year 8 mines and 4 flotation plants closed down. These included the Pennwalt Corp. Calvert City Chemical Co. plant in Kentucky, the Ozark-Mahoning Co. Cowdrey (Northgate) plant in Colorado, the Allied Chemical Corp. Boulder City plant in Colorado, and the Tonto Mining and Milling Co., Inc. Tonto Basin (Pumpkin Center) plant in Arizona. The Minerva Oil Co. flotation unit of the Crystal mill in Illinois was placed on an intermittent operating schedule. Three mines were closed down in Kentucky, three in Colorado and two in Arizona. Although Roberts Mining Co. shipped ore from its stockpiles near Darby, Mont., their open pit mine has not operated since 1971. Cumulatively, over 140,000 tons of flotation milling capacity was lost; but during the past 2 years the output from these plants has only averaged about 90,000 tons annually, mainly because the mines could not supply the mills.

On the favorable side of the output picture, the Knight mine and heavy-media plant went onstream in Illinois, the Lafayette mine was reactivated in Kentucky, and Cerro Spar Corp. near Salem, Ky. continued to develop the Babb-Barnes mine and to build a flotation plant with a potential output capacity of 60,000 tons annually. No new mine openings were reported from the West. Reactivation of Minerva's Crystal mill and new production from the Babb-Barnes mine and others may add another 40,000 tons by the end of 1974.

In Illinois, exploration and development drilling continued on the Hicks Dome property in Hardin County. Some exploration and reevaluation studies were performed. Minerva Oil is now a steady producer of barite, for use in drilling muds and paint pigments, as a byproduct from the Minerva No. 1 mine. Income from this byproduct barite, allows a reduction in mill input grade to about 28% CaF2. In Kentucky, Cerro Spar Corp., continued developing the Babb-Barnes mine while building the new flotation plant. Also in Kentucky near Salem, Minerva Oil Co. reactivated the old Wheatcroft shaft at the Lafayette mine, and Don Grahm, an independent operator, started trucking crude ore from the Midway mine to the Babb-Barnes mill. In Tennessee, exploration drilling by U.S. Borax and Chemical Corp. and Amoco Minerals Co. continued on a fluorspar prospect in the Sweetwater barite district near Sweetwater in Monroe County.

In Colorado extensive prospecting, drifting, and drilling were performed on numerous prospects, but no firm production announcements were made on new prospects. The Industrial Chemicals Division of Allied Chemical Corp. sealed the shafts of the Burlington and Yellow Bird mines near Jamestown and placed the Boulder flotation plant on standby. In Salida, Colo., Allied continued exploration drilling on the westerly vein of the old Colorado-American mine in the Browns Canyon fluorspar belt. Also, Kalium Chemical Co. in 1972 and 1973 performed exploration drilling on its claims which cover the northern extension of the Browns Canyon fluorite fault-contact zone. Ozark-Mahoning Co. in the Northgate Area at the end of 1973 placed its three fluorspar mines and the Cowdrey flotation and briquetting plant on a standby basis. In the Jamestown Area Inexco Inc. continued active exploration drifting at its Escanaba mine. In Idaho NL Industries, Inc. completed exploration drilling, drifting, and ore testing on the Bayhorse fluorspar mine near Challis and was completing feasibility and environmental impact studies. In Montana Roberts Mining Co. continued to ship met-spar from its stockpile.

In Nevada J. Irving Crowell continued to produce met-spar from the Daisy mine and ship ore to Monolith Cement Co. at Tehachapi, Calif., and to Geneva Works of U.S. Steel Co. near Salt Lake City, Utah.

In New Mexico at least four companies were actively drilling and increasing the reserves at some prospects, but no production announcements were made. Mining and Milling Co. of America continued construction of its flotation plant located 32 miles south of Hachita, on the east side of the Hachet Mountains. Reportedly, both their heavy-media and flotation plants were onstream at the end of the year. The most extensive exploration was performed by Allied Chemical, on the Lyda-K. prospect, located southeast of Truth or Consequences, and by the joint venture of Midwest Oil and Perry-Knox and Kaufman on the Salado prospect, located southwest of Truth or Consequences.

Near Rome in Malheur County, Oregon, Aluminum Company of America (Alcoa) did some more exploration drilling and sampling, mainly for assessment purposes, on its Crooked Creek claims.

In Texas exploration drilling was performed on a fluorspar prospect in the Eagle Mountains near Van Horn in Hudspeth County. In the Christmas Mountains north of the Big Bend country, D & F Minerals Co. continued operating the La Paisano mine and trucking subgrade met-spar to Marathon for screening and then transhipment by Bailey Fluorspar Co. to steel companies. Bailey Fluorspar Co. also continued to receive ore from its mine (Mal Abrigo) in Coahuila, Mexico, and from other privately owned mines in Chihuahua, and Durango, Mexico. The ore is screened and sized at Marathon before transhipment.

In Utah, Willden Fluorspar Co., Spor Brothers, and U.S. Energy Corp. continued to produce met-spar. No new significant activity was reported from Alaska or Arizona, where prospecting and drilling have been active in recent years.

During 1973 there were seven fluorspar briqueting plants known to be operating in the United States. In addition there was one plant known to be making a 2 by 8 inch fluorspar brick for use as a furnace liner. Concentrate fines containing 93% CaF<sub>2</sub> were used to make the bricks, which act as a flux and metal purifier. There were also two clay brick plants which added 100 to 200 pounds of 95% CaF<sub>2</sub> concentrate to every ton of clay brick kilned.

During 1973 approximately 280,000 tons of fluorspar briquets. 1/2- to 11/2-inch size, were produced by the seven plants and sold to steel companies. In making briquets, some companies used only acid-spar concentrate and diluted it with molasses binder, lime, and a large portion of limestone to about 70% effective CaF2. Other companies mixed together everything from low grade met-spar fines to gravel and acidgrade concentrate. The different mixes and grades were prepared to conform with customer specifications. Most of the briquetting plants were built during the 1968-70 period when prices were rising rapidly. There are three plants at Brownsville, Tex., and one each at Dearborn, Mich., Pittsburgh, Pa., Rosiclare, Ill., and Cowdrey, Colo. The Cowdrey, Colo., plant, owned by Ozark-Mahoning, was closed down at the end of 1973. The two clayfluorspar brick plants are at East Canton

and Nelsonville, Ohio. The fluorspar brick plant is in Cleveland, Ohio.

In February 1973 at the AIME Society of Mining Engineers meeting in Chicago, Ill., a special session was held on a world review of fluorspar. Five excellent papers were presented discussing U.S. and world reserves and production capabilities and uses in the chemical and aluminum industries.

In April 1973 at the Annual Forum on the Geology of Industrial Minerals held at Paducah, Kentucky, a symposium was held on the geology of fluorspar. Ten papers covering various geological aspects of both U.S. and foreign fluorspar deposits were presented. Proceedings of the forum were published by the Kentucky Geological Survey.

Reserves.-U.S. fluorspar reserves totaled about 25 million tons of ore containing about 35% CaF2 or 4,100,000 tons of fluorine. Also, 28 million tons of submarginal material analyzing about 17% CaF2, have been developed at the Lost River Mining Co. claims on Seward Peninsula, Alaska. Near Rome in southeastern Oregon there is another 12 million tons of tufaceous siltstone and claystone containing 8% to 10% CaF<sub>2</sub> that may be classified as a resource. U.S. reserves are mainly in Illinois, Ken-Tennessee. Colorado. Montana. Idaho, Texas, Nevada, Utah, Arizona, and New Mexico. These reserves occur in small isolated ore bodies or clusters of ore bodies, and as irregularly shaped pods or veins within localized mining districts. The mined rock generally contains from 25% to 70% CaF2. Most of the deposits are of less than 500,000 tons, but there are a few larger low-grade deposits that may become commercially attractive if they can be mined by open pit methods and if the rock is amenable to beneficiation.

Table 5.-U.S. consumption of fluorspar by end use and by grade in 1973 (Short tons)

| End use or product       | Containing more<br>than 97%<br>calcium fluoride | Containing not<br>more than 97%<br>calcium fluoride | Total     |
|--------------------------|-------------------------------------------------|-----------------------------------------------------|-----------|
| Hydrofluoric acid        | 663,940                                         |                                                     | 663,940   |
| Glass and fiberglass     | 6,716                                           | 3.918                                               | 10,634    |
| Enamel                   | (1)                                             | 7.293                                               | 7,293     |
| Welding rod coatings     | `´ 528                                          | (¹)                                                 | 528       |
| Primary aluminum         | 1,169                                           | ` ,                                                 | 1,169     |
| Primary magnesium        | 672                                             |                                                     | 672       |
| Other nonferrous metals  |                                                 | 516                                                 | 516       |
| Iron and steel castings  | 288                                             | 35,139                                              | 35,427    |
| Open hearth furnaces     |                                                 | 88,401                                              | 88,401    |
| Basic oxygen furnaces    |                                                 | 411,556                                             | 411,556   |
| Electric furnaces        | 2,850                                           | 111,215                                             | 114,065   |
| Other uses or products 2 | 491                                             | 17,013                                              | 17,504    |
| Total                    | 676,654                                         | 675,051                                             | 1,351,705 |
| Stocks Dec. 31           | 266,421                                         | 61,282                                              | 327,703   |

Table 6.-Fluorspar (domestic and foreign) consumed in the United States, by State (Short tons)

| (                                                  |           |
|----------------------------------------------------|-----------|
| State                                              | 1973      |
| Alabama, Kentucky, Tennessee                       | 93,617    |
| Arizona, Colorado, Utah                            | 23,488    |
| Arkansas, Kansas, Louisiana, Missouri              | 166,906   |
| California                                         | 42,065    |
| Connecticut, Massachusetts, New York, Rhode Island | 39,719    |
| Illinois                                           | 86,715    |
| Indiana                                            | 77,542    |
| Ilowa, Minnesota, Nebraska, Wisconsin              | 3,711     |
| Michigan                                           | 71,286    |
| Metilgan                                           | 86,175    |
| Ohio                                               | 153,133   |
| Oregon. Washington                                 | 1.095     |
| Oregon, washington                                 | 168.154   |
| Texas                                              | 258,212   |
|                                                    | 49.761    |
| West Virginia                                      | 30.126    |
| Other States 1                                     |           |
| Total                                              | 1,351,705 |

<sup>&</sup>lt;sup>1</sup> Includes Florida, Georgia, Maryland, North Carolina, Virginia, Delaware, Mississippi, and Oklahoma.

<sup>&</sup>lt;sup>1</sup> Included with "Other uses or products."
<sup>2</sup> Includes fluorspar used to make ferroalloys and other furnace products.

#### CONSUMPTION AND USES

In the United States, fluorspar of varied specifications was used by the steel, glass, ceramic, brick, and cement industries. Fluorine derived from fluorspar and manufactured into hydrofluoric acid (HF) is essential to the chemical, aluminum, airplane, medicinal, oil, and nuclear reactor industries and for fluoridating drinking water. Consumption trends for fluorspar depend directly on the growth of the above industries. The domestic steel industry consumed about 45% of the total fluorspar, the chemical industry about 33%, the aluminum and nonferrous industry about 19%, and other industries about 3%.

The share of total consumption used by the iron and steel industry increased from 43% in 1969 to 45% in 1973. Conversely the share of total consumption used to manufacture hydrofluoric acid decreased from 53% to 49%. During this same 1969–73 period, reported consumption of all grades of fluorspar has remained steady at about 1,355,000 tons annually.

Demand by miscellaneous consumers has broadened considerably in the past few years, although actual consumption remained small. Major uses in this category include catalysts in the oil industry, additives for calcining in the cement industry, storage of radioactive uranium as UF4 for the nuclear reactor industry, and the manufacture of permanent self-sealing lu-

bricants impregnated in movable parts.

Production of fluorocarbon 11 and 12, which is commonly used in home and automobile refrigeration, decreased notably during the energy shortage in the second half of 1973 when air conditioners were slowed down or shutoff. Union Carbide Corp. enlarged the capacity of its plant at Institute, W. Va., by 30% to about 200 million pounds annually of fluorocarbon 11 and 12. In 1973, Buss Ltd. of Basel, Switzerland was awarded a contract by Companhia Nitro Quimica Brasileira to build three plants a 8,500-ton-per-year hydrofluoric acid plant, a 6,000-ton-per-year aluminum fluoride plant, and a 6,000-tonper-year cryolite (sodium aluminum fluoride) plant to be located at São Miguel Paulista, Brazil. The plants are due for completion by yearend 1975.2

Finally in 1973 the State of Georgia General Assembly passed into law a bill requiring fluoridation of all public drinking water in incorporated communities, thereby eliminating one of the last strongholds against water fluoridation. No action is anticipated in 1973 and 1974, since the State must pay for all equipment and installation and no funds have as yet been provided. Furthermore, any local government can remove itself from the provision by a referendum vote.

#### **STOCKS**

U.S. producers reported a 43% decrease in their stock of finished fluorspar from 15,294 tons in 1972 to 8,675 tons in 1973, an alltime low since complete records were started in 1940. U.S. consumers stocks decreased 13% (50,239 tons) in 1973, which in-

dicated that consumers were not worried about an adequate supply. Excess stocks of finished fluorspar were reported in the producing countries of Mexico, Thailand, Kenya, and the Republic of South Africa.

#### **PRICES**

Prices of finished fluorspar ready for use varied according to specifications and location. The Engineering and Mining Journal (E/MJ) notes that acid-spar prices were mostly in the \$78.50 to \$87-per-short-ton range; same as in 1972. However, some spot sales were reported at \$70 per ton and others at \$87.50 per ton. Domestic 70% CaF<sub>2</sub> met-spar pellet prices were standardized at \$65.50 per ton, but 88% CaF<sub>2</sub> pel-

lets were priced at \$76.50 per ton. Most briquets varied considerably in price, since their effective CaF<sub>2</sub> content ranged from 65% to 94% CaF<sub>2</sub>. The gravel met-spar price reported in E/MJ at the Mexican border was \$48.50. However, a quality-grade gravel met-spar of 70% to 75% effective CaF<sub>2</sub>, as produced by the larger

 $<sup>^2\,</sup>European$  Chemical News. Business World. Jan. 25, 1974, p. 18.

companies, was reported during 1972 and 1973 to be \$60 per ton, f.o.b., c.i.f. included, midstream at the Mexican border.

Drastic fluctuations in European prices were caused by the changing value of the U.S. dollar and by sharp increases in ocean freight costs, which occurred during the last quarter of 1973. Most of the freight increase was absorbed by the European producer, but some was absorbed by the U.S. buyer. Prices in Europe temporarily soared to \$97 per ton for acid-spar, f.o.b. U.S. port.

Prices at South African ports ranged from \$37 to \$40 per ton for acid-spar during 1972, but none was exported to the U.S. during 1973. Met-spar prices in Thailand held at \$32 to \$35 per metric ton and acid-spar prices were quoted at \$65 per metric ton, f.o.b. Bangkok.

Although price rises in 1973 were restrained because of the plentiful supply in Thailand, Mexico, the Republic of South Africa, and some European countries, the cost of producing fluorspar throughout the world has been going up.

Table 7.-U.S. prices of fluorspar

|                                                                                                                                                                   | 1972                          | 1973                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------|
| Domestic, f.o.b. Illinois-Kentucky: Pellets, (briquets) 70% effective CaF <sub>2</sub>                                                                            | \$68.50<br>76.50              | \$65.50<br>76.50              |
| Pellets, (briquets) 88% effective CaF2Ceramic-grade, 88% to 97% CaF2                                                                                              | \$76.50-82.00                 | \$76.50-8 <b>7.</b> 00        |
| Acid-grade concentrates, dry, more than 97% CaF2: Carloads                                                                                                        | 78.50-87.00                   | 78.50-87.00                   |
| Less than carloads                                                                                                                                                | 78.50-87.00<br>6.00           | 78.50 <b>–87.00</b><br>6.00   |
| Bags, extra  European: fo.b. Wilmington/Philadelphia: Acid-grade, duty paid, dry basis, 97% CaF2 Acid-grade, duty paid, wet filter cake 97% CaF2                  | 97.50<br>95.00–97.00          | 97.50<br>95.00–97.00          |
| Mexican:  Metallurgical-grade, 70% effective CaF2:  Border, f.o.b. railroad cars  Tampico, Mex., f.o.b. vessel  Acid-grade, more than 97%: Eagle Pass, Tex., bulk | 48.50<br>50.00<br>62.00-67.00 | 48.50<br>50.00<br>60.00–62.00 |

Source: As listed in the December issues of Engineering and Mining Journal, 1972 and 1973.

#### **FOREIGN TRADE**

U.S. imports for consumption totaled 1,212,347 tons or about 90% of the U.S. total reported consumption of 1,351,705 tons. On the other hand, U.S. imports totaled only 80% of the apparent consumption, which is a more realistic percentage. The downward trend in U.S. exports, which started in 1970 continued through 1973. Fluorspar exports in 1973 decreased 12% below the 1972 tonnage of 2,764 tons. About 87% of the total exports moved across the northern border into Canada. U.S. foreign trade, as in the past, continued to be with free world countries.

Table 8.-U.S. exports of fluorspar

| Year and country | Quantity<br>(short tons) | Value       |
|------------------|--------------------------|-------------|
| 1970             | 14,952                   | \$1,144,861 |
| 1971             | 12.491                   | 525,489     |
| 1972             | 2,764                    | 183,620     |
| 1973:            |                          | 40.700      |
| Brazil           | 110                      | 10,522      |
| Canada           | 2,124                    | 140,299     |
| South Africa,    | 146                      | 15,659      |
| Republic of      | 45                       | 4.067       |
| Venezuela        |                          | 708         |
| Other            | 3                        |             |
| Total 1          | 2,428                    | 171,255     |

<sup>&</sup>lt;sup>1</sup> Adjusted by the Bureau of Mines, Division of Nonmetallic Minerals—Mineral Supply.

Table 9.-U.S. imports for consumption of fluorspar, by country and customs district

| Country and customs district                | 197                      |                      | 1973                     |                    |
|---------------------------------------------|--------------------------|----------------------|--------------------------|--------------------|
| country and customs district                | Quantity<br>(short tons) | Value<br>(thousands) | Quantity<br>(short tons) | Value              |
| CONTAINING MORE THAN                        | 97% CALCIUM              | FLUORIDE             |                          |                    |
| Brazil: New Orleans                         |                          |                      | 10,705                   | \$569              |
| Germany, West:                              |                          |                      |                          |                    |
| Detroit<br>Philadelphia                     | 5,202                    | \$295                | 4,925                    | 244                |
| Total<br>Guatemala: El Paso                 | 5,202                    | 295                  | 4,925<br>90              | 244<br>5           |
| Italy:                                      |                          |                      |                          |                    |
| Cleveland                                   | 10,127                   | 888                  |                          |                    |
| Detroit                                     | 7,726                    | 429                  |                          |                    |
| Garveston                                   | 42,176                   | 2,453                | $52.1\overline{40}$      | 3.198              |
| New Orleans                                 | 14,212                   | 782                  | 6,247                    | 386                |
| Total                                       | 74,241                   | 4,552                | 58,387                   | 3,584              |
| Mexico:                                     |                          |                      |                          |                    |
| Detroit                                     |                          |                      | 1,014                    | 32                 |
| El Paso                                     | 63,925                   | 1,635                | 90,474                   | 3,638              |
| Houston<br>Laredo                           | 758                      | 31                   | 148                      | 8                  |
| Laredo                                      | 321,542                  | 13,283               | 262,188                  | 11,318             |
| Los Angeles<br>New Orleans                  |                          |                      | 78                       | 5                  |
| Nogales                                     | 42,788                   | 2,543                | 48,218                   | 3,028              |
| Nogales<br>Philadelphia                     | 23,423                   | 839                  | 703                      | 25                 |
| San Diego                                   | 18,234                   | 1,142                |                          |                    |
|                                             | 234                      | 13                   | 312                      | 14                 |
| Total                                       | 470,904                  | 19,486               | 403,135                  | 10.000             |
| Mozambique: New Orleans                     | 5,256                    | 247                  | 7,578                    | 18,068<br>371      |
| Portuguese West Africa, n.e.s.: New Orleans |                          |                      | 9,932                    | 615                |
| South Africa, Republic of:                  |                          |                      |                          |                    |
| Baltimore                                   | 1,069                    | 41                   |                          |                    |
| Galveston                                   | 5,032                    | 199                  |                          |                    |
| Philadelphia                                | 8,318                    | 305                  |                          |                    |
| Total                                       | 14,419                   | 545                  |                          |                    |
| pain:                                       |                          |                      |                          |                    |
| Cleveland                                   | 25,701                   | 1.550                |                          |                    |
| Detroit                                     | 31,433                   | 1,770                | 28,314                   | 1,683              |
|                                             | 3,373                    | 1,950<br>232         | 13,899                   | 934                |
|                                             | 4,435                    | 279                  | 2,832                    | 198                |
| Philadelphia                                | 69,898                   |                      | $114,7\overline{80}$     | $7,0\overline{31}$ |
| Total<br>witzerland: Philadelphia           | 134,840                  | 8,933                | 159,825<br>5,804         | 9,846<br>348       |
| unisia:                                     |                          |                      |                          |                    |
| Detroit                                     |                          |                      | F 400                    | _                  |
| New Orleans                                 | 6.002                    | $3\overline{67}$     | 5,430                    | 250                |
|                                             |                          | 901                  | 19,610                   | 1,095              |
| Total                                       | 6,002                    | 367                  | 25,040                   | 1,345              |
|                                             |                          |                      |                          |                    |
| nited Kingdom:                              |                          |                      |                          |                    |
| Cleveland                                   |                          |                      | 6,984                    | 437                |
| Cleveland<br>New Orleans                    |                          |                      | 13,487                   | 797                |
| Cleveland                                   |                          | <br>                 |                          |                    |

FLUORSPAR

Table 9.-U.S. imports for consumption of fluorspar, by country and customs district-Continued

|                             | 1                        | 972                  | 1973                     |                     |
|-----------------------------|--------------------------|----------------------|--------------------------|---------------------|
| Country and custom district | Quantity<br>(short tons) | Value<br>(thousands) | Quantity<br>(short tons) | Value<br>(thousands |
| CONTAINING NOT MORE TH      | HAN 97% CALCI            | UM FLUORIDE          |                          |                     |
| Canada: Portland, Me        |                          |                      | 24                       | (1)                 |
| Colombia: Philadelphia      | 2,642                    | \$97                 |                          |                     |
| Guatemala: El Paso          |                          |                      | 348                      | \$7                 |
| Mexico:                     |                          |                      |                          |                     |
| Baltimore                   | 11,657                   | 494                  | 19,141                   | 768                 |
| Buffalo                     | 18,758                   | 522                  | 29,149                   | 1,246               |
| Chicago                     | 1,430                    | 69                   | ·                        | ·                   |
| Cleveland                   | 27,461                   | 1.393                | 29,831                   | 1,520               |
| Detroit                     | 16,643                   | 781                  | 17,355                   | 752                 |
| El Paso                     | 30,501                   | 718                  | 29,793                   | 866                 |
| Houston                     | 158                      | 6                    | ,                        |                     |
| Laredo                      | 300,692                  | 6,825                | 295.344                  | 7.461               |
| New Orleans                 | 25.032                   | 1,093                | 49,366                   | 2,304               |
| Nogales                     | 214                      | 7,550                | 20,000                   | _,000               |
| Philadelphia                | 20,558                   | 866                  | 18.847                   | 792                 |
| St. Albans                  | 227                      | 8                    |                          |                     |
| Total                       | 453,331                  | 12,782               | 488,826                  | 15,709              |
| South Africa, Republic of:  |                          |                      |                          |                     |
| Buffalo                     | 5.311                    | 220                  |                          |                     |
| New Orleans                 | 9,385                    | 327                  |                          |                     |
| Total                       | 14,696                   | 547                  |                          |                     |
| Spain:                      |                          |                      |                          |                     |
| Buffalo                     |                          |                      | 6,605                    | 264                 |
| Detroit                     |                          |                      | 5,175                    | 164                 |
| New Orleans                 |                          |                      | 5,477                    | 247                 |
| Total                       |                          |                      | 17,257                   | 675                 |
| Grand total                 | 470,669                  | 13,426               | 506,455                  | 16,391              |

<sup>&</sup>lt;sup>1</sup> Less than ½ unit.

Table 10.-U.S. imports for consumption of 70% hydrofluoric acid

|                         | 1971                     |                           | 1972                     |                    | 1973                     |                    |
|-------------------------|--------------------------|---------------------------|--------------------------|--------------------|--------------------------|--------------------|
| Country                 | Quantity<br>(short tons) | Value                     | Quantity<br>(short tons) | Value              | Quantity<br>(short tons) | Value              |
| Canada<br>Germany, West | 19,601<br>(1)            | \$5,901,369<br>574        | 12,946<br>(1)            | \$4,510,698<br>692 |                          | \$9,295,461<br>897 |
| Japan<br>Mexico         | 50<br>1, <b>69</b> 8     | 8,730<br>58 <b>6,</b> 704 | 1,225                    | 404,203            | $1,4\overline{67}$       | 527,110            |
| United Kingdom          | (1)                      | 888                       |                          |                    |                          |                    |
| Total                   | 21,349                   | 6,498,265                 | 14,171                   | 4,915,593          | 31,663                   | 9,823,468          |

 $<sup>^1</sup>$  Less than  $\frac{1}{2}$  unit.

#### WORLD REVIEW

Canada.—In 1973, Canada produced 151,000 tons of fluorspar, almost all acid-spar. This was 16% lower than in 1972, and the reason for the decline was a 1-month labor strike. Less than 1% of Canada's production was met-spar, which was used

locally at a Newfoundland steel plant. The following tabulation shows Canada's imports of all grades of fluorspar during the first 9 months of 1973, at the Canadian port of entry.

| Country        | Quantity<br>(short tons) | Total value | Average<br>per ton |
|----------------|--------------------------|-------------|--------------------|
| Mexico         | 69,776                   | \$3,527,000 | \$50.55            |
| United Kingdom | 26,071                   | 1,070,000   | 41.04              |
| Spain          | 18,595                   | 516,000     | 27.75              |
| United States  | 3,218                    | 216,000     | 67.12              |
|                | 117,660                  | 5,329,000   | 45.29              |

Imports of fluorspar from Mexico, the United Kingdom, and the United States accelerated in the last quarter of the year. Based on Canada's imports in the first 11 months of 1973, a total import of 161,470 tons is estimated for the year. This would be a 55% increase over the tonnage imported during 1972. Most of the increase was in met-spar.

All of the fluorspar produced in Canada was mined by one company, Aluminum Company of Canada Ltd. (Alcan), from three mines in the Burin Peninsula of Newfoundland. Alcan started in 1973 to develop a new mine near St. Lawrence, and work continued throughout the year.

During 1973, a new evaluation and feasibility study was underway on the Rock Candy mine near Grand Forks, British Columbia, which is owned by Cominco Ltd., and leased by Alcan. Fluorspar had been produced from this mine during the 1918 to 1942 period, and large reserves of 60% CaF<sub>2</sub> were reported as still remaining.

The Birch Island fluorspar prospect of

Consolidated Rexspar Minerals & Chemicals Ltd., located about 60 miles north of Kamloops, British Columbia, was subjected additional exploration drilling, geochemical soil sampling, and feasibility studies during 1972 and 1973. About 1 million tons of proven and 500,000 tons of possible ore containing an average of 29% CaF<sub>2</sub> were delineated. According to Denison Mines Ltd., which has a 44% interest in Consolidated Rexspar, activity was temporarily suspended so as to evaluate preliminary findings.3 Exploration activity in the Madoc district of Southern Ontario has also been temporarily suspended by some of the companies that were active during 1972.

Huntington Fluorspar Mines Ltd. continued to make fluorspar bricks at its plant near North Brook, Ontario. Imported metspar was used to make the bricks for iron foundries.

<sup>3</sup> The Northern Miner. Rexspar's Fluorite interests Japanese. V. 58, No. 47, Feb. 8, 1973,

Table 11.-Fluorspar: World production by country

(Short tons)

| Country 1 and grade 2          | 1971       | 1972        | 1973 P                                  |
|--------------------------------|------------|-------------|-----------------------------------------|
| North America:                 |            |             |                                         |
| Canada (shipments)             | * 80,000   | 179,700     | 151,000                                 |
| Mexico                         | 1,301,779  | 1,149,039   | 1,196,992                               |
| United States (shipments):     |            |             |                                         |
| Acid grade                     | 106,263    | 133,348     | 116,104                                 |
| Metallurgical grade            | 165,808    | 116,999     | 132,497                                 |
| Total                          | 272,071    | 250,347     | 248,601                                 |
| South America:                 |            |             |                                         |
| Argentina                      | r 79,734   | 66,334      | • 66,000                                |
| Brazil                         | r • 50,000 | 78,235      | • 71,000                                |
| Europe:                        | 100,000    | 100,000     | 100,000                                 |
| Czechoslovakia e               | 100,000    | 100,000     | 100,000                                 |
| France: 3                      | -0- 40-    | 000.050     | . 017 000                               |
| Acid grade                     |            | 208,978     | • 215,000                               |
| Metallurgical grade            |            | ° 111,022   | e 115,000                               |
| Total                          |            | r e 320,000 | e 330,000                               |
| Germany, East e                |            | 90,000      | 90,000                                  |
| Germany, West (marketable)     |            | 102,154     | 95,828                                  |
| Italy                          |            | 305,244     | 259,630                                 |
| Romania e                      | 17,000     | 17,000      | 17,000                                  |
| Spain:                         |            |             |                                         |
| Acid grade 4                   | 315,272    | 344,676     | e 320,000                               |
| Metallurgical grade 5          |            | 99,614      | • 110,000                               |
| Total                          | r 370,091  | 444,290     | e 430,000                               |
| Sweden:                        |            |             |                                         |
| Ceramic grade e                |            | 550         | 3,300                                   |
| Metallurgical grade e          |            | 450         | 2,700                                   |
| Total e                        |            | 1.000       | 6.000                                   |
| U.S.S.R.e                      |            | 470,000     | 490,000                                 |
| United Kingdom: 6              |            |             |                                         |
| Acid grade                     |            | 155,400     | e 155,000                               |
| Metallurgical grade            |            | 62,800      | e 65.000                                |
| Ungraded                       |            | 1,100       |                                         |
| Total                          |            | 219.300     | ° 220,000                               |
| See footnotes at end of table. | ,          | ,           | • • • • • • • • • • • • • • • • • • • • |

Table 11.-Fluorspar: World production by country-Continued

| Country 1 and grade 2         | 1971        | 1972           | 1973 Р              |
|-------------------------------|-------------|----------------|---------------------|
| Africa:                       | •           |                | . 1 000             |
| Egypt, Arab Republic of       | 710         | 990            | • 1,000             |
| Kenva                         | 7,232       | 11,527         | <sup>7</sup> 29,468 |
| Mozambique                    | 9,059       | 1,575          | 125                 |
| Rhodesia, Southern e          | 165         | 165            | 165                 |
| South Africa, Republic of:    |             |                | 004.000             |
| Acid grade                    | 155,450     | 157,502        | 204,262             |
| Ceramic grade                 | 15,265      | 19,688         | 4,933               |
| Metallurgical grade           | 92,782      | 55,184         | 22,647              |
| Total                         | 263,497     | 232,374        | 231,842             |
| Tunisia:                      |             |                |                     |
| Acid grade                    | 31,311      | 44,696         | 47,735              |
| Metallurgical grade           | 5,020       | 6,046          | 3,633               |
| Total                         | 36,331      | 50,742         | 51,368              |
| Asia:                         | 8.00.1      | 248            | e 220               |
| Burma                         | 8 222       |                | 280,000             |
| China, People's Republic of e | 280,000     | 280,000        | 3,097               |
| India                         | 3,425       | 3,418<br>9.147 | e 8.800             |
| Japan                         | 14,022      |                | 33,000              |
| Korea, North e                | 33,000      | 33,000         | 24.428              |
| Korea, Republic of            | r 56,272    | 30,861         | 110.000             |
| Mongolia e                    | 88,000      | r 110,000      | 1.758               |
| Pakistan                      | 5,258       | 2,627          | 377,079             |
| Thailand (high grade) 9       | r 471,235   | 412,915        | 2,168               |
| Turkey                        | 1,200       | e 1,200        | e 1,410             |
| Oceania: Australia            | 511         | 901            | - 1,410             |
| Grand total                   | r 5,013,290 | 4,974,333      | 4,927,849           |

r Revised.

<sup>&</sup>lt;sup>1</sup> In addition to the countries listed, Bulgaria and Morocco are also believed to have produced fluorspar, but production is not reported and available information is inadequate to make reliable

nuorspar, but production is not reported and available information is inacceptate to make remainder estimates of output levels.

2 In those cases where official production statistics of the respective countries are reported. No divided by grade (acid, ceramic, and/or metallurgical), this breakdown has been reported. No attempt has been made to separate by grade the output of countries which have not officially reported their production on this basis, although some information on such a breakdown may be

reported their production on this basis, although some information on such a breakdown may be available from unofficial sources.

3 Totals reported represent marketable product, a combination of directly salable mine product and concentrate produced from ores that are not usable without beneficiation. In 1971 (the only year for which full detail is available), direct shipping ore totaled 129,747 short tons, while concentrates produced totaled 141,045 short tons, these concentrates being produced from 456,622 short tons of crude ore. The latter figure includes both newly mined domestic ore and additional material of unspecified origin, with actual 1971 mine output of ore for concentration was 509,490 short tons. Total actual ore output (direct shipping ore plus ore for concentration) was 509,490 short tons in 1971; comparable total ore output figures for later years are: 1972—602,168 short tons (provisional) and 1973—610,000 short tons (estimated). The distribution of total salable product into acid-grade and metallurgical-grade is based on information on chemical-grade output reported in Annales des Mines, August-September 1973, p. 67.

4 Data presented includes recorded production of salable acid-grade fluorspar from both fluorspar fluorspar obtained by beneficiating a portion of total reported salable metallurgical-grade fluorspar from beneficiation of metallurgical-grade fluorspar was as follows in short tons: 1971—270,697; 1972—279,843; 1973—263,145. Estimated production of acid-grade fluorspar from beneficiation of metallurgical-grade fluorspar was as follows in short tons: 1971—270,697; 1972—279,843; 1973—263,145. Estimated production of acid-grade fluorspar from beneficiation of metallurgical-grade fluorspar was as follows in short tons: 1971—270,697; 1972—279,843; 1973—276,145. Estimated production of acid-grade fluorspar from beneficiation of metallurgical-grade fluorspar was as follows in short tons: 1971—270,697; 1972—279,843; 1973—276,145. Estimated production of acid-grade fluorspar from beneficiat

<sup>5</sup> pata presented are the difference resulting from the subtraction of that quantity of metal-lurgical-grade fluorspar reportedly consumed for the production of acid-grade fluorspar (see foot-note 4) from the total reported metallurgical-grade fluorspar output. 6 Includes materials recovered from lead-zinc mine dumps. 54,000 (136,000).

<sup>7</sup> Sales only.

8 Data are for year ending June 30 of that stated.

9 Excludes so-called low grade ore (1971 quantity not available, 1972—22,575 short tons and 1973—61,646 short tons) which apparently was not used for traditional fluorspar uses.

Table 12.-Fluorspar: World trade 1 by source and destination in 1972 (Short tons)

|                                     |                             |         | DHOI'L                    | ons)    |                         |            |         |         |                 |
|-------------------------------------|-----------------------------|---------|---------------------------|---------|-------------------------|------------|---------|---------|-----------------|
|                                     |                             |         |                           |         | Destinati               | ons        |         |         |                 |
| Sources                             | Aus-<br>tralia <sup>2</sup> | Austria | Belgium<br>Luxem<br>bourg | - Can   | Ger-<br>ada man<br>Wesi | y, India   | Italy   | Japan   | Nether<br>lands |
| ArgentinaBrazil                     |                             |         |                           |         |                         |            |         |         |                 |
| China, People's Republic of         |                             |         |                           |         | ·                       |            |         | - 220   |                 |
| France                              |                             |         | 595                       |         |                         |            |         |         |                 |
| France Germany, East                |                             | 3,333   | 7,765                     |         |                         |            | 10 000  | 118,013 |                 |
| Cormony Wast                        |                             | 6,550   | 1,918                     |         |                         |            | 18,306  | 839     | 132             |
| Germany, West                       |                             | 2,562   | 3,225                     |         |                         |            | 1 100   |         |                 |
| Italy                               |                             | 2,187   |                           |         | 12,488                  | 5,730      | 1,132   |         | 1,709           |
| Japan<br>Korea, North               |                             |         |                           |         | 12,100                  | 0,100      |         |         | 2,150           |
| Korea Popublica                     |                             |         |                           |         |                         |            |         |         |                 |
| Korea, Republic of                  |                             |         |                           |         |                         |            |         |         |                 |
| Mexico                              |                             |         |                           | 51,074  |                         |            | 11 010  |         |                 |
| Mongolia<br>Mozambique <sup>3</sup> |                             |         |                           | ,       |                         |            | 11,213  | 4,504   |                 |
| outh Africa, Republic of            | ==                          |         |                           |         | 1,058                   |            |         | 1 500   |                 |
| pain                                | 3,602                       | 90      |                           |         | 1,924                   |            | 0 0 1 6 | 1,799   |                 |
| hailand                             | 0.0==                       |         |                           | 7,398   | 49,503                  |            | 3,340   | 115,497 |                 |
| unisia                              | 9,925                       |         |                           | ,       | ,                       |            |         | 050 477 |                 |
| J.S.S.R                             |                             |         |                           |         |                         | 294        | 24,057  | 252,444 |                 |
| Jnited Kingdom                      | 0.055                       |         |                           |         |                         |            | 44,007  | 0 500   |                 |
| Inited States                       | 3,325                       |         | 88                        | 10,566  |                         | $\bar{97}$ | 10,182  | 2,500   |                 |
| ther and/or unspecified             | -==                         |         |                           | 2,871   |                         |            | 791     | 4,751   |                 |
| Total                               | 750                         | 272     | 2                         |         | 109,691                 | 4 4,936    | 3,378   | 948     | 99 000          |
| Total                               | 17,602                      | 14,994  | 13,593                    |         | 174,664                 | 11,057     |         |         | 22,902          |
|                                     |                             |         |                           | . 1,000 | 117,004                 | 11,007     | 79,005  | 541,083 | 26,893          |

|                                           |        |                     |                    |         |                     | ,                  | 000 041,000            | 40,093                       |
|-------------------------------------------|--------|---------------------|--------------------|---------|---------------------|--------------------|------------------------|------------------------------|
| Sources                                   |        | D                   | estinatio          | ns-Cont | inued               |                    |                        | / m                          |
|                                           |        | Poland              | Sweden             | u.s.s.F | L. United<br>States | Other 6            | Total receipts         | Total<br>recorded<br>exports |
| Argentina                                 |        |                     |                    |         |                     |                    | 220                    | NA                           |
| China, People's Republic of               | 1 107  | $10,9\overline{83}$ | $8,6\overline{19}$ | 44,313  |                     | 511                | 5,693<br>184,231       | 7 29,580                     |
| Germany, East                             | 969    |                     | 595<br>1,619       |         |                     | 2,087              | 33,057                 | NA<br>82,804                 |
| Germany, West                             | 7 990  | 24,865              | 612                |         | 5,202               | 4,483<br>614       | 15,432 $39,976$        | NA<br>11.013                 |
| Japan<br>Korea, North                     |        | ==                  | 61                 | 29,542  | 74,241              | 1,542              | 105,729<br>29,542      | 73,922<br>21                 |
| Aorea, Republic of                        |        | 7,791               |                    |         |                     |                    | 11,241                 | NA                           |
| Mexico<br>Mongolia                        |        |                     |                    | 106,152 | 924,234             |                    | 30,425 $991,025$       | 30,452<br>1,126,531          |
| Mozambique 3<br>South Africa, Republic of |        |                     |                    |         | 5,256               |                    | 106,152<br>8,113       | NA                           |
| SpainThailand                             | 7 220  |                     | 1,168              |         | 29,115 $134,840$    | 1,954<br>859       | 163,296                | 137,845                      |
| Tunisia                                   | 0.050  |                     |                    | 57,651  |                     |                    | 199,930<br>320,020     | 194,885<br>NA                |
| United Kingdom                            | 10.070 |                     |                    |         | 6,002               |                    | $\frac{32,712}{2,500}$ | NA<br>3,527                  |
| United States                             | 994    | 287                 | 353                |         |                     | 776                | 48,504                 | 73,019                       |
| Other and/or unspecified<br>Total         | 125    | 40.000              | 1                  | 21,275  | 2,641               | $5,1\overline{78}$ | 3,882 $172,099$        | 2,763<br>NA                  |
| NA N. /                                   | 01,007 | 43,926              | 13,028             | 258,933 | 1,181,531           | 18,004             | 2,503,779              | NA                           |

China People's Republoc of.—Fluorspar production in the People's Republic of China (PRC), was officially reported to be 280,000 tons in 1972 and 1973 but was verbally reported to be in excess of 300,-000 tons in 1973. Chekiang, Hopeh, and

Kwangsi Chuang Provinces were historically the principal sources of fluorspar. However, the largest single producing mine in recent years has been Tauling in Hunan Province where ore assaying about 12% fluorspar, 2% zinc, and 1% lead is mined

NA Not available.

1 Detail on sources, unless otherwise specified, are from import data of countries listed as destinations, and figures in the total receipts column for each listed source are summations of reported imports of the listed destinations. Figures in the column headed total recorded exports are attributed chiefly to the time lag between date of shipment and the date of receipt, but some differences may result from either (1) concealment policies of some countries, and/or (2) reshipment of material by intermediate countries which may be credited as the origin in the trade returns of final receipt countries.

2 Data are for year beginning July 1, 1972.

3 Mozambique reports no production or exports of fluorspar; apparently the imports recorded by three nations from Mozambique were shipped from other countries by way of Mozambique.

4 India records 4,853 short tons as being imported from Switzerland.

5 West Germany records 109,691 short tons total imports from undisclosed origins (plus 297 short tons from countries specifically identified but not listed in this table).

6 Countries included and total imports by each in short tons are: Denmark 3,078; Finland 5,648; Includes feldspar.

and upgraded in a flotation plant. Concentrate assaying 95% to 97% CaF<sub>2</sub> is produced, and apparently used domestically in the chemical and aluminum industries.

Production from the older mining districts is mostly met-spar. PRC exported about 175,000 tons of fluorspar to Japan during 1973, all met-spar. In 1972 and 1973 a total of about 55,000 tons of met-spar was exported annually to various other countries such as the U.S.S.R., Belgium, West Germany, Poland, Finland, and Australia

The iron and steel industry of the PRC consumes large quantities of met-spar, although the tonnage is difficult to estimate. The aluminum industry may have used 12,000 tons of acid-spar in 1973. Another 12,000 tons of acid-spar might also have been consumed by the chemical industry.

At the Chanchiang chemical fertilizer plant in South China's Kwangtung Province, where phosphate products were produced, sodium fluosilicate reportedly was also recovered from hitherto discarded waste materials. This additional fluorine supply is probably used in the PRC chemical industry.

Italy.—Italy has the capacity to produce over 330,000 tons of acid-spar and met-spar annually, but production in 1973 was only 259,630 tons, a 15% drop from 1972 and about 20% drop from the 1971 peak production of about 326,000 tons. Acid-grade fluorspar exports to the United States declined from 74,000 in 1972 to 58,000 in 1973.

In the past 3 years, extensive exploration for fluorspar has been underway, particularly on Sardinia. At the beginning of the year, there were about 10 companies actively mining, developing, or exploring for fluorspar including one major Australian company, Southland Mining Ltd., which controls Società Richerche Coltivazione Minerarie, (SRCM). Normally over 20 mines operated on the mainland and Sardinia.

Southland Mining announced that it is heading a consortium to exploit the Pianciano fluorspar deposit located about 25 miles north of Rome. Reserves of this high clay and carbonate fluorspar ore, in pyroclastic lacustrine sediments, were reported at 8 million tons containing about 55% CaF<sub>2</sub>, 9% barite and celestite, and 6% apatite. The matrix is predominantly kaolinite of

pyroclastic origin. Numerous companies have made feasibility studies of this deposit, but to date the ore has defied conventional means of heavy-media or froth-flotation processing. SRCM plans to process this pyroclastic material using a hydrocycloning technique and then make a briquet of about 70% CaF<sub>2</sub>.

Italy's consumption of met-spar in steel manufacture peaked at about 120,000 tons annually; but due to the recent slump in steel output, consumption was probably less than 100,000 tons in 1973. The country has a plentiful supply of acid-spar but is short of met-spar. Italy requires supplementary imports from France, Mexico, the United Kingdom, the Republic of South Africa, and Tunisia. The physical and mineralogic character of the fluorspar deposits in Italy require flotation plant processing. Consequently, acid-spar production is in excess of internal needs.

Japan.—Japan continues to be the second largest fluorspar consumer in the free world, and is presently twenty-third on the list of fluorspar-producing countries. Japan's 1973 imports totaled about 631,000 tons. About 265,700 tons was imported from Thailand, 174,500 tons from PRC, about 125,200 tons from Republic of South Africa, 26,600 tons from Kenya, and 19,300 tons from Republic of Korea (South), mostly as met-spar. Japan's production totaled about 9,000 tons, all from one mine with dwindling ore reserves.

Japan's consumption totaled about 596,-000 tons of all grades of fluorspar. As reported in the Japan Metal Journal, 381,830 tons of fluorspar or about 64% of the imports was used in the iron and steel industry. This indicates that the iron and steel industry, which produced about 132 million tons of primary steel in 1973, used 5.8 pounds of met-spar per ton of steel. Japanese steel companies continued their search for a substitute flux to use in steel furnaces, but to date no satisfactory unisubstitute has been developed. Japanese companies have learned to use some of the new cheaper substitutes for starting a steel melt intended for certain types of steel products, and to use fluorspar flux more sparingly, thereby reducing the pounds of fluorspar used per ton of

About 101,400 tons, mostly acid-spar, re-

<sup>4</sup> Industrial Minerals. Southland Takes Control of Fluorite Deposit. July 1973, p. 22.

presenting about 17% of the total, was directed into the aluminum industry. About 1,209,000 tons of aluminum was produced in 1973, indicating that about 168 pounds of acid-spar was used per ton of aluminum metal. This consumption rate confirms the reported consumption rate of aluminum fluoride and synthetic cryolite.<sup>5</sup> In addition Japanese aluminum companies recovered and recycled 26,300 tons of synthetic cryolite particulates, equivalent to about 31,500 tons of acid-spar. The use of recycled particulates has softened demand for synthetic cryolite produced from hydrofluosilicic acid (H<sub>2</sub>SiF<sub>6</sub>). About 90,900 tons of acid-spar was used in the inorganic chemical industry, and the balance was used in other unspecified industries.6

The Japanese fluorspar industry has both upgrading and froth flotation plants for processing imported ore. The chemical industry also has plants making hydrofluoric acid, sodium aluminum fluoride and aluminum fluoride from acid-spar, and a new processing plant for making sodium aluminum fluoride from imported sodium fluosilicate (silicofluoride.) Although the aluminum industry has been the largest consumer of acid-spar, the demands of the expanding fluorocarbon industry may soon surpass aluminum industry demands.

The Environmental Agency (EA) of Japan began studies aimed at establishing new environmental quality standards for all fluorides, based on their adverse effects on plant life. Present fluoride controls were restricted to airborne emissions from aluminum refining plants, glass factories, and brickyards. At midyear, the Chiba Prefectural Pollution Countermeasures Bureau announced that fluoride pollution in the Keiyo Coastal Zone has increased to 3.6 times the 1972 pollution. The EA planned to set the standard low enough to preclude damage to farm products, which are most susceptible to this air pollutant.7

Kenya.--Production of met-spar in Kenya increased 18,000 tons in 1973 to about 29, 500 tons. A further increase of about 10,000 tons is expected in 1974. The Fluorspar Co. of Kenya, 51% owned by the Government of Kenya, 24.5% by Bamburi Portland Cement Co., and 24.5% by Continental Ore Corp., started construction of a froth flotation plant with a planned output of 120,000 tons annually, which is scheduled to go onstream in late 1975 or early 1976. Continental Ore Corp., a subsidiary of International Minerals and Chemical Corp., is the mine and mill operator.

Export shipments from Kenya have gone to many different countries. However, Japan contracted to purchase 10,000 tons of met-spar in 1973, and intends to buy even larger quantities of both met-spar and acidspar in the future.

Proven ore reserves in the Rift Valley are said to exceed 6 million tons. Ore was reportedly high grade, although exact quality has not been divulged. It is estimated that another 9 million tons of so-called fluorspar resources will be available for future development.

Mexico.—Mexico maintained its position as the leading world producer and exporter of fluorspar and the foremost supplier to the United States. Although most Mexican companies expanded capacity considerably in 1971-72, the country's 1973 production only increased 4% to 1,197,000 tons, which is still below the peak of 1,302,000 tons in 1971. The majority of the larger companies increased output capacity in 1973. As a result six major companies produced about 79% of the national total.8

Mexico's exports of met-spar to the U.S. in 1973 exceeded the acid-spar exports by 21% whereas in 1972 the exports of these two grades were about equal. Mexico provided 74% of U.S. imports in 1973, a decrease of about 3.5% from 1972. Mexico exported over 90% of its production, and fluorspar continued to be Mexico's single most important mineral export. The value of Mexican fluorspar exports increased about 4.7% even though there was an increase in met-spar exports and a decrease in acid-spar exports.

No significant increase in Mexican fluorspar consumption was reported for 1973. The steel industry remained the largest consumer. The chemical and aluminum industries used much smaller amounts. Two small plants were reported to have a com-

<sup>&</sup>lt;sup>5</sup> Japan Metal Journal. Imports of Fluorspar in 1973. May 6, 1974, p. 11.

o Light Metal Statistics in Japan, 1972. Japan Light Metal Association, 1973, pp. 64-67.
U.S. Embassy, Tokyo, Japan. Selected Science and Technology Items from the Japanese Press.

State Department Airgram, A-804, August 1973,

p. 5.

S Business Trends. Mining. V. IX, No. 373,
Mar. 11, 1974, p. 6.

bined output of 20,000 tons annually of hydrofluoric acid: One is controlled by Allied Chemical Corp. and the other by Industrias Químicas.

Progress continued on construction of the 70,000-ton-per-year hydrofluoric acid plant being built west of Matamoros by Química Fluor, S.A. de C.V. The plant is jointly owned by the Mexican Government (Comisíon de Fomento Minero), E. I. du Pont de Nemours & Co., Minera Frisco, S. A., and Banco de Commerico. Du Pont is the plant builder and operator and expects to have the plant onstream by mid-1975.

The Las Cuevas mine in San Luis Potosí is the largest fluorspar mine in the world. It is owned by Cia. Minera Las Cuevas S.A., an affiliate of Empressa Fluorspar, which is a subsidiary of Noranda, Mines Ltd. Toronto, Canada. In 1973 they shipped about 338,000 tons of met-spar, including 79,000 tons of met-spar fines that were sold to fluorspar briquetting companies in the United States.9 During 1973 Las Cuevas operated its new flotation plant, which has a 50,000-ton-per-year capacity, but the concentrate was stockpiled at the mine and not sold. About half of its ore was shipped from Tampico to U.S. and Canadian ports, and the other half was freighted to the Port of Brownsville, Tex., for subsequent distribution.

Other major producing companies included Industrias Peñoles, S.A., in San Luis Potosí and Guanajuato; Fluorita de Mexico, S.A., in Coahuila and San Luis Potosí; Minera Frisco, S.A., in Chihuahua; Reynolds Fluorspar, S.A., in Coahuila; Compania Minera Domincia, S.A., in Coahuila; Asarco Mexicana, S.A., in Chihuahua; and Compania Minera Rio Colorado, S.A., in Guanajuato.

During 1973, the Mexican fluorspar miners wage scale was increased 37% by order of the Mexican Government. Although smaller companies have been forced to raise prices on exported fluorspar, the major met-spar producing companies were able to hold prices fairly steady, in spite of rising production costs, and pressure from the smaller producers to raise the price.

Morocco.—Although no production was reported from Morocco during 1973, it was reported that development of a fluorspar deposit in the El Hammam region, 31 miles

southwest of Meknes, and the construction of an acid-spar flotation plant with a 60,000 ton per year output capacity, were underway. Production from this 3 million ton deposit is expected late in 1974.

Production of hydrofluosilicic acid (H<sub>2</sub>SiF<sub>6</sub>) is planned for 1974. Both the Maroc-Chimie and the Maroc-Phosphore phosphoric acid plants, controlled by the Office Cherifien des Phosphates (OCP) are expected to produce H<sub>2</sub>SiF<sub>6</sub> as a byproduct. The H<sub>2</sub>SiF<sub>6</sub> by-product potential of the phosphate industry in Morocco could total 100,000 tons annually within a few years.

South Africa, Republic of.—Fluorspar production showed little change from the 1972 level, registering about 232,000 tons. Export sales of acid-spar, however, increased sharply during the last quarter of 1973. Probably some of the oversupply that had accumulated during 1972 was sold in 1973. Local sales were made mainly to the steadily expanding steel and aluminum industries.

At the Buffalo fluorspar mine of General Mining and Finance Corp. Ltd., it was announced that a new flotation plant designed to increase the company's output from 40,000 to 150,000 tons of acid-spar per year was operating at near capacity. However, due to a weak market, the old 40,000-ton-per-year mill was placed on standby. The 20-million-ton ore body averages 70 meters (210 feet) in width and was reported minable by open pit methods. The ore ranges from 13% to 25% CaF<sub>2</sub>. Due to the limited supply of water and fears of fluorine pollution, even tailings are filtered for maximum recovery and reuse of water.<sup>10</sup>

A verbal source of information reported that the Phelps Dodge Co. of South Africa had reactivated an old flotation plant south of Zeerust in West Transvaal. Original annual capacity of 20,000 tons will be expanded to 30,000 tons of acid-spar through modernization of facilities. The company's deposit can be mined by open pit methods and reportedly the ore averages 29% CaF<sub>2</sub>.

It was evident from the notable increases in production and export of acid-spar, predictions, the possibility of expanding exports, and favorable geological reports of fluorspar occurrences, that the future of the industry depends on the marketability of

Noranda 1973 Annual Report. Empressa
 Fluorspar. p. 12.
 Mining Magazine. South Africa's Buffalo
 Fluorspar in Full Production. V. 129, No. 6,
 December 1973, p. 501.

flotation concentrates. It was questioned whether world acid-spar markets could absorb, by the end of 1975, a predicted production increase of 200,000 tons from South Africa, Europe and Kenya, and another 50,000 tons from Mexico. Therefore, it has been suggested that South African companies may be forced to briquet their oversupply of concentrates and sell fluorspar briquets to the growing world iron and steel industry.

Fluorspar reserves in the Republic of South Africa and the Territory of South-West Africa are still reported to be equivalent to about 40 million tons of 35% CaF<sub>2</sub>. Although their largest deposits are low grade, ranging from 15% to 20% CaF<sub>2</sub>, they are minable by open pit methods and are economically exploitable on today's market.

Spain.—At the start of 1973, there was a large oversupply of fluorspar ore in the stockpiles of Spanish producers. This oversupply was caused by accelerated production in 1972 and a soft European market during the latter part of 1972. In spite of a soft market during 1973, most of the stockpiles were reduced to reasonable tonnages by yearend. Spain's overall production was down from 444,290 tons in 1972 to about 430,000 tons in 1973. The reported 1971 and 1972 production data on fluorspar were questioned. Later it was determined that some of the production of crude ore, containing less than 50% CaF2, had been incorrectly reported as a finished salable product containing an equivalent of 70% to 75% CaF2 11 and some had been processed in a flotation plant to produce acid-spar. Table II shows the adjusted acid-spar and met-spar production for 1971 and 1972 and the estimated production for 1973.

Spain's exports of all grades of fluorspar to the United States increased 31% from 135,000 to 177,000 tons. Total exports reported by the Spanish Customs Office increased 36% from 195,000 in 1972 to 264,000 tons in 1973.

Consumption of met-spar in Spain increased slightly, although consumption of all grades of fluorspar was about the same as in 1972. The hydrofluoric acid plant of Minerales y Productos Derivados, S.A. (Minersa) near the Port of Castro-Urdiales continued to increase its consumption of acid-grade fluorspar and output of cryolite and aluminum fluoride. Preliminary estimates indicate that Spain's total consump-

tion of fluorspar probably was close to 200,000 tons for 1973.

Prices of some fluorspar products were temporarily down about 5% to 10% the first part of the year. Met-spar prices were a little stronger than acid-spar prices due to increased demand by the steel industry. The decrease in the peseta-to-dollar exchange ratio and the increase in shipping costs hurt the Spanish producers.

During the first part of 1973 Fluoruros S.A., 49% owned by the Bethlehem Steel Co., put into operation a new fluorspar concentration unit at the Espasa plant in the Asturias region. The input capacity of the unit was reported at 100 tons an hour, which should add about 20,000 tons annually to the 1972 output capacity of about 111,000 tons. A pelletizing or briquetting unit was put in operation at Mineraria Silius' flotation mill at Assemini to make use of the waste fines. It was announced that Fluoruros S.A. was also planning to add a briquetting unit to their flotation plant at Pinzales, Spain, during 1974.

Thailand.—During 1973, about 439,000 tons of fluorspar was produced, less than 1% increase over 1972. Most of the Thai production is exported. About 265,700 tons, 60% of the production, was shipped to Japan, and the rest went to the U.S.S.R., Australia, West Germany, and India.

The value of met-spar, f.o.b. Bangkok, decreased from an average of \$36 per ton in 1972 to an average of \$32.14 per ton in 1973. The price of acid-grade fluorspar remained unchanged at \$65 per ton, f.o.b. Bangkok.

The Thai Fluorite Processing Co. Ltd. continued to operate its flotation plant at Ban Lard and produced about 50,000 tons of acid-spar of which about 30,000 tons was shipped to Japan. Universal Mining Co. Ltd. continued to operate its heavy-media separating plant in the Ban Hong district near Chiengmai, Lamphun Province.

Production in Thailand would probably have been larger if a few suppressing factors had not affected production. Heavy rains in the Lamphun district of northern Thailand destroyed roads and temporarily suspended fluorspar rail and truck shipments to Bangkok. Worldwide shortages of diesel fuel for freighters forced buyers to stockpile met-spar in the Bangkok area

<sup>&</sup>lt;sup>11</sup> U.S. Embassy Madrid, Spain. Minerals Questionnaire, A-118, May 23, 1972, and A-99, May 9, 1973.

until lower priced shipping facilities could be obtained. Also, deposits that have been mined by cheap surface mining methods are becoming scarce in some of the older districts.

In January 1974, it was announced that a Thai-Australian enterprise intended to build in the Cha-am Area a \$2 million froth flotation plant to produce 150,000 tons annually of chemical grade fluorite.12

Tunisia.—Fluorspar output from Tunisia remained the same as in 1972 at 51,000 tons. Value per ton of exports increased about 5% but the quantity exported remained the same at about 46,000 tons. The fluorspar mines are located in the Zaghouan region of central Tunisia. Two new mines at Sta and Jebel Ouest started production in 1973. Fluorspar reserves in Tunisia were reported to be 6 million tons, currently minable on today's market, and 5 million tons of potential ore.

A French company, Huertey, and its Swiss associate, Buss, signed an agreement with the Tunisian Government to build an aluminum fluoride plant located in Gabes. The company will be controlled by Industries Chimiques de Fluor and construction will start in 1974.

United Kingdom .- Production continued at the same level as during 1972 and was estimated at 220,000 tons. The closing of the coal mines by labor strikes and a general business slump caused a weakness in internal demand. The United Kingdom was still self-sufficient in fluorspar. Exports dropped notably.

A conservative estimate of fluorspar ore reserves for 1973 was reported to be about 28.5 million tons of 35% CaF<sub>2</sub>. A thorough

evaluation of fluorspar deposits in the United Kingdom would probably increase reserves by an additional 15 million tons; but until the deposits can be more closely identified and evaluated, the additional tonnage must be treated as a resource. The largest fluorspar deposits are located in the Derbyshire Area of the southern Pennines in northern England. Most of the fluorspar produced in the past 10 years has come from this area. The deposits occur as nearly vertical replacement veins up to 80 feet (25 meters) in thickness. A few stratiformtype deposits containing large tonnages were among the first to be mined primarily for fluorspar. Lead and zinc sulfides and some barite are scattered through the matrix. For many years, starting at the beginning of the twentieth century when fluorspar first came into demand for the steel industry, the waste dumps of the old lead-zinc mines in the Derbyshire Area were the main source of fluorspar.

In the Pennines, barite, galena, and sphalerite commonly occur in sufficient quantities as secondary minerals to be recovered as byproducts from the fluorspar flotation plants. In the southwest England fluorspar area, fluorite is a common mineral constituent of primary lead and copper lodes. This area promises to be a potential producer of fluorspar as a byproduct.

Froth flotation plants in the United Kingdom have the capacity to produce over 200,000 tons annually of acid-grade fluorspar. If the demand were sufficient, the mines have the capacity to produce over 150,000 tons of metallurgical-grade fluorspar per year.

### **TECHNOLOGY**

In September 1973, it was announced that Alcoa had broken ground near Palestine, Tex., for a commercial aluminum ingot plant using the new Alcoa smelting process. This process is described as a revolutionary energy-saving method. The plant will require about 2 years to build. The annual output of primary aluminum is reported to be 15,000 tons initially and 300,000 tons potentially. The new process combines alumina and chlorine in a reactor unit, forming aluminum chloride, which is processed electrolytically in an enclosed cell. The molten aluminum separates from the chlorine, permitting the chlorine to be recycled. No fluorine or fluorine compounds are used.13

Tests continued on synthesizing an artificial blood from fluorocarbons to use as a substitute for blood in animals. Efforts were concentrated on experiments using fluorocarbon compounds mixed with blood plasma and hemoglobin. Upjohn Co. reported a new compound called "Flurbipro-

<sup>12</sup> Modern Asia. Joint Ventures. V. 8, No. 1., January/February 1974, p. 34. 13 Chemical Marketing Reporter. Alcoa Smelt-ing Process is Getting its First Plant. V. 204, No. 12, Sept. 17, 1973, p. 32.

fen," which effectively reduces platelet aggregation in both human and animal bloods.

A nuclear bombardment method for the recovery of fluorine from waste plastics has been developed by the Takasaki Research Establishment of the Japan Atomic Energy Research Institute. The recovered plastic particles of micron size, contain polytetrafluorethylene, which is reusable for mixing into plastics to make lubricants. This process is attractive because it proposes reuse of the fluorine and eliminates fluorine emissions.14

A self-lubricating fluoride metal composite material was licensed by the National

Aeronautics and Space Administration (NASA) to Astro-Met-Associates of Cincinnati, Ohio. The fluoride composites are impregnated into porous nickel, cobalt, or iron alloys permitting continuous lubrication.

Fluorosilicone grease, as a sealed lubricant, has found many new uses where the lubricant must be thermally stable, chemically inert, and where the rate that the lubricant is fed into the seal at high process temperatures and rotational speeds must be controlled. New uses for fluorosilicone greases have resulted in new pump designs and new automatic grease applica-

#### CRYOLITE

Natural cryolite was imported fromGreenland (24 tons) and Denmark (2,200 tons). Although mining at the Ivigtut mine in Greenland stopped in 1962, each year since then, some ore was shipped from stockpiles. In Denmark where large tonnages of Ivigtut ore were stockpiled years ago, there is a modern heavy-media and flotation plant for concentrating the cryolite ore, which contains 60% cryolite, 10% siderite, 20% quartz and topaz, 6% fluorspar, and 2% other sulfides. An elaborate flotation plant separates the sulfides, carbonates, and quartz; but to separate the fluorspar and cryolite, they use a two-stage hydrocyclone installation to achieve about 97% recovery of the cryolite. Each year the tonnage produced becomes smaller as the stockpiles are depleted.16

All other cryolite production throughout the world was synthetic cryolite, a sodium aluminum fluoride (Na<sub>3</sub>AlF<sub>6</sub>). This insoluble inorganic salt, also called sodium fluoaluminate, is manufactured from caustic soda, alumina, and hydrofluoric acid. The output of one ton of synthetic cryolite requires approximately 1.2 tons of fluorspar containing 97% CaF<sub>2</sub>, 1.6 tons of H<sub>2</sub>SO<sub>4</sub>, 0.4 ton of Al<sub>2</sub>O<sub>3</sub>·3H<sub>2</sub>O, and 0.6 ton of NaOH. During 1973, the price of synthetic cryolite was quoted in the Chemical Marketing Reporter at \$336 per ton in bulk quantities. In recent years, consumption of synthetic cryolite, used mostly in the liners of the aluminum electrolytic cell, has been on the decline and more aluminum fluoride than

Na<sub>3</sub>AlF<sub>6</sub> is added directly in the flux.

Table 13 is no longer representative of a natural mineral or a beneficiated mineral product. It includes a natural and manufactured product and the tonnage represents only a small portion of the total synthetic cryolite that is actually consumed in the United States.

14 Chemical Age International. Fluorine Containing Waste Plastic Converted to Powder. V. 107, No. 2824, Aug. 31, 1973, p. 13.

15 Miller, J. W. Super-Lube Systems Eliminate Shaft-Seal Leakage. Chemical Eng., v. 80, No. 16, July 9, 1973, p. 88.

16 World Mining. Cryolite Concentrator in Copenhagen. V. 9, No. 8, March 1973, pp. 60-63.

Table 13.-U.S. imports for consumption of cryolite 1

| Year and country | Short<br>tons      | Value<br>(thousands) |
|------------------|--------------------|----------------------|
| 1970             | 21,399             | \$4,666              |
| 1971             | 23,127             | 5.056                |
| 1972             | 25,642             | 3.541                |
| 1973 :           |                    |                      |
| Canada           | 1,205              | 289                  |
| Denmark          | 2,244              | 560                  |
| France           | 551                | 111                  |
| Germany, West_   | 248                | 91                   |
| Greenland        | 24                 | 8                    |
| Italy            | 5,623              | 1,655                |
| Japan            | <sup>2</sup> 9,632 | 2,257                |
| Mexico           | 226                | 68                   |
| Netherlands      | . 36               | 13                   |
| Total            | 3 19,789           | 5,052                |

<sup>&</sup>lt;sup>1</sup>Only the material from Greenland and Denmark is natural cryolite. All the rest is manufactured synthetic cryolite.

<sup>2</sup>Adjusted by Bureau of Mines. Division of Nonmetallic Minerals—Mineral Supply.

<sup>3</sup> Surinam and Switzerland were deleted because the imports were misclassified.

cause the imports were misclassified.

# Gallium

## By E. Chin 1

Domestic production of gallium in 1973 increased. Most of the output continued to be used in producing intermetallic compounds such as gallium arsenide and gallium phosphide, which were used to manufacture light-emitting diodes for optoelectronic visual display panels. Sales of gallium-compounds for optoelectronic devices were estimated at \$25 million in 1973, up from \$4.5 million in 1972.

Estimated world production of gallium arsenide exceeded 10 metric tons. Almost 1 ton of gallium phosphide was produced.

Data on world production of gallium metal are not available.

Table 1.—Salient gallium statistics (Kilograms)

|                                   | 1970    | 1971  | 1972  | 1973   |
|-----------------------------------|---------|-------|-------|--------|
| United States:                    | w       | w     | w     | w      |
| Production                        | ٧v      | W     | VV    | VV     |
| Imports for                       |         |       |       |        |
| consumption                       | 1.005   | 2.671 | 6.066 | 11,124 |
| Consumption<br>Price per kilogram | e 1,100 | 2,289 | 5,076 | 8,496  |
| dollars                           | 750     | 750   | 750   | 750    |
|                                   |         |       |       |        |

<sup>&</sup>lt;sup>e</sup> Estimated. W Withheld to avoid disclosing individual company confidential data.

### **DOMESTIC PRODUCTION**

Production of gallium metal in 1973 by two companies was almost double that in 1972.

Gallium metal was produced as a byproduct of alumina production by the
Aluminum Co. of America (Alcoa) at its
Bauxite, Ark., plant. Gallium metal, oxide,
and trichloride were produced by EaglePicher Industries, Inc., at its Quapaw, Okla.,
plant. In addition, gallium metal and compounds derived primarily from imported
material were produced by Atomergic
Chemetals Co. (Atomergic), Cominco American, Inc., European Electronics, Inc., B.
Freudenberg, Inc., Indium Corp. of America,

and Kawecki Berylco Industries, Inc. Canyonlands 21st Century Corp. (Canyonlands) produced gallium from processing scrap generated from the production of galliumarsenide single crystals at Blanding, Utah.

Alcoa began construction of a new gallium extraction and refining plant at Bauxite, Ark. The new facility, which was expected to be completed in mid-1974, will add to the existing gallium production capacity. The \$1 million plant is being built to meet the increase in demand from the electronics industry and will use Alcoa proprietary gallium production technology.

#### CONSUMPTION

The largest use of gallium was in optoelectronic applications, principally in the form of gallium arsenide and gallium phosphide, which are used in light-emitting diodes (LEDS). LEDS emit infrared light, have a long service life, and consume little electrical power. Due to the pronounced trend of the electronics industry towards microminiaturization, LEDS were increasingly used in visual display systems in calculators, digital clocks and watches, medical instrumentation, multiple warning lights, and instrumentation for aircraft and automotive dash panels. More sophisticated monolithic light-emitting structures for full alphabet presentation are being developed which will require even greater quantities of intermetallic materials. Gallium arsenide continued to have extensive application in the field of microwave devices, where it operates efficiently beyond the cutoff frequencies of silicon-base diodes. The manganese-doped magnesium-gallium spinel (MgGa<sub>2</sub>O<sub>4</sub>: Mn) is a green phosphor used in ultraviolet

<sup>&</sup>lt;sup>1</sup> Physical scientist, Division of Nonferrous Metals—Mineral Supply.

excitation and was used in fluorescent lamps in Xerox copying machines. Gallium compounds were also used in semiconductor applications for microswitching devices and in laser applications. The intermetallic compounds, vanadium-gallium and columbium-gallium, were used as superconductors with a high transition temperature and a high critical field.

Approximately 98% of the gallium consumed in 1973 was for electronic applications. Major consuming firms included Bell & Howell Co., Bell Telephone Laboratories. Inc., Hewlett-Packard Laboratories, Laser/ Diode Laboratories, Inc., Litronix Inc., Monsanto Co. (Monsanto), Motorola, Inc., Opoca, Inc., RCA Corp., Texas Instruments, Inc., Texas Materials Laboratories, Inc., and Western Electric Co.

Atomergic at Carle Place, N .Y., in conjunction with BDH Chemicals, Ltd., of the United Kingdom, increased production capacity for epitaxial gallium arsenide. Atomergic offered a comprehensive array of gallium arsenide crystals. Materials Research Corp. (MRC), Orangeburg, N.Y., and Texas Instruments, Inc. (TI), Dallas, Tex., entered into a contract whereby MRC will supply TI with production quantities of

high-purity gallium arsenide crystals for use in manufacturing LEDS. Monsanto announced a multimillion-dollar expansion program for its electronic materials and optoelectronics group including the construction of additional facilities at St. Peters, Mo., which will double its capacity to manufacture III-V materials. Monsantowill also establish a new headquarters site for optoelectronic devices in Stanford Industrial Park, Palo Alto, Calif. The new facilities were expected to be in operation in the first quarter of 1974. National Semiconductor Corp. (National), Santa Clara, Calif., manufactured LEDS, transistors, and integrated circuits.

Table 2.-Consumption of gallium. by end use (Grams)

|                                                                                                | 1972                                 | 1973 P                                |
|------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------|
| Alloys <sup>1</sup><br>Electronics <sup>2</sup> Research and development _<br>Unspecified uses | 31,116<br>4,965,717<br>78,670<br>702 | 30,597<br>8,349,910<br>115,865<br>100 |
| Total                                                                                          | 5,076,205                            | 8,496,472                             |

#### **STOCKS**

Consumer stocks of gallium metal, lowand high-purity grades, totaled 1,091,203 grams as of December 31, 1973. Stocks a year earlier were 1,141,050 grams. Gallium metal stocks, held by producers and sup-

pliers were as follows:

| Yearend- | _ | Grams     |
|----------|---|-----------|
| 1971     |   | 402,875   |
| 1972     |   | 1,005,945 |
| 1973     |   | 948 947   |

Table 3.-Stocks, receipts, and consumption of gallium (Grams)

| Purity                                                | Beginning<br>stocks                                | Receipts                                             | Consumption                                          | Ending<br>stocks                                   |
|-------------------------------------------------------|----------------------------------------------------|------------------------------------------------------|------------------------------------------------------|----------------------------------------------------|
| 1972: 97.0%-99.9% 99.99% 99.999% 99.9999% Total       | 16,955<br>4,321<br>615<br>130,938<br>152,829       | 10,591<br>51,000<br>10,249<br>5,992,586<br>6,064,426 | 12,692<br>51,513<br>1,664<br>5,010,336<br>5,076,205  | 14,854<br>3,808<br>9,200<br>1,113,188<br>1,141,050 |
| 97.0%-99.9%<br>99.99%<br>99.999%<br>99.999%-99.99999% | 14,854<br>3,808<br>9,200<br>1,113,188<br>1,141,050 | 9,400<br>8,670<br>42,275<br>8,386,280<br>8,446,625   | 10,342<br>10,759<br>46,422<br>8,428,949<br>8,496,472 | 13,912<br>1,719<br>5,053<br>1,070,519<br>1,091,203 |

Preliminary.

Preliminary.
 Specialty alloys.
 Light-emitting diodes,
 other electronic devices. semiconductors, and

543

#### **PRICES**

The average price per gram of gallium metal as quoted by domestic producers in 1973 was as follows:

|                          |        | Purity  | ,                      |
|--------------------------|--------|---------|------------------------|
| Quantity                 | 99.99% | 99.999% | 99.99999%<br>99.99999% |
| 50 to 999 grams _        | \$0.90 | \$1.05  | \$1.20                 |
| 1,000 to 4,999<br>grams  | .60    | .65     | .80                    |
| 5,000 to 24,999<br>grams | 55     | .60     | .75                    |

As the bulk of the demand for gallium is for high-purity metal (99.9999%+), pub-

lished price quotations for low-grade materials were eliminated in midyear. Subsequently, prices were published only for dealers' and producers' quotes for high-grade gallium in 5-to-10 kilogram lots. Monsanto announced the reduction in prices for III-V material for the manufacture of LEDS and LED displays. Thin-film gallium arsenide-phosphide epitaxial wafer sold for \$14 per square inch and was available for delivery from stock. The price of thicker epitaxial film products was reduced to \$16 per square inch. The new prices became effective on November 15, 1973.

## FOREIGN TRADE

Exports of gallium are not reported separately and are included in the category base metals and alloys, not elsewhere classified, wrought or unwrought, waste and scrap.

Total U.S. imports of gallium in 1973 were \$11,124 kilograms, valued at \$6,073,479, compared with 6,066 kilograms, valued at \$2,715,179, in 1972. Shipments from Canada,

the Netherlands, and Switzerland accounted for 89% of the total U.S. imports of gallium. The unit value of gallium imports ranged from \$366 per kilogram for material from Italy to \$1,307 per kilogram for gallium from Japan. The average unit value of all gallium imports in 1973 was \$546 per kilogram.

Table 4.-U.S. imports for consumption of gallium (unwrought, waste and scrap), by country

|                            | 1972                        |                               | 19'              | 1973                 |  |  |
|----------------------------|-----------------------------|-------------------------------|------------------|----------------------|--|--|
| Country                    | Kilograms                   | Value                         | Kilograms        | Value                |  |  |
| Garada                     | 1,396                       | \$696,186                     | 2,133            | \$1,102,332<br>2,652 |  |  |
| China People's Republic of | $1\overline{2}\overline{4}$ | 45,479                        | 388              | 166,765              |  |  |
| Germany, WestHong Kong     | 4                           | 1, <b>426</b><br>680          |                  |                      |  |  |
| Hungary                    | 2<br>156                    | 45,369                        | $4\overline{86}$ | 177,882              |  |  |
| Italy<br>Japan             | 16                          | 5,985                         | 142<br>641       | 185,606<br>395,836   |  |  |
| NetherlandsSwitzerland     | 146<br>4,127<br>95          | 74,015<br>1,795,792<br>50,247 | 7,134<br>196     | 3,923,54′<br>118,859 |  |  |
| United Kingdom<br>Total    | 6,066                       | 2,715,179                     | 11,124           | 6,073,47             |  |  |

## WORLD REVIEW

Canada.—The Manitoba Research Council made a \$23,800 grant to the University of Manitoba to study the feasibility of extracing gallium from tantalum tailings generated by Tantalum Mining Corp. of Canada, Ltd. (Tamco) at Bernic Lake. The university research team will work with Tamco on the project. The company will examine its production process to determine at which stage gallium concentration is at its maximum. Tamco mills about 150,000

tons per year of tantalite and estimated that about 1 pound of gallium might be available for each 2 tons of tantalum metal produced.

Cominco Ltd. (Cominco) recovered gallium as a byproduct of zinc refining at its smelting-refining-chemicals-fertilizer complex at Trail, British Columbia. Cominco's Technical Research Centre maintains active interest in electronic materials and directs commercial production of high-purity metals.

High-purity gallium was shipped to the Electronic Materials Division of Cominco Amercan Inc. in Spokane, Wash., for sale to consumers.

China, People's Republic of .- Gallium metal was listed for sale at the Canton Trade Fair in October 1973. However, only limited quantities of the metal were reportly available for trade. Four kilograms of gallium metal, valued at \$2,652, was exported to the United States.

Japan.—Sumika Alusuisse Gallium Ltd.

(Sumika), a company founded jointly by Sumitomo Chemical Co. and Swiss Aluminium Ltd., completed the construction of a plant in Nijhama on the Island of Shikoku for the production and refining of gallium. The gallium is to be recovered as a byproduct in the production of alumina.

World producers of gallium, by company, location, and raw materials source, are as follows:

| Country                     | Company                                                     | Location       | Source                  |
|-----------------------------|-------------------------------------------------------------|----------------|-------------------------|
| Canada                      | Cominco, Ltd                                                | Trail, British | Zinc ore.               |
| China, People's Republic of | DT A                                                        | Columbia.      | Zine ore.               |
| Czechoslovakia              | NA                                                          | NA             | NA.                     |
| France                      | NA                                                          | NA             | NA                      |
| (                           | Alusuisse France S.A.                                       | Marseilles     | Rauvite                 |
| Germany Wost                | Martinswerk G.m.b.H.<br>fur Chemische und<br>Metallurgische | Bergheim/Erft  | Do.                     |
| Germany, West               | Produktion.                                                 |                |                         |
|                             | Vereinigte Aluminum-<br>Werke A.G.                          | Bonn           | Do.                     |
| Hungary                     | NA                                                          | NA             | NT A                    |
| Italy                       | Società Alluminio                                           | ****           | NA.                     |
|                             | Veneta Azioni.                                              | Porto Marghera | Dannett.                |
| (                           | Dowa Mining Co., Ltd.                                       | Kosaka         | Bauxite.                |
|                             | Nippon Light Metal                                          | Shimizu        | Zinc ore.<br>Bauxite.   |
| apan                        | Co., Ltd.                                                   |                | Dauxite.                |
| )                           | Sumika Alusuisse                                            | Nijhama        | Do.                     |
|                             | Gallium Ltd.                                                |                | D0.                     |
| Vorway                      | Toho Zinc Co                                                | Fujioka        | Zinc ore.               |
| vorway                      | Vigeland Metal                                              |                | Line ore.               |
|                             | Refinery A/S.                                               | Vigeland       | Super-purity            |
| witzenlen J                 | - ,                                                         |                | aluminum.               |
| witzerland                  | Alusuisse Research                                          | Neuhausen am   |                         |
| J.S.S.R                     | Laboratories.                                               | Rheinfall.     | Crude galliun<br>metal. |
| .D.D.IV                     | NA                                                          | NA             | NA.                     |
|                             | Aluminum Co. of                                             | Bauxite, Ark   | Bauxite.                |
| nited States                | America.                                                    |                |                         |
| }                           | Eagle-Picher Industries,<br>Inc.                            | Quapaw, Okla   | Zinc ore.               |
| NA Not available.           |                                                             |                |                         |

#### **TECHNOLOGY**

The extraction of trivalent gallium from aqueous hydrochloric, nitric, and perchloric solutions by 1-phenyl-2-methyl-3hydroxy-4-pyridone (HX) and 1-(4-tolyl)-2-methyl-3-hydroxy-4-pyridone (HY) solved in chloroform was studied.2 From acid concentrations less than 3 X  $10^{-2}$  molar (M), gallium was quantitatively extracted by both reagents. Zinc was not extracted by either HX or HY from 10<sup>-3</sup>M to 3 M HCl, HNO<sub>3</sub>, or HClO4. On the basis of these differences, a rapid and simple method for the separation of gallium from zinc was described.

The transactions of a conference held at Great Gorge, N.J., on electronic materials

processing were published by the Materials Research Corp.3 Papers on the crystal growth of gallium arsenide and gallium phosphide, production of high-purity materials for electronic uses, and design of a reflective LED digit were included in the transactions.

Reports on the growth of crystals for electronic uses and the comparison of various

<sup>&</sup>lt;sup>2</sup> Tamhina, B., M. J. Herak, and K. Jakopcic. The Extraction and Separation of Gallium From Zinc by Derivatives of Pyridone. J. Less-Com-mon Metals, v. 32, No. 2, November 1973, pp. 289-294.

<sup>&</sup>lt;sup>3</sup> Materials Research Corp. Electronic Materials Processing . . From Substrate to Thin Film Device. Orangeburg, N.Y., 1973, 201 pp.

545 GALLIUM

crystal growth techniques were published.4 These studies covered the growth of substrate materials, the growth of epitaxial films, and the growth of large metal crystals composed of atoms that are arranged in a precise and periodic manner.

Intermetallic compounds are soft materials, subject to surface damage unless care is exercised in handling them. Techniques of etching and polishing gallium and other semiconductor compounds, currently being employed to produce quality (low-damage) crystal surfaces, were described.5

Papers characterizing the physical properties of semiconductor materials were published.6 The delineation of electronic materials is important to the industry for process design, equipment selection, and economic evaluations.

Significant advances were made in gallium arsenide laser diode fabrication.7 The width of operation was narrowed, and peak output power was increased. One gallium semiconductor laser was successfully operated for 3,000 hours, and it was expected that this laser would attain at least 10,000 hours of continuous operation.

Canyonlands conducted research to recover gallium from phosphorus dust, using a new hydrometallurgical process under

license from Monsanto. The dust, which contains 500 parts per million of gallium, will be obtained from Monsanto and other sources.

<sup>4</sup> Fairman, R. D., and R. Solomon. Submicron Epitaxial Films for GaAs Field Effect Transistors. J. Electrochem. Soc., v. 120, No. 4, April 1973, pp. 541-544.

Gentilman, R. L. Chemical Vapor Deposition of Epitaxial Films of Yttrium Iron Garnet and Gallium-Substituted Yttrium Iron Garnet and a Thermodynamic Analysis. J. Am. Ceram. Soc., v. 56, No. 12, December 1973, pp. 623-627.

Minden, H. T. A Comparison of Liquid Phase Epitaxy and Chemical Vapor Epitaxy of III-V Compound Semiconductors. Solid State Technol. v. 16, No. 1, January 1973, pp. 31-38.

O'Kane, D. F., V. Sadagopan, E. A. Giess, and E. Mendel. Crystal Growth and Characterization of Gadolinium Gallium Garnet. J. Electrochem. Soc., v. 120, No. 9, September 1973, pp. 1272-1275. 1272-1275.

1272-1275.

5 Jensen, E. W. Polishing Compound Semiconductors. Solid State Technol., v. 16, No. 8, August 1973, pp. 49-52.

Miller, D. C. The Etch Rate of Gadolinium Garnet in Concentrated Phosphoric Acid of Varying Composition. J. Electrochem. Soc., v. 120, No. 12, December 1973, pp. 1771-1774.

6 Spitzer, S. M., B. Schwartz, and M. Kuhn. Electrical Properties of a Native Oxide on Gallium Phosphide. J. Electrochem. Soc., v. 120, No. 5, May 1973, pp. 669-672.

Williams, T. Photoluminescence Analysis of Semiconductors. Solid State Technol., v. 16, No. 4, April 1973, pp. 83.

4, April 1973, pp. 83.

7 American Metal Market. Says It's Given Laser 'Commercial' Life. V. 80, No. 110, June

Laser 'Commercial' Life. V. 80, No. 110, June 6, 1973, p. 8.
Marshall, S. Advances in GaAs Laser Diode Technology. Solid State Technol., v. 16, No. 12, December 1973, p. 77.



# Gem Stones

## By Robert G. Clarke 1

The production value of gem stones and mineral specimens in the United States during 1973 was estimated to be \$2.7 million, essentially equal to the value of production in 1972. Amateur collectors provided most of the material. A few small companies operated deposits for turquoise, opal, jade, emerald, and sapphire. These small companies sold mostly to wholesale or retail outlets and sometimes to jewelry manufacturers.

# DOMESTIC PRODUCTION

Gem stone production was estimated to be \$1,000 or more for each of 38 States. The following States accounted for 76% of the total production, in thousands: Oregon, \$700; California, \$220; Arizona, \$170; Texas, \$163; Washington, \$160; Montana, \$150; Wyoming, \$142; Nevada, \$140; Colorado, \$131; and Idaho, \$110.

The Yogo mine near Utica, Mont. was reopened by a new firm controlled by Sapphire International Corp.2 The operation was described as employing 40 miners on two shifts, and daily ore production was 100 to 150 tons yielding 3,000 to 5,000 carats per day of a mix of good gem stones, imperfect stones, and chips. The aboveground washing plant operated about 6 months of the year, depending on the weather. Underground operations continued year-round. The sapphires from Yogo Gulch are a consistent corn-flower blue and are brilliant under artificial light.

Pala Properties, International, continued to work the Stewart Lithia mine and the Tourmaline Queen mine in the Pala district, San Diego County, Calif.3 Good pockets of tourmaline matrix exhibiting deep rose coloring with green caps were uncovered in the Tourmaline Queen. Large tourmaline crystals, 2 inches in diameter and 43/4 inches long, were accompanied by quartz crystals 4 inches in diameter and 61/2 inches long. The company also worked the White Queen mine where morganite was produced on an intermittent schedule and also planned to reopen

the Pala Chief, Esmeralda, and the Himalava mines.

Benitoite, one of the rarest gem stones, was produced from an open-cut mine in San Benito County, Calif.4 The locality is near the headwaters of the San Benito River, about 25 miles north of Coalinga. Benitoite has a fire and dispersion very close to that of diamond; however, it has a hardness of 6.5 or less on the Mohs' scale.

Seashell and rock collectors at Miami Beach, Fla., found a large new source of material for their hobby.5 A dredging project to deepen the shipping channel at the Port of Miami yielded about 400,000 tons of mixed material that contained a high percentage of coral and clam shells. The dredgings were put in numerous piles at the southern end of Miami Beach. An abundance of the coral and of the clam shells were infilled with yellow calcite crystals caused by fossilization. A mollusk paleontologist at the Rosenstiel School of Marine and Atmospheric Science, University of Miami, estimated the fossils to have a range in age from 100,000 to 1 million years.

¹ Physical Scientist, Division of Nonmetallic Minerals-Mineral Supply.
² The Mining Record of Denver, Colorado, Yogo Mine in Montana is Reopened. V. 84, No. 34. Aug. 22, 1973, p. 2.
³ California Geology. Mining Activity in California, July 1972-July 1973. V. 26, No. 12, December 1973, p. 294.
⁴ Schiffman, W. Mine Produces Rarest of Gems. San Jose Mercury-News, July 22, 1973, p. 12.
⁵ Gems and Minerals. Good News for Florida Rockhounds. No. 430, July 1973, pp. 40-41.

Touchstones were collected from gravel beds of the Coosa River system near Wetumpka, Ala., in Elmore County.6 Touchstone, which has been used since ancient times by jewelers and goldsmiths, can give a precision of about 1 part in 100 in estimating the gold content of a gold-silver or gold-copper alloy. The stones from the Coosa River are also called tarbaby agates. The touchstone from the Coosa River is a deep velvet black variety of jasper and can be polished to a strikingly beautiful gem stone.

Two gem-quality diamonds, 2 to 21/2 carats in weight, were reportedly found at the Crater of Diamonds State Park at Murfreesboro, Ark. Mr. J. Cannon, Superintendent of the Park, commented that the stones were of beautiful gem quality. Finders are keepers at the Park, and hence the value of the stones was unknown until the finders report appraisals.

Descriptions of field trips, events, and mineral and gem stone finds were reported regularly in the following publications: Gems and Minerals, Lapidary Journal, Mineralogical Record, and Rocks and Minerals.

Domestic Gem Stone Producers.—The Department of the Interior has received many inquiries regarding producers of gem stones. In response to these inquiries, the Bureau of Mines started an annual canvass in 1973. Quantity and value data were withheld to maintain confidentiality of the producers who responded to the canvass. The following lists producers by principal gem stone reported:

Emerald.—Big Crabtree mine, Mitchell County, N.C., operated by PBH Emerald

Co., P.O. Box 163, Little Switzerland, N.C. 28749.

Jade.—Stewart mine, Kobuk Village, Alaska, operated by Stewart Jewel Jade Co., 531 4th Ave., Anchorage, Alaska 99501.

Opal.—Royal Peacock mine, Humboldt County, Nev., operated by Harry W. Wilson, Denio, Nev. 89404.

Spencer Opal mine, Clark County, Idaho, operated by Mark L. Stetler, 1862 Ranier Street, Idaho Falls, Idaho 83401. Mostly operated on a daily fee digging basis for amateurs.

Sapphire.—Chaussee Sapphire mine, Granite County, Mont., operated by Chaussee Sapphire Corp., P.O. Box 706, Philipsburg, Mont. 59858.

Sapphire Village mine (Yogo Gulch), Judith Basin County, Mont., operated by Sapphire International Corp., Utica, Mont. 59452.

Turquoise.—Blue Eye mine, Lander County, Nev. operated by Elmer F. Schroeder, Roderick Corp., Box 6, Crescent Valley, Nev. 89821.

Blue Jay mine, Esmeralda County, Nev., operated by M. C. Winfield, P.O. Box 813, Tonopah, Nev. 89049.

June #1 mine, Lander County, Nev., operated by W. H. Coplen, Box 301, Sells, Ariz. 85634.

Pinto Valley Turquoise Operation, Gila County, Ariz., operated by L. W. Hardy Co., Inc., 3809 E. Hwy. 66, Kingman, Ariz. 86401.

Tina Gem mine, Lander County, Nev., operated by R. G. Bonner, Box 948, Fallon, Nev. 89406.

Variscite.—Brown Claims, Esmeralda County, Nev., operated by C. R. Barbe, Box 187, Mina, Nev. 89422.

## CONSUMPTION

Domestic gem stone output generally went to rock, mineral, and gem stone collections, objects of art, and jewelry. Apparent consumption of gem stones (domes-

tic production plus imports, minus exports and reexports) was \$423 million, equal to that of 1972.

#### **PRICES**

Prices of all gem stones increased during 1973. Price ranges in February 1973 for first-quality, cut and polished, unmounted gem diamond were as follows: 0.25 carat, \$100 to \$425; 0.5 carat, \$300 to \$1,000; 1

carat, \$700 to \$3,800; 2 carats, \$2,300 to \$12,000; and 3 carats, \$4,100 to \$25,000. The median price for each range in Feb-

<sup>&</sup>lt;sup>6</sup> Mayo, R. Tarbaby Agate. Rocks and Minerals, v. 48, No. 1, January 1973, pp. 63-64.

ruary was 0.25 carat, \$225; 0.5 carat, \$550; 1 carat, \$1,750; 2 carats, \$4,750; and 3 carats, \$9,500. A similar determination of price ranges in June 1973 was 0.25 carat, \$100 to \$450; 0.5 carat, \$300 to \$1,195; 1 carat, \$800 to \$5,000; 2 carats, \$2,200 to \$20,000; and 3 carats, \$4,500 to \$35,000.

The median price for each range in June was 0.25 carat, \$250; 0.5 carat, \$595; 1 carat, \$2,000; 2 carats, \$4,950; 3 carats \$11,950. Price data were not ascertained in the latter part of 1973 because of instability and conflict in international political affairs.

## FOREIGN TRADE

Exports of all gem materials amounted to \$333.1 million, and reexports to \$186.8 million. Diamond comprised 94% of the value of exports and 93% of the value of reexports. U.S. exports of diamond in 1973, on which work was done prior to shipment, amounted to 259,119 carats valued at \$314.2 million. Of this, diamond cut but unset, suitable for gem stones, not over 0.5 carat, was 44,714 carats valued at \$16.7 million; and cut but unset, over 0.5 carat, was 214,405 carats valued at \$297.5 million.

Reexports of diamond, on which no work was done, amounted to 1,467,234 carats valued at \$173.9 million in categories as follows: Rough or uncut, suitable for gem stones, not classified by weight, 1,389,340 carats valued at \$128.3 million; cut but unset, not over 0.5 carat, 35,579 carats valued at \$9.0 million; cut but unset, over 0.5 carat, 42,315 carats valued at \$36.6 million.

The six leading recipients of diamond exports accounted for 92% of the carats and 93% of the value and were as follows: Hong Kong, 69,071 carats valued at \$97.2 million; Switzerland, 59,126 carats valued at \$52.3 million; Japan, 53,592 carats valued at \$51.7 million; the Netherlands, 30,037 carats valued at \$53.9 million; Belgium, 19,878 carats valued at \$30.8 million; and Israel, 7,395 carats valued at \$6.3 million. The six leading recipients of diamond reexports accounted for 94% of the carats and 92% of the value and were as follows: Israel, 636,497 carats valued at \$70.2 million; Belgium, 403,108 carats valued at \$30.7 million; the Netherlands, 194,101 carats valued at \$30.4 million; Switzerland, 124,715 carats valued at \$19.3 million; Japan, 15,874 carats valued at \$5.8 million; and Hong Kong, 9,075 carats valued at \$2.8 million.

Exports of all other gem materials amounted to \$19.0 million. Of this total, pearls, natural and cultured, not set or strung, were valued at \$0.5 million. Natu-

ral precious and semiprecious stones, unset, were valued at \$16.2 million; and synthetic or reconstructed stones, unset, were valued at \$2.3 million. Reexports of all other gem materials amounted to \$12.9 million. Reexports of pearls amounted to \$0.8 million; of natural precious and semiprecious stones, unset, to \$11.6 million; and of synthetic or reconstructed stones, unset, to \$0.5 million.

Imports of gem material from 85 countries and territories increased 31% in value compared with that of 1972. Diamond accounted for 86% of the total value of gem material imports.

Most of the rough and uncut diamond imports were from seven countries, which accounted for 98% of this category as follows: the United Kingdom, 978,553 carats, \$225.8 million; Sierra Leone, 747,000 carats, \$78.9 million; Republic of South Africa, 426,881 carats, \$83.7 million; Venezuela, 296,271 carats, \$9.8 million; Central African Republic, 190,833 carats, \$7.7 million; Belgium-Luxembourg, 68,056 carats, \$16.8 million; and the Netherlands, 55,255 carats, \$22.2 million. Of the imports of diamond, cut and unset, not over 0.5 carat, 89% was supplied by the following eight countries: Belgium-Luxembourg, 1,016,871 \$131.4 million; Israel, 774,090 carats, \$106.6 million; India, 211,061 carats, \$22.8 million; the U.S.S.R., 27,435 carats, \$5.2 million; France, 23,485 carats, \$2.4 million; the United Kingdom, 18,511 carats, \$1.9 million; the Netherlands 15,158 carats, \$1.7 million; the Republic of South Africa, 13,656 carats, \$3.9 million. For diamond, cut and unset, over 0.5 carat, 99% came from the following seven countries: Belgium-Luxembourg, 142,001 carats, \$45.8 million; Israel, 77,944 carats, \$21.6 million; the Republic of South Africa, 10,070 carats, \$8.9 million; the Netherlands, 2,832 carats, \$2.4 million; India, 2,148 carats, \$0.3 million; the U.S.S.R., 1,882 carats, \$0.7 million; and the United Kingdom, 1,683 carats, \$0.5 million.

Imports of emeralds increased 31% in quantity and 47% in value. Of 28 countries supplying natural emeralds to the United States, 10 countries accounted for 97% of the quantity as follows: India, 412,179 carats, \$6.7 million; Brazil, 148,399 carats, \$1.2 million; Colombia, 47,524 carats, \$1.2 million; Hong Kong, 34,196 carats, \$1.0 million; Switzerland, 27,840 carats, \$2.9 million; the United Kingdom, 22,651 carats, \$2.3 million; Israel, 13,771 carats, \$0.6 million; the Netherlands, 9,652 carats, \$0.1 million; West Germany, 9,419 carats, \$0.2 million; and Belgium-Luxembourg, 3,478 carats, \$0.2 million.

Imports of rubies and sapphires increased 47% and came from 30 countries. Eight countries accounted for 90% of the value of rubies and sapphires as follows: Thailand, \$11.7 million; Hong Kong, \$2.5 million; India, \$1.4 million; Switzerland, \$0.7 million; the United Kingdom, \$0.6 million; France, \$0.3 million, and Israel, \$0.2 million.

Natural pearls and parts imported from India were valued at \$260,000. Other leading suppliers of natural pearls and the value of imports were as follows: Italy, \$33,100; Japan, \$28,600; Hong Kong, \$18,500; Switzerland, \$10,500; Burma, \$8,300; and Taiwan, \$5,300. Imports of cultured pearls from Japan were valued at \$8.4 million. Cultured pearls, also imported from Hong Kong were valued at \$231,000; from Burma, \$348,000; from Switzerland, \$101,000; from France, \$38,000; from Thailand, \$22,000; from Italy, \$19,000; from West Germany, \$8,000; and from India, \$8,000.

The imports of imitation pearls decreased two-thirds. Imports from Japan valued at \$1.1 million comprised 85% of the total. Other countries from which imitation pearls were imported included: Spain, \$78,000; Taiwan, \$27,000; Australia, \$7,000; Hong Kong, \$5,000; the Republic of Korea, \$4,000; and West Germany, \$1,000. Smaller values also came from France, Switzerland, and Portugal.

Of 17 countries supplying imitation gem stones to the United States, 6 countries accounted for 78% by value, as follows: Austria, \$4.0 million; West Germany, \$2.8 million; Czechoslovakia, \$0.8 million; Switzerland, \$0.5 million; Japan, \$0.3 million; and Denmark, \$0.1 million.

Synthetic materials, gem-stone quality, cut but not set, and others, decreased about 3% in value. From West Germany, the value of synthetics was \$4.8 million; from Switzerland, \$1.2 million; from Japan, \$1.0 million; from France, \$0.8 million; from Taiwan, \$0.7 million; from Israel, \$0.5 million; from Hong Kong, \$0.4 million; from Belgium-Luxembourg, \$0.3 million; and from Austria, \$0.2 million. These nine countries accounted for 98% of synthetic gem imports.

Table 1.-U.S. imports for consumption of precious and semiprecious gem stones
(Thousand carats and thousand dollars)

| Stones                                  | 19       | 72      | 1973        |          |  |
|-----------------------------------------|----------|---------|-------------|----------|--|
|                                         | Quantity | Value   | Quantity    | Value    |  |
| Diamonds:                               |          |         |             |          |  |
| Rough or uncut                          | 0 000    |         |             |          |  |
|                                         |          | 338,624 | $^{1}2,821$ | 1460,198 |  |
|                                         |          | 288,055 | 2,360       | 360,892  |  |
|                                         | 573      | 22,176  | 749         | 32,600   |  |
| MarcasitesPearls:                       |          | 13,172  | NA          | 19,336   |  |
| Pearls:                                 | NA       | 96      | NA          | 28       |  |
| Natural                                 |          |         |             | -        |  |
| NaturalCultured                         | NA       | 571     | NA          | 368      |  |
| Imitation                               | NA       | 7.615   | ŇĀ          | 9,232    |  |
| Other precious and semiprecious stones: | NA       | 3,707   | ŇĀ          | 1,257    |  |
| Rough and upout                         |          | ,       | 1111        | 1,201    |  |
| Rough and uncut.                        | NA       | 6,210   | NA          | 5,859    |  |
|                                         | NA       | 17,238  | NA          | 25.043   |  |
| Other n.s.p.f.<br>Synthetic:            | NA       | 1,107   | NA<br>NA    | 1.532    |  |
|                                         |          | -,-01   | IVA         | 1,002    |  |
| Cut but unsetnumber_                    | 16,957   | 10,571  | 16,365      | 10 000   |  |
|                                         | NA       | 165     |             | 10,066   |  |
| Imitation gem stones                    | ŇĀ       | 6,829   | NA          | 341      |  |
|                                         | 1411     | 0,829   | NA          | 10,906   |  |
| Total                                   | NA       | 716,136 | NA          | 937.658  |  |

NA Not available.

Adjusted by the Bureau of Mines.

Table 2.-U.S. imports for consumption of diamond (exclusive of industrial diamond), by country

(Thousand carats and thousand dollars)

|      | unset          | Value    | 177,222            | 91                                 | 2,441  | 94            | တ        | 23,099      | 128,204 | 286   | 406     | 4,143       | 40           | 12,833                    | 1,429       | 5,931    | 2,415          | 12        | 1,834 | 360,892   |
|------|----------------|----------|--------------------|------------------------------------|--------|---------------|----------|-------------|---------|-------|---------|-------------|--------------|---------------------------|-------------|----------|----------------|-----------|-------|-----------|
| 7.8  | Cut but unset  | Quantity | 1,159              | -                                  | 24     | -             | Ξ        | 213         | 852     | 27    | Đ       | 18          | Œ            | 24                        | νo          | 30       | 20             | Ξ         | 6     | 2,360     |
| 1978 | or uncut       | Value    | 16,836             | 7 668                              | 169    | 301           | 37       | 221         | 7,838   |       |         | 22,209      |              |                           | 181         | ;        | 225,802        | 688.6     | 1,161 | 2 460,198 |
|      | Rough or uncut | Quantity | (1)                | 191                                | 9      | 7             | Ξ        | £           | 34      | _     | 2       | 55          | 2 747        | 427                       | -           | •        | 979            | 296       | 7     | 22,821    |
|      | t unset        | Value    | 147,392 $321$      | 82                                 | 1,895  | 324           | 9        | 16,507      | 98,316  | 129   | 29      | 2,266       | 324          | 8,286                     | 1,188       | 5,802    | 3,586          | :         | 1,564 | 288,055   |
| 2    | Cut but unset  | Quantity | 1,211              | -                                  | 23     | က             | (E)      | 186         | 208     | -     | Ξ       | 15          | တ            | 27                        | ∞           | 35       | 32             | ;         | 10    | 2,410     |
| 1972 | r uncut        | Value    | 10,706 $26$        | 6 587                              | 1,564  | 31            | 96       | 10          | 5,120   | 1     | 1,611   | 10,948      | 15,593       | 100,029                   | 2.269       |          | 178,659        | 5,118     | 237   | 338,624   |
|      | Rough or uncut | Quantity | (1)                | 207                                | 33     | Ξ             | 63       | 10          | 88      | ;     | က       | 37          | 164          | 953                       | 47          | ;        | 1,302          | 244       | 23    | 3,096     |
|      | unset          | Value    | 113,626            | 69                                 | 2,514  | 210           | 19       | 6,429       | 69, 569 | 203   | 99      | 2,440       | 527          | 6,388                     | 1.156       | 3,324    | 1,366          | :         | 529   | 208,667   |
| 1,   | Cut but unset  | Quantity | 1,036              | - ;                                | 31     | 7             | ;<br>(3) | 9<br>8<br>8 | 671     | 27    | Ξ       | 20          | 4            | 25                        | 11          | 24       | 12             | ;         | 4     | 1,925     |
| 197  | r uncut        | Value    | 9,092<br>129       | 6.785                              | 634    | 121           | 49       | 11          | 3,425   | 33    | 3,797   | 6,190       | 14,331       | 83,389                    | 3,149       | ;        | 118,913        | 4,283     | 255   | 254,575   |
|      | Rough or uncut | Quantity | & <b>€</b>         | 208                                | 21     | -             | -        | ::          | 4.0     | £     | 17      | 31          | 281          | 904                       | 16          | ;        | 947            | 177       | (1)   | 2,742     |
|      | Country        |          | Belgium-Luxembourg | Canada<br>Central African Republic | France | Germany, West | Guyana   | India       | Israel  | Japan | Liberia | Netherlands | Sierra Leone | South Africa, Republic of | Switzerland | U.S.S.R. | United Kingdom | Venezuela | Other | Total     |

<sup>1</sup> Less than ½ unit.
<sup>2</sup> Adjusted by the Bureau of Mines.

Marcasites, cut but not set, and suitable for jewelry were imported from four countries: Israel, \$23,125; Switzerland, \$3,644; Hong Kong, \$850; and the United Kingdom, \$450.

Precious and semiprecious stones, rough and uncut, amounted to \$5.9 million in value of imports. Seven countries accounted for  $9\bar{2}\%$  of the value as follows: Colombia, \$2.4 million; Brazil, \$1.3 million; Australia, \$0.8 million; the United Kingdom, \$0.3 million; the Republic of South Africa, \$0.3 million; Mozambique, \$0.2 million; and Hong Kong, \$0.1 million.

Precious and semiprecious stones, cut but not set, amounted to \$25.0 million. Eleven countries accounted for 94% of the value as follows: Hong Kong, \$9.4 million; Australia, \$3.4 million; Brazil, \$3.1 million; West Germany, \$1.9 million: Iran, \$1.4 million; Taiwan, \$1.4 million; Japan, \$1.0 million; Sri Lanka, \$0.5 million; Mexico, \$0.5 million; India, \$0.5 million; and Switzerland, \$0.5 million.

Coral and cameos, cut but not set, were imported from Italy, \$1.2 million; from Japan, \$0.5 million; and from Taiwan, \$0.3 million. Minor quantities of coral and cameos were also imported from the United Kingdom, France, West Germany, Switzerland, Israel, Singapore, the Philippine Republic, Hong Kong, the People's Republic of China, Australia, and Egypt.

#### **WORLD REVIEW**

Angola.—Companhia de Diamantes de Angola (DIAMANG), the only diamond producer, reported an increase in export value in 1972 of 4% to \$63.4 million owing to an increase in the percentage of gem stones produced.7 The quantity of diamond exported in 1972 decreased 6% to 2.2 million carats. All diamond exports go to metropolitan Portugal. The Consorcio de Diamantes de Angloa, the consortium of DIAMANG and De Beers interests that inherited all but 50,000 square kilometers of DIAMANG's former concession area, continued active exploration. A number of promising kimberlite deposits were found, but no plans were made for immediate exploitation.

Australia.—Large deposits of high-quality nephrite jade were discovered near Cowell, a town in the east coast of Eyre Peninsula, about 125 miles northwest of Adelaide, South Australia.8 A newly formed company, Jade Australia Proprietary Ltd., Adelaide, was reported to have extensive proven reserves.

According to Australian sources, its 300 sapphire mines produce sapphires valued at \$15 million and account for 80% of the world volume of sapphire and 50% of the world sapphire value.9

Botswana.—Development of a second large diamond mine is expected.10 The Government of Botswana and De Beers Botswana Mining Co., discussed development of the DK 1 kimberlite pipe 25 miles southeast of the existing Orapa mine, which currently produces 2.4 million carats worth about \$30 million per year. The mine at DK 1 could be operating within 18 months after agreements are reached.

Burma.—Burma's Ninth Annual Gem, Jade, and Pearl Emporium was held February 19-24, 1973. Jade sold amounted to \$4,307,000; gems, to \$281,000; and pearls, \$1,247,000. The total amounted to \$5,835,000, a record high. The increase was due primarily to rising world prices of jade rather than an increase in the quantity of jade, or gems, or pearls. Attendance was by 12 countries, 151 firms, and 219 persons. Hong Kong buyers took 119 lots of jade out of the 156 lots sold. The People's Republic of China delegation bought 27 lots of jade, and Japanese buyers bought 9 lots. One bidder from the United States bought one lot of jade. Neither gems nor pearls were bought by U.S. bidders. Motivated by the success of the Ninth Emporium, the Government held a special emporium in August 1973 for jade and pearls, omitting gem stones. At the special emporium, jade sales amounted to \$5.3 million. Hong Kong dealers monopolized the buying of jade, accounting for 72 lots of the 81 sold. Burmese authorities assert that reserves of jadeite are adequate

<sup>7</sup> U.S. Bureau of Mines. Angola. Mineral Trade Notes, v. 70, No. 8, August 1978, pp. 8-9. 8 Stone, J. Massive Jade Discovery in South Australia. Calif. Min. J., v. 42, No. 11, July

<sup>1973,</sup> p. 24.

<sup>9</sup> Jewelers' Circular-Keystone. Briefly. Australia Becomes a Major Source of Sapphires. V. 64, No. 3, December 1973, p. 97.

<sup>10</sup> Engineering and Mining Journal. In Africa. Botswana. V. 174, No. 12, December 1973, p. 1977.

and that prospects are good for locating additional deposits.

Canada.—Pacific Jade Industries, operators of all nephrite jade mines near Ogden Mountain, British Columbia, reported 1972 jade sales of nearly \$200,000, over half of which was sold to the People's Republic of China.11 Exports to other countries included West Germany, Hong Kong, Singapore, and Japan. The most precious jade is generally apple-green in color, translucent, free of flaws, and free of color variations. Variations in color can be almost white or black and all shades of green in between. The value of jade sold ranged from \$1 to \$30 per pound, averaging about \$3.30 per pound. In addition to selling crude jade, Pacific Industries also marketed finished pieces ranging from inkstands and paper weights to works of art.

Republic.—Cominco, African Central Ltd., a Canadian company and Diamond Distributors, Inc., of New York formed a new company, Société Centraficaine d' Exploitation Diamantifere, to conduct diamond mining and exploration in the Central African Republic.12 Cominco, which has the majority interest, will manage the new company and provide technical direction; Diamond Distributors, Inc., will be responsible for marketing. In the Central African Republic, 60% of the amount of diamond recovered is from the Upper Sangha (Carnot, Berberati, and Nola regions); the remainder is from the north-(Bamingui-Bangoran) and (Haute-Kotte) areas.13 About 45,000 workers were employed in 1973 to gather diamond from alluvial deposits.

Colombia.—The Government-owned emerald mines at Muzo, Coscuez, and Peña Blanca were closed in July 1973 and the operations landfilled to conserve the unmined emeralds. The emerald mine areas were placed under Colombian Army control. Negotiations were underway between the Ministry of Mines and private operators to arrange the reopening of the mines. The amount of security to be exercised by the Army to protect the operations was an important item. The export of emeralds accounted for more than half of the value of mineral exports from Colombia up to the time of the mine closures.

Israel.—The growth in the imports and exports of gem stones, particularly diamond, has been explosive. The main reasons have been the continual turmoil in exchange rates, and worldwide inflation. People are actively seeking a reliable item of value and a hedge against inflation. Gem stones, most of all diamond, fill the need. The following tabulation indicates the growth pattern: 14

| Year | Net import<br>gem di                | ts of rough<br>amond   | Net exports of polished diamond     |                                           |  |
|------|-------------------------------------|------------------------|-------------------------------------|-------------------------------------------|--|
|      | Carats<br>3,624,027                 | Value<br>\$154,361,873 | Carats<br>1,501,265                 | Value<br>\$202,040,738                    |  |
| 1970 | 5,292,715<br>6,176,605<br>6,587,698 | 224,065,256            | 1,874,685<br>2,296,829<br>2,445,092 | 265,269,576<br>385,691,783<br>556,754,004 |  |

The value of diamond exports to the United States increased 78% from \$74 million in 1971 to \$132 million in 1973; however, the share of the exports to the United States decreased from 28% in 1971 to 24% in 1973. After the United States, Japan, Hong Kong, the Netherlands, Switzerland, Belgium, and West Germany, in that order, were the major recipients of diamond exports for 1971 through 1973. In September 1973, diamond enterprises numbered 649 and the employees numbered 9,857.

Lesotho .- As part of a continuing effort by the Lesotho National Development Corp. (LNDC) to revive commercial interest in diamond mining, De Beers Consolidated Mines, Ltd., was granted permission to conduct a 6-month evaluation of the Letseng-la-Terai diamond pipe in the Mokhotlong District.15 This site was abandoned by Rio Tinto Zinc Corp. in 1972,

<sup>11</sup> Fish, R. H. East and West Meet at B. C. Jade Mine. Northern Miner, v. 59, No. 37, Nov. 29, 1973, p. 44.

12 Northern Miner (Toronto). Cominco to

<sup>29, 1973,</sup> p. 44.

12 Northern Miner (Toronto). Cominco to Mine Diamonds in Central African Republic. V. 59, No. 37, Nov. 29, 1973, p. 32.

13 Translations on Africa. Central African Republic. 1972 Mining Statistics Show Diamond Production Recovering. JPRS July 23, 1973. No.

<sup>1340.</sup> p. 1.

14 Israel, State of. Annual Report for the Year
1973. Ministry of Commerce & Industry, Diamond
Department, February 1974, 27 pp.

15 U.S. Bureau of Mines. Diamond: Lesotho.
Mineral Trade Notes, v. 70, No. 9, September
1072 p.

<sup>1973,</sup> p. 5.

and Newmont Mining Corp. cancelled a similar effort earlier this year at Kao in the Butha Buthe District. However, subsequent evaluations made of the stones in those areas have shown the diamond to be of higher value than originally appraised.

Sierra Leone.-Diamond exports continued to be the main source of revenue for Sierra Leone for 1972 and 1973. World prices which began rising in 1972 were still rising in 1973. The National Diamond Mining Corp. (DIMINCO) increased its work force to recover as much diamond as possible from its alluvial deposits. Diamond production was not tied to longterm price contracts as were other minerals, therefore revenue to the Government of Sierra Leone increased as diamond prices increased.

Sri Lanka.—The State Gem Corp., a Government-owned company, introduced an incentive program to encourage marketing of privately held gem materials. The incentive program was so successful that receipts to the Government increased more than twentyfold for the period January-July 1973 compared with those of the similar period in 1972. Many lovely gem stones are produced in Sri Lanka, but worldwide high prices applied at the source by the State Gem Corp. discouraged buyers from the United States.16

South Africa, Republic of.-The Central Selling Organization reported 1973 diamond sales of \$1,290 million, an increase

Table 3.-Diamond (natural): World production, by country 1 (Thousand carats)

| Country                                 |                       | 1971                                             |                                   |                    | 1972                                             |                         |                      | 1973 р                                                |                            |  |  |
|-----------------------------------------|-----------------------|--------------------------------------------------|-----------------------------------|--------------------|--------------------------------------------------|-------------------------|----------------------|-------------------------------------------------------|----------------------------|--|--|
|                                         | Gem                   | Indus-<br>trial                                  | Total                             | Gem                | Indus-<br>trial                                  | Total                   | Gem                  | Indus-<br>trial                                       | Total                      |  |  |
| Africa:                                 |                       |                                                  |                                   |                    |                                                  |                         |                      |                                                       |                            |  |  |
| Angola<br>Botswana<br>Central African   | 82                    | 740                                              | $^{2,413}_{822}$                  | 1,616<br>360       |                                                  | 2,155<br>2,403          |                      | 531<br>2,054                                          | 2,125<br>2,416             |  |  |
| Republic<br>Ghana<br>Guinea e           | r 304<br>256<br>22    | r 164<br>2,306<br>52                             | r 468<br>2,562<br>74              | 346<br>266<br>25   | 178<br>2,393<br>55                               | 524<br>2,659<br>80      | 251<br>232<br>25     | $^{129}_{2,085}$                                      | 380<br>2,317               |  |  |
| Ivory Coast<br>Lesotho 2                | 130<br>1              | 196<br>6                                         | 326<br>7                          | $1\overline{34}$   | 200<br>8                                         | 334                     | 120                  | 55<br>180                                             | 80<br><b>30</b> 0          |  |  |
| Sierra Leone                            | ³ 532<br>r 778        | ³ 277<br>r 1,168                                 | ³ 809<br>r 1,946                  | 3 414<br>720       | 3 350<br>1,080                                   | 9<br>3 764<br>1,800     | 450<br>4670          | 9<br>370<br>41,000                                    | * 10<br>* 820<br>* 4 1,670 |  |  |
| South Africa, Republic of:              |                       |                                                  |                                   |                    |                                                  |                         |                      |                                                       |                            |  |  |
| Premier mine<br>Other de Beers          | 609                   | 1,828                                            | 2,437                             | 613                | 1,841                                            | 2,454                   | 625                  | 1,876                                                 | 2,501                      |  |  |
| Co. 5<br>Other                          | 2,162<br>398          | 1,769<br>265                                     | 3,931<br>663                      | 2,289<br>468       | $^{1,872}_{312}$                                 | 4,161<br>780            | 2,368<br>455         | 1,938<br>303                                          | 4,306<br>758               |  |  |
| TotalSouth West Africa,                 | 3,169                 | 3,862                                            | 7,031                             | 3,370              | 4,025                                            | 7,395                   | 3,448                | 4,117                                                 | 7,565                      |  |  |
| Territory of Tanzania Zaire ther areas: | 1,566<br>419<br>1,274 | 82<br>418<br>11,469                              | 1,648<br>837<br>12,743            | $^{1,516}_{4326}$  | 80<br>4 325<br>12,051                            | 1,596<br>4651<br>13,390 | 1,520 $290$ $1,294$  | 80<br>290                                             | 1,600<br>° 580             |  |  |
| Brazil                                  | 150                   | 150                                              | 300                               | 155                | 155                                              | 310                     | 1,294                | 11,646<br>160                                         | 12,940                     |  |  |
| Guyana<br>India                         | 19<br>16              | 29<br>3                                          | 48<br>19                          | 20<br>17           | 29<br>3                                          | 49<br>20                | 21<br>18             | 31                                                    | 320<br>• 52                |  |  |
| Indonesia e<br>U.S.S.R.e<br>Venezuela   | $12 \\ 1,800 \\ 114$  | $\begin{array}{c} 3 \\ 7,000 \\ 385 \end{array}$ | $\substack{ 15 \\ 8,800 \\ 499 }$ | 12<br>1,850<br>141 | $\begin{array}{c} 3 \\ 7,350 \\ 315 \end{array}$ | 15<br>9,200<br>456      | $12 \\ 1,900 \\ 241$ | $\begin{array}{c} 3 \\ 3 \\ 7,600 \\ 537 \end{array}$ | 21<br>15<br>9,500<br>778   |  |  |
| World totalr                            | 12,454                | 28,913                                           | 41,367                            | 12,628             | 31,182                                           | 43,810                  | 12,609               | 30,880                                                | 43,489                     |  |  |

reexported.

Reports for year ending August 31 of that stated.

<sup>16</sup> Pough, F. H. Ceylon: Island of Gems. Jewelers' Circular-Keystone, v. 144, No. 5, February 1974, pp. 77-79.

e Estimate. P Preliminary. Revised.

¹ Total (gem plus industrial) diamond output for each country is actually reported except where indicated to be an estimate by footnote. In contrast, the detailed separate reporting of gem diamond and industrial diamond represents Bureau of Mines estimates in the case of all countries except Lesotho (1971 and 1972), Liberia mated distribution of total output between gem and industrial diamond is conjectural in the case of a number of countries, based on unofficial information of varying reliability.

² Exports of diamond originating in Lesotho; excludes stones imported for cutting and subsequently reexported.

<sup>&</sup>lt;sup>5</sup> All company output from the Republic of South Africa except for that from the Premier mine; also excludes company output from the Territory of South West Africa and from Botswana.

555 GEM STONES

of 40% over those of 1972. No breakdown of quantity of gem stones or value of gem stones versus the quantity and value of industrial stones was given. De Beers suspended operations at some mines in favor of operations at other mines to adjust production to meet demand.17 Consumer demand worldwide in 1973 was mostly for 1.0 carat stones and resulted in a surplus of small stones weighing less than 1/4 carat. A marketing program was developed for use of smaller stones to accentuate other gem stones in jewelry settings.

Zaire.—On November 30, 1973, the Government of Zaire announced that companies formerly operated by a Belgian group, FORMINIERE, would be taken over 100%. Included in this group was the diamond mine of the Société Minière de Bakwanga (MIBA) located at Mbuji Mayi, East Kasai Region. The MIBA mine produces over 12 million carats of diamond annually, nearly all industrial diamond, and is a major foreign exchange earner for Zaire. MIBA employed about 4,000 workers in East Kasai in 1973.

## **TECHNOLOGY**

The Diamond Grading Laboratory, London, England, developed a method for positive identification of individual diamond gems.18 The method utilizes the range of color in diamond, approximately 1,000 hues, and the characteristics of flaws and inclusions commonly found in all diamond. A full "fingerprint" dossier, including a color photograph, was recommended for all stones 1 carat and over, for an approximate cost of \$75 each.

Another utilization of diamond characteristics was developed for identifying the source, or area in the world, from which a diamond came. The De Beers Diamond Research Center, Johannesburg, Republic of South Africa, compiled a set of 150,000 physical observations of diamond from various parts of the world for use in establishing the identifying traits.19

Geologists have believed that high pressures and temperatures were necessary for the growth of diamond. Laboratory efforts using high pressure and temperatures were proven successful, first by General Electric Co. research workers and subsequently by many others. However, a review of all available data disclosed that other conditions may foster the growth of diamond.20 Information gained from patent literature and from laboratory experiments was used to present a new theory on the growth of both natural and synthetic diamond. According to the theory, the essential requirement is a set of conditions that will provide a source of individual carbon atoms that exist in excited states. This theory attempts to explain why diamond is not present in the lower regions of kimberlite pipes, and why some kimberlite pipes have no diamond present. Although

high pressure and high temperature used by the earlier experimenters provided a set of conditions that presented carbon atoms in an excited state, the passage of an electric current in the presence of catalytic contaminants was needed to complete the transformation to diamond.

Nephrite jade has a hardness of 61/2 on the Mohs' scale and jadeite jade has a hardness of 7. However, the hardness is not an indication of the toughness, or the resistance to breakage. In addition to the two jades, a number of minerals were measured for relative toughness even though no widely accepted scale exists.21 For comparison, carbonado diamond was found to be the toughest mineral. Of all other natural minerals, nephrite jade measured highest in resistance to breakage, and jadeite was ranked next, a sequence which is the reverse of their accepted relative hardness. In fact, the two jades exceeded most commercially available ceramics. Only ultrahigh strength, hot-pressed oxides and nitrides used for cutting tools and turbine vanes exceeded the two jades

The most attractive of current imitation diamonds is a well-made doublet

727–732.

<sup>17</sup> Forbes. De Beers. V. 112, No. 2, July 15, 1973, pp. 62-64.

18 Black, S. Diamond: Position Secure As Queen of the Gems. The Financial Times, London. No. 25,968, Feb. 7, 1973, pp. 18-19.

19 De Beers Consolidated Mines Limited. 1973 Annual Report. P. 23.

20 Wilson, W. D. On the Growth of Diamond, Part I-A-Modern Theory. Lapidary J., v. 27, No. 6, September 1973, pp. 982-984. On the Growth of Diamond, Part II-Growth of Diamond at Low Pressure. Lapidary J., v. 27, No. 7, October 1973, pp. 1096-1098.

21 Bradt, R. C., J. V. Biggers, and R. C. Newnham. The Toughness of Jade. Am. Mineralogist, v. 58, Nos. 7-8, July-August 1973, pp. 727-732.

combines the virtues of two synthetics.22 A sapphire crown provides durability to the exposed area, and a strontium titanate pavillion provides fire and brilliance. The juncture may be at the girdle or it may be just below the girdle. The plastic cement used to join the crown and pavillion is resistant to almost anything likely to be encountered except steam cleaning.

All phases of faceting require equipment to be properly prepared and also require a skillful artisan. The proper procedure for dopping gems for facet cutting was described for a variety of minerals.23

The term "cameo" applies particularly to a stone, shell, glass or other hard substance upon which a design has been carved. A comparison was made of meth-

ods used to carve antique cameos and current methods are thoroughly illustrated by examples in color photography 24

Pierre Gilson, one of the leading producers of synthetic emeralds, submitted a 3.5-carat synthetic black opal to the Gemological Institute of America examination.25 The specimen was scribed as "absolutely beautiful." The representatives of Gilson claimed that stones as large as 20 carats may be available in the future.

<sup>&</sup>lt;sup>22</sup> Pough, F. H. The Simulated Diamond Story <sup>22</sup> Pough, F. H. The Simulated Diamond Story. Jewelers' Circular-Keystone, v. 163, No. 10, July 1973, pp. 146, 162–170.

<sup>23</sup> Grieger, J. Faceting Know-How. Grieger J., v. 1, No. 2, May 1973, pp. 1, 11.

<sup>24</sup> Williams, J. D. Cameos. Miner. Digest, v. 2, 2d. Quarter, 1973, pp. 42–51.

<sup>25</sup> Jewelers' Circular-Keystone. Gilson's New Triumph. V. 144, No. 2, November 1973, p. 91.

# Gold

## By J. M. West 1

Gold reached a record selling price on U.S. markets of \$126.45 per troy ounce about midyear 1973. The price might have been even higher but was held to that level by Federal Government ceilings imposed as a part of economic control measures. From the beginning of the year to yearend gold prices rose \$47.20 per ounce, and the average price for the year was up 67%. The official gold price was increased from \$38 to \$42.22 per ounce by Public Law 93-110, enacted September 21, 1973; however, no gold was exchanged at official prices and U.S. official gold reserves remained at the same quantitative level throughout the year.

Domestic gold production during 1973 declined for the third straight year, dropping 20% to 1.18 million ounces. The leading four producers, Homestake Mining Co., Kennecott Copper Corp., Carlin Gold Mining Co., and Cortez Gold Mines, accounted for nearly 75% of all U.S. gold production. Of the four, Homestake Mining operated the only underground mine; the others were open pit. Virtually all of the Kennecott gold was a copper refinery byproduct from ores of its Utah Copper Division mine (Bingham pit). The Carlin and Cortez operations in Nevada produced gold from ores in part carbonaceous, and containing "submicron" gold particles. At most gold-producing mines the gold was a byproduct. Of the 25 leading mines, 19 were mined principally for metals other than gold. The other six mines were operated for gold alone; of these, five were classified as lode-gold or gold-silver mines, and one was a placer operation in Alaska. The leading gold producers were located in nine Western States: South Dakota, Utah, Nevada, Arizona, Colorado, Washington, Montana, New Mexico, and Alaska. Minor production also came from California, Idaho, Oregon, and Tennessee.

Consumption of gold in the United States declined 8% in 1973, with jewelry and arts accounting for 52% of the total consumed. The quantity of net imports dropped 82%; however, an additional source of industry supply was established through the sale of foreign stocks on deposit at the Federal Reserve Bank in New York, and 25% of consumption came from this source during the year. Industry stocks rose 2% during the year.

World gold output declined again in 1973, dropping 3.7% to 43 million ounces. The Republic of South Africa supplied 64% of the world production, about the same proportion as in 1972. The U.S.S.R. ranked second in production and supplied 16% of the world's output, several percent higher than in 1972. Canada and the United States were third and fourth in order. Past and future world demands for gold were reviewed, and higher gold prices were predicted.2

Legislation and Government Programs.-A bill devaluing the dollar by 10% in terms of gold was signed into law September 21, 1973 (Public Law 93-110). The devaluation increased the value of gold reserves in the Treasury by 11.11% to \$42.22 per ounce. Included in the bill was a provision giving the President discretion to eliminate regulations on private ownership of gold when this would not adversely affect the U.S. international monetary position. The International Monetary Fund (IMF) was notified of the U.S. devaluation effective at 12:01 a.m., October 18, 1973.

The Office of Domestic Gold and Silver Operations, Department of the Treasury, issued the following notice pertaining to gold coins, effective December 17, 1973:

All foreign gold coins minted 1934 through 1959, if genuine and of legal issue, are now considered to be of such

<sup>&</sup>lt;sup>1</sup> Physical scientist, Division of Nonferrous

Metals—Mineral Supply.

<sup>2</sup> Van Tassel, R. C., and C. Michalopoulos. The Commercial Demand For Gold in the Rest of the World. Min. Eng., v. 26, No. 3, March 1974, pp. 28–32.

Table 1.-Salient gold statistics

|                                                                             | 1969     | 1970     | 1971             | 1972     | 1973         |
|-----------------------------------------------------------------------------|----------|----------|------------------|----------|--------------|
| Jnited States:                                                              |          | -        |                  |          |              |
| Mine productionthousand troy ounces                                         | 1.733    | 1 7/12   | 1 405            | 1 450    |              |
|                                                                             | \$71,944 | \$63,439 | \$61,673         | 1,450    |              |
| Ore (dry and siliceous) produced:                                           | **-,011  | 400,400  | φ <b>01,01</b> 3 | \$84,967 | \$115,000    |
| Gold orethousand short tons                                                 | 3,393    | r 3 687  | F 2 471          | r 3,316  | 4 577        |
| Gold-silver oredo                                                           | 208      | r 214    | r 167            |          | 4,715<br>124 |
| Sliver ore do                                                               | 655      |          | 574              | r 355    | 370          |
| rercentage derived from—                                                    |          |          | 0.12             | - 555    | 910          |
| Dry and siliceous ores                                                      | 59       | r 61     | 60               | 58       | 52           |
| base-metal ores                                                             | 40       | r 37     | 39               | 41       | 47           |
| Placers                                                                     | 1        | 2        | î                | î        | 1            |
| Refinery production 1thousand troy ounces                                   | 1,717    | NA       | NĀ               |          | 1,322        |
| Exports <sup>2</sup> do<br>Imports, general <sup>2</sup> do                 | 338      | 1,074    | 1.339            |          | 2,985        |
| Stocks Dec. 31:                                                             | 5,861    | 6,652    | 7,201            |          | 3,845        |
| Monotany 3                                                                  |          |          |                  |          | 0,010        |
| Monetary 3millions_                                                         |          |          |                  | \$10,487 | \$11,652     |
| Industrialthousand troy ounces_<br>Consumption in industry and the artsdo   | 4,158    |          | 4,375            | 4 407    | 4,498        |
| Price 4 average per troy ounce                                              | 7,109    | 5,973    | 6,933            | 7,285    | 6,729        |
| orld:                                                                       | \$41.51  | \$36.41  | \$41.25          | \$58.60  | \$97.81      |
|                                                                             | 40.010   | 45 500   |                  |          |              |
| Productionthousand troy ounces_<br>Official reserves <sup>5</sup> millions_ | 46,612   | 47,522   | r 46,495         | r 44,718 | 43,070       |
| Teservesmillions                                                            | \$41,010 | \$41,275 | \$44,742         | \$45,000 | \$49,850     |

<sup>1</sup> From domestic ores—U.S. Department or the Treasury.
2 Excludes coinage.
3 Includes gold in Exchange Stabilization Fund.
4 Engelhard selling quotations.
5 Held by free world central banks and governments; gold valued at \$35 per troy ounce in 1969-70, \$38 per ounce in 1971-72, and \$42.22 per ounce in 1973.

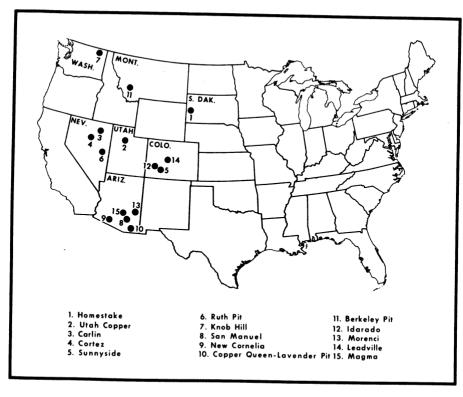



Figure 1.-Major U.S. gold-producing mines.

r Revised. NA Not available.

1 From domestic ores—U.S. Department of the Treasury.

559 GOLD

recognized special value to collectors of rare and unusual coins as to warrant the issuance of a general license for their importation into the United States under section 54.20(e) of the Gold Regulations for numismatic purposes. Genuine gold coins minted prior to 1934 may be imported without a license under section 54.20(d). As provided in section 54.20(e) of the Gold Regulations, modern gold coins minted after 1959 will continue to be prohibited importation into the United States and such coins may not be held outside the United States by persons subject to U.S. jurisdiction.

Under section 54.24(b)3(ii) of the Gold Regulations, gold coins made subsequent to 1933 may be exported from the United States only under license of form TGL-11 issued by the Director, Office of Domestic

Gold and Silver Operations.

Gold coins contained in jewelry items are subject to the same regulations which govern the importation/exportation of unmounted gold coins.

Domestic selling prices for gold were frozen on June 13, 1973, and the ceilings established were to be effective for a maximum of 2 months. A base period of June 1-8, 1973, was selected and the ceiling established for each company was at the highest price level at which 10% or more of its sales were made during the base period. The general price freeze lasted through August 13. Controls were also placed on gold products but these were later modified in specific instances by the Cost of Living Council so increased material costs could be passed on to buyers by fabricators who were caught in the middle of the cost-price squeeze.

On November 13, 1973, the two-tier gold price system was terminated by consensus of officials of the seven nations that had initiated the system March 17, 1968. Under the system, the United States and six other nations (the London Gold Pool) had agreed not to sell reserve gold to private parties, nor to buy gold directly from the Republic of South Africa or on the free market. In December, following the system's termination, the IMF and the Republic of South Africa terminated a 1969 gold agreement whereby the IMF would purchase gold from South Africa whenever the price fell below the \$35 per ounce official level or whenever South Africa had a payments deficit. No gold had been purchased under the agreement since August 1971.

The Office of Minerals Exploration (OME), U.S. Geological Survey, continued its program of participitory loans for gold exploration covering up to 75% of approved costs. A small number of active contracts were in effect in several Western States.

# DOMESTIC PRODUCTION

The drop in domestic gold output during 1973 resulted largely from a phaseout of production at the Cortez mine, Lander County, Nev., the mining of lower grade ores and a 20-day strike at the Carlin mine, Eureka County, Nev., and the mining of lower grade ores at the Homestake mine in Lead, S. Dak. Despite the reduced outputs, gold mining operations were generally more profitable owing to the sharp rise in gold prices during the year. Utah production was down mainly because the Mayflower mine, in the Park City district of Utah, had ceased operations the year before. In Washington, production was lower because the Knob Hill mine produced less from declining reserves. The Knob Hill mine with its 250-ton-per-day mill was expected to close about the end of 1975 unless additional exploration was productive.3 In Alaska expansions were underway and a revival of gold mining was predicted.4 Standard Metals Corp. increased ore reserves by core drilling at its Silverton mine in Colorado.<sup>5</sup> Exploration and development activities were reported at a number of California mines.6 The Cripple Creek, Colorado, district, one of the large past producers of gold, was undergoing renewed development.7

Of the total domestic gold produced in 1973, the top 4 producers provided 75% and the 25 leading producers supplied 98%. Placer production accounted for only about 1% as before. Approximately 47% of pro-

296-298.

7 World Mining. Cripple Creek's Golden Glamour. V. 26, No. 5, May 1973, pp. 46-48.

<sup>3</sup> Mining Record (Denver). Higher Gold Prices Increase Life of Washington Gold Mine. V. 84, No. 26, June 27, 1973, p. 5.

4 — Gold Mining Revival Foreseen in Alaska. V. 84, No. 19, May 9, 1973, p. 2.

5 American Metal Market. Standard Metals' Reserves Bolstered With Discovery of New Silverton Ore. V. 81, No. 14, Jan. 14, 1974, p. 30.

6 California Division of Mines and Geology. Gold Mines—Activity Reported in 1972-1973, Calif. Geol., v. 26, No. 12, December 1973, pp. 296-298.

duction was a byproduct of mining for other metals. An estimated 1.8 million ounces of secondary gold was treated by refiners, compared with 2.1 million ounces in 1972. Among the largest gold refiners were American Metal Climax, Inc., which reported refinery output of 820,000 ounces in 1973, slightly lower than in 1972, and Kennecott Copper Corp. with 342,284 ounces refined in 1973 versus 350,080 ounces in 1972.

At the Homestake Mining Co. operations, production dropped 12% to 357,634 ounces in 1973. The average price received on sales was \$93.36 per ounce, 65% higher than in 1972. The average recovered grade was 0.227 ounce per ton in 1973, compared with 0.278 ounce in 1972, an 18% drop. A total of 1.57 million tons of ore was milled, up 7%; revenues from gold sales, which included gold purchased for resale, were \$52.05 million, 55% higher than in 1972. Metallurgical recovery improved following startup of a new "charcoal-in-pulp" treatment plant for handling the slime fraction of the ground ore; recovery averaged 93.63%for the year, and reached 94.6% in December. A shortage of skilled miners continued to hamper production. A contract was let to sink the new No. 7 winze and deepen the No. 8 shaft from the 7,200- to the 8,000foot level. A major crosscut was being

driven on the 5,300-foot level to explore new ground. Several large-tonnage blasthole stopes were prepared for extraction of lower grade ore. This mining method dilutes the ore but provides greater tonnage per manshift. Ore reserves were estimated at 9.05 million tons proven, averaging 0.249 ounce per ton, a 24% increase in tonnage but a 17% decrease in grade from 1972. Proven reserves included 1.89 million tons averaging 0.148 ounce per ton in blasthole stopes. Additional reserves totaled 6.8 million tons at a grade slightly over 0.3 ounce per ton.

The Carlin mine, Eureka County, Nev., produced 150,000 ounces of gold, compared with 194,000 ounces in 1972, a 23% decline. Sales were valued at \$15.0 million, compared with \$11.7 million in 1972. Despite less production, net income from the Carlin operations rose 47% to nearly \$5.7 million. Waste removal began at the Bootstrap property, where about 50,000 tons of low-grade ore was stockpiled for heap leaching. Other ores were stockpiled to haul to the Carlin mill, 12 miles away. Five miles from the mill the Blue Star property was being drilled. Reserves at the two properties totaled 1.9 million tons, averaging 0.14 ounce per ton. At the Carlin mine reserves amounted to 2.4 million tons averaging 0.319 ounce per ton at the end of 1973. Exploration of areas surrounding the open pit workings and at depth was continuing.

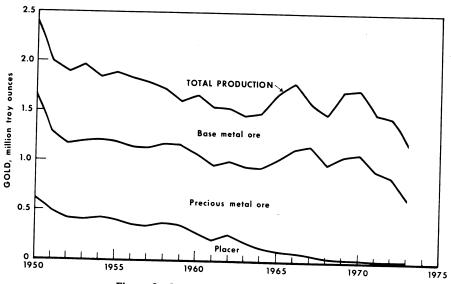



Figure 2.-Sources of U.S. gold production.

561 GOLD

At the Cortez mine, Lander County, Nev., mill throughput declined 5% to 762,500 tons in 1973. Production dropped 60% to 75,700 ounces of gold, compared with 190,-600 ounces in 1972. The average grade of ore milled dropped to 0.109 ounce per ton, compared with 0.214 ounce in 1972, and 85.6% of the gold was recovered. Milling of ore from the nearby Gold Acres property began at the Cortez mill in April, and 643,400 tons of ore, over half of the property's reserves, were treated before yearend. The balance of the mill feed came from marginal ores in the Cortez mine. Also in 1973 1.16 million tons of low-grade ores were added to heap leach piles, compared with 0.82 million tons placed in 1972. Gold (included in totals) produced from heap leaching amounted to 10,300 ounces, compared with 37,600 ounces in 1972. At yearend, 1.09 million tons was under leach treatment (which began in October) at the Gold Acres property. Gold Acres was expected to be mined out by the end of 1974.

UV Industries, Inc., formed a new subsidiary, Alaska Gold Co., to manage its gold properties in Alaska and Arizona. During 1973 the firm operated a gold dredge at Hogatza, Alaska, and tested new drilling equipment for thawing operations at Nome, Alaska. From 1974 to 1976, it was planned to activate two dredges in the Nome area where extensive reserves were believed to exist.

The Golden Cycle Gold Corp. continued exploration of its properties and rehabilitation of its 1,000-ton-per-day mill in the Cripple Creek district of Colorado. The mill was last operated in early 1962. According to plans, local dump tailings would be milled pending the start of deep mining scheduled in 1975. Standard Metals Corp. operated its 700-ton-per-day mill at Silverton, Colo., on three shifts and remained Colorado's largest gold producer. About 40% to 45% of its smelter returns were in gold in 1973, and its Sunnyside mine reserves were adequate for 4 to 5 additional years. Many other gold mines throughout the West were explored during the year in anticipation of reopening.

## CONSUMPTION AND USES

Domestic consumption of gold, as reported by the Office of Domestic Gold and Silver Operations, U.S. Department of the Treasury, declined 8% to 6.7 million ounces in 1973. Consumption in 1973, according to surveys of fabricators of industrial and other products, was divided, as follows, in thousand ounces (with 1972 figures for comparison): Jewelry and arts, 3,473 (4,344); dental, 679 (750); and industrial, including space and defense, 2,577 (2,191). Increases in the last category were attributed to growing electrical and electronic consumption, which comprises the bulk of this category. Jewelry and dental uses were down owing to consumer resistance to higher gold prices, which were passed on in product prices. Figure 3 shows consumption trends in recent years.

In a study done for the Federal Bureau of Mines, an assessment was made of how much gold would be required for U.S. industry through 1978 based on a variety of data for past years.8 A general downtrend in consumption was forecast at gold prices of \$70 and over per ounce. During 1973, demand for gold coins increased sharply, and supplies in the hands of coin dealers fell short. U.S. coin buyers continued to be limited by Treasury regulations governing purchases, although rules were eased, as noted under Legislation and Government Programs. Purchases of gold coins in 1973 were estimated to have reached a value of \$125 million.

In product development, more efficient use of gold was obtained with a clad strip in the form of a tape, which could be attached or welded to electrical contacts.9 A gold-clad wire was also developed for electrical use utilizing a molecular bonding technique. Growing use of electroplated gold and other precious metal contacts was cited. Several new low-alloy gold electroplating processes were introduced for use on printed circuit boards, contacts, switches,

S Van Tassel, R. C., and C. Michalopoulos. The Commercial Demand For Gold in the United States. BuMines Open File Rept., 1973, 63 pp., available for consultation at the Bureau of Mines Library at Pittsburgh, Pa., Denver, Colo., Spokane, Wash., and Juneau, Alaska; at the Central Library, U.S. Department of the Interior, Washington, D.C. and from National Technical Information Service (NTIS), Springfield, Va., PB 224 789/AS.

9 Lyman, S. V. V. How Precious Metals Cut Contact, Conductor Costs. Am. Metal Market, v. 80, No. 206, Oct. 24, 1973, pp. 1A-7A.

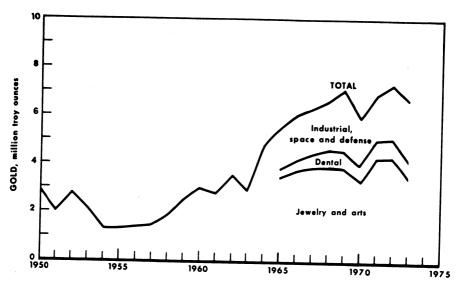



Figure 3.-Gold consumption in the United States.

and electronic parts.10 In the electronics industry, bright tin, tin-nickel, and palladium were considered as substitutes for gold; however, the high cost of adapting processes keyed to gold was said to be keeping immediate customer interest in substituting less costly materials relatively low.11 It was estimated that bright tin would be used increasingly in connectors, possibly replacing 10% of the gold being used for this specific purpose.12 Research efforts of process vendors were said to be directed to developing suitable alloys of 60% to 80% gold combined with copper, cadmium, nickel, and silver. The jewelry industry was said to have used some of the new alloys extensively. One company spokesman did not expect higher gold prices to have a significant impact on the semiconductor industry, the largest single consumer of gold salts, owing to conservation steps underway.13

Particularly useful to the jewelry industry was a new series of acid gold-plating solutions which were said to give unvarying reproducibility of color. Also, an electroless process for gold-plating over a variety of substrates was developed for use in the

electronics industry.<sup>15</sup> Statues were gilded with a new "brush" electroplating technique,<sup>16</sup> thoria added to gold and platinum gave a superior product for high-temperature electrial uses,<sup>17</sup> and gold was readily mounted on a new vitreous carbon used in dentistry for tooth implants.<sup>18</sup>

<sup>&</sup>lt;sup>10</sup> Secondary Raw Materials. Sel-Rex Announces Two New Low-Alloy Gold Electroplating Processes. V. 11, No. 12, December 1973, p. 146.

<sup>&</sup>lt;sup>11</sup> Bence, B. '73 Gold Usage for Parts Plating to Equal '69—Sylvania Peak Year. Am. Metal Market, v. 80, No. 236, Dec. 6, 1973, pp. 1, 5.

<sup>12</sup> Patton, D. Donaldson, Wallace Give Forum a 14-Karat Gold Assay: GTE Sylvania Official Says Use in Electronics Will Decline. Am. Metal Market, v. 80, No. 232, Nov. 30, 1973, pp. 1, 7.

<sup>&</sup>lt;sup>13</sup> American Metal Market. Lea-Ronal's Gold Rush Is Conservative. V. 80, No. 121, June 21, 1973, p. 12.

<sup>14</sup> \_\_\_\_\_. New Series of Acid Gold Plating "Baths." V. 80, No. 247, Dec. 21, 1973, p. 10.

Engelhard Develops Goldplating Process That's Electroless. V. 80, No. 230, Nov. 28, 1973, p. 12.

<sup>16</sup> Bowers, E. Aerospace Technique Banishes Corrosion, Wash. Statues Brushed Glistening Clean. Am. Metal Market, v. 80, No. 72, Apr. 12, 1973, p. 6.

<sup>&</sup>lt;sup>17</sup> American Metal Market. Thoria Added to Platinum, Gold Gives Unique Results. V. 80, No. 215, Nov. 6, 1973, p. 26.

Patented. V. 80, No. 46, Mar. 7, 1973, p. 9.

### **STOCKS**

Monetary.—Official U.S. gold stocks, including those in the Exchange Stabilization Fund, were valued at \$11,652 million based on \$42.22-per-ounce gold at the end of 1973, compared with \$10,487 million based on \$38-per-ounce gold at the end of 1972. The equivalent amount of gold at the end of 1973 was 276.0 million ounces, unchanged from a year earlier. Suspension of the convertibility of dollars to gold, begun August 15, 1971, remained in effect at yearend 1973.

Federal Reserve banks held \$17,068 million (404.3 million ounces at \$42.22 per ounce) worth of "earmarked" gold for foreign official accounts at the end of 1973, compared with \$15,530 million (408.7 million ounces at \$38 per ounce) at the end of 1972. Total gold stocks of national monetary authorities and international institutions Communist countries) (excluding valued at \$49,850 million at the end of 1973 (\$42.22 per ounce), compared with \$44,890 million at the end of 1972 (\$38 per ounce). Stocks at the end of 1973 were virtually unchanged from a year earlier at 1,181 million ounces. U.S.S.R. gold reserves were estimated to be worth \$2,715 million, equivalent to around 65 million ounces.

World monetary stocks of gold at the end of 1973 were distributed as follows, in million ounces: United States, 276.0; IMF,

153.4; West Germany, 117.6; France, 100.9; Switzerland, 83.2; Italy, 82.5; the Netherlands, 54.3; Belgium, 42.2; Portugal, 27.5; Canada, 22.0; Japan, 21.1; Republic of South Africa, 19.0; Spain, 14.3; Venezuela, 11.2; Bank for International Settlements, 5.6; others, 149.9. Compared with 1972, the greatest changes were shown in stocks of the Republic of South Africa, up 1.1 million ounces; Belgium, down 0.9 million ounces; and Portugal, up 0.6 million ounces. Also, Philippine stocks dropped 0.8 million ounces to 1.07 million ounces. "Paper gold" Special Drawing Rights (SDR's) in the IMF were valued at \$10,625 million at the end of 1973. Of this value, \$7,963 million was allotted to industrial countries and \$1,890 million to less developed areas. U.S. reserves in the form of SDR's were valued at \$2,166 million at the end of 1973, compared with \$1,958 million at the end of 1972. The unit of SDR remained by definition equivalent to 0.888671 gram of fine gold. IMF dollar values were based on \$38-per-ounce gold before February 1973 and on \$42.22per-ounce gold thereafter.

Industrial.—Inventories of gold at domestic refiners and fabricators rose 2% during 1973 to 4.5 million ounces, according to data collected by the Office of Domestic Gold and Silver Operations, U.S. Department of the Treasury.

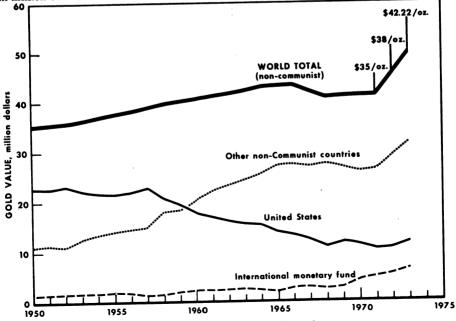



Figure 4.-World monetary gold stocks.

#### **PRICES**

During the year, free market gold prices rose from a low of \$64.35 per troy ounce (Engelhard Industries selling price) to a record \$126.45 about midyear, then declined. The low price was on January 18, and the high price was reached on June 5 and again on July 6 and 9. The high price was the maximum established by Phase III price ceilings, and the ceiling caused Engelhard Industries to suspend buying quotations 1 day on July 6. On January 2, the first trading day of 1973, the price was \$65.55 per ounce, and on December 31, the last trading day, it was \$112.75, \$47.20 or 72% higher. The average price for the year was \$97.81 per ounce, 67% higher than in 1972. The rise in prices was international and was generally attributed to less confidence in currency values, inflationary trends, unsettled world trade deficits, and limited supplies of new gold.

The U.S. official gold price was much lower in comparison, and remained at

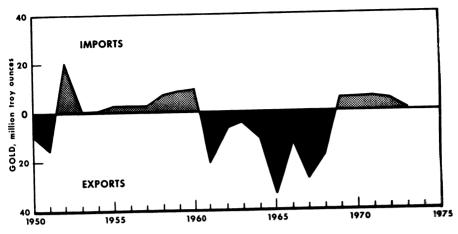
\$38 per ounce until October 18, when it was raised to \$42.22. October 18 was the date on which a September 21, 1973, devaluation law became effective (Public Law 93–110).

Table 2.-U.S. monthly gold selling prices, per ounce

(Englehard Industries)

| Month     | 1973    |         |         |  |  |  |  |
|-----------|---------|---------|---------|--|--|--|--|
|           | Average | Low     | High    |  |  |  |  |
| January   | \$65.59 | \$64.35 | \$66.55 |  |  |  |  |
| February  | 74.67   | 67.05   | 86.95   |  |  |  |  |
| March     | 84.87   | 80.45   | 90.45   |  |  |  |  |
| April     | 90.96   | 89.70   | 91.70   |  |  |  |  |
| May       | 102.41  | 90.75   | 115.20  |  |  |  |  |
| June      | 120.61  | 116.00  | 126.45  |  |  |  |  |
| July      | 120.46  | 114.75  | 126.45  |  |  |  |  |
| August    | 107.10  | 94.50   | 118.00  |  |  |  |  |
| September | 103.39  | 100.50  | 106.60  |  |  |  |  |
| October   | 100.58  | 97.25   | 104.25  |  |  |  |  |
| November  | 95.77   | 90.50   | 102.25  |  |  |  |  |
| December  | 107.37  | 100.75  | 112.75  |  |  |  |  |
| Year      | 97.81   | 64.35   | 126.45  |  |  |  |  |

## FOREIGN TRADE


Gold exports in 1973 totaled 2.99 million ounces valued at \$146 million and went largely to Switzerland (69%), Uruguay (12%), the United Kingdom (7%), and Canada (6%); the balance went to seven other countries. Scrap comprised 11% of the exports, going to the United Kingdom (46%), Belgium-Luxembourg (44%), and six other countries. About 83% of the exported gold consisted of monetary metal, going to Switzerland, Canada, and Uruguay.

Total imports of 3.84 million ounces of gold were valued at \$356.2 million. The bulk of the imports came from Canada (39%), Switzerland (32%), and the U.S.S.R. (21%). The balance was from 31 other countries. Virtually all imported gold was destined for industrial use. In addition to

import sources, industry was supplied with 1.70 million ounces from foreign stocks on deposit at the Federal Reserve Bank, New York

Net imports of gold showed a decline compared with those of 1972 (figure 5). The net value in 1973 was \$210.2 million versus \$294.6 million in 1972. The 1973 net value was not directly comparable with that of 1972, because reported exports in 1973 included a large quantity of monetary gold (2.21 million ounces), which was shipped at the lower, official monetary value. Net quantities imported in 1973 and 1972 respectively were 0.86 and 4.65 million ounces, showing a much sharper drop in net trade. The inflow of gold in ore, scrap, and base bullion was 70% of the outflow in the form of scrap.

565



GOLD

Figure 5.-Net exports or imports of gold.

## **WORLD REVIEW**

World gold production (figure 6 and table 14) declined for the third straight year to 43.1 million ounces, a 3.7% drop. Outputs were lower in major producing countries except the U.S.S.R. where a 3% increase to 7.1 million ounces was estimated. All gold sales from the Republic of South Africa were made by the South African Government, whose selling policies had an important influence on gold markets. The bulk of South African gold was sold in Switzerland and moved from there to other markets. Quantities moving to markets were generally less in the first half of the year than in the second half. For the year, about 4% of South African production went into the Governments' reserves, and the balance was sold at free market prices. According to a major London gold trader, the total European industrial gold offtake in 1973 was 13.8 million ounces, about 2 million ounces less than in 1972. Italy remained the largest consumer with its important jewelry industry. Consumption in West Germany was estimated at 2.9 million ounces; in France consumption was believed to have increased to 1.9 million ounces, and in Spain an estimate of 1.6 million ounces was given. In addition, it was estimated that 12.5 million ounces were added to European speculators' holdings, including 3.2 million ounces to privately owned stocks in France. On balance, then, total European offtake approximately equaled total South African gold sales, and the remaining about 8 to 10 million ounces of non-Communist world production had to supply the rest of the world. U.S.S.R. sales to the free world were estimated between 6 and 9 (probably closer to 6) million ounces in 1973; as a net result, non-European countries probably received about 15 million ounces of gold, about 75% destined for industrial purposes.

Angola.—Negotiations were conducted by the Angolan Sociedade Mineira da Huila, Lda., of Sá da Bandeira to form an international consortium to explore gold deposits in the southern part of the country. Development of deposits near Chipindo was under consideration.

Australia.—Australian gold output rose sharply in 1973 responding to higher prices. Western Australia reopened its state-owned custom gold mill at Laverton early in the year. Gold Mines of Kalgoorlie, owned by Western Mining Corp. Ltd., and the Lake View and Star gold mines, owned by Poscidon Ltd., merged operations under a new company, Kalgoorlie Lake View Pty. Ltd., and planned renewed development work in Western Australia's "Golden Mile." Newmont Mining Co. reported the discovery of gold in a new area about 180 miles from the scacoast in a remote region of the Great Sandy Desert of Western Australia. Exploration and evaluation work was underway.

Bolivia.—Disputes continued in 1973 between the Bolivian Government and South

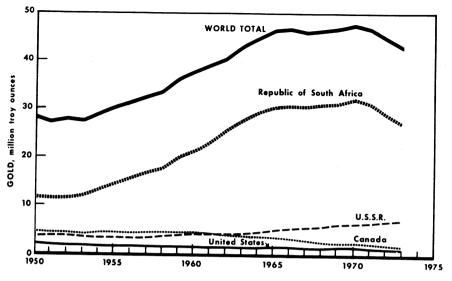



Figure 6.-World production of gold.

American Placers Inc. (United States) over whether past gold production operations in the Teoponte area had been conducted in accordance with expectations. In July, the Government issued a decree that required the U.S. firm to present within 6 months concrete work plans for mining an 11,700-hectare concession area; otherwise, the area would revert to the Government.19 Continued placer operations on approximately 700 hectares of land would not be affected. A new law was passed regulating exploration and mining of gold in National Reserve areas.20 A new Canadian company, Camino Gold Mines, Ltd., was formed to explore and develop an area of placer gold deposits 85 miles northeast of LaPaz in the Tipuani River valley. Test equipment was flown to the area about yearend.

Brazil.—Anglo American Corp. and several Brazilian associates entered into agreements to explore for gold in the State of Bahia. Most Brazilian production continued to come from a group of lode mines in the Nova Lima area of Minas Gerais.

Canada.—Gold production dropped 7% in 1973, continuing its long downtrend. Production value rose, however, by 55% owing to higher gold prices. Gold accounted for about 5% of Canada's metal production value and 2% of total mineral production value. Ontario remained the largest gold

producing Province with 47% of the total national output, Quebec was next with 25%, and the Northwest Territories and British Columbia followed with 13% and 10%, respectively. Manitoba and Saskatchewan contributed 4% together, and less than 1% came from Newfoundland and New Brunswick. The Yukon supplied a few thousand ounces, and a few ounces were produced in Nova Scotia and in Alberta. The greatest percentage drops in production were in the Northwest Territories (18%),Ontario (12%),and Quebec (11%). Significant increases were shown in British Columbia (64%) and Manitoba (26%). Of all gold produced, quartz lode and placer mines supplied 73.6%; the balance was a byproduct from base metal mines.

In Ontario, plans to expand gold exploration and add production facilities were reported. An optimistic appraisal was made of the outlook for new gold discoveries in the Timmins-Val d'Or region of Ontario and Quebec.21 An industry opinion survey

<sup>19</sup> U.S. Embassy, LaPaz, Bolivia. State Department Airgram A-165, Aug. 14, 1973, 4 pp.
20 U.S. Bureau of Mines. Bolivia: Law Governing Gold Mining Concessions in the National Reserve. Mineral Trade Notes, v. 70, No. 12, December 1973, pp. 35-37.
21 Mineral Resources Branch, Department of Energy, Mines and Resources, Canada. The Timmins-Val d'Or "Gold Belt" of Ontario-Quebec, Can. Min. and Met. Bull., v. 66, No. 730, February 1973, pp. 70-71.

GOLD 567

indicated a potential for new discoveries in the area amounting to between 8 and 20 million ounces in gold content in deposits averaging about 0.25 ounce per ton of ore. Dome Mines Ltd. operated its Timmins, Ontario, mill at about full capacity of 2,000 tons per day, milling about 10% more ore at 6% lower grade than in 1972. Pamour Porcupine Mines Ltd. completed its mill expansion and operated at 2,500 tons per day beginning in March 1973. The cost of the 600-ton-per-day expansion was about \$450,000. Mill feed was about 75% from the Pamour mine and 25% from the Aunor (No. 3) mine, both operated by the Noranda Group. McIntyre Porcupine Mines Ltd. continued operations at its 62-year-old mine near Timmins, milling about 900 tons per day of gold ore along with a larger tonnage of copper ores from parallel veins. Reserves of gold ore were estimated at a 2-year supply averaging 0.283 ounce per ton, and the company studied marginal ores and adjoining leased properties with the hope of expanding reserves in view of higher prices. On November 27, McIntyre Porcupine sold its Schumacher gold and copper properties to Pamour Porcupine Mines. To sale date, the 1973 production was 69,000 ounces of gold compared with 104,000 ounces for all of 1972.

In the Red Lake area, western Ontario, Dome Mines' Campbell Red Lake operation produced 196,190 ounces of gold compared with 196,855 ounces in 1972. Dickenson Mines Ltd. increased exploration at its extensive holdings in the Red Lake area and began to explore its newly acquired Rowan Gold Mines properties in Ball Township. Cochenour Wilians Gold Mines Ltd. planned to reopen its Wilmar mine, also in the Red Lake area. The deposit was believed to contain a large tonnage of ore grading 0.12 to 0.15 ounce of gold per ton, and plans were considered for a possible 1,000- to 2,000-ton-per-day milling operation. Kerr Addison Mines Ltd. maintained operations in the Larder Lake area, Eastern Ontario, at a milling rate of about 900 tons per day, its main mine at Virginiatown was estimated to have about 4 year's reserves with but little chance for additional marginal ores.

Camflo Mines Ltd. was the leading gold producer in Quebec with bullion output of 98,228 ounces in 1973, compared with 100,101 ounces in 1972. Dome Mines' Sigma Mines Ltd. was second with 78,204 ounces

produced in 1973 versus 85,614 ounces in 1972. Other lode gold producers were East Malartic Mines Ltd., Lamaque Mining Co. Ltd., and Marban Gold Mines Ltd. The average grade for lode mines was 0.145 ounce per ton. In addition to 230,005 ounces from Quebec lode mines, 161,641 ounces of gold was produced from base metal mines, 40% of which was from Noranda Mines Ltd. The new \$15 million gold operation of Agnico-Eagle Mines Ltd. was scheduled for production at 1,000 tons per day in late 1973. Reserves of 3 million tons averaging 0.29 ounce per ton were expected to be adequate for 10 years of production. The mine is located in Joutel Township. It was developed to the 1,800foot level and will utilize a trackless haulage combined with sublevel bench mining method. Chibex Ltd. planned to open a mine in the Chibougamau area where ore reserves were estimated at 1.2 million tons grading 0.229 ounce per ton of gold and 0.5% copper. Equipment was being assembled for a 750-ton-per-day mill in late 1973. In Cadillac Township of northwestern Quebec, Gold Hawk Mines Ltd. continued core drilling and prepared to ship ore to a nearby mill. The property was about 17 miles from Malartic on the Noranda-Val d'Or highway. Quebec Sturgeon River Mines Ltd. prepared to mine a nearby 1-millionton ore body averaging 0.217 ounce of gold per ton at its Batchelor Lake property in northwestern Quebec.

Cominco Ltd. planned a \$5 million investment in the Con mine at Yellowknife, Northwest Territories. Mill capacity was about 500 tons per day, and ore reserves included over 1 million tons grading 0.07 ounce per ton. O'Brien Gold Mines Ltd. planned underground development at its Cullaton Lake property in the Northwest Territories, after favorable drill results. In British Columbia, Bralorne Resources Ltd. undertook a major gold exploration program at its Bralorne-Pioneer property.22 A 200- to 300-ton-per-day operation was foreseen for the Brandywine gold-silver property 70 miles north of Vancouver, British Columbia, by its owner, Northair Mines Ltd. Home Oil Co. Ltd. and Mosquito Creek Gold Mining Co. Ltd. joined to explore and develop gold claims in the Wells-Barkerville area, British Columbia. Kennco Explorations Ltd., a subsidiary of

Western Miner. Bralorne Reborn. V. 46,
 No. 8, August 1973, pp. 24-25.

Kennecott Copper Corp., continued exploring newly found gold-silver veins averaging 10 feet in width in the Toodoggone area, 170 miles north of Smithers, British Columbia.

Colombia.—Pato Consolidated Gold Dredging Ltd. reported 1972 production at 63,104 ounces of gold from 17.9 million cubic yards of material at its operations near Bagre in Northeast Antioquia, and 1973 output was expected to be higher. A fifth dredge, planned to go into operation in 1974, was expected to increase production about 18%. Proven reserves were estimated to be adequate for continued full-time operations for the next 15 to 20 years. Cia. Minera Chocó Pacifico operated five dredges in the San Juan River basin, near Andagoya, in the Department of Chocó, northwest Colombia, producing gold and platinum. From 1966 to 1971, an estimated 1.1 million ounces of platinum and 2.4 million ounces of gold were produced from 700 million cubic yards of material mined from the Chocó deposits. Output in 1973 was estimated at 9,000 to 10,000 ounces of platinum and about twice that amount of gold. Most of the balance of Colombian gold and platinum production came from operations of Cia. Minera Frontino Gold Mines, with properties in the Department of Narino. During 1973, the Colombian Government took steps that could lead to possible expropriation of foreign company mining rights and properties.23

Costa Rica.—Cia. Minera del Guanacaste, which opened the Tres Hermanos gold mine in the Abangares area in April 1972, expanded milling capacity by addition of a 50-ton-per-day ball mill and flotation cells to a stamp mill equipped with two, five-stamp batteries and amalgamation tables. The Bulora Corp. (Canada) reopened the El Libano gold mine near Tilaran and began construction of a 100ton-per-day cyanide mill to be operative by March 1974.24 Mining costs at the El Libano were estimated at \$15 to \$17 per ton of ore, and inferred and indicated reserves totaled about 161,000 tons grading 0.84 ounce of gold and 0.88 ounce of silver per

Dominican Republic.—Gold and silver production was scheduled to begin about yearend 1974 from the Pueblo Viejo mine, under development northwest of Santo Domingo by Rosario Resources Corp. Plant construction costs were expected to exceed

\$24 million, and planned milling capacity was revised upward from 6,000 to 8,000 tons per day. When fully operating, the mill was expected to produce 350,000 ounces of gold and 1.5 million ounces of silver annually in the form of doré bullion to be refined elsewhere. Ore reserves were increased 50% during the year to 30 million tons as a result of further studies.

El Salvador.—Production was planned by San Sebastian Gold Mines, Inc. (United States) at a rate of 100 tons per day at the company's leased property near Santa Rose de Lima. The mine was scheduled to produce at a rate of 1,200 ounces of gold per month after startup, planned in March 1974. Other deposits in the eastern portion of El Salvador were said to have potential.25

Ethiopia.-Virtually all production continued to come from the Government-operated Adola gold mine, a placer producing 20,000 to 30,000 ounces of gold annually; a minor quantity of platinum was produced with gold at the Government Yubdo mine.

France.—The source of most French production, Mines de Salsigne, was slated to change ownership through an agreement to purchase control by two Canadian firms, New Calumet Mines Ltd. and Jorex Ltd. The mine, located near Carcassonne in southern France, produced at a rate of 170,000 tons of ore annually, with resulting output of about 66,000 ounces of gold, 170,000 ounces of silver, 385 short tons of copper, 60 tons of bismuth and arsenic, and sulfuric acid byproducts. Other gold concessions in the Limoges area of central France were included in the agreement. Salsigne ore reserves were estimated at 2.8 million tons averaging 0.38 ounce and 1.34 ounces per ton, respectively, of gold and silver.

Ghana.—The Ghanaian Government continued to control sales of gold and during the year proposed an export duty equivalent to about \$2.10 per troy ounce after the first 100,000 fine ounces. The Ashanti goldfields area was the source of most Ghanaian production, with sales mainly in Switzerland. Interest was revived in establishing a gold refinery at Tarkwa.

<sup>23</sup> Engineering and Mining Journal. Three Gold Mines Face Nationalization in Colombia. V. 174, No. 9, September 1973, p. 24. 24 Northern Miner (Toronto). Canadian Firm Developing Gold Mine in Costa Rica. V. 59, No. 23, Aug. 23, 1973, pp. 1, 6. 25 U.S. Embassy, San Salvador, El Salvador. State Department Airgram A-166, Nov. 27, 1973, 2 DD.

GOLD 569

Honduras.—Rosario Resources Corp. reopened its silver-gold mine at San Juancito and planned gold placer operations in the Mosquitia area of Honduras.

India.—Production in 1973 was slightly higher than in 1972. The Government in April 1972 consolidated its two gold-mining companies, the Kolar and Hutti, into one organization, the Bharat Gold Mines, Ltd., hoping this would encourage modernization and greater efficiency. Annual subsidies of \$5.6 million were provided in new budget estimates to offset operating losses. The Kolar mines produced 67,997 ounces of gold in 1972; the Hutti mine produced 37,776 ounces. Average ore grades were 0.17 to 0.18 ounces per ton, respectively. Combined ore reserves were estimated at 4.2 million tons averaging 0.27 ounce per ton, with most of the remaining accessible ore in the Champion Reef at depths in excess of 10,000 feet.26

Japan.—Beginning April 1, 1973, all restrictions and duties on the import of gold ingot were removed, and on July 1 restrictions on importing gold products were also removed, although a 20% duty remained. The action stemmed from rapidly expanding Japanese industrial demand and declining production capabilities. Plans were announced by Sumitomo Metal Mining Co. to close its formerly important Konomai gold mine in Hokkaido because of high costs. Output was down to about 10,000 ounces per year.

Mexico.—The Mexican Comision de Fomento Minero joined with a U.S. firm to explore the possibly large Loma Bonita gold placer in southern Mexico. The Government organization received options and a 20% equity as part of the agreement. The new discovery was believed to be in the State of Guanajuato.

Nicaragua.—Rosario Resources Corp. purchased the Nicaraguan properties and assets of La Luz Mines Ltd. and planned to reactivate gold operations at Siuna, where they were suspended in 1968. An extensive exploration program was planned to develop additional reserves. The purchase included the Rosita copper mine, which has been a consistent source of byproduct gold, supplying about 17,000 ounces in 1970–71.27

Panama.—Copper and gold exploration and extraction concessions were offered by the Government in the Río Pito area of Panama. The deposits, originally discovered

during a United Nations study, were located in an isolated area on the Caribbean side of Panama in the San Blas region near the Colombian border. Under a new draft of the Minerals Resources Code, requests for exploration concessions were to be accompanied by a \$100 payment and those for extraction concessions by a \$500 payment. Bison Petroleum & Minerals Ltd. and Pavonia S. A., a subsidiary of Canadian Javelin Ltd., obtained a large concession, which included the El Remance gold deposit estimated to contain 115,000 tons of ore averaging from 0.25 to 0.33 ounce of gold per ton.

Papua-New Guinea, Territory of .- Byproduct gold production at the Bougainville copper mine exceeded expectations. From the second to the fourth quarters 1972, grades increased from 0.019 ounce of gold per ton and 0.67% copper to 0.034 ounce of gold per ton and 0.86% copper. Tonnages produced in 1973 were above forecast rates. Plans were announced by Kimberley Securities Ltd., Rumble Explorations Pty. Ltd., and Mt. Isa Mines Ltd. for a joint gold placer operation of Porgera, New Guinea. Reserves in two areas were estimated at 2.25 million cubic yards averaging 0.0175 ounce of fine gold per yard (April) and 120,000 cubic yards averaging 0.125 ounce per yard (Denys Creek). A 3to 5-year mining operation was envisaged. Lode deposits were also studied. New Guinea Goldfields, Ltd., continued open pit operations in Papua-New Guinea, treating about 7,000 tons of ore monthly at its Golden Ridges mill. Milling problems reduced output to about 500 fine ounces of gold and 250 ounces of silver per month.

Peru.—Banco Minero del Peru conducted an intensive program to encourage new gold placer mining in the area known as the "selva." In addition to deposits on the Inambari River, the bank promoted mining in the Chinchipe, Perené, Marcapata, Quince Mil, and San Juan de Oro areas. The "selva" was a source of about 4,000 ounces of placer gold in 1972 and was expected by the bank to supply over 20,000 ounces in 1973. Meanwhile, Natomas Company of Peru, subsidiary of Natomas Co. (United States), discontinued operations in

<sup>&</sup>lt;sup>26</sup> U.S. Embassy, New Delhi, India. State Department Airgram A-191, May 31, 1973, pp.

partment Angles 194-56.

27 Bevan, P. A. Rosita Mine—A Brief History and Geological Description. Can. Min. and Met. Bull., v. 66, No. 8, August 1973, pp. 81-84.

early 1972 at its gold placer properties about 30 miles north of Lake Titicaca. The bulk of Peruvian gold in 1973 continued to come from six mines of the Cerro de Pasco Corp., the Cobriza, Cerro de Pasco, Yauricocha, San Cristobal, Casapalca, and Morococha. Metals were refined at the La Oroya metallurgical complex.

Philippines.—Gold production was lower in 1973, mainly because of declining by-product output from copper mining. The Philippine Monetary Board pursued plans for the Central Bank to establish a gold refinery which would treat the country's gold ore products.

Rhodesia, Southern.-The Rhodesian Government introduced an assistance program of "establishment loans" carrying a 6% rate of interest under which the gold miner was not required to repay the loan if the project failed or if the free market gold price fell below U.S. \$55 per ounce. By the end of 1972, three loans were granted, two were under final approval, and eight applications were under study. In 1973, four new gold mines were being brought into production and two others were under development. Among gold mines reopened were the Champion, near Odzi, and the Bar-Twenty at Gwanda. As a result of higher gold prices, Falcon Mines Ltd., one of Rhodesia's largest gold-mining groups, increased its ore reserve estimate to 781,000 short tons averaging 0.33 ounce of gold per ton. The group planned renewed operations at its Turkois and Venice mines after dewatering.

South Africa, Republic of .-- For the third consecutive year, production dropped, falling 6% to 27.5 million ounces. Comparative data for gold producers reporting to the Chamber of Mines of South Africa (virtually all producers) showed a 4% increase in the tonnage of ore milled to 80.8 million short tons but a 10% decline in the average grade to 0.34 ounce per short ton in 1973. During the year, the grade for all mines including uranium producers dropped from an average 0.342 in the first quarter to 0.318 in the fourth quarter. The drop reflected producers' efforts to prolong effective life of the operations by exploiting lower grade sections of ore bodies.

Working revenue of gold mines rose by more than 53% to R1,754 million (\$2,613 million) over the 1972 figure; however, working costs also rose by nearly 25% to

R770.3 million (\$1,148 million), owing to increased labor and equipment expenses. Moreover, because of greater working depths labor productivity was estimated to have dropped by 10% since 1969, a reference year. Improved productivity and technology were to receive priority attention during 1974 according to the Mine Managers Association meeting in Johannesburg. Capital expenditure on gold mining was reported 115% higher in 1973, increasing by during 1973. Working profits of gold mines associated with the Chamber of Mines rose 88% during 1973 to R983.3 million (\$1,466 million). Tax revenues paid from these profits to the South African Government were reported 115% higher in 1973, increasing by R267 million (\$398 million). During the year the South African Central Bank increased its gold reserves 6% or 1.08 million ounces to nearly 19 million ounces, in effect withholding about 4% of production from world markets.

As in past years, the bulk of gold production came from the Transvaal region of the country, and 25% to 30% was produced in the Orange Free State. The West Driefontein mine, about 20 miles west of Johannesburg, remained the world's largest and richest gold producer with an output of 2.35 million ounces from ores averaging 0.904 ounce per ton. Other mines producing over 1 million ounces in 1973 included Vaal Reefs, Western Deep Levels, Western Holdings, President Brand, Free State Geduld, Harmony, Hartebeestfontein, Buffelsfontein, Blyvooruitzicht, and President Steyn. The lowest average grade mined by any of 40 principal gold producers was 0.096 ounce per ton at the East Daggafontein mine; the highest average grade was at the West Driefontein.

A tributing agreement between the West and East Driefontein mines, whereby ores were transported through West Driefontein workings, was ended in March, and stoping began in the No. 4 shaft area of the East Driefontein for the first time since 1968 when workings were flooded. A new mill at the East Driefontein mine was scheduled for completion early in 1975 and was to be the largest gold mill in the Republic of South Africa. Operations were to expand from 960,000 tons in 1973 to 2.17 million tons in 1976. At the Western Deep Levels mine, world's deepest, operations were conducted about 12,000 feet below the surface and plans were considered to go to 14,000

GOLD 571

feet. The President Steyn No. 4 shaft, 7,750 feet deep and the world's deepest single-lift shaft, was completed, providing new capacity for an additional 246,000 tons of ore per month. On the Buffelsdorn farm, southwest of Western Deep Levels, a drill hole 8,500 feet deep cut the Ventersdorp contact reef, and a 2.3-foot section sampled contained 4.2 ounces of gold and 1.1 pound of uranium per ton of ore. The Vaal Reefs mine operators planned a large capital spending program, with about \$37 million budgeted for the 1974 fiscal year. Ore production at Vaal Reefs and at Western Deep Levels was scheduled to rise to 6.1 and 3.2 million tons per year, respectively, by the end of 1974. Gold Fields of South Africa Ltd. planned a large new mine in the Deelkraal area to begin production about 1980. A \$150 million capital investment was considered. The Brakpan mine was scheduled to reopen by the end of 1974 with output of 240,000 tons of ore per year and a minimum cutoff grade of 0.14 ounce per ton.

In the Orange Free State, south of the President Brand and President Steyn mines, the new Jurgens Hof mine, a \$60 million investment, was under development. The

mine was scheduled for production in 1978 at 864,000 tons of ore per year, the ores to be treated at the St. Helena cyanide mill nearby. The Elsberg and Western Areas mines were scheduled to merge operations for efficiency. Several nearby depleted mines had their lives extended as a result of higher gold prices and remained in operation after reassessing of reserves. Total general ore reserves of South African gold mines rose 30% to 182 million tons at the end of 1973. Grades were estimated to be slightly lower for most mines, but stoping widths were slightly greater than in 1972.

U.S.S.R.—Soviet gold sales to other countries were estimated at about 6 million to 9 million ounces in 1973, compared with 5 million to 6 million ounces in 1972. The Government's gold reserves were believed to be about 65 million ounces. In Siberia near the Arctic Circle, new placer gold operations were underway in the Bilibino region, while production declined from the Kolyma region where deposits were approaching exhaustion. A new nuclear power-plant was expected to begin supplying electricity to the Bilibino operations. The bulk of Soviet gold production continued to come from areas east of the Lena River.

## **TECHNOLOGY**

Federal Bureau of Mines scientists assisted mine operators in evaluating the effectiveness of cyanide leaching and activated carbon gold extraction processes on their ores. Investigations of heap-leaching, which entails sprinkling weak cyanide solutions over the top of an open mound or leveled heap of ore and collecting the enriched solutions for gold extraction, revealed that, in general, for amendable ores 67% to 95% of the gold present could be extracted in 4 to 42 days. Extraction rates were dependent on coarseness of both gold and ore. Successful commercial applications of the process have been demonstrated with mine-run stripping waste at the Cortez mine in Nevada and on selected stripping material crushed to 3/4-inch at the Carlin mine, also in Nevada.

At the Homestake mine in Lead, S. Dak., a carbon-in-pulp pilot plant, utilizing activated carbon as a gold collector mixed with the cyanide solutions and subsequently screened out, showed that 90% to 95% of the gold in a 0.15-ounce-per-ton slime

feed could be successfully extracted this way. In March 1973, a 2,350-ton-per-day plant utilizing the carbon-in-pulp process was placed in operation at Lead, permitting the closure of an outmoded plate-and-frame filter-type leaching plant. After correction of minor problems with aeration, the unit operated fully up to expectations.

Slow stripping of gold from the activated carbon at atmospheric pressure remained a problem, and trials continued at several locations of a Bureau of Mines invented high-temperature stripping process that would significantly reduce stripping time, labor, and reagent requirements. In connection with this, work was in progress to accumulate data on equilibrium loading and desorption isotherms for gold and silver activated-carbon systems.

A sample tested by the Bureau of Mines from the Buckhorn gold mine, which is under development by the Carlin Gold Mining Co., showed 94% recovery of gold after grinding to 35 mesh, using activated carbon in a carbon-in-pulp test. Further

tests indicated that heap leaching of the ore sized between minus 2 inches and plus 35 mesh, followed by adsorption on activated carbon, would provide recoveries of 83% of the gold in the coarse fraction and 68% of the total gold in the original ore; 17% of the total gold remained in the minus 35-mesh material.

At the new Gold Acres property of Cortez Gold Mines in north-central Nevada, a Bureau of Mines-type expanded-bed activated-carbon unit consisting of five open columns side-by-side began processing heapleach solutions from adjacent prepared dumps. A high-temperature stripping unit was operated to remove the gold from the carbon; gold removal from the solution was virtually 100% before recycling to the dumps.

Laboratory investigations were reported using thiourea in an acid system at a pH of 1.0 to extract gold and silver with a view toward application to in situ leaching.28 The effectiveness of the thiourea was said to be about 75% in comparison with cyanide, but the compound was believed to be more acceptable for in situ leaching for environmental reasons. The precious metals were recovered from solutions by conventional zinc dust precipitation or charcoal adsorption methods. Research was successful on a method of gold recovery from arsenopyrite and carbonaceous and oxidized gold ores employing sulfuric acid in the presence of sodium chloride to form a gold chloride complex.29 In another process, gold was recovered from ore leaching solutions containing 4% to 80% concentrated hydrochloric acid using tetrahydrofuran to form a gold complex and extracting the complex with either methylene chloride or methylene bromide.30 Gold was also extracted from gold leach solutions by treating an acidified solution with a chloride ion to form a gold complex, next passing the solution through a resin adsorption bed, and then stripping the resin with acetone, followed by evaporation and electrolysis.31 A ketonic solvent containing iodine was used in another process to recover gold from ores or gold alloys,32 and hydrogen sulfide in an oxidizing leach solution followed by aqua regia treatment was used to extract gold and platinum-group metals from copper-bearing mattes and sulfide ores in still another process.33

A group of articles was published on the treatment and destruction of cyanide

solutions after use.34 Most Canadian gold mills on which sample data were obtained were found to release cyanide in effluents exceeding 0.1 ppm, the proposed maximum of the Ontario Ministry of the Environment. Of four methods commonly used to dispose of cyanide wastes-oxidation, dilution with water or with other wastes, acidification and dilution or resulting gas with air, and alkaline chlorination-most Canadian operators applied only the first two. In a Film Layer Purification Chamber (FLPC) process, ozone, produced by electric discharge, was contacted with cyanide wastes sprayed into a chamber. Using this process, 91% to 97% of the cyanide present was decomposed in less than 2 minutes contact time. A commercial prototype plant was under construction. The metal-finishing industry produces a wide range of concentrations and volumes of cyanide wastes in periodic discharges. Generally, electrolytic destruction is used for high cyanide concentrations followed by oxidation, but a new system introduces a copper catalyst into the waste stream, the mixture then passing through an oxygen-bearing gas and finally through a carbon tower.

Cyanidation of gold ores following flotation was described at the Giant Yellowknife mine in Canada's Northwest Territories.35

<sup>28</sup> Northern Miner (Toronto). In Situ Leaching of Gold With New Solvent System. V. 58, No. 50, Mar. 1, 1973, p. 12.
<sup>29</sup> Scheiner, B. J., and R. E. Lindstrom (assigned to the Secretary of the Interior). Recovery of Gold From Ores. U.S. Pat. 3,764,650, Oct. 9, 1973.

or Gold From Ores. C.B. Lat. 5,152,007, Col. 5, 1973.

20 Ziegler, M. (assigned to W. C. Heraeus GmbH). Process for the Quantitative Recovery of Gold From Aqueous Solutions. U.S. Pat. 3,734,722, May 22, 1973.

21 Fritz, J. S., and W. G. Millen (assigned to U.S. Atomic Energy Commission). Gold Recovery From Aqueous Solutions. U.S. Pat. 3,736,126, May 29, 1973.

22 Wilson, H. W. (assigned to Golden Cycle Corp.). Process for Separation and Recovery of Gold. U.S. Pat. 3,778,252, Dec. 11, 1973.

23 Hougen, L. R., and H. Zachariasen (assigned to Falconbridge Nickel Mines Ltd.). Process for Recovery of Precious Metals From Copper-Containing Material. U.S. Pat. 3,767,760, Oct. 23, 1973.

per-Containing Material. U.S. Pat. 3,767,760, Oct. 23, 1973.

34 Coulter, K. R. Cyanide Treatment in the Metal Finishing Industry. Can. Min. J., v. 94, No. 6, June 1973, pp. 33-34.

Edmonds, C. J. Cyanide Destruction (Gold Mill Effluents). Can. Min. J., v. 94, No. 6, June 1973, pp. 34, 36.

Joe, E. G. Cyanide Elimination From Mill Effluents. Can. Min. J., v. 94, No. 6, June 1973, p. 30.

Effluents. Can. Min. J., v. J., 100.

p. 30.

Mathieu, G. I. The FLPC Process for Cyanide Destruction. Can. Min. J., v. 94, No. 6, June 1973, pp. 30, 32.

Pawson, H. E., Review of Cyanide Elimination Methods. Can. Min. J., v. 94, No. 6, June 1973, pp. 30, 32.

S Pawson, H. E. Giant's Milling Operation. Can. Min. J., v. 94, No. 6, June 1973, pp. 21–22.

573 GOLD

Arsenic and antimony were removed by roasting before final cyanidation; Cottrell dusts containing these metals were treated by a cyanide leach-charcoal recovery process for lost gold. Effects of various alkalis and impurities on cyanide dissolution of gold were investigated.36 Best extraction was achieved with sodium carbonate (soda ash). Lime, which is universally used, was found to have deleterious effects, especially with refractory ore, although its use tended to keep the consumption of cyanide low.

Three reports were completed covering work by the Bureau of Mines under the Heavy Metals Program (1966-70).37 Work showed that underground mining of the Six-Mile placer gold deposit at Badger Hill, Nevada County, Calif. (selected as an example) would be uneconomical at thenexisting prices but that potential existed if marketable gravel products could be produced at the same time. It was concluded that, generally, for the Tertiary channel gravel deposits of northern California, mining could only be conducted with marginal profits unless the price of gold remained substantially above \$70 per ounce or there was significant recovery of byproduct materials. Studies at the Badger Hill placer mine indicated that the bulk of the gold is within 40 feet of bedrock and occurs in stacked, lenticular zones of cemented gravel largely confined to the relatively narrow, meandering course of the deepest portion of the bedrock channel. Techniques were suggested for improved drilling, sampling, and delineation of the pay zones.

Research on new gold-mining methods has resulted in development of a swing hammer rock-cutting machine that is particularly adapted to thin continuous veins or reefs such as those in South African gold mines.38 Nine experimental machines were built and tested at the Doomfontein and Stilfontein gold mines, Republic of South Africa, mining out up to 1,300 square feet of vein area in 1 month, using one machine on a single-shift basis. Stoping widths were maintained by taking alternate top and bottom cuts, leaving the middle ore section, about 1.3 feet thick, to break out by itself. In a related development, a patent was issued on a method by which slots or holes were cut alongside a reef or vein by combined percussive and oscillatory action and the ore extracted by bursting due to natural rock pressures.39 With a possible view to the future, a patent

was issued on a method using a laser beam to fracture a rock face to a depth of several inches.40 The technique was said to be particularly adapted to mining narrow seams of gold ore. Undersea mining of deposits containing gold and platinum was the subject of another patent."

The Federal Bureau of Mines prepared a report discussing the potential for renewed lode gold mining in central Alaska near Fairbanks.42 Inferred remaining resources in the area described were estimated at 4 million ounces. Details were given on gold placer deposits in Alaska,43 Utah,44 and Nevada 45 in a continuation of a U.S. Geological Survey series started in 1972. The Geological Survey reported on a gold anomaly found by soil sampling near the Yellow Pine tungsten mine in Valley County, Idaho.46 The mean value of 23 samples

Sept. 11, 1973.

<sup>40</sup> Schumacher, B. W. (assigned to Westing-house Electric Corp.) Corpuscular Beam in Mining and Excavation. U.S. Pat. 3,718,367. Feb. 27,

1973.
41 Lindelof, L. A. (assigned to QVA Corp.).
Apparatus and Process for Undersea Mining of
Mineral Bearing Sand and Gravel. U.S. Pat.
3,731,975, May 8, 1973.
42 Thomas, B. I. Gold-Lode Deposits, Fairbanks
Mining District, Central Alaska. BuMines IC

Mining District, Central Alaska, BuMines IC 8604, 1973, 16 pp.

Ceol. Survey Bull. 1374, 1973, 213 pp.

Johnson, M. G. Placer Gold Deposits of Utah.
U.S. Geol. Survey Bull. 1357, 1973, 26 pp.
Johnson, M. G. Placer Gold Deposits of Utah.
Schon, M. G. Placer Gold Deposits of Nevada. U.S. Geol. Survey Bull. 1356, 1973, 118

pp.

46 Leonard, B. F. Gold Anomaly in Soil of the
West End Creek Area, Yellow Pine District,
Valley County, Idaho. U.S. Geol. Survey Circ.
680, 1973, 16 pp.

<sup>30</sup> Donyina, D. K. A. Factors Affecting Dissolution of Gold From Refractory Flotation Tailings. Can. Min. J., v. 94, No. 6, June 1973, pp. 20, 58. 37 Johnson, T. B., W. R. Sharp, and J. N. Williams. Mine Systems Analysis—Tertiary Channel Deposits. The Badger Hill Pit, San Juan Ridge, Nevada County, Calif. BuMines Open-File Rept. 4-74, 1973, 77 pp.; available for consultation at the Bureau of Mines libraries in Pittsburgh, Pa., Twin Cities, Minn., Denver, Colo., and Spokane, Wash., and at the Central Library, U.S. Department of the Interior, Washington, D.C., and from the National Technical Information Service (NTIS). Springfield, Va., PB 226 723.

McLellan, R. R. Summary of Heavy Metals Studies at San Juan Ridge, Nevada County, Calif. BuMines Open-File Rept. 5-74, 1973, 87 pp.; available at locations shown above and from NTIS, PB 226 694.

McLellan, R. R., R. D. Berkenkotter, R. C. Wilmot, and R. L. Stahl. Drilling and Sampling Tertiary Gold-Bearing Gravels at Badger Hill Nevada County, Calif. BuMines Open-File Rept. 6-74, 1973, 80 pp.; available at locations shown above but not from NTIS.

38 Mining Magazine (London). Rock Cutting Machines For Production Trials in S. Africa. V. 129, No. 2, August 1973, pp. 125-127.

39 Hilton, A. R. (assigned to Mining Developments, A.G.). Method and Apparatus for Mining Vein Material Only. U.S. Pat. 3,758,160, Sept. 11, 1973.

40 Schumacher, B. W. (assigned to Westinghouse Electric Corp.) Corpuscular Beam in Mining new Evanuation.

was 0.085 ounce of gold per ton of soil material.

Conglomerates were found to contain possibly significant amounts of gold in another Geological Survey study, which established the approximate ranges of values in the Harebell and Pinyon Formations in Northwestern Wyoming. 47 Preliminary analyses showed an average of 65 and maximum of 1,000 parts per billion (ppb) of gold in the Harebell Formation and an average of 84 and maximum of 8,700 ppb of gold in the Pinyon Formation. It was estimated that a volume of 75 cubic miles of these conglomerates was present in the Jackson Hole region.

In mineralogical studies it was found that gold and arsenic in unoxidized ores of the Carlin and Cortez gold mines in Nevada were the most abundant in pyrite.48 No association was found between gold and carbonaceous material, which was a particularly interesting revelation because a carbon and gold relationship in these two mines has been widely publicized in the past. Geochemical studies were said to suggest the presence in British Columbia of Carlin and Cortez type gold deposits.49 Douglas fir needles were included in the evidence. In another study, it was concluded that geochemical abundance data do not provide reliable guides to areas favorable for gold mineralization and, furthermore, such data do not help identify source rocks or clarify natural processes concentrating gold.50

The content of gold and molybdenum in a large number of copper deposits was investigated, and it was found that nearly every deposit that contained significant molybdenum produced only relatively small amounts of gold.51 Age and relationships of mineralization in gold deposits were subjects of other articles.52

Mine fires occur periodically in South African gold mines where extensive amounts of timber are used in stoping and for pack supports. Because of increasing concern, the system of rescue and firefighting was examined, and procedures and strategies were reported.<sup>53</sup> Causes of variations in different gold placer sampling techniques were discussed in an article, which favored bulk sampling to reduce error.54 Increased interest in reclaiming gold from old tailings prompted a report on experiences at the Cornucopia mine in northeastern Oregon.55

The subject of byproduct gold production including unit processing costs was studied by the Bureau of Mines.56 Direct unit costs for byproduct production operations at 1,420 ounces per week were estimated at 25.4 cents per ounce of gold produced; unit depreciation costs for a similar size plant over 10 years were estimated at 2.4 cents per ounce of product. Byproduct gold supply was shown to be relatively unresponsive to gold prices.

Smelting and refining of gold was described at the Rand refinery in the Republic of South Africa.57 The plant, which is

<sup>47</sup> Love, J. D. Harebell Formation (Upper Cretaceous) and Pinyon Conglomerate (Uppermost Creataceous and Paleocene). Northwestern Wyoming. U.S. Geol. Survey Prof. Paper 734-A, 1973, 54 pp.

<sup>48</sup> Wells, J. D., and T. E. Mullens. Gold-Bearing Arsenian Pyrite Determined By Microprobe Analysis, Cortez and Carlin Gold Mines, Nevada. Econ. Geol., v. 68, No. 2, March-April 1973,

An Marren, H. V., and J. H. Hajek. An Attempt To Discover a "Carlin-Cortez." Western Miner, v. 46, No. 10, October 1973, pp. 124-

134.
50 Tilling, R. I., D. Gottfried, and J. J. Rowe.
Gold Abundance in Igneous Rocks: Bearing On
Gold Mineralization. Econ. Geol., v. 68, No. 2,
March-April 1973, pp. 168-184.

51 Kesler, S. E. Copper, Molybdenum, and Gold Abundances in Porphyry Copper Deposits. Econ. Geol., v. 68, No. 1, January-February 1973, pp.

106-112.

See Zzamanske, G. K., G. A. Desborough, and F. E. Goff. Annealing History Limits For Inhomogeneous, Native Gold Grains As Determined From Au-Ag Diffusion Rates. Econ. Geol., v. 68, No. 8, December 1973, pp. 1275-1288.

Fleischer, R., and P. Routhier. The "Consanguineous" Origin of a Tourmaline-Bearing Gold Deposit: Passagem de Mariana (Brazil). Econ. Geol., v. 68, No. 1, January-February 1973, pp. 11-12.

Nash. J. T., and C. G. Cunningham, Jr. Fluid-

Nash, J. T., and C. G. Cunningham, Jr. Fluid-Inclusion Studies of the Fluorspar and Gold Deposits, Jamestown District, Colorado. Econ. Geol., v. 68, No. 8, December 1973, pp. 1247-

Page, R. W., and I. McDougall. Ages of Mineralization of Gold and Porphyry Copper Deposits in the New Guinea Highlands. Econ. Geol., v. 67, No. 8, December 1972, pp. 1034-1048.

3 Jamieson, D. M. Underground Fires. Min. Mag. (London) v. 128, No. 6, June 1973, pp. 430-439.

Mag. (I 430-439.

54 Berry, J. Comprehension of Sampling Methods Vital In Gold Placer Exploration. Northern Miner (Toronto), v. 58, No. 51, Mar. 8, Sampling 1973, p. 59.

55 Bean, J. J. Tale of Tails: Learn To Expect the Unexpected When Remining Old Tailings Ponds. World Mining, v. 9, No. 3, May 1973,

Ponds. World Mining, v. o, All. J. Bennett, K. E. 52. Septick, A., Jr., H. J. Bennett, K. E. Starch, and R. C. Weisner. The Economics of Byproduct Metals (In Two Parts): 1. Copper System. BuMines IC 8569, 1973. 15 pp. 57 Engineering and Mining Journal. Rand Gold Refinery—Biggest Little Plant in the World. V. 173, No. 11, November 1972, pp. 172-174.

1,175,750

1,449,943

located about 10 miles west of Johannesburg, processed all of the country's gold production and had capacity estimated at 40 million troy ounces of gold per year.

The quarterly series of the Chamber of Mines of South Africa contained a variety of new articles on gold uses and technology.58 Metallurgical studies were completed on interdiffusion of cobalt and gold,59 contamination on electroplated gold surfaces,60 diffusion of gold in silicon,61 and temperature effects on stability of gold-tin alloys.62

Washington 1

Total \_\_\_\_\_

58 Chamber of Mines of South Africa. Research

Schamber of Mines of South Africa. Research Organization (Johannesburg). Gold Bull., v. 6,
 Nos. 1-4, 1973 issues (quarterly publication).
 Braun, J. D., and G. W. Powell. Reaction Diffusion and Associated Nonequilibrium Effects in the Au-Co System. Met. Trans., v. 4, No. 5, May 1973, pp. 1207-1212.
 Malm, D. L., and M. J. Vasile. A Study of Contamination on Electropized Cold. Conver.

Malm, D. L., and M. J. Vasile. A Study of Contamination on Electroplated Gold, Copper, Platinum, and Palladium. J. Electrochem. Soc., v. 120, No. 11, November 1973, pp. 1484-1487. "Huntley, F. A., and A.F.W. Willoughby. The Effect of Dislocation Density on the Dif-fusion of Gold in Thin Silicon Slices. J. Electro-chem. Soc., v. 120, No. 3, March 1973, pp. 414-422.

degree Soc., v. 422, 422. 422. e2 Jena, A. K., B. C. Giessen, and M. B. Bever. On the Metastability of an Au-Sn Phase Pre-pared By Splat Cooling. Met. Trans., v. 4, No. 1, January 1973, pp. 279–287.

1,495,108

Table 3.-Mine production of recoverable gold in the United States, by State

|                                                            | (Troy our                                                                   | ices)                                                                       |                                                                             |                                                                             |                                                                             |
|------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| State                                                      | 1969                                                                        | 1970                                                                        | 1971                                                                        | 1972                                                                        | 1973                                                                        |
| Alaska Arizona California Colorado Idaho Montana Nevada    | 21,227<br>110,878<br>7,904<br>25,777<br>3,403<br>24,189<br>456,294<br>8,952 | 34,776<br>109,853<br>4,999<br>37,114<br>3,128<br>22,456<br>480,144<br>8,719 | 13,012<br>94,038<br>2,966<br>42,031<br>3,596<br>15,613<br>374,878<br>10,681 | 8,639<br>102,996<br>3,974<br>61,100<br>2,884<br>23,725<br>419,748<br>14,897 | 7,107<br>102,848<br>3,647<br>63,422<br>2,696<br>27,806<br>260,437<br>13,864 |
| New Mexico Oregon South Dakota Tennessee Utah Washington 1 | 875<br>593,146<br>126<br>433,385<br>47,020                                  | 256<br>578,716<br>124<br>408,029<br>55,008                                  | 244<br>513,427<br>192<br>368,996<br>55,434                                  | (1)<br>407,430<br>176<br>362,413<br>41,961                                  | 357,575<br>68<br>307,080<br>29,200                                          |

<sup>&</sup>lt;sup>1</sup> Production of Pennsylvania, Washington, and Wyoming (1969), North Carolina (1971), and Oregon (1972 and 1973) combined to avoid disclosing individual company confidential data.

1,743,322

Table 4.-Mine production of recoverable gold in the United States, by month

| (Troy | ounces) |
|-------|---------|
|-------|---------|

| Month     | 1972      | 1973      |
|-----------|-----------|-----------|
| January   | 117,605   | 102,252   |
| February  | 131,733   | 104,482   |
| March     | 139,489   | 102,045   |
| April     | 131,660   | 99,336    |
| May       | 146.182   | 101,693   |
| June      | 131.544   | 102,665   |
| July      | 106,054   | 93,537    |
| August    | 89.035    | 97.374    |
| September | 107,000   | 87,114    |
| October   | 123,382   | 102,554   |
| November  | 114,031   | 91,403    |
| December  | 111,778   | 91,295    |
| Total     | 1,449,943 | 1,175,750 |

Table 5.-Twenty-five leading gold-producing mines in the United States in 1973, in order of output

| Ran                                                                 | ık                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mine    | County and State                                                                                                                                                                                                                                                                                                                                                                                                             | Operator                                                                       | Source of gold                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 122 4 2 3 2 5 4 3 3 5 7 4 6 9 6 1 6 6 1 6 6 1 6 6 1 6 6 1 6 6 1 6 1 | Homestake Utah Copper Cortai Cortai Cortai Sunnyside Ruth Pit Knoh Hill San Manuel New Cornelia Copper Queen-Laven Idarado Mornel Leadville Leadville Magma Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon Copper Canyon | der Pit | Lawrence, S. Dak Salt Lake, Utah Eureka, Nev Lander, Nev San Juan, Colo White Pine, Nev Ferry, Wash Pinal, Ariz Cochise, Ariz Cochise, Ariz Cochise, Ariz Lake, Colo Lake, Colo Lake, Colo Lake, Colo Lake, Colo Lake, Colo Lake, Colo Carentee, Nev Grant, N. Mex Grant, N. Mex Grant, N. Mex Grant, N. Mex Grant, N. Mex Grant, N. Mex Grant, N. Mex Grant, N. Mex Grant, N. Mex Grant, N. Mex Grant, N. Mex Grant, N. Mex | g Co                                                                           | Gold ore.  Gold ore.  Gopper, gold ores.  Gold ore.  Copper, gold ores.  Copper ore.  
| 22 23 25                                                            | Bonney-Misers Chest<br>Pima<br>Butte Hill Copper M<br>Copper Cities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ines    | Hidalgo, N. Mex<br>Pima, Ariz<br>Silver Bow, Mont                                                                                                                                                                                                                                                                                                                                                                            | Federal Resources Corp. Pra Mining Co. The Anaconda Company Cities Service Co. | Goldesinver ore. Copper ore. Do. Do.                                                                                                                                                                                                                                                                                                                                                                                      |

Table 6.-Production of gold in the United States in 1973, by State, type of mine, and class of ore yielding gold, in terms of recoverable metal

|                            |                                | Lode                 |                              |                      |                              |               |                              |  |  |  |  |
|----------------------------|--------------------------------|----------------------|------------------------------|----------------------|------------------------------|---------------|------------------------------|--|--|--|--|
|                            | Placer                         | Gold ore             |                              | Gold-sil             | ver ore                      | Silver        |                              |  |  |  |  |
| State                      | (troy<br>ounces<br>of<br>gold) | Short<br>tons        | Troy<br>ounces<br>of<br>gold | Short<br>tons        | Troy<br>ounces<br>of<br>gold | Short<br>tons | Troy<br>ounces<br>of<br>gold |  |  |  |  |
| Alaska                     | 7,107<br>6                     | (1)                  | (¹)                          | <sup>2</sup> 100,490 | <sup>2</sup> 460             |               |                              |  |  |  |  |
| Arizona                    | 3,110                          | 2 3,412              | <sup>2</sup> 403             | (3)                  | (3)                          |               | ·~-                          |  |  |  |  |
| California                 | 1,661                          | <sup>2</sup> 115,208 | 2 1,407                      | (3)                  | (3)                          | (3)           | (3)                          |  |  |  |  |
| Colorado                   | -                              |                      |                              | 226                  | 41                           | 312,620       | 673                          |  |  |  |  |
| [daho                      | $\overline{22}$                | 948                  | 180                          | 16,974               | 1,913                        | 23,053        | 175<br>27                    |  |  |  |  |
| Montana                    | 130                            | (4)                  | (4)                          | (4)                  | ( <del>4</del> )             | 2,711         | 27                           |  |  |  |  |
| Nevada                     | 100                            | (4)                  | (4)                          |                      |                              |               | -                            |  |  |  |  |
| New Mexico<br>South Dakota |                                | 1,573,763            | 357,575                      |                      | /F\                          |               |                              |  |  |  |  |
| Utah                       |                                | (5)                  | (5)                          | (5)                  | ( <sup>5</sup> )<br>82       |               | -                            |  |  |  |  |
| Other States 6             | 38                             | 61,736               | 29,080                       | 648                  |                              |               |                              |  |  |  |  |
|                            | 12,074                         | 1,755,067            | 388,645                      | 118,338              | 2,496                        | 338,384       | 1,11                         |  |  |  |  |
| Total<br>Percent of total  | 12,011                         |                      |                              |                      |                              |               | (7)                          |  |  |  |  |
| gold                       | 1                              |                      | 33                           |                      | (7)                          |               | (7)                          |  |  |  |  |

| gold                                                                            |                                                                         |                                                       | Lode                         |                              |                                                         |                              |
|---------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------|------------------------------|------------------------------|---------------------------------------------------------|------------------------------|
| -                                                                               | Copper                                                                  | ore                                                   | Lead                         | ore                          | Zinc                                                    | ore                          |
|                                                                                 | Short                                                                   | Troy<br>ounces<br>of<br>gold                          | Short<br>tons                | Troy<br>ounces<br>of<br>gold | Short<br>tons                                           | Troy<br>ounces<br>of<br>gold |
|                                                                                 |                                                                         |                                                       |                              |                              |                                                         |                              |
| Alaska Arizona California Colorado Idaho Montana Nevada New Mexico South Dakota | 149,119,196<br>(8)<br>(5)<br>18,976,738<br>2 12,482,339<br>2 26,416,479 | 101,923<br>(8)<br>(5)<br>22,981<br>260,031<br>213,656 | (5)<br>(8)<br>(5)<br>180<br> | (5)<br>(8)<br>(5)<br>18      | 2 226,152<br>(5)<br>——————————————————————————————————— | 2 487<br>(5)<br><br>(5)      |
| Utah                                                                            | ( <sup>5</sup> )                                                        | (5)                                                   |                              |                              |                                                         |                              |
| Other States 6 Total                                                            | 206,994,752                                                             | 398,591                                               | 180                          | 18                           | 226,152                                                 | 487                          |
| Percent of total                                                                |                                                                         | 34                                                    |                              | (7)                          |                                                         | (7)                          |
| goid                                                                            |                                                                         |                                                       | Lode                         |                              |                                                         |                              |

| -                                                                                                          | Copper-lead, lead-zinc,<br>copper-zinc, and Oil to<br>copper-lead-zinc ores                     |                                                                           |                                                     | ngs, etc.                                 | Tota                                                                                                                             | Total                                                                                                                    |  |  |
|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|
| -                                                                                                          | Short<br>tons                                                                                   | Troy<br>ounces<br>of<br>gold                                              | Short                                               | Troy<br>ounces<br>of<br>gold <sup>9</sup> | Short<br>tons                                                                                                                    | Troy<br>ounces<br>of<br>gold                                                                                             |  |  |
| Alaska Arizona California Colorado Idaho Montana Newada New Mexico South Dakota Utah Other States 6  Total | 93,284<br>23,422<br>862,257<br>21,090,336<br>2129,909<br>238,597,757<br>1,322,930<br>42,100,130 | 453<br>217<br>59,526<br>21,982<br>41<br>2208<br>2307,078<br>68<br>369,373 | 670<br>3<br>7,068<br>66,693<br>32<br><br><br>74,466 |                                           | 149,313,640<br>6,837<br>1,210,685<br>1,403,182<br>19,084,821<br>12,485,082<br>26,546,388<br>1,573,763<br>38,597,757<br>1,385,314 | 7,107<br>102,848<br>3,647<br>63,422<br>2,696<br>27,806<br>260,437<br>13,864<br>357,575<br>307,080<br>29,268<br>1,175,750 |  |  |
| Percent of total<br>gold                                                                                   |                                                                                                 | 32                                                                        |                                                     | (7)                                       |                                                                                                                                  | 100                                                                                                                      |  |  |

<sup>1</sup> Included with gold-silver ore.
2 Includes other ore classes to avoid disclosing company confidential information. See additional footnote entries in table.
3 Included with gold ore.
4 Included with copper ore.
5 Included with copper-lead, lead-zinc, copper-zinc, and copper-lead-zinc ores.
6 Includes Oregon, Tennessee, and Washington.
7 Less than ½ unit.
8 Included with zinc ore.
9 Included with zinc ore.
9 Includes byproduct gold recovered from tungsten ore in California, fluorspar ore in Colorado, and uranium ore in Utah.

Table 7.-Gold produced in the United States from ore, old tailings, etc., in 1973, by State and method of recovery, in terms of recoverable metal

|                             | Total<br>ore, old                           |                            | Ore and         | l old taili                            | ings to mil                   | ls                         |                                |                     |
|-----------------------------|---------------------------------------------|----------------------------|-----------------|----------------------------------------|-------------------------------|----------------------------|--------------------------------|---------------------|
| State                       | tailings,<br>etc.,<br>treated 1 2<br>(thou- | Band                       | in bu           | erable<br>illion                       | Concen<br>smelte<br>recoverab | d and                      | Crude o<br>tailings<br>to sme  | , etc.,             |
|                             | sand<br>short<br>tons)                      | short<br>tons 12           | mation<br>(troy | - Cyani-<br>dation<br>(troy<br>ounces) | Concentrates (short tons)     | Troy<br>ounces             | Thou-<br>sand<br>short<br>tons | Troy                |
| Arizona California Colorado | 181,426<br>7<br>3 1,297                     | 181,033                    |                 |                                        | 3,405,828<br>1,572            | 100,801<br>427             | 393                            | 2,041<br>110        |
| Idaho<br>Montana            | 1,658<br>19.085                             | 3 1,290<br>1,656<br>18.976 | 15,381          |                                        | 171,430<br>184,858            | 46,016<br>2,614            | 7 2                            | 364<br>82           |
| New Mexico<br>South Dakota  | 3 4 24,584<br>26,546                        | 3 4 24,502<br>26,489       |                 | 220,294                                | 405,219<br>372,163<br>882,538 | 22,860<br>39,354<br>13,453 | 109<br>82<br>57                | 4,924<br>659<br>411 |
| UtahOther States 5          | 1,574<br>39,153<br>4 3,733                  | 1,574<br>38,993<br>4 3,732 |                 | 357,575                                | 868,754                       | 303,842                    | 160                            | 3,238               |
| Total                       | 299,063                                     | 298,250                    | 15,381          | 5,442<br>583,311                       | 185,124<br>6,477,486          | 23,587<br>552,954          | 813                            | 201<br>12,030       |

Table 8.-Gold produced at amalgamation and cyanidation mills in the United States and percentage of gold recoverable from all sources

|                                      |      | _                                              |                                                     |                                 |                                      | -                                    |                                |
|--------------------------------------|------|------------------------------------------------|-----------------------------------------------------|---------------------------------|--------------------------------------|--------------------------------------|--------------------------------|
|                                      | Year | Bullion and recove (troy o                     | rable                                               | Gold                            |                                      | le from all<br>percent)              | sources                        |
|                                      |      | Amalga-<br>mation                              | Cyani-<br>dation                                    | Amalga-<br>mation               | Cyani-<br>dation                     | Smelting 1                           | Placers                        |
| 1969<br>1970<br>1971<br>1972<br>1973 |      | 397,869<br>353,957<br>3,071<br>3,999<br>15,381 | 580,694<br>638,966<br>832,463<br>792,364<br>583,311 | 23.0<br>20.3<br>.2<br>.3<br>1.3 | 33.5<br>36.7<br>55.7<br>54.6<br>49.6 | 42.0<br>40.8<br>43.0<br>44.2<br>48.1 | 1.5<br>2.2<br>1.1<br>.9<br>1.0 |

<sup>&</sup>lt;sup>1</sup> Crude ores and concentrates.

<sup>&</sup>lt;sup>1</sup> Includes some non-gold-bearing ores not separable.
<sup>2</sup> Excludes tonnages of fluorspar, tungsten, and uranium ores from which gold was recovered as

Excurdes connages of hacters, a byproduct.

3 Includes tonnages from which gold is heap leached.

4 Includes tonnages from which gold is vat leached.

5 Includes Oregon, Tennessee, and Washington.

579 GOLD

Table 9.-Gold production at placer mines in the United States, by method of recovery

|                             |                         |                        |                                                    | Gol                        | d recovera                | ble                                      |
|-----------------------------|-------------------------|------------------------|----------------------------------------------------|----------------------------|---------------------------|------------------------------------------|
| Method and year             | Mines<br>produc-<br>ing | Wash-<br>ing<br>plants | Material<br>washed<br>(thousand<br>cubic<br>yards) | Thousand<br>troy<br>ounces | Value<br>(thou-<br>sands) | Average<br>value<br>per<br>cubic<br>yard |
| Bucketline dredging:        |                         |                        |                                                    | _                          | 0001                      | \$0.407                                  |
| 1971                        | 2                       | 3                      | 740                                                | 7                          | \$301<br>r 246            | r.441                                    |
| 1972                        | 2<br>2<br>2             | 2 2                    | 558                                                | 4                          |                           | .619                                     |
| 1973                        | 2                       | 2                      | 649                                                | 4                          | 402                       | .018                                     |
| Dragline dredging:          | _                       |                        |                                                    |                            |                           |                                          |
| 1971                        |                         |                        |                                                    |                            | 55                        | (3)                                      |
| 1972                        | - 1                     | 1                      | (1)                                                | 2 1                        | 27                        | (3)<br>3 2.091                           |
| 1973                        | 1<br>3                  | 1<br>3                 | 1 55                                               | <sup>2</sup> 1             | 115                       | ° 2.091                                  |
| Hydraulicking:              | •                       | •                      |                                                    |                            |                           | 000                                      |
|                             | 5                       | 5                      | 32                                                 | 1                          | 30                        | .938                                     |
| 1971                        | 16                      | 16                     | 230                                                | 3                          | r 187                     | r.813                                    |
| 1972                        | 12                      | 12                     | 245                                                | 2                          | 167                       | .682                                     |
| 1973                        | 12                      |                        |                                                    |                            |                           |                                          |
| Nonfloating washing plants: | 21                      | 38                     | 1 289                                              | 28                         | 334                       | 3 1.15                                   |
| 1971                        | 21<br>35                | 35                     | 1 123                                              | 2 5                        | r 291                     | r 3 2.366                                |
| 1972                        |                         | 34                     | 1 32                                               | 2 5                        | 454                       | 3 14.188                                 |
| 1973                        | . 34                    | 34                     | - 02                                               | Ū                          |                           |                                          |
| Underground placer, small-s | cale                    |                        |                                                    |                            |                           |                                          |
| mechanical and hand metho   | ds,                     |                        |                                                    |                            |                           |                                          |
| and suction dredge:         |                         | _                      | ^                                                  | <b>(4</b> )                | 10                        | 1.66                                     |
| 1971                        | 12                      | 2<br>4                 | 6<br>2                                             | \ <u>\</u>                 | - 6                       | 3.000                                    |
| 1972                        | 14                      | 4                      | 19                                                 | (4)<br>(4)                 | 43                        | 2.26                                     |
| 1973                        | 20                      | 3                      | 19                                                 | (-)                        |                           |                                          |
| Total placers:              |                         |                        | 1 4 000                                            | <sup>2</sup> 16            | 675                       | r 3,829                                  |
| 1971                        | 40                      | 48                     | 1 1,067                                            | 2 10<br>2 13               | r 757                     | r 3,82                                   |
| 1972                        | 68                      | 58                     | 1 913                                              |                            | 1,181                     | 3 1.18                                   |
| 1973                        | 71                      | 54                     | <sup>1</sup> 1,000                                 | <sup>2</sup> 12            | 1,101                     | 1.10                                     |

Table 10.-U.S. gold consumption in industry and the arts ° (Thousand troy ounces)

| (Thousand troy our                                                    | ices,                          |                                |                                |                                |                                |
|-----------------------------------------------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
| Industry group                                                        | 1969                           | 1970                           | 1971                           | 1972                           | 1973                           |
| Jewelry and arts<br>Dental<br>Industrial, including space and defense | 3,839<br>710<br>2,560<br>7,109 | 3,340<br>658<br>1,975<br>5.973 | 4,299<br>750<br>1,884<br>6.933 | 4,344<br>750<br>2,191<br>7,285 | 3,473<br>679<br>2,577<br>6,729 |
| Total                                                                 | 1,100                          | 0,010                          |                                |                                |                                |

<sup>•</sup> Estimated by Office of Domestic Gold and Silver Operations, U.S. Treasury Department.

Table 11.-U.S. exports of gold in 1973, by country

|                    | Ore, base and sc                  |                           | Refined bullion                   |                           |  |
|--------------------|-----------------------------------|---------------------------|-----------------------------------|---------------------------|--|
| Destination        | Quan-<br>tity<br>(troy<br>ounces) | Value<br>(thou-<br>sands) | Quan-<br>tity<br>(troy<br>ounces) | Value<br>(thou-<br>sands) |  |
| Belgium-Luxembourg | 148,105                           | \$12,912                  |                                   | \$21                      |  |
| Brazil             | ===                               | 055                       | 322<br>169,069                    | 13,517                    |  |
|                    | 2,946                             | 257                       | 109,009                           | 19,911                    |  |
| Canada             | 24.964                            | 1,982                     |                                   |                           |  |
| Germany, West      | 643                               | 78                        |                                   |                           |  |
| Japan              | 3,174                             | 263                       | 1.021                             | 109                       |  |
| Movico             | 314                               | 38                        |                                   |                           |  |
| Sweden             | 1.195                             | 105                       | 2.055,207                         | 82,328                    |  |
| Switzerland        |                                   | 14,057                    | 50.033                            | 5,889                     |  |
| United Kingdom     | 152,914                           | 14,001                    | 372,667                           | 14,161                    |  |
| IT                 |                                   |                           | 2,643                             | 248                       |  |
| Venezuela          |                                   |                           |                                   |                           |  |
|                    | 334,255                           | 29,692                    | 2,650,962                         | 116,273                   |  |
| Total              |                                   |                           |                                   |                           |  |

r Revised.

1 Excludes tonnage of material treated at commercial sand and gravel operations recovering byproduct gold.

2 Includes gold recovered at commercial sand and gravel operations recovering byproduct gold.

3 Gold recovered as a byproduct at sand and gravel operations not used in calculating average value per cubic yard.

4 Less than ½ unit.

Table 12.-U.S. imports (general) of gold in 1973, by country

|                           | Ore a                             | and base<br>lion          | Refined bullion                   |                           |  |
|---------------------------|-----------------------------------|---------------------------|-----------------------------------|---------------------------|--|
| Country                   | Quan-<br>tity<br>(troy<br>ounces) | Value<br>(thou-<br>sands) | Quan-<br>tity<br>(troy<br>ounces) | Value<br>(thou-<br>sands) |  |
| Australia                 | 35,217                            | \$3,154                   | 594                               | \$70                      |  |
| Belgium-Luxembourg        |                                   |                           | 32                                | 910                       |  |
| Canada                    | 8                                 | 1                         | <b>5</b> 2                        | 4                         |  |
| Chile                     | 23,206                            | 2,142                     | $1,475,1\overline{12}$            | 135.332                   |  |
| Colombia                  | 3,090                             | 266                       | -,,                               | 100,002                   |  |
| Dominican Republic        | 567                               | 54                        |                                   |                           |  |
| Fiji Islands              | 5                                 | (1)                       |                                   |                           |  |
| France                    |                                   |                           | 298                               | 21                        |  |
| Germany, West             |                                   |                           | 9.644                             | 1.131                     |  |
| Guatemala                 |                                   |                           | 103                               | 1,181                     |  |
| Honduras                  | 14                                | 2                         | 100                               | 11                        |  |
| Honduras Hong Kong        | 3,164                             | 162                       |                                   |                           |  |
| Iran                      | 34                                | 4                         |                                   |                           |  |
| Italy                     | 3                                 | (1)                       |                                   |                           |  |
| Japan                     | 615                               | 40                        |                                   |                           |  |
| Japan  Moles, Republic of | 88                                | 6                         | 9.283                             | 808                       |  |
| Malaysia                  | 1,228                             | 97                        | -,===                             | 000                       |  |
|                           | 391                               | 8                         |                                   |                           |  |
|                           | 7,657                             | 484                       |                                   |                           |  |
| Netherlands<br>Nicaragua  | 23                                | 3                         |                                   |                           |  |
| Norway                    | 16,013                            | 1,224                     |                                   |                           |  |
| NorwayPanama              | 5,002                             | 179                       |                                   |                           |  |
| D                         | 55                                | 6                         | 688                               | 65                        |  |
| DI 11.                    | 27,657                            | 2,014                     | 000                               | 00                        |  |
|                           | 86,627                            | 8,585                     |                                   |                           |  |
| PortugalSaudi Arabia      | 562                               | 37                        |                                   |                           |  |
|                           |                                   |                           | 1,875                             | 169                       |  |
| South Africa, Republic of | 14,456                            | 659                       | _,-,-                             | 100                       |  |
| Switzerland               | 415                               | 23                        | $12.9\overline{04}$               | 1,116                     |  |
| U.S.S.R                   | 12                                | (1)                       | 1,224,393                         | 114,694                   |  |
|                           | 63                                | `´ 6                      | 793,609                           | 74,711                    |  |
| Jnited Kingdom            | 20                                | 2                         | 6,453                             | 660                       |  |
| Venezuela<br>Yugoslavia   | 8,500                             | 230                       | -,                                | 500                       |  |
|                           |                                   |                           | $75,0\overline{85}$               | $7.9\overline{72}$        |  |
| Total                     | 234,692                           | 19,388                    | 3,610,073                         |                           |  |
|                           | <b>,</b>                          | 10,000                    | 0,010,073                         | 336,762                   |  |

<sup>&</sup>lt;sup>1</sup> Less than ½ unit.

Table 13.-Value of gold imported into and exported from the United States

(Thousand dollars)

|      | Year | Exports | Imports |
|------|------|---------|---------|
| 1971 |      | 51,249  | 283,947 |
| 1972 |      | 63,053  | 357,689 |
| 1973 |      | 145,965 | 356,150 |

Table 14.—Gold: World production 1 by country

| (Troy ounces)                                             |                      |                           |                                                 |
|-----------------------------------------------------------|----------------------|---------------------------|-------------------------------------------------|
| Country 2                                                 | 1971                 | 1972                      | 1973 р                                          |
| orth America:                                             |                      |                           |                                                 |
| Canada                                                    | 2,243,000            | 2,079,000                 | 1,930,000                                       |
| Costa Rica                                                |                      | r e 5,000                 | 7,806                                           |
| El Salvador<br>Haiti <sup>e</sup>                         |                      | 2,861                     | 5,232                                           |
| Haiti <sup>e</sup><br>Honduras                            |                      | 3,000                     | 3,000                                           |
| Mexico                                                    |                      | 2,021                     | 795                                             |
| Nicaragua                                                 | 121,134              | 146,061<br>e 120,000      | 132,557<br>85,051                               |
| United States                                             |                      | 1,449,943                 | 1,175,750                                       |
| outh America:                                             | -,100,200            | 1,110,010                 | 2,210,100                                       |
| Bolivia                                                   | 21,541               | 19,640                    | 35,341                                          |
| Brazil <sup>3</sup>                                       | 157,378              | 165,531                   | 157,216                                         |
| Chile                                                     | 64,417               | 75,946                    | 94,571                                          |
| Colombia                                                  |                      | 186,816                   | 216,243                                         |
| EcuadorFrench Guiana                                      |                      | e 11,000                  | e 11,000                                        |
| Guyana                                                    |                      | 997                       | e 1,000                                         |
| Peru                                                      | 65,000               | 4,026<br>82,885           | e 4,000<br>55,637                               |
| Surinam                                                   | 643                  | e 600                     | e 600                                           |
| Venezuela                                                 |                      | 19,776                    | 19,201                                          |
| urope:                                                    | ,                    | 10,                       | 10,201                                          |
| Finland                                                   | 17,489               | 17,619                    | e 17,700                                        |
| France                                                    |                      | 58,126                    | e 60,000                                        |
| Germany, West                                             | 1,704                | e 1,700                   | e 1,700                                         |
| Portugal                                                  | 13,696               | 16,718                    | 15,258                                          |
| Romania 6                                                 |                      | 60,000                    | 60,000                                          |
| Sweden                                                    |                      | 57,550                    | 60,000                                          |
| U.S.S.R.e                                                 | 6,700,000<br>123,780 | 6,900,000<br>136,898      | 7,100,000<br>145,000                            |
| Yugoslaviafrica:                                          | 120,100              | 100,090                   | 140,000                                         |
| Angola                                                    | r 44                 | e 30                      | e 30                                            |
| Cameroon                                                  |                      | 50                        | • 60                                            |
| Congo (Brazzaville)                                       | 2,958                | 2,083                     | 2,500                                           |
| Ethiopia                                                  | 24,499               | 20,784                    | 19,575                                          |
| Gabon                                                     |                      | 13,182                    | 11,224                                          |
| Ghana                                                     |                      | 724,051                   | 722,531                                         |
| Guinea e                                                  |                      | 4,000                     | 4,000                                           |
| Kenya                                                     | 0 7 10               | 34                        | 150                                             |
| Liberia <sup>4</sup><br>Mali <sup>e</sup>                 | 2,546<br>30          | 1,324<br>30               | 30                                              |
| Malagasy Republic                                         |                      | 190                       | 71                                              |
| Mozambique                                                |                      | e 20                      | • • •                                           |
| Niger                                                     |                      |                           |                                                 |
| Nigeria                                                   |                      | 12                        | 21                                              |
| Rhodesia, Southern                                        | 501,551              | e 502,000                 | e 500,000                                       |
| South Africa, Republic of                                 | 31,388,631           | 29,245,273                | 27,494,603                                      |
| Sudan                                                     |                      | 95                        | 49                                              |
| Tanzania                                                  | 167                  | 213                       | 56                                              |
| Zaire<br>Zambia <sup>5</sup>                              |                      | 81,566                    | 133,522<br>• 11,500                             |
| Zambia <sup>5</sup> sia:                                  | 9,866                | • 11,400                  | - 11,500                                        |
| China, People's Republic of e                             | 50,000               | 50,000                    | 50,000                                          |
| India                                                     | 118,569              | 105,776                   | 106,097                                         |
| Indonesia                                                 |                      | 10,899                    | • 48,000                                        |
| Japan <sup>6</sup>                                        | 255,255              | 243,027                   | 188,000                                         |
| Khmer Republic *                                          | 4,000                | 4,000                     | 4,000                                           |
| Korea, North <sup>e</sup>                                 | 160,000              | 160,000                   | 160,000                                         |
| Korea, Republic of                                        | 28,807               | 17,072                    | 16,300                                          |
| Malaysia:                                                 | 4 401                | 0.050                     | - 0 600                                         |
| Malaya                                                    | 4,491                | 3,853                     | e 2,800                                         |
| SarawakPhilippines                                        |                      | e 1,047<br>606,730        | 1,000<br>572,319                                |
| Taiwan                                                    |                      | 17,882                    | 22,197                                          |
| 1 W1 TT W11                                               | 10,400               | 11,002                    | ,                                               |
| ceania :                                                  | 650 106              | 754,562                   | 944,716                                         |
| ceania: Australia                                         | 67Z.10h              |                           |                                                 |
| Australia                                                 | 672,106<br>444       | e 400                     | e 400                                           |
| Australia British Solomon Islands Protectorate            | 444                  | e 400<br>89,670           | 79,983                                          |
| Australia<br>British Solomon Islands Protectorate<br>Fiji | 444                  | e 400<br>89,670<br>13,511 | 79,983<br>13,000                                |
| Australia British Solomon Islands Protectorate            | 444<br>89,129        | e 400<br>89,670           | ° 400<br>79,983<br>° 13,000<br>56 <b>6,</b> 216 |

<sup>&</sup>lt;sup>e</sup> Estimate. 

<sup>p</sup> Preliminary. 

<sup>r</sup> Revised.

<sup>1</sup> Unless otherwise indicated, production is on the basis of mine output.

<sup>2</sup> Gold is also produced in Bulgaria, Czechoslovakia, Spain, and probably in small quantities in Argentina, Burma, East Germany, Hungary, Thailand, and several other countries. However, available data are insufficient to make reliable output estimates. Data are lacking on clandestine

available data are insulation of many activities.

3 Bullion only; excludes gold from placer operations for which no data are available.

4 Purchased by the Bank of Monrovia.

5 Contained in blister copper, refinery muds, and electrolytic copper.

6 Refinery production for Japan was as follows: 1971—772,652 ounces; 1972—845,628 ounces; 1973—1,052,775 ounces.

# Graphite

# By David G. Willard 1

Crystalline natural graphite remained in short supply throughout 1973, and the market had grown perceptibly tighter by yearend. Prices of imported flake had risen by more than 20% and stocks were being heavily drawn upon. A principal cause of the shortage was a major decline in production in the Malagasy Republic, the main source of crystalline large-flake graphite. Supplies of amorphous graphite, however, remained sufficient, and attempts appeared to have been made to substitute it for the scarce crystalline flake.

Imports of natural graphite were up 21%, but the entire gain was in the amorphous form. Imports of crystalline flake slumped to 53% of the 1972 level. A steady rise continued in exports of natural graphite,

which were 9% greater than in the previous year.

Demand continued its strong growth for a third consecutive year, compounding the already difficult supply problem. Some uses, particularly for crucibles, showed declines which appeared to have resulted from the inadequacy of supplies rather than any decline of industrial demand.

The manufactured graphite industry enjoyed another booming year as production registered an 11% gain. Almost all segments of the industry showed improved results compared with 1972 production, and prospects for 1974 remained good.

Table 1.-Salient natural graphite statistics

|                                                                                                                                                | 1969    | 1970      | 1971      | 1972      | 1973    |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|-----------|-----------|---------|
| United States:  Consumption e 1do  Exportsdo  Valuethousands  Imports for consumption 2short tons  Valuethousands  World: Productionshort tons | 58,000  | 50,000    | 60,000    | 70,000    | 79,000  |
|                                                                                                                                                | 10,264  | 5,783     | 5,733     | 7,289     | 7,953   |
|                                                                                                                                                | \$782   | \$701     | \$680     | \$888     | \$992   |
|                                                                                                                                                | 58,459  | 66,449    | 57,756    | 64,135    | 77,376  |
|                                                                                                                                                | \$2,419 | \$3,027   | \$2,727   | \$3,847   | \$4,455 |
|                                                                                                                                                | 414,194 | r 433,047 | r 433,925 | * 397,682 | NA      |

<sup>&</sup>lt;sup>e</sup> Estimated. <sup>r</sup> Revised. NA Not available.

1 Estimated demand has been substituted for the consumption survey results previously published,

1 Estimated demand has been substituted for the consumption survey results previously published,

1 Estimated demand has been substituted for the consumption survey results previously published,

2 In the consumption of the consumption survey results previously published,

2 In the consumption survey results previously published,

2 In the consumption survey results previously published,

2 In the consumption survey results previously published,

2 In the consumption survey results previously published,

3 In the consumption survey results previously published,

3 In the consumption survey results previously published,

4 In the consumption survey results previously published,

5 In the consumption survey results previously published,

6 In the consumption survey results previously published,

6 In the consumption survey results previously published,

6 In the consumption survey results previously published,

6 In the consumption survey results previously published,

6 In the consumption survey results previously published,

6 In the consumption survey results previously published,

6 In the consumption survey results previously published,

6 In the consumption survey results previously published,

6 In the consumption survey results previously published,

6 In the consumption survey results previously published,

6 In the consumption survey results previously published,

6 In the consumption survey results previously published,

6 In the consumption survey results previously published,

7 In the consumption survey results previously published,

8 In the consumption survey results previously published,

9 In the consumption survey results previously published,

9 In the consumption survey results previously published,

9 In the consumption survey results previously published,

9 In the consumption survey results previously published,

9 In the consumption survey result

<sup>2</sup> Includes some manufactured graphite.

Legislation and Government Programs.—As part of Administration efforts to reduce strategic stockpile inventories, more than half of the natural graphite in the stockpiles was declared surplus by the General Services Administration (GSA). Of the three types of stockpiled graphite, about half of the Malagasy and Sri Lanka types, and all graphite of other types were placed on the surplus list. However, Congressional authorization for their disposal had not

been obtained, and no sales were made. All stockpiled graphite which had previously been authorized for disposal had been sold, although some shipments were still being made during the year.

Responsibility for determining requirements for strategic materials was transferred from the Office of Emergency Preparedness to GSA. Authorization for disposal, however, still required congressional action.

<sup>&</sup>lt;sup>1</sup> Economist, Division of Nonmetallic Minerals —Mineral Supply.

| Table 2.—Government | yearend | stocks | of | natural | graphite |
|---------------------|---------|--------|----|---------|----------|
|                     | (Short  | tons)  |    |         |          |

| Types of graphite                                         | National<br>stockpile | Supplementa:<br>stockpile | Total all<br>stockpiles |
|-----------------------------------------------------------|-----------------------|---------------------------|-------------------------|
| Malagasy crystalline flake:                               |                       |                           |                         |
| Objective<br>Uncommitted excess                           | 4,900<br>14,167       |                           | 4,900<br>14.167         |
| Total                                                     | 19,067                |                           | 19,067                  |
| ObjectiveUncommitted excess                               | 1,835                 | 1,465                     | 3,300                   |
| 10081                                                     | 3,395<br>5,230        | 1 445<br>1 1,910          | 3,840<br>7,140          |
| Fri Lanka amorphous lump: Objective Uncommitted execution |                       |                           | .,140                   |
| Uncommitted excess                                        | 2,792<br>= 1,503      | 308<br>893                | 3,100<br>2,399          |
| Other than Malagasy and Sai Table                         | ² 4,29ŏ               | 1,204                     | 5,499                   |
| crystalline: Uncommitted excess                           | <sup>3</sup> 2,802    |                           | 2,802                   |

Includes 1 short ton nonstockpile-grade material.

Source: General Services Administration. Stockpile Report to the Congress, July December 1973. Statistical Supplement. 1974, pp. 15-16. And other General Services Administration information.

### **PRODUCTION**

In 1973 natural graphite production in the United States was again from a single location, the Southwestern Graphite Co. mine near Burnet, Tex. Shipments from the mine were slightly lower than in 1972, and continued to account for only a small portion of the domestic supply. Other graphite deposits in New York, Alabama, and Texas continued to draw the interest of investigators contemplating the development or redevelopment of additional mines, but no mine openings occurred or were in prospect at yearend.

Production of manufactured graphite continued its upward trend in 1973. Output of 306,212 tons was up 11% from the 275,311 tons produced in 1972. Total value of production increased 20% to \$220.0 million from \$183.6 million the previous year.

The use of powder and scrap material declined from 29,479 tons and \$4.1 million in 1972 to 25,722 tons and \$3.7 million in

Metallurgical use of manufactured graphite again showed advances as the metal industries continued at high rates of production. Other uses, such as mechanical products made of graphite, also continued to advance. Graphite fiber has apparently strengthened its initial commercial acceptance in sporting goods such as golf clubs and tennis rackets. The first experimental applications have been made in the automotive field, particularly in the racing area, where the strength to weight ratio is important. These are the first non-defense applications of the graphite fiber materials.

Table 3.-Production of manufactured graphite in the United States in 1973, by use (Short tons and thousand dollars)

| ( thousand donars)                                                     |          |         |
|------------------------------------------------------------------------|----------|---------|
| Use                                                                    | Quantity | 77.1    |
| Synthetic Graphite Products                                            | Quantity | Value   |
|                                                                        |          |         |
| Crucibles & vessels                                                    | 216,043  | 147.240 |
| Crucibles & vessels  Motor brushes & machine shapes  Unmachined shapes | 5,971    | 11,650  |
| Unmachined shapes                                                      | 5,345    | 11,145  |
| Cloth & fibers Other 1                                                 | 7,890    | ,       |
| Other 1 Total                                                          | 72       |         |
|                                                                        | 70,891   | 49,931  |
| Synthetic Graphite Powder & Scrap                                      | 306,212  | 219,966 |
| Grand total                                                            | 25,722   | 3,742   |
| Grand total                                                            | 331,934  | 223,708 |
| Quantity includes anodes, high modulus fibers & other Veles            |          |         |

Quantity includes anodes, high modulus fibers & other. Value includes anodes, unmachined shapes, cloth, fiber, high modules fibers & other.

<sup>&</sup>lt;sup>2</sup> Includes 56 short tons nonstockpile-grade material. <sup>3</sup> Includes 867 short tons nonstockpile-grade material.

Manufactured graphite was produced at 25 plants in 1973, and some additional production for in-house use was likely.

Therefore, the following list is probably not complete:

| Company                                      | Plant location           |
|----------------------------------------------|--------------------------|
| Airco, Inc., Speer Div                       | Niagara Falls, N.Y.      |
| Do                                           | Punxsutawney, Pa.        |
| Do                                           | St. Marys, Pa.           |
| Avco Corp., Avco Systems Div                 | Lowell, Mass.            |
| The Carborundum Co., Graphite Products Div   | Hickman, Ky.             |
| Do                                           | Sanborn, N.Y.            |
| Celanese Corp., Celanese Research Lab        | Summit, N.J.             |
| Fiber Materials, Inc                         | Graniteville, Mass.      |
| Great Lakes Carbon Corp                      | Rosamond, Calif.         |
| Do                                           | Niagara Falls, N.Y.      |
| Do                                           | Morganton, N.C.          |
| Hercules, Inc                                | Bacchus, Utah            |
| HITCO                                        | Gardena, Calif.          |
| Morganite Modmor, Inc                        | Costa Mesa, Calif.       |
| Ohio Carbon Co                               | Cleveland, Ohio          |
| Pfizer, Inc.; Minerals Pigments & Metals Div | Easton, Pa.              |
| Does Crophite Inc                            | Decatur, Tex.            |
| Polycarbon, Inc                              | No. Hollywood, Calif.    |
| Stackpole Carbon Co                          | Lowell, Mass.            |
| Do                                           | St. Marys, Pa.           |
| Super Temp Co                                | Santa Fe Springs, Calif. |
| Union Carbide Corp                           | Niagara Falls, N.Y.      |
| Do                                           | Yabucoa, P.R.            |
| Do                                           | Columbia, Tenn.          |
| Wickes Engineered Materials                  | Saginaw, Mich.           |

An expansion of the graphite fiber production facility at Bacchus, Utah, was announced by Hercules, Inc. New equipment will enable a doubling of the plant's out-

#### put.2

# **CONSUMPTION AND USES**

Demand for natural graphite remained on a strong uptrend in 1973, and the growth pattern was similar to that of 1972. Consumption in steel mills and foundries exhibited continued strength and again accounted for most of the increase. Use of graphite in brake and clutch linings and powdered metals was also considerably higher than in 1972. Consumption in the manufacture of crucibles and associated products declined sharply, probably result-

ing from the difficulty in obtaining Malagasy flake which is particularly important to that industry.

Total consumption of natural graphite was considerably greater than that shown in table 4, which reports only the results of a survey of known graphite consumers. Total graphite consumption is estimated to have been in the neighborhood of 79,000 tons in 1973.

<sup>&</sup>lt;sup>2</sup> Chemical Engineering. CPI News Briefs. V. 80, No. 29, Dec. 24, 1973, p. 78.

| Table 4.—Consumption 1 of natural | graphite ir  | ı the | United | States | in 1973, | by use |
|-----------------------------------|--------------|-------|--------|--------|----------|--------|
|                                   | (Short tons) |       |        |        |          | •      |

|                                                    | Crys          | talline   | Amorphous 2   |           | Total           |                        |
|----------------------------------------------------|---------------|-----------|---------------|-----------|-----------------|------------------------|
| Use                                                | Quan-<br>tity | Value     | Quan-<br>tity | Value     | Quan-<br>tity   | Value                  |
| Batteries                                          | 436           | \$243,383 | 508           | \$368,204 | 944             | \$611,587              |
| Brake linings                                      | 681           | 339,258   | 1,914         | 726,816   | 2.595           | 1.036.074              |
| Carbon products 3                                  | 629           | w         | 421           | w         | 1.050           | 645,751                |
| Crucibles, retorts, stoppers, sleeves, and nozzles | 2,692         | 586,351   | 175           | 67.861    | •               | •                      |
| Foundries                                          | 4,606         | W         | 18,159        | W         | 2,867           | 654,212                |
| Lubricants 4                                       | 1,364         | 788,678   | 2,331         | 652,820   | 22,765<br>3,695 | 3,819,752<br>1,441,498 |
| Pencils                                            | 1,472         | 711,416   | 746           | 193,117   | 2,218           | 904,533                |
| Powdered metals                                    | 365           | w         | 720           | w         | 1.085           | 526,766                |
| Refractories                                       | 961           | 112,870   | 7,418         | 575,114   | 8,379           | 687,984                |
| Rubber                                             | 174           | 110,291   | 224           | 51,398    | 398             | 161,689                |
| Steelmaking                                        | 556           | 93,843    | 11.249        | 4,095,995 | 11,805          | 4.189.838              |
| Other 5                                            | 4,297         | 877,059   | 351           | 200.997   | 4.648           | 1,078,056              |
| Total                                              | 18,233        | 7,247,266 | 44,216        | 8,540,474 | 62,449          | 15,787,740             |

W Withheld to avoid disclosing individual company confidential data; included in "Total."

1 Consumption data incomplete. Excludes small consuming firms.

2 Includes mixtures of natural and manufactured graphite.

3 Includes bearings and carbon brushes. Previously titled "Other mechanical products."

Includes paints and polishes, antiknock and other compounds, drilling mud, electrical and electronic products, insulation, magnetic tape, small packages, and miscellaneous and proprietary

#### **PRICES**

Impelled by the continuing world shortage, graphite prices rose sharply in 1973. Since most of the U.S. supply is imported, domestic prices responded to the higher cost of foreign supplies. Prices of all the principal types of crystalline flake graphite imported by the United States were significantly above their 1972 levels, with increases ranging from 20% to 35%. Malagasy crystalline flake, the most important type of flake graphite and the one with the greatest decline in production, rose an average of 35% in price during the year. Mexican graphite, however, the principal amorphous type imported, remained unchanged in price. As a consequence, imports of Mexican graphite were up 33% in quantity compared with those of 1972.

Price quotations represent a range of prices. Actual prices are often on a negotiated basis between the buyer and seller. Therefore, the quotations which follow provide only a general guide to graphite prices and their trends. Another source of information, for imported graphite, is the average value per ton of the different classes of imports, which can be computed from table 6, although it should be kept in

mind that these represent mainly shipments of unprocessed graphite.

No published source of domestic price quotations has been found which reflects the increases that have taken place in the last couple of years. Price information can be obtained from the companies which produce and import natural graphite. Representative prices of several types of imported graphite, published in the Engineering and Mining Journal, are shown below. All prices are f.o.b. the foreign port or border station and have been converted from metric tons.

|                                                                                                | Per short ton       |                      |  |  |
|------------------------------------------------------------------------------------------------|---------------------|----------------------|--|--|
|                                                                                                | 1972                | 1973                 |  |  |
| Flake and crystalline graphite, bags:                                                          |                     |                      |  |  |
| Germany, West S                                                                                | \$163-\$929         | \$204-\$1,179        |  |  |
| Malagasy<br>Republic<br>Norway                                                                 | 122- 336<br>91- 145 | 159- 476<br>109- 181 |  |  |
| Sri Lanka                                                                                      | 152- 259            | 181- 318             |  |  |
| Amorphous, nonflake<br>cryptocrystalline graphit<br>(80% to 85% carbon):<br>Korea, Republic of |                     | 101 010              |  |  |
| (bags)                                                                                         | 22                  | 27                   |  |  |
| Mexico (bulk)                                                                                  | 22                  | 22                   |  |  |

#### FOREIGN TRADE

A further rise in exports of natural graphite occurred in 1973, continuing the uptrend begun the year before. Exports gained 9% to 7,953 tons compared with 7,289 tons in 1972. The principal buyer again was Canada which took 3,793 tons. Other countries purchasing several hundred tons apiece were the United Kingdom, Mexico, and Japan; and graphite was exported to 28 additional countries.

Imports of natural graphite increased sharply, but the rise did not signal an end to the graphite supply problem. The entire increase occurred in amorphous graphite imports from Mexico, while imports of crystalline graphite fell by more than 3,000

tons due to a 53% decline in receipts from the Malagasy Republic. The figures would appear to indicate an attempt on the part of industry to substitute the more plentiful amorphous graphite in products normally requiring crystalline flake, with a consequent increase in the quantities needed. Small increases occurred in imports of crystalline and amorphous graphite from the People's Republic of China and lump graphite from Sri Lanka, but the amounts were insignificant beside the shortfall in Malagasy flake.

587

Tables 5 and 6 give statistics on U.S. exports and imports of natural graphite in 1973.

Table 5.-U.S. exports of natural graphite, by country

|                          | Amorphous,<br>or chip,      | crystalli<br>and na | tural, n.e                  | .c.     |
|--------------------------|-----------------------------|---------------------|-----------------------------|---------|
|                          | 1972                        |                     | 19'                         |         |
| Destination              | Quantity<br>(short<br>tons) | Value               | Quantity<br>(short<br>tons) | Value   |
| Argentina                | 35                          | \$4,737             | 17                          | \$2,327 |
| Australia                | 174                         | 15,487              | 280                         | 30,585  |
| Belgium-Luxembourg       | 60                          | 8,258               | 48                          | 6,522   |
| Brazil                   | 85                          | 10,905              | 140                         | 17,679  |
| Canada                   | 3,523                       | 411,872             | 3,793                       | 454,391 |
| Chile                    | 30                          | 4,038               | 10                          | 1,481   |
| Colombia                 |                             |                     | 67                          | 9,691   |
| Denmark                  | 11                          | 951                 |                             |         |
| France                   | 169                         | 21,809              | 253                         | 32,245  |
| Germany, West            | 454                         | 58,474              | 104                         | 14,170  |
| India                    |                             |                     | 206                         | 26,210  |
| Iran                     | 7                           | 871                 | 64                          | 8,197   |
| Italy                    | 286                         | 26,933              | 29                          | 4,855   |
| Jamaica                  | 20                          | 1,905               | 21                          | 2,720   |
| Japan                    | 539                         | 68,610              | 449                         | 59,044  |
| Malaysia                 |                             |                     | 81                          | 10,301  |
| Mexico                   | 396                         | 51,692              | 633                         | 79,788  |
| Netherlands              | 135                         | 18,618              | 59                          | 6,500   |
| New Zealand              | 20                          | 1,450               |                             | -,      |
|                          | 7                           | 840                 |                             |         |
| Norway                   | 102                         | 14,856              | 21                          | 3,535   |
| Panama                   | 95                          | 14,150              | 55                          | 8,074   |
| Peru                     | 4                           | 511                 | 124                         | 14,552  |
| Philippines              | 38                          | 3.988               |                             | 11,002  |
| Portgual                 | 79                          | 6,688               | 216                         | 28,060  |
| Singapore                | • •                         | 4.390               | 210                         | 2,685   |
| South Africa, Repulic of | 50<br>6                     | 704                 | 61                          | 8,659   |
| Sweden                   | =                           |                     |                             | 1,422   |
| Switzerland              | 10                          | 1,636               | 11                          | 1,422   |
| Taiwan                   | 10                          | 746                 | 004                         | 110 174 |
| United Kingdom           | 518                         | 73,549              | 924                         | 118,174 |
| Venezuela                | 381                         | 53,533              | 193                         | 32,104  |
| Other                    | 45                          | 6,089               | 73                          | 8,333   |
| Total                    | 7,289                       | 888,290             | 7,953                       | 992,304 |

3.847

64,135

99

2.643

56,599

7.043

2,569

111118

118 118 118

Korea, Republic of

Japan

Malagasy Republic Mexico -----

Switzerland Sri Lanka

/enezuela

Total

France Germany, West

China, People's Republic of

rance

Canada

Australia

Total

Hong Kong -----

Table 6.-U.S. imports for consumption of natural and artificial graphite, by country

Value Total  $^{40}_{2,810}$ Value 99 Artificial 1 325 1,953 Value Other natural Quan-40 2,810 tity (Short tons and thousand dollars) Value Crystalline lump, chip or dust Natural tity 269 Value 1 184 Crystalline flake  $5,8\overline{55}$ tity 4.882 U.S.S.R United Kingdom Year and country Germany, West Taiwan Thailand China, People's Republic of South Africa, Republic of Sri Lanka Switzerland Tong Kong Austria -----Korea, Republic of Malagasy Republic Mexico -----Norway rance apan

3,713

77.376

109

#### WORLD REVIEW

World production of natural graphite increased slightly in 1973, but the gain was not sufficient either to overcome the decline of the previous year or to keep pace with the growing international market.

Furthermore, a large part of the increase was in the amorphous form of graphite in Mexico and the Republic of Korea, while a crucial decline in output of the shortageplagued crystalline graphite occurred in the Malagasy Republic. As a result, the overall situation in world markets was little changed from that which prevailed in 1972. Crystalline graphite remained in short supply and became increasingly costly, while supplies of amorphous graphite continued to be adequate.

India.-Plans to set up a graphite beneficiation plant in the Palamau district of Bihar State were announced by the Bihar Mineral Development Corp. No further details on the plant or its source of ore were given.3

Malagasy Republic.-Problems stemming from the continuing tense political climate in the country as a whole, and particularly in the graphite-producing region around Tamatave, caused a sharp drop in output during the year. Inability of the Frenchowned and relatively low-paying graphite

mines to obtain sufficient labor was a major cause of the production decline and tended to discourage owners from undertaking needed expansion projects. Despite recurrent rumors, however, the government still showed no inclination to nationalize the industry. An additional serious difficulty arose when an ocean-shipping line refused to handle graphite shipments because of the risk of contaminating other cargo. Negotiations were under way at yearend, but the problem had not been resolved.4

Sri Lanka.-Production rose toward its former level as industry adjusted to government ownership. In addition, shipments to the United States became more regular, in contrast to the erratic pattern of receipts in 1972.

Other countries.-No further announcements were made concerning graphite discoveries near Niteroi, Brazil, and Razanj, Yugoslavia, that were reported a year ago, indicating that development of the deposits had not taken place.

Table 7.-Graphite: World production by country (Short tons)

| Country 1                   | 1971                | 1972     | 1973 P                  |
|-----------------------------|---------------------|----------|-------------------------|
| Argentina                   | 162                 | • 165    | e 165                   |
| Austria                     | 23.581              | 20,693   | 18,972                  |
| Brazil                      | r 3.013             | 3,458    | NA                      |
| Burma                       | 168                 | 239      | NA                      |
| China. People's Republic of | 33.000              | 33,000   | 33,000                  |
| Germany, West               | <sup>2</sup> 13,986 | 12,509   | NA                      |
| Italy                       | 701                 | 852      | <ul><li>4,400</li></ul> |
| Japan                       | 1.162               | 940      | e 880                   |
| Korea, North e              | r 85,000            | r 85,000 | 85.000                  |
| Korea, Republic of          | 79,934              | 44,939   | NA                      |
| Malagasy Republic           | r 22,174            | 20,194   | • 15,000                |
| Mexico                      | 56.125              | 60,748   | • 65,000                |
| Norway                      | r 9.136             | 9.540    | 3 7,711                 |
| Romania e                   | 6,600               | 6,600    | 6,600                   |
| Sri Lanka                   | 7,921               | 7,871    | • 7.900                 |
| South Africa, Republic of   | 1.262               | 934      | e 860                   |
| U.S.S.R. e                  | r 90,000            | r 90,000 | 90,000                  |
| United States               | w                   | w        | W                       |
| Total                       | r 433,925           | 397,682  | NA                      |

NA Not available. W Withheld to avoid disclosp Preliminary. Revised. e Estimate.

<sup>&</sup>lt;sup>3</sup> Industrial Minerals. Company News and Mineral Notes. No. 72, September 1973, p. 43. <sup>4</sup> U.S. Department of State, Washington, D.C. Telegram 40350, Feb. 28, 1974, 2 pp.; and discussion with members of the graphite industry.

ing individual company confidential data.

<sup>1</sup> In addition to the countries listed, Czechoslovakia, India, Southern Rhodesia, and the Territory of South-West Africa produce graphite, but available information is inadequate to make reliable estimates of output levels.

<sup>&</sup>lt;sup>2</sup> In part produced from imported crude graphite. 3 Output of A/S Skaland Grafitverk only.

#### **TECHNOLOGY**

While research efforts continued to be graphite concentrated on manufactured and its uses in 1973, several new developments occurred either pertaining to natural graphite or applicable to both natural and manufactured graphite.

Graphite fluoride is one of many materials being studied as a solid lubricant and shows promise of being useful under high-temperature conditions. Tests of the wear life of graphite fluoride were described in a research report,5 and a new product consisting of graphite fluoride with polyimide varnish as a binder was announced.6 A new waterbased forging lubricant, consisting primarily of graphite, was also described,7 and the addition of graphite to an iron base cermet material will allow it to function in conditions of dry friction.8

The increasing importance of powder metallurgy was stressed in several speeches and articles during the year, with particular emphasis on its application to the automotive industry.9 Much speculation centered on its possible use in parts for the new rotary engine.10 Graphite is frequently used to supply the carbon in powdered steels. A research study of a powdered material containing graphite and tantalum carbide was also described.11

Also in the area of new materials, several processes for coating or impregnating graphite were announced.12 These processes yielded graphites of higher strength and possibly improved resistance to oxidation. A patented refractory compound containing graphite, alumina, and silicon carbide, developed in Japan, was claimed to have good resistance to erosion, spalling, and oxidation.13

Fiber-reinforced composite materials once again held the center of attention for researchers in manufactured graphite during 1973. Graphite fiber costs dropped as low as the \$40 to \$50 per pound range, opening up new opportunities for commercial applications outside the aerospace field.14 Improved types were also offered, including graphite ribbon.15 However, research also moved forward on competing materials, and the future prospects of these graphitic materials remained uncertain.16

Graphite fiber composites have found several applications in the sporting goods area. Graphite golf club shafts have proved popular,17 and graphite tennis racket frames are also in use. Racing car builders have taken advantage of the weight-reducing feature of composites in such components as wheels, bumpers, and dashboards,18 and the horse racing industry has found an application for graphite shafts in sulky rigs.19 Additional potential uses may be developed for various types of machinery.20

Numerous studies of new composite materials and processing methods were conducted. These studies covered a wide range of subjects including basic physical

49 pp.

<sup>6</sup> Materials Engineering. Materials Outlook. V.

77, No. 3, March 1973, p. 21.

American Metal Market. Forging Lubricant Is Water-Based. V. 80, No. 113, June 11, 1973,

Wright-Patterson Air Force Base. Cermet Antifriction Material. Foreign Technol. Div., Dayton, Ohio, Apr. 30, 1973, 5 pp.
 American Metal Market. Sees Total '73 Use of Powdered Metals Up. V. 80, No. 138, July 17, 1979

17, 1973, p. 1.

——. Turbine Engines, Says GE Exec., Need New Metallurgical, Processing Methods. V. 80, No. 248, Dec. 24, 1973, p. 4.

No. 248, Dec. 24, 1973, p. 4.

<sup>10</sup> American Metal Market. Delco Moraine in Ohio to Build Rotors for GM's Wankel Engine. V. 80, No. 214, Nov. 5, 1973, p. 11.

<sup>11</sup> Los Alamos Scientific Laboratory. Special Graphites and Carbide-Graphite Composites Developed at LASL. Los Alamos, N.Mex., April 1973, 67 pp.

<sup>12</sup> Ivon Age. Process Develops Super Hard

12 Iron Age. Process Develops Super-Hard Surface on Graphite. V. 212, No. 19, Nov. 8, 1973, p. 23.

Materials Engineering. Applications Prove the

Materials Engineering. Applications Prove the Worth of High-Heat Resistant Plastics. V. 77, No. 2, February 1973, p. 41.

———. Want Tougher Carbon and Graphite? Try Metal or Ceramic Impregnation. V. 78, No. 3, September 1973, pp. 42-45.

13 Refractory Institute. Patents of Possible Interest for Refractory Manufacturer. Oct. 16, 1079 2 6

Interest for Refractory Manufacturer. Oct. 16, 1973, p. 6.

14 Chemical Engineering. RP Back on the Track. V. 80, No. 11, May 14, 1973, pp. 94, 96.
Materials Engineering. Graphite Fibers Are Down in Cost, Up in Performance. V. 77, No. 4, April 1973, p. 35.

15 Pfizer, Inc. Research Study in Evaluation of Graphite Ribbon Composites. Easton, Pa., December 1972, 99 pp.

16 Materials Engineering. Materials Outlook: Boron and Graphite Challenged for Future Engine Parts. V. 78, No. 6, November 1973, p. 19.

Physical Process of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post of the Post o

pp. 63-65.

19 Materials Engineering. Materials Applica-ons. V. 77, No. 3, March 1973, p. 22. <sup>20</sup> Hercules, Inc. Hercules Annual Report 1973.

<sup>&</sup>lt;sup>5</sup> Mecklenburg, Karl R., and B. D. Mc Connell. Graphite Fluoride: A Proposed Solid Lubricant. Midwest Res. Inst. Kansas City, Mo. April 1973,

GRAPHITE 591

analysis of graphite,21 the properties obtained by combining various materials in composites,22 and new methods of processing and fabrication.23 The development of composites containing graphite and a metal continued to pose problems, but research results with aluminum looked promising.24 One potential approach under study is that of bonding a graphite-epoxy composite to a metal.25

In addition to fibers and composites, other types of manufactured graphite materials were developed during the year.

One was a carbon-graphite composition for use in making seal rings, bearings, and rotor vanes usable at elevated temperatures.26 Other types were developed for mold materials in the casting of glass, ceramics, and metals.27 A laminate containing steel, graphite and asbestos, which is expected to withstand the high temperatures of rocket nozzles, was also patented.28 Finally, a product combining graphite ribbon with other forms of the material is expected to alleviate certain problems encountered in oxidative electrosyntheses.29

<sup>21</sup> Nature Physical Science. Two-Dimensional Lattice Orientation and Three-Dimensional Crystallinity in Carbon Fibers. V. 238, Aug. 28, 1972, pp. 137-39.

<sup>22</sup> American Metal Market. LTV Awarded Air Force Pact for Graphite/Boron Wing Panels. V. 80, No. 141, July 20, 1973, p. 5.

Industrial Research. Graphite Polyimide for Lightweight Panels. V. 15, No. 5, May 1973, pp. 22.

Lightweight Panels. V. 15, No. 5, May 1973, pp. 22.

Metal Progress. Graphite-Polyimide Wing Box Box Beam Includes Titanium Parts. V. 103, No. 1, January 1973, p. 60.

Randolph, R. E., J. Witzel, J. N. Burns, H. L. Pritt, and J. C. Tsamisis. Graphite Composite Landing Gear Components—Side Brace Assembly and Torque Link for A37B Aircraft. Hercules, Inc., Magna, Utah, Bacchus Works, May 15, 1973, 150 pp.

Warner S. B., L. H. Peebles, Jr., and D. R. Uhlmann. Plasticization of Carbon Fibers. Mass. Inst. of Technol., Cambridge Department of Met. and Materials Sci. No. 9, 1973, 18 pp.

Materials Engineering. Graphite-Aluminum Hot Pressing Eased. V. 78, No. 7, December 1973, pp. 58-59.

Metal Progress. Graphite-Aluminum Combines Lightness, Dimensional Stability. V. 103, No. 1, January 1973, p. 57.

January 1973, p. 57.

"Mustard Plaster" <sup>25</sup> Industrial Research. Mates Metals and Composites. March 1973, p. 23. V. 15, No. 3,

marcn 1976, p. 25.

26 Materials Engineering. Machinable Carbon-Graphite Is Very Corrosion Resistant. V. 77,
No. 6, June 1973, p. 49.

Union Carbide Corp., Carbon Products Div.
Development of Seal Ring Carbon-Graphite Materials (Tasks 5, 6, and 7). Parma, Ohio, Aug.
10, 1972, 120 pp.

—. Development of Seal Ring Carbon-Graphite Materials (Tasks 8, 9, 10). Parma, Ohio, January 1973, 86 pp.

<sup>27</sup> Ceramic Industry. Mold Material for Glass, Ceramics, and Metal. V. 101, No. 5, November 1973, p. 7.

Materials Engineering. Two Graphites for Glass Molds and Inserts. V. 78, No. 7, December 1973, p. 63.

cember 1973, p. 63.
Salinski, Harry V. Shell Mold Composition.
U.S. Patent 3,656,983, Apr. 18, 1972, 4 pp.

<sup>23</sup> Meraz, Daniel, Jr. Method of Making a
Steel, Graphite, Phenolic Asbestos Laminate.
U.S. Patent 3,723,214, Mar. 27, 1973, 3 pp.

<sup>26</sup> Stock, John T., and Joseph P. Sapio. The
Drum-Activated Graphite Ribbon Electrode. J.
Electrochemical Soc., v. 120, No. 10, October
1973, np. 1331-1332. 1973, pp. 1331-1332.



# Gypsum

## By Avery H. Reed <sup>1</sup>

The gypsum industry continued to operate at record levels in 1973. Output of crude and calcined gypsum set new annual records. Imports were about the same as in 1972. Sales of gypsum products were a record 20.6 million tons.

American Cyanamid Co. planned to build a \$16 million plant at Savannah, Ga., to recover byproduct gypsum from its ilmenite plant sludge wastes. The gypsum will be made into wallboard. The Flintkote Co. purchased the Florence, Colo., mine and plant of Johns-Manville Corp. Kaiser Gypsum Co. Inc. planned to expand its New Jersey and Florida plants 30%. National Gypsum Co. planned to build a \$60 million wallboard plant at Wilmington, N.C.

Energy.—The Bureau of Mines completed a comprehensive canvass of energy used in the mineral industries in 1973. All gypsum mines and calcining plants were covered.

The canvass showed that the gypsum industry depended on the use of natural gas and petroleum products for most of its energy requirements. Neither coal nor coke was used. Only 7% of the total energy used was purchased electricity.

At gypsum mines, 51% of the energy used was from diesel fuel, and 38% was purchased electricity. Most of this was used by heavy excavating equipment. At calcining plants, 73% of the energy used was from natural gas and 15% was from heavy fuel oil. Most of this was used for heat in the calciners. Total energy used was 14.8 billion kilowatt-hours.

The gypsum industry used 35 billion cubic feet of natural gas, 51 million gallons of heavy fuel oil, 991 million kilowatt-hours of purchased electricity, 18 million gallons of diesel oil, 8 million gallons of liquefied petroleum gases (LPG), and 1 million gallons of gasoline. On a total energy basis, only 3% was used in mining.

Petroleum products required for mining crude gypsum were 392 gallons of diesel fuel, 49 gallons of heavy fuel oil, 29 gallons of gasoline, and 7 gallons of LPG for each thousand tons produced. For calcining gypsum requirements were 3,696 gallons of heavy fuel oil, 961 gallons of diesel oil, 566 gallons of propane, and 69 gallons of gasoline for each thousand tons of calcined gypsum produced. In addition, 2.6 million

Table 1.-Salient gypsum statistics (Thousand short tons and thousand dollars)

|                                 | 1969    | 1970    | 1971     | 1972     | 1973    |
|---------------------------------|---------|---------|----------|----------|---------|
| United States:                  |         |         |          |          |         |
| Active mines and plants 1       | 114     | 108     | 107      | 108      | 112     |
| Crude: 2                        |         |         |          |          |         |
| Mined                           | 9,905   | 9,436   | 10,418   | 12,328   | 13,558  |
| Value                           | 38,354  | 35,132  | 39,057   | 48,504   | 56,650  |
| Imports for consumption         | 5,858   | 6,128   | 6,094    | 7,718    | 7,661   |
| Calcined:                       | •       | •       |          |          |         |
| Produced                        | 9.324   | 8,449   | 9,526    | 12,005   | 12,592  |
| Value                           | 143,466 | 132,047 | 151,991  | 195,862  | 205,326 |
| Products sold (value)           | 414,880 | 353,474 | 435,257  | 560,569  | 632,809 |
| Exports (value)                 | 3,446   | 3,475   | 4,214    | 5,276    | 7,360   |
| Imports for consumption (value) | 14,602  | 16,581  | 16,332   | 22,042   | 21,937  |
| World: Production               | 57,581  | 56,868  | r 58,421 | r 66,142 | 67,032  |

Revised.

<sup>&</sup>lt;sup>1</sup> Supervisory physical scientist, Division of Non-metallic Minerals-Mineral Supply.

<sup>&</sup>lt;sup>1</sup> Each mine, calcining plant, or combination mine and plant is counted as 1 establishment. <sup>2</sup> Excludes byproduct gypsum.

Table 2.—Energy materials used by the gypsum industry in 1973

| Source and unit                       | In<br>mining o | In In<br>mining calcining |                 |  |  |
|---------------------------------------|----------------|---------------------------|-----------------|--|--|
| Natural gas                           |                |                           |                 |  |  |
| million cubic feet<br>Heavy fuel oil  |                | <b>34</b> ,758            | 34,758          |  |  |
| thousand gallons<br>Electricity       | 658            | 50,113                    | 50,771          |  |  |
| thousand kilowatt-hours<br>Diesel oil | 164,699        | 826,307                   | 991,006         |  |  |
| thousand gallons<br>LPGdo             | 5,320<br>99    | 13,030<br>7,674           | 18,350<br>7,773 |  |  |
| Gasolinedo                            | 397            | 939                       | 1,336           |  |  |

cubic feet of natural gas was required per thousand tons calcined.

Cost of energy used in the gypsum industry was estimated at \$2.3 million for mining and \$30.8 million for calcining. Energy cost per ton of crude gypsum was estimated at \$0.17 per ton; the cost per ton of calcined gypsum was \$2.45.

Each ton of gypsum mined required 32 kilowatt-hours of energy, and each ton of gypsum calcined required 1,142 kilowatt-hours.

Table 3.—Energy materials required, per thousand tons of product, by the gypsum industry in 1973

| Source and unit                                                                                                                   | In<br>mining             | In<br>calcining               |
|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------|
| Natural gas_thousand cubic feet<br>Heavy fuel oilgallons<br>Electricitykilowatt-hours<br>Diesel oilgallons<br>LPGdo<br>Gasolinedo | 12,000<br>392<br>7<br>29 | 3,696<br>61,000<br>961<br>566 |

Table 4.-Energy used by the gypsum industry in 1973

(Thousand kilowatt-hours)

| Source                                                         | In mining                                       | Percent                 | In calcining                                                       | Percent                 | Total                                                              | Percent                 |
|----------------------------------------------------------------|-------------------------------------------------|-------------------------|--------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------|-------------------------|
| Natural gas Heavy fuel oil Electricity Diesel oil LPG Gasoline | 28,859<br>164,699<br>216,183<br>3,801<br>14,534 | 7<br>38<br>51<br>1<br>3 | 10,496,916<br>2,197,901<br>826,307<br>529,486<br>294,612<br>34,377 | 73<br>15<br>6<br>4<br>2 | 10,496,916<br>2,226,760<br>991,006<br>745,669<br>298,413<br>48,911 | 71<br>15<br>7<br>5<br>2 |
| Total                                                          | 428,076                                         | 100                     | 14,379,599                                                         | 100                     | 14,807,675                                                         | 100                     |

Table 5.—Cost of energy used in the gypsum industry in 1973

| Activity prod       |                             |                        |               | Energy used                          |                  |                |
|---------------------|-----------------------------|------------------------|---------------|--------------------------------------|------------------|----------------|
|                     | Gypsum<br>produced          | Thousand               | Kilowatt      | Cost                                 |                  |                |
|                     | (short tons) kilowatt hours | hours per<br>short ton | Total<br>cost | Per<br>thousand<br>kilowatt<br>hours | Per short<br>ton |                |
| Mining<br>Calcining | 13,557,973<br>12,591,586    | 428,076<br>14,379,599  | 32<br>1,142   | \$2,290,529<br>30,842,050            | \$5.35<br>2.15   | \$0.17<br>2.45 |

#### **DOMESTIC PRODUCTION**

Thirty-nine companies mined crude gypsum at 69 mines in 22 States. Of these mines, 57 were open pit and 12 were underground mines. Crude output increased 10% to 13,558,000 tons, a new annual record. Leading States were Michigan, California, Texas, Iowa, and Oklahoma. These 5 States, with 29 mines, accounted for 60% of the total domestic production.

Leading companies were United States Gypsum Co. (13 mines), National Gypsum Co. (8 mines), Georgia-Pacific Corp. (7 mines), The Flintkote Co. (3 mines), and H. M. Holloway Inc. (1 mine). These 5 companies, operating 32 mines, produced 73% of the total output of crude gypsum. Leading individual mines were U.S. Gypsum's Plaster City mine in California, U.S. Gypsum's Alabaster mine in Michigan, National's Tawas City mine in Michigan, Holloway's Lost Hills mine in California, and U.S. Gypsum's Southard mine in Oklahoma. These five mines accounted for 26% of the national total.

Fourteen companies calcined gypsum at 76 plants in 30 States. Output was a re-

GYPSUM 595

cord high of 12,592,000 tons, an increase of 5% over that of 1972. Leading States were Texas, California, New York, Iowa, and Indiana. These 5 States, with 29 plants, accounted for 44% of the total output.

Leading companies were U.S. Gypsum Co. (23 plants), National Gypsum Co. (19 plants), The Flintkote Co. (6 plants), Georgia-Pacific Corp. (10 plants), and Kaiser Cement & Gypsum Co. (5 plants). These 5 companies, operating 63 plants, accounted for 87% of the total domestic calcined output. Leading individual plants were U.S. Gypsum's Plaster City plant in

California, Georgia-Pacific's Acme plant in Texas, U.S. Gypsum's Shoals plant in Indiana, Weyerhaeuser Co.'s Hot Springs plant in Arkansas, and U.S. Gypsum's Fort Dodge plant in Kansas. These five plants accounted for 14% of the national total.

Valley Nitrogen Producers Inc., Occidental Petroleum Corp., and Collier Carbon & Chemical Corp. sold 322,000 tons of byproduct gypsum valued at \$1,931,000 for use in agriculture, in California.

The United States is the world's leading producer of gypsum, accounting for 20% of the total world output.

Table 6.-Crude gypsum mined in the United States, by State

(Thousand short tons and thousand dollars)

|                       | 1972            |                    |        | 1973            |          |        |
|-----------------------|-----------------|--------------------|--------|-----------------|----------|--------|
| State                 | Active<br>mines | Quantity           | Value  | Active<br>mines | Quantity | Value  |
| Arizona               | 4               | w                  | w      | 4               | 158      | 669    |
| California            | 5               | 1,525              | 4,965  | 5               | 1,778    | 5,834  |
| Colorado              | 4               | w                  | w      | 4               | 151      | 568    |
| Iowa                  | 5               | 1,380              | 5,714  | 5               | 1,470    | 6,324  |
| Michigan              | 5               | 1.650              | 7.267  | 5               | 1,882    | 8,538  |
| Nevada                |                 | 860                | 2.871  | 4               | 1.154    | 3,662  |
| New Mexico            | 3               | w                  | w      | 3               | 255      | 1,220  |
| New York              | 3               | 486                | 3,079  | 3               | 525      | 3,369  |
| Oklahoma              | š               | 1,196              | 3,888  | 7               | 1.429    | 5,796  |
| South Dakota          | ĭ               | 24                 | 43     | i               | w        | W      |
| Texas                 | 7               | $1.54\overline{2}$ | 5.284  | 7               | 1,616    | 6,469  |
|                       |                 | w                  | w      | ġ               | 231      | 1,134  |
| Utah                  |                 | 5                  | 13     | ĭ               | w        | w      |
| Washington            |                 | w                  | w      | 3               | 312      | 1,348  |
| WyomingOther States 1 | 11              | 3,660              | 15,380 | 14              | 2,597    | 11,719 |
| Total                 | 65              | 12,328             | 48,504 | 69              | 13,558   | 56,650 |

W Withheld to avoid disclosing individual company confidential data; included with "Other States." <sup>1</sup> Includes Louisiana, Montana, and Virginia, 1 mine each; Arkansas, Idaho (1973), Indiana, Kansas (1972), and Ohio, 2 mines each; Kansas (1973), 3 mines.

Table 7.-Calcined gypsum produced in the United States, by State

(Thousand short tons and thousand dollars)

|                | 1972             |          |         | 1973             |          |         |
|----------------|------------------|----------|---------|------------------|----------|---------|
| State          | Active<br>plants | Quantity | Value   | Active<br>plants | Quantity | Value   |
| California     | 7                | 1.154    | 12,036  | 7                | 1,309    | 14,870  |
| Florida        | 3                | 594      | 7,014   | 3                | 642      | 8,219   |
| Georgia        |                  | 702      | 12,984  | 3                | 699      | 12,370  |
| Iowa           |                  | 913      | 15.396  | 5                | 975      | 16,982  |
| Michigan       |                  | 536      | 10,640  | 4                | 596      | 11,677  |
| Nevada         |                  | 562      | 8.386   | 3                | 541      | 8,648   |
| New Jersey     |                  | 529      | 9,798   | 4                | 587      | 6.727   |
| New York       |                  | 1.138    | 21,214  | 7                | 1.230    | 20,931  |
| Ohio           |                  | 433      | 6.796   | á                | 434      | 5.227   |
| Texas          | _                | 1.294    | 21,538  | 7                | 1.349    | 25,610  |
| Other States 1 | 30               | 4,150    | 70,060  | 30               |          | 74,065  |
| Total          | 76               | 12,005   | 195,862 | 76               | 12,592   | 205,326 |

<sup>&</sup>lt;sup>1</sup> Includes Arizona, Arkansas, Colorado, Connecticut, Delaware, Illinois, Massachusetts, Montana, New Hampshire, Pennsylvania, and Washington, 1 plant each; Kansas, Louisiana, Maryland, New Mexico, Oklahoma, Utah, Virginia, and Wyoming, 2 plants each; and Indiana, 3 plants.

## **CONSUMPTION AND USES**

Apparent consumption of gypsum (production plus imports minus exports) was 21.2 million tons, an increase of 6% and a new annual record. Imports were 36% of the total apparent consumption.

Of the total gypsum sold or used, 5.7 million tons (28%) was uncalcined. Of the total uncalcined gypsum, 4.1 million tons

(73%) was used for portland cement, and 1.5 million tons (25%) was used in agriculture. The leading sales regions for gypsum consumed in cement were the West South-Central and the Middle Atlantic, which accounted for 34% of the total. For agricultural gypsum, the Pacific sales region accounted for 84% of the total.

Table 8.-Gypsum products (made from domestic, imported, and byproduct gypsum) sold or used in the United States, by use

(Thousand short tons and thousand dollars)

| Use -                    | 19       | 72      | 1973     |         |  |
|--------------------------|----------|---------|----------|---------|--|
|                          | Quantity | Value   | Quantity | Value   |  |
| Uncalcined:              |          |         |          |         |  |
| Portland cement          | 3,924    | 19,405  | 4,148    | 22,189  |  |
| Agriculture              | 1,146    | 5,970   | 1,453    | 7,402   |  |
| Other                    | 124      | 1,535   | 117      | 1,479   |  |
| Total 1                  | 5,195    | 26,911  | 5,719    | 31,070  |  |
| Calcined:                |          |         |          |         |  |
| Industrial plaster       | 299      | 10,657  | 353      | 14,181  |  |
| Building plaster:        |          |         |          |         |  |
| Regular base coat        | 329      | 7,910   | 292      | 7,433   |  |
| Mill-mixed base coat     | 178      | 5,707   | 166      | 5,607   |  |
| Veneer plaster           | 98       | 5,713   | 88       | 5,366   |  |
| Other 2                  | 235      | 5,928   | 224      | 5,558   |  |
| Total 1                  | 841      | 25,258  | 771      | 23,964  |  |
| Prefabricated products 3 | 13,078   | 497,744 | 13,793   | 563,594 |  |
| Total calcined           | 14,217   | 533,658 | 14,917   | 601,739 |  |
| Grand total              | 19,412   | 560,569 | 20,636   | 632,809 |  |

Data may not add to totals shown because of independent rounding.
 Includes gauging, molding, and Keene's cement, roof deck concrete, and other uses.
 Includes weight of paper, metal, or other materials.

Table 9.—Prefabricated products sold or used in the United States, by product

| Product                |                         | 1972                     |                      | 1973                    |                          |                      |
|------------------------|-------------------------|--------------------------|----------------------|-------------------------|--------------------------|----------------------|
| Troduct -              | Thousand<br>square feet | Thousand<br>short tons 1 | Value<br>(thousands) | Thousand<br>square feet | Thousand<br>short tons 1 | Value<br>(thousands) |
| Lath:                  |                         |                          |                      |                         |                          |                      |
| 3/g-inch               | 430,536                 | 335                      | \$12,792             | 351,987                 | 272                      | \$11,218             |
| ½-inch                 | 18,004                  | 17                       | 596                  | 16,168                  | 15                       | 558                  |
| Total 2                | 448,540                 | 352                      | 13,388               | 368,155                 | 286                      | 11,771               |
| Veneer base            | 357,443                 | 316                      | 13,521               | 399,373                 | 368                      | 15,710               |
| Sheathing              | 337,084                 | 319                      | 12,024               | 337,443                 | 323                      | 12,921               |
| Regular gypsumboard:   |                         |                          |                      |                         |                          |                      |
| 3/8-inch               | 1,196,096               | 913                      | 36,982               | 1,099,064               | 843                      | 36,010               |
| ½-inch                 | 9,083,662               | 8,291                    | 291,961              | 9,570,318               | 8,582                    | 326,133              |
| %-inch                 | 612,518                 | 608                      | 26,847               | 295,563                 | 322                      | 12,698               |
| 1 inch                 | 19,528                  | 37                       | 1,844                | 25,158                  | 50                       | 2,414                |
| Other 3                | 135,894                 | 109                      | 4,794                | 109,495                 | 97                       | 4,193                |
| Total 2                | 11,047,698              | 9,958                    | 362,428              | 11,099,598              | 9,893                    | 381,448              |
| Type X gypsumboard     | 1,783,677               | 1,939                    | 75,466               | 2,574,516               | 2,721                    | 116,401              |
| Predecorated wallboard |                         | 178                      | 19,274               | 214,369                 | 191                      | 22,900               |
| Other                  | 14,254                  | 14                       | 1,641                | 10,571                  | 11                       | 2,443                |
| Grand total 2          | 14,184,059              | 13,078                   | 497,744              | 15,004,025              | 13,793                   | 563,594              |

Includes weight of paper, metal, or other material.
 Data may not add to totals shown because of independent rounding.
 Includes ½-inch, 5%-inch, and ¾-inch gypsumboard.

Of the total calcined gypsum, 92% was used for prefabricated products and 8% was used for plasters. Of the prefabricated products, 72% was regular wallboard, 20% was Type X wallboard, and 2% was lath.

The leading sales regions for prefabri-

cated products were the South Atlantic and the East North-Central, which accounted for 36% of the total. For plaster, the East North-Central and the South Atlantic accounted for 48% of the total.

#### **PRICES**

The value of crude gypsum increased from \$3.93 per ton in 1972 to \$4.18. The value of calcined gypsum decreased from \$16.32 in 1972 to \$16.31. The average value of byproduct gypsum sold was \$6 per ton.

The average value of gypsum products increased from \$28.88 in 1972 to \$30.67. Prefabricated products were valued at

\$40.86, plasters at \$33.94, and uncalcined products at \$5.43 per ton.

Quoted prices for gypsum are published monthly in the Engineering News-Record. Prices at yearend showed a wide range, based on delivered prices. Regular ½-inch wallboard prices ranged from \$41 per thousand square feet at Dallas to \$86 at Chicago.

#### **FOREIGN TRADE**

The gypsum industry depends on imports. Imports of crude gypsum from Canada (78%), Mexico (16%), Jamaica (4%), the Dominican Republic and Italy (2%), totaled 7.7 million tons and supplied 36% of domestic consumption. Exports of crude gypsum were 63,000 tons.

Table 10.-U.S. exports of gypsum and gypsum products

(Thousand short tons and thousand dollars)

| Year                 | Crude, c             | rushed,<br>cined        | Value<br>of<br>other<br>- manu- | Total<br>value          |  |
|----------------------|----------------------|-------------------------|---------------------------------|-------------------------|--|
|                      | Quantity             | Value                   | factures<br>n.e.c.              | value                   |  |
| 1971<br>1972<br>1973 | . 49<br>. 51<br>. 63 | 2,318<br>2,582<br>3,135 | 1,896<br>2,694<br>4,225         | 4,214<br>5,276<br>7,360 |  |

Table 11.—U.S. imports for consumption of gypsum and gypsum products
(Thousand short tons and thousand dollars)

| Year                 | Crude (including anhydrite) |                            | Ground or calcined |                   | Value of<br>alabaster<br>manu- | Value<br>of other<br>manufac- | Total<br>value             |
|----------------------|-----------------------------|----------------------------|--------------------|-------------------|--------------------------------|-------------------------------|----------------------------|
|                      | Quantity                    | Value                      | Quantity           | Value             | factures 1                     | tures n.e.c.                  |                            |
| 1971<br>1972<br>1973 | 6,094<br>7,718<br>7,661     | 13,447<br>18,342<br>17,572 | 2<br>2<br>2        | 105<br>152<br>123 | 1,545<br>1,950<br>1,914        | 1,235<br>1,598<br>2,328       | 16,332<br>22,042<br>21,937 |

<sup>&</sup>lt;sup>1</sup> Includes imports of jet manufactures, which are believed to be negligible.

Table 12.—U.S. imports for consumption of crude gypsum by country

(Thousand short tons and thousand dollars)

| 0                   | 19       | 72     | 1973       |        |  |
|---------------------|----------|--------|------------|--------|--|
| Country             | Quantity | Value  | Quantity   | Value  |  |
| Canada<br>Dominican | 5,912    | 13,946 | 5,944      | 14,100 |  |
| Republic            |          | 371    | 177        | 648    |  |
| Italy               |          | 6      | (1)        | 9      |  |
| Jamaica             | . 439    | 1,292  | (1)<br>334 | 867    |  |
| Mexico              | 1,236    | 2,727  | 1,206      | 1,948  |  |
| Total               | 7,718    | 18,342 | 7,661      | 17,572 |  |

<sup>1</sup> Less than ½ unit.

#### **WORLD REVIEW**

Botswana.—Minerals Research Inc. planned to mine gypsum at Foley for use in cement. Deposits containing 3 million tons have been proved.

Canada.—Canada was the second leading producer of crude gypsum, accounting for 12% of the world total. Truroc Gypsum Products Ltd. planned to build a new wallboard plant at Vancouver.

France.—France was the third leading gypsum producer, accounting for 10% of the world total. Lambert Industries planned to build a new wallboard plant at Grand Quevilly.

Greece.—Reserves of gypsum in Greece amount to hundreds of millions of tons. They are located in the western part of the country, on the Ionian Islands, on Crete, and on some of the Dodecanese Islands.

Netherlands.—Rigips Baustoffwerke GmbH and the Dutch State Mines plan to build a wallboard plant at Born, using byproduct phospho-gypsum.

Pakistan.—The West Pakistan Industrial Development Corp. announced the discovery of a 1-million-ton, 99% pure gypsum deposit near Sanghar.

Table 13.-Gypsum: World production, by country

(Thousand short tons)

| 6,702<br>r 273<br>7<br>9<br>e 11<br>341 | 8,099<br>r e 275<br>7                                                                                                                 | 8,316<br>e 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| r 273<br>7<br>9<br>e 11<br>341          | r e 275<br>7<br>9                                                                                                                     | e 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| r 273<br>7<br>9<br>e 11<br>341          | r e 275<br>7<br>9                                                                                                                     | e 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 7<br>9<br>• 11<br>341                   | 7 9                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 9<br>• 11<br>341                        | 9                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| • 11<br>341                             |                                                                                                                                       | ģ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 341                                     | 17                                                                                                                                    | e 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                         | 486                                                                                                                                   | 398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                         |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1,431                                   | 1,651                                                                                                                                 | 1,669                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         |                                                                                                                                       | e 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                         | 40,000                                                                                                                                | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 10,418                                  | 12,328                                                                                                                                | 13,558                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                         |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| r 559                                   | 560                                                                                                                                   | 560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5 2                                     |                                                                                                                                       | e \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                         |                                                                                                                                       | 320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                         |                                                                                                                                       | 141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                         |                                                                                                                                       | 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                         |                                                                                                                                       | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                         |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                         |                                                                                                                                       | • 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 110                                     | 110                                                                                                                                   | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                         |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 654                                     | 8 <b>3</b> 8                                                                                                                          | 964                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 106                                     | 117                                                                                                                                   | e 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 198                                     | e 200                                                                                                                                 | e 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         |                                                                                                                                       | 578                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                         |                                                                                                                                       | 6,790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         |                                                                                                                                       | e 391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         |                                                                                                                                       | 1.889                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         |                                                                                                                                       | • 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         |                                                                                                                                       | e 420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                         |                                                                                                                                       | ° 3,860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                         |                                                                                                                                       | - 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                         |                                                                                                                                       | 937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                         |                                                                                                                                       | 187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                         | e 4,520                                                                                                                               | e 4,520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 110                                     |                                                                                                                                       | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5,200                                   |                                                                                                                                       | 5,200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4.600                                   | 4.590                                                                                                                                 | 4,066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 276                                     |                                                                                                                                       | 309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                         |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 100                                     | 109                                                                                                                                   | 193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                         |                                                                                                                                       | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                         |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                         |                                                                                                                                       | e 520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                         |                                                                                                                                       | e 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         |                                                                                                                                       | _4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                         |                                                                                                                                       | e 1,875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ``450                                   | 462                                                                                                                                   | 533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2                                       | 2                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 20                                      | 20                                                                                                                                    | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                         | 28 r (3) 28 r (3) 4118 r 559 s 2 320 (65 201 13 99 110 654 198 528 528 427 1,756 4,443 110 5,200 4,600 276 193 r 28 581 4 101 4 450 2 | Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Table   Tabl |

See footnotes at end of table.

Table 13.-Gypsum: World production, by country-Continued (Thousand short tons)

| Country 1                     | 1971     | 1972   | 1973 р  |
|-------------------------------|----------|--------|---------|
| Asia:                         |          |        |         |
| Burma                         | 13       | 16     | 17      |
| China, People's Republic of e | 606      | 661    | 661     |
| Cyprus                        | r 10     | 13     | e 13    |
| India                         | 1,199    | 1,218  | 974     |
| Indonesia e                   | 9        | 9      | 9       |
| Iran 6                        | 2,480    | 2,646  | e 2,700 |
| Israel 7                      | 88       | 130    | e 110   |
| Japan                         | 583      | 513    | 417     |
| Jordan                        | 26       | 33     | 33      |
| Lebanon                       | 41       | e 44   | e 44    |
| Mongolia e                    | 28       | 28     | 28      |
| Pakistan                      | 147      | 170    | 102     |
| Philippines                   | . 47     | 94     | 112     |
| Saudi Arabia                  | 8 40     | r e 50 | 50      |
| Syrian Arab Republic e        | 17       | 17     | 17      |
| Taiwan                        | 18       | 7      | 6       |
| Thailand                      | 185      | 99     | 260     |
| Turkey •                      | r 331    | 375    | 410     |
| Vietnam, South •              | 8        | 8      | 8       |
| Oceania: Australia            | r 980    | 1,027  | ° 1,100 |
| Total                         | r 58,421 | 66,142 | 67,032  |

<sup>2</sup> Includes anhydrite. <sup>3</sup> Less than ½ unit.

4 Revised to zero.

U.S.S.R.—The U.S.S.R. ranked fourth in world gypsum output, accounting for 8% of the total.

United Kingdom.-The United Kingdom ranked fifth in world gypsum production with 6% of the total output.

#### **TECHNOLOGY**

United States Gypsum Co. developed a new process for granulating gypsum into granules of any size. A plant will be built at Sperry, Ohio, to make the new product. The gypsum will be compressed into sheet form, then broken up. The main use of the granules will be in agriculture. Farm use of gypsum has been limited owing to its fine texture which makes it difficult to handle and spread.

Estimate.
 Preliminary.
 Revised.
 Gypsum is also produced in Cuba and Romania, but available information is inadequate to make reliable estimates of output levels.

<sup>Net exports.
Year ended March 20 of year following that stated.
Year ended March 21 of year following that stated.
Figure is for Hejira calendar year 1391, beginning February 27, 1971 and ending February 15, 1972.</sup> 

# Helium

# By Gordon W. Koelling <sup>1</sup>

Sales of high-purity helium (99.995% purity) in the United States during 1973 increased 2% to a total of 497 million cubic feet.2 Approximately 36% of this total was sold by the Bureau of Mines and 64% was accounted for by private industry plant sales. Exports of high-purity helium, all by private industry, totaled 150 million cubic feet in 1973. The Bureau of Mines f.o.b. plant price for high-purity helium sold during the year remained at \$35 per thousand cubic feet while private industry plant prices averaged \$21 per thousand cubic feet.

In compliance with an order of the U.S. District Court for the District of Kansas issued on March 27, 1971, the Bureau of Mines continued to accept helium during 1972 under three of four conservation contracts whose termination provisions had been invoked by the U.S. Department of the Interior. This order rested on the ground that the Department had not filed an environmental impact statement on termination as required by the National Environmental Policy Act.

Following the release of an environmental impact statement by the U.S. Department of the Interior and an evaluation of the environmental consequences of terminating the contracts and careful consideration of options provided the Government under the contracts, the Secretary of the Interior, on February 2, 1973, issued notices terminating the three contracts in question. A further injunction against termination was granted by the District Court on the ground that the impact statement was unsatisfactory. The District Court order was reversed on appeal by the U.S. Court of Appeals for the Tenth Circuit in October 1973 and on November 12, 1973, the Department ceased the physical acceptance of helium for conservation storage. However, one of the companies involved in the litigation continued to deliver helium for 1 month to the Bureau of Mines for storage to its own account.

The issue of damages was pending in connection with a ruling made by the U.S. Court of Claims which held that the Government had materially breached its contract with the fourth contractor not involved in the above litigation.

#### DOMESTIC PRODUCTION

A total of 12 helium extraction plants were in operation during 1973. Of these, 2 were owned by the Federal Government and operated by the Bureau of Mines and 10 were owned by private industry.

Total helium extracted from natural gas during 1973 declined approximately 22% to 3,205 million cubic feet, despite a 3% increase in the output of high-purity helium to 647 million cubic feet. Approximately 80% of total helium extracted was crude helium 3 and 20% was high-purity helium produced for sale. About 93% of crude helium production and 72% of high purity output was from private industry plants producing for sale to commercial customers. The remaining 7% of crude and 28% of high-purity helium produced was extracted at Bureau of Mines plants.

Of the 357 million cubic feet of helium

eral Supply.

<sup>2</sup> All helium statistics in this chapter are reported in terms of contained helium measured at 14.7 pounds per square inch absolute and 70° F.

<sup>&</sup>lt;sup>3</sup> Helium mixed with various quantities of other light gases, mostly nitrogen.

produced at the Bureau of Mines Keyes and Exell plants in 1973, approximately 83% was extracted from natural gas supplied by a private natural gas pipeline company on a gas processing contract basis. The remaining 17% was extracted from natural gas produced from the Bureau of Mines Cliffside gasfield primarily to create additional reservoir space for helium conservation storage. Almost all helium extraction from Cliffside natural gas occurred at the Exell plant.

Extensive modernization of the Exell plant was incomplete at the end of 1973 because of delays caused by technical problems. During the latter part of the year, the M. W. Kellog Co. submitted its engineering evaluation and recommendation of alternate concepts to correct purification deficiencies at unit IB. Kellog considered four concepts in its evaluation and recommended utilizing a pressure swing adsorption system in combination with the existing warm-end cold box equipment. This recommendation was under consideration at yearend. Kellog also completed engineering work for modifying enrichment unit IA and was planning to issue bid invitations for the necessary construction.

Table 1.-Helium extracted from natural gas in the United States (Thousand cubic feet)

|                                        | 1969      | 1970      | 1971        | 1972        | 1973 р    |
|----------------------------------------|-----------|-----------|-------------|-------------|-----------|
| Crude helium: 1                        |           |           |             |             |           |
| Extracted at Bureau of Mines plants    | 306,200   | 429,400   | 504,406     | r 262.197   | 175,976   |
| Extracted at private industry plants _ | 3,596,300 | 3,523,800 | r 3,479,226 | r 3,204,806 | 2,381,952 |
| Total                                  | 3,902,500 | 3,953,200 | r 3,983,632 | 3,467,003   | 2,557,928 |
| High-purity helium: 2                  |           |           |             |             |           |
| Extracted at Bureau of Mines plants    | 360,700   | 230,700   | 173,626     | r 173,526   | 180.114   |
| Extracted at private industry plants - | 398,800   | 416,500   | 403,152     | 453,675     | 467,102   |
| Total                                  | 759,500   | 647,200   | 576,778     | r 627,201   | 647,216   |
| Grand total                            | 4.662.000 | 4,600,400 | r 4 560 410 | r 4 094 204 | 3 205 144 |

p Preliminary. r Revised.

Table 2.-Ownership and location of helium extraction plants in the United States, 1973

| Category and owner or operator                                      | Location                          | Type of production                                 |  |
|---------------------------------------------------------------------|-----------------------------------|----------------------------------------------------|--|
| Government owned:                                                   |                                   |                                                    |  |
| Bureau of Mines                                                     | Exell, Tex<br>Keyes, Okla         | Crude helium.<br>Crude and high-<br>purity helium. |  |
| Private industry:                                                   |                                   |                                                    |  |
| Alamo Chemical-Gardner Cryogenics<br>Cities Service Cryogenics, Inc | Elkhart, Kans<br>Scott City, Kans | High-purity helium.<br>Crude helium. <sup>1</sup>  |  |
| Cities Service Helex, Inc                                           | Ulysses, Kans                     | Crude and high-<br>purity helium. <sup>2</sup>     |  |
| Kansas Refined Helium Co                                            | Otis, Kans                        | High-purity helium.                                |  |
| Kerr-McGee, Corp                                                    | Navajo, Ariz                      | Do.                                                |  |
| National Helium Corp                                                | Liberal, Kans                     | Crude helium.                                      |  |
| Northern Helex Co                                                   | Bushton, Kans                     | Do. <sup>3</sup>                                   |  |
| Phillips Petroleum Co                                               | Dumas, Tex                        | Do.                                                |  |
| Do                                                                  | Hansford County, Tex              | Do.                                                |  |
| Western Helium Co                                                   | do                                | High-purity helium.                                |  |

Output is piped to Cities Service Helex, Inc., plant at Ulysses, Kans., for purification.
 Purifies crude helium piped from Cities Service Cryogenics, Inc., plant at Scott City, Kans.
 Output is transported in highway semitrailers to other plants for purification.

<sup>&</sup>lt;sup>2</sup> Includes crude helium purified after interplant transfer.

<sup>2</sup> Includes only those quantities produced for sale; quantities entering conservation storage system after purification are included under crude helium.

HELIUM 603

Table 3.-Summary of Bureau of Mines helium plant and Amarillo shipping terminal operations

(Thousand cubic feet)

|                                                                                                                                                       | 1971                          | 1972                              | 1973 р                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------|-------------------------------|
| Supply: Inventory at beginning of period 1                                                                                                            | 13,557                        | 11,474                            | 16,142                        |
| Helium extracted <sup>2</sup> : Exell plant: CrudeHigh purity <sup>3</sup>                                                                            | 234,119<br>50,304             | r 99,392<br>                      | 60,525                        |
| Total Exell plant                                                                                                                                     | 284,423                       | r 99,392                          | 60,525                        |
| Keyes plant: CrudeHigh purity <sup>3</sup> Total Keyes plant                                                                                          | 270,287<br>123,322<br>393,609 | r 162,805<br>r 176,469<br>339,274 | 115,451<br>181,334<br>296,785 |
| Total extracted<br>Helium returned in containers (net)                                                                                                | 678,032<br>244                | r 438,666<br>r 2,586              | 357,310<br>3,539              |
| Total supply                                                                                                                                          | 691,833                       | r 452,726                         | 376,991                       |
| Disposal:  Sales of high-purity helium <sup>3</sup> Net deliveries to helium conservation system <sup>4</sup> Inventory at end of period <sup>1</sup> | 173,626<br>506,733<br>11,474  | r 173,526<br>r 263,058<br>16,142  | 180,114<br>188,245<br>8,632   |
| Total disposal                                                                                                                                        | 691,833                       | r 452,726                         | 376,991                       |

cation are included under crude helium.

4 Excludes return of conservation helium produced as indicated in footnote 2 to conservation

storage system.

#### CONSUMPTION AND USES

Domestic sales of high-purity helium rose only about 2% during 1973, considerably less than the 9% increase registered in 1972.

Bureau of Mines helium sales, which accounted for 36% of the domestic market increased at a slightly higher rate than total domestic sales in 1973. This was a moderate reversal of a 6-year declining trend in the need for helium by Federal agencies, which are required by law to purchase all of their major requirements from the U.S. Department of the Interior. The Bureau of Mines f.o.b. plant price, which is set at \$35 per thousand cubic feet for the purpose of financing the long-range helium conservation program, was not competitive with the 1973 average private f.o.b. plant price of \$21 per thousand cubic feet.

Approximately 41% of Bureau sales in 1973 were through purchases by Federal agencies from private distributors under General Services Administration contracts, which required the distributors to purchase

equivalent quantities from the Bureau of Mines. These contracts made relatively small quantities of helium readily available to Federal installations and reduced freight charges for small purchases. The quantity of Bureau helium sales distributed in this manner increased 40% during 1973.

Domestic consumption of helium during 1973 was primarily for purging and pressurizing rockets and spacecraft, research, welding, maintenance of controlled atmospheres, leak detection, and cryogenics. Demand occurred principally in the States along the west and gulf coasts.

All helium sold by the Bureau of Mines was shipped in gaseous form in cylinders, highway semitrailers, or railway tank cars. Private industry plants shipped helium in both gaseous and liquid form. Much of the helium transported in liquid form was delivered by semitrailers and containerized dewars to distribution centers, where most of the product was gasified and compressed into small cylinders and trailers for delivery to consumers.

P Preliminary. F Revised.

1 At Exell and Keyes plants and at Amarillo shipping terminal.

2 Excludes conservation helium produced from native gas withdrawal wells at Cliffside field which have been invaded by stored helium.

3 Includes only those quantities produced for sale; quantities entering conservation after purification of the produced for sale; and the produced for sale; quantities entering conservation after purification.

Table 4.-Total sales of high-purity helium in the United States

(Million cubic feet)

| Year | Quantity |
|------|----------|
| 1969 | e 670    |
| 1970 | e 542    |
| 1971 | 447      |
| 1972 | 489      |
| 1973 | P 497    |

e Estimate. Preliminary.

Table 5.-Bureau of Mines sales of high-purity helium, by recipient (Thousand cubic feet)

|                                                                                                                                                 | 1971    | 1972      | 1973 Р  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|---------|
| Federal agencies: Atomic Energy Commission Department of Defense National Aeronautics and Space Administration National Weather Service Other 1 | 19,175  | 17,447    | 17,627  |
|                                                                                                                                                 | 82,355  | r 61,578  | 47,766  |
|                                                                                                                                                 | 32,905  | 35,775    | 34,739  |
|                                                                                                                                                 | 3,066   | 2,940     | 2,767   |
|                                                                                                                                                 | 1,062   | 3,346     | 3,581   |
| Total Federal agencies Non-Federal customers <sup>2</sup> Grand total                                                                           | 138,563 | r 121,086 | 106,480 |
|                                                                                                                                                 | 35,063  | 52,440    | 73,634  |
|                                                                                                                                                 | 173,626 | r 173,526 | 180,114 |

p Preliminary. r Revised.

### CONSERVATION

The purchase of crude helium by the Bureau of Mines, under the terms of contracts entered into with three private producers in 1961, continued during most of 1973 in compliance with court orders obtained during 1971 and early 1973 by Cities Service Helex, Inc., National Helium Corp., and Phillips Petroleum Co. As a result of the decision of the U.S. Court of Appeals for the Tenth Circuit in October, 1973, crude helium deliveries to the Bureau from Cities Service Helex, Inc., and National Helium Corp. ceased on November 12, 1973. However, Phillips Petroleum Co. opted to continue helium storage deliveries for its own account pending the outcome of negotiations on a long-term storage contract. These negotiations were unsuccessful and Phillips Petroleum Co. ceased deliveries for storage on December 12, 1973.

Helium held in the Bureau of Mines conservation storage system, which includes the conservation pipeline system and the partially depleted Cliffside gasfield near Amarillo, Tex., increased 7% during 1973 to a yearend total of 38,201 million cubic feet. Of this total, 97% was stored under the Bureau's conservation program (including that accepted under court order after March 28, 1971) and the remaining 3\% was stored under contract for private producer's own accounts. Approximately 7% of the net addition to the helium conservation system in 1973 was accounted for by deliveries from Bureau plants, 89% was acquired from private industry plants for the conservation program, and 4% was added to storage under contract for private producers' own accounts.

Includes quantities used by Bureau of Mines.

Most of this was purchased in bulk by commercial firms, repackaged in smaller containers, and then sold to Federal installations under contract arrangements with the General Services Administration.

Table 6.-Summary of Bureau of Mines helium conservation system 1 operations (Thousand cubic feet)

|                                                                                                                                                                          | 1971         | 1972         | 1973 P             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------------|
| Helium in conservation storage system at beginning of period                                                                                                             | :            |              |                    |
| Stored under Bureau of Mines conservation program<br>Stored under contract for private producers' own                                                                    | 28,118,119   | 31,635,937   | 34,62 <b>8,600</b> |
| accounts                                                                                                                                                                 | 58,972       | r 527,113    | 1,002,314          |
| Total                                                                                                                                                                    | 28,177,091   | r 32,163,050 | 35,630,914         |
| Input to system:                                                                                                                                                         |              |              |                    |
| Net deliveries from Bureau of Mines plants 2                                                                                                                             | 506,733      | r 263,058    | 188,245            |
| Acquired from private industry conservation plants Stored under contract for private producers' own                                                                      | 3,011,085    | 2,729,605    | 2,293,267          |
| accounts                                                                                                                                                                 | r 532,978    | 583,748      | 163,110            |
| Total                                                                                                                                                                    | r 4,050,796  | r 3,576,411  | 2,644,622          |
| Redelivery of helium stored under contract for private                                                                                                                   |              |              |                    |
| producers' own accounts                                                                                                                                                  | 64,837       | r 108,547    | 74,425             |
| Net addition to system                                                                                                                                                   | r 3,985,959  | r 3,467,864  | 2,570,197          |
| Helium in conservation storage system at end of period:  Stored under Bureau of Mines conservation program <sup>3</sup> Stored under contract for private producers' own | 31,635,937   | 34,628,600   | 37,110,112         |
| accounts                                                                                                                                                                 | r 527,113    | r 1,002,314  | 1,090,999          |
| Total                                                                                                                                                                    | r 32,163,050 | 35,630,914   | 38,201,111         |

r Revised. Preliminary.

Table 7.-Helium purchased for Bureau of Mines conservation storage (Thousand cubic feet)

|                             | Helium delivered |           |           |  |
|-----------------------------|------------------|-----------|-----------|--|
| Company                     | 1971             | 1972 r    | 1973 P    |  |
| Cities Service Helex. Inc.1 | 741,902          | 699,048   | 515,862   |  |
| National Helium Corp. 1     | 1,165,251        | 1,107,898 | 1,011,238 |  |
| Northern Helex, Co. 2       | 147,463          |           |           |  |
| Phillips Petroleum Co.1     | 956,469          | 922,659   | 766,167   |  |
| Total                       | 3.011.085        | 2,729,605 | 2.293,267 |  |

Table 8.-Deliveries of crude helium from private industry conservation plants to Bureau of Mines conservation storage system, 1973

(Thousand cubic feet)

| Owner                                               | Plant location                        | Mines con-           | Stored for companies' own<br>accounts in Bureau of<br>Mines conservation system |                     |                     | Total                        |
|-----------------------------------------------------|---------------------------------------|----------------------|---------------------------------------------------------------------------------|---------------------|---------------------|------------------------------|
| •                                                   |                                       | storage              | Delivered                                                                       | Withdrawn           | Net                 |                              |
| Cities Service Helex, Inc _<br>National Helium Corp | Ulysses, Kans<br>Liberal, Kans        | 515,862<br>1,011,238 | <sup>1</sup> 71,411<br>94                                                       | <sup>1</sup> 59,834 | 11,577<br><b>94</b> | 527,439<br>1,011, <b>332</b> |
| Phillips Petroleum Co                               | Dumas, Tex<br>Hansford County,<br>Tex | 439,115<br>327,052   | 91,605                                                                          | 14,591              | 77,014              | 843,181                      |
| Total                                               |                                       | 2,293,267            | 163,110                                                                         | 74,425              | 88,685              | 2,381,952                    |

Includes some helium stored for the account of Cities Service Cryogenics, Inc., which pipes its output to Cities Service Helex, Inc., for purification.

<sup>&</sup>lt;sup>2</sup> Includes conservation pipeline system and Cliffside field.
<sup>2</sup> Excludes return to system of conservation helium produced from native gas withdrawal wells at Cliffside field which have been invaded by stored helium.
<sup>3</sup> Includes helium accepted under court order after March 28, 1971.

P Preliminary.
 Revised.
 Deliveries from these companies between 8:00 a.m., Mar. 28, 1971, and 8:00 a.m., Nov. 12, 1973, accepted in compliance with orders issued by the U.S. District Court for the District of Kansas.
 This company ceased delivery of helium for Bureau of Mines conservation program as of 8:00 a.m. Mar. 28, 1971.

### **RESOURCES**

Proved and probable helium reserves (in natural gas with a minimum helium content of 0.3%) in the United States, exclusive of those quantities in conservation storage at the Cliffside field, were estimated at 114,090 and 41,298 million cubic feet respectively, as of December 31, 1973. The total 155,388 million cubic feet of proved and probable reserves available at yearend was 14% higher than at the beginning of the year. This increase resulted entirely from revisions to probable reserves.

Although proved and probable helium reserves were contained in the natural gas reservoirs of 86 gasfields located in 10 States, the bulk of reserves were in four fields: the Greenwood field in Kansas and Colorado; the Hugoton field in Kansas, Oklahoma, and Texas; the Keyes field in

Oklahoma; and the West Panhandle field in Texas. Almost 66% of proved and probable reserves were in fields being produced at yearend 1973. Approximately 38% of the helium-rich (0.3% helium content) natural gas produced was being processed for helium extraction, and helium contained in the remaining helium-rich natural gas output was being wasted incident to the consumption of the gas.

The Bureau of Mines continued its cfforts to identify helium resources in the United States and other parts of the world. A total of 348 natural gas samples from 17 States and Australia were collected and analyzed for helium content during 1973. None of these samples indicated the occurrence of significant helium resources.

## **FOREIGN TRADE**

Exports of high-purity helium in 1973 increased almost 9% and comprised 23% of the U.S. helium industry's total high purity sales compared with 22% during 1972. All exports were from private industry extraction plants which depended on foreign markets for 32% of their total high purity sales in 1973. Most of the quantity shipped was destined for Western Europe.

Table 9.—Exports of high-purity helium from the United States (Million cubic feet)

| Year                 | Quantity             |
|----------------------|----------------------|
| 1969<br>1970<br>1971 | e 90<br>e 105<br>130 |
| 1972                 | 138<br>P 150         |

e Estimate. p Preliminary.

#### WORLD REVIEW

Helium produced outside the United States during 1973 totaled an estimated 132 million cubic feet. Canada produced approximately 35 million cubic feet from a single plant in Saskatchewan, mostly for export to Japan and other Asian countries, although some was used in Canada. A plant in France produced about 7 million cubic feet of helium as a byproduct of nitrogen removal operations. The countries of Eastern Europe extracted an estimated 90 million cubic feet during the year.

During 1973, Petrocarbon Developments, Ltd., of the United Kingdom began construction, under contract, of a helium and nitrogen extraction plant in Poland. This plant will separate helium and nitrogen from natural gas which has about a 45% nitrogen content. A helium purification and liquefaction unit to be integrated with the nitrogen removal process will have a high-purity helium output capacity of 150 million cubic feet per year. Completion of this project was expected by 1975.

#### **TECHNOLOGY**

During 1973 the world's largest containerized liquid helium dewar was placed in service. This dewar, designed and built

by the Gardner Cryogenics Division of Carpenter Technology Corp., has a capacity of 11,000 gallons of liquid helium (apHELIUM 607

proximately 1.1 million cubic feet of gas equivalent) as compared with an 8,500-gallon capacity (approximately 860,000 cubic feet of gas equivalent) of the largest units previously placed in service. At yearend several additional 11,000-gallon dewars were under construction.

Gulf General Atomic Co., a subsidiary of Gulf Oil Corp., continued work on a preliminary planning study of a helium gasturbine for the Atomic Energy Commission. This study will assess the commercial feasibility of developing a helium-cooled nuclear reactor and employing the same helium in a closed cycle to drive the gasturbine generator. This would eliminate the steam-turbine cycle ordinarily used in powerplants and allow heat rejection to take place directly to air in dry cooling towers, thereby eliminating thermal pollution of streams and allowing utility companies more flexibility in picking powerplant sites. The gas turbines themselves could be located inside the same containment vessel that housed the reactor core, thus offering a capital cost savings.

# Iron Ore

By F. L. Klinger 1

With strong demand for iron and steel throughout 1973, world production of iron ore increased to an estimated 850 million long tons,2 about 11% more than in 1972. The increase in world exports was estimated at 15% to 20%, with major increases reported from Australia and Brazil. Imports of iron ore by Japan, the European Economic Community (EEC), and the United States totaled 133 million tons, 117 million tons, and 43 million tons, respectively, and consumption in most industrialized countries rose to record levels.

World output of pellets was estimated at 150 million tons, about 18% more than in 1972, and continued rapid growth in this sector was expected. New pellet plants were completed, under construction, or contracted for in more than a dozen countries in 1973. Several new direct-reduction projects were also begun, notably in fuel-rich countries such as Iran, Venezuela, and Saudi Arabia.

Large beneficiation plants based on flotation or high-intensity magnetic separation came on stream in Canada and Brazil. These installations were the first commercial-scale plants of their kind. Another large flotation plant was due to begin production in the United States in 1974.

Iron ore prices in most countries increased during 1973. Increases in contract prices allowed by Japanese buyers ranged from about 10% to 15% and were made retroactive to April 1, 1973. The increases were allowed mainly to compensate for devaluations of the U.S. dollar in 1971 and 1973. By yearend, indications were that prices would rise further in 1974.

In transportation of iron ore, the average size of vessels and individual cargoes continued to increase on the Great Lakes as well as in ocean trade. The largest ocean cargo was 218,000 tons. A second port facility capable of accommodating 250,000ton carriers was completed in Brazil, and a new receiving terminal capable of handling 100,000-ton vessels was completed in the United Kingdom. Ocean freight rates continued to rise during most of 1973; some reduction was apparent by yearend, but rising fuel costs due to large increases in crude oil prices were expected to drive freight rates still higher in 1974.

<sup>&</sup>lt;sup>1</sup> Physical scientist, Division of Ferrous Metals

<sup>—</sup>Mineral Supply.

<sup>2</sup> Unless otherwise specified, the unit of weight used in this chapter is the long ton of 2,240 pounds.

Table 1.-Salient iron ore statistics (Thousand long tons and thousand dollars)

|                                        | 1969    | 1970    | 1971      | 1972      | 1973     |
|----------------------------------------|---------|---------|-----------|-----------|----------|
| United States:                         |         |         |           |           |          |
| Iron ore (usable 1 less than 5% Mn):   |         |         |           |           |          |
| Production 2                           | 88,328  | 89,760  | 80.762    | 75.434    | 05.00    |
| Shipments 3                            | 89.854  | 87.176  | 77.106    |           | 87,669   |
| Value 3                                | 929,293 | 941,738 |           | 77,884    | 90,65    |
| Average value at mines per ton         | 10.34   |         | 891,001   | 950,365   | 1,163,71 |
| Exports                                |         | 10.80   | 11.55     | 12.20     | 12.8     |
| Volu-                                  | 5,160   | 5,492   | 3,061     | 2,095     | 2,74     |
| Value                                  | 62,310  | 67,898  | 38,147    | 26,776    | 37,92    |
| Imports for consumption                | 40,732  | 44,891  | 40,124    | 35,761    | 43,29    |
| Value                                  | 402,178 | 479,518 | 450,644   | 415,934   | 533,48   |
| Consumption (iron ore and              |         |         |           |           |          |
| agglomerates)                          | 140,235 | 131,571 | 116,196   | 126,943   | 146,92   |
| Stocks Dec. 31:                        |         | •       |           |           | 110,02   |
| At mines                               | 13,566  | 15.316  | 17,653    | 14,679    | 10.87    |
| At consuming plants                    | 50,935  | 52,781  | 57,738    | 50,061    | 45,99    |
| At U.S. docks                          | 2,648   | 3,403   | 3,424     | 2,612     |          |
| Manganiferous iron ore (5% to 35% Mn): | 2,010   | 0,200   | 0,424     | 2,012     | 3,05     |
| Shipments                              | 385     | 329     | 177       | 101       | 10.      |
| World: Production                      | 701.495 |         |           | 131       | 181      |
| ,, oria. 110ddc01011                   | 101,495 | 757,013 | r 774,677 | r 766,150 | 850,728  |

<sup>3</sup> Excludes byproduct ore.

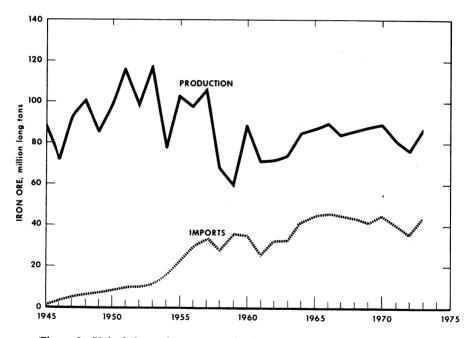



Figure 1.-United States iron ore production and imports for consumption.

## **EMPLOYMENT**

Due to changes in procedures of reporting or tabulation of statistics, aggregate data on employment at U.S. iron ore mines and mills in 1973 were not comparable to

data reported for 1972. Consequently, publication of employment statistics for 1973 will be deferred until these differences can be resolved.

r Revised.

1 Direct shipping ore, concentrates, agglomerates, and byproduct ore (mainly pyrite cinder and agglomerates).

<sup>2</sup> Includes byproduct ore.

#### DOMESTIC PRODUCTION

As a result of strong demand for iron and steel, and a relatively low level of iron ore stocks at the beginning of 1973, U.S. mine production of usable ore increased to 87.7 million tons, 16% more than in 1972 and the highest since 1970. Mine shipments exceeded production by 3 million tons and were the highest since 1957. Vessel shipments of iron ore from U.S. ports on the Great Lakes in 1973 totaled 73.8 million tons, an increase of 10.2 million tons compared with those of 1972.

Pellets made up 70% of mine production and shipments of iron ore in 1973. Although the proportion was slightly less than in 1972, the actual output of pellets increased by 14% in 1973 to 61.2 million tons. Shipments of pellets totaled 63.7 million tons. Most of the increase in production came from the Minntac plant in Minnesota.

Production of crude ore in 1973 totaled 218.7 million tons, of which 95.6% was produced from 59 open pit mines and 4.4% was produced from 7 underground mines. The proportion of direct-shipping ore continued to decline and made up only 1.7% of the total output. The average iron content of crude ore produced was estimated at 33.9%. The average iron content of all usable ore produced was slightly higher than 60.5%, ranging from about 55% in direct-shipping ore and concentrates to about 63% in pellets. Nationwide, the ratio of crude ore mined to usable ore produced in 1973 (excluding byproduct ore) was approximately 2.50:1, the same as in 1972.

The Lake Superior district accounted for 84% of all crude ore mined in 1973 and 82.6% of all usable ore produced. Minnesota produced 68% of the total usable ore; Michigan produced 13% and the remainder was produced in 18 other States. Five mines were closed by yearend: two in Alabama and one each in Minnesota, Pennsylvania and North Carolina.

In Minnesota, production of iron ore pellets totaled 41.6 million tons in 1973, a 20% increase compared with 1972. The increase was mainly due to the first full year of production from new facilities at the Minntac operation of United States Steel Corp. Production capacity at Minntac was raised to 12 million tons per year in mid-1972. In mid-1973, Bethlehem Steel Corp. and Pickands Mather & Co. (PM) an-

nounced plans to construct a taconite mining and processing complex near Hibbing by 1977. Initial production capacity of the facility will be 5.4 million tons of pellets per year. Cost of the project, which was expected to employ more than 1,000 persons during the construction period, was estimated at \$150 million. The Mahoning natural-ore mine was closed by PM in August due to exhaustion of ore reserves. The mine formed part of the famous Hull-Rust-Mahoning open pit and had been in almost continuous production since 1895. Also near Hibbing, the Hanna Mining Co. began stripping operations at the Whitney natural-ore mine in 1973. Ore from the Whitney mine will be processed at the Pierce concentrator. The Pierce mine was expected to be closed in 1974. Near Eveleth, nominal production capacity for iron ore pellets at the Fairlane plant of Eveleth Taconite Co. was increased about 10% to 2.4 million tons annually. On the western Mesabi range, parts of the Trout Lake concentrator were being dismantled and the plant was expected to be inactive in 1974. In the suit filed against Reserve Mining Co. by the U.S. Department of Justice, alleging pollution of Lake Superior by taconite tailings discharged from the company's Silver Bay plant, trial began in the U.S. District Court at Minneapolis on August 1, 1973. The trial continued into 1974.

In Michigan, construction of the Tilden taconite facility was continued. The project is designed to produce 4 million tons of pellets per year from 10 million tons of low-grade hematite ore. Production was scheduled to begin by the fall of 1974. At the Empire magnetic taconite facility, expansion of production capacity to 5.2 million tons of pellets per year was expected to be completed by mid-1974. Both projects are managed by The Cleveland-Cliffs Iron

In Pennsylvania, the Cornwall mine near Lebanon was finally closed by Bethlehem Steel Corp. in 1973 after the open pit ore was mined out. The underground portion of the mine was closed in 1972. The mine was the oldest operating iron mine in the United States, having been in continuous production since 1742. During that time about 100 million tons of ore were produced.

In Alabama, production of brown-ore concentrates was terminated by two companies, due to lack of adequate markets. The Blackburn mine and plant, operated by Shook & Fletcher Supply Co. near Russellville in Franklin County, were apparently closed late in 1972. Davis Mining Co. stopped mining in Crenshaw County in mid-1973. United States Pipe and Foundry Co. continued to operate the Russellville No. 15 mine in Franklin County and appeared

to be the only remaining producer of iron ore in Alabama.

In North Carolina, the Cranberry mine and concentrator in Avery County were closed at yearend by Greenback Industries, Inc. This operation had produced small quantities of high-purity magnetite concentrate which was partly used as heavymedia material and partly in manufacture of ferrites.

## CONSUMPTION

Consumption of iron ore and agglomerates in 1973 was 15.7% more than in 1972 and was the highest on record. Of the total quantity, 98.2% was consumed in blast furnaces, 1.4% was consumed in steelmaking furnaces, and 0.4% was used for manufacture of miscellaneous products consisting mostly of cement and heavy-media materials. Consumption in steelmaking furnaces increased for the first time in several years; this appeared to be due mainly to a 14% increase in output of open-hearth steel in 1973 as compared with 1972. Consumption in blast furnaces increased 15.5%. In blast furnaces, the weight ratio of iron ore and agglomerates consumed to hot metal produced was approximately 1.58:1 in 1973, compared with 1.55 in 1972.

Pellets made up about 52% of all iron ore and agglomerates consumed in 1973, and 65.5% of all agglomerates consumed.

The respective shares contributed by domestically produced pellets were 44% and 56%. These proportions were essentially the same as in 1972.

Consumption data are shown in tables 10 and 11. In these tables, iron ore concentrate used to produce pellets and other agglomerates at mine sites is not reported as iron ore consumed; its consumption was reported only when such agglomerate was shipped to the furnace site and used (table 10). Iron ore concentrates and fines used to produce agglomerates (such as sinter) at iron and steel plants is reported as iron ore consumed (table 11), and consumption of agglomerates derived from this source is included in table 10. In table 11, the difference in weight between iron ore consumed and agglomerate produced is due to additives such as mill scale, flue dust, lime, coke, and other materials.

## **STOCKS**

Stocks of iron ore and agglomerates at U.S. mines, docks, and consuming plants totaled 59.9 million tons on December 31, 1973. The total was 11% less than a year earlier and was the lowest since 1956. Yearend stocks represented about a 5-month

supply at the average rate of consumption in 1973. The 49 million tons on hand at U.S. docks and consuming plants at yearend included 30 million tons of domestic ores, 8.5 million tons of Canadian ores, and 10.5 million tons of other foreign ores.

## **PRICES**

Published prices for Lake Superior iron ores increased in 1973. In March, prices for natural ores rose by 20 cents per gross ton and the price of iron ore pellets rose by 0.3 cent per long ton unit of iron, compared to the prices in effect on January 1. At the beginning of the 1973 lake shipping season, prices for natural ores, per gross ton, basis 51.5% Fe natural, delivered

rail-of-vessel at lower lake ports, were: Mesabi non-Bessemer, \$11.91; Mesabi Bessemer, \$12.06; Old Range non-Bessemer, \$12.16; and Old Range Bessemer, \$12.31. The price of iron ore pellets was 29.4 cents per long ton unit of contained iron. These prices were 5% to 6.6% higher than those in effect 1 year earlier. Any increase in transportation or handling costs was to be

borne by the buyer.

Effective October 1, 1973, the price of iron ore pellets delivered to Lake Erie ports by the Hanna Mining Co. was increased 2.2%, to 30.019 cents per long ton unit of contained iron. Prices for natural ores marketed by the company were unchanged.

The average value (f.o.b. mine or concentrating plant) of usable iron ore shipped from domestic mines in 1973 was \$12.84 per long ton compared with \$12.20 in 1972 and \$11.55 in 1971. These values were calculated from producers' statements and approximated the commercial selling price less the cost of mine-to-market transportation.

Prices for most foreign iron ores during the first half of 1973 appeared to be unchanged or only slightly higher compared with 1972 levels. Exceptions to this were evident in Sweden, where the average export price in 1973 was 7% less than 1972, and in Canada and Venezuela where the value of iron ore exported to the United States increased due to the rise in U.S. Lake Superior prices.

Strong pressure for upward revision of foreign prices was generated by devaluation of the U.S. dollar in February, as most prices for foreign ores are quoted in dollars. By November, Japanese buyers had

agreed to raise the prices stipulated in many contracts with foreign ore producers, retroactive to April 1, 1973. Compared with contract prices prevailing in the first quarter, the increases averaged about 13% for Indian ores and 15% for Australian and Brazilian ores.

Nominal prices quoted for certain foreign iron ores at Atlantic ports late in 19733 were about 20% higher than prices quoted earlier in the year. The price of Swedish pellets, basis 68% Fe, rose from \$14.25 per ton to \$17.00 per ton. Brazilian iron ore, basis 68% to 69% Fe, increased from \$10.00 per long ton to \$12.00.

Revised 1973 f.o.b. prices for iron ore products under Japanese contracts indicated ranges as follows (dry long ton basis): For run-of-mine ore, 60% to 66% Fe, \$8.96 to \$9.75; for lump ore (including sized lump), 64% to 65% Fe, \$10.35 to \$11.60; 60% to 62% Fe, \$6.40 to \$6.80 (India) to \$7.50 to \$8.12 (Chile) to \$10.13 (Australia); for fines, 64% to 66% Fe, \$5.25 to \$8.68; 60% to 62% Fe, \$5.45 to \$8.40; 57% Fe, \$4.40 to \$5.88; for iron sand concentrates, 59% to 60% Fe and 6% to 7% TiO<sub>2</sub>, \$6.10 to \$6.65; for iron ore pellets, per dry long ton unit of contained Fe, 21.5 to 24.3 cents (Australia), 19.3 cents (India), and 25.35 cents (Canada).5

#### TRANSPORTATION

The iron ore shipping season on the Great Lakes started relatively early in 1973. Vessel shipments from most U.S. ports had begun by April 2. By yearend, nearly 65 million gross tons of ore had passed through the Soo Locks compared with 54.3 million tons during 1972. All lake shipments totaled about 74 million tons in 1973.

With strong demand for ore at consuming centers, and continued aids to winter navigation, shipments from all U.S. ports continued beyond normal closing dates for the season. Shipments of ore were made in January from all ports except Duluth, Minn., and the last cargo of the season left Two Harbors, Minn., on February 5. Navigational aids in the winter of 1973-74 included, for the first time, daily ice-distribution maps delivered electronically to vessels. The maps were images obtained from aerial surveys using side-looking radar.

Lake freight rates at the start of the

1973 shipping season were about 9% higher than those in effect I year earlier although less than half of this increase took place in 1973. Basic rates in effect in March 1973 were as follows, per gross ton: from the head of the lakes to lower lake ports, \$2.45; from Marquette, Mich., to lower lake ports, \$2.20; from Escanaba, Mich., to Lake Erie ports, \$1.84; and from Escanaba to lower Lake Michigan ports, \$1.47. No further increases were reported by yearend. Handling charges at discharging ports during the 1973 season were 5% to 6% higher than l year earlier, but charges at upper lake ports were unchanged.

Some statistics on lake shipments of iron ore, by port, during the 1973 season are shown in the following tabulation.

<sup>&</sup>lt;sup>3</sup> American Metal Market. Dec. 27, 1973, p. 10. <sup>4</sup> The TEX Report Co. Ltd. (Tokyo). Iron Ore Import '73. Pages 67-180. <sup>5</sup> Dry long ton unit assumed to apply to pellet contracts with all Australian producers although specified only for Hamersley pellets. Figure for India estimated from price stated per dry metric

| Lake shipping port      | Number<br>of<br>vessels<br>loaded | Total<br>tonnage<br>shipped <sup>1</sup><br>(thousand<br>long tons) | Average<br>cargo<br>(long<br>tons <sup>2</sup> ) | Largest<br>cargo<br>(long<br>tons <sup>2</sup> ) |
|-------------------------|-----------------------------------|---------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
| Duluth, Minn            | 1,176                             | 17,941                                                              | 15,300                                           | 26,800                                           |
| Caconite Harbor, Minn.3 | 569                               | 13,104                                                              | 23,000                                           | 58,200                                           |
| uperior, Wis.3          | 642                               | 11,951                                                              | 18,600                                           | 31.200                                           |
| Silver Bay, Minn.3      | 651                               | 11.042                                                              | 17,000                                           | 30,700                                           |
| Scanaba, Mich.3         | 564                               | 8,970                                                               | 15,900                                           | 31,600                                           |
| wo Harbors, Minn.3      | 400                               | 7,790                                                               | 19,500                                           | 51,000                                           |
| larquette, Mich.3       | 204                               | 3,434                                                               | 16,800                                           | 26,000                                           |
| Total                   | 4,206                             | 74,232                                                              | XX                                               | XX                                               |

Principal source: Skillings' Mining Review, various issues, 1973 and 1974.

Rail freight rates for iron ore at the beginning of the 1973 shipping season on the Great Lakes were 4% to 6% higher than those in effect I year earlier. Some published rates for selected routes were as follows (per gross ton): From Mesabi and Cuyuna ranges to Two Harbors, Minn., and Superior, Wis., \$1.92; for pellets from McKinley and Mt. Iron, Minn., to Duluth, Minn., \$1.70; for pellets from Marquette range to Escanaba, Mich., \$0.95. The freight rate from Lake Erie ports to the Pittsburgh and Wheeling districts was \$3.69 and that from Baltimore to the Pittsburgh district was \$5.30. Rates for all-rail hauls from mines to consuming districts included Mesabi range to Chicago \$6.98 and to the Pittsburgh and Wheeling districts. \$13.91: Marquette and Menominee ranges to Chicago, \$5.68, and to the Pittsburgh district \$11.40; Pea Ridge, Mo., to Chicago \$4.76; Black River Falls, Wis., to Chicago, \$2.85; and Benson Mines, N.Y., to Cleveland, \$6.48. No further increases were reported by yearend.

The size of ore-carrying vessels and the efficiency of materials handling systems on the Great Lakes continued to increase. The 1,000-foot, self-unloading tug-barge unit "Presque Isle," with cargo capacity of up to 59,000 gross tons of iron ore pellets, began service on December 16. The vessel will be used to transport pellets between Two Harbors, Minn., and the Gary, Ind., works of United States Steel Corp. Two 1,000-foot self-unloading bulk carriers were ordered in November by Pickands Mather & Co. The vessels were scheduled for delivery in 1976 and 1977 and will cost a total of about \$75 million. The Stewart J. Cort and Roger Blough, having cargo capacities of up to 59,000 tons and 45,000 tons, respectively, transported a total of about 4.5 million tons of iron ore pellets on the lakes in 1973. Other new self-unloaders with cargo capacities ranging between 27,000 to 35,000 tons began service or were under construction. Other carriers were being lengthened to increase cargo capacity up to 28%.

Improved storage and materials handling facilities for iron ore and limestone were completed early in 1973 at the port of Conneaut, Ohio, by Pittsburgh & Conneaut Dock Co. The new facilities include a storage area for up to 3.2 million tons of material, a traveling stacker capable of stockpiling 10,000 tons per hour (tph), and two bucket-wheel reclaimers having a combined handling capacity of 5,000 tph. The system has an annual throughput capacity of 9.1 million tons in-and-out of storage. Formerly, there was little storage space and all iron ore had to be loaded directly into railway cars from the vessels. This required close scheduling of car availability with vessel arrivals and resulted in a heavy concentration of cars during 8 months of the year which caused traffic congestion during vessel delays.

In July, the Burlington Northern Railway Co. began a unit train operation between Hibbing, Minn., and Minnequa. Colo., a round-trip distance of about 2,400 miles. Trains of 110 cars, carrying 6,000 tons of iron ore, were scheduled to leave Hibbing every 173 hours. Initial plans called for shipment of 80,000 tons. The ore came from the Sherman mine and was destined for CF & I Steel Corp. Burlington Northern

XX Not applicable.

Rounded to nearest 1,000 tons.
Rounded to nearest 100 tons.

<sup>3</sup> Includes shipments in early 1974.

<sup>&</sup>lt;sup>6</sup> Skillings' Mining Review. V. 62, No. 51, Dec. 22, 1973, p. 2.

was also planning to expand its ore-handling facilities at Allouez, Wis., to accommodate future shipments of pellets from the new taconite project at Hibbing.

In foreign transport developments, shipments of iron ore began in November from the Minerações Brasileiras Reunidas (MBR) terminal at Guaiba Island in Sepetiba Bay, Brazil. The initial shipment was a cargo of 155,000 tons. The facility can load vessels of up to 300,000 deadweight tons (dwt) at rates up to 7,000 tons per hour. In Norway, bids were invited by the Swedish firm of Luossavaara-Kiirunavaara AB (LKAB) for expansion of iron ore shipping facilities at Narvik. Plans were to increase the maximum loading rate to 11,000 tph (7,200 tph for pellets) and to accommodate vessels of up to 400,000 dwt. In the United Kingdom, the Redcar iron ore terminal at Teesside was completed by the British Steel Corporation. The terminal can accommodate vessels up to 150,000 dwt and received its first 100,000-ton cargo of pellets in September. At other receiving ports, 13.8 million tons of iron ore were unloaded at Rotterdam (Europoort) in 1973, mostly for transshipment to West Germany. largest incoming cargo was 151,000 long tons. About 3.4 million tons were unloaded at Port Talbot including one cargo of 105.000 tons.

Some statistics on foreign shipments of iron ore, by port, in 1973 are shown in the following tabulation.

| Ocean shipping port            | Number<br>of<br>vessels<br>loaded | Total<br>tonnage<br>shipped<br>(thousand<br>long<br>tons) | Average<br>cargo<br>(long<br>tons 1) | Largest<br>cargo<br>(long<br>tons 1) |
|--------------------------------|-----------------------------------|-----------------------------------------------------------|--------------------------------------|--------------------------------------|
| Tubarão, Brazil                | 602                               | 40,541                                                    | 67,000                               | 218,000                              |
| Port Hedland, Australia        | 458                               | 34,785                                                    | 76,000                               | 138,000                              |
| Dampier, Australia             | 314                               | 27,267                                                    | 87,000                               | 157,000                              |
| Narvik, Norway                 | 634                               | 22,900                                                    | 37,000                               | 106,000                              |
| Sept-îles, Canada <sup>2</sup> | 666                               | 20,353                                                    | 31,000                               | 139,000                              |
| Puerto Ordaz, Venezuela        | 497                               | 18,899                                                    | 38,000                               | NΑ                                   |
| Buchanan, Liberia              | NA                                | 12.584                                                    | NA                                   | NA                                   |
| Monrovia, Liberia              | <sup>3</sup> 225                  | 12,427                                                    | (3)                                  | NA                                   |
| Mormugao, India                | NA                                | 12,382                                                    | NA                                   | NA                                   |
| Nouadhibou, Mauritania 4       | 296                               | 10,168                                                    | 34,000                               | NA                                   |
| San Nicolas, Peru              | 138                               | 9,041                                                     | 65,000                               | 143,000                              |
| Port Cartier, Canada 4         | 237                               | 8,806                                                     | 37,000                               | 139,000                              |
| Cape Lambert, Australia        | 107                               | 8,338                                                     | 78,000                               | ΝA                                   |
| Porto Salazar, Angola          | 118                               | 6,134                                                     | 52,000                               | 148,000                              |

Ocean-freight rates for iron ore continued to increase in 1973, partly because of devaluation of the dollar and increased demand for iron ore and other bulk commodities, and partly because a large number of vessels were occupied in the grain trade, particularly between the United States and the Soviet Union. Although freight rates for most of the iron ore shipped by sea were probably controlled under long-term contracts, spot rates published in various issues of "Metal Bulletin" indicated that freight charges for individual shipments in 1973 were often 40% to 75% higher than those charged for similar shipments late in 1972, and some were two to three times higher. There was a sharp

drop in rates for some shipments of iron ore from South America and West Africa late in 1973, when the Arab oil embargoes increased the number of vessels available for dry cargo trade, but in general the rates remained much higher than those of late 1972.

Late in 1973, published freight rates for individual shipments of iron ore to West European and Japanese destinations showed the following approximate ranges: To West Europe from Brazil and Canada, \$7.50 to \$11.00 per ton for cargoes of 28,000 135,000 tons; from Venezuela, \$12.50 \$14.00 per ton for cargoes of 34,000 40,000 tons; from West Africa, \$5.00 \$9.00 per ton for cargoes of 55,000

NA Not available.

1 Rounded to nearest 1,000 tons.

2 Includes shipments via St. Lawrence Seaway.

3 Excludes shipments by Liberia Mining Co. (LMC), for which data were not available. Total manage shipped includes IMC.

Phianne or Point Central. tonnage shipped includes

90,000 tons; and from Australia, \$11.00 to \$12.00 per ton for cargoes of 50,000 to 110,000 tons; to Japan from Australia, \$9.00 to \$11.00 for cargoes of 110,000 to 137,000 tons; from Brazil, \$15.50 for 95,000 tons; from Liberia, \$16.75 for 57,000 tons; and from eastern Canada, \$14.25 for 140,000

tons.<sup>7</sup> Published freight rates under some Japanese long-term contracts<sup>8</sup> ranged from about \$4.00 to \$8.00 per ton for Brazilian ore (vessels of 50,000 to 125,000 dwt) and for Indian ore (vessels up to 35,000 dwt), and \$5.23 to \$6.25 per ton for Swaziland ore (vessels of 80,000 to 90,000 dwt).

## **FOREIGN TRADE**

U.S. exports of iron ore increased by 31% compared with those of 1972 but the total remained well below the levels of 1951-71. Exports to Canada via Great Lakes ports accounted for 82% of the total.

U.S. imports of iron ore for consumption in 1973 increased by 21% compared with those of 1972 but the total was 1.6 million tons less than in 1970. The increase was due to strong demand at consuming plants throughout 1973. The principal countries of origin were Canada, which supplied 50% of the total quantity, Venezuela (30%), Brazil (7%), Liberia (6%), and Peru (3%).

Imports from Brazil increased by 2 million tons compared with 1972 and were the highest on record. Of the total quantity imported, 63% was landed at U.S. ocean ports and 37% was landed at Great Lakes ports. Philadelphia, Baltimore, Cleveland, Chicago, Mobile, and Buffalo continued to be the principal ports of entry.

The average f.o.b. value of imported ore in 1973 was \$12.32 per long ton, compared with \$11.63 in 1972. The average value of ore exported was \$13.80 per ton compared with \$12.78 in the previous year.

## **WORLD REVIEW**

Angola.—Iron ore exports in 1973 by Cia. Mineira do Lobito (CML) totaled about 6.1 million tons, 23% more than in 1972. Of total shipments, 47% was destined for Japan, 25% for West Germany, and 14% for seven other countries.

CML, currently the only Angolan producer of iron ore, announced plans to build a pelletizing plant for ore from the Cassinga deposits. The plant will have a production capacity of 3 million tons of pellets per year and may be completed by 1977. Cost of the project was estimated at \$87 million, of which 35% was to be provided by CML, 51% by two South African companies, and 14% by a group of British, West German, and French companies.

Cia. do Manganês de Angola, which formerly produced iron ore from deposits at Cassala, also announced plans to build a pelletizing plant and stated that the project would be managed by the Japanese firm of C. Itoh and Co. Exports of pellets were scheduled to start in 1976. The project includes construction of a pellet plant having production capacity of about 2 million tons per year, extension and improvement of the railway from Cassala to Luanda, and construction of loading facilities at the port

of Luanda. Estimated total cost of the project was not announced.

Australia.—Production, shipments, and exports of iron ore set new records in 1973. Shipments totaled 86 million tons, of which about 72 million tons were exported. Exports to Japan totaled 65 million tons. Company shipments in 1972 and 1973, in thousand long tons, were as follows:

| Producer                                              | 1972   | 1973   |
|-------------------------------------------------------|--------|--------|
| Hamersley Iron Pty. Ltd<br>Mt. Newman Mining Co. Pty. | 22,117 | 27,268 |
| Ltd                                                   | 21,443 | 26.316 |
| Goldsworthy Mining Ltd                                | 6,465  | 8,469  |
| Broken Hill Pty. Co. Ltd                              | 8,891  | 11,979 |
| Cliffs Robe River Iron                                |        |        |
| Associates                                            | 1,369  | 8,333  |
| Savage River Mines<br>Frances Creek Iron Mining       | 2,306  | 2,334  |
| Corp                                                  | 823    | 835    |
| Western Mining Corp. Ltd                              | 610    | 800    |
| Total                                                 | 64,024 | 86,334 |

Source: Skillings' Mining Review, various issues, 1973 and 1974.

Shipments of iron ore from the Paraburdoo mine were begun by Hamersley Iron Pty. Ltd. in 1973. Mt. Newman Mining Co.

<sup>&</sup>lt;sup>7</sup> Metal Bulletin (London). Various issues, November-December 1973 and January 1974. <sup>8</sup> The TEX Report Co. Ltd. (Tokyo). Iron Ore Import '73. Pages 96-146.

Pty. Ltd. and Goldsworthy Mining Ltd. also had expanded production capacity. Iron ore shipments from the Robe River project increased sharply as planned production facilities were completed early in the year. By yearend, total productive capacity of all Australian producers of iron ore was estimated at 115 million tons per year:

An estimated 9.15 million tons of iron ore pellets were shipped in 1973, compared with about 6 million tons in 1972. The Robe River project accounted for most of the increase. Hamersley was raising its productive capacity for pellets by 20%, to 3 million tons annually.

Kaiser Steel Corp. sold part of its interest in the Hamersley venture to a Japanese group in 1973. The sale reduced Kaiser's ownership share to 28.3%, from 34.5%. Hamersley was reported to have contracted to supply 3 million tons of iron ore during a period of 3 years to the People's Republic of China. Trial shipments to Chinese consumers were also reported by the Mt. Newman and Goldsworthy companies during 1973.

Bolivia.—Efforts were continued to utilize the iron deposits at Mutún. An agreement was signed in February 1973 to supply 50,000 tons of ore to the Argentine government for blast furnace tests at San Nicolás, Argentina. A second agreement, for 100,000 tons may be made if test results are favorable. Transportation facilities were limited, however, and only 15,000 tons of ore had been shipped to San Nicolás by yearend. The ore had to be hauled in 10-ton trucks about 75 miles from Mutún to a river loading point at Puerto Busch, from where it was carried by barge 1,250 miles to San Nicolás. For the river haul, a maximum draft of 9 feet was reportedly available for only about 4 months per year.

The possibility of constructing a directreduction plant near Mutun, to be fueled by natural gas from Bolivian fields, was being discussed with Brazilian authorities during negotiations for the sale of Bolivian gas to Brazil.

Brazil.—Production and exports of iron ore in 1973 were more than 30% greater than in previous years. Exports were estimated at 43 million tons, of which 24 million tons were destined for Europe and 14 million tons were destined for Japan.

Shipments of iron ore from the Aguas Claras mine of Mineraçoes Brasileiras Reunidas (MBR) began in July and the first export cargo (155,000 tons) was shipped from the Guaiba Island terminal late in November. The mine was expected to produce ore at the rate of about 11.3 million tons per year. At least 80% of planned production has already been sold under long term contracts with buyers in Europe, Japan, and Argentina. In 1973, shipped 811,000 tons of ore from Aguas Claras and 1.4 million tons from other properties. The company was owned 51% by Empreendimentos Brasileiros de Mineração S.A. and 49% by St. John del Rey Mining Co. In the latter company, 66% of the ordinary shares was owned by the Hanna Mining Co.

Completion of the port facility at Guaiba Island, about 40 miles west of Rio de Janeiro, gave Brazil two iron ore ports capable of loading 250,000 dwt carriers. The other facility was operated by Companhia Vale do Rio Doce (CVRD) at Tubarão.

CVRD completed its second pelletizing plant at Tubarão early in 1973. The plant has a production capacity of 3 million tons of pellets per year and raised the total capacity of CVRD, the only producer of pellets, to 5 million tons annually. A third pellet plant, with production capacity of 3 million tons per year, was scheduled for completion at Tubarão by 1976. Sales of pellets reported by CVRD in 1973 totaled 4.4 million tons including 3.7 million tons for export. Sales in 1972 totaled about 2.5 million tons.

In Minas Gerais, the high-intensity wet magnetic separation plant being built by CVRD at the Caué mine was nearly completed by yearend. Twenty-six Jones-type separators have been installed at the plant, which was designed to produce 12 million tons of hematite concentrate per year from 20 million tons of crude ore. The plant is the first of its type to be built in the world.

In northern Brazil, feasibility studies for economic development of the Serra dos Carajas iron deposits were continued. Advanced engineering studies and related field work were expected to be completed in 1974. The deposits were reported to contain 1.87 billion tons of proved iron ore reserves averaging about 67% Fe. Amazónia Mineração S.A., the development company, was owned 51% by CVRD and 49% by a subsidiary of United States Steel Corp. The participating companies said that, depending on the results of these studies,

Canada.—Canadian production and exports of iron ore increased sharply in 1973 compared with the previous year. The greatly improved performance was largely due to the virtual absence of strikes, which had crippled production during the summer of 1972, but it was also due to strong demand for ore in foreign and domestic markets in 1973. Production set a new record, while exports, though 30% higher than in 1972, were less than in 1970. Production in 1973 totaled 48.9 million tons including 24.4 million tons of pellets. Exports totaled 37.9 million tons including

21.6 million tons to the United States, 11.8 million tons to the European Economic Community, and 3.8 million tons to Japan.

initial shipments of ore could begin in 1978.

Two significant projects were completed by Iron Ore Co. of Canada late in 1973. Production capacity for concentrates at Labrador City was increased by 10 million tons per year, and production capacity for pellets was increased by 6 million tons with completion of a plant at Sept-îles. Feed for the latter plant was floataion concentrates produced from Schefferville natural ores. With completion of these projects, Canadian production capacity for iron ore at yearend was 63.35 million tons per year, including 31 million tons of pellet capacity.

Quebec Cartier Mining Co. (QCM) continued construction of a major concentrating facility at Mt. Wright in northern Quebec. Initial production was scheduled to begin early in 1975. The project was designed to produce 16 million tons of concentrate per year. QCM was also developing deposits at Fire Lake, north of Gagnon, for production by 1976. Ore from the Fire Lake mine will be hauled on the Mt. Wright railways to the concentrator at Gagnon. The latter plant will continue to process ore from the Lac Jeannine deposits until 1976, when ore reserves at Lac Jeannine were expected to be exhausted.

The direct-reduction plant of Falconbridge Nickel Mines Ltd. at Sudbury was closed early in 1973 due to technical problems. The plant used the SL-RN process and had a production capacity of 300,000 tons of metallized pellets per year. Construction of a new SL-RN plant was begun in 1973 by the Steel Co. of Canada Ltd. The plant will process pellets produced at the Griffith mine and will have a production capacity of 400,000 tons of metallized

product per year. At Contrecoeur, Quebec, a 400,000-ton-per-year direct reduction facility began regular production in May 1973. The plant employs the Midland-Ross process and was built for Siderurgie de Québec (Sidbec). Sidbec was using the product for feed to electric steel furnaces.

Iron ore shipments by the principal Canadian producers in 1973, in million long tons, were as follows:

| Iron Ore Co. of Canada              | 20.5 |
|-------------------------------------|------|
| Quebec Cartier Mining Co            | 9.0  |
| Wabush Mines                        | 5.4  |
| Caland Ore Co. Ltd                  | 2.1  |
| Steep Rock Iron Mines Ltd           | 1.4  |
| Griffith Mine                       | 1.5  |
| Algoma Steel Corp. Ltd              | 2.0  |
| Adams Mine                          | 1.2  |
| National Steel Corp. of Canada Ltd. | 1.2  |
| (Moose Mountain)                    | .7   |
| Sherman Mine                        | 1.0  |
| Marmoraton Mining Co                |      |
| Marmoraton Mining Co                | .0   |

Chile.—Production and exports of iron ore in 1973 appeared to be about 9% and 15%, respectively, above 1972 levels. Exports in 1973 totaled 7,993,000 tons of which 95% was destined for Japan. Mine shipments by Compañía Acero del Pacífico S.A., the principal producer, totaled 9.28 million tons of which 35% originated at Romeral, 33% at Santa Barbara and Santa Fe, and 32% at Algorrobo. The company's shipments to Chile's iron and steel works at Huachipato totaled 919,000 tons.

China, People's Republic of.—Revised estimates of production of iron ore in China in 1971–73 (see table 20) are substantially greater than those previously published. This also applies to estimated production of pig iron (see table 14 in chapter on Iron and Steel). While the revised estimates may appear relatively high, and are considerably larger than those published elsewhere,9 they are judged to be reasonably accurate by Bureau country specialists for China, considering the scarcity of information available.

European Economic Community (EEC).— Low-grade iron ore (25% to 32% Fe) continued to be produced by EEC countries in 1973 although it was significant mainly in France and Luxembourg. Domestic production continued to decline in West Germany, the United Kingdom, and Italy.

Imports of high-grade foreign ores by the EEC in 1973 were estimated to total 117 million tons. West Germany was the principal importer, with 46.2 million tons.

<sup>&</sup>lt;sup>9</sup> Statistisches Bundesamt (Duesseldorf). Insert in Eisen und Stahl, 4. Vierteljahresheft 1973.

followed by the United Kingdom (22.8), Belgium-Luxembourg (17.8), Italy (estimated 13.5), France (9.8), and the Netherlands (6.9).

The major suppliers of iron ore to the EEC in 1973 were Sweden, with 27.2 million tons, followed by Brazil (19.8), Liberia (14.4), and Canada (11.2).

In the United Kingdom, the British Steel Corp. (BSC) contracted with a subsidiary of Allis-Chalmers Corp. for construction of a pelletizing plant at the Redcar steelworks. The plant will have a production capacity of 3 million tons of pellets per year and was scheduled for completion in 1975. The only large pelletizing plant known to be operating in the EEC in 1973 was at the Hoogovens-Hoesch steelworks in the Netherlands. This facility had a production capacity of about 3.5 million tons of pellets per year and was fed by imported ores. Other pelletizing plants were located at Hamburg, West Germany, where a direct-reduction plant of the Midland-Ross type was operated by Korf Industrie und Handel G.m.b. H., and at Scarlino, Italy, where iron oxide residues from pyrite were pelletized by Montedison S.p.A.

The Redcar iron ore terminal at Teesside was also completed by BSC in 1973 and the first 100,000-ton cargo of pellets was received in September. Completion of the Redcar terminal gave Britain two ironore ports capable of accommodating 100,000-dwt vessels. The other facility was located at Port Talbot. BSC also planned another deep-water terminal in Scotland. The company's terminal at Immingham, completed in 1972, may eventually accommodate 100,000-ton vessels.

Finland.—An agreement was signed October 31, 1973, by the Governments of Finland and the Soviet Union concerning development of the Kostomus iron deposits in Soviet Karelia. The project was planned to eventually produce about 8 million tons of iron ore pellets per year, with production beginning in 1978 at the rate of 2.7 million tons per year. Construction of the facilities will be done mostly by Finnish companies, with the Soviet Union supplying most of the machinery. Part of the ore produced would be consumed in Finland, and part would be exported from Finnish ports.

Finland's annual requirements for iron ore were expected to increase to more than 2 million tons by 1980. Domestic mines were not expected to supply more than one

third of this total. Construction of a second blast furnace, with a production capacity of about 600,000 tons of pig iron per year, was started at Raahe in 1973. Completion was scheduled by 1976. The Raajärvi mine, which currently accounts for most of the iron ore mined in Finland, was expected to be depleted in 1975. Its production will be replaced by output from the Rautuvaara underground mine, now under construction near Kolari. Imports of iron ore by Finland in 1973 totaled 948,000 tons, 23% more than in 1972.

India.—Exports of iron ore in 1973 totaled about 23.2 million tons, of which 83% was shipped to Japan. This included about 400,000 tons of pellets from the plant of Chowgule & Co. Ltd. in Goa. Domestic consumption of iron ore was approximately 11 million tons, an increase of 2.8% compared with 1972.

Indian production of pellets was estimated at 1.5 million tons in 1973. Two-thirds of the output were produced by Tata Iron & Steel Co. Ltd. at Naomundi, where a plant was reportedly completed late in 1972. Chowgule & Co. planned to increase pellet production capacity in Goa by about 1.2 million tons per year, but no construction contracts were announced by yearend.

Iran.—Under a project announced in 1973, production of prereduced iron ore was scheduled to begin at Ahvaz in mid-1975. Three reduction plants of the Mid-1975. Three reduction plants of the Mid-1975. Three reduction plants of the Mid-1975. Three reduction plants of the Mid-1975. Three reduction plants of the Mid-1975. Three reduction of prereduced iron ore or pellets per year, were scheduled to be built. Design and construction of the plants will be supervised by Korf Engineering G.m.b.H. of West Germany, under license from the Midland-Ross Corp. Construction of additional direct-reduction plants, not necessarily of the Midrex type, was being considered at Ahvaz, Bandar Abbas, Mashhad, and Isfahan.

Iron ore to supply the reduction plants at Ahvaz was expected to be imported. Iranian authorities were reportedly considering investment of \$300 million for development of iron deposits and port facilities in the Indian state of Mysore.

Iron ore for the Iranian steelworks at Isfahan was being supplied from deposits at Bafq. The feasibility of developing additional deposits, south of Kerman, was being investigated by the Swedish firm of Gränges AB.

Japan.—Imports of iron ore by Japan

in 1973 totaled nearly 133 million tons, 21% more than in 1972. Australia was the major supplying country, accounting for 49% of the total, followed by India (14%) and Brazil (9%). The remaining 28% was supplied by Chile, Peru, and 19 other countries.

Production of pellets, mostly from imported ore, was 6.2 million tons in 1973, an increase of nearly 2.4 million tons compared with 1972. The increase appeared to be due to production at Hirohata, where a new pelletizing facility was completed in January. Imports of pellets were estimated at 11 million tons.

Consumption of iron ore, excluding manganiferous ores, was approximately 128 million tons including about 900,000 tons of iron ore produced in Japan and an estimated 17 million tons of pellets from all sources.

Liberia.—Exports of iron ore from Liberia in 1973 totaled nearly 25 million tons. an increase of 11% compared with 1972. Of the total quantity, 76% was shipped to EEC countries, 11% to the United States, 10% to Japan, and the remainder to Spain and Romania. Three of the four producing companies increased production and exports in 1973. A decline was registered by National Iron Ore Co. due to startup problems at its new concentrator. Shipments of iron ore, by company, in thousand tons. were as follows:

| Liberian-American Swedish Minerals |                     |
|------------------------------------|---------------------|
| Co. (LAMCO)                        | <sup>1</sup> 12.584 |
| Bong Mining Co                     | <sup>2</sup> 6.792  |
| National Iron Ore Co               | e 3,300             |
| Liberia Mining Co                  | e 2,300             |
| Total                              | 24,976              |

- e Author's estimate.
   Including 1,685,000 tons of pellets.
   Including 2,274,000 tons of pellets.

Sources: U.S. Embassy, Monrovia, Liberia. State Department Airgram A-18, Mar. 5, 1974, and Skillings' Mining Review, various issues, 1974.

Mexico.—Cia. Fundidora de Fierro y Acero de Monterrey, S.A. contracted with the Allis-Chalmers Co. of Milwaukee, Wis., for construction of an iron ore pelletizing plant at Monterrey. Production capacity of the plant will be about 1.5 million tons of self-fluxing pellets per year. Completion was planned for 1976. Fundidora shipped 1.3 million tons of iron ore to Monterrey in 1973 from its four mines in Durango, Coahuila, Oaxaca, and Colima.

Construction of a 600,000-ton-per-year pelletizing plant was underway at the La

Perla mine in Chihuahua. Completion of the plant was expected early in 1974. Output of iron ore at La Perla in 1973 was 2.55 million tons, with about 2 million tons shipped to the steelworks of Altos Hornos de Mexico S.A. at Monclova.

Siderúrgica Lázaro Cardenas-Las Truchas, S.A. (SICARTSA) ordered a pelletizing plant from Lürgi Chemie und Hüttentechnik G.m.b.H. in 1973. The plant will be built near Lázaro Cardenas on the Michoacan coast and will have a production capacity of 2 million tons of self-fluxing pellets per year. Iron ore fed to the plant will be magnetite concentrate, delivered in slurry form through a 9-mile pipeline. A date for completion was not announced.

The pelletizing plants described above are in addition to the 1.5-million-ton plant under construction at Manzanillo by Consorcio Minero Peña Colorada S.A.

Shipments of iron ore pellets by Las Encinas S.A. from its mine and plant near Alzada, Colima, totaled about 1.15 million tons in 1973.

Norway.—The second iron ore pelletizing line of A/S Sydvaranger at Kirkenes was scheduled to begin production by mid-1974. The company's production capacity for pellets will then be 2.4 million tons per year.

Increased requirements for rock stripping and crude ore production at the Sydvaranger and Rana operations led to purchases of large mining equipment in 1973. Five 150-ton trucks were scheduled for delivery to A/S Sydvaranger in 1974. A/S Norsk Jernverk purchased three 150-ton trucks and an electric shovel with 15-cubicyard bucket for the Rana mine.

Panama.—Shipments of iron concentrates to Japan, halted in mid-1972 owing to berth trouble at Isla Bona, were expected to resume in the spring of 1974. The concentrates are produced from Pacific beach sands in the Balboa district by Hierro Panama, S.A. The scheduled rate of shipments was 300,000 tons per year.

Peru.—Shipments of iron ore products in 1973 by Marcona Mining Co. totaled 9.4 million tons, an increase of 3.6% compared with 1972. Exports totaled 9.0 million tons, of which 65% was destined for Japan, 18% for the United States, and 17% for countries of the EEC. Exports included 3.8 million tons of iron ore pellets and 1.2 million tons of slurry and filter cake.

Negotiations between the Marcona Co. and

Japanese interests for expanding production capacity of pelletizing facilities at San Nicolas were continued in 1973. Production capacity was expected to be increased to 7.5 million tons per year by 1976 at a cost of about \$72 million. The project was being reviewed by the Peruvian Government.

Saudi Arabia.—The Marcona Corp. concluded an arrangement with Petromin, a Saudi Arabian Government company, for a joint study of the feasibility of establishing a steelmaking plant on the Arabian Gulf coast. The proposed plant would include facilities for receiving slurried iron ore concentrate, as well as for pelletizing and direct-reduction of the ore using natural gas. Other companies involved in the study are Gilmore Steel Corp. of San Francisco and Midland-Ross Corp. of Cleveland.

South Africa, Republic of.—Although iron ore export contracts necessary to support the Sishen-Saldanha Bay export project were not yet negotiated, the Government approved the project in April and construction of the 530-mile railroad reportedly began in 1973. The project was designed for export of 15 million tons of iron ore per year. At Sishen, a new open pit mine was being developed to raise production capacity to 9 million tons annually.

Production of iron ore declined slightly in 1973 compared with that of 1972, but exports increased 28% to 6.3 million tons. Sales of ore to domestic consumers totaled about 6.6 million tons, slightly less than in 1972.

Sweden.—Production of iron ore in 1973 increased 5% compared with that of 1972, but exports increased by nearly 20% to 32.4 million tons as Swedish producers drew heavily on stockpiles. Total shipments of iron ore and pellets to domestic and foreign markets by the principal producers in 1973, in thousand long tons, were as follows:

|                          | Pellets | Other  | Total  |
|--------------------------|---------|--------|--------|
| Luossavaara-Kiirunavaara |         |        |        |
| AB (LKAB)                | 5,926   | 23,219 | 29,145 |
| Gränges AB               | 1,191   | 2,586  | 3,777  |
| Stora Kopparbergs        |         |        |        |
| Bergslags AB             |         | 861    | 861    |
| Total                    | 7.117   | 26,666 | 33,783 |

At the Malmberget operations of LKAB, production capacity of the concentrator was increased to 8 million tons per year, and capacity of the pelletizing plant was increased to 4 million tons per year. At Grängesberg, Gränges AB planned to invest

about \$9 million to raise production capacity for low-phosphorus concentrates to 2.5 million tons per year.

Tunisia.—The Tunisian Government signed a letter of intent in 1973 concerning plans to construct a direct-reduction iron ore plant at Gabes. The proposed plant, believed to be of the Midland-Ross type, would have an initial production capacity of 1 million tons of metallized ore per year. Iron ore for the project would be imported from Brazil. A completion date for the project was not announced. The companies involved were Korf Industrie und Handel G.m.b.H., C. Itoh and Co. Ltd., and CVRD.

Production of iron ore continued to decline in 1973 due to depletion of reserves at the Djerissa and Tamera mines. Exports reportedly declined 30% to 383,000 tons owing to increased requirements for ore at the El Fouladh steel plant.

U.S.S.R.—Exports of iron ore from the Soviet Union in 1973 totaled approximately 40.7 million tons, of which about 10% was shipped to Japan and West Europe.

The Soviet firm V/O Metallurgimport awarded a contract in 1973 to Allis-Chalmers Co. for construction of a two-line pelletizing facility for iron ore near Kremchug in the Ukraine. The plant will have a production capacity of 6 million tons of pellets per year. Production of pellets was scheduled to start in 1977. An agreement was also made with Finnish authorities for construction of pellet plants in Karelia (see Finland).

Soviet production of pellets in 1973 was reported to be about 21 million tons. This was equivalent to about 10% of the reported output of usable iron ore. Pellet production in 1971 and 1972 was 13.25 and 17.2 million long tons, respectively.

Negotiations between Korf Industrie und Handel G.m.b.H. and Soviet authorities, concerning establishment of a large direct-reduction facility, were reported in 1973 but no contracts were announced by year-end.

Venezuela.—Production and exports of iron ore increased about 20% in 1973, compared with those of 1972. Shipments by Orinoco Mining Co. and Iron Mines Co. of Venezuela totaled 21.4 million tons, of which about 21.1 million tons was exported and the remainder was destined for consumption in Venezuela. Of the quantity exported, approximately 63% was sent to the United States and 37% was shipped to

European consumers. Data on production or shipments of iron ore in 1973 by the State-owned Siderúrgica del Orinoco S.A. were not available.

Expansion of production facilities by Orinoco Mining Co. was nearly completed in 1973. The company's production capacity for iron ore will be 25 million tons per year early in 1974. Output capacity of Iron Mines Co. of Venezuela was believed to be 4 million tons per year.

Output of prereduced iron ore briquets at Puerto Ordaz was less than expected in 1973, owing to temporary technical difficulties. Production amounted to about 122,000 tons, of which 9,300 tons was shipped to the United States and the remainder was shipped to Venezuelan con-

A project to build a direct-reduction plant in the Guayana region was announced in 1973. The plant will employ the Fior process developed by Exxon Research & Engineering Co. and will have a production capacity of 400,000 tons of briquetted, prereduced ore per year. Completion was planned by mid-1975. Arthur G. McKee & Co. was in charge of construction. Participants in the venture included Lukens Steel Co. of Coatesville, Pa., and two Venezuelan companies.

#### **TECHNOLOGY**

Trends toward increasing size and productive capacity of iron ore mining, processing, and handling equipment, previously noted in this and other publications 10 of the Bureau of Mines, continued in 1973.

Large rotary drills with bits 12 to 15 inches in diameter were already in use or planned for blast-hole drilling at most taconite operations in the Lake Superior district in 1973. The models used were either the Gardner-Denver GD-120 Bucyrus-Erie 61-R. These drills will also be used at the Hibbing and Tilden taconite projects. Jet-piercing drills continued to be used at several locations for all production drilling or in conjunction with rotary units.

A medium-size rotary drill (GD-80), using a table-drive instead of conventional top-drive mechanism, was tested for 3 months in 1973 at the McKinley natural-ore mine by Jones & Laughlin Steel Corp. The drill was said to have several advantages over top-driven machines including greater down-pressure and penetration rate, less vibration and stem-wear, and lower maintenance costs.

The number of autogenous grinding mills used in taconite processing was also increasing. Autogenous grinding will be used at the Hibbing and Tilden concentrators scheduled to start operating in 1976 and 1974, respectively. The method is currently used at the National, Butler, and Empire operations. Two new mills were installed in 1973 at the Empire concentrator where production capacity was being increased by

High-intensity magnetic separation continued to be a subject of wide interest be-

cause of its potential use in beneficiating low-grade hematite materials such as oxidized taconite. A new type of separator, using a continuous-flow process capable of processing large volumes of material, was developed at the Massachusetts Institute of Technology.11 Known as the "Carousel" separator, the device uses stainless steel wool as the collector of ferromagnetic particles. This was said to increase the working volume of the magnetic field compared with machines previously built. The separator was scheduled to be tested on the Mesabi range in 1974 at the Hibbing laboratory of Hanna Mining Co. A method of high-intensity separation was also being investigated at the University of Wisconsin in 1973, under a grant by the National Science Foundation. The latter tests would be made on iron-bearing materials from the Black River Falls area of Wisconsin. The application of pulsed magnetic fields to matrixtype separators was described in a Bureau of Mines publication.12

In Brazil, the first commercial-scale beneficiation plant using high-intensity wet magnetic separation was nearing comple-

<sup>10</sup> U.S. Bureau of Mines, Technologic Trends in the Mineral Industry, 1971. IC 8581, 1973, 61 pp.

<sup>61</sup> pp. Technologic and Related Trends in the Mineral Industries, 1972. IC 8603, 1973, 43 pp. Technologic and Related Trends in the Mineral Industries, 1973. IC 8643, 1974, 52 pp. 11 Oberteuffer, J. A., and D. R. Kelland. eds. Proc. of the High-Gradient Magnetic Separation Symposium. Massachusetts Institute of Technology, May 22, 1973, 116 pp. Gaudin, A. M. Progress in Magnetic Separation Using High-Intensity, High-Gradient Separations. Paper pres. at Am. Min. Congress, Denver, Colo., Sept. 9-12, 1973.

tion. Most of the 26 Jones-type separators scheduled to be installed were already oprating in 1973. The plant was designed to process 20 million tons of medium-grade hematite ore per year. The plant is located at the Caué mine near Belo Horizonte and is owned by CVRD.

Laboratory research was reported on recovery of specular hematite from spiral tailings in which a Lamflo sluice was used in conjunction with high-intensity magnetic separation or flotation equipment.13 It was estimated that about 60% of the iron units presently lost in such tailings can be recovered at a grade of about 66% Fe by a variety of methods, although more data are needed to estimate costs of such recovery. It was also stated that high-intensity magnetic separation is now competitive with froth flotation due to pollution control regulations.

Demand for iron ore pellets at iron and steelmaking centers continued to grow. New pelletizing plants comprising about 45 million tons of annual production capacity were completed, under construction, or announced as new projects in the United States and 11 other countries during 1973. Pelletizing of furnace dust and mill scale was being investigated by some U.S. and foreign steel companies as well as by the Bureau of Mines. The Swedish "Grängcold" cold-bonding pelletizing process was being applied to agglomeration of steel mill wastes.14

Direct reduction of iron ore also increased. Armco Steel Corp. began full production at its Houston, Tex. plant in 1973. The plant has a production capacity of about 1,000 tons of metallized ore per day. In Venezuela, all units of United States Steel Corp.'s large reduction facility at Puerto Ordaz were operated during the year although production of briquets was restricted by temporary problems. In Canada, regular production of metallized pellets was begun in May at the Contrecoeur plant of Sidbec. The plant uses the Midrex process and has a production capacity of 400,000 tons of metallized pellets per year. In Iran, a project to build three 400,000ton-per-year Midrex plants was begun at Ahvāz. A 1-million-ton facility was planned in Tunisia, and another was proposed for Saudi Arabia.

A comprehensive survey of the iron industry of the United States and the world was published by the Bureau of Mines.15 The survey includes a section on technology of iron ore mining and beneficiation, including pelletizing and direct-reduction processes.

The Bureau of Mines continued research on beneficiation of nonmagnetic taconite and on methods of production and metallization of iron ore pellets. The processes of selective flocculation-desliming-flotation and reduction roasting-magnetic separationflotation were being tested on hematitic and goethitic taconite from the western Mesabi range. The use of western lignite and subbituminous coal as reductants for taconite roasting or as fuel for induration of pellets, was being studied as a possible alternative to natural gas and fuel oil. Research was also being conducted on solid-liquid separation processes for reclamation of process water; the use of plastic refuse materials as binders for agglomerating fine materials such as iron and steel plant dusts and for coating metallized pellets; and utilization of magnetic fluids for beneficiation of ores. Publications issued during the year described the effects of thermal treatment on concentratability of oxidized taconite from the western Mesabi; 18 anionic flotation of nonmagnetic taconite from the Marquette range and some advantages of autogenous grinding; 17 the production of iron oxide superconcentrates by caustic leaching; 18 and attempts to reduce the phosphorus content of Alabama hematite ore.19 Two publications on materials handling research, including a study of bucket-wheel excavators, were also released.20

Mill Waste Materials. Granges Ore News, August 1973, pp. 13-21.

15 Reno, H. T., and F. E. Brantley. Iron: A Materials Survey. IC 8574, 1973, 117 pp.

16 Drost, J. J., and W. M. Mahan. Effects of Thermal Treatment Upon Concentratability of a Nonmagnetic Taconite Iron Ore. RI 7797,

a Nonmagnetic Taconite Iron Ore. KI 1131, 1973, 15 pp.

17 Frommer, D. W., P. A. Wasson, and D. L. Veith. Flotation of Marquette Range Nonmagnetic Taconite Using Innovative Procedures. RI 7826, 1973, 30 pp.

18 Green, R. E., and A. F. Colombo. Iron Oxide Superconcentrates by Caustic Leaching. Pp. 7019, 1072, 11 mg.

Oxide Superconcentrates by Caustic Leaching. RI 7812, 1973, 11 pp.

19 Lamont, W. E., T. N. McVay, C. E. Spruiell, Jr., and I. L. Feld. Phosphorus Removal From Birmingham, Ala., Calcareous Iron Ores. RI 7728, 1973, 15 pp.

20 Wancheck, G. A., and R. S. Fowkes. Materials Handling Research: Shear Properties of Several Granular Materials. RI 7731, 1973, 36

Price, G. C., C. B. Manula, and Rajaraman Venkataramani. Materials Handling Research: The Bucket-Wheel Excavator. IC 8580, 1973,

<sup>&</sup>lt;sup>13</sup> Lawver, J. E., and W. P. Dyrenforth. New Methods of Scavenging Iron Units. Min. Congress J. v. 59, No. 4, April 1973, pp. 46-48.

<sup>14</sup> George, H. D., and E. B. Boardman. The IMS-Grangcold Process for Agglomerating Steel Mill Waste Materials. Granges Ore News, Au-

In the iron ore industry, as in other industries, much money and manpower were being directed toward design and installation of adequate methods and equipment to meet increasingly stringent environmental control regulations. This was generating new technology in the fields of dust control reclamation of water and land. Methods of stabilizing and vegetating tailings were being developed, and wholly closed or nearly closed systems were being designed for water supplies to taconite

concentrators. Methods of dust control at iron ore shipping and receiving terminals included a fogging system for ship-unloading at Europoort, the Netherlands and telescoping chutes for shiploading at Palua, Venezuela.21 There was also a need for better measuring techniques and equipment and coordination of standards for air and water quality.

Table 2.-Crude iron ore mined in the United States, by district, State, and variety (Thousand long tons and exclusive of ore containing 5% or more manganese)

|                                              |                                        |               | 197              | 2                |                            |                          |               | 1978               | 3               |                                     |
|----------------------------------------------|----------------------------------------|---------------|------------------|------------------|----------------------------|--------------------------|---------------|--------------------|-----------------|-------------------------------------|
| District and State                           | Num<br>ber<br>of<br>mine               | Hema-<br>tite | Limo<br>nite     | - Magne-<br>tite | Total<br>quan-<br>tity 1   | Num<br>ber<br>of<br>mine | Hema-<br>tite | Limo-<br>nite      | Magne-<br>tite  | Total<br>quan-<br>tity <sup>1</sup> |
| Lake Superior:                               |                                        |               |                  |                  |                            |                          |               |                    |                 |                                     |
| Michigan                                     | 5                                      | w             |                  | w                | 26,919                     | 5                        | w             |                    | w               | 25,917                              |
| Minnesota                                    |                                        | 23,053        |                  | 103,046          | 126,099                    | 27                       | 31,154        |                    | 124,031         | 155,185                             |
| Wisconsin                                    | 1                                      |               |                  | 2,477            | 2,477                      | 1                        |               |                    | 2,681           | 2,681                               |
| Total reportable                             | 24                                     | 23,053        |                  | 105,523          | 155,495                    | 33                       | 31,154        |                    | 126,712         | 183,783                             |
| Southeastern States: Alabama                 | 3                                      |               | 909              |                  | 909                        | 2                        |               | w                  |                 | (2)                                 |
| Carolina                                     | 3                                      |               | $\mathbf{w}$     | $\mathbf{w}$     | 371                        | . 3                      |               | $\mathbf{w}$       | w               | 3 728                               |
| Total reportable<br>Northeastern States: New | 6                                      |               | 909              |                  | 1,280                      | 5                        |               | w                  | w               | 728                                 |
| York and Pennsylvania                        | 4                                      |               |                  | 6,818            | 6,818                      | 4                        |               |                    | 7,248           | 7,248                               |
| Western States:                              |                                        |               |                  |                  |                            |                          |               |                    |                 |                                     |
| Missouri                                     | 2                                      |               |                  | 4,703            | 4,703                      |                          |               |                    | 4,480           | 4,480                               |
| Montana                                      | 1                                      |               |                  | 9                | 9                          |                          |               |                    | 13              | 13                                  |
| Nevada                                       |                                        |               |                  | ==               | (4)                        | 3                        | $\mathbf{w}$  |                    | w               | 119                                 |
| Utah                                         | 4                                      | w             |                  | w                | 4,828                      |                          | W             |                    | w               | 3,788                               |
| Wyoming<br>Other <sup>5</sup>                | $\begin{array}{c} 3 \\ 14 \end{array}$ | $\mathbf{w}$  | $ar{\mathbf{w}}$ | $\mathbf{w}$     | 4,836<br>9,678             |                          | $\mathbf{w}$  | $\bar{\mathbf{w}}$ | W<br>W          | 4,827<br>13,672                     |
| Total reportable 1 Total withheld            | 24                                     | 12,045        | 3,948            | 4,712<br>30,639  | 24,054<br>( <sup>6</sup> ) | 24                       | 11,802        | 3,866              | 4,493<br>33,382 | 26,898<br>( <sup>6</sup> )          |
| Grand total 1                                | 58                                     | 35,097        | 4,858            | 147,693          | 187,648                    | 66                       | 42,956        | 3,866              | 171,835         | 218,658                             |

W Withheld to avoid disclosing individual company confidential data; included with "Total withheld" and "Total quantity."

<sup>&</sup>lt;sup>21</sup> Yu, A. T. The Battle Against Dockside Dust. Skillings' Mining Review, v. 62, No. 7, Feb. 17, 1973, pp. 8-24.

<sup>1</sup> Data may not add to totals shown because of independent rounding.

I Included with Georgia and North Carolina.

Includes Alabama in 1973.

Included with "Other" in 1972.

<sup>&</sup>lt;sup>5</sup> Includes Arizona, Arkansas, California, Colorado, Idaho, Nevada (in 1972), New Mexico, and Texas.

Total withheld data included with "Total quantity" for each respective district or State.

Table 3.—Crude iron ore mined in the United States by district, State, and mining method (Thousand long tons and exclusive of ore containing 5% or more manganese)

|                                                       |             | - ,-             |                                     | _           | •                |         |
|-------------------------------------------------------|-------------|------------------|-------------------------------------|-------------|------------------|---------|
|                                                       |             | 1972             |                                     |             | 1973             |         |
| District and State                                    | Open<br>pit | Under-<br>ground | Total<br>quan-<br>tity <sup>1</sup> | Open<br>pit | Under-<br>ground |         |
| Lake Superior:                                        |             |                  |                                     |             |                  |         |
| Michigan                                              | 24,231      | 2,688            | 26,919                              | 23,552      | 2,365            | 25,917  |
| Minnesota                                             | 126,099     |                  | 126,099                             | 155,185     |                  | 155,185 |
| Wisconsin                                             | 2,477       |                  | 2,477                               | 2,681       |                  | 2,681   |
| Total reportable 1                                    | 152,807     | 2,688            | 155,495                             | 181,418     | 2,365            | 183,783 |
| Southeastern States:                                  |             |                  |                                     |             |                  |         |
| Alabama                                               | 909         |                  | 909                                 | (2)         |                  | (2)     |
| Georgia and North Carolina                            | 371         |                  | 371                                 | ` 3 728     |                  | ` 3 728 |
| Total reportable<br>Northeastern States: New York and | 1,280       |                  | 1,280                               | 728         |                  | 728     |
| Pennsylvania                                          | w           | w                | 6,818                               | w           | w                | 7,248   |
| Western States:                                       |             |                  |                                     |             |                  |         |
| Missouri                                              |             | 4,703            | 4,703                               |             | 4,480            | 4,480   |
| Montana                                               | 9           |                  | 9                                   | 13          |                  | 13      |
| Nevada                                                |             |                  | (4)                                 | 119         |                  | 119     |
| Utah                                                  | 4,828       | _==              | 4,828                               | 3,788       |                  | 3,788   |
| Wyoming                                               | w           | W                | 4,836                               | w           | W                | 4,827   |
| Other 5                                               | W           | w                | 9,678                               | 13,672      |                  | 13,672  |
| Total reportable 1                                    | 4,837       | 4,703            | 24,054                              | 17,592      | 4,480            | 26,889  |
| Total withheld                                        | 18,157      | 3,175            | ( <sup>6</sup> )                    | 9,255       | 2,820            | (6)     |
| Grand total 1                                         | 177,082     | 10,566           | 187,648                             | 208,992     | 9,665            | 218,658 |
|                                                       |             |                  |                                     |             |                  |         |

W Withheld to avoid disclosing individual company confidential data; included with "Total withheld" and "Total quantity."

Data may not add to totals shown because of independent rounding.

Included with Georgia and North Carolina.

Includes Alabama in 1973.

Included with "Other" in 1972.

Includes Arizona, Arkansas, California, Colorado, Idaho, Nevada (1972), New Mexico, and

Texas.

6 Total withheld data included with "Total quantity" for each respective district or State.

Table 4.-Crude iron ore shipped from mines in the United States, by district, State, and disposition

(Thousand long tons and exclusive of ore containing 5% or more manganese)

| _                             |         | 1972         |                  |                                         | 1973               | *************************************** |
|-------------------------------|---------|--------------|------------------|-----------------------------------------|--------------------|-----------------------------------------|
| District and State            | Direct  | To bene-     | Total            | Direct                                  | To bene-           | Total                                   |
| District and State            | to con- | ficiating    | quan-            | to con-                                 | ficiating          | quan-                                   |
|                               | sumers  | plants       | tity 1           | sumers                                  | plants             | tity 1                                  |
| Lake Superior:                |         |              |                  | 101100000000000000000000000000000000000 |                    |                                         |
| Michigan                      | 4.271   | 148,954      | 27,058           | 1 1054                                  | 170 400            | ( 26.052                                |
| Minnesota                     | 4,211   | •            | 126,166          | { 1,954                                 | 179,403            | 155,305                                 |
| Wisconsin                     |         | 2,477        | 2,477            |                                         | 2,681              | 2,681                                   |
| Total reportable              | 4,271   | 151,431      | 155,702          | 1,954                                   | 182,084            | 184,038                                 |
| Southeastern States:          |         |              |                  |                                         |                    |                                         |
| Alabama                       |         | 909          | 909              |                                         | (2)                | (2)                                     |
| Georgia and North Carolina _  |         | 371          | 371              |                                         | `´3 <b>6</b> 59    | ີ 3 659                                 |
| Total reportable              |         | 1,280        | 1,280            |                                         | 659                | 659                                     |
| Northeastern States: New York |         | -,           | 1,200            |                                         | 000                | 000                                     |
| and Pennsylvania              |         | 6,702        | 6,702            |                                         | 7,381              | 7,381                                   |
| Western States:               |         |              |                  |                                         |                    |                                         |
| Missouri                      |         | 4,726        | 4,726            |                                         | 4,483              | 4,483                                   |
| Montana                       | 9       | -,           | 9                | 13                                      | 1,100              | 13                                      |
| Nevada                        |         |              | (4)              | 119                                     |                    | 119                                     |
| Utah                          | w       | $\mathbf{w}$ | 4,869            | W                                       | $\bar{\mathbf{w}}$ | 3,805                                   |
| Wyoming                       | W       | w            | 4,836            | w                                       | w                  | 4,827                                   |
| Other 5                       | 283     | 9,697        | 9,980            | 228                                     | 13,487             | 13,714                                  |
| Total reportable 1            | 291     | 14.423       | 24,420           | 360                                     | 17.970             | 26,961                                  |
| Total withheld                | 1,311   | 8,394        | ( <sup>6</sup> ) | 1,447                                   | 7,186              | (6)                                     |
| Grand total 1                 | 5,873   | 182,230      | 188,103          | 3,760                                   | 215,280            | 219,040                                 |

W Withheld to avoid disclosing individual company confidential data; included with "Total withheld" and "Total quantity."

eld" and "Total quantity."

1 Data may not add to totals shown because of independent rounding.

2 Included with Georgia and North Carolina.

3 Included Alabama in 1973.

4 Included with "Other" in 1972.

<sup>5</sup> Includes Arizona, Arkansas, California, Colorado, Idaho, Nevada (1972), New Mexico, and Texas.

6 Total withheld data included with "Total quantity" for each respective district or State.

Table 5.-Usable iron ore produced in the United States, by district, State, and variety (Thousand long tons and exclusive of ore containing 5% or more manganese)

|                                                |               | 1972               |                |                                     |               | 1973          |                |                                     |
|------------------------------------------------|---------------|--------------------|----------------|-------------------------------------|---------------|---------------|----------------|-------------------------------------|
| District and State                             | Hema-<br>tite | Limo-<br>nite      | Mag-<br>netite | Total<br>quan-<br>tity <sup>1</sup> | Hema-<br>tite | Limo-<br>nite | Mag-<br>netite | Total<br>quan-<br>tity <sup>1</sup> |
| Lake Superior:                                 |               |                    |                |                                     |               |               |                |                                     |
| Michigan                                       | $\mathbf{w}$  |                    | w              | 11,664                              | w             |               | W              | 11,440                              |
| Minnesota                                      | 14,452        |                    | 34,546         | 48,998                              | 21,235        |               | 38,786         | 60,021                              |
| Wisconsin                                      |               |                    | 888            | 888                                 |               |               | 956            | 956                                 |
| Total reportable 1                             | 14,452        |                    | 35,434         | 61,550                              | 21,235        |               | 39,742         | 72,416                              |
| Southeastern States: Alabama Georgia and North |               | 311                |                | 311                                 |               | w             |                | (2)                                 |
| Carolina                                       |               | $\mathbf{w}$       | w              | 122                                 |               | $\mathbf{w}$  | $\mathbf{w}$   | 3 317                               |
| Total reportable<br>Northeastern States: New   |               | 311                |                | 433                                 |               | w             | W              | 317                                 |
| York and Pennsylvania                          |               |                    | 2,612          | 2,612                               |               |               | 2,608          | 2,608                               |
| Western States: Missouri                       |               |                    | 2.684          | 2,684                               |               |               | 2,625          | 2,625                               |
| Montana                                        |               |                    | 9              | . 9                                 |               |               | 13             | 13                                  |
| Nevada                                         |               |                    |                | (4)                                 | $\mathbf{w}$  |               | $\mathbf{w}$   | 119                                 |
| Utah                                           | w             |                    | W              | 1,872                               | $\mathbf{w}$  |               | W              | 2,044                               |
| Wyoming<br>Other <sup>5</sup>                  | W<br>W        | $\bar{\mathbf{w}}$ | W              | 2,030                               | W<br>W        | 337           | w              | 2,070                               |
|                                                | VV            | vv                 | 3,056          | 3,933                               | VV            | w             | 4,406          | 5,164                               |
| Total reportable 1 Total withheld              | 7,143         | 873                | 5,749<br>8,549 | 10,529<br>(6)                       | 6,989         | 1,603         | 7,044<br>8,695 | 12,035<br>(6)                       |
| Total all States 1                             | 21,595        | 1,184              | 52,344         | 75,124<br>310                       | 28,224        | 1,063         | 58,089         | 87,376<br>293                       |
| Grand total 1                                  | 21,595        | 1,184              | 52,344         | 75,434                              | 28,224        | 1,063         | 58,089         | 87,669                              |

W Withheld to avoid disclosing individual company confidential data; included with "Total withheld" and "Total quantity."

¹ Data may not add to totals shown because of independent rounding.

² Included with Georgia and North Carolina.

³ Includes Alabama in 1973.

⁴ Included with "Other" in 1972.

⁵ Includes Arizona, Arkansas, California, Colorado, Idaho, Nevada (1972), New Mexico, and Texas

Findings Africage, Africages, Company, Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Contr

Table 6.-Usable iron ore produced in the United States, by district, State and type of product

(Thousand long tons and exclusive of ore containing 5% or more manganese)

|                                                       |                                | 19                          | 72                          |                                          |                                | 19                            | 73                          |                                         |
|-------------------------------------------------------|--------------------------------|-----------------------------|-----------------------------|------------------------------------------|--------------------------------|-------------------------------|-----------------------------|-----------------------------------------|
| District and State                                    | Direct<br>ship-<br>ping<br>ore | Agglom-<br>erates           | Con-<br>cen-<br>trates      | Iron<br>content<br>(natural<br>percent)  | Direct<br>ship-<br>ping<br>ore | Agglom-<br>erates             | Con-<br>cen-<br>trates      | Iron<br>content<br>(natural<br>percent) |
| Lake Superior:  Michigan  Minnesota  Wisconsin        | 4,088                          | \$10,717<br>\$34,546<br>888 | }11,311                     | {63<br>{60<br>65                         | }1,930<br>                     | {10,750}<br>{41,601}<br>956   | 17,179                      | \$63<br>\$61<br>65                      |
| Total reportable                                      | 4,088                          | 46,151                      | 11,311                      | 61                                       | 1,930                          | 53,307                        | 17,179                      | 61                                      |
| Southeastern States: Alabama                          |                                |                             | 311                         | 47                                       |                                |                               | (1)                         | 44                                      |
| Carolina                                              |                                |                             | 122                         | 50                                       |                                |                               | <sup>2</sup> 317            | 46                                      |
| Total reportable<br>Northeastern States: New          |                                |                             | 433                         | 48                                       |                                |                               | 317                         | 46                                      |
| York and Pennsylvania                                 |                                | W                           | $\mathbf{w}$                | 64                                       |                                | w                             | w                           | 64                                      |
| Western States:  Missouri Montana Nevada Utah Wyoming | - 9<br>- <del>W</del><br>W     | 2,661<br><br><br>W          | 23<br><br><del>W</del><br>W | 65<br>45<br>( <sup>3</sup> )<br>55<br>60 | 13<br>119<br>W<br>W            | 2,595<br><br><br><del>V</del> | 30<br><br><del>W</del><br>W | 65<br>35<br>62<br>55<br>61              |
| Other 4                                               | 408                            | w                           | W                           | 60                                       | 227                            | w                             | W                           | 60                                      |
| Total reportable Total withheld                       | 417<br>1,326                   | 2,661<br>5,808              | $\frac{23}{2,907}$          | 61<br>60                                 | 359<br>1,447                   | 2,595<br>6,370                | 30<br>3,842                 | 60<br>62                                |
| Total all States 5 Byproduct ore 6                    | 5,830                          | 54,620<br>227               | 14,674<br>83                | 61<br>63                                 | 3,737                          | 62,271<br>90                  | 21,368<br>203               | 61<br>61                                |
| Grand total 5                                         | 5,830                          | 54,847                      | 14,757                      | 61                                       | 3,737                          | 62,361                        | 21,571                      | 61                                      |

W Withheld to avoid disclosing individual company confidential data; included with "Total withheld."

1 Included with Georgia and North Carolina.
2 Includes Alabama in 1973.
3 Included with "Other" in 1972.
4 Included Arizona, Arkansas, California, Colorado, Idaho, Nevada (1972), New Mexico, and Texas.
5 Data may not add to totals shown because of independent rounding.
6 Mostly cinder and sinter obtained from treating pyrites.

Table 7.-Shipments of usable iron ore from mines in the United States in 1973 (Thousand long tons and thousand dollars; exclusive of ore containing 5% or more manganese)

|                                                                    | Gross                          | weight o                    | f ore sh                | ipped                                         | Iron                           | content o                   | of ore                  | shipped                                     |                                           |
|--------------------------------------------------------------------|--------------------------------|-----------------------------|-------------------------|-----------------------------------------------|--------------------------------|-----------------------------|-------------------------|---------------------------------------------|-------------------------------------------|
| District and State                                                 | Direct<br>ship-<br>ping<br>ore |                             | Con-<br>cen-<br>trates  | Total<br>quan-<br>tity <sup>1</sup>           | Direct ship-<br>ping ore       |                             |                         | Total<br>quan-<br>tity <sup>1</sup>         | Total<br>value <sup>1</sup>               |
| Lake Superior: Michigan Minnesota Wisconsin                        | } 1,954<br>                    | {11,293}<br>{43,601}<br>956 | 18,155                  | \$12,389\<br>\$62,614\<br>\$956               | 1,024                          | { 7,075}<br>}27,320}<br>620 | 9,923                   | { 7,665<br>}37,677<br>620                   | 180,194<br>782,197<br>W                   |
| Total reportable                                                   | 1,954                          | 55,850                      | 18,155                  | 75,959                                        | 1,024                          | 35,015                      | 9,923                   | 45,962                                      | 962,391                                   |
| Southeastern States: Alabama Georgia and North Carolina            |                                |                             | 271<br>105              | 271<br>105                                    |                                |                             | 121<br>53               | 121                                         | 1,408                                     |
| Total reportable                                                   |                                |                             | 376                     | 376                                           |                                |                             |                         | 53                                          | 765                                       |
| Northeastern States: New<br>York and Pennsylvania                  |                                | w                           | w                       | 2,388                                         |                                | <br>W                       | 174<br>W                | 174<br>1,536                                | 2,173<br>40,528                           |
| Western States:  Missouri  Montana  Nevada  Utah  Wyoming  Other 2 | 13<br>119<br>1,441<br>6<br>227 | 2,600<br><br><br>W<br>W     | 30<br><br>545<br>W<br>W | 2,630<br>13<br>119<br>1,986<br>2,070<br>5.114 | <br>5<br>74<br>803<br>2<br>146 | 1,686<br><br><br><br>W<br>W | 21<br><br>300<br>W<br>W | 1,706<br>5<br>74<br>1,103<br>1,254<br>3,045 | W<br>W<br>W<br>13,581<br>25,568<br>64,468 |
| Total reportable Total withheld                                    | 1,806                          | 2,600<br>6,404              | 575<br>2,934            | 11,932<br>(3)                                 | 1,030                          | 1,686<br>4,024              | 321<br>1,664            | 7,187                                       | 103,617<br>55,001                         |
| Total all States<br>Byproduct ore 4                                | 3,760                          | 64,853<br>209               | 22,041                  | 90,654<br>209                                 | 2,054                          | 40,725<br>133               | 12,082                  | 54,860<br>133                               | 1,163,710<br>2,591                        |
| Grand total 1                                                      | 3,760                          | 65,062                      | 22,041                  | 90,863                                        | 2,054                          | 40,858                      | 12,082                  | 54,993                                      | 1,166,300                                 |

W Withheld to avoid disclosing individual company confidential data; included with "Total withheld" and "Total quantity."

¹ Data may not add to totals shown because of independent rounding.

² Includes Arizona, Arkansas, California, Colorida, Idaho, New Mexico, and Texas.

³ Total withheld data included with "Total quantity" for each respective district or State.

¹ Mostly cinder and sinter obtained from treating pyrites. Ore treated in Tennessee and

Table 8.-Usable iron ore produced in Lake Superior district, by range (Thousand long tons and exclusive after 1905 of ore containing 5% or more manganese)

| Year         | Mar-<br>quette  | Me-<br>nomi-<br>nee | Goge-<br>bic | Ver-<br>milion | Mesabi           | Cuyuna | Spring<br>Valley | Black<br>River<br>Falls | Total 1          |
|--------------|-----------------|---------------------|--------------|----------------|------------------|--------|------------------|-------------------------|------------------|
| 1854-1968    | 369,687         | 300,275             | 320,334      | 103,528        | 2,665,178        | 70,336 | 8,149            |                         | 3,837,485        |
| 1969<br>1970 | 10,048          | 3,369               |              |                | 55,275           | ·      | ·                | 38                      | 68,730           |
| 1970         | 10,363<br>9,495 | 2,394 $2,424$       |              |                | 56,073<br>51,283 |        |                  | 806<br>832              | 69,636           |
| 1972         | 9,131           | 2,533               |              |                | 48,998           |        |                  | 888                     | 64,034<br>61,550 |
| 1973         | 9,036           | 2,404               |              |                | 60,021           |        |                  | 956                     | 72,416           |
| Total        | 417,760         | 313,399             | 320,334      | 103,528        | 2,936,828        | 70,336 | 8,149            | 3,520                   | 4,173,851        |

<sup>&</sup>lt;sup>1</sup> Data may not add to totals shown because of independent rounding.

Table 9.-Average analyses of total tonnage of all grades of iron ore shipped from the U.S. Lake Superior district

|              | Quantity                | Content percent 2 |              |                        |            |                             |                |  |  |  |
|--------------|-------------------------|-------------------|--------------|------------------------|------------|-----------------------------|----------------|--|--|--|
| Year         | (thousand<br>long tons) | (thousand         |              | Phos-<br>phorus Silica |            | Man-<br>ga- Alumina<br>nese |                |  |  |  |
| 1969         |                         | 59.04             | 0.045        | 7.32                   | 0.45       | 0.69                        | 4.82           |  |  |  |
| 1970         | 69,072<br>61,776        | 59.36 $60.06$     | .041 $.039$  | $7.40 \\ 7.08$         | .39<br>.33 | .72<br>.59                  | 4.62<br>r 4.09 |  |  |  |
| 1972<br>1973 | 177111                  | 60.40<br>60.66    | .031<br>.030 | 6.76<br>6.77           | .30<br>.33 | .52<br>.41                  | 3.93<br>3.79   |  |  |  |

r Revised.

Virgina.

<sup>&</sup>lt;sup>1</sup> Railroad weight-gross tons. <sup>2</sup> Iron and moisture on natural basis; phosphorus, silica, manganese, and alumina on dried basis.

Source: American Iron Ore Association. Iron Ore, 1973, p. 92.

Table 10.-Consumption of iron ore and agglomerates in the United States in 1973

(Thousand long tons and exclusive of ore containing 5% or more manganese)

| State                            | Iron o            | re and<br>trates <sup>1</sup> | Agglom            | erates <sup>2</sup> | Miscel-              | Total<br>report-<br>able |
|----------------------------------|-------------------|-------------------------------|-------------------|---------------------|----------------------|--------------------------|
| Diate                            | Blast<br>furnaces | Steel<br>furnaces             | Blast<br>furnaces | Steel<br>furnaces   | laneous <sup>3</sup> |                          |
| Alabama, Kentucky, Texas         | . 2.807           | w                             | 7,786             | w                   | NA                   | 10,593                   |
| California, Colorado, Utah       |                   | w                             | 6,660             | w                   | NA                   | 11,574                   |
| Ohio and West Virginia           | . 5.518           | w                             | 23,847            | w                   | NA                   | 29,365                   |
| Illinois and Indiana             | 2.697             | w                             | 32,440            | w                   | NA.                  | 35,137                   |
| Michigan and Minnesota           | 435               | w                             | 10.697            | w                   | NA                   | 11,132                   |
| Maryland, New York, Pennsylvania |                   | w                             | 33,605            | w                   | NA                   | 46,412                   |
| Undistributed                    |                   | 1,285                         |                   | 802                 | e 622                | 2,709                    |
| Total                            | 29,178            | 1,285                         | 115,035           | 802                 | e 622                | 146,922                  |

<sup>&</sup>lt;sup>e</sup> Estimate. NA Not available. W Withheld to avoid disclosing individual company confidential data.

Not including pellets or other agglomerated products.
2 Includes 65,203,461 tons of pellets produced at U.S. mines and 10,685,353 tons of foreign pellets and other agglomerates.

Table 11.—Iron ore consumed in production of agglomerates at iron and steel plants in 1973, by State

(Thousand long tons)

| State                                              | Iron ore<br>con-<br>sumed <sup>1</sup> | Agglom-<br>erates<br>produced |
|----------------------------------------------------|----------------------------------------|-------------------------------|
| Alabama, Kentucky, Texas.                          | 2,930                                  | 3,424                         |
| California, Colorado, Utah.                        | 2,472                                  | 2,014                         |
| Ohio and West Virginia                             | 3,092                                  | 3,846                         |
| Illinois, Indiana, Michigan<br>Maryland, New York, | 8,236                                  | 10,823                        |
| Pennsylvania                                       | . 14,131                               | 16,758                        |
| Total                                              | 2 30,860                               | 36,865                        |

<sup>&</sup>lt;sup>1</sup> Including domestic and foreign ores.

Table 12.—Beneficiated iron ore shipped from mines in the United States <sup>1</sup>

(Thousand long tons and exclusive of ore containing 5% or more manganese)

|      | Year | Bene-<br>ficiated<br>ore | Total<br>iron<br>ore | Proportion<br>of bene-<br>ficiated to<br>total<br>(percent) |
|------|------|--------------------------|----------------------|-------------------------------------------------------------|
| 1969 |      | 80.157                   | 89,854               | 89.2                                                        |
| 1970 |      | 79,779                   | 87,176               | 91.5                                                        |
| 1971 |      | 70.456                   | 77,106               | 91.4                                                        |
| 1972 |      | 72,011                   | 77,883               | 92.5                                                        |
| 1973 |      | 86,894                   | 90,654               | 95.9                                                        |

<sup>&</sup>lt;sup>1</sup> Beneficiated by further treatment than ordinary crushing and screening. Excludes byproduct ore.

Table 13.—Production of iron ore agglomerates 1 in the United States, by type

(Thousand long tons)

| Туре                                   |                                  | Agglomerate produced                 |  |  |
|----------------------------------------|----------------------------------|--------------------------------------|--|--|
|                                        | 1972                             | 1973                                 |  |  |
| Sinter, nodules, and cinder<br>Pellets | ·_ <sup>2</sup> 36,702<br>53,528 | <sup>3</sup> 21,465<br><b>61,196</b> |  |  |
| Total                                  | 90,230                           | 82,661                               |  |  |

<sup>&</sup>lt;sup>1</sup> Production at mines and consuming plants. <sup>2</sup> Includes 18,819 thousand tons of self-fluxing

Table 14.—Stocks of usable iron ore at mines 1 Dec. 31, by district

(Thousand long tons)

| District                                                                  | 1972   | 1973                                         |  |
|---------------------------------------------------------------------------|--------|----------------------------------------------|--|
| Lake SuperiorSoutheastern States<br>Northeastern States<br>Western States | 5,215  | 4,124<br><b>61</b> 7<br>5,336<br><b>79</b> 8 |  |
| Total                                                                     | 14,679 | 10,876                                       |  |

<sup>&</sup>lt;sup>1</sup> Excluding byproduct ore.

<sup>&</sup>lt;sup>3</sup> Includes iron ore consumed in production of cement and ferroalloys, and iron ore shipped for use in manufacture of paint, ferrites and heavy media.

<sup>&</sup>lt;sup>2</sup> Data does not add to total shown because of independent rounding.

sinter.  $^3$  Includes 20,300 thousand tons of self-fluxing sinter.

Table 15.—Average value of usable iron ore <sup>1</sup> shipped from mines or beneficiating plants in the United States in 1973

(Dollars per long ton)

|                               |                  | District          |   |              |  |  |  |
|-------------------------------|------------------|-------------------|---|--------------|--|--|--|
| Type of ore                   | Lake<br>Superior | South-<br>eastern |   | West-<br>ern |  |  |  |
| Direct-shipping,              |                  |                   |   |              |  |  |  |
| hematite and<br>magnetite     | 6.48             |                   |   | 6.91         |  |  |  |
| Concentrates,<br>hematite and |                  |                   |   |              |  |  |  |
| magnetite                     | 7.78             | w                 | w | 8.11         |  |  |  |
| Concentrates,                 |                  | 5.60              |   | $\mathbf{w}$ |  |  |  |
| Agglomerates                  | 14.74            |                   | w | 15.33        |  |  |  |

W Withheld to avoid disclosing individual company confidential data.

<sup>1</sup> F.o.b. mine or plant. Excludes byproduct ore.

Table 16.-U.S. exports of iron ore, by country

(Thousand long tons and thousand dollars)

| 2             | 197      | 71 1973 |          | 2      | 197      | 3      |
|---------------|----------|---------|----------|--------|----------|--------|
| Country       | Quantity | Value   | Quantity | Value  | Quantity | Value  |
| Canada        | 1.245    | 17,180  | 1.442    | 20,067 | 2,266    | 32,869 |
| Germany, West | 19       | 53      | 44       | 122    | 17       | 126    |
| Japan         | 1.794    | 20.850  | 608      | 6,553  | 457      | 4,819  |
| Mexico        | (1)      | 1       |          | ´      | 6        | 70     |
| Other         | . `´3    | 63      | 1        | 34     | 1        | 38     |
| Total         | 3,061    | 38,147  | 2,095    | 26,776 | 2,747    | 37,922 |

 $<sup>^1</sup>$  Less than  $\frac{1}{2}$  unit.

Table 17.-U.S. imports for consumption of iron ore, by country

(Thousand long tons and thousand dollars)

| Country -          | 19'      | 71      | 19       | 1972    |          | 73      |
|--------------------|----------|---------|----------|---------|----------|---------|
|                    | Quantity | Value   | Quantity | Value   | Quantity | Value   |
| Angola             |          |         |          |         | 40       | 273     |
| Argentina          |          |         | (1)      | 12      | 31       | 340     |
| Australia          | 1.008    | 12,692  | 687      | 9,245   | 464      | 5,840   |
| Belgium-Luxembourg | ·        |         |          |         | 17       | 160     |
| Brazil             | 1.772    | 16,547  | 1,115    | 11,990  | 3,183    | 36,295  |
| Canada             | 20,342   | 267,424 | 18,168   | 247,757 | 21,628   | 311,893 |
| Chile              | 878      | 7.152   | 308      | 2,877   | 205      | 1,712   |
| Liberia            | 1,838    | 16,768  | 2,761    | 22,740  | 2,734    | 23,667  |
| Mauritania         |          | ´       | 40       | 687     | 47       | 418     |
| Nigeria            | 52       | 399     | 85       | 729     |          |         |
| Peru               | 1.063    | 12.443  | 1.318    | 15,048  | 1.501    | 19,685  |
| Philippines        | 19       | 367     | 11       | 283     | 25       | 633     |
| Sweden             | 178      | 2.200   | 273      | 3,952   | 273      | 4,385   |
| Venezuela          | 12.953   | 114,176 | 10.926   | 99,951  | 13,148   | 128,169 |
| Other              | 21       | 476     | 69       | 663     | (1) ´    | 18      |
| Total              | 40,124   | 450,644 | 35,761   | 415,934 | 43,296   | 533,488 |
|                    |          |         |          |         |          |         |

<sup>&</sup>lt;sup>1</sup> Less than ½ unit.

Table 18.—U.S. imports for consumption of iron ore, by customs district
(Thousand long tons and thousand dollars)

| Contain listed     | 197      | 72      | 197      | 13      |
|--------------------|----------|---------|----------|---------|
| Customs district   | Quantity | Value   | Quantity | Value   |
| Baltimore, Md      | 7,515    | 75,346  | 9,069    | 98,039  |
| Buffalo, N.Y       |          | 33,665  | 2,840    | 44,970  |
| Charleston, S.C    |          |         | 13       | 141     |
| Chicago, Ill       |          | 73.300  | 5,248    | 74,064  |
| Cleveland. Ohio    |          | 67.272  | 6,583    | 91,682  |
| Detroit, Mich      |          | 13.539  | 1,465    | 20,544  |
| Houston, Tex       |          | 7.285   | 1,005    | 15,517  |
| Los Angeles, Calif |          | 292     | 142      | 1,151   |
| Mobile, Ala        |          | 34,416  | 4,107    | 43,669  |
| New Orleans, La    |          | 9,269   | 524      | 6,469   |
| Ogdensburg, N.Y    |          | 444     | 4        | 431     |
| Philadelphia, Pa   |          | 94.189  | 11,951   | 131,723 |
| Portland, Oreg     | 288      | 3.094   | 157      | 1,925   |
| Wilmington, N.C    | 257      | 3,819   | 187      | 3,161   |
| Other              | 1        | 4       | 1        | 2       |
| Total              | 35,761   | 415,934 | 43,296   | 533,488 |

Table 19.—Iron ore, iron ore concentrates and iron ore agglomerates: <sup>1</sup> World production by country

(Thousand long tons)

| Country 2                      | 1971          | 1972           | 1973 р  |
|--------------------------------|---------------|----------------|---------|
| North America:                 |               |                |         |
| Canada 3                       | r 42,957      | 39,653         | 48,955  |
| Mexico 4                       | 4,624         | 5,009          | 5,107   |
| Panama                         | <del></del> - | 76             | e 80    |
| United States 5                | 80,762        | 75,434         | 87,669  |
| South America:                 |               |                |         |
| Argentina                      | 278           | 248            | 215     |
| Bolivia (exports)              | - 6           | 51             | 2       |
| Brazil e                       | 42,000        | 41,400         | 57,000  |
| Chile                          | 11,048        | 8,504          | 9,253   |
| Colombia                       | 435           | 409            | 472     |
| Peru                           | 8,691         | 9,266          | 8,823   |
| Uruguay                        | 3             | 1              | 4       |
| Venezuela                      | 20.000        | $18.17\bar{3}$ | 21,682  |
| Europe:                        | 20,000        | 20,210         |         |
| Albania e 6                    | 400           | e 450          | 510     |
| Austria                        | 4,105         | 4.067          | 4.144   |
| Belgium                        | 92            | 111            | 120     |
| Bulgaria                       | 2,954         | 3.156          | e 2.950 |
| Czechoslovakia                 | 1,584         | 1,555          | 1,673   |
| Denmark                        | 1,384         | 1,555          | 1,013   |
| Finland 7                      | 864           | 979            | 880     |
| France                         | 54.980        | 53.396         | 53.372  |
| Germany, East 8                | 313           | 264            | e 250   |
| Germany, West                  | 4.941         | 4.748          | 6.327   |
| Hungary                        | 676           | 684            | 670     |
| Italy 9                        | 672           | 606            | 514     |
| Luxembourg                     | 4.436         | 4.051          | 3,722   |
| Norway                         | 3,992         | 3,860          | 3,847   |
| Poland                         | 2,045         | 1,630          | 1,391   |
| Portugal 10                    | 2,043         | 42             | 35      |
| Romania                        | 3,412         | 3,308          | e 3.350 |
| Spain                          | 7,213         | 6.605          | 6,792   |
| Sweden                         | 33,824        | 32,601         | 34,261  |
| U.S.S.R                        | 199,802       | 204,840        | 212.588 |
| United Kingdom                 | 10,067        | 8,906          | 7.011   |
|                                | 3,666         | 3,897          | 4,685   |
|                                | 3,000         | 0,001          | 4,000   |
| Africa:                        | r 3.097       | 3.611          | e 3.740 |
| Algeria                        | 6,061         | 3,622          | 5,957   |
| Angola                         | 465           | 3,022<br>421   | • 423   |
| Egypt, Arab Republic of        | 405           | 421            | 12      |
| Kenya                          | 23.028        | 22,153         | 23,170  |
| Liberia                        |               | 9.252          | 10.314  |
| Mauritania                     | 8,323         | 230            | 369     |
| Morocco                        | 613           | 500            | 500     |
| Rhodesia, Southern e           | 500           | 2.284          | 2,367   |
| Sierra Leone                   | 2,507         |                | 10.782  |
| South Africa, Republic of 11   | r 10,330      | 11,046         | 2,113   |
| Swaziland                      | r 2,821       | 1,952          |         |
| Tunisia                        | 921           | 876            | 796     |
| See footnotes at end of table. |               |                |         |

Table 19.-Iron ore, iron ore concentrates and iron ore agglomerates: 1 World production by country-Continued

(Thousand long tons)

| Country 2                     | 1971      | 1972      | 1973 P  |
|-------------------------------|-----------|-----------|---------|
| Asia:                         |           |           |         |
| China, People's Republic of e | r 54.000  | r 59,000  | 65,000  |
| Hong Kong                     | 160       | 160       | 148     |
| India                         | 33,720    | 34.939    | 34,841  |
| Indonesia                     | 267       | 262       | 277     |
| Iran 12                       | 150       | 96        | e 98    |
| Japan 13                      | 1.398     |           |         |
| Korea, North e                | 8.400     | 1,326     | 991     |
| Korea, Republic of            | 496       | r 8,500   | 8,700   |
| Malaysia                      | r 920     | 484       | 586     |
| Philippines                   |           | 512       | e 530   |
| Taiwan                        | r 2,294   | 2,170     | 2,219   |
| mi ii .                       |           | 28        | e 30    |
| 77 7                          | 39        | 27        | 36      |
| Turkey<br>Oceania:            | 2,047     | 1,928     | 2,515   |
| A 1 1*                        |           |           |         |
|                               | 61,119    | 62,812    | 83,367  |
| New Zealand 14                | 567       | 1,358     | 2,147   |
| Total                         | r 774,677 | r 766,150 | 850,752 |

e Estimate. <sup>p</sup> Preliminary. r Revised.

<sup>5</sup> Includes byproduct ore. 6 Nickeliferous iron ore.

Find the first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first first fir (purple ore).

8 Includes "roasted ore", presumably pyrite sinter, not separable from available sources.

9 Excludes iron oxide pellets produced from pyrite sinter.

10 Includes manganiferous iron ore.

11 Includes byproduct magnetite as follows in thousand long tons: 1971—2,193, 1972—2,952, 1973—2,958; and manganiferous iron ore (20% to 35% iron, 15% to 30% manganese) as follows in thousand long tons: 1971—179, 1972—100, 1973—65.

13 Concentrates including concentrate derived from iron sand as follows in thousand long tons:
 1971—581, 1972—539, 1973—274.
 14 Largely concentrates from magnetite-titanium sands.

<sup>&</sup>lt;sup>e</sup> Estimate. <sup>p</sup> Preliminary. <sup>r</sup> Revised. <sup>1</sup> Insofar as availability of sources permit, data in this table represent the nonduplicative sum of marketable iron ore, iron ore concentrates and iron ore agglomerates produced by each of the listed countries. Moreover, concentrate and agglomerates produced from imported ores are excluded, under the assumption that the ore from which they are produced has been credited as marketable ore in the country where it was mined.

<sup>2</sup> In addition to the countries listed, Cuba and North Vietnam may produce iron ore but definitive information on output, if any, is not available.

<sup>3</sup> Shipments, dry tons, including byproduct ore.

<sup>4</sup> Calculated from reported iron content assuming a grade of 60% iron.

<sup>5</sup> Includes byproduct ore.

# Iron and Steel

By Horace T. Reno 1

The iron and steel industry of the world operated at practical capacity throughout 1973. World production of raw steel 2 ingots and castings reached a record 766 million tons. The United States regained its lead as the world's leading steel producer as it produced a record 151 million tons compared with the 144 million tons produced in the Soviet Union. Demand for steel exceeded the supply in all parts of the world, and, except in the United States, the United Kingdom, and other countries where prices were controlled, prices advanced substantially as sellers' markets developed.

According to the American Iron and Steel Institute (AISI), domestic steel mill shipments totaled a record 111 million tons, 17 million more than the record set in 1969. Shipments to all major markets exceeded those of 1972. Steel service centers and the automobile and construction industries received 20% more steel in 1973 than they did in 1972, and shipments to makers of containers and capital goods producers were nearly 18% more. The largest increase in shipments to any single market was a 53% increase to oil and gas drillers.

U.S. exports of steel mill products increased 40% compared with those of 1972; steel mill imports decreased 14%. It was apparent that the reversal in the U.S. foreign trade pattern would have been even more marked had U.S. producers been able to increase their output. AISI reported

the steel industry's total revenue at \$21 billion, an increase of 32% compared with revenue in 1972, and net income totaled \$924 million, an increase of 77% from the \$523 million net income in 1972. Net income in 1973 was 4.4% of total revenue compared with 3.3% in 1972. Despite the improved financial position of the domestic steel industry, the shortage of capital available for expanding productive capacity continued.

The high production rate for steel in 1973 brought many problems. The coke supply, which was already curtailed by inability of producers to meet environmental standards, did not equal the demand, and the quality of coke available en the market was not up to standard. In many instances steel output was limited by the supply of fuel oil, natural gas and railroad cars, and there was not enough zinc to produce all the galvanized steel needed to meet demand. Many producers resorted to rationing their output among regular customers and selectively adjusted their product mix to emphasize high-profit items. A shortage of steel to make roof bolts for use in coal mines and of steel to make drill stems and oil well casings caused most concern.

<sup>&</sup>lt;sup>1</sup> Physical scientist, Division of Ferrous Metals

<sup>-</sup>Mineral Supply.

<sup>2</sup> The term raw steel, as used by the American Iron and Steel Institute, includes ingots, steel castings, and continuously cast steel. It corresponds to the term crude steel as used by the United Nations.

Table 1.-Salient iron and steel statistics

(Thousand short tons)

|                                        | 1969    | 1970    | 1971    | 1972      | 1973    |
|----------------------------------------|---------|---------|---------|-----------|---------|
| United States:                         |         |         |         |           |         |
| Pig iron:                              |         |         |         |           |         |
| Production                             | 95,003  | 91,293  | 81,382  | r 88.876  | 100.929 |
| Shipments                              | 95,472  | 91,272  | 81,332  | r 89,053  | 101,239 |
| Exports                                | 44      | 310     | 34      | 15        | 15      |
| Imports for consumption                | 405     | 249     | 306     | 637       | 446     |
| Steel: 1                               |         |         |         |           |         |
| Production of raw steel:               |         |         |         |           |         |
| Carbon                                 | 124,832 | 117,411 | 107.007 | 117.698   | 132,747 |
| Stainless                              | 1,569   | 1,279   | 1,263   | 1.564     | 1,889   |
| All other alloy                        | 14,861  | 12,824  | 12,173  | 13,979    | 16,163  |
| Total                                  | 141,262 | 131,514 | 120,443 | 133,241   | 150,799 |
| Index <sup>2</sup>                     | 111.0   | 103.4   | 94.7    | 104.5     | 118.5   |
| Total shipments of steel mill products | 93,877  | 90,798  | 87,038  | 91.805    | 111.430 |
| Exports of major iron and steel        | •       | •       | •       | ,         | ,       |
| products                               | 5,788   | 7.657   | 3,526   | 3,546     | 4.962   |
| Imports of major iron and steel        |         | •       | .,      | -,        | -,      |
| products 3                             | 14,528  | 13,861  | 18,744  | 18.158    | 15,610  |
| World production:                      | •       | ,       | •       | ,         | ,       |
| Pig iron                               | 453,000 | 475,000 | 474,000 | r 503,000 | 556,000 |
| Raw steel (ingots and castings)        | 633,000 | 655,000 | 640,000 | r 693,000 | 766,000 |

r Revised

Based on average production in 1967 as 100.
 Data not comparable for all years.

## PRODUCTION AND SHIPMENTS OF PIG IRON

Domestic production of pig iron totaled 100.9 million tons in 1973, an increase of 12 million tons or 13.6% more than that produced in 1972. Average production of pig iron per blast-furnace-day decreased to 1,771.7 tons compared with 1,789.6 tons in 1972 and 1,654.3 tons in 1971 according to AISI. A total of 143 blast furnaces were in blast at the beginning of the year, including 2 that produced ferroalloys. At yearend the total number in blast had increased to 164, with 2 producing ferroalloys. There were 214 producing furnaces at the beginning of the year, and 203 at yearend, of which 3 were being relined and l was rebuilt.

Metalliferous Materials Consumed in Blast Furnaces.—For each ton of pig iron produced in 1973, an average of 1.676 tons of metalliferous materials was consumed in blast furnaces. Total net iron ore consumed in blast furnaces including agglomerates was 159.2 million short tons. The total tonnage of iron ore including manganiferous ore consumed by agglomerating

plants at or near the blast furnaces in producing 41.3 million tons of agglomerates was 34.9 million tons. The remainder consisted of mill scale, coke, limestone, dolomite, and small amounts of other materials. Domestic pellets charged to the blast furnaces totaled 72.5 million tons, and sinter charged was 44.4 million tons. Pellets and other agglomerates from foreign sources added an additional 11.7 million tons.

Blast furnace oxygen consumption totaled 21.0 billion cubic feet according to the AISI, compared with 15.5 billion cubic feet in 1972 and 13.3 billion cubic feet in 1971.

Data reported to the U.S. Bureau of Mines by the iron and steel industry showed that blast furnaces, through tuyere injection, consumed 13.3 billion cubic feet of natural gas, 4.7 billion cubic feet of coke oven gas, 270.3 million gallons of oil, 94.6 million gallons of tar, pitch, and miscellaneous fuels, and 130,608 tons of bituminous and 10,397 tons of anthracite coal in 1973.

#### PRODUCTION AND SHIPMENTS OF STEEL

Domestic raw steel production reached a record 151 million tons in 1973, 13% more than in 1972. The steel industry

worked at practical capacity throughout most of the year.

The 1973 steel index, based on production

American Iron and Steel Institute. Includes ingots, continuous cast steel, and all other cast forms.

in 1967 as 100, was 118.5 compared with 104.5 in 1972 and 94.7 in 1971. Of the total, 55.2% was produced by the basic oxygen process (BOP), 26.4% by openhearth furnaces, and 18.4% by electric furnaces.

Shipments of steel products for the year were up 21.4%, from 91.8 million tons in 1972 to 111.4 million tons in 1973. The distribution of steel shipments to markets was changed little from the distribution in 1972, with service centers and the automotive industry each accounting for approximately 20% of the total.

Materials Used in Steelmaking.—Metallics

charged to domestic steel furnaces in 1973, per ton of steel produced, averaged 1,259 pounds of pig iron, 1,104 pounds of scrap, and 32 pounds of iron ore, including agglomerates. In 1972, comparable quantities were 1,246 pounds of pig iron, 1,103 pounds of scrap, and 32 pounds of iron ore.

According to AISI, steelmaking furnaces consumed 618,268 tons of fluorspar, 2.4 million tons of limestone, 7.8 million tons of lime, and 0.9 million tons of other fluxes. Oxygen consumption in steelmaking totaled the equivalent of 215.1 billion cubic feet compared with 189.5 billion in 1972.

#### CONSUMPTION OF PIG IRON

Pig iron consumed in steelmaking totaled 94.9 million tons. Basic oxygen converters consumed 68.08 million tons; open hearths, 25.48 million tons; and electric furnaces, 1.38 million tons. An additional 2.74 million tons was consumed by iron foundries

and miscellaneous users, primarily for charging cupola furnaces. Also, approximately 2.2 million tons in the form of molten metal was used in making ingot molds and direct castings.

#### **PRICES**

At the beginning of 1973, steel prices were beginning to reflect a worldwide boom in the industry. European steel prices rose at a record rate. Reinforcing bars that had sold in European markets for approximately \$115 per ton early in December 1972 were selling for \$150 per ton by the end of January. Price increases in the United Kingdom and Japan lagged behind the rapid increase in the European Common Market countries; but the Japanese raised their steel export prices in February to offset the 10% devaluation of the dollar, and the British Steel Corp. raised its steel prices 9.5% in mid-April. Canadian steel prices in general followed the upward trend of steel on the world market although apparently moderated somewhat by proximity to the United States.

Prices quoted by domestic steel producers were governed by phase 2 price controls. In January, the Price Commission approved a weighted average 4½% increase in the price of steel plates at the request of National Steel Corp. Leading producers increased the price of tinplate about 4% as phase 2 ended and five producers increased the quoted price of merchant basic

iron to \$82.75 per net ton f.o.b. the plant. Producers of stainless tool and high-speed steels increased their prices 4% to 8% in March to recover the cost resulting from rising scrap, ferroalloy, and energy prices.

Most of the major steel producers planned to raise the base price of steel \$8 to \$12 per ton on June 15 to 17 but were prevented from doing so by the Cost of Living Council issuing a 60-day price freeze which was to end August 12. Essentially all producers gave 30-day notice to the Cost of Living Council in August that they planned to increase steel prices when permitted to do so in the middle of September. The Council approved only a 2½% increase effective October 1 and another 2½% effective January 1, 1974.

The price control action of the Cost of Living Council triggered widespread reevaluation by steel producers of their product mix. Seeking greater profitability, producers eliminated many low-profit forms of steel from their operations. Rod stock to make roof bolts used in coal mines and tubular steel used in casing oil wells were among the low-profit steels eliminated. The Cost of Living Council granted an excep-

tion on the price of rods to make roof bolts on November 20, and a petition for exemption from price controls for oil country goods was pending at the end of the year.

On November 30, major steel producers gave a 30-day notice of intention to increase their prices approximately 6½% on January 1, 1974. Late in December the Council agreed to adjustment of price freezes for certain steel items to reflect in-

creased costs in iron and steel scrap incurred between June 1, 1973, and December 31, 1973.

The composite price of pig iron, according to Iron Age, increased from \$71.96 per short ton at the end of January 1973 to \$78.16 at the end of December, and the composite price for finished steel increased slightly from \$187.26 in January to \$188.64 per short ton in December.

#### **FOREIGN TRADE**

United States trade in steel mill products at the beginning of 1973 was not greatly affected by the worldwide boom in the steel industry. According to AISI, steel imports into the United States in the first month established a January record, but after the first month, the pattern of U.S. foreign trade in steel reversed, and for the entire year exports of steel mill products were 41% more than in 1972, while imports were 14% less. Some U.S. mills refused orders from foreign companies. Devaluation of the dollar on February 9 accelerated the changing pattern of U.S. steel foreign trade, and by March, Japanese and European steel producers reportedly were pricing themselves out of U.S. markets.

The changing trade pattern greatly eased the burden imposed by the voluntary restraint arrangement which limited steel exports to the United States from Japan, the United Kingdom, and European Community (EC) countries. Officials of some U.S. companies discussed formation of a United States trading combine to promote steel trade in a manner similar to that or the equivalent of Japanese trading companies which have successfully promoted Japanese steel throughout the world. Opening of the Soviet Union and the People's Republic of China to steel imports may have been the first step in steel trade between the United States and Communist countries. The Soviets sought help in providing steels suitable for consumer goods and the worldwide shortage of steel provided the economic climate in which U.S. trade with the Soviet Union could develop and flourish.

Data compiled by AISI indicated that U.S. imports of steel mill products from Japan were 12½% less than in 1972. Total steel imports from EC countries were 16%

less; from Belgium-Luxembourg imports decreased 22.8%; from France 20%; from West Germany 7%; from the Netherlands 3%; from Italy 49%; and from the United Kingdom 18%. Steel mill products imported from Canada for consumption in the United States in 1973 were 7% less than in 1972.

The U.S. Tariff Commission closed six cases brought under the Anti-Dumping Act of 1921 relating to iron and steel products being sold in U.S. markets at less than fair value: (1) It determined there was no injury or likelihood of injury to domestic industry from deformed concrete reinforcing bars from Mexico, which were being sold, or likely to be sold, at less than fair value within the meaning of the Anti-Dumping Act of 1921; (2) the Commission, on being advised by the Treasury Department that iron and sponge iron powders from Canada were being, or likely to be, sold in the United States at less than fair value, scheduled public hearings December 11 to determine whether an industry in the United States was being, or was likely to be, injured, by reason of such importation; (3) the Commission determined that stainless steel wire rod imported from France was being, or was likely to be, sold at less than fair value, to injure an industry in the United States; (4) the Commission determined that the domestic industry was not injured, or likely to be injured, by cold-rolled stainless steel, sheet and strip from France; (5) the Commission discontinued its antidumping investigation of injury to domestic industry from high-speed tool steel from Sweden being sold at less than fair value; and (6) the Commission determined that a domestic industry was being injured by sale of stainless steel plate from Sweden which was being sold in the United States at less than fair value.

In investigations preliminary to Tariff Commission actions, the U.S. Treasury Department determined that pig iron from Brazil was not being sold in the United States at less than fair value, but that steel wire rope from Japan had been sold in the United States for less than fair value.

#### **WORLD REVIEW**

The steel industry of the world, with very few exceptions, operated at practical capacity throughout most of 1973. The industry produced 765.8 million tons of raw steel-a record. Record production was matched by a record demand. Shortages of steel mill products developed in most marketing areas. The steel industry of North America was at the forefront in producing steel as the industries of Canada and Mexico were as active as those of the United States, continuing the high production rate started in 1972. In South America, the steel boom was not as noticeable as in other parts of the world because the newly developing steel industries had not yet produced sufficient steel to meet demand. Steel supply in the EC and Other Western European countries, as in North America, did not meet demand. Labor troubles and a fuel shortage in the United Kingdom prevented the British Steel Corp. from contributing to continental European markets. State-owned steel producers in Eastern European countries operated as usual on their planned schedule, but the steel industry of Asia, dominated by producers in Japan, lagged somewhat behind the rest of the world in reaching capacity output.

#### NORTH AMERICA

Canada.—Canadian steel companies produced almost 15 million tons of crude steel—a record. Its steel imports exceeded exports by approximately 1 million tons; so the Canadian indicated crude steel equivalent consumption in 1973 was a record 15.6 million tons. Reportedly, Canadian shipments of rolled steel products were up for most categories compared with those for 1972. Notable increases were to building contractors, up 49%; automotive and aircraft industries, up 29%; natural resources and extractive industries, up 24%; and the railway industry, other than cars and locomotives, up 18%.

All Canadian steel producers modernized or expanded their iron and steelmak-

ing facilities.3

Algoma Steel Corp. Ltd. installed its second basic oxygen steelmaking furnace. It had a continuous slab-casting plant under construction and installed various new finishing facilities and ancillary equipment for the new facilities.

Dominion Foundries & Steel Ltd. (DOFASCO) was in the process of rebuilding and recommissioning its No. 1 blast furnace, rebuilding stoves for the No. 2 blast furnace, and a back-draft stack for the No. 3 blast furnace. The company installed fast-roll change equipment on seven finishing stands at the hot mill with various ancillary and emission control equipment.

Interprovincial Steel & Pipe Corp. Ltd. installed a new melt shop and a 125-ton ultra-high-power furnace split shell. It added two soaking pits and a spiral pipe mill.

Sidbec-Dosco Ltd. started operating its Midrex reduction plant on April 11.4

The Steel Co. of Canada, Ltd. (STELCO), completed an 80-ton electric arc furnace at its McMaster works and installed a 4-strand continuous casting machine. At its Swanson works it added two heat-treating lines, and constructed numerous ancillary equipment. At its Hilton works, it constructed additional gas-cleaning equipment, a BOF shop, and an addition to BOF teaming facilities and provided oxygen enrichment for its E blast furnace.

Mexico.—The Mexican iron and steel industry produced 5.2 million tons of steel in 1973, an increase of 6% compared with that in 1972. The industry was plagued by shortages of iron, fuel, and electric power, and therefore did not grow at the rate experienced since World War II. Demand for all steel products throughout the year was at a high level, and in the last quarter of the year, delivery schedules were delayed from 75 to 90 days, and several

<sup>3</sup> Iron and Steel Engineer. Annual Review Issue. V. 50, No. 1, January 1974, p. D8. 4 Schneider, V. B. Iron and Steel. Can. Min. J., v. 95, No. 2, February 1974, pp. 124-126.

fabricating concerns shutdown their plants because they could not obtain steel.

Planning of the Las Truchas complex at Melchor Ocampo in the State of Michoacán continued as bids were asked for basic oxygen and blast furnaces and for continuous casting equipment.

The expansion program of Hojalata y Lámina, S.A. (HYLSA), in Monterrey also progressed as planned. Its new direct reduction plant was scheduled to begin operation to produce 457,000 tons of sponge iron per year early in 1974.

Fundidora de Monterrey reviewed bids for its \$110 million expansion program including a basic oxygen furnace, an iron ore pelletizing plant, a reheating furnace, and new rolling mill equipment.5

Officials of Altos Hornos de Mexico S.A. (AHMSA) visted Japan seeking financial and technical cooperation to expand AHMSA steelmaking operations, establish a new integrated steelworks on the Pacific Coast, and acquire a stainless steel line.6

#### SOUTH AMERICA

The Thirteenth Latin American Iron and Steel Congress and the Fourteenth General Assembly of the Latin American Iron and Steel Institute (ILAFA) met in Buenos Aires, Argentina, November 12-15. The meeting had been planned for October 22-25 in Santiago, Chile, but was rescheduled because of the economic and political turmoil in that country. The Congress and ILAFA have the common objective of taking advantage of the potentials that Latin American countries have to construct steel complexes which will provide the impetus for a more vigorous economic and social environment in all of South America.

The Congress was of particular significance to Latin American countries. It enabled the participants to discuss mutual problems and obtain information on the most advanced techniques which could be adapted for future installations in their countries. It was organized under three general themes to develop these objectives: (1) A technical session devoted to examining trends in the expansion of Latin American steel plants; (2) a study of methods for combating pollution of the atmosphere and of the seas and rivers; and (3) a review of general industrial engineering

problems oriented to maximum production and optimum working conditions without inconvenience to the surrounding life.

Argentina.—Demand for steel mill products in Argentina continued to increase at a rapid rate. The domestic steel industry could not supply the needed steel, so a purchasing team of officials from the Government-owned Sociedad Mixta Siderúrgica Argentina (SOMISA) was formed to seek steel in European countries, the United States, and Japan.

The Argentine Government authorized SOMISA to expand raw steel production to 4 million tons.7 The expansion program was to involve modifying an existing blast furnace, redesigning of a planned furnace for increased volume, adding an additional Linz-Donawitz (LD) converter and a wide plate mill. Total cost was estimated at \$200 million

SOMISA contracted with Corporacion Minera de Bolivia (COMIBOL) for 50,000 tons of iron ore from the Mutun deposits in southeast Bolivia. Reportedly 15,000 tons of Mutún iron ore concentrate tested satisfactorily at the SOMISA San Nicolas

Bolivia - The Bolivian Government and Bolivia's national iron and steel company Empresa Siderurgica Boliviana S.A. (SIDERSA) actively promoted exploitation of the Mutun iron ore deposits. Through trade with Argentina and Brazil, the Government was considering a three-country cooperative project to build an iron ore mining and iron and steel plant industrial complex which would involve Bolivian iron ore and natural gas, electric power from major dams planned on the Paraguayan-Argentine and Paraguayan-Brazilian borders, and Brazilian markets.9

Brazil.—Despite the rapidly expanding iron and steel industry in Brazil, the supply of iron and steel products was not keeping

<sup>&</sup>lt;sup>5</sup> U.S. Bureau of Mines. Iron and Steel: Mexico. Mineral Trade Notes, v. 70, No. 10, October 1973, pp. 10-11.

<sup>6</sup> Saito, F. Mexican Steel Mission Seeking Japanese Financial Technical Aid. Am. Metal Market, v. 80, No. 96, May 16, 1973, pp. 4-7.

<sup>7</sup> U.S. Bureau of Mines. Iron and Steel: Argentina. Mineral Trade Notes, v. 70, No. 6, June 1973, pp. 4-5.

Argentina. Militeral Trade Proces, v. 10, 150. 0, June 1973, pp. 4-5.

Sus. Embassy, La Paz, Bolivia. State Department Airgram A-32, Feb. 15, 1974, 2 pp.

U.S. Embassy, La Paz, Bolivia. State Department Airgrams A-369, Jan. 10, 1974; 10 pp.; A-074, Apr. 26, 1974, 2 pp.; and A-117, June 1, 1973, 4 pp.

pace with demand in 1973, and it became apparent that this situation would continue to erode the Nation's international reserve position. Brazil's need for iron and steel has been underestimated in the past, but the shortage and new forecasts resulted in the Government taking steps to increase Brazil's iron and steel productive capacity rapidly.

Plans were announced to build an integrated steel plant to produce 1 million tons of raw steel per year by 1978 and 2 million tons per year by 1980.10

A plant to produce semifinished steel at Tubarão was planned by Kawasaki Steel Corp. of Japan at the request of the Brazilian Government. The proposed plant was to be owned 51% by the Government with the remainder being owned by Kawasaki Steel Corp. and one other foreign concern.

The Brazilian Government officially asked Nippon Steel Corp. and Kawasaki Steel Corp. to consider establishing large integrated steelworks at São Luís and at Tubarão. The projects suggest a 3-million-ton steelworks at Tubarão and an initial 5-million-ton mill at São Luis with Italian and Brazilian partners.11

Brazilian officials negotiated with the Bolivian Government to participate in establishing an industrial development center in southeastern Bolivia to take advantage of existing natural gas and raw material deposits. In return for obtaining Bolivian natural gas, Brazil agreed to provide a market for some of the steel mill products.

Among expansion programs at existing plants, Cia. Siderúrgica Paulista (COSIPA) was building a second blast furnace at Piassaguara near Santos; Usina Siderúrgica de Bahia S.A. (USIBA) was engaged in an expansion program that will eventually include three electric-arc furnaces and two or three sponge iron plants. The first electric arc furnace was started early in the year. A HyL plant to produce sponge iron was under construction. Acos Finos Piratini S.A. at Porto Alegre began producing steel with two new electric-arc furnaces operating on scrap. An SL-RN rotary kiln was under construction.12

Chile.—The iron and steel industry of Chile did not follow the pattern of rapidly increasing production experienced in other steel-producing Latin American countries in 1973. A 12-day strike at Cía. de Acero

del Pacífico (CAP) and economic and political turmoil in the first three quarters of the year were the principal reasons for the lessening in steel output. There was marked improvement in CAP operations in the last quarter. Company officials attributed the improvement to comparative stability and labor discipline which followed the change of Government in September.18

#### **EUROPEAN COMMUNITY**

France.—The French iron and steel industry produced 27,849,000 tons of raw steel in 1973, about 5% more than in 1972. Production in oxygen furnaces continued to increase as 14,488,000 tons was produced, and production by the Thomas process continued to decline as only 6,788,000 tons was produced in Thomas steel furnaces and 3,608,000 tons was produced in openhearth furnaces, about the same as in 1972. Electric steelmaking continued to increase; 2,922,000 tons was produced in electric-arc furnaces, and 35,000 tons was produced in electric-induction furnaces.

The No. 4 blast furnace of Union Sidérurgique du Nord de la France (Usinor) at Dunkirk was blown in. The No. 4 furnace is the largest in France with a capacity of 10,000 tons per day. It raised Dunkirk's ironmaking capacity to 6.9 million tons per year. In view of this large supply of hot metal, Creusot-Loire added a sixth hot-metal transfer car for transferring hot metal between Usinor's Dunkirk blast furnaces and Les Dunes steelworks at Creusot-Loire.14

Construction of the integrated steel complex at Fos proceeded on schedule. A slabbing mill was completed in October, and the 83-inch continuous hot-strip mill was completed early in December. The French Government provided additional funds to assure success of the projects. Additional funding brought the Government's total share in the project to about one-third.15

<sup>10</sup> Wall Street Journal. Three Japan Firms to Have 16.7% Stake in Brazil Steel Mill. V. 182, No. 40, Aug. 27, 1973, p. 7.

11 Saito, F. Integrated Steelworks Deal on the Fire in Brazil. Am. Metal Market, v. 80, No. 212, Nov. 1, 1973, pp. 1, 17.

12 Iron and Steel Engineer. Annual Review. Developments in the Iron and Steel Industry During 1973. V. 51, No. 1, January 1974, pp. D22-D23.

13 U.S. Embassy, Santiago, Chile. State Department Airgram A-80, Apr. 3, 1974, 12 pp. 14 Metal Bulletin. Dunkirk Blast Furnace. No. 5804, June 1, 1973, p. 27.

15 Page D5 of work cited in footnote 12.

Italy.—The Italian steel industry produced 23 million tons of raw steel in 1973, 6% more than it produced in 1972. The record output did not meet demand by more than a million tons. The imbalance strengthened plans for construction of the fifth integrated steel plant to be built in Kioia Tauro (Calabria) in southern Italy. The proposed plant would be operated by Finanziaria Siderurgica (Finsider) whose officials apparently have decided that the plant will use prereduced iron ore from Brazil.<sup>16</sup>

Italian steelmakers, despite being principally Government-owned, continued to experience difficulty with the environmentalists. Most of the opposition to the plant at Gioia Tauro came because it was to be in an area primarily agricultural. Ecologists opposed expansion of Italsider's steel mill at Bagnoli because of gas emissions from sintering plants and coke ovens.<sup>17</sup>

Luxembourg.—Luxembourg's iron and steel industry produced a record 6.5 million tons of steel in 1973. The industry continued to be the driving force in the Luxembourg economy. It accounted for 25% of the gross national product, 45% of industrial production, and 69% of industrial exports. The industry is the largest single employer in Luxembourg. Approximately 95% of the steel produced in Luxembourg was exported. 18

Luxembourg's labor unions and its steel industry signed a 2-year contract providing a 13.6% increase in average wages. The contract was signed on the last day of 1973.<sup>19</sup>

Netherlands.—The steel industry of the Netherlands produced 6.2 million tons of steel in 1973 approximately the same as in 1972. The industry was caught in the energy crisis and asked U.S. Government assistance in determining the status of its orders for coking coal in the United States. Energy was only one of the steel industry problems, the Hoogovens-IJmuiden works was closed by a labor strike in the first part of the year, and environmentalists continued to oppose expansion on the reclaimed Maasvlakte area near Rotterdam.

United Kingdom.—The British steel industry produced 29 million tons of steel in 1973, thus continuing its recovery from the trauma of nationalization and founding of the British Steel Corp. (BSC) in April

1967. BSC had a profitable year, the first in its existence; nevertheless, the industry fell far short of meeting demand, and its operations were seriously interrupted by major strikes. Many consumers were forced to buy imported steel at prices \$50 to \$100 per ton higher than quoted by BSC.

BSC and the independent steelmakers of Great Britain became members of the European Coal and Steel Community on January 1. Under Community regulations national governments cannot subsidize their steel industries, but the United Kingdom was allowed until April 30 to withdraw its support from the industry and thus permit prices to reflect a nonsubsidized operation. British steel prices were increased an average of 9½% effective May 1. Nevertheless, British steel remained the least expensive in the world markets as BSC operated at the approximate breakeven point.

The British Government released a 10-year development program for BSC which will involve investment of more than \$7 billion over the next 10 years and give the corporation raw steelmaking capacity of 39 million tons per year early in the 1980's. Specific details of the plan were not released, but the general program was to expand and modernize the steel industries in Scotland and Wales, close some of the smaller operations in the northern region of England, and concentrate the bulk of the steelmaking at Port Talbot in South Wales, Ravenscraig in Scotland, Llanwern in Wales, and Scunthrope and Teeside in England.

The market for steel in the United Kingdom was exceptionally strong throughout the year, and there were reports of a steel black market wherein domestic consumers bought British steel and resold it abroad. The rapidly developing need for steel in offshore oil and gas platforms in the North Sea amplified the shortage.

Independent steel producers in Great Britain have been closely affected by the

U.S. Embassy, Rome, Italy. State Department Airgram A-508, Aug. 29, 1973, 16 pp.
 U.S. Consulate, Naples, Italy. State Department, Airgram A-11, July 9, 1973, 3 pp.
 U.S. Embassy, Luxembourg, Luxembourg. State Department Airgram A-22, Apr. 10, 1974,

State Department Airgram A-22, Apr. 10, 1974, 9 pp. 10 U.S. Embassy, Luxembourg, Luxembourg. State Department Airgram A-1, Jan. 8, 1974, 5

position and policies of BSC and its treatment by the Government. Rational planning by independent steelmakers has been prevented because they do not know whether they would remain as private companies or be brought into the nationalized combine. Nevertheless, the private sector of the steel industry has grown and prospered since 1967. Production of highspeed and tool steels was completely in the private sector in 1973 as BSC had relinquished its interest in 1972. The nature of the private sector made it the leader in developing iron and steel scrap supplies and alternate sources of iron raw materials. Moreover, steelmakers in the private sector took the lead in investigating direct reduction and pelletization of iron ore for use principally in electric-arc furnaces.20

West Germany.—West German steelmakers completely recovered from the depression of 1971 and 1972. In 1973 they produced almost 55 million short tons of raw steel, 40 million tons of pig iron, and 40 million tons of finished steel.

West German steel mill operators and the Metalworkers Union for Land Nord Rhine-Westphalia, the principal steel producing area of the Federal Republic of Germany, approved a new wage contract December 31, 1973, wherein the steelworkers obtained a pay raise of 11% plus additional fringe benefits. Owing to economic uncertainty, the new contract was to be only 101/2 months.

Iron ore smelting in West Germany followed the pattern of large blast furnaces similar to that in Japan and the U.S.S.R. as four large blast furnaces were blown in during the year. The largest was the 45.9 foot (14 meter) hearth-diameter stack blown in early February at the August Thyssen-Hütte's Schwelgern works; however, operation of the furnace has caused trouble with the environmentalists because of the noise and fume emmision problems. A 39.3 foot (12 meter) diameter hearth furnace was blown in at the Bremen works of Klöckner Werke A.G. That furnace and a hot strip mill was built with the cooperation of the Nippon Steel Co. of Japan. The fourth largest furnace in West Germany with a hearth diameter of 37.7 feet (11.5 meters) was blown in by Friedrich Krupp Hüttenwerke A.G. at Rheinhausen.

#### WESTERN EUROPE

Austria.—The Austrian iron and steel industry operated at capacity throughout 1973, producing 4,672,000 short tons of steel compared with the 4,486,000 short tons produced in 1972. The Austrian Parliament approved a merger of Austria's two major nationalized steel concerns effective January 1. Vereinigte Österreichische Eisen und Stahlwerke, A.G. (Vöest) and Österreichische-Alpine Montangesellschaft A.G. were merged into one company, and two specialty steel producers, Gebrüder Böhler & Co. A.G. and Schoeller-Bleckmann Stahlwerke A.G., became wholly-owned subsidiaries of the new company.21

A third LD section with three 110-ton vessels was started up at the Linz works of Austria's Vöest-Alpine.22

Portugal.—The Government of Portugal authorized construction of a ministeel mill near Oporto.23

Sweden.—The steel industry in Sweden should be considered in two segmentsone producing ordinary carbon steel and the other specialty steels. The carbon steel segment did not keep pace with the overall world activity in 1973, but the specialty steel segment improved its position as a supplier of stainless and alloy steels.

Despite the unimpressive record of Swedish steel industry, the Government announced plans for a large new steelworks to be constructed at Lulea on the northeast coast at an estimated cost between \$500 and \$600 million. It was expected that most of the plant's steel would be exported to continental European countries. As Sweden affiliated with the EC and the Coal and Steel Community in 1972, the new plant might benefit from Sweden's agreements with the Community.24

#### **EASTERN EUROPE**

U.S.S.R.—The U.S.S.R. produced a record 144 million tons of raw steel in 1973

<sup>20</sup> Steel Times. BISPA—The Private Sector Reports. V. 202, No. 3, March 1974, pp. 218-

Reports. v. 262, Ac. 7, 240, 2240.

21 U.S. Embassy, Vienna, Austria. State Department Airgram A-149, Mar. 15, 1973, 3 pp.

22 Metal Bulletin. Linz Expansion. No. 5815, July 10, 1973, p. 28.

23 U.S. Embassy, Lisbon, Portugal. State Department Airgram A-77, May 4, 1973.

24 U.S. Embassy, Stockholm, Sweden. State Department Telegram 2426, July 13, 1973, 3 pp.

but lost its place as the world's largest producer to the United States. Steel demand in the U.S.S.R. continued to exceed supply. According to the Soviet news agency, Novosti Press, the Communist Council for Mutual Economic Assistance planned an integrated steel plant with a 10-million-ton-per-year capacity in the Kursk basin of central U.S.S.R.

The Soviet Union's largest blast furnace at Lipetsk, in the center of European Russia, was lit in February 1973. Reportedly, the furnace had a working volume of 4,185 cubic yards (3,200 cubic meters) and capacity to produce 2.2 million tons of pig iron annually.

#### **AFRICA**

Egypt, Arab Republic of.—The technical and commercial directors of Arab iron and steel member companies of the Arab Iron and Steel Union met at Khartoum, Sudan, to study the present and future situation of the iron and steel industry in the Arab world and to lay the foundations of cooperation and coordination between the Arabic companies.<sup>25</sup> The Soviet Union continued its interest and help to Arabic steel industries by providing assistance for installing a third blast furnace at the Helwan Iron and Steel Mill in the Arab Republic of Egypt.<sup>26</sup>

South Africa, Republic of.—The iron and steel industry of South Africa operated at capacity throughout 1973 producing 6,207,000 short tons compared with 5,886,000 tons produced in 1972. The South African Iron and Steel Industrial Corp. (ISCOR) decided to delay planned expansion of its Newcastle steelworks 5 or 6 years and meet the shortfall by expanding the existing Vanderbijlpark plant. Under the new plans the Vanderbijlpark mill will be producing 6 million tons of steel annually by 1983, while Newcastle will produce only 3 million tons.

Highveld Steel and Vanadium Corp. Ltd. announced plans to expand its Witbank works in the Transvaal by adding a sixth kiln, a fifth submerged arc-smelting furnace, and a fourth continuous casting machine.<sup>27</sup>

Japanese and U.S. steel companies negotiated with ISCOR to produce semifinished steel for export.

#### ASIA

A meeting of the Sub-Committee on Metals and Engineering of the Committee on Industry and Natural Resources of the United Nations, Economic Commission for Asia and the Far East (ECAFE) was held August 22 to 28, 1973, in New Delhi, India. It reviewed the development and growth of the iron and steel industry of the ECAFE region and noted the rapid growth of the industry in Japan, Australia, and New Zealand which accounted for 26 million tons in 1960 and 100 million tons in 1970. The developing countries increased output of iron and steel from 12 million tons to only 25 million tons during the same period. ECAFE developing countries continued to be net importers of steel, but Malaysia, Indonesia, and the Republic of Korea planned possible expansion. Scarcity of raw materials-iron ore, coking coal, limestone, dolomite, and power-restrict development of steel industries in other ECAFE developing countries.28

China, People's Republic of.—Apparently China's iron and steel industry operated at a high level of activity in 1973 following the pattern of the industries in the Western World. Similarly, China's domestic industry was unable to meet the demand. The Chinese imported increasing quantities of foreign steel and negotiated with the Japanese to supply steel rolling mills and continuous casting equipment to increase their own output.<sup>20</sup>

India.—The iron and steel industry of India produced only slightly more steel in 1973 than it did in 1972 despite the addition of the Bokaro plant to list of active producers. The five major steel plants, Bhilai (Madhya Pradesh), Durgapur (West Bengal), Rourkela (Orissa), Tata Iron and Steel Co. (Bihar), and the Indian Iron and Steel Co. (West Bengal) produced at less than 70%

<sup>&</sup>lt;sup>25</sup> Arab Steel. Recommendations of the First Conference. No. 4, March 1973, pp. 15-16.

<sup>&</sup>lt;sup>26</sup> U.S. Bureau of Mines. Iron and Steel: Arab Republic of Egypt. Mineral Trade Notes, v. 70, No. 3, March 1973, p. 5.

<sup>&</sup>lt;sup>27</sup> E & MJ. New Growth Slated for Highveld Steel and Vanadium. V. 174, No. 5, May 1973, p. 40.

<sup>&</sup>lt;sup>28</sup> U.S. Embassy, New Delhi, India. State Department Airgram A-332, Sept. 12, 1973, 7 pp.

<sup>&</sup>lt;sup>29</sup> American Metal Market. Japan-China Pact Is Near on Rolling Mills for Latter. V. 80, No. 196, Oct. 9, 1973, p. 7.

of capacity. However, plants of the Hindustan Steel Co. (Rourkela, Bhilai, and Durgapur) produced 12% more steel in 1973 than they did in 1972.30

The major causes for underutilization of the steel plants were shortages of power, coking coal, and coke-oven gas; technical problems and lack of coordination in supply; transportation problems in coal, iron ore, limestone; and labor problems (particularly at Durgapur and West Bengal). The severity of the transportation problem forced the Tata steel plant at Jamshedpur to shutdown some production units because coal was not being delivered owing to a slowdown by railway workers.31

There was a serious shortage of steel mill products, and according to the steel ministry, industrial concerns held large stocks of steel in their inventories. The severity of the shortage was indicated by the disparity between free market and controlled prices. Prices for plates, joists, and channels in the free market were more than twice the controlled prices.

The iron section at the Bokaro steel plant operated throughout the year and at yearend had produced more than 800,000 tons of pig iron. Steel production in a 100-ton converter started on December 27, 1973.32

The Steel Authority of India Limited (established in 1972 as part of an effort to reshape and revitalize the steel industry) was registered in New Delhi on January 24, 1973.

An international symposium on "Science and Technology of Sponge Iron and Its Conversion to Steel" was held at the National Metallurgical Laboratory, Jamshedpur, February 19 to 21, 1973. The symposium may have instigated a Government decision to license more ministeelworks and not to impose regulations on ministeelworks using electric-arc furnaces.

Indonesia.—The Indonesian Government approved an \$18 million joint venture between Marubeni Corp. and Toshin Steel Co. Ltd. of Japan, Sims Consolidated Ltd. of Australia, and N. V. Sumera to establish an integrated steel mill in Jakarta.33

Iran.—The Iranian Government actively promoted its domestic steel industry to take advantage of a surplus of inexpensive natural gas. The National Iranian Steel Corp. commissioned its first integrated steel plant at Isfahan. The Isfahan plant was built with the assistance of the Soviet Union. Its blast furnace was lit in December 1971. The corporation contracted with the Korf Co. of West Germany for a 1.2million-ton Midrex direct-iron reduction plant to be built at Ahwaz in South Iran. Meanwhile, the Iranian Government negotiated with Swindell-Dressler Corp., a division of Pullman Inc., to construct and equip a direct-reduction plant at Isfahan. Swindell-Dressler is the agent for the HyL process developed in Mexico.

Japan.—The Japanese iron and steel industry produced 132 million tons of crude steel in 1973, 23% more than in 1972. Basic oxygen furnaces produced 81% of the total, electric furnaces 18%, and open-hearth furnaces 2%. Ninety-nine million tons of pig iron was produced, 22% more than in 1972. According to the Japanese Iron and Steel Federation, iron and steel exports in 1973 totaled 25.6 million tons, 16% more than in 1972.34 In the first part of the year the industry seemed to retreat from the high rate of steel production established in the last few months of 1972, but after a 2-month pause, the trend of increasing output continued. For the first time in the Japanese steel industry's history, shortage of water forced some producers to curtail their output.

Domestic demand for steel, which may have been responsible for the decreased production in the first part of the year increased rapidly. The Japanese Ministry of International Trade and Industry (MITI) asked steelmakers to restrict exports and give priority to the backlog of domestic orders. Steel prices increased markedly, responding to the imbalance between supply and demand. The Government initiated allocation to prevent domestic buyers from bidding up prices, but formal restraints were not placed on exports. It became apparent that the pattern of the industry, which had been wholly growth and export oriented, could not continue. The pricing system which

<sup>30</sup> U.S. Consulate, Calcutta, India. State Department Airgram A-15, Aug. 14, 1973, 16 pp.
31 Iron and Steel Review. Editorial: Unheard of Before. V. 17, No. 7, December 1973, p. 5.
32 Government of India, Ministry of Steel and Mines, Department of Steel, New Delhi. Report 1973-74, p. 3.
33 U.S. Embassy, Jakarta, Indonesia. State Department Airgram A-21, Feb. 13, 1974, 5 pp.
33 Japan Iron and Steel Exporters Association. The Current State of the Steel Industry Today and Tomorrow. No. 3, March-April 1974, p. 12.

had encouraged exports, was changed to favor domestic consumers and the industry, prodded by the Government, sought opportunities to participate in foreign steelmaking enterprises.

The Steel Committee of the Industrial Structure Council, in an interim report to MITI, advised that the iron and steel industry must redirect its investment policies.35 The Committee recommended that the industry must strive ceaselessly to become eventually a clean industry and fit into the Nation's resources and energy plans; moreover, that in the face of the environmental and energy problems, steel exports must be moderated; and furthermore, that new steel plants in overseas locations must be positively considered. Apparently the change in policy had been expected as Japanese participation in foreign steelmaking enterprises was reported as follows: (1) Kawasaki Steel Corp. reached basic agreement with the Brazilian Government to construct a 6-million-ton-peryear steel plant in Brazil jointly with Brazilian and Italian companies; (2) Mitsubishi International, Kawasaki Steel. and Nippon Kokan Co. agreed to participate in a steel venture in Jamaica; (3) Mitsui and Co. scheduled a steel wire and rod manufacturing enterprise in Nigeria with British Ropes Ltd. of Doncaster, England; (4) Sumitomo Metal Industries Ltd. announced plans to set up a company in Saudi Arabia jointly with Nippon Steel Corp. and the Alireza group in that country to produce largediameter welded steel pipes and to participate in Confab Industrial S.A. of São Paulo, Brazil, in a similar operation.

The Japanese steel industry lit four large blast furnaces of more than 5,232 cubic yards (4,000 cubic meters) inner volume in 1973: (1) No. 5 furnace at Fukuyama Works, Nippon Kokan KK, 47.2 feet (14.4 meters) hearth diameter, 6,039 cubic yards (4,617 cubic meters) inner volume, lit November 1973; (2) No. 4 furnace, Mizushima Works, Kawasaki Steel Corp., 47.2 feet (14.4 meters) hearth diameter, 5,651 cubic yards (4,320 cubic meters) inner volume, lit April 1973; (3) Kashima Works, Sumitomo Metal Industries, No. 2 furnace, 45.3 feet (13.8 meters) hearth diameter, 5,337 cubic yards (4,080 cubic meters) inner volume, lit March 1973; and (4) Kimitsu Works, Nippon Steel Corp., No. 3 furnace 44 feet (13.4 meters), hearth diameter, 5,314 cubic yards (4,063 cubic meters) inner volume, lit September 1973.

The No. 5 blast furnace at the Fukuyama Works was reportedly the world's largest, with expected average daily pig iron output of over 11,000 tons. Planned steelmaking facilities at the Fukuyama plant will increase its annual capacity to 13.3 million tons of pig iron and 15 million tons of crude steel, by far the largest steelmaking plant in the world.

Kawasaki Steel Corp. announced that it was operating a new prereduced pelletizing plant at its Mizushima Works. The plant recycles iron dust and scale from blast and oxygen furnaces and rolling mills to produce prereduced pellets. Reported plant capacity was 40,000 tons per month of raw pellet mix.

Saudi Arabia.—The Saudi Arabian Government and Marcona Corp. of San Francisco conducted a feasibility study of the possibility of building a steel mill on the Arabian Gulf coast which would be based on Brazilian high-grade iron ore reduced by natural gas.

Taiwan.—The Government of Taiwan announced its intention to construct a 1.5-million-ton-per-year integrated steel mill at Kaohsiung. United States Steel Engineers & Consultants, through a contract with the China Steel Corp. of Taiwan, was to provide technical services for construction of the project.<sup>36</sup>

#### OCEANIA

Australia.—Broken Hill Proprietary Co. I.td., the only integrated steel company in Australia, produced at capacity throughout the year but was unable to cope with the rising demand of the automobile and appliance industries for hot- and cold-rolled strip and plate. Despite the shortage of steel in Australian markets, the Australian Mining & Steel Pty. Ltd. (ASM), owned equally by Armco Steel Corp. and Kaiser Steel Corp. of the United States and August Thyssen Hütte of West Germany, decided to modify plans to erect an integrated steel mill to produce 2.9 million tons of slab and 500,000 tons of plate annually. ASM's

<sup>Japan Iron & Steel Monthly. Steel Industry of the 1970. No. 225, October 1973, pp. 6-14.
L.S. Embassy, Taipei, Taiwan. State Department Airgram A-34, Feb. 28, 1974, 5 pp. Wall Street Journal. Taiwan Official Sees U.S. Steel Corp. Likely as Choice to Build Mill. V. 182, No. 12, July 18, 1973, p. 4.</sup> 

new plans were to construct a smaller electric furnace mill based on direct reduction

of beneficiated ore at Jervis Bay in New South Wales.37

#### **TECHNOLOGY**

Blast Furnace.—The world's largest blast furnace was lit on November 8 at the Nippon Kokan Fukuyama Works in Japan. It had a 47.2 foot (14.4-meter) hearth diameter, was 318 feet (97 meters) high, and had 6,039 cubic yards (4,617 cubic meters) volume from stock to tap lines. The largest blast furnace in France was lit at Dunkirk on May 18 and held the world's record as the largest from May to November. It was a year of large furnaces. The largest furnace in the U.S.S.R. was lit in February. The Soviet furnace, however, did not compare with the others, having only 4,186 cubic yards (3,200 cubic meters) in working volume.

Bethlehem Steel Corp. patented a baffle nose tuyère, claimed to help solve burnout and wear problems in iron-making blast furnaces.<sup>38</sup>

Direct Reduction.—Direct reduction was the subject of a panel discussion at the International Iron & Steel Institute meeting held at Johannesburg, Republic of South Africa, in October. Although there was a great deal of interest in direct reduction and successful operations of direct reduction plants were reported, the consensus at the meeting was that a large-scale blast furnace is the most economical source of hot metal.

Armco Steel Corp. reported that its direct reduction plant at Houston, Tex., was completely debugged and producing at the rate of 900 tons per day. United States Steel's briquetting plant at Porto Ardaz, Venezuela, was inaugurated October 27, but Venezuelan Government officials declared that the briquets would not be permitted to leave the country while a need for them existed in Venezuela.

Fior de Venezuela S.A., (Fior) of which the Venezuelan Government was majority owner, and Lukens Steel Corp. which holds a minority interest in Fior contracted for design of a 44,000 ton-per-year fluidized bed iron ore reduction plant. The process to be used was developed by Esso Research and Engineering Co., a subsidiary of the Exxon Corp.

Swindell-Dressler Corp. contracted with the National Iranian Steel Industries Co. to design, build, and equip a plant to produce more than 1 million tons of sponge iron per year. The plant will use the HyL direct reduction process first developed and proved in Monterrey, Mexico.

Sidbec-Dosco Ltd. of Quebec commissioned a direct reduction plant, designed by the Midrex Corp., in April. The plant produced approximately 1,000 tons of direct reduced ore per day. The reduced product was fed directly to electric-arc furnaces.

Basic Oxygen Steelmaking Processes (BOP).—Steelmakers continued to favor basic oxygen steelmaking processes as a means of producing large quantities of steel, but the share of domestic BOP steel production decreased from 56% in 1972 to 55% in 1973 as the high production rate brought many open hearths back into service. United States Steel Corp. started its first bottom blown oxygen converter (Q-BOP) at the Gary, Ind., works early in the year; by May, the corporation reported the Q-BOP to be a complete success.<sup>30</sup> One advantage claimed for its operation was easier control of air pollution.

A study of slag-making reactions in the BOF process indicated that careful control of the flux minimizes refractory wear and slag buildup while maintaining a normal degree of desulfurization.<sup>40</sup>

Electric-Arc Furnaces.—Production of raw steel in the United States by electric arc furnaces in 1973 totaled 27,759,000 tons, an increase of 17% compared with production of 23,721,000 tons by electric furnaces in 1972. It is believed that most electric-furnace steelmaking operations in the United States operated at practical capacity throughout the year, although the

<sup>&</sup>lt;sup>37</sup> U.S. Bureau of Mines. Iron and Steel: Australia. Mineral Trade Notes, v. 70, No. 7, July 1973, p. 10.

July 1973, p. 10.

Metal Bulletin. Bethlehem's New Invention. No. 5828, Aug. 24, 1973, p. 30.

American Metal Market. U.S. Steel Managers Rave Over Q-BOP. V. 80, No. 103, May 25, 1973, pp. 1. 3.

pp. 1, 3.

40 Iyengar, R. D., and F. C. Petrilli. Slag-making Reactions in the BOF Process. J. Metals, v. 25, No. 7, July 1973, pp. 21–26.

quality of scrap for feed undoubtedly decreased steel output somewhat. An estimated capacity of 32 million tons in 1972 in all probability included some furnaces under construction.

The pattern of increased use of electricfurnaces to make steel throughout the world. New furnaces were under construction in Canada, West Germany, France, and Japan. The Japanese led the world in increasing use of electricarc furnaces, producing approximately 20 million tons of raw steel in electric furances, more than doubling their electric furnace output in the last 6 years.

Continuous Casting.—Continuous casting equipment in the United States apparently had marked effect on the ratio between raw steel production and steel mill shipments. Shipments in 1973 were 74% of raw steel production while they were only 69% of production in 1972. A large part of this difference was probably the result of steel mills shipping from inventory and the normal practice of not adhering to strict specifications during times of high production. Nevertheless, increased use of continuous casting in 1973 definitely improved the efficiency of the domestic steel industry.

Iron and Steel Refining.—Vacuum degassing of steel continued to receive increasing attention throughout the steel industry as consumers narrowed the tolerances allowable for alloy steels. For specialty applications, argon-oxygen decarburization (AOD) and electroslag remelting (ESR) processes were used for steels which require uniform mechanical properties throughout.

Test data on steels produced in the Lukens Steel Co.'s new ESR facility indicated that the method improved uniformity, tensile strength, ductility, and notch toughness. Lowering the concentrations of small inclusions could be directly attributable to the ESR process. The AOD process was the subject of the Extractive Metallurgy Lecture at the Annual Meeting of the Metallurgical Society of AIME.41 An AOD vessel with sliding refractory gates to permit pouring through the bottom of the charge was commissioned at the Cabot Corp.'s Stellite Division, Kokomo, Ind.42 Bottom pouring reportedly minimizes reentrainment of gases that had been removed previously.

Foundry.—The domestic foundry industry operated at its practical capacity throughout the year. Many founders were unable to obtain all the coke, pig iron, and scrap they needed and petitioned the Department of Commerce for priority to buy raw materials.

Research and Development .-- U.S. Bureau of Mines researchers made a survey of underground injection of waste-pickle liquor from steel processing.43 They determined that the average depth of waste pickle liquor injection wells is 4,000 feet and that injection is mostly by gravity flow. In other iron- and steel-related research at the Twin Cities Metallurgy Research Center, Bureau metallurgists investigated the fluorspar requirements in BOF steelmaking and fluorspar substitutes, and determined distribution of fluorspar in BOF products. At the Rolla Metallurgy Research Center, the use of ferrous wastes in cupola electric arc furnaces and BOF operations was studied. Studies were underway to improve utilization of ferrous metals with the general objective of producing ductile iron from blast furnace pig iron suitable for replacing steel in applications where lower strength and ductility could be tolerated. The Rolla studies included an investigation of possible methods for utilization or recovery of valuable alloy metals from stainless steel, ferroalloys, and steel wastes such as flue dust, mill scale, and grinding swarfs. At the Albany Metallurgy Research Center, continuous electric furnace steelmaking was studied to improve efficiency through the use of continuous charging and preheating of charge materials. Recycling of automotive and other ferrous scrap was investigated at the Salt Lake City Metallurgy Research Center.

Industrial researchers directed their attention to devising means of controlling steelmaking functions with computers and finding some way of overcoming the poor quality of steelmaking raw materials, principally coke and scrap iron and steel. The foundry industry was the hardest hit by poor scrap quality. Inasmuch as reactants were in short supply, the only method

<sup>&</sup>lt;sup>41</sup> Krivsky, W. A. The Linde Argon-Oxygen Process for Stainless Steel; a Case Study of Major Innovation in a Basic Industry. Met. Trans., v. 4, No. 6, June 1973, pp. 1439-1447.

<sup>42</sup> Iron Age. New AOD Vessel Boosts Metal Purity by Bottom Pouring. V. 212, No. 3, July 19, 1973, p. 19.

<sup>43</sup> Bayazeed, A. F., and E. C. Donaldson. Subsurface Disposal of Pickle Liquor. BuMines RI 7804, 1973, 31 pp.

devised by the foundrymen to overcome poor quality was to use less scrap and more foundry iron. Others researched desulfurizing iron with magnesium and use of magcoke for desulfurizing.44 The mag-coke apparently solved differential density problems in getting magnesium into molten iron. Reportedly, mag-coke (approximately 45% by weight magnesium) is immersed in molten iron and the thermal shielding effect of the coke controls the rate of magnesium vapor evolution, thus effectively lowering the sulfur content. Armco Steel Corporation reported that injection of powdered coal into its furnace in Ashland, Ky., was so successful that it planned to install injection equipment at its other blast furnaces. According to American

Metal Market, Armco was satisfied with the coal injection. It plans to adapt other furnaces to it.45 Experimental injection of coal into the smelting zone of a blast furnace was reported by the Bureau of Mines and others late in the 1960's. At that time, availability of inexpensive fuel oil and natural gas made coal injection economically unattractive.

An iron information center was established by Battelle Memorial Institute at its Columbus, Ohio, laboratories to serve the needs of industry in the fields of iron ore agglomeration and iron making.

44 Fisher, P. A. Desulfurizing With Magnesium. Light Metal Age, v. 31, Nos. 5 and 6, June 1973, pp. 19-20.

45 American Metal Market. V. 80 No. 239,
Dec. 11, 1973, p. 5.

Table 2.-Pig iron produced and shipped in the United States, in 1973, by State (Thousand short tons and thousand dollars)

|                                          | Produc- | Shipped fr    | rom furnaces | Average |
|------------------------------------------|---------|---------------|--------------|---------|
| State                                    | tion    | Quan-<br>tity | Value        | value   |
| Alabama                                  | 3,836   | 3,949         | 294,965      | 74.69   |
| Illinois                                 | 7,919   | 7,964         | 585,054      | 73.46   |
| Indiana                                  | 17,128  | 17,078        | 1,261,281    | 73.85   |
| Ohio                                     | 18,405  | 18,514        | 1,468,509    | 79.32   |
| Pennsylvania                             | 22,699  | 22,686        | 1,725,854    | 76.08   |
| California, Colorado, Utah               | 5,595   | 5.611         | 444.046      | 79.14   |
| Centucky, Maryland, Texas, West Virginia | 11,951  | 11,923        | 757.115      | 63.50   |
| Michigan, Minnesota                      | 8,006   | 8,007         | 611.119      | 76.32   |
| New York                                 | 5,390   | 5,507         | 395,471      | 71.81   |
| Total                                    | 100.929 | 101,239       | 7.543,414    | 74.51   |

Table 3.-Foreign iron ore and manganiferous iron ore consumed in manufacturing pig iron in the United States, by source of ore

| Source          | 1972 1  | 1973 <sup>2</sup> |
|-----------------|---------|-------------------|
| Australia       | r 904   | 550               |
| Brazil          | r 279   | 1.397             |
| Canada          | 1.815   | 2,219             |
| Chile           | 324     | 648               |
| Venezuela       | 4,058   | 5.707             |
| Other countries | r 764   | 1,609             |
| Total           | г 8,144 | 12,130            |

<sup>&</sup>lt;sup>1</sup> Excludes 18,475 tons used in making agglom-

erates.

<sup>2</sup> Excludes 21,573 tons used in making agglom-

Table 4.-Pig iron shipped from blast furnaces in the United States, by grade 1 (Thousand short tons and thousand dollars)

|                            |          | 1972        |                    |         | 1973      |                    |  |  |  |
|----------------------------|----------|-------------|--------------------|---------|-----------|--------------------|--|--|--|
| Grade                      | Quan-    | Val         | ue                 | Quan-   | Va        | lue                |  |  |  |
| Grade                      | tity     | Total       | Average<br>per ton | tity    | Total     | Average<br>per ton |  |  |  |
| Foundry                    | r 1,433  | r 98,608    | r 68.81            | 6,785   | 465,367   | 68.59              |  |  |  |
| Basic                      | r 83,798 | r 6,494,709 | r 77.50            | 90,189  | 6,771,346 | 75.08              |  |  |  |
| Bessemer                   | 1,269    | 94,835      | 74.73              | 1,321   | 97,308    | 73.66              |  |  |  |
| Low-phosphorus             | 105      | 7,966       | 75.87              | 148     | 11,497    | 77.38              |  |  |  |
| Malleable                  | 1.998    | 149,348     | 74.75              | 2,349   | 161,347   | 68.69              |  |  |  |
| All other (not ferroalloy) | 450      | 35,472      | 78.83              | 447     | 36,549    | 81.77              |  |  |  |
| Total                      | r 89,053 | r 6,880,938 | r 77.27            | 101,239 | 7,543,414 | 74.51              |  |  |  |

Table 5.-Number of blast furnaces (including ferroalloy blast furnaces) in the United States, by State

|                           | Ja          | n. 1, 1973      |       | Jai         | n. 1, 1974      |       |
|---------------------------|-------------|-----------------|-------|-------------|-----------------|-------|
| State                     | In<br>blast | Out of<br>blast | Total | In<br>blast | Out of<br>blast | Total |
| Alabama                   | 9           | 8               | 17    | 8           | 3               | 11    |
| California                | 4           |                 | 4     | 4           |                 | 4     |
| Colorado                  | 4           |                 | 4     | 4           |                 | 4     |
| Illinois                  | 10          | 7               | 17    | 14          | 1               | 15    |
| Indiana                   | 21          | 5               | 26    | 25          | 1               | 26    |
| Kentucky                  | 2           |                 | 2     | 2           |                 | 2     |
| Maryland                  | 7           | 3               | 10    | 10          |                 | 10    |
| Michigan                  | 8           | 1               | 9     | 9           |                 | 9     |
| Minnesota                 |             | 2               | 2     |             | 2               | 2     |
| New York                  | 8           | 6               | 14    | 10          | 3               | 13    |
| Ohio                      | 29          | 14              | 43    | 31          | 11              | 42    |
| Pennsylvania              | 32          | 23              | 55    | 36          | 18              | 54    |
| Texas                     | 1           | 1               | 2     | 2           |                 | 2     |
| Utah                      | 2           | 1               | 3     | 3           |                 | 2     |
| West Virginia             | 4           |                 | 4     | 4           |                 | 4     |
| Total                     | 141         | 71              | 212   | 162         | 39              | 201   |
| Ferroalloy blast furnaces | 2           |                 | 2     | 2           |                 | 2     |
| Grand total               | 143         | 71              | 214   | 164         | 39              | 203   |

Source: American Iron and Steel Institute.

r Revised.

1 Includes pig iron transferred directly to steel furnaces at same site.

Table 6.-Iron ore and other metallic materials, coke and fluxes consumed, and pig iron produced in the United States, by State

| Coke and<br>fluxes<br>consumed<br>per ton of<br>pig iron             | Net Fluxes<br>coke               |                                | 0.733 r 0.177<br>.598 .157<br>.527 .122 | .586 .136<br>.629 r.139<br>.627 r.205<br>.627 .118 | r.590 r.177                                          | .615 .123                        | .681 .165<br>.570 .145<br>.525 .113                    | .577 .135<br>.658 .136<br>.526 .209<br>.593 .109 | .588 .189           | .618 .139<br>.576 .144    |
|----------------------------------------------------------------------|----------------------------------|--------------------------------|-----------------------------------------|----------------------------------------------------|------------------------------------------------------|----------------------------------|--------------------------------------------------------|--------------------------------------------------|---------------------|---------------------------|
|                                                                      | Total                            |                                | 1.645<br>1.647<br>1.609                 | 1.550<br>1.637<br>1.634<br>r 1.651                 | r.026 r 1.669                                        | .077 r 1.652<br>r.052 r 1.633    | $\begin{array}{c} 1.618 \\ 1.662 \\ 1.628 \end{array}$ | 1.628<br>1.648<br>1.627<br>1,652                 | 2.348               | 1.620                     |
| ma-<br>umed<br>of<br>ade                                             |                                  |                                | 0.002<br>.045<br>.044                   | .008<br>.049<br>.075                               | r.026                                                | .077<br>r.052                    | .001<br>.042<br>.066                                   | .052<br>.078<br>.088<br>.046                     | .018                | .063                      |
| Metalliferous ma-<br>terials consumed<br>per ton of<br>pig iron made | Net<br>scrap 2                   | '                              | 0.035<br>.029<br>.014                   | .066<br>.063<br>.031                               | r.030                                                | .003                             | .026<br>.039                                           | .031<br>.034<br>.044<br>.073                     | .030                | .019                      |
| Metallif<br>terials<br>per<br>pig ir                                 | Net<br>ores                      | agglom-<br>erates <sup>1</sup> | 1.608<br>1.572<br>1.551                 | 1.476<br>1.526<br>1.528<br>1.553                   | r 1.613                                              | r 1.572<br>r 1.550               | 1.592<br>1.582<br>1.541                                | 1.545<br>1.536<br>1.496<br>1.532                 | 2.299               | 1.578                     |
|                                                                      | Pig<br>iron<br>pro-              | duced                          | 4,086<br>r 7,197<br>r 15,330            | 6,929<br>3,933<br>16,363<br>20,355                 | r 4,745                                              | 9,938<br>r 88,876                | 3,836<br>7,919<br>17,128                               | 8,006<br>5,390<br>18,405<br>22,699               | 5,595               | 11,951                    |
|                                                                      | Fluxes                           |                                | r 723<br>1,133<br>1,866                 | 941<br>547<br>3,354<br>2,408                       | r 840                                                | 6,116 1,220<br>53,838 r 4 13,032 | 633<br>1,148<br>1,931                                  | 1,081<br>734<br>3,849<br>2,470                   | 1,058               | 1,664                     |
|                                                                      | Net<br>coke                      |                                | 2,995<br>4,303<br>8,073                 | 4,060<br>2,472<br>10,266<br>12,755                 | r 2,798                                              | 6,116                            | 2,614<br>4,515<br>8,989                                | 4,621<br>3,545<br>9,685<br>13,462                | 3,290               | 7,390                     |
|                                                                      | Net                              |                                | 6,722<br>11,853<br>24,667               | 10,742<br>6,439<br>r 26,741<br>r 33,605            | r 7,918                                              | 765 16,416<br>4,600 r 145,103    | 6,206<br>13,163<br>27,879                              | 13,035<br>8,884<br>29,951<br>37,499              | 13,138              | 19,363                    |
| peq                                                                  | Mis-<br>cel-<br>lane-            |                                | 7<br>327<br>673                         | 58<br>191<br>1,225<br>1,231                        | r 123                                                | 765<br>r 4,600 r                 | $^{2}_{329}$                                           | 417<br>421<br>1,613<br>1,051                     | 103                 | 755                       |
| s consun                                                             | Net<br>scrap 2                   |                                | 143<br>211<br>222                       | 458<br>248<br>510<br>761                           | r 143                                                | 30<br>r 2,726                    | 98<br>306<br>367                                       | 250<br>183<br>810<br>1,664                       | 170                 | 230                       |
| Metalliferous materials consumed                                     | Net<br>ores                      | agglom-<br>erates 1            | 6,572<br>11,315<br>23,772               | 10,226<br>6,000<br>25,007<br>31,612                | r 7,652                                              | 15,621<br>r 137,777              | 6,106<br>12,529<br>26,387                              | 12,369<br>8,280<br>27,528<br>34,784              | 12,865              | 18,378                    |
| lliferous                                                            | Ag-                              | 1                              | 4,283<br>10,193<br>22,675               | 10,226<br>W<br>20,002<br>23,618                    | ≱                                                    | 13,833                           | 3,852<br>11,421<br>24,911                              | 11,980<br>W<br>22,001<br>25,307                  | ×                   | 15,238                    |
| Mets                                                                 | Iron and manga-<br>niferous ores | Foreign                        | 1,832<br>W                              | W<br>30<br>848<br>3,161                            | ×                                                    | W<br>r 8,144 r                   | ≱≱≽                                                    | 29<br>26<br>1,830<br>3,806                       | 1                   | 3,314                     |
|                                                                      | Iron an<br>nifero                | Do-<br>mestic                  | 550<br>W<br>W                           | 122<br>1,080<br>4,840<br>5,238                     | r 1,485                                              | W<br>r 16,082                    | 291<br>W                                               | 487<br>1,757<br>4,352<br>6,152                   | 5,533               | 386                       |
|                                                                      | Year and State                   | :                              | 1972:<br>Alabama<br>Illinois<br>Indiana | Michigan and Minnesota New York Ohio Pennsylvania  | California, Colorado,<br>Utah<br>Maryland, West Vir- | ginia, Kentucky,<br>Texas        | AlabamaIllinoisIndiana                                 | Minnesota Minnesota New York Ohio Pennsylvania   | Maryland, West Vir- | ginia, Kentucky,<br>Texas |

r Revised. W Withheld to avoid disclosing individual company confidential data; included with "Total."

Not oces and agglomerates equal ore plus agglomerates plus flue dust used minus flue dust recovered.

Excludes home scrap produced at blast furnaces.

Does not include recycled material.

Fluxes consisted of the following: 6,301 limestone, 198 burnt lime, 6,104 dolomite, and 338 other fluxes excluding 4,803 limestone, 18 burnt lime, 8,418 dolomite, and 113 other fluxes used in making agglomerates at 8,418 dolomite, and 113 other fluxes used in making agglomerates at

mines.
Fluxes consisted of the following: 7,588 limestone, 51 burnt lime, 6,557 dolomite, and 471 other fluxes excluding 5,490 limestone, 3,437 dolomite, and 155 other fluxes used in agglomerate production at or near steel plants and an unknown quantity used in making agglomerates at mines.

Table 7.-Steel production in the United States, by type of furnace 1

| Year | Open<br>hearth <sup>2</sup> | Basic<br>oxygen<br>converter | Electric | Total   |
|------|-----------------------------|------------------------------|----------|---------|
| 1969 | 60.894                      | 60,236                       | 20.132   | 141,262 |
| 1970 | 48,022                      | 63,330                       | 20,162   | 131.514 |
| 1971 | 35,559                      | 63,943                       | 20,941   | 120,443 |
| 1972 | 34,936                      | 74,584                       | 23,721   | 133,241 |
| 1973 | 39,780                      | 83,260                       | 27,759   | 150,799 |

 $^1\,\rm Excludes$  castings produced by foundries not covered by AISI.  $^2\,\rm Basic$  and acid open-hearth production data reported separately in previous years.

Source: American Iron and Steel Institute.

Table 8.-Metalliferous materials consumed in steel furnaces 1 in the United States (Thousand short tons)

|      | Iron          | ore          | Agglome       | rates        | Dr.         | 771                           | Iron                  |
|------|---------------|--------------|---------------|--------------|-------------|-------------------------------|-----------------------|
| Year | Domes-<br>tic | For-<br>eign | Domes-<br>tic | For-<br>eign | Pig<br>iron | Ferro-<br>alloys <sup>2</sup> | and<br>steel<br>scrap |
| 1969 | 710           | 2,121        | 487           | 512          | 84.187      | 1.775                         | 74,343                |
| 1970 | 502           | 1,889        | 465           | 476          | 81,797      | 1.641                         | 66,451                |
| 1971 | 308           | 1,166        | 294           | 320          | 76,422      | 1,447                         | 63,308                |
| 1972 | 236           | 850          | 401           | 192          | r 83,569    | 1,655                         | r 68,345              |
| 1973 | 163           | 1,320        | 656           | 243          | 94,933      | 1,907                         | 83,228                |

r Revised.

1 Basic oxygen converter, open-hearth furnace, and electric furnace.

2 Includes ferromanganese, spiegeleisen, silicomanganese, manganese metal, ferrosilicon, ferrochromium alloys, and ferromolybdenum.

Table 9.-Consumption of pig iron 1 in the United States, by type of furnace

|                                 | 19                             | 71                     | 19                             | 72                     | 19                             | 973                    |
|---------------------------------|--------------------------------|------------------------|--------------------------------|------------------------|--------------------------------|------------------------|
| Type of furnace<br>or equipment | Thou-<br>sand<br>short<br>tons | Percent<br>of<br>total | Thou-<br>sand<br>short<br>tons | Percent<br>of<br>total | Thou-<br>sand<br>short<br>tons | Percent<br>of<br>total |
| Basic oxygen converter          | 52,023                         | 66.2                   | 60,233                         | 69.9                   | 68,077                         | 69.7                   |
| Open hearth                     | 23,574                         | 30.0                   | 22,375                         | 25.9                   | 25,477                         | 26.1                   |
| Electric                        | 825                            | 1.0                    | 961                            | 1.1                    | 1,379                          | 1.4                    |
| Cupola                          | 1,865                          | 2.4                    | 2,264                          | 2.6                    | 2,276                          | 2.3                    |
| Air                             | 60                             | .1                     | 139                            | .2                     | 57                             | .1                     |
| Other furnaces 2                | 204                            | .3                     | 254                            | .3                     | 402                            | .4                     |
| Total                           | 78,551                         | 100.0                  | 86,226                         | 100.0                  | 97,668                         | 100.0                  |

<sup>1</sup> Excludes molten pig iron used for ingot molds and direct castings.

<sup>2</sup> Includes vacuum melting furnaces and miscellaneous melting processes.

Table 10.-Consumption of pig iron 1 in the United States, by State

| Alabama         |            |
|-----------------|------------|
|                 | 3,748      |
| Connecticut     | 16         |
| Georgia         | 5          |
| Illinois        | 7,873      |
| Indiana         | 16,997     |
| Iowa            | 32         |
| Kansas          | 2          |
| Kentucky        | 1,768      |
| Louisiana       | (2)        |
| Maine           | (2)        |
| Massachusetts   | `´25       |
| Michigan        | 8,598      |
| Missouri        | 21         |
| Montana         | (2)        |
| Nebraska        | (2)        |
| Nevada          | (2)        |
| New Jersey      | ` 63       |
| New York        | 5,189      |
| North Carolina  | . 8        |
| Ohio            | 17.992     |
| Oklahoma        | 7          |
| Oregon          | 7          |
| Pennsylvania    | 21,601     |
| Rhode Island    | <b>.</b> 3 |
| Tennessee       | 110        |
| Texas           | 1.324      |
| Vermont         | 1,899      |
| Washington.     | 4          |
| Wisconsin       | 122        |
| Undistributed 3 | 14,120     |
| Total           | 101,534    |

<sup>&</sup>lt;sup>1</sup> Includes molten pig iron used for ingot molds and direct castings.

<sup>2</sup> Less than ½ unit.

<sup>3</sup> Includes California, Colorado, Florida, Maryland, Minnesota, New Hampshire, South Carolina, Utah, Virginia, and West Virginia.

Table 11.-U.S. exports of major iron and steel products

|                                                                                                                                                                     | 1969                                                                                 | 69                                                                                 | 16                                                                                    | 1970                                                                                | 1971                                                                               | 71                                                                                 | 19                                                                                  | 1972                                                                                 | 1978                                                                                 | 138                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Products                                                                                                                                                            | Quantity (short tons)                                                                | Value<br>(thou-sands)                                                              | Quantity (short tons)                                                                 | Value<br>(thou-sands)                                                               | Quantity (short tons)                                                              | Value<br>(thou-sands)                                                              | Quantity (short tons)                                                               | Value<br>(thou-sands)                                                                | Quantity (short tons)                                                                | Value<br>(thou-sands)                                                                |
| ہ تہ کا                                                                                                                                                             | 8,643                                                                                | \$1,015                                                                            | 11,425                                                                                | \$1,721                                                                             | 1,916                                                                              | \$291                                                                              | 543                                                                                 | \$107                                                                                | 88                                                                                   | \$18                                                                                 |
| Blooms, billets, ingots, slabs, sheet bars, and roughly forged pieces. Coils for rerolling Blanks for tubes and pipes, iron or steel                                | 1,810,490<br>421,531<br>12,159<br>2,252,823                                          | 142,767<br>61,911<br>1,400<br>207,093                                              | 3,169,563<br>340,630<br>2,175<br>3,523,793                                            | 270,368<br>49,903<br>280<br>322,272                                                 | 873,526<br>14,347<br>2,334<br>892,123                                              | 78,191<br>7,646<br>271<br>86,399                                                   | 415,392<br>85,473<br>2,807<br>504,215                                               | 37,860<br>13,816<br>311<br>52,094                                                    | 546,991<br>43,702<br>3,737<br>594,468                                                | 63,023<br>10,732<br>394<br>74,167                                                    |
| Bars, rods, angles, shapes and sections: Wire rods and hollow-drill steel Ears, rods, and hollow-drill steel Concrete reinforcing bars Angles, shapes, and sections | 98,245<br>215,674<br>86,762<br>170,424                                               | 16,348<br>51,797<br>11,592<br>29,261                                               | 151,062<br>216,362<br>92,534<br>212,405                                               | 18,641<br>48,416<br>12,134<br>37,554                                                | 62,843<br>129,872<br>40,540<br>164,031                                             | 8,415<br>38,550<br>6,089<br>33,111                                                 | 122,894<br>166,794<br>22,417<br>124,825                                             | 16,169<br>43,735<br>3,141<br>25,756                                                  | 89,786<br>239,617<br>151,535<br>272,519                                              | 15,303<br>70,368<br>29,788<br>58,708                                                 |
| Steel plates Steel sheets Steel sheets Black plates Iron and steel plates, n.e. Tinplate and terneplate Tinplate circles, cobbles, strip and scroll Top and strip   | 25,441<br>1,040,381<br>49,723<br>403,715<br>339,606<br>26,080<br>11,595<br>2,567,646 | 12,603<br>146,923<br>6,789<br>66,152<br>52,264<br>2,577<br>38,160                  | 27,011<br>1,268,386<br>67,931<br>292,803<br>341,275<br>23,910<br>376,068<br>3,069,747 | 14,021<br>190,079<br>9,133<br>56,835<br>61,844<br>2,628<br>73,311<br>524,495        | 23,353<br>583,015<br>86,202<br>161,921<br>224.120<br>9,716<br>129,128              | 12,062<br>82,982<br>13,527<br>37,492<br>43,101<br>1,186<br>42,619                  | 15,063<br>396,860<br>58,831<br>198,653<br>299,255<br>4,565<br>404,211<br>1,805,368  | 10,262<br>66,679<br>8,830<br>42,184<br>55,272<br>55,272<br>76,146                    | 29,392<br>658,430<br>95,272<br>473,911<br>419,275<br>24,151<br>268,762               | 17,405<br>152,935<br>16,344<br>97,176<br>95,344<br>2,678<br>83,076<br>639,125        |
| MANUFACTURED Rails and railway track construction materials: Rails Joints and tie plates Sleeper and track material of iron or steel, nece                          | 56,105<br>8,323<br>8,708<br>82,480                                                   | 7,903<br>1,585<br>3,507<br>37,172                                                  | 63,980<br>7,976<br>9,873<br>72,868                                                    | 10,143<br>1,620<br>4,104<br>38,479                                                  | 50,291<br>8,948<br>4,599<br>62,746                                                 | 8,489<br>2,563<br>2,073<br>38,282                                                  | 105,396<br>9,348<br>4,767<br>69,819                                                 | 16,042<br>2,173<br>2,231<br>43,581                                                   | 108,965<br>14,302<br>4,253<br>88,469                                                 | 19,184<br>3,667<br>2,044<br>58,639                                                   |
| Tubes, pipes, and fittings:  Cast-iron pressure pipe and fittings ————————————————————————————————————                                                              | 22,782<br>9,637<br>18,344<br>11,641<br>2,087<br>12,317<br>7,191<br>251,996           | 6,639<br>2,701<br>27,397<br>18,708<br>2,290<br>7,965<br>10,562<br>99,235<br>28,992 | 22,034<br>11,537<br>22,262<br>12,840<br>1,560<br>10,458<br>7,935<br>243,835           | 8,173<br>3,690<br>33,214<br>19,469<br>1,857<br>7,971<br>10,414<br>100,295<br>40,579 | 15,481<br>8,288<br>21,707<br>10,546<br>2,407<br>7,289<br>7,289<br>7,820<br>222,768 | 8,095<br>2,813<br>36,679<br>18,306<br>2,764<br>8,880<br>12,063<br>99,542<br>44,709 | 32,586<br>4,797<br>17,517<br>7,155<br>2,282<br>3,907<br>8,394<br>236,633<br>187,548 | 11,399<br>1,744<br>82,001<br>14,082<br>2,688<br>5,646<br>14,535<br>104,810<br>60,504 | 27,897<br>6,208<br>21,451<br>7,621<br>3,747<br>4,611<br>11,315<br>376,997<br>207,898 | 13,575<br>2,894<br>40,176<br>15,186<br>5,449<br>6,710<br>20,827<br>162,263<br>77,658 |

Table 12.-U.S. imports for consumption of pig iron, by country

| · ·                       | 1971                  |                           | 19                               | 72                        | 19                               | 73                        |
|---------------------------|-----------------------|---------------------------|----------------------------------|---------------------------|----------------------------------|---------------------------|
| Country                   | Quantity (short tons) | Value<br>(thou-<br>sands) | Quan-<br>tity<br>(short<br>tons) | Value<br>(thou-<br>sands) | Quan-<br>tity<br>(short<br>tons) | Value<br>(thou-<br>sands) |
| Australia                 | 171                   | \$10                      |                                  |                           |                                  |                           |
| Brazil                    | 25,620                | 1.111                     | 212.590                          | \$8,044                   | 57,634                           | \$2,726                   |
| Canada                    | 270.048               | 15,402                    | 415,293                          | 25,068                    | 387,168                          | 26.132                    |
| Germany, West             |                       | ,                         | ,                                | ,,                        | 62                               | 20,102                    |
| Guyana                    |                       |                           |                                  |                           | 154                              | 10                        |
| Japan                     |                       |                           | 61                               | 2                         | 101                              |                           |
| South Africa, Republic of | 10.481                | 441                       | 8.987                            | 403                       | 39                               | -2                        |
| Sweden                    |                       |                           | -,                               |                           | 569                              | 51                        |
| United Kingdom            |                       |                           | 1                                | ī                         |                                  |                           |
| Total                     | 306,320               | 16,964                    | 636,932                          | 33,518                    | 445,626                          | 28,925                    |

Table 13.-U.S. imports for consumption of major iron and steel products

|                                                                                                                                                                      | 1060                                                                       |                                                           | 91                                                               | 1970                                                                | 18                                                                          | 1971                                                       | 18                                                                          | 1972                                                        | 1973                                                                        |                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Products                                                                                                                                                             | Quantity (short                                                            | Value<br>(thou-sands)                                     | Quantity (short                                                  | Value<br>(thou-sands)                                               | Quantity (short                                                             | Value<br>(thou-                                            | Quantity (short tons)                                                       | Value<br>(thou-sands)                                       | Quantity (short tons)                                                       | Value<br>(thou-sands)                                                 |
| Iron products:  Cast iron pipes and tubes Malleable cast-iron fittings Bars of wrought iron Castings and forgings                                                    | 26,108<br>8,287<br>617<br>24,311<br>59,323                                 | \$5,883<br>3,568<br>153<br>6,283                          | 18,491<br>9,690<br>428<br>15,819<br>44,428                       | \$5,534<br>4,229<br>123<br>5,446<br>15,332                          | 12,356<br>11,962<br>226<br>12,975<br>37,519                                 | \$2,516<br>6,164<br>65,164<br>65<br>13,964                 | 11,870<br>13,777<br>386<br>15,395<br>41,428                                 | \$3,923<br>7,668<br>120<br>6,447<br>18,158                  | 6,248<br>8,493<br>243<br>23,059<br>38,043                                   | \$1,873<br>6,018<br>84<br>11,138<br>19,113                            |
| Iron and steel products: Ingots, blooms, billets, slabs, and sheet bars                                                                                              | 195,176                                                                    | 37,514                                                    | 170,647                                                          | 29,917                                                              | 274,407                                                                     | 37,191                                                     | 261,694                                                                     | 38,242                                                      | 172,305                                                                     | 30,801                                                                |
| Bars of steel: Concrete reinforcement bars Solid and hollow steel bars Hollow drill steel                                                                            | 470,807<br>903,813<br>5,412                                                | 40,568<br>119,522<br>2,036                                | 202,699<br>727,742<br>4,212                                      | 21,200<br>115,027<br>1,687                                          | 514,813<br>1,027,768<br>2,392                                               | 49,809<br>153,831<br>1,088                                 | 358,223<br>1,049,173<br>4,606                                               | 34,969<br>176,744<br>1,285                                  | 286,428<br>954,286<br>2,637                                                 | 43,875<br>197,426<br>1,376                                            |
| of iron or st                                                                                                                                                        | 11,657<br>1,201,523<br>4,873,519<br>809                                    | 1,684<br>120,201<br>557,044<br>692                        | 5,753<br>968,677<br>5,271,943                                    | 987<br>124,109<br>710,623<br>404                                    | 7,452<br>1,572,560<br>7,746,573                                             | 1,871<br>198,952<br>1,069,372<br>550                       | 2,010<br>1,685,654<br>6,959,182<br>532                                      | 438<br>239,412<br>r 1,043,449<br>441                        | 3,323<br>1,348,767<br>5,837,588                                             | 651<br>216,255<br>986,676<br>549                                      |
| Plates, sheets and strip of iron or steel  Strip of iron or steel  Tinplate and terneplate Structural iron and steel Angles, shapes, and sections Wire rods of steel | 30,320<br>96,162<br>300,664<br>1,517,373<br>522,601<br>1,260,890<br>65,087 | 6,204<br>32,921<br>51,339<br>171,669<br>48,747<br>129,803 | 50,963<br>92,335<br>327,725<br>1,300,847<br>416,124<br>1,065,570 | 10,100<br>37,934<br>59,066<br>186,385<br>50,030<br>131,810<br>6,189 | 75,970<br>114,902<br>417,691<br>1,637,154<br>550,350<br>1,538,288<br>89,208 | 14,255<br>43,678<br>80,595<br>231,060<br>61,971<br>187,607 | 64,179<br>135,400<br>522,466<br>1,745,696<br>562,864<br>1,402,904<br>94,781 | 13,945<br>51,850<br>107,870<br>247,426<br>65,598<br>188,789 | 71,737<br>116,415<br>470,345<br>1,375,223<br>467,467<br>1,418,266<br>81,248 | 16,976<br>52,306<br>105,630<br>228,419<br>63,044<br>229,258<br>12,303 |
| Sincet pling Pipes, tubes and fittings Bail ties of iron or steel Steel castings and forgings                                                                        | 1,702,536<br>23,881<br>18,539                                              | 267,062<br>3,193<br>8,352                                 | 1,976,749<br>15,353<br>14,039                                    | 341,441<br>2,279<br>6,660                                           | 1,888,942<br>21,047<br>12,958                                               | 340,425<br>3,307<br>5,275                                  | 1,887,376 $17,166$ $24,000$                                                 | 368,846<br>3,067<br>9,186                                   | 1,681,112 $15,334$ $19,020$                                                 | 383,372<br>3,011<br>7,137                                             |
| Rails and railway track construction materials                                                                                                                       | 67,581                                                                     | 10,630                                                    | 72,306                                                           | 11,323                                                              | 68,863                                                                      | 11,034                                                     | 74,820                                                                      | 12,350                                                      | 77,697                                                                      | 14,741                                                                |
| Wire: Round wire Other wire                                                                                                                                          | 563,265<br>146,127<br>317,257                                              | 110,097<br>29,021<br>55.642                               | 505,164<br>143,726<br>259,833                                    | 116,561<br>33,875<br>52,522                                         | <b>530,194</b><br><b>135,737</b><br>308,105                                 | 125,722<br>33,464<br>60,428                                | 522,205<br>155,770<br>379,912                                               | 138,618<br>43,807<br>86,572                                 | 525,893<br>87,740<br>345,121                                                | 173,701<br>32,217<br>97,332                                           |
| Total                                                                                                                                                                | 14,295,869                                                                 | 1,810,790                                                 | 13,634,992                                                       | 2,050,129                                                           | 18,535,791                                                                  | 2,721,590                                                  | 17,910,613                                                                  | r 2,885,813                                                 | 15,348,641                                                                  | 2,897,056                                                             |
| Advanced manufactures:  Rolfs. nuts. rivets and washers                                                                                                              | 172,904                                                                    | 58,795                                                    | 181,559                                                          | 73,718                                                              | 170,966                                                                     | 67,235                                                     | 206,428                                                                     | 88,259                                                      | 223,192                                                                     | 129,043                                                               |
| Grand total                                                                                                                                                          | 14,528,096                                                                 | 1,885,472                                                 | 13,860,979                                                       | 2,139,179                                                           | 18,744,276                                                                  | 2,802,789                                                  | 18,158,469                                                                  | r 2,992,230                                                 | 15,609,876                                                                  | 3,045,212                                                             |

r Revised.

Includes plates, sheets and strips of iron or steel, electrolytically coated or plated; 1969, 17,528 tons (\$2,764); 1970, 35,610 tons (\$5,802); 1971, 67,359 tons (\$11,797); 1973, 63,787 tons (\$14,020).

Table 14.-Pig iron: 1 World production by country

| Country 2                            | 1971           | 1972                    | 1973 P           |
|--------------------------------------|----------------|-------------------------|------------------|
| North America:                       |                |                         |                  |
| Canada                               | 8,616          | 9,364                   | 10,511           |
| Mexico 3                             | <b>2,59</b> 8  | 2,948                   | 3,059            |
| United StatesSouth America:          | 81,382         | 88 <b>,</b> 87 <b>6</b> | 100,929          |
|                                      |                |                         |                  |
| Argentina<br>Brazil                  | r 949          | 936                     | 886              |
| Chile                                | r 5,251        | 5,842                   | 6,031            |
| Colombia 4                           | 505<br>268     | 536                     | 505              |
| Peru 4                               | 158            | 318                     | 291              |
| Venezuela 4                          | 568            | 180<br>591              | 285              |
| Europe:                              | <b>J</b> U0    | 991                     | 587              |
| Austria                              | 3,141          | 3,137                   | 3,313            |
| Belgium                              | r 11.466       | 12,980                  | 13,932           |
| Bulgaria                             | 1,472          | 1,673                   | e 1.800          |
| Czechoslovakia 5                     | 8,775          | 9.216                   | • 9,400          |
| Denmark                              | 244            | 220                     | e 110            |
| Finland                              | r 1,141        | 1,305                   | 1,556            |
| rrance                               | 19,731         | 20,449                  | 21,782           |
| Germany, East 6                      | 2,235          | 2,371                   | 2,427            |
| Germany, West 7                      | 32,685         | 34,930                  | 40,191           |
| Greece 8                             | 321            | 375                     | 564              |
| Hungary                              | 2,172          | 2,253                   | ° 2,300          |
| Italy<br>Luxembourg <sup>4</sup>     | 9,410          | 10,378                  | 11,059           |
| Netherlands                          | 5,057          | 5,149                   | 5,612            |
| Norway 8                             | 4,144          | 4,728                   | 5,188            |
| Poland                               | $682 \\ 7.764$ | 714<br>8.037            | 772              |
| Portugal                             | r 391          | 391                     | e 8,500<br>e 425 |
| Romania                              | 4.830          | 5.390                   | e 6.100          |
| Spain                                | 5,321          | 6,528                   | 6,913            |
| Sweden <sup>3</sup>                  | 3,040          | 2,792                   | 3,040            |
| Switzerland                          | 35             | 31                      | 30               |
| U.S.S.R                              | 97,276         | r e 100.638             | e 104,587        |
| United Kingdom                       | 16,823         | 16,903                  | 18,382           |
| Yugoslavia                           | 1,669          | 2,006                   | 2,155            |
| Africa:                              |                | ·                       | •                |
| Algeria e                            | 77             | 77                      | 77               |
| Egypt, Arab Republic of<br>Morocco • | 550            | 330                     | 276              |
| Morocco e  Phodogia Couth 4          | 11             | 11                      | 11               |
| Rhodesia, Southern 4                 | 309            | 320                     | 320              |
| South Africa, Republic ofTunisia     | r 4,416        | 4,860                   | • 4,900          |
| ASIA:                                | 108            | 158                     | e 172            |
| China, People's Republic of *9       | 30,000         | r 33,000                | 36,000           |
| India                                | 7,382          | 7.944                   | e 8,300          |
| iran                                 | 1,002          | • 600                   | 441              |
| israel •                             | 40             | 40                      | 40               |
| Japan                                | 80.187         | 81,632                  | 99,216           |
| Korea. North e 9                     | 2,800          | 2,900                   | 3,000            |
| Korea, Republic of                   | 2              | 2,000                   | 35               |
| malaysia                             | r 72           | r 90                    | 110              |
| Taiwan                               | 84             | 89                      | 165              |
| Thailand                             | 15             | 13                      | 16               |
| Turkey                               | 972            | 1,251                   | e 1,000          |
| Oceania:                             |                |                         |                  |
| Australia                            | r 6,754        | 7,156                   | 8,441            |
| New Zealand (all sponge iron) •      | 110            | 110                     | 110              |
| Total                                | r 474,009      | 502,768                 | 555,852          |

e Estimate. P Preliminary. r Revised.

Table excludes all ferroalloy production except where otherwise noted.

In addition to the countries listed, North Vietnam and Zaire presumably have facilities to produce pig iron, but available information is inadequate to make reliable estimates of output levels.

Includes sponge iron output as follows in thousand short tons: Mexico: 1971—743; 1972—865; 1973—831; Sweden: 1971—192; 1972—196; 1973—208.

Includes ferroalloys, if any are produced.

Includes blast furnace ferroalloys.

May include ferroalloys.

Includes blast furnace ferroalloys except ferromanganese, ferrosilicon and speigeleisen.

Includes blast furnace ferroalloys, if any are produced.

<sup>9</sup> Includes ferroalloys production.

Table 15.-Raw steel: 1 World production by country

| Country <sup>2</sup>                                      | 1971           | 1972                   | 1973 P             |
|-----------------------------------------------------------|----------------|------------------------|--------------------|
|                                                           |                |                        |                    |
| Iorth America:<br>Canada                                  | 12,170         | 13,073                 | 14,755             |
| Cuba e                                                    | 154            | 154                    | 154                |
| Mexico                                                    | 4,212          | 4,884                  | 5,177              |
| United States 3                                           | 120,443        | 133,241                | 150,799            |
| outh America:                                             |                |                        |                    |
| Argentina                                                 | r 2,111        | 2,320                  | 2,373              |
| Brazil 4                                                  | r 6,612        | 7,185                  | 7,881              |
| Chile                                                     | 720            | 695                    | 616                |
| Colombia                                                  | 358            | 412                    | 378                |
| Peru                                                      | 198            | 200                    | 397<br>18          |
| Uruguay                                                   | 16             | $\substack{14\\1,243}$ | 1,170              |
| Venezuela                                                 | 1,018          | 1,240                  | 1,110              |
| urope:                                                    | 4,366          | 4,486                  | 4.672              |
| Austria                                                   | 13,717         | 16,019                 | 17,118             |
| Belgium                                                   | 2.147          | 2,338                  | 2,476              |
| BulgariaCzechoslovakia                                    | 13,304         | 14,029                 | 14,550             |
| Denmark 5                                                 | 519            | 549                    | 495                |
| Finland                                                   | 1,130          | 1,605                  | 1,780              |
| France                                                    | 25,197         | 26,515                 | 27,849             |
| Germany, East                                             | 5,897          | 6,250                  | 6,49               |
| Germany, West                                             | r 44,437       | 48,177                 | 54,587             |
| Greece                                                    | 525            | e 551                  | e <b>5</b> 51      |
| Hungary                                                   | 3,428          | 3,608                  | 3,673              |
| Ireland                                                   | 88             | 85                     | 121                |
| Italy                                                     | 19,237         | 21,842                 | 23,14              |
| Luxembourg                                                | 5,777          | 6,016                  | 6,53               |
| Netherlands                                               | 5,603          | 6,157                  | 6,20               |
| Norway                                                    | 973            | 1,010                  | 1,06               |
| Poland                                                    | 14,041         | 14,855                 | 15,49              |
| Portugal                                                  | r 454          | 468                    | 50°<br>8.99°       |
| Romania                                                   | 7,499          | 8,158                  | 11.83              |
| Spain                                                     | r 8,592        | 10,531                 | 6,24               |
| Sweden                                                    | 5,810<br>586   | 5,795<br>598           | 61:                |
| Switzerland                                               | 132,979        | 138,438                | 144.40             |
| U.S.S.R                                                   | r 26,647       | 27,912                 | 29,40              |
| United Kingdom                                            | 2,705          | 2,853                  | 2,95               |
| Yugoslavia                                                | 2,.00          | -,                     |                    |
| frica :<br>Algeria                                        | e 40           | 72                     | • 7                |
| Algeria<br>Egypt, Arab Republic of                        | 282            | r e 340                | • 32               |
| Morocco e                                                 | · 1            | 1                      |                    |
| Rhodesia, Southern e                                      | 176            | r 220                  | 33                 |
| South Africa, Republic of                                 | 5,424          | 5,890                  | 6,20               |
| Tunisia                                                   | r 132          | 165                    | 17                 |
| Uganda                                                    | 18             | 12                     | e 1                |
| sia:                                                      |                |                        | _                  |
| Bangladesh                                                | e 110          | e 45                   | 6                  |
| Burma e                                                   | r 23           | r 22                   | 20.00              |
| China, People's Republic of e                             | 23,000         | 25,000                 | 28,00              |
| India                                                     | r 7,091        | 7,641                  | * 7,70<br>22       |
| Iran                                                      | 100            | 130                    | 18                 |
| Israel <sup>e</sup>                                       | 130            | 106,814                | 131.53             |
| Japan                                                     | 97,617 $2,600$ | 2,800                  | 2.90               |
| Korea, North <sup>e</sup> Korea, Republic of <sup>4</sup> | 520            | 645                    | 1.28               |
| Korea, Republic of "                                      | 20             | r 17                   | -,-                |
| Lebanon e                                                 | r 72           | r 90                   | 1                  |
| Malaysia <sup>e</sup> Philippines <sup>e</sup>            | 95             | r 276                  | 2                  |
|                                                           | 136            | 210                    | e 22               |
| Cinganora                                                 |                | 504                    | 58                 |
| Singapore                                                 | 452            |                        | <b>e 2</b> 3       |
| Singapore<br>Taiwan                                       | 432<br>132     | 201                    |                    |
| Singapore<br>Taiwan<br>Thailand                           | 132            | 201<br>1,590           |                    |
| Singapore Taiwan Thailand Turkey                          |                | 1,590                  | 1,33               |
| Singapore                                                 | 132            | 1,590<br>7,433         | 1,33<br>8,46       |
| Singapore<br>Taiwan<br>Thailand                           | 132<br>1,237   | 1,590                  | 1,33<br>8,46<br>20 |

<sup>&</sup>lt;sup>e</sup> Estimate. <sup>p</sup> Preliminary. <sup>r</sup> Revised

<sup>1</sup> Steel formed in first solid state after melting suitable for further processing or sale.

<sup>2</sup> In addition to the countries listed, North Vietnam produces raw steel, but information is inadequate to make reliable estimates of output levels.

<sup>3</sup> Data from American Iron and Steel Institute (AISI). Excludes steel produced by foundries not reporting output to AISI but reported to Bureau of Census as follows (in thousand tons):

<sup>4</sup> Ingots only.

<sup>5</sup> Apparently excludes shipyards' production of steel castings.

## Iron and Steel Scrap

By D. H. Desy 1

Consumption of iron and steel scrap reached a record high in 1973, reflecting record production of raw steel. Strong domestic and foreign demand for scrap drove prices to new highs and prompted the Department of Commerce to impose export controls in the latter half of the year. In spite of these controls, exports also reached record levels in 1973.

Research and development, both by the Bureau of Mines and by industry, continued on the utilization of the ferrous fraction of municipal scrap for making iron and steel. A small quantity of this material was recycled by the steel industry.

Legislation and Government Programs.—Because of rising prices and very high domestic and foreign demand for ferrous scrap during the year, representatives of the steel industry requested the Department of Commerce to impose export restrictions on that commodity. On May 22, 1973, the Department of Commerce imposed reporting requirements on all ferrous scrap exports to provide a basis for an estimate of demand levels for the balance of 1973. This estimate indicated a continuing high demand for ferrous scrap.

Under the authority of the Export Administration Act of 1969, the Department of Commerce on July 2, 1973, imposed licensing requirements on all exports of ferrous scrap. Licenses valid for 60 days were granted for orders of 500 tons or over that were accepted before July 2, 1973 for de-

livery during the balance of 1973. Licenses for orders under 500 tons were at first granted for export to all countries regardless of when these orders were accepted. These licenses were later restricted to Canada and Mexico for the months of October, November, and December 1973, and monthly quotas were established.

In December 1973, an overall export quota for ferrous scrap of 2,100,000 short tons for the first quarter of 1974 was announced by the Department of Commerce. Of this amount, 100,000 short tons were set aside for contingencies and hardships, and the balance was allocated by country following historical trade patterns.

Table 1.—Salient iron and steel scrap, and pig iron statistics in the United States

(Thousand short tons and thousand dollars)

|                                                                               | 1972          | 1973              |
|-------------------------------------------------------------------------------|---------------|-------------------|
| Stocks Dec. 31:<br>Scrap at consumer plants                                   | 8,169         | 7,092             |
| Pig fron at consumer and supplier plants                                      | 1,660         | 1,215             |
| Total                                                                         | 9,829         | 8,307             |
| Consumption: ScrapPig iron                                                    |               | 103,589<br>99,816 |
| Exports: Scrap (excludes rerolling material) Value                            |               | 10,874<br>570,011 |
| Imports for consumption: Scrap (includes tinplate and terneplate scrap) Value | 312<br>14,741 | 349<br>19,100     |

#### **AVAILABLE SUPPLY**

The new supply of iron and steel scrap available for consumption at consumers' plants in 1973 was 102.5 million short tons. It consisted of 57.8 million tons of home scrap and 44.7 million tons of purchased

scrap (net receipts). Compared with 1972 figures, home scrap production was up 13% and net receipts were up 11%.

<sup>&</sup>lt;sup>1</sup> Physical scientist, Division of Ferrous Metals –Mineral Supply.

#### CONSUMPTION

Consumption of iron and steel scrap in 1973 reached a record high of 103.6 million short tons. This was an increase of 10.9% over consumption in 1972 and 9.3% above the previous high established in 1969. Manufacturers of steel ingots and

castings took 82.5 million tons or 79.6% of the total. Iron foundries and miscellaneous users consumed 18.2 million tons or 17.5%, and manufacturers of steel castings consumed the remainder.

#### **STOCKS**

Consumers' stocks reported on hand as of December 31, 1973, were 7.1 million short tons, down 13% from 8.2 million tons at the end of 1972. Stocks remained

between 7.8 and 8.0 million tons through August 1973, then declined to the yearend figure of 7.1 million tons.

## **PRICES**

Prices of scrap iron and steel rose sharply during the year. At the end of November, the Iron Age composite price (Chicago, Pittsburgh, and Philadelphia) for No. 1 heavy melting steel scrap reached a record high of \$81.83 per long

ton, exceeding the record of \$64.97 in December 1956. The composite price dropped slightly to \$75.17 at the end of December 1973; this was 62.8% above the price of \$46.17 at the end of December 1972.

## **FOREIGN TRADE**

Exports of iron and steel scrap (excluding rerolling material, and ships, boats, and other vessels for scrapping) reached a record high of 10.9 million short tons in 1973, exceeding the 1970 record of 10.1

million tons by 8%, and the 7.2 million tons in 1972 by 52%. The total would probably have been higher if export licensing had not been instituted in mid-1973.

The largest exports went to Japan,

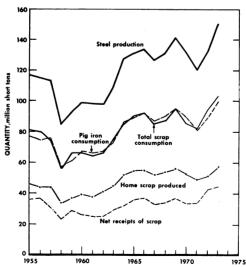



Figure 1.—Steel production (AISI); total iron and steel scrap consumption; pig iron consumption; home scrap production; and net scrap receipts.

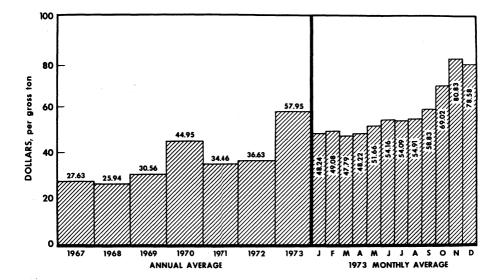



Figure 2.—Composite prices for No. 1 heavy melting scrap (Chicago, Pittsburgh, Philadelphia).

which received 42% of the total; next largest exports went to Spain and Mexico, which received 10% and 9%, respectively. Exports of ferrous scrap went to the People's Republic of China for the first time in 1973, amounting to 428,000 tons or 3.9% of the total.

No. 1 heavy melting steel scrap continued as the largest export grade, accounting for 35% of the total. Next largest export grades were shredded steel scrap and No. 2 bundles, which accounted for 19% and 11%, respectively.

## **WORLD REVIEW**

Austria.—Domestic scrap supplies decreased about 50,000 tons from those of 1972 because of low price levels and the fact that the Government delayed approval

of price increases as an anti-inflation measure.

Belgium.—High steel production, short supplies of coal, and high transportation costs have kept the demand for and price of scrap high. Scrap was imported at a rate equal to that of West Germany, about 1.5 million short tons annually.

Canada.—Because of U.S. restrictions on scrap exports, Canada canceled all export permits in August and introduced new procedures that limited scrap exports to a minimum. The Quebec Government-owned steel company, Sidbec-Dosco Ltd., has set up a subsidiary, Sidbec-Unifer, to supply it with steel scrap. The company will have authority to buy, sell, export, and process metal of all kinds. Scrap will be obtained from junk autos among other resources.

France.—Increased steel production brought consumption of scrap to an estimated 3.3 million short tons for the year compared with just over 2.2 million in 1972.

Germany, West.—Demand for scrap was high in this year of record steel production. Crude steel output rose to 54.2 million short tons, 13% over 1972; consumption of scrap was 27.6 million short tons, a 10% increase over that of 1972.

Italy.—New electric steel furnaces with total capacity of 800,000 tons per year are expected to start up by the end of 1973. Thus, demand for scrap will continue to increase.

Japan.—When export licensing of scrap iron and steel was imposed by the United States, Japan voluntarily reduced total imports from the United States in 1973 by 1 million tons (from 6.5 to 5.5 million, including scrap for reexport). The 1 million tons would be deferred to 1974. In addition, Japan agreed to spread imports evenly over the remainder of 1973. Domestic scrap prices declined somewhat at the end of the year as a result of the oil shortage. Steelmakers sought to stabilize the market by a series of measures including a coordinated import policy, a domestic distribution organization, and intermill

cooperation over scrap stocks. The construction of 10 cryogenic plants for processing baled auto scrap by a Belgian process is being considered. There were approximately 10 large shredders in Japan in 1973.

Netherlands.—This country is a net exporter of scrap, most going to West Germany, France, and Belgium. With the entry of the United Kingdom into the European Community (EC), the Netherlands will be in a good position to transfer British export scrap arriving in Holland by ship to barges for shipment up the Rhine to West Germany.

Spain.—This country's expanding steel industry, which depends largely on imported scrap for its raw material, was adversely affected by restrictions on scrap exports from the U.S.A. in the second half of the year, as well as Britain's earlier export ban.

Sweden.—Scrap consumption was higher than 1972 levels, requiring increased imports, mainly from the U.S.S.R. and Poland. About 50 percent of all scrap automobile bodies are now being shredded.

United Kingdom.—Britain entered the EC on January 1, 1973; however, there will 2-year transition period during which some controls will be maintained on exports of ferrous scrap. One consequence of Britain's entry into the EC was the termination on July 1 of the long-standing pricing agreement between the steel industry and the scrap dealers. Export controls were tightened throughout the year, culminating on October 1 in a ban on exports of all but the lowest grades of scrap under strict licensing and quota regulations. Exports to countries outside the EC had been prohibited on May 21. Despite export controls, strong domestic demand kept prices up, though lower than in the rest of Europe.

#### **TECHNOLOGY**

The ferrous fraction of municipal waste, consisting mainly of tin-plated steel cans, is being increasingly recycled in ironmaking and steelmaking, although the percentage of the total is still small. Among the latest entries in the field is Granite City (Illinois) Steel Co., a division of National Steel, which is using cans from shredded

municipal waste from St. Louis, Mo., in its blast furnace charge, at the rate of 15 pounds of scrap per ton of hot metal.<sup>2</sup> In New Orleans, La., steel cans obtained from a facility to be in operation in 1974 will

<sup>&</sup>lt;sup>2</sup> Industry Week. Blast Furnace Joins Steel Recycling Effort. V. 176, No. 13, Mar. 26, 1973, p. 20.

be used by United States Steel in its new QBOP (bottom-blown basic oxygen process) furnace facility at Fairfield, Ala.<sup>3</sup>

General Motors' Central Foundry Division in Danville, Ill., has developed a method for melting bundled auto hulks without removing combustible material. The method can be used in cupolas with modern air pollution controls. The percentage of bundles used must be controlled to assure the quality of the metal produced.4

A cryogenic method that employs liquid nitrogen is being used in a pilot plant in Chicago to separate mixed scrap containing a significant percentage of copper, aluminum, and other nonferrous metals along with the ferrous portion.<sup>5</sup>

A new type of magnetic separator, specifically designed for separation of the ferrous fraction of municipal scrap has recently been made available. The new system is said to produce a much cleaner ferrous fraction than conventional magnetic separators.<sup>6</sup>

The Bureau of Mines continued its research efforts in the area of improving utilization of ferrous scrap and materials. Metallurgists at the Bureau's Albany (Oregon) Metallurgy Research Center completed a project to test the feasibility of producing electric furnace steel from the ferrous fraction of municipal waste, principally steel cans. The material was tested in the as-received, detinned, or incinerated condition; some was shredded or briquetted. Melting conditions, yield, and chemical composition were determined. Another project was concerned with the preheating and continuous charging into the electric furnace of shredded auto scrap and mixtures of scrap and prereduced iron pellets. Energy consumption, melting rate, yield, and ingot chemistry were being determined.

Scientists from the Bureau's College Park (Maryland) Metallurgy Research Center were acting as consultants to the contractors in the design and construction of a demonstration plant for the City of Lowell, Mass., to process 250 tons of incinerator residues per day. The plant is a scaled-up version of the pilot plant developed at this center, and was partially funded by a grant from the Environmental Protection Agency (EPA). Work was also

continuing on refinements to the pilot plant, and residues from the Lowell, Mass., area were processed to provide data for the new plant there. Studies were continuing on methods of removing impurities from the ferrous fraction of the residues. A pilot plant for the treatment of raw refuse was essentially completed. A large number of processing tests were run and cost evaluations were made. Tin-plated cans from the treated refuse were evaluated by commercial detinning companies.

At the Bureau's Rolla (Missouri) Metallurgy Research Center, metallurgists continued to study the effects of impurities such as copper, tin, and lead in ductile cast iron (nodular cast iron). Such impurities are normally present in higher-thandesirable quantities in the ferrous fraction of municipal waste and other low grades of iron and steel scrap, and cannot be economically removed with present technology. The effects of combinations of tin and copper on the strength, ductility, and microstructure of ductile cast iron and the maximum levels and relative potency of these elements were being determined. Studies on the effects of small amounts of lead were initiated.

At the Bureau's Twin Cities Metallurgy Research Center in Minnesota, the use of ferrous waste in the cupola, electric arc furnace, and basic oxygen furnace (BOF) was being investigated. Various types of automotive scrap, including bundled, incinerated, and shredded material, were being evaluated for melting in the electric arc furnace. Yields and chemical content of harmful impurities in the product were determined. Iron-aluminum bimetallic cans were melted in the cupola, alone or in combination with shredded auto scrap, to produce a synthetic pig iron. The effect on fuel requirements, melting rates, and resid-

<sup>&</sup>lt;sup>3</sup> American Metal Market. Metals Firms Opt for Waste-Recovered Scrap Buying. V. 80, No. 49, Mar. 12, 1973, pp. 7, 17.

<sup>&</sup>lt;sup>4</sup> American Metal Market. GM System Melts Bundled Auto Hulks Without Removal of Combustible Parts. V. 80, No. 240, Dec. 12, 1973, p. 18

<sup>&</sup>lt;sup>5</sup> American Metal Market. Cryogenics So Successful Quadrupling of Pilot Plant Targeted for Next March. V. 80, No. 216, Nov. 7, 1973, pp. 11 16

<sup>&</sup>lt;sup>6</sup> Secondary Raw Materials. New Magnetic System To Revolutionize Recycling of Steel Cans. V. 11, No. 11, November 1973, pp. 98-99.

ual sulfur and aluminum content of the pig iron were being determined. Preheating of shredded scrap by BOF offgases was being studied as a means of increasing the percentage of scrap that can be added to the BOF charge. A method for preparing purified iron oxide pellets suitable for blast furnace use from impure oxides from incinerator residues and incinerated automotive scrap was also being investigated.

Table 2.—Consumer stocks, receipts, production, consumption, and shipments of iron and steel scrap in 1973, by grade

| Grade of scrap                                                  | Receipts            | Produc-<br>tion             | Con-<br>sump-<br>tion | Ship-<br>ments                         | Stocks<br>Dec. 31 |
|-----------------------------------------------------------------|---------------------|-----------------------------|-----------------------|----------------------------------------|-------------------|
| MANUFACTURERS OF STEEL INGOTS AND CASTINGS                      |                     |                             |                       |                                        |                   |
| Carbon steel:                                                   |                     |                             |                       |                                        |                   |
| Low-phosphorous plate and punchings                             | 531                 | 11                          | 532                   | 2                                      | 58                |
| Cut structural and plate                                        | 660                 | 103                         | 782                   | 2<br>3                                 | 48                |
| No. 1 heavy melting steel                                       |                     | 21,904                      |                       | 2,486                                  | 1,881             |
| No. 1 and electric jurnace pungles                              | 6 448               | 1,412<br>814                | 4,008<br>7,544        | 93<br>53                               | 333<br>566        |
| INO. 2 and all other blindles                                   | 2 012               | 500                         | 3,549                 | 76                                     | 292               |
| Turnings and borings                                            | 1,826               | 300                         | 1,992                 | 155                                    | 154               |
| Slag scrap (Fe content) Shredded or fragmentized.               | 1,563<br>1,789      | 2,346                       | 3,658<br>1,778        | 124<br>1                               | 240<br>70         |
|                                                                 |                     | 14,957                      | 17,491                | 1.220                                  | 859               |
| Stainless steel                                                 | 490                 | 670                         | 1,036                 | 46                                     | 119               |
| Alloy steel (except stainless)  Cast iron (includes borings)    | 538                 | 1,939                       | 2,399                 | 79                                     | 189               |
| Other grades of scrap                                           | 2,577<br>717        | 5,151<br>299                | 6,364<br>959          | 1,346<br>49                            | 1,120<br>44       |
|                                                                 |                     |                             |                       |                                        |                   |
| Total                                                           |                     | 50,406                      | 82,467                | 5,733                                  | 5,973             |
| Pig iron                                                        | 4,768               | 100,542                     | 96,604                | 8,327                                  | 955               |
| MANUFACTURERS OF STEEL CASTINGS                                 |                     |                             |                       |                                        |                   |
| Carbon steel:                                                   |                     |                             |                       |                                        |                   |
| Low-phosphorous plate and punchings                             | 621                 | 172                         | 800                   | 1                                      | 47                |
| Cut structural and plate                                        | 230                 | 13                          | 236                   | 5                                      | 12                |
| No. 1 heavy melting steel No. 2 heavy melting steel             | 146                 | 81                          | 226                   | 1                                      | 19                |
| NO. I 200 electric turnace hundles                              | 71                  |                             | 13<br>73              |                                        | - <u>-</u> -      |
| No. 2 and all other bundles                                     | 10                  |                             | 18                    |                                        |                   |
| Turnings and borings                                            | 73                  | 7                           | 80                    | -3                                     | 1<br>5            |
| Slag scrap (Fe content) Shredded or fragmentized                | 76                  | 3                           | 3<br>77               |                                        | 2                 |
| All other carbon steel scrap                                    | 586                 | 306                         | 879                   | īī                                     | 70                |
| Stainless steel                                                 | 15                  | 12                          | 25                    | 2                                      | 2                 |
| Cast iron (includes borings)                                    | 81<br>166           | 69<br>113                   | 137<br>285            | 15<br>3                                | $1\overline{7}$   |
| Other grades of scrap                                           | 47                  | 52                          | 97                    | 2                                      | 3                 |
| Total                                                           | 2,145               | 828                         | 2,949                 | 43                                     | 212               |
| Pig iron                                                        | 66                  |                             | 64                    | 1                                      | 8                 |
| IRON FOUNDRIES AND MISCELLANEOUS USERS                          | •                   |                             | 0.2                   | •                                      | J                 |
| Carbon steel:                                                   |                     |                             |                       |                                        |                   |
| Low-phosphorous plate and punchings                             | 1,222               | 57                          | 1,247                 | 14                                     | 70                |
| Cut structural and plate                                        | 1,092               | 134                         | 1,202                 | 10                                     | 79                |
| No. 1 heavy melting steel                                       | 455                 | 79                          | 485                   | 29                                     | 32                |
| No. 2 heavy melting steel<br>No. 1 and electric furnace bundles | 175<br>435          | 4<br>1                      | $\frac{175}{423}$     | 2                                      | 18<br>28          |
| No. 2 and all other bundles                                     | 623                 | 14                          | 607                   |                                        | 58                |
| Turnings and horings                                            | 704                 | 50                          | 722                   | $\bar{45}$                             | 57                |
| Slag scrap (Fe content) Shredded or fragmentized                | 6                   | 6                           | 13                    | 1                                      | 5.5               |
|                                                                 | $\frac{567}{1,858}$ | $1\overline{3}\overline{6}$ | $\frac{562}{2.035}$   | $\begin{array}{c} 1 \\ 29 \end{array}$ | 30<br>131         |
| Stainless steel                                                 | 15                  | 100                         | 13                    | 49                                     | 3                 |
| Allov Steel (except stainless)                                  | 116                 | . 4                         | 117                   | 1                                      | 19                |
| Cast iron (includes borings)<br>Other grades of scrap           | $\frac{4,408}{440}$ | 5,649<br>433                | $9,725 \\ 846$        | 289<br>28                              | 355<br>27         |
| Total                                                           |                     |                             | 118,173               | 449                                    | 907               |
| Pig iron                                                        |                     | 0,001                       |                       |                                        |                   |
|                                                                 | 3,236               |                             | 3,148                 | 112                                    | 252               |
| See footnotes at end of table.                                  |                     |                             |                       |                                        |                   |

Table 2.-Consumer stocks, receipts, production, consumption, and shipments of iron and steel scrap in 1973, by grade-Continued

| Grade of scrap                      | Receipts | Produc-<br>tion | Con-<br>sump-<br>tion | Ship-<br>ments | Stocks<br>Dec. 31 |
|-------------------------------------|----------|-----------------|-----------------------|----------------|-------------------|
| TOTAL—ALL TYPES OF MANUFACTURERS    |          |                 |                       |                |                   |
| Carbon steel:                       |          |                 |                       |                |                   |
| Low-phosphorous plate and punchings | 2,374    | 240             | 2,579                 | 17             | 175               |
| Cut structural and plate            | 1,982    | 250             | 2,220                 | 18             | 139               |
| No. 1 heavy melting steel           | 10,747   | 22,064          | 31,086                | 2,516          | 1,932             |
| No. 2 heavy melting steel           | 2,832    | 1,416           | 4,196                 | 95             | 351               |
| No. 1 and electric furnace bundles  | 6,954    | 815             | 8,040                 | 53             | 598               |
| No. 2 and all other bundles         | 3,685    | 514             | 4,174                 | 76             | 353               |
| Turnings and borings                |          | 357             | 2,794                 | 203            | 210               |
| Slag scrap (Fe content)             |          | 2,355           | 3,674                 | 125            | 240               |
| Shredded or fragmentized            | 2,432    |                 | 2,418                 | · 2            | 102               |
| All other carbon steel scrap        |          | 15,399          | 20,405                | 1,260          | 1,060             |
| Stainless steel                     | 1450     | 682             | 1,074                 | 48             | 124               |
| Alloy steel (except stainless)      | 735      | 2.012           | 2,653                 | 95             | 22                |
| Cast iron (includes borings)        | 7,151    | 10,913          | 16,374                | 1,638          | 1,50              |
| Other grades of scrap               |          | 784             | 1,902                 | 79             | 7                 |
| Total                               | 50,936   | 57,801          | 103,589               | 6,225          | 7,09              |
| Pig iron 2                          | 8,070    | 100,542         | 99,816                | 8,440          | 1,21              |

 $<sup>^{\</sup>rm l}$  Data does not add to total shown because of independent rounding.  $^{\rm l}$  Includes all pig iron used in reporting establishments.

Table 3.-Consumption of iron and steel scrap and pig iron 1 in the United States in 1973, by type of consumer and type of furnace or equipment

(Thousand short tons)

| Type of furnace                                                                                                           | of stee                                                   | acturers<br>l ingots<br>stings 2           | Manufa<br>of st<br>casti       |                    | Iron for<br>and misc<br>use   | ellaneous                 |                                                             | al all<br>pes                                   |
|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------|--------------------------------|--------------------|-------------------------------|---------------------------|-------------------------------------------------------------|-------------------------------------------------|
| or equipment                                                                                                              | Scrap                                                     | Pig<br>iron                                | Scrap                          | Pig<br>iron        | Scrap                         | Pig<br>iron               | Scrap                                                       | Pig<br>iron                                     |
| Blast furnace 4 Basic oxygen converter 5 Open-hearth furnace Electric furnace Cupola furnace Air furnace Other furnaces 5 | 4,246<br>27,318<br>20,419<br>28,615<br>1,621<br>30<br>218 | 68,027<br>25,467<br>904<br>311<br>6<br>220 | 138<br>2,496<br>286<br>27<br>2 | 10<br>41<br>8<br>5 | 4,242<br>13,345<br>121<br>465 | 434<br>1,957<br>46<br>182 | 4,246<br>27,318<br>20,557<br>35,353<br>15,252<br>178<br>685 | 68,027<br>25,477<br>1,379<br>2,276<br>57<br>402 |
| Total                                                                                                                     | 82,467                                                    | 94,935                                     | 2,949                          | 64                 | 18,173                        | 2,619                     | 103,589                                                     | 7 97,618                                        |

Table 4.-Proportion of iron and steel scrap and pig iron used in furnaces in the United States

(Percent)

|                        | 19'   | 73          |
|------------------------|-------|-------------|
| Type of furnace        | Scrap | Pig<br>iron |
| Basic oxygen converter | 28.7  | 71.3        |
| Open-hearth furnace    | 44.7  | 55.3        |
| Electric furnace       |       | 3.8         |
| Cupola furnace         | 87.0  | 13.0        |
| Air furnace            |       | 24.3        |
| Other                  |       | 37.0        |

Excludes molten pig iron used for ingot molds and direct castings.
 Includes only those castings made by companies producing steel ingots.
 Excludes companies that produce both steel ingots and steel castings.
 Includes consumption in all blast furnaces producing pig iron.
 Includes scrap and pig iron processed in metallurgical blast cupolas and used in oxygen converters.
 Includes vacuum melting furnaces and miscellaneous melting processes.
 Excludes pig iron used in making molds and poured directly into castings.

Table 5.—Iron and steel scrap supply  $^{\rm 1}$  available for consumption in 1973, by State and region

| State and region                           | Receipts                              | Production          | Total<br>new<br>supply  | Ship-<br>ments <sup>2</sup>            | New supply available for consumption |
|--------------------------------------------|---------------------------------------|---------------------|-------------------------|----------------------------------------|--------------------------------------|
| New England:                               |                                       |                     |                         |                                        |                                      |
| Connecticut, New Hampshire,                | 105                                   |                     |                         |                                        |                                      |
| Massachusetts Rhode Island and Vermont     | 125<br>123                            | 114<br>53           | $\frac{239}{176}$       | 9                                      | 230<br>174                           |
| Total                                      | 248                                   | 167                 | 415                     | 11                                     | 404                                  |
| Middle Atlantic:                           |                                       |                     |                         |                                        |                                      |
| New Jersey                                 | 557                                   | 138                 | 695                     | 7                                      | 688                                  |
| New York<br>Pennsylvania                   | 1,409                                 | 2,248               | 3,657                   | 95                                     | 3,562                                |
| _                                          | 9,192                                 | 12,339              | 21,531                  | 2,010                                  | 19,521                               |
| Total                                      | 11,158                                | 14,725              | 25,883                  | 2,112                                  | 23,771                               |
| East North Central:                        |                                       |                     |                         |                                        |                                      |
| Illinois                                   | 5,967                                 | 5,004               | 10,971                  | 541                                    | 10.430                               |
| Indiana                                    | 2,970                                 | 9,746               | 12,716                  | 975                                    | 10,430<br>11,741                     |
| Michigan<br>Ohio                           | 6,109<br>8,272                        | 4,925               | 11,034                  | 182                                    | 10,852<br>17,135                     |
| Wisconsin                                  | 645                                   | $10,380 \\ 389$     | $18,652 \\ 1,034$       | $^{1,517}_{23}$                        | 17,135<br>1,011                      |
| Total                                      | 23,963                                | 30,444              | 54,407                  | 3,238                                  | 51,169                               |
| West North Central:                        |                                       |                     |                         |                                        |                                      |
| Iowa                                       | 541                                   | 243                 | 784                     | 1                                      | 783                                  |
| Minnesota                                  | 478                                   | 68                  | 546                     | 18                                     | 528                                  |
| Missouri<br>Nebraska and Kansas            | 853<br>112                            | 290<br>60           | $\substack{1,143\\172}$ | 8<br>1                                 | 1,135<br>171                         |
| Total                                      | 1,984                                 | 661                 | 2,645                   | 28                                     | 2,617                                |
| South Atlantic:                            |                                       |                     |                         |                                        | -,011                                |
| Delaware and Maryland                      | 471                                   | 2,505               | 2,976                   | 141                                    | 0.005                                |
| Florida and Georgia                        | 695                                   | 136                 | 831                     | 2                                      | 2,835<br>829                         |
| North Carolina                             | 101                                   | 21                  | 122                     |                                        | 122                                  |
| South Carolina                             | 380                                   | 20                  | 400                     | 1                                      | 399                                  |
| Virginia<br>West Virginia                  | $^{609}_{1,003}$                      | 264<br>990          | $\frac{873}{1,993}$     | $\begin{array}{c} 34 \\ 2 \end{array}$ | 839<br>1,991                         |
| Total                                      | 3,259                                 | 3,936               | 7,195                   | 180                                    | <del></del>                          |
| =                                          | 0,200                                 | 3,330               | 7,195                   | 100                                    | 7,015                                |
| East South Central:                        | 0.050                                 |                     |                         |                                        |                                      |
| Alabama<br>Kentucky                        | $\substack{2,056\\828}$               | $\frac{2,051}{954}$ | 4,107                   | 141                                    | 3,966                                |
| Mississippi and Tennessee                  | 786                                   | 173                 | 1,782<br>959            | 176<br>17                              | $^{1,606}$                           |
| Total                                      | 3,670                                 | 3,178               |                         | 334                                    |                                      |
| =                                          | 3,010                                 | 3,178               | 6,848                   | 334                                    | 6,514                                |
| West South Central: Arkansas and Louisiana | 12                                    | 4                   | 16                      |                                        | 10                                   |
| Oklahoma                                   | 384                                   | 65                  | 449                     |                                        | 16<br>449                            |
| Texas                                      | 2,575                                 | 1,639               | 4,214                   | $\bar{9}\bar{9}$                       | 4,115                                |
| Total                                      | 2,971                                 | 1,708               | 4,679                   | 99                                     | 4,580                                |
| Mountain:                                  |                                       |                     |                         |                                        |                                      |
| Arizona and Colorado                       | 697                                   | 568                 | 1,265                   | 3                                      | 1,262                                |
| Montana, Nevada, Utah                      | 462                                   | 813                 | 1,275                   | <b>3</b> 8                             | 1,237                                |
| Total                                      | 1,159                                 | 1,381               | 2,540                   | 41                                     | 2,499                                |
| Pacific:                                   |                                       |                     |                         |                                        |                                      |
| California                                 | 1,894                                 | 1,449               | 3,343                   | 172                                    | 3,171                                |
| Washington and Oregon                      | 630                                   | 152                 | 782                     | 10                                     | 772                                  |
| Total                                      | 2,524                                 | 1,601               | 4,125                   | 182                                    | 3,943                                |
| U.S. total                                 | 50,936                                | 57,801              | 108,737                 | 6,225                                  | 102,512                              |
| 1 N                                        | · · · · · · · · · · · · · · · · · · · |                     | ,                       | ,                                      | ,                                    |

<sup>&</sup>lt;sup>1</sup> New supply available for consumption is a net figure computed by adding production to receipts and deducting scrap shipped during the year. The plus or minus difference in stock levels at the beginning and end of year is not taken into consideration.

<sup>2</sup> Includes scrap shipped, transferred, or otherwise disposed of during the year.

Table 6.—Consumption of iron and steel scrap and pig iron  $^{\rm 1}$  in 1973, by State and region, by type of manufacturer

|                                 | (11                  | iousana :           | snort tons    | •)                                            |                              |              |                             |                 |
|---------------------------------|----------------------|---------------------|---------------|-----------------------------------------------|------------------------------|--------------|-----------------------------|-----------------|
| State and region                | Steel ir<br>and cast |                     | Ste<br>castin | el<br>igs ³                                   | Iron fou<br>and misce<br>use | llaneous     | Tota                        | al              |
|                                 | Scrap                | Pig<br>iron         | Scrap         | Pig<br>iron                                   | Scrap                        | Pig<br>iron  | Scrap                       | Pig<br>iron     |
| New England:                    |                      |                     |               |                                               |                              |              |                             |                 |
| Connecticut, New Hampshire,     |                      |                     |               |                                               |                              |              |                             |                 |
| Massachusetts                   | . 69                 |                     | 10            |                                               | 155                          | 44           | 234                         | 44              |
| Rhode Island                    | 106                  |                     |               |                                               | 61                           | 3            | 167                         | 3               |
| Vermont                         |                      |                     |               |                                               | 8                            | 4            | 8                           | 4               |
| Total                           | 175                  |                     | 10            |                                               | 224                          | 51           | 409                         | 51              |
| Middle Atlantic:                |                      |                     |               |                                               |                              |              |                             |                 |
| New Jersey<br>New York          | 224                  |                     | 34            | 1                                             | 426                          | 62           | 684                         | 63              |
| New York                        | 2,573                | 5,121               | 134           | 4                                             | 798                          | 64           | 3,505                       | 5,189           |
| Pennsylvania                    | 18,490               | 21,456              | 369           | 27                                            | 814                          | 119          | 19,673                      | 21,602          |
| Total                           | 21,287               | 26,577              | 537           | 32                                            | 2,038                        | 245          | 23,862                      | 26,854          |
| East North Central:             |                      |                     |               |                                               |                              |              |                             |                 |
| Illinois                        | 8,618                | 7,481               | 431           | $\begin{smallmatrix}2\\2\\1\end{smallmatrix}$ | 1,660                        | 390          | 10,709                      | 7,873           |
| Indiana                         | 11,040               | 16,823              | 173           | 2                                             | 867                          | 172          | 12,080                      | 16,997          |
| Michigan                        |                      | 7,939               | 130           |                                               | 4,638                        | 658          | 10,937                      | 8,598<br>17,992 |
| Ohio                            |                      | 17,346              | 328<br>267    | 15<br>1                                       | $2,512 \\ 739$               | $631 \\ 121$ | 10,937<br>17,401<br>1,006   | 122             |
| Wisconsin                       |                      |                     |               |                                               |                              |              |                             |                 |
| Total                           | . <b>40,3</b> 88     | 49,589              | 1,329         | 21                                            | 10,416                       | 1,972        | 52,133                      | 51,582          |
| West North Central:             |                      |                     |               |                                               | <b>500</b>                   | 00           | 77.4                        | 32              |
| Iowa                            |                      |                     | 61            | ī                                             | 703<br>139                   | 32<br>38     | 764<br>536                  | 39              |
| Minnesota                       | 349<br>1,035         |                     | 48<br>71      |                                               | 92                           | 21           | 1,198                       | 21              |
| Missouri<br>Nebraska and Kansas |                      |                     | 131           |                                               | 36                           | 2            | 167                         | -2              |
|                                 |                      |                     |               |                                               |                              | 93           |                             | 94              |
| Total                           | 1,384                |                     | 311           | 1                                             | 970                          | 90           | 2,665                       | 34              |
| South Atlantic:                 |                      |                     |               |                                               |                              |              | 900                         |                 |
| Delaware                        |                      |                     | 12            |                                               | $\bar{3}\bar{2}$             | 8            | <b>39</b> 8<br>8 <b>3</b> 8 | -8              |
| Florida and Georgia             |                      | r 490               | $\bar{25}$    |                                               | 85<br>85                     | 9            | 2,396                       | 5,441           |
| Maryland                        | 2,286<br>115         | 5,432               |               | - <b>-</b>                                    | 16                           | . 8          | 131                         | 8,441           |
| North CarolinaSouth Carolina    | 341                  |                     |               |                                               | 28                           | 8            | 369                         | 6               |
| Virginia                        | 262                  |                     | 13            |                                               | 550                          | 135          | 825                         | 135             |
| West Virginia                   | 1,915                | 2,954               |               | 1                                             | 34                           | 14           | 1,986                       | 2,969           |
| Total                           | 6,111                | 8,386               |               | 1                                             | 745                          | 180          | 6,943                       | 8,567           |
|                                 |                      | -,                  |               |                                               |                              |              |                             |                 |
| East South Central: Alabama     | 2,205                | 3,405               | 216           |                                               | 1,476                        | 343          | 3,897                       | 3,748           |
| Kentucky                        | 1,353                | 1,908               |               |                                               | 302                          | 34           | 1,655                       | 1,344           |
| Mississippi and Tennessee       | 355                  |                     | 21            | 1                                             | 547                          | 109          | 923                         | 110             |
| Total                           | 3,913                | 5,313               | 237           | 1                                             | 2,325                        | 486          | 6,475                       | 5,800           |
| West South Central:             |                      |                     |               |                                               |                              |              |                             |                 |
| Arkansas and Louisiana          |                      |                     | 16            |                                               |                              |              | 16                          |                 |
| Oklahoma                        |                      |                     | 21            |                                               | 79                           | 7            | 437                         |                 |
| Texas                           | 3,372                | 1,293               | 51            | - <u>ī</u>                                    | 644                          | 31           | 4,067                       | 1,325           |
| Total                           | 3,709                | 1,293               | 88            | 1                                             | 723                          | 38           | 4,520                       | 1,332           |
| Mountain:                       |                      |                     |               |                                               |                              |              |                             |                 |
| Mountain:<br>Arizona            | _ 163                |                     | 98            | _                                             | 67                           |              | 328                         |                 |
| Colorado                        | 870                  | $1,0\bar{2}\bar{6}$ |               |                                               | 68                           |              | 954                         | 1,026           |
| Montana and Nevada              |                      |                     | . 4           |                                               | 00                           |              | 86                          |                 |
| Utah                            |                      | 1,882               | 4             |                                               |                              | 16           |                             | 1,899           |
| Total                           | 1,904                | 2,908               | 122           | 1                                             | 494                          | 16           | 2,520                       | 2,92            |
| Pacific:                        | -                    |                     |               |                                               |                              |              |                             |                 |
| California                      | 2,863                | 2,538               | 129           | 3                                             | 227                          | 59           |                             | 2,600           |
| Washington and Oregon           |                      | _,                  | 99            |                                               | 11                           | 8            | 843                         | 11              |
| Total                           | 3,596                | 2,538               | 228           | 6                                             | 238                          | 67           | 4,062                       | 2,611           |
|                                 |                      |                     |               |                                               |                              |              | 103,589                     | 99,816          |
| U.S. total                      | _ 82,467             | 96,604              | 2,949         | 04                                            | 10,113                       | 0,140        | 100,000                     | 00,010          |

Includes molten pig iron used for ingot molds and direct castings.
 Includes only those castings made by companies producing steel ingots.
 Excludes companies that produce both steel ingots and castings.

Table 7.—Yearend consumer stocks of iron and steel scrap, by grade, and pig iron, by State and region

| State and region                            | Carbon<br>steel<br>(excludes<br>rerolling<br>rails) | Stain-<br>less<br>steel | Alloy<br>steel<br>(ex-<br>cludes<br>stainless) | Cast<br>iron<br>(includes<br>borings) | Other<br>grades<br>of<br>scrap | Total<br>scrap<br>stocks | Pig<br>iron<br>stocks |
|---------------------------------------------|-----------------------------------------------------|-------------------------|------------------------------------------------|---------------------------------------|--------------------------------|--------------------------|-----------------------|
| New England:<br>Connecticut, New Hampshire, |                                                     |                         |                                                |                                       |                                |                          |                       |
| M assachusetts                              | _ 4                                                 | 3                       | 1                                              | 7                                     |                                | 15                       |                       |
| Rhode Island and Vermont                    |                                                     |                         | ī                                              | 2                                     |                                | 15<br>12                 |                       |
| Total                                       | . 13                                                | 3                       | 2                                              | 9                                     |                                | 27                       | 7                     |
| Middle Atlantic:                            |                                                     |                         |                                                |                                       |                                |                          |                       |
| New Jersey New York                         | 992                                                 | $\bar{1}\bar{4}$        | 1                                              | 20                                    |                                | 45                       | 10                    |
| Pennsylvania                                | 955                                                 | 50                      | 10<br>101                                      | 115<br>261                            | 4                              | $\frac{375}{1,371}$      | 86<br>252             |
| Total                                       | 1,215                                               | 64                      | 112                                            | 396                                   | 4                              | 1,791                    | 348                   |
| East North Central:                         |                                                     |                         |                                                |                                       |                                | 1,791                    | 348                   |
| Illinois                                    | 678                                                 | 2                       | 7                                              | 51                                    | 1                              | 739                      | 37                    |
| Indiana<br>Michigan                         | 546<br>250                                          | 15                      | 5 2                                            | 402                                   | 9                              | 977                      | 70                    |
| Omo                                         | 816                                                 | 14<br>18                | 41                                             | 110<br>170                            | 7<br>4                         | 383                      | 107                   |
| Wisconsin                                   | 19                                                  |                         |                                                | 13                                    | 1                              | $\frac{1,049}{33}$       | 309<br>5              |
| Total                                       | 2,309                                               | 49                      | 55                                             | 746                                   | 22                             | 3,181                    | 528                   |
| West North Central:                         |                                                     |                         |                                                |                                       |                                |                          |                       |
| Iowa<br>Minnesota                           | 44                                                  |                         |                                                | 21                                    | 2                              | 67                       | 5                     |
| Wissouri                                    | 79<br>105                                           |                         | $\bar{\mathbf{z}}$                             | 3                                     |                                | 82                       | 3                     |
| Nebraska and Kansas                         | 10                                                  |                         |                                                | 8<br>1                                |                                | 115<br>11                | 6                     |
| Total                                       | 238                                                 |                         | 2                                              | 33                                    | 2                              | 275                      | 14                    |
| South Atlantic:                             |                                                     |                         |                                                |                                       |                                | 210                      |                       |
| Delaware and Maryland                       | 169                                                 | 7                       | 12                                             | <b>3</b> 8                            |                                | 226                      | 17                    |
| Florida and Georgia<br>North Carolina       | 63<br>5                                             |                         |                                                | 1                                     |                                | 64                       |                       |
| South Carolina                              | 50                                                  |                         |                                                | 1                                     |                                | 6                        | 2<br>2<br>3           |
| Virginia                                    | 20                                                  |                         |                                                | $\bar{2}\bar{2}$                      |                                | $\frac{50}{42}$          | 12                    |
| West Virginia                               | 35                                                  |                         | ī                                              | 4                                     |                                | 40                       | 19                    |
| Total                                       | 342                                                 | 7                       | 13                                             | 66                                    |                                | 428                      | 45                    |
| East South Central:                         |                                                     |                         |                                                |                                       |                                |                          |                       |
| Alabama<br>Kentucky                         | 240                                                 |                         | 7.7                                            | 79                                    | 1                              | 320                      | 142                   |
| Mississippi and Tennessee                   | 66<br>56                                            |                         | 16                                             | 19                                    | 16                             | 117                      | 12                    |
| _                                           |                                                     |                         |                                                | 10                                    | 1                              | 67                       | 4                     |
| Total                                       | 362                                                 |                         | 16                                             | 108                                   | 18                             | 504                      | 158                   |
| West South Central: Arkansas and Louisiana  | 2                                                   |                         |                                                |                                       |                                |                          |                       |
| Oklahoma                                    | 49                                                  |                         |                                                | Ĩ                                     |                                | .2                       |                       |
| Texas                                       | 267                                                 |                         | $\bar{1}\bar{4}$                               | 60                                    | 3                              | $\frac{50}{344}$         | $\frac{1}{79}$        |
| Total                                       | 318                                                 |                         | 14                                             | 61                                    | 3                              | 396                      | 80                    |
| Mountain:                                   |                                                     |                         |                                                |                                       |                                | 030                      |                       |
| Arizona and Colorado                        | 66                                                  |                         | 1                                              | 2                                     | 5                              | 74                       | 2                     |
| Montana, Nevada, Utah                       | 76                                                  |                         | $\overline{4}$                                 | 5                                     | 12                             | 97                       | 17                    |
| Total                                       | 142                                                 |                         | 5                                              | 7                                     | 17                             | 171                      | 19                    |
| Pacific:                                    |                                                     |                         |                                                |                                       |                                |                          |                       |
| California                                  | 179                                                 |                         | 3                                              | 73                                    | 8                              | 263                      | 14                    |
| Washington and Oregon                       | 46                                                  | 1                       | 3                                              | 6                                     |                                | 56                       | 2                     |
| Total                                       | 225                                                 | 1                       | 6                                              | 79                                    | 8                              | 319                      | 16                    |
| U.S. total                                  | 5,164                                               | 124                     | 225                                            | 1,505                                 | 74                             |                          |                       |
|                                             | -,                                                  |                         | 220                                            | 1,000                                 | 14                             | 7,092                    | 1,215                 |

Table 8.—Average monthly price and composite price for No. 1 heavy melting scrap in 1973

(Per long ton)

| Month      | Chicago | Pittsburgh | Philadelphia | Composite price 1 |
|------------|---------|------------|--------------|-------------------|
| January    | \$46.75 | \$48.00    | \$50.00      | \$48.24           |
| February   | 48.75   | 48.25      | 50.25        | 49.08             |
| March      | 45.50   | 48.25      | 49.50        | 47.75             |
| April      | 44.50   | 49.30      | 50.90        | 48.22             |
| May        | 47.75   | 51.75      | 55.50        | 51.66             |
| June       | 51.50   | 53.50      | 57.50        | 54.16             |
| July       | 51.30   | 53.50      | 57.50        | 54.09             |
| August     | 51.50   | 55.50      | 57.75        | 54.91             |
| September  | 57.50   | 58.25      | 60.75        | 58.83             |
| October    | 72.70   | 67.10      | 67.30        | 69.02             |
| November   | 87.50   | 81.50      | 73.50        | 80.83             |
| December • | 86.50   | 76.25      | 73.00        | 75.58             |
| Average •  | 57.64   | 57.59      | 58.62        | 57.95             |

Source: Iron Age, Jan. 7, 1974.

Table 9.-U.S. exports and imports for consumption of iron and steel scrap, by class (Thousand short tons and thousand dollars)

| Class                           | 19            | 69      | 19            | 70             | 19            | 71             | 19            | 72      | 19            | 73             |
|---------------------------------|---------------|---------|---------------|----------------|---------------|----------------|---------------|---------|---------------|----------------|
| Class                           | Quan-<br>tity | Value   | Quan-<br>tity | Value          | Quan-<br>tity | Value          | Quan-<br>tity | Value   | Quan-<br>tity | Value          |
| Exports:                        |               |         |               |                |               |                |               |         |               |                |
| No. 1 heavy                     | 0 450         |         |               |                |               |                |               |         |               |                |
| melting scrap<br>No. 2 heavy    | 3,452         | 114,646 | 3,654         | <b>158,483</b> | 1,827         | 64,514         | 2,289         | 79,246  | 3,780         | 207,743        |
| melting scrap                   | 1,009         | 29.760  | 1.140         | 45,516         | 645           | 20,297         | 756           | 23,200  | 1,107         | 52,817         |
| No. 1 baled steel               |               |         | -,            | •              |               | •              |               | •       | *             | <b>52</b> ,52. |
| scrap<br>No. 2 baled steel      | 593           | 19,679  | 377           | 16,290         | 233           | 8,460          | 180           | 6,112   | 391           | 21,565         |
| scrap                           | 1.038         | 22,038  | 1,381         | 41,902         | 987           | 22,519         | 897           | 19,623  | 1.221         | 49.421         |
| Stainless steel scrap           | 76            |         |               | 30,926         |               |                | 48            | 11.679  | 49            |                |
| Shredded steel                  |               |         |               |                |               |                |               |         |               | •              |
| scrap 1<br>Borings, shovelings, |               |         | 1,165         | 49,344         | 1,026         | <b>36,56</b> 8 | 1,463         | 48,186  | 2,098         | 118,133        |
| and turnings                    | 767           | 13,135  | 619           | 15,311         | 390           | 8,663          | 508           | 10,761  | 521           | 16,352         |
| Other steel scrap 2_            | 1,361         | 46,930  | 881           | 44,423         | 465           |                | 597           |         | 1.102         |                |
| Iron scrap                      | 627           | 20,481  | 807           | 29,715         | 465           |                | 439           | 13,026  | 605           |                |
| Total                           | 8 923         | 289 587 | 10 111        | 431 910        | 6.082         | 206,420        | 7 177         | 222 205 | 10 874        | 570 011        |
| Ships, boats, other             | 0,020         | 200,001 | 10,111        | 101,010        | 0,002         | 200,420        | .,            | 200,000 | 10,014        | 310,011        |
| vessels (for                    |               |         |               |                |               |                |               |         |               |                |
| scrapping)                      |               | 2,319   |               | 11,474         | 396           | 6,824          | 299           | 9,009   | 156           |                |
| Rerolling material_             | 254           | 13,170  | 251           | 15,464         | 175           | 8,978          | 207           | 10,213  | 382           | 28,489         |
| Grand total                     | 9,291         | 305,026 | 10,893        | 458,848        | 6,653         | 222,222        | 7,683         | 252,617 | 11,412        | 606,556        |
| Imports:                        |               |         |               |                |               |                |               |         | ****          |                |
| Iron and steel                  |               |         |               |                |               |                |               |         |               |                |
| scrap                           | 311           | 12,571  | 279           | 10,609         | 263           | 10,713         | 295           | 14,304  | 337           | 18,716         |
| Tinplate scrap                  | 24            | 917     | 22            | 591            | 20            | 546            | 17            | 437     | 12            | 384            |
| Total                           | 335           | 13,488  | 301           | 11,200         | 283           | 11,259         | 312           | 14,741  | 349           | 19,100         |

 $<sup>^{\</sup>rm 1}$  Separately classified Jan. 1, 1970; formerly part of "Other steel scrap."  $^{\rm 2}$  Includes terneplate and tinplate.

Estimated.
 Composite price, Chicago, Pittsburgh, Philadelphia.

Table 10.-U.S. exports of iron and steel scrap, by country

(Thousand short tons and thousand dollars)

| Country            | 19            | 69                  | 19            | 70      | 19               | 71          | 19            | 72                  | 19            | 73           |
|--------------------|---------------|---------------------|---------------|---------|------------------|-------------|---------------|---------------------|---------------|--------------|
| Country            | Quan-<br>tity | Value               | Quan-<br>tity | Value   | Quan-<br>tity    | Value       | Quan-<br>tity | Value               | Quan-<br>tity | Value        |
| Argentina          | (1)           | 3                   | 6             | 370     | 63               | 1,757       | 231           | 7,857               | 261           | 13,840       |
| Belgium-Luxembourg |               | 1,844               | 21            | 3,563   | 8                | 947         | 5             | 300                 |               | 535          |
| Brazil             | (1)           | 6                   |               | ,       | 1                | 15          | 61            | 2,174               |               | 229          |
| Canada             | 616           | 15,286              | 707           | 21,525  | 887              | 26,204      | 903           | 26,605              |               | 27,097       |
| China, People's    |               | •                   |               | •       |                  |             |               | .,                  |               | ,            |
| Republic of        |               |                     |               |         |                  |             |               |                     | 428           | 23,729       |
| France             | 47            | 2,868               | 57            | 2,785   | 8                | <b>29</b> 8 | (1)           | 5                   | 30            | 2 682        |
| Germany, West      | 93            | 5,345               | 45            | 2,069   |                  | 1,152       |               | 473                 | ž             | 2,682<br>283 |
| Greece             |               |                     |               |         | 37               | 1,228       |               | 4,893               | 187           | 9,429        |
| Hong Kong          | 1             | 181                 | 6             | 652     |                  | 1,023       | 1             | 277                 | 1             | 231          |
| Italy              |               | 25,781              | 491           | 22,657  | 590              | 22,599      |               | 23,222              | $35\hat{3}$   | 23,966       |
| Japan              |               | 126,254             | 5,208         | 208,601 | 1,744            | 54,369      |               | 71,309              | 4,666         | 234,363      |
| Korea, Republic of | 553           | 20,347              | 667           | 30,971  | 324              | 11,799      | 380           | 13,086              | 739           | 42,429       |
| Mexico             | 580           | 20,210              | 821           | 35,368  |                  | 20,027      | 587           | 22,301              | 1.009         | 56,063       |
| New Zealand        |               | ,                   | 7             | 338     |                  | _0,0        | 19            | 535                 | 42            | 2,479        |
| Pakistan           | (1)           | 40                  | (1)           | 11      | 52               | 1,639       |               | <sup>2</sup> 766    |               | 96           |
| Singapore          |               |                     | ( )           |         | <b>-</b>         | 1,000       | 25            | 971                 | 15            | 1,179        |
| Spain              | 1.034         | $29,05\overline{2}$ | 1,154         | 45,725  | $6\overline{10}$ | 20,354      |               | 21,452              | 1,127         | 58,197       |
| Sweden             |               | 19,766              | 161           | 24,712  | 20               | 4,437       | 21            | 4,545               | 8             | 2,171        |
| Taiwan             | 95            | 3,658               | 151           | 7,097   | 387              | 12,584      |               | 14,028              | 672           | 39,527       |
| Thailand           | 61            | 1.950               | 45            | 1,950   | 39               | 1,464       |               | 2,945               |               | 8,408        |
| Turkey             |               | 2,013               | $\tilde{72}$  | 3,530   | 73               | 2,465       |               | 4,571               | 124           | 7,212        |
| United Kingdom     |               | 10,514              | 251           | 10,909  | 335              | 12,785      |               | 1,029               | 142           | 9,203        |
| Venezuela          |               | 1.683               | 179           | 5,587   | 212              | 5,244       |               | 7,734               |               | 3,802        |
| Yugoslavia         | 11            | 450                 | 22            | 1,006   | 56               | 2.271       | 201           | .,104               | 10            | 0,002        |
| Other              | 65            | 2,286               | 40            | 2,484   |                  | 1.759       | 68            | $2,3\bar{1}\bar{7}$ | 33            | 2,861        |
| -                  |               |                     |               |         |                  |             |               |                     |               |              |
| Total              | 8,923         | 289,537             | 10,111        | 431,910 | 6,082            | 206,420     | 7,177         | 233,395             | 10,874        | 570,011      |

Table 11.-U.S. exports of rerolling material (scrap), by country

(Thousand short tons and thousand dollars)

| Country                     | 1969          |        | 19            | 970 19           |               | 71 19 |               | 72               | 1973          |                             |
|-----------------------------|---------------|--------|---------------|------------------|---------------|-------|---------------|------------------|---------------|-----------------------------|
|                             | Quan-<br>tity | Value  | Quan-<br>tity | Value            | Quan-<br>tity | Value | Quan-<br>tity | Value            | Quan-<br>tity | Value                       |
| Canada                      | (1)           | 8      | 5             | 208              | 1             | 46    | 2             | 118              | 1             | 34                          |
| China, People's Republic of |               |        |               |                  |               |       |               |                  | 7             | 485                         |
| Italy                       | 25            | 2,220  |               | 114              | 1             | 44    |               |                  | 2             | 168                         |
| Japan                       | 15            | 588    | 13            | 584              | 5             | 190   | 17            | 789              | 16            | 1,209                       |
| Korea, Republic of          | 174           | 8,318  | 187           | 11,737           | 83            | 4.562 | 73            | 3,491            | 118           | 7,014                       |
| Mexico                      | 22            | 1,103  | 33            | 2,036            | 27            | 1,530 | 35            |                  | 43            | 2,954                       |
| Pakistan                    |               |        |               |                  |               |       | 24            | 1,047            | 8             | 422                         |
| Spain                       |               |        |               |                  | 1             | 59    | 5             | 319              | (1)           | 7                           |
| Taiwan                      | 3             | 156    | (1)           | 10               | 44            | 2,023 | 20            | 951              | 149           | 12,712                      |
| Thailand                    | 12            | 707    | `´ 6          | 398              |               | _,    | 15            | 654              | 28            | 2,641                       |
| Turkey                      |               |        |               |                  |               |       | 9             | 533              | 4             | 292                         |
| Venezuela                   | $\bar{2}$     | 65     | 2             | 99               | 2             | 105   | š             | 200              | â             | 210                         |
| Yugoslavia                  |               |        | _             |                  | 11            | 419   | _             | 200              | Ū             | 210                         |
| Other                       | ī             | -5     | 3             | $2\overline{78}$ |               |       | 4             | $2\overline{28}$ | 3             | $3\overline{4}\overline{1}$ |
| Total                       | 254           | 13,170 | 251           | 15,464           | 175           | 8,978 | 207           | 10,213           | 382           | 28,489                      |

<sup>1</sup> Less than ½ unit.

 $<sup>^{1}</sup>$  Less than  $\frac{1}{2}$  unit.  $^{2}$  Includes Bangladesh 14,781 short tons (\$521,810).

Table 12.—U.S. exports of ships, boats, and other vessels for scrapping (Thousand short tons and thousand dollars)

| Country -          | 1969          |       | 19            | 70     | 1971          |       | 1972          |       | 1973          |       |
|--------------------|---------------|-------|---------------|--------|---------------|-------|---------------|-------|---------------|-------|
|                    | Quan-<br>tity | Value | Quan-<br>tity | Value  | Quan-<br>tity | Value | Quan-<br>tity | Value | Quan-<br>tity | Value |
| Canada             | 3             | 20    | 18            | 338    | 30            | 493   | 36            | 583   | 2             | 260   |
| Germany, West      |               |       | 15            | 197    | 5             | 77    |               |       | 8             | 257   |
| Italy              |               |       | 48            | 913    |               |       |               |       |               |       |
| Japan              |               |       | 6             | 100    |               |       | 5             | 74    |               |       |
| Korea, Republic of |               |       | 7             | 169    |               |       |               |       | 9             | 370   |
| Mexico             | 3             | 51    |               |        |               |       |               |       | 1             | 132   |
| Netherlands        |               |       | 15            | 275    |               |       |               |       | (1)           | 40    |
| Spain              | 70            | 1,098 | 357           | 7.637  | 255           | 4,788 | 146           | 3,907 | `´ 22         | 1,002 |
| Taiwan             | 20            | 849   |               | 1,607  | 106           | 1.463 |               | 4,445 | 114           | 5.994 |
| Other              | 18            | 301   | 7             | 238    | (1)           | 3     |               |       | (1)           | 1     |
| Total              | 114           | 2,319 | 531           | 11,474 | 396           | 6,824 | 299           | 9,009 | 156           | 8,056 |

<sup>1</sup> Less than ½ unit.

Table 13.-U.S. imports for consumption of iron and steel scrap, by country

|                | 197                         | 2      | 1973    |                           |  |  |
|----------------|-----------------------------|--------|---------|---------------------------|--|--|
| Country        | Quantity<br>(short<br>tons) | (thou- |         | Value<br>(thou-<br>sands) |  |  |
| Argentina      |                             |        | 176     | \$6                       |  |  |
| Australia      | . 18                        | \$8    | 18      | 1                         |  |  |
| Canada         | 288.509                     | 12.308 | 336.119 | 17.696                    |  |  |
| Dominican      |                             | ,      | ,       | ,                         |  |  |
| Republic       | 16                          | 3      | 83      | 6                         |  |  |
| French West    |                             |        |         |                           |  |  |
| Indies         | 1,296                       | 43     |         |                           |  |  |
| Germany, West  |                             | 278    |         | 46                        |  |  |
| Haiti          |                             |        | 785     | 9                         |  |  |
| Jamaica        | 1,009                       | 33     | 1.686   | 73                        |  |  |
| Japan          |                             | 65     |         | 1                         |  |  |
| Liberia        |                             | 00     | 650     | $2\overline{1}$           |  |  |
| Mexico         |                             | 318    |         | 151                       |  |  |
| Netherlands    |                             | 338    |         | 323                       |  |  |
| South Africa,  | ***                         | 000    | 010     | 020                       |  |  |
| Republic of    | 45                          | 26     |         |                           |  |  |
| Sweden         |                             |        |         | 49                        |  |  |
| United Kingdom |                             |        |         |                           |  |  |
| Other          |                             |        |         | 5                         |  |  |
| O thei         |                             | - 00   | 110     |                           |  |  |
| Total          | 312,040                     | 14,741 | 348,633 | 19,100                    |  |  |



# Iron Oxide Pigments

## By Henry E. Stipp <sup>1</sup>

Iron oxide pigments were in short supply during 1973 despite record high domestic production and increased imports, mainly of synthetic iron oxide pigments. Domestic demand for iron oxide pigments increased susbstantially because of a high level of paint, varnish, and lacquer sales for use mainly in the housing, automobile, and durable goods industries. Iron oxide pigments also were used for preparing materials for magnetic applications. Increased foreign demand for iron oxide pigments, as a result of a worldwide economic expansion, reduced the quantity of iron oxide material that normally could have been imported into the United States. Although U.S. imports of synthetic iron oxide pigments were larger than those in

1972, they were insufficient for domestic demand, and together with low inventories incurred in previous years, limited the ability of suppliers to satisfy total domestic requirements. However, the outlook for sluggish economic activity in 1974, particularly in the construction and automobile industries, should give producers an opportunity to catch up with domestic iron oxide pigment demand.

Legislation and Government Programs. -The U.S. Department of the Treasury issued a ruling that permanent magnets of (ferrites) and alnico ceramic material from Japan were not being sold in the United States at less than fair value.2 In 1972, Japanese magnets totaling \$3.3 million were imported into the United States.

Table 1.-Salient iron oxide pigments statistics in the United States

|                                                                                                                                                                                                                                                                      | 1969                                                                                      | 1970                                                                                      | 1971                                                                             | 1972                                                                             | 1973                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Mine production short tons Crude pigments sold or used do Value thousands Finished pigments sold short tons Value thousands Exports short tons Value thousands Unports for consumption short tons Value thousands Limports for consumption thousands Value thousands | 40,600<br>40,800<br>\$362<br>142,900<br>\$32,000<br>4,000<br>\$1,000<br>33,000<br>\$5,000 | 38,600<br>39,200<br>\$442<br>124,000<br>\$28,000<br>5,000<br>\$2,000<br>33,000<br>\$6,000 | W<br>W<br>\$415<br>128,300<br>\$31,000<br>\$,000<br>\$2,000<br>36,000<br>\$6,000 | W<br>W<br>\$418<br>174,392<br>1\$40,330<br>4,000<br>\$2,000<br>47,000<br>\$9,000 | W<br>\$770<br>178,788<br>\$46,158<br>10,000<br>\$3,000<br>51,000<br>\$12,000 |

r Revised. W Withheld to avoid disclosing individual company confidential data.

## DOMESTIC PRODUCTION

Finished iron oxide pigments production (as indicated by sales) in 1973 increased, for the third consecutive year, to 178,788 short tons, a 2.5% rise over the 174,392 short tons of 1972. Some increase in plant capacity and more efficient operation of existing plants were considered to be the principal factors involved in producers' ability to raise domestic output. Yellow iron oxide production in 1973 posted the largest percentage increase (8.6%) in the manufactured category; natural metallic brown iron oxide increased 7.3% in output. Production of manufactured pure red iron oxide by other chemical processes increased 19.9% over that of 1972, whereas production of pure red iron oxide from calcined copperas decreased 16.3% from that of 1972. Output of natural red iron oxide in 1973 decreased 9.1% from that of 1972.

<sup>&</sup>lt;sup>1</sup> Physical scientist, Division of Ferrous Metals – Mineral Supply.

<sup>2</sup> Wall Street Journal. U.S. Finds No Dumping of Japanese Magnets. V. 181, No. 55, Mar. 21, 1973, p. 30.

The total value of finished iron oxide pigments increased 14.6% in 1973 to \$46.2 million, compared with \$40.3 million in 1972. In 1973, 14 companies operated 19 plants in 10 States. Pfizer Inc. was the major producer of finished iron oxides with plants in California, Illinois, and Pennsylvania.

Crude iron oxide pigment production and value increased sharply over that of 1972. Figures on production of crude pigments were withheld to avoid disclosing confidential company data. In 1973 crude iron oxide pigments shipments were valued at \$770,000, an 84% increase over the \$418,000 value in 1972. Six companies operating mines or plants in six States reported production of crude iron oxide pigments in 1973. The Cleveland-Cliffs Iron Co. produced the largest quantity from mines in Michigan.

## CONSUMPTION AND USES

Apparent domestic consumption of iron oxide pigments 3 increased 1.2% to 220,083 short tons in 1973, compared with 217,395 short tons in 1972. Consumption probably was curtailed by supply shortages of several types of iron oxide pigments that occurred throughout the year. Reportedly, red and yellow manufactured iron oxide pigments were scarce. One of the factors said to be responsible for shortages of manufactured iron oxide pigments was lack of plant capacity. Capital investment was not attracitve during the previous 5 years because of the low price for iron oxide pigments. Thus there was little incentive for constructing new plants and installing new equipment. The added investment required for pollution control also was reported as contributing to the lack of capacity.4

Another factor contributing to domestic shortages was reportedly the devaluation of the U.S. dollar. This made it possible for foreign consumers to offer attractive prices for U.S. products. Exports of iron oxide pigments in 1973 were more than double those of 1972. Iron oxide pigments were used in paints, rubber, plastics, concrete products, paper, magnetic ink, fertilizers, and animal food. They were used also in preparing ferrities for applications as television components, filters in radio equipment, computer memory cores, door latches and seals, small electric motors, and inductor and microwave devices. Iron oxide was used in miscellaneous applications such as abrasives, welding rod coatings, soil conditioners, foundary sands, and automobile brake linings. Iron oxides combined with aluminum in paint formulations produce paints described as metallic for use in protecting automobiles from corrosion and enhancing their beauty. It was estimated that in 1972 the automobile industry used about \$200 million worth of paint products in producing about 10 million vehicles.

Data are not collected by the Bureau of Mines on specific uses for iron oxide pigments, and the figures given in table 2 do not necessarily reflect all sales of iron oxide pigment material for uses other than pigments.

<sup>&</sup>lt;sup>3</sup> Indicated by quantity of finished iron oxide pigments sold plus imports of natural and synthetic iron oxide pigments minus exports of pigment-grade iron oxides and hydroxides.

<sup>1</sup> American Paint Journal. Coatings Update. V. 59, No. 30, Jan. 7, 1974, p. 66.

Table 2.-Finished iron oxide pigments sold by processors in the United States by kind

|                                                                            | 19                       | 72                    | 1973                      |                       |  |
|----------------------------------------------------------------------------|--------------------------|-----------------------|---------------------------|-----------------------|--|
| Pigment                                                                    | Quantity<br>(short tons) | Value<br>(thousands)  | Quantity<br>(short tons)  | Value<br>(thousands)  |  |
| Natural:                                                                   |                          |                       |                           |                       |  |
| Brown:<br>Iron oxide (metallic) 1                                          | 19,074                   | \$3,467               | 20,466                    | <b>\$3,44</b> 8       |  |
| Umbers:<br>Burnt<br>Raw                                                    | 5,376 $1,541$            | $^{1,441}_{435}$      | 5,914<br>1,550            | 1,685<br>456          |  |
| Red: Iron oxide 2Sienna, burnt                                             | 35,541<br>1,201          | 2,547<br>531          | 33,324<br>541             | $^{2,682}_{271}$      |  |
| Yellow: Ocher <sup>3</sup> Sienna, raw                                     | 6,223<br>992             | 495<br>389            | 6,085<br>1,330            | 474<br>419            |  |
| Total natural                                                              | 69,948                   | 9,305                 | 69,210                    | 9,435                 |  |
| Manufactured: Black: Magnetic Brown: Iron oxide                            | 3,149<br>6,539           | 1,376<br>2,748        | 2,458<br>7,728            | 1,210<br>3,413        |  |
| Pure red iron oxides: Calcined copperasOther chemical processes            | 14,426                   | 6,499<br>4,531<br>135 | 16,059<br>4 17,300<br>175 | 6,067<br>46,002<br>46 |  |
| Venetian redYellow: Iron oxide                                             |                          | 11,118                | 34,605                    | 13,389                |  |
| Total manufactured                                                         | 75,671                   | 26,407                | 78,325                    | 30,127                |  |
| Unspecified including mixtures of natural and manufactured red iron oxides | 28,773                   | 4,618                 | 31,253                    | 6,596                 |  |
| Grand total                                                                | 174,392                  | 40,330                | 178,788                   | 46,158                |  |

<sup>1</sup> Includes black magnetite and vandyke brown.

#### **PRICES**

Most synthetic grades of iron oxide pigments experienced price increases ranging from 1 cent to 11/2 cents per pound effective from May 7 to May 11. Synthetic red iron oxides advanced from 1/2 cent to 2

cents per pound. Synthetic brown increased 1 cent per pound. Most synthetic yellow iron oxide was increased from 1 to 11/2 cents per pound; light lemon advanced 21/2 cents per pound.

Table 3.-Prices quoted on finished iron oxide pigments, per pound, in bags, unless otherwise noted, as of December 31, 1973 1

| Pigment                                                                                                                                                                                         | Low                                                         | High                                                                           | Pigment                                                                                                                                                    | Low                                                            | High                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|
| Black: Pure. Synthetic. Brown: Metallic. Pure, synthetic. Sienna, American, burnt. Sienna, American, raw. Umber, American, raw. Umber, American, raw. Vandyke, imported 2. Vandyke, imported 2. | .1788<br>.0900<br>.2025<br>.1500<br>.1450<br>.1225<br>.1250 | 0.2050<br>.2050<br>.1125<br>.2350<br>.2850<br>.2375<br>.1550<br>.1475<br>.4750 | Red:  Domestic primers  Persian Gulf 2  Pure synthetic  Spanish, exdock, N.Y. 2  Yellow: Ocher, domestic Ocher, French-type Pure, light lemon Other shades | \$0.0775<br>.1400<br>.1825<br>.1100<br>.0540<br>.0975<br>.1700 | 0.1150<br>.1925<br>.1275<br>.0650<br>.1300<br>.1950<br>.1850 |

 $<sup>^{\</sup>rm I}$  Low and high range covers prices for carlots and less than carlots, at the works.  $^{\rm 2}$  Barrels.

Sources: Chemical Marketing Reporter and American Paint Journal.

<sup>2</sup> Includes pyrite cinder.
3 Includes yellow iron oxide.
4 Includes other manufactured red iron oxide.

### **FOREIGN TRADE**

The quantity of natural and manufactured iron oxide pigments imported into the United States for consumption in 1973 increased 8.3% to 51,183 short tons, compared with 47,271 short tons in 1972. The value of iron oxide pigments imported in 1973 increased 40.8% to \$12 million compared with \$8.5 million in 1972. Manufactured (synthetic) iron oxide pigments comprised 73% of total imports of iron oxide materials in 1973. Approximately 70.3% of the natural iron oxide pigments imported in 1973 consisted of crude and refined umber.

The major share of synthetic iron oxide pigments imported in 1973 came from West Germany, Canada, and the United Kingdom. Synthetic imports from Canada increased 32% in quantity and 48% in value compared with those of 1972. Imports of synthetic material from West Germany and the United Kingdom decreased 5% and 42%, respectively, in quantity compared with imports in 1972. Natural iron oxides imported from Spain decreased 42% in quantity, whereas those imported

from West Germany increased substantially. Imports of Persian Gulf red iron oxide ceased in 1973, reportedly because of a 300% increase in price, which placed its delivered U.S. price near that of comparable synthetic oxides.

A large West German producer began operating major new facilities for producing iron oxide pigments in 1973. Reportedly, large quantities were slated to be shipped to the United States; however, allocations were not increased owing to a high level of back orders.5

The quantity of pigment-grade iron oxide and hydroxides exported from the United States in 1973 increased 132% to 9,888 short tons, compared with exports of 4,268 short tons in 1972. Canada received the major share of U.S. exports. The value of pigment-grade iron oxide and hydroxides exported in 1973 increased 61% to \$3.101 million, compared with \$1.926 million in 1972.

Table 4.-U.S. imports for consumption of selected iron oxide pigments

| Kinds                                                                                                       | 19                             | 72                             | 1973                                 |                                 |  |
|-------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------|--------------------------------------|---------------------------------|--|
|                                                                                                             | Quantity<br>(short tons)       | Value<br>(thousands)           | Quantity<br>(short tons)             | Value<br>(thousands)            |  |
| Natural: Ocher, crude and refined Siennas, crude and refined Umber, crude and refined Vandyke brown Other 1 | 1,272<br>8,234<br>621<br>2,777 | \$6<br>196<br>412<br>77<br>236 | 66<br>1,192<br>9,665<br>966<br>1,858 | \$9<br>205<br>569<br>144<br>378 |  |
| Total<br>Manufactured (synthetic)                                                                           | $12,997 \\ 34,274$             | 927<br>7,602                   | 13,747<br>37,436                     | 1,305<br>10,700                 |  |
| Grand total                                                                                                 | 47,271                         | 8,529                          | 51,183                               | 12,005                          |  |

<sup>&</sup>lt;sup>1</sup> Classified by the Bureau of the Census as "Natural iron oxide and iron hydroxide pigments, n.s.p.f."

<sup>&</sup>lt;sup>5</sup> American Paint Journal. The Markets. V. 58, No. 26, Dec. 10, 1973, p. 36.

Table 5.-U.S. imports for consumption of iron oxide and iron hydroxide pigments, n.s.p.f., by country

|                                                                          |                              | Nat                       | ural                                           |                           | Synthetic                        |                             |                                  |                           |
|--------------------------------------------------------------------------|------------------------------|---------------------------|------------------------------------------------|---------------------------|----------------------------------|-----------------------------|----------------------------------|---------------------------|
| _                                                                        | 19                           | 72                        | 19                                             | 73                        | 19                               | 72                          | 19                               | 73                        |
| elgium-Luxembourg anada uador nland erance ermany, West an aly pan exico | Quantity (short tons)        | Value<br>(thou-<br>sands) | Quan-<br>tity<br>(short<br>tons)               | Value<br>(thou-<br>sands) | Quan-<br>tity<br>(short<br>tons) | Value<br>(thou-<br>sands)   | Quan-<br>tity<br>(short<br>tons) | Value<br>(thou-<br>sands) |
| Austria<br>Belgium-Luxembourg<br>Canada<br>Ecuador                       | 15<br><br>                   | \$2<br><br>               | 30<br>-1<br>                                   | \$8<br><br>3              | 11,782                           | \$9<br>1,744                | 15,506 $18$                      | \$\bar{2}{2},574          |
| France<br>Germany, West                                                  | $1\overline{49} \\ 3 \\ 254$ | 17<br>5<br>9              | $\begin{array}{c} \bar{56} \\ 387 \end{array}$ | 9<br>201                  | 19,751                           | $5,0\overline{28}$          | 60<br>18,782<br>25               | 26<br>6,633<br>7          |
| Italy<br>Japan<br>Mexico                                                 |                              | <br>                      | 1<br>1                                         | (1)                       | $1\overline{2}\overline{1}$      | $2ar{7}ar{2}$               | 945<br>447                       | 911<br>112                |
| NetherlandsSouth Africa, Republic ofSpain                                | $2,2\bar{3}\bar{4}$          | 168                       | $1,3\bar{0}\bar{4}$                            | 1 <u>1</u> 9              | 137<br>20                        | 88<br>2                     | 243<br><br>                      | 127<br>                   |
| Sweden<br>Switzerland<br>United Kingdom                                  | 40<br>82                     | $\tilde{2}\tilde{8}$      | 17<br>1<br>59                                  | 5<br>4<br>24              | $2,4\bar{1}\bar{6}$              | $4\overline{4}\overline{6}$ | 1,890                            | 303                       |
| Total                                                                    | 2,777                        | 236                       | 1,858                                          | 378                       | 34,274                           | 7,602                       | 37,436                           | 10,700                    |

<sup>1</sup> Less than ½ unit.

Table 6.-U.S. exports of iron oxide and hydroxides in 1973, by country

|                           | Pigmer                   | ıt grade             | Other                    | grades               |
|---------------------------|--------------------------|----------------------|--------------------------|----------------------|
| Destination               | Quantity<br>(short tons) | Value<br>(thousands) | Quantity<br>(short tons) | Value<br>(thousands) |
| Argentina                 | 15                       | \$15                 |                          | . = =                |
| Australia                 | 307                      | <b>19</b> 8          | 70                       | \$88                 |
| Belgium-Luxembourg        | 62                       | 28                   | <b>3</b> 8               | 18                   |
| Brazil                    | 806                      | 302                  | 90                       | 83                   |
| anada                     | 6.096                    | 1,152                | 993                      | 503                  |
| Colombia                  | 21                       | 11                   | 24                       | 14                   |
| Cuador                    | 114                      | 83                   | 4                        | 2                    |
| Finland                   | 28                       | 12                   |                          |                      |
| rance                     | 189                      | 149                  | 172                      | 116                  |
| Fermany, West             | 75                       | 116                  | 182                      | 146                  |
| Thana                     | 22                       | 10                   |                          |                      |
| Juatemala                 | 12                       | -6                   | 4                        | -2                   |
| Hong Kong                 | 13                       | 10                   |                          |                      |
| ndia                      | 3                        | ĩ                    | 34                       | 3                    |
| ndonesia                  | U                        | -                    | 49                       | -                    |
| ran                       | $\bar{2}\bar{0}$         | 14                   | 5                        | 2                    |
|                           | 175                      | 92                   | 527                      | 59                   |
| taly                      | 262                      | 103                  | 806                      | 74                   |
| apan                      | 33                       | 17                   | 000                      | • •                  |
| Korea, Republic of        | 111                      | 110                  | -6                       | -,                   |
| Mexico                    | 111                      | 5                    | 424                      | 34                   |
| Vetherlands               | 4                        | 2                    | 1                        | 04                   |
| Vetherlands Antilles.     | 91                       | 29                   | 1                        |                      |
| New Zealand               |                          |                      | -5                       |                      |
| anama                     | 16                       | 6                    | 17                       |                      |
| eru                       | 25                       | 10<br>31             | 10                       |                      |
| Philippines               | 94                       |                      | 54                       | 5                    |
| Saudi Arabia              | 1                        | (1)                  |                          |                      |
| South Africa, Republic of | 21                       | 22                   | 10                       | 1                    |
| Spain                     | 19                       | 10                   | 27                       |                      |
| Sweden                    | _15                      | . 8                  | 11                       | c0                   |
| Jnited Kingdom            | 797                      | 344                  | 803                      | 69                   |
| Venezuela                 | 216                      | 86                   | 47                       | 3:                   |
| Vietnam, South            | 101                      | 57                   | _9                       |                      |
| Other                     | 117                      | 62                   | 53                       | 3                    |
| Total                     | 9,888                    | 3,101                | 4,475                    | 3,60                 |

<sup>1</sup> Less than ½ unit.

### TECHNOLOGY

Several new technological processes that produce iron oxide as a byproduct of their main operations have been reported. These processes could furnish crude iron oxide material for further refinement by producers to finished iron oxide pigments. One of these is a chemical process that removes sulfur from coal before it is burned and also produces iron oxide and iron sulfate in salable product form.6

The removal of impurities from water can be accomplished by seeding the effluent with iron oxide particles and treating the resulting solution with a high gradient magnetic separation machine.7 Also weakly magnetic iron oxide and other minerals can be recovered, using the high gradient magnetic separation device.

A new high-intensity wet magnetic separator that can be used to remove iron oxides from ground fuel ash and quenched blast furnace flue gases has been introduced in England.8

Ilmenite ore was leached with ferric chloride solution; the resulting liquor was oxygenated to obtain a titanium dioxide concentrate and a substantially pure iron oxide byproduct.9

Titanium and iron oxides were prepared from red mud obtained as a byproduct of process to produce alumina bauxite.10

A lithim oxide-iron oxide-silicon dioxide ferrite material was studied to determine regions where LiFe<sub>5</sub>O<sub>8</sub> could be formed as a crystalline phase.11 The material was investigated also to determine how magnetic, electrical, and physical properties were related to composition, heat-treatment time, and temperature. Saturation magnetization, remanence, coercivity, and alternating current resistivities data were reported. dielectric properties gave dispersion effects. A limited substitution of silicon into the LiFe<sub>5</sub>O<sub>8</sub> structure was indi-

A possible successor to ferrite-core computer memory devices was reported with the discovery of a cheaper and easier method to make bubble memories for computer information storage systems.12 Bubble memories have the capacity to store very much more data in less space and to function much more rapidly and reliably than mechanical and ferrite core devices.

In addition, bubble memories are less costly to produce than ferrite-core memories. However, until bubble memory devices are perfected and gain acceptance by computer producers, ferrite materials will continue to be used in computers for information storage.

In March, the commercial production of samarium-cobalt magnets signaled the loss of a part of the market for ferrite permamagnets.13 The samarium-cobalt magnets are about three to four times stronger than most other permanent magnets; however, ferrite magnets will continue to be used in those applications, where cost is a factor. Ferrite magnets are significantly less costly to produce than samarium-cobalt magnets. The new magnets will be used in applications where size and field strength are the main factors to be considered.

A steam and heat treatment process applied to iron powder increased the corrosion resistance of the powder because of a film of oxide deposited on the exposed surface of the iron particles.14 The iron oxide also improves the breaking-in condition of the part, and oxide in the pores space gives a network of hard, wear-resistant material after the surface film wears away. The treatment also imparts an attractive blue-black color to the iron particle and possibly could be used for pigment purposes.

<sup>&</sup>lt;sup>6</sup> Journal of Mines, Metals and Fuels. Chemical Process for Desulphurisation of Coal. V. 20, No. 11, November 1972, p. 351.

<sup>7</sup> Chemical and Engineering News. Magnetic Methods Treat Ores, Coal, Water. V. 51, No. 19, May 7, 1973, pp. 17–18.

<sup>8</sup> Work cited in footnote 7.

<sup>9</sup> I ynd I. F. and O. Moklebust (assigned to

<sup>8</sup> Lynd, L. E., and O. Moklebust (assigned to NL Industries, Inc.). Leaching of Ilmenite To Obtain a High-Quality Iron Oxide Byproduct. U.S. Pat. 3,719,468, Mar. 6, 1973, 5 pp.

U.S. Pat. 3,719,468, Mar. 6, 1973, 5 pp.

10 Lightbourne, R. C., and H. B. Baetz. Extraction of Anhydrous Chlorides of Titanium and Iron From Red Mud Obtained in the Production of Alumina From Bauxite. Brit. Pat. 1,304,345, Jan. 24, 1973, 9 pp.

11 Weaver, E. A., and M. B. Field. Magnetic, Electrical, and Physical Properties of LigO-Fe<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> compositions. Am. Ceram. Soc. Bull., v. 52, No. 5 May 1073, pp. 467,479.

No. 5, May 1973, pp. 467–472.

<sup>12</sup> Business Week. Why IBM Got a Jump in Bubble Memories. No. 2267, Feb. 17, 1973, pp.

<sup>&</sup>lt;sup>13</sup> American Metal Market. Hitachi Magnetics Starts Samarium Cobalt Production. V. 80, No. 122, June 22, 1973, p. 7.

<sup>&</sup>lt;sup>14</sup> American Metal Market. Heat Treating: Important Step in G. M. Powder Metallurgy. V. 80, No. 126, June 28, 1973, p. 11.

# Kyanite and Related Materials

By J. Robert Wells 1

Kyanite, and alusite, and sillimanite are anhydrous aluminum silicate minerals that are alike in both composition and use patterns and have the same chemical formula, Al<sub>2</sub>O<sub>3</sub>·SiO<sub>2</sub>. Related materials include synthetic mullite, dumortierite, and topaz, also classified as aluminum silicates, although the last two additionally contain substantial proportions of boron and fluorine, respectively. All of these kyanite-group substances have the capability of serving as raw materials for manufacturing special-duty refractories in the high-alumina caetgory, but there has been no record in recent years of significant utilization of either dumortierite or topaz for this purpose in the United

Although published statistics are not sufficiently complete to be wholly conclusive, it appears that the United States, India, and the Republic of South Africa are the leading world producers of kyanite-group minerals and that they may not be far from evenly matched in this regard. It can be presumed that the U.S.S.R. and perhaps a few other industrialized nations also produce significant quantities of these materials.

Consumption of the more sophisticated refractories, after a 2-year decline that occasioned a small decrease in domestic kyanite production (1972) and substantial curtailments abroad (1971 and 1972), recovered notably in 1973, pushing U.S. demand for kyanite-group materials to a level reportedly as much as 15% above the available supply. The conspicuous fact that U.S. exports of these materials increased 27% in 1973 over those of 1972 was evidence, furthermore, that they were being eagerly sought by the

rest of the world. In August 1973, reflecting the kyanite seller's market situation, one of the two major U.S. producers, C-E Minerals Inc., announced the launching of an immediate 30,000-ton-per-year expansion of its kyanite mining and processing facilities in Georgia.

Although no curtailment of operations explicitly attributable to fuel shortages had been reported by kyanite producers through yearend 1973 there may have been a portent in one firm's magazine advertisement that included an appeal to customers for tolerance because of "problems and delays from our many suppliers."

Legislation and Government Programs.— The allowable depletion rates for kyanite, established by the Tax Reform Act of 1969 and unchanged through 1973, were 22% for domestic production and 14% for foreign operations.

Revision in 1970 of the list of strategic materials for stockpiling excluded kyanite-mullite, and Congress accordingly authorized a sealed-bid sale of the Government holdings (2,816 tons of Indian lump kyanite and 2,004 tons of fused synthetic mullite). The entire quantity of mullite was sold in June 1973 for \$160,320; the stockpiled kyanite, for which no bids had been received through December 1973, was scheduled to be re-offered at a future date.

The U.S. Geological Survey's Office of Minerals Exploration provides Government loans of up to 50% of approved costs for the exploration of eligible kyanite deposits; no loans for that purpose were made in 1973.

### DOMESTIC PRODUCTION

Production of kyanite in the United States increased notably in 1973, surpassing the previous record (1971) by 10% in tonnage and by 11% in terms of total value thus reaching the highest point in history. All but a small fraction of the domestic kyanite produced in 1973 came from three

hard-rock openpit operations in two eastern States. Kyanite Mining Corp. used a froth-flotation process to extract the mineral from kyanite-quartzite ore mined at two locations in Virginia—Willis Mountain in Buckingham County and Baker Mountain in Prince Edward County; in Georgia, C-E

¹ Physical scientist, Division of Nonmetallic Minerals—Mineral Supply.

Minerals, Inc., treated the same type of ore in a similar operation at Graves Mountain, Lincoln County. The comparatively small remainder of the 1973 total in the form of kyanite-sillimanite concentrate was obtained by E. I. du Pont de Nemours & Co., Inc. as a byproduct from the recovery of tianium and zirconium minerals from a sand deposit at Trail Ridge, Clay County, Fla.

Synthetic mullite was produced in 1973 at six locations in the eastern United States, and although higher total values were reported for some previous years, the 1973 tonnage was the highest on record. Electric-furnace fused mullite was produced by Babcock & Wilcox Co. at Augusta, Richmond County, Ga. High-temperature sintered material was produced by A. P. Green Refractories Co. at Philadelphia, Pa.; Harbison-Walker Refractories Co. at Eufala.

Henry County, Ala.; Mullite Corp. of America at Amercius, Sumter County, Ga.; Chas. Taylor Sons Co. at Taylor, Greenup County, Ky.; and H. K. Porter Co., Inc. at Shelton, Fairfield County, Conn. Operation of the H. K. Porter plant in Connecticut was terminated in May 1973, the property was sold, and it was reported that resumption of mullite production at that location is not expected.

Table 1.-Synthetic mullite production in the United States

(Short tons and thousand dollars)

| Year | Quantity                                       | Value                                     |
|------|------------------------------------------------|-------------------------------------------|
| 1969 | 48,588<br>55,516<br>55,077<br>46,389<br>58,176 | 6,847<br>8,840<br>4,945<br>4,080<br>5,211 |

### CONSUMPTION AND USES

Kyanite and related materials, conforming to the established end-use pattern, were consumed in 1973 mostly in the manufacture of high-alumina or mullite class refractories and in lesser quantities as ingredients in some ceramic compositions. Imported Indian kyanite was calcined in its natural lump form, after which it was usually separated into designated particlesize ranges for use chiefly as a grog. Domestic kyanite, already ground to minus 35 mesh as required by the flotation process used in its separation and recovery, was marketed in the raw form or after heat treatment, that is, as mullite, which was

sometimes further reduced in particle size before use. In the 35- to 48-mesh range, the mineral was used mostly in refractories applications such as for high-temperature mortars or cements, ramming mixes, and castable refractories, or with clays and other ingredients in refractory compositions for making kiln furniture, insulating brick, firebrick, and a wide variety of other refractory articles. More finely ground material, minus 200 mesh for example, was used in body mixes for sanitary porcelains, wall tile, precision casting molds, and miscellaneous special-purpose ceramics.

### **PRICES**

Engineering and Mining Journal, December 1973, listed prices for kyanite, f.o.b. Georgia, ranging from \$58 to \$73 per short ton in bags and \$2 less per ton for bulk shipments.

Prices ranges quoted for kyanite-group materials in Ceramic Industry Magazine, January 1974, were as follows:

|               | <u> </u> | er | short    | _ton |
|---------------|----------|----|----------|------|
| Andalusite    |          |    | \$30-\$5 | 0    |
| Ayanite       |          |    | 63-11    |      |
| Mullite, care | ined     |    | 82-13    |      |
| muine, iuse   | d        |    | 160–45   | 0    |

The December 1973 issue of Industrial Minerals (London), quoted kyanite-group price ranges approximately equivalent (with some uncertainty due to a floating exchange rate) to the following:

| Per                                                 | short ton |
|-----------------------------------------------------|-----------|
| Andalusite, Transvaal, c.i.f. main<br>European port | \$45-\$54 |
| Kyanite, Indian, c.i.f. main<br>European port       | 64- 83    |
| Sillimanite, Indian, natural bagged, f.o.b.         | 73- 79    |
| Sillimanite, Indian, calcined, f.o.b. Calcutta      | 83- 90    |

### **FOREIGN TRADE**

For many years U.S. kyanite-group foreign trade could be presented by plotting the annual export and import statistics to the same scale, but the two sets of data have become so increasingly disparate in recent years, that such a graphic comparison is now of little value. Exports, formerly in a subordinate position, have registered a spectacular increase, while imports have fallen almost to the point of disappearance. The export/import tonnage ratio, which had averaged on the low side of 1 to 1 since records were first kept, decisively crossed over that line in 1963, and the reported figures are no longer of comparable magnitude; in both 1972 and 1973 exports were hundreds of times greater than imports. It was stated that only about 15% of the domestic kyanite output is shipped abroad, so that it can be supposed that the greater part of the material currently being exported consists of mullite. It is to be noted, however, that some element of uncertainty is inherent in such conclusions because the Bureau of the Census export figures on which they are based do not clearly distinguish synthetic mullite from some other mullite-containing materials prepared by high-temperature processing of certain bauxitic and kaolinitic minerals.

Table 2.-U.S. exports and imports for consumption of kyanite and related minerals

|                                      | 1                           | 971       | 19                          | 72        | 19                          | 73              |
|--------------------------------------|-----------------------------|-----------|-----------------------------|-----------|-----------------------------|-----------------|
| _                                    | Quantity<br>(short<br>tons) | Value     | Quantity<br>(short<br>tons) | Value     | Quantity<br>(short<br>tons) | Value           |
| Exports:                             |                             |           |                             |           | 0.52                        | <b>4</b> 01.050 |
| Argentina                            | 257                         | \$20,404  | 112                         | \$7,797   | 257                         | \$21,279        |
| Australia                            | 565                         | 45,434    | 357                         | 26,468    | 7,145                       | 266,817         |
| Belgium-Luxembourg                   | 221                         | 18,658    | 2,177                       | 140,756   | 1,452                       | 276,476         |
| Brazil                               | 58                          | 5,118     | 124                         | 33,119    | 3,965                       | 181,819         |
| Canada                               | 5,698                       | 412,310   | 5,708                       | 419,689   | 6,010                       | 423,327         |
| Colombia                             | 661                         | 37,791    | 312                         | 19,399    | 89                          | 5,547           |
| Denmark                              |                             |           | 1,094                       | 96,133    | 912                         | 62,664          |
| France                               | 717                         | 80.584    | 492                         | 56,116    | 803                         | 102,263         |
| Germany, West                        | 1.502                       | 92,571    | 18,292                      | 840,785   | 49,081                      | 2,489,435       |
| Italy                                | 9,961                       | 533,850   | 8,477                       | 435,069   | 4,859                       | 372,819         |
| Japan                                | 2,166                       | 180,319   | 25,338                      | 1,035,628 | 2,783                       | 220,297         |
| Mexico                               | 1,877                       | 128,057   | 1,775                       | 118,482   | 2,731                       | 192,239         |
| Netherlands                          | 2,635                       | 187,840   | 6,561                       | 262,610   | 6,449                       | 405,800         |
| New Zealand                          | 42                          | 3,087     |                             |           | 369                         | 34,69           |
|                                      | 170                         | 17,635    | 189                         | 19,359    | 271                         | 32,11           |
| PhilippinesSouth Africa, Republic of | 157                         | 8,230     | 17                          | 1,083     | 3,909                       | 251,57          |
|                                      | 2,609                       | 163,405   | 731                         | 42,542    | 811                         | 56,76           |
| Sweden                               | 1,461                       | 103,652   | 1,446                       | 107,996   | 826                         | 64.08           |
| United Kingdom                       | 583                         | 41,597    | 558                         | 52,485    | 949                         | 86,08           |
| Venezuela                            | 214                         | 16,725    | 151                         | 21,545    | 43                          | 5,78            |
| Other                                |                             |           |                             |           |                             | 5,551,893       |
| Total                                | 31,554                      | 2,097,267 | 73,911                      | 3,737,061 | 93,714                      | 9,991,09        |
| Imports:                             |                             |           |                             |           |                             | 920             |
| France                               | 1                           | 1,612     | 457                         | r ===     | 2                           |                 |
| India                                | 1,301                       | 60,743    | 124                         | 5,773     | 177                         | 9,08            |
| South Africa, Republic of            | 41                          | 2,891     |                             |           | 42                          | 3,21            |
| Total                                | 1,343                       | 65,246    | 124                         | 5,773     | 221                         | 13,21           |

### WORLD REVIEW

France.—Although at present France is a substantial net importer of kyanite-group minerals for making high-alumina refractories, it was predicted that increased production of andalusite from the relatively new mining operation of Denain-Anzin Minéraux at Glomel will be capable of meeting a major part of the nation's future requirements of those materials.<sup>3</sup>

Guyana.—The Guyanan Geological Society, in a program aimed at diversifica-

tion of the domestic mining industry, launched a study of recorded occurrences of a number of minerals not presently being exploited. It was stated that a known deposit of kyanite was determined to contain 2.2 million tons of ore, presumably of workable grade. Successful commercialization of this mineral, providing an advantageous

<sup>&</sup>lt;sup>2</sup> Johnson, T.W. Kyanite and Related Minerals. Min. Eng., v. 25, No. 1, January 1973, pp. 38-39.

<sup>&</sup>lt;sup>3</sup> Industrial Minerals (London). Refractories in Western Europe. No. 65, February 1973, pp. 9-11, 13-15, 17-19, 21, 23, 25, 27.

complement for the already established bauxite industry, would help to bring Guyana into a favorable position as a world supplier of high-alumina raw materials for the manufacture of refractories.4

India.—Lump kyanite from India has long had an international reputation for superiority as a raw material able to serve in a number of exacting applications. Although that mineral has been a significant item in India's export trade for nearly 50 years, there have been until recently no reliable estimates of available reserves in even the best-known deposits. To remedy that deficiency, the Geological Survey of India launched a study in 1970 aimed at a definitive evaluation of those resources; a preliminary report issued in 1971 pointed to the existence in the States of Bihar, Maharashtra, Mysore, and Orissa of 3.8 million tons of recoverable kyanite ore. The average grade of the material was not specified, but pure kyanite, Al<sub>2</sub>O<sub>3</sub>·SiO<sub>2</sub>, theoretically contains 62.9% alumina, and material produced in the named areas in the past has been predominantly in the range from 60% to 62% Al<sub>2</sub>O<sub>3</sub>. The Survey also identified, in addition to the presumably highgrade mineral referred to, approximately 67 million tons of kyanite-quartzite material in Bihar probably rating a classification of subeconomic under present circumstances. India's kyanite production was in private hands until March 10, 1972, when the Indian Central Government nationalized the holdings of the then principal producer, the Indian Copper Corp., owner of the famous Lapsa Buru alluvial deposits, said to hold at least nine-tenths of the nation's kyanite reserves. Compounding the uncertainty of the situation, it was announced early in 1973 that the State Government of Bihar has decided "in principle" to take over all kyanite mining operations in that

Japan.—High-alumina raw materials for making refractories are not available in sufficient quantities from indigenous sources, and the nation's requirements must be im-

ported; India, the Republic of South Africa, and the United States are the principal suppliers. Imports of kyanite, andalusite, and sillimanite amounted to 43,100 tons in 1970, 28,800 tons in 1971, and about 23,700 tons in 1972 with exports averaging about 4,000 tons annually.5 Total figures for Japanese consumption of kyanite-group minerals plus synthetic mullite in those same 3 years were 90,200 tons, 48,700 tons, and 51,700 tons, respectively.6

South Africa, Republic of.—South Africa's output of andalusite in 1972 (latest figure available) amounted to 50,500 tons, 3% more than the figure for the previous year. Production of sillimanite, on the contrary, dropped sharply in 1972, reaching only 10,500 tons, 46% less than the 1971 total and 73% below that for 1970, apparently reflecting falling demand for export, the customary outlet for about 90% of the yearly total. In comparison, only 30% to 50% of the andalusite produced in South Africa is shipped to foreign markets.7

Tanzania.—Kyanite, in association with at least four other nonmetallic minerals of actual or potential commercial importance, was found to exist in Tanzania's residual beach sands along the Indian Ocean coastline. A report by the Tanzanian State Mining Corp. pointed out that, although a conclusive survey of the Continental Shelf is not yet available, it is inferrable that extensive marine deposits of those minerals will be found at dredgeable depths at a number of offshore locations.

<sup>&</sup>lt;sup>4</sup> Industrial Minerals (London), Guyana: Government to Make Most of Kyanite and Kaolin. No. 72, September 1973, pp. 31-32.
<sup>5</sup> Industrial Minerals (London), Refractories in Japan. No. 67, April 1973, pp. 9, 11, 13, 15, 17,-10

<sup>6</sup> Industrial Minerals (London). Japan: Refractory Raw Materials. No. 69, June 1973, pp.

<sup>37-38.
7</sup> Industrial Minerals (London). South Africa:
Mineral Production in 1972. No. 68, May 1973,

p. 29. Institute of Geological Sciences, Mineral Resources Division. Statistical Summary of the Mineral Industry—World Production, Exports and Imports 1987–1971. Her Majesty's Stationery Office (London), 1973, pp. 337–338.

Table 3.-Kyanite, sillimanite and related materials: World production by country 1 (Short tons)

| Country and commodity <sup>2</sup>                                                      | 1971            | 1972     | 1973 P          |
|-----------------------------------------------------------------------------------------|-----------------|----------|-----------------|
| Australia: Sillimanite 3                                                                | 945             | 633      | e 660           |
| India:  Kyanite  Sillimanite  Korea, Republic of (South): Andalusite  Soain: Andalusite | 69,977          | 75,485   | ° 77,000        |
|                                                                                         | 4,769           | 4,490    | ° 4,500         |
|                                                                                         | 82              | 35       | ° 30            |
|                                                                                         | 6,449           | 6,614    | ° 6,600         |
| South Africa, Republic of: Andalusite                                                   | 49,021          | 50,549   | e 68,000        |
|                                                                                         | 1 <b>9,24</b> 6 | 10,445   | e <b>22,000</b> |
| United States:  Kyanite Synethetic mullite                                              | <b>W</b>        | <b>W</b> | <b>W</b>        |
|                                                                                         | 55,077          | 46,389   | 58,176          |

W Withheld to avoid disclosing individual company confidential e Estimate. P Preliminary. data.

<sup>3</sup> In addition, sillimanite clay (also called kaolinized sillimanite) is produced; output in 1971 totaled 11,229 short tons. (Data for 1972 and 1973 not available.)

### **TECHNOLOGY**

Refractories, both those of the fire clay type and those based on such nonclay materials as mullite, are indispensably involved in all ramifications of today's complex industrial structure and thus exert a pervasive influence upon practically every aspect of modern living. Availability of suitable furnace refractories, for example, is a vital prerequisite for the generation of steam power and for the smelting and refining of copper for which there is no acceptable substitute in the generation of electricity. A report was published pointing out that an inadequate allocation of energy to the refractories industry would inevitably precipitate profound changes in the established technology of refractories production and utilization, seriously hampering the general economy and, in a synergistic repercussion, contributing to an even further restriction of the energy supply itself.8

In a patented procedure for beneficiation of kyanite and other specified silicate ores in which iron is subordinate but not absent, undesirable overgrinding is minimized by first pre-crushing the material and then heating it in air to a temperature in the range of 1,100° C to 1,400° C. The calcination is said to have an agglomerating effect on the siderite, goethite, or other iron minerals present, and it is claimed that the proportion of fines generated in the subsequent reduction of the ore to the desired particle size is substantially less than when the same material is comparably ground in an uncalcined condition.9

A patent was issued for producing glassceramic compositions in the Cs<sub>2</sub>O-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> system, in which the principal crystalline phase consists essentially of mullite. Such materials are described as translucent to transparent and dimensionally stable at temperatures up to 1,250° C, which properties enable them to serve advantageously for high-temperature lamp envelopes.10

A journal article dealing especially with the high-alumina refractory materials, of which kyanite, andalusite, sillimanite, and mullite are examples, contained a discussion of various criteria other than chemical analysis that should be taken into consideration in selecting refractories for specific applications. Hot modulus of rupture, roomtemperature modulus of rupture, fracture toughness, and deformation at high temperature were among the properties mentioned. Examples were cited in support of the conclusion that chemical composition alone should be regarded as no more than a partial guide to a refractory's performance.11

<sup>1</sup> Owing to incomplete reporting, this table has not been totaled.
2 In addition to the countries listed, a number of other countries presumably produce kyanite and related minerals, but output data are not reported and no basis is available for estimation of output levels.

Barr, Harry W., Jr., Ronald F. Ayers, W. Halder Fisher, Winston H. Duckworth, and Larry G. McCoy. Summary Report on a Study of the Refractories Industry—Its Relationship to the U.S. Economy and Its Energy Needs (to the Refractories Institute). Battelle Memorial Institute, Columbus, Ohio, Oct. 5, 1973, 127 pp. ° Lee, T. E., and F. W. Frey (assigned to Ethyl Corp.). Method of Improving the Grindability of Alumina-Silicate Ores. U.S. Pat. 3,730,445, May 1, 1973.

10 Beall, George H., and Hermann L. Rittler (assigned to Corning Glass Works). U.S. Pat. 3,726,695, Apr. 10, 1973.

11 Friedrichs, James R. Don't Buy Alumina Content. Iron and Steel Eng., v. 50, No. 11, November 1973, pp. 40-42.

Although mullite-based ceramics offer a number of advantages (notably superior mechanical stability and resistance to thermal shock), development of such products has been hampered by inadequacies, both qualitative and quantitative, in the available supply of requisite constituents. Preparation of appropriate ceramic powders of suitable purity by organo-metallic and freeze-dry techniques is costly, tedious, and often hazardous due to the use of volatile solvents that may be both flammable and toxic. Direct mixtures of alpha-alumina and silica do not react readily to form mullite, while those of amorphous alumina and silica, although highly reactive, generally produce mullite with an unacceptable proportion of residual corundum. In the course of research directed toward the processing of aluminosilicate ceramics, an improved method was developed for preparing mullite powder. A weakly acidified colloidal suspension of gamma-alumina was mixed with similarly dispersed amorphous silica, and the resulting hydrosol mixture was then caused to gel by gradually increasing the pH by dropwise addition of aqueous ammonia. Subsequent drying of the gelled material, followed by grinding and firing, yielded a fine-grained product that was shown by chemical and spectrographic analysis and X-ray diffraction to be mullite of theoretical composition and outstanding purity. A feature of the powder was the globular form of the particles, notably different from the acicular habit of mullite obtained in other procedures.

In a subsequent phase of the same research, experiments were carried out on the sintering of the newly available mullite powder under high pressure in an evacuated and induction-heated graphite die. Two journal articles were published presenting information on this experimental work and its conclusions.12

Orifice rings, vital components in automatic machines for mass production of glass containers, used to be fabricated from claybonded sillimanite or mullite, but the parts so obtained were often deficient in resistance to wear and thermal shock. A switch to harder high-alumina materials for this purpose has posed difficult machining problems with additional complications from the increasing demand for single-, double-, and triple-gob orifices in a profusion of shapes and sizes. Diamond-tool techniques in use by Emhart Corp., Hartford, Conn., for the precision coring of orifice blanks formed by slip casting or press extrusion of the newer materials were described in an industrial journal.13

<sup>12</sup> Ghate, B. B., D. P. H. Hasselman, and R. M. Spriggs. Synthesis and Characterization of High Purity, Fine Grained Mullite. Am. Ceram. Soc. Bull., v. 52, No. 9, September 1973, pp. 670-672.

Penty, R. A., D. P. H. Hasselman, and R. M. Spriggs. Pressure Sintering Kinetics of Fine Grained Mullite by the Change in Pressure and Temperature Technique. Am. Ceram. Soc. Bull., v. 52, No. 9, September 1973, pp. 682-693.

13 American Ceramic Society Bulletin. Precision Orifice Rings Formed by Diamond Drills. V. 52, No. 9, September 1973, p. 690.

# Lead

### By J. Patrick Ryan 1

World production and consumption of lead, continuing an upward trend, again reached record high levels in 1973. Free world mine production increased about 1%, with most of the net gain coming from Canada, Mexico and Peru. Refined lead production also was up about 1%. Consumption of metal rose nearly 5% and exceeded production, the deficit being balanced essentially by withdrawals from producers and Government stocks. The world production deficit and continued strong demand was reflected in rising prices. The monthly average London Metal Exchange (LME) cash price increased 86% and exceeded the U.S. producers average price during most of the year. The average equivalent LME price in 1973 was 19.47 cents. The average domestic price of lead on a nationwide basis in 1973 was 16.29 cents per pound.

Both domestic mine and smelter production of lead were down slightly in 1973 from the 43-year record high levels achieved in 1972. Output from the new Brushy Creek mine, which began production at midyear, was not enough to offset losses due to closure of the Federal and Mayflower mines late in 1972. Secondary smelter output increased 6% to 654,300 tons, a new record that amounted to nearly 49% of total smelter and refinery production of lead.

Demand for lead in the transportation field continued to grow as requirements for batteries and gasoline antiknock compounds together increased nearly 4%. The quantity of lead used in battery manufacture again reached a new record high, and lead used in antiknock additives was only slightly less than in 1972. Lead used in pigments increased 22%. Of the total lead consumption of 1.54 million tons, batteries ac-

counted for 50%; antiknock compounds, 18%; pigments, 7%; ammunition, 5%; and solder, 5%.

Stocks of refined and antimonial lead at primary plants dropped from 64,500 tons at the beginning of the year to 26,100 tons at yearend. Consumer stocks increased from 118,500 tons at the beginning of the year to 124,000 tons at yearend. Commercial sales and transfers for Government use, totaling about 248,500 tons, reduced the total uncommitted Government stockpile inventory of lead to 829,100 tons at yearend.

American Smelting and Refining Company (ASARCO) and The Anaconda Company announced in August joint plans to accelerate development and bring the Ontario lead-zinc-silver mine at Park City, Utah, into production. Annual production of concentrates containing approximately 15,000 tons of lead, 25,000 tons of zinc, and 1.2 million ounces of silver is scheduled to begin in 1975.

Legislation and Government Programs.— The General Services Administration (GSA) reported that commitments to purchase surplus lead from the Government stockpile totaled 248,552 tons in 1973. Of the total, 238,913 tons represented commercial commitments through producers and the setaside program; the remaining 9,639 tons represented transfers for Government use. The stockpile objective for lead was reduced to 65,100 tons by Excutive Order on April 12, 1973, thereby increasing the uncommitted surplus to 763,963 tons at yearend, of which 299,063 tons was available for disposal under legislation enacted in 1972. Actual physical drawdown of Government stocks during 1973 was 211,541 tons, leaving a total inventory in storage

<sup>&</sup>lt;sup>1</sup> Physical scientist, Division of Nonferrous Metals—Mineral Supply.

of 874,330 tons on December 31.

Following reduction of the stockpile objective, an omnibus bill (H.R. 7153) was introduced in the Congress which would authorize the General Services Administrator to dispose of various materials from the national and supplemental stockpiles, including 464,900 tons of lead representing the difference between the old and new objectives. By yearend, no further action had been taken on the bill.

Bills (H.R. 3743, S607) to amend the Lead-Base Paint Poisoning Prevention Act were introduced in the 93d Congress, 1st session. These bills essentially provide for reducing the lead content of paints, conducting research to determine the safe level of lead in residential paint products, and would prohibit the use of lead-base paint in some consumer products and in future housing built with Federal aid. A compromise bill won final Congressional approval in October and became Public Law 93-151 on November 9. The lead and zinc flexible tariff bill (H.R. 6437) reintroduced in Congress in March contained a provision for increasing tariffs on lead in imported concentrates, unwrought and wrought metals, waste and scrap, and on manufactures of lead when exceeding specified limiting quantities. No further action was taken on the bill by the 93d Congress, 1st session.

On December 9, the Environmental Protection Agency (EPA) published revised regulations applicable to gasoline refiners designed to reduce the lead content of gasoline 60%-65% over a 5-year period, 1975-79. The new schedule, based on the

total pool average lead content per gallon for each 3-month period, is as follows:

| January 1, 1975 1.7 January 1, 1976 1.4 January 1, 1977 1.0 January 1, 1978 8 January 1, 1979 5 | grams | per            | gallon |
|-------------------------------------------------------------------------------------------------|-------|----------------|--------|
|                                                                                                 | gram  | per            | gallon |
|                                                                                                 | gram  | per            | gallon |
| January 1, 19795                                                                                | gram  | $\mathbf{per}$ | gallon |

The provision that at least one grade of lead-free gasoline—0.05 gram per gallon—be made available by July 1, 1974, remained unchanged.

Responding to lead dumping charges by the Bunker Hill Company, the U.S. Treasury Department made a determination in October that primary lead metal from Australia and Canada was being sold in the United States at less than fair market value within the meaning of the Antidumping Act. Following the determination by Treasury, the U.S. Tariff Commission instituted an investigation and held hearings in December on the question of injury, and on January 10, 1974, the Commission ruled that the dumping had caused or threatened injury to the domestic primary lead industry. As a result of the Commission's ruling, imports of primary lead from Australia and Canada sold at less than fair value will become subject to special dumping duties. On December 7, the Cost of Living Council removed its price control on lead and several other nonferrous metals to assure adequate domestic supplies of the metals vital for many capital-goods producers. The Council's action was said to be sufficient to encourage expansion of domestic capacity and supply as well as to bring domestic prices closer into line with world market prices.

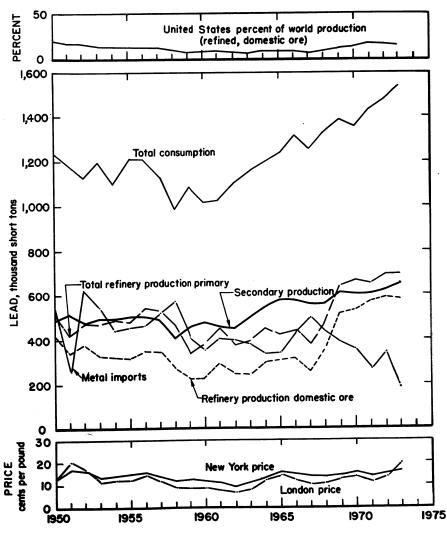



Figure 1.-Trends in the lead industry in the United States.

| Tab    | ole 1. | –Salie | nt lead st | atistics   |
|--------|--------|--------|------------|------------|
| (Short | tons   | unless | otherwise  | specified) |

| 1969      | 1970                                                                                                                                                                          | 1971                                                                                                                                                                                                                                                                                                         | 1972                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1973                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|           |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 509 013   | 571 767                                                                                                                                                                       | E70 EF0                                                                                                                                                                                                                                                                                                      | 610.015                                                                                                                                                                                                                                                                                                                                                                                                                                      | 200.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|           |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                              | 603,024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ψ101,000  | \$110,0UB                                                                                                                                                                     | \$159,679                                                                                                                                                                                                                                                                                                    | \$186,046                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$196,465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|           |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 512 921   | 528 086                                                                                                                                                                       | E779 000                                                                                                                                                                                                                                                                                                     | T FEE 000                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 194 794   |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                              | 567,256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 124,124   | 100,044                                                                                                                                                                       | 76,993                                                                                                                                                                                                                                                                                                       | 103,001                                                                                                                                                                                                                                                                                                                                                                                                                                      | 107,260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 16 250    | 11 655                                                                                                                                                                        | 16 116                                                                                                                                                                                                                                                                                                       | 0.105                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|           |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13,223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|           |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                              | 654,286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4,500     | 1,141                                                                                                                                                                         | 5,925                                                                                                                                                                                                                                                                                                        | 8,376                                                                                                                                                                                                                                                                                                                                                                                                                                        | 66,576                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 100 252   | 119 406                                                                                                                                                                       | er 000                                                                                                                                                                                                                                                                                                       | 101 514                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|           |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                              | 102,483                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|           |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                              | 400 -00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 200,042   | 201,400                                                                                                                                                                       | 190,910                                                                                                                                                                                                                                                                                                      | 240,020                                                                                                                                                                                                                                                                                                                                                                                                                                      | 180,788                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 101 860   | 192 925                                                                                                                                                                       | 191 660                                                                                                                                                                                                                                                                                                      | 145 570                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00.045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|           |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                              | 89,847                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 120,101   | 100,002                                                                                                                                                                       | 120,011                                                                                                                                                                                                                                                                                                      | 110,044                                                                                                                                                                                                                                                                                                                                                                                                                                      | 124,121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1 389 358 | 1 360 552                                                                                                                                                                     | 1 431 514                                                                                                                                                                                                                                                                                                    | 1 495 954                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 541 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2,000,000 | 1,000,002                                                                                                                                                                     | 1,401,014                                                                                                                                                                                                                                                                                                    | 1,400,204                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,541,209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 14.93     | 15.69                                                                                                                                                                         | 12 20                                                                                                                                                                                                                                                                                                        | 15.09                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 12.00     | 10.00                                                                                                                                                                         | 10.00                                                                                                                                                                                                                                                                                                        | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|           |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3 566 061 | 3 741 546                                                                                                                                                                     | 3 742 950                                                                                                                                                                                                                                                                                                    | 3 809 086                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3,852,190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|           | 3 628 422 r                                                                                                                                                                   | 3 590 730                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3,800,753                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -,000,200 | 5,020,122                                                                                                                                                                     | 0,000,100                                                                                                                                                                                                                                                                                                    | 0,144,000                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,000,108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 13.09     | 13.76                                                                                                                                                                         | 11 59                                                                                                                                                                                                                                                                                                        | 12 68                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|           | 509,013<br>\$151,635<br>513,931<br>124,724<br>16,250<br>603,905<br>4,968<br>109,252<br>1,993<br>285,342<br>101,860<br>126,404<br>1,389,358<br>14.93<br>3,566,061<br>3,553,458 | 509,013 571,767<br>\$151,635 \$178,609<br>513,931 528,086<br>124,724 138,644<br>16,250 11,655<br>603,905 597,390<br>4,968 7,747<br>109,252 112,406<br>1,993 296<br>285,342 251,480<br>101,860 192,985<br>126,404 133,502<br>1,389,358 1,360,552<br>14.93 15.69<br>3,566,061 3,741,546<br>3,553,458 3,628,422 | 509,013 571,767 578,550<br>\$151,635 \$178,609 \$159,679<br>513,931 528,086 573,022<br>124,724 138,644 76,993<br>16,250 11,655 16,116<br>603,905 597,390 596,797<br>4,968 7,747 5,925<br>109,252 112,406 65,998<br>1,993 296 41<br>285,342 251,480 198,970<br>101,860 192,985 121,660<br>126,404 133,502 125,577<br>1,389,358 1,360,552 1,431,514<br>14.93 15.69 13.89<br>3,566,061 3,741,546 7 3,742,950<br>3,553,458 3,628,422 7 3,590,730 | 509,013 571,767 578,550 618,915 \$151,635 \$178,609 \$159,679 \$186,046 \$13,931 528,086 573,022 \$7577,398 124,724 138,644 76,993 103,001 16,250 11,655 16,116 8,185 603,905 597,390 596,797 616,597 4,968 7,747 5,925 8,376 109,252 112,406 65,998 101,514 1,993 296 41 8,95 285,342 251,480 198,970 245,625 101,860 192,985 121,660 145,573 126,404 133,502 125,577 118,544 1,389,358 1,360,552 1,431,514 1,485,254 14.93 15.69 13.89 15.03 3,566,061 3,741,546 73,742,950 3,802,086 3,553,458 3,628,422 73,590,730 3,744,660 |

r Revised.

### DOMESTIC PRODUCTION

### MINE PRODUCTION

After rising for 5 consecutive years to a 43-year high in 1972, mine production dropped about 3\% in 1973 to 603,000 tons. Monthly production reached a maximum of 55,900 tons in May, slightly less than the maximum achieved in 1972. Production from Missouri mines, which accounted for 81% of the Nation's total, was down slightly. Output in Idaho, which provided 10% of the total, was virtually unchanged. Utah's output dropped sharply following the closure of the Mayflower mine at yearend 1972. Output of lead at Kennecott's Burgin mine also was lower than in 1972 due to a shortage of skilled miners together with delays attributed to adverse underground mining conditions.2

The Buick mine jointly owned by Amax Lead Co. of Missouri (AMAX) and Homestake Mining Co. was again the leading lead producer with an output of 1.6 million tons of ore, an increase of 10% over that of 1972. Production of lead concentrate was up 19% to 225,000 tons. The six leading mines, all in Missouri, contributed 75% of the total U.S. mine production of lead. The 10 leading mines produced 86%,

and the 25 leading mines contributed 99%. About 4,900 persons were employed in the Nation's lead, lead-silver, and lead-zinc mines and mills in 1973. Output of lead and zinc from these mines per man year was approximately 150 tons. Average grade of lead ore mined was 6.55% lead and 1.08% zinc compared with 5.89% lead and 0.73% of zinc in 1972.

St. Joe Minerals Corp. reported that output from its southeast Missouri mines declined 29,000 tons to 283,602 tons owing to the phasing-in of its new production facilities at Brushy Creek, which replaced the Federal mine in the Old Lead Belt that closed in October 1972. St. Joe, the Nation's largest lead mining company has four minemill operations in the New Lead Belt of southeast Missouri: Fletcher, Viburnum, Indian Creek, and Brushy Creek. The company stated that the higher grade ore (4%-8%) and improved mining and milling technology in the New Lead Belt operations has brought a substantial increase in productivity compared with operations in the Old Lead Belt. St. Joe estimates its proven

Quotation for 1969-71 at New York and for 1972 and 1973 on a nationwide, delivered basis.

 $<sup>^2</sup>$  Kennecott Copper Corp. 1973 Annual Report. P. 11.

LEAD 689

lead reserves at 50 million tons—enough for 15 years production at the current rate of mining—and its probable ore reserves at an additional 100 million tons, or 30 years of production.<sup>3</sup>

Ozark Lead Co. produced 59,199 tons of lead in concentrate from its Ozark mine operations compared with 69,100 tons in 1972. The falloff in production resulted from a 2-month labor strike and a shortage of skilled underground maintenance personnel.

The Bunker Hill Company reported that production of lead from company owned and controlled mines in Idaho aggregrated 31,000 tons, about the same as in 1972. The company reported that proven and probable ore reserves at yearend in the Bunker Hill mine totaled 2.01 million tons averaging about 3.6% lead, 5.1% zinc, and 2.1 ounces of silver per ton.5 Hecla Mining Co. reported that ore production at the Star-Morning mine, jointly owned Hecla (30%) and Bunker Hill (70%), increased 2,200 tons to 265,780 tons. Hecla's share of the 1973 production of lead-zincsilver ore was 79,734 tons assaying 5.18% lead, 6.68% zinc, and 2.79 ounces of silver per ton. Hecla's share of the computed ore reserves increased 21,000 tons to 286,000 tons at yearend. Hecla's Lucky Friday mine produced 176,859 tons of silver-lead-zinc ore assaying 11.2% lead, compared with 192,020 tons assaying 10.4% lead in 1972. The decline in 1973 mine output was attributed largely to a continued shortage of skilled underground miners. Ore reserves at Lucky Friday at yearend totaled 510,000 tons, about 74,000 tons less than a year earlier.6

Lead output in Colorado, reversing the rising trend of the preceding 5 years, declined about 3,200 tons to 28,100 tons in 1973. Both the Leadville unit (Resurrection mine) and the Idarado Mines reported lower production during the year. The Leadville unit, a joint venture of ASARCO and Newmont Mining Corp., produced 199,000 tons of lead-zinc-silver ore and recovered 7,200 tons of lead.7 Owing largely to a manpower shortage, the mine did not produce at more than about 75% of its rated capacity of 700 tons of ore per day during the year. Ore reserves at yearend were estimated at 2.62 million tons averaging 4.98% lead, 9.71% zinc, 2.53 ounces of silver and 0.067 ounce of gold per ton. Idarado Mining Co. mined and milled 378,200 tons of lead-zinc-copper ore

in 1973 compared with 386,500 tons in 1972. Ore reserves at yearend 1973 were 3.24 million tons averaging 3.36% lead, 4.61% zinc, 0.77% copper, 1.77 ounces of silver and 0.02 ounce of gold per ton.

Park City Ventures, jointly owned by The Anaconda Company and ASARCO, announced in August plans to continue development and to commence operations at the Ontario lead-zinc-silver mine at Park City, Utah. Development plans include deepening the production shaft to the 2,500foot level and construction of a 700-tonper-day flotation concentrator. Mine production at a rate of 5,000 tons of ore per week is scheduled to commence in early 1975. Officials estimated that 43,000 tons of zinc concentrate, 25,000 tons of lead concentrate and 1.2 million ounces of silver will be produced annually. The Ontario was the original mine in the Park City district and operated more or less continuously from 1872 until 1970.

### SMELTER AND REFINERY PRODUCTION

Reversing the rising trend since 1967, output of lead at the four primary refineries in 1973 was slightly less than the 43-year record high production established in 1972. The gain in metal recovered from foreign ores and concentrates did not fully offset the decline in metal recovered from domestic concentrates. Production from domestic primary sources was down about 7,300 tons; the gain from foreign sources was about 6,400 tons. About 84% of the 674,500 tons of primary lead produced was derived from domestic ores compared with 85% in 1972. Antimonial lead production at primary refineries, after declining for 4 consecutive years, increased slightly to nearly 14,300 tons because the average antimony content of ores increased 0.5% to 7.5%.

The Herculaneum, Mo., smelter of St. Joe Minerals Corp. produced 215,000 tons of lead metal and alloys, about 7,100 tons more than in 1972. The smelter operated below its 230,000-ton rated capacity because

<sup>&</sup>lt;sup>3</sup> St. Joe Minerals Corp. 1973 Annual Report. Pp. 2, 7, 9.

<sup>4</sup> Page 11 of work cited in footnote 2.

<sup>&</sup>lt;sup>5</sup> Gulf Resources & Chemical Corp. 1973 Annual Report. Pp. 5, 7.

<sup>&</sup>lt;sup>6</sup> Hecla Mining Co. 1973 Annual Report. Pp. 6-7.

<sup>7</sup> ASARCO. 1973 Annual Report. P. 20. Newmont Mining Corp. 1973 Annual Report. Pp. 9-10.

of a planned 3-week shutdown to install new environmental control equipment.8

ASARCO reported that its lead smelters maintained production at 1972 rates but continued to operate below capacity owing to environmental restrictions. The Glover, Mo., custom smelting and refining plant produced 82,300 tons of lead compared with 86,400 tons in 1972. Most of the concentrate treated at the Glover plant continued to come from the Ozark mine at Sweetwater. Mo. Concentrates from nine other domestic mines in four States and from one mine in Honduras also were treated at Glover. The East Helena, Mont., smelter operated continuously during the year processing crude ore and concentrates from about 94 domestic mines in 9 States and from mines in Canada, Peru, Colombia, and Australia. The El Paso, Tex., lead smelter processed ores and concentrates from approximately 24 domestic mines in 6 States and from mines in Peru, Canada, Honduras, Nicaragua, Australia, and Mexico. Refined metal output at the company's Omaha, Nebr., refinery, which processed lead bullion from the East Helena and El Paso smelters, totaled 165,100 tons, 22,400 more than in 1972.

AMAX reported that its smelter at Buick, Mo., produced 135,000 tons of refined lead in 1973, about 2,000 tons more than in 1972. About 57% of the total production was for the owners' account, and the remainder was refined on toll for other producers.9

The Bunker Hill smelter-refinery of Gulf Resources & Chemical Corp. at Kellogg, Idaho, operated continuously, except for a 4-day strike shutdown, and produced 130,-200 tons of lead in all forms, about 1,600 tons less than in 1972. The reduction in output was due in part to the work stoppage and partly to efforts to comply with air pollution standards. The company treated concentrates from nine domestic mines in five States and from mines in Canada.

Secondary smelter production of lead from recycled materials increased about 37,700 tons to a new record output of 654,300 tons, about 49% of the total smelter and refinery production. Approximately 140 secondary plants were engaged in recovery of lead and lead alloys from scrap materials during the year. Secondary output represented about 42% of total lead consumption in 1973.

## Major secondary smelting companies reporting to the Bureau of Mines

# American Smelting & Refining Co. (including Federated Metals Div.) East Penn Mfg. Co General Battery Corp Gopher Smelting & Refining Co Gould, Inc Nassau Smelting & Refining Co Nassau Smelting & Refining Co St. Paul, Minn. Omaha, Nebr., Newark, N.J., Houston, Tex. Eading, Pa. St. Paul, Minn. Omaha, Nebr., Philadelphia, Pa. Omaha, Nebr., Philadelphia, Pa. Omaha, Nebr., Philadelphia, Pa. Omaha, Nebr., Philadelphia, Pa. Omaha, Nebr., Pedricktown and Celveland, Onio, Fremont, Nebr., Pedricktown and Perth Amboy, N.J., Cincinnati and Cleveland, Ohio, Dallas and Houston, Tex. City of Industry, Calif., Indianapolis, Ind., Middletown, N.Y., Dallas, Tex., Seattle, Wash. Chicago, Ill., Philadelphia, Pa. Baton Rouge, La. Atlanta, Ga. Tampa, Fla., Columbus, Ga., Florence, Miss. East Chicago, Ind. Hyman Viener, and Sons Willard Smelting Co San Francisco, Calif., Whiting, Ind., Omaha, Nebr., Newark, N.J., Houston, Tex. San Francisco, Calif., Whiting, Ind., Omaha, Nebr., Newark, N.J., Houston, Tex. San Francisco, Calif., Whiting, Ind., Omaha, Nebr., Newark, N.J., Houston, Tex. San Francisco, Calif., Whiting, Ind., Omaha, Nebr., Newark, N.J., Houston, Tex. Lyons Station, Pa. Sch Paul, Minn. Omaha, Nebr., Pedricktown, Tex. Ga., Chicago and Granite City, Ill., Detroit, Mich., St. Louis Park, Minn., St. Louis, Mo., Fremont, Nebr., Pedricktown and Perth Amboy, N.J., Cincinnati and Cleveland, Ohio, Dallas and Houston, Tex. City of Industry, Calif., Indianapolis, Ind., Middletown, N.Y., Dallas, Tex., Seattle, Wash. Chicago, Ill., Philadelphia, Pa. Tampa, Fla., Columbus, Ga., Florence, Miss. East Chicago, Ind. Richmond, Va. Charlotte, N.C.

<sup>&</sup>lt;sup>8</sup> Page 9 of work cited in footnote 3.

<sup>9</sup> AMAX. 1973 Annual Report. Pp. 16-17.

<sup>&</sup>lt;sup>10</sup> Page 7 of work cited in footnote 5.

LEAD 691

### RAW MATERIAL SOURCES

Domestic mines delivered 603,000 tons of recoverable lead in concentrates to six domestic primary smelters. This represented 88% of the total production of 687,700 tons of primary refined lead and antimonial lead, about the same proportion as in 1972. Lead recovered from imported concentrates smelted during the year amounted to nearly 111,500 tons, about 6,500 tons more than in 1972. Lead recovered from lead scrap processed at primary plants dropped to about 1,100 tons contained in antimonial lead compared with a total of 7,000 tons in 1972. Raw material stocks at the beginning of the year at primary plants totaled 197,-300, of which 101,900 tons was in process and 2,500 tons was in secondary materials. At yearend, stocks of primary materials awaiting process contained 88,500 tons of lead, material in process 78,200 tons, and secondary material 2,800 tons, a total of 169,500 tons.

Scrap materials consumed in 1973 totaled 867,800 tons, 53,400 tons more than in 1972. About 98 secondary smelters accounted for nearly all of the total scrap consumed. New scrap in the form of purchased drosses and residues from a wide variety of sources aggregated 154,700 tons, about 18% of the total input. The remainder, old scrap, was predominantly battery scrap, with lesser quantities of cable lead, type metal, solder, babbitt, and soft and hard lead. Nearly all of the scrap processed originated from domestic sources. General imports of reclaimed scrap, mainly from Australia, totaled nearly 2,700 tons (lead content), about 17% less than in 1972, but exports of lead scrap totaled nearly 60,000 tons, about 24,700 tons more than in 1972. Stocks of scrap at smelters increased 18,000 in 1973 tons to 84,300 tons at yearend.

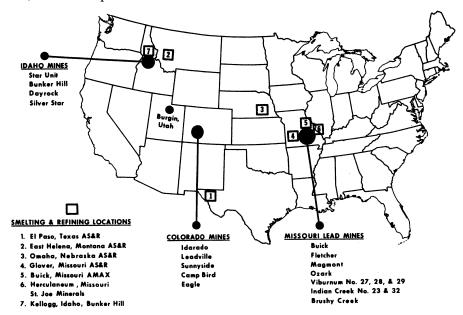



Figure 2.-Lead mines and smelters in the United States.

### CONSUMPTION AND USES

Lead consumption in the United States increased nearly 4% in 1973 to a new record of 1.54 million tons. Monthly requirements ranged from a new record high of 143,200 tons in March to a low of 101,900 tons in July. In the metal products category, which accounted for 72% of the total lead consumption, the 6% increase in battery requirements more than offset combined decreases in ammunition, cables, calking, and tubes. Significant gains also were recorded in the quantity of lead used in brass, pipes, terne and type metals. The growth in requirements for battery lead largely reflected the continued increase in the number of both on-the-road and off-the-road motor vehicles that use battery power for starting, lighting, ignition (SLI), and traction. A total of 57.1 million SLI-type batteries were produced in 1973, about 43.4 million of which were for replacement, 12.6 million were original equipment, and the remainder were exported. The quantity of lead used in gasoline antiknock compounds decreased 1.4%, reflecting a reduction in the average lead content per gallon of gasoline from about 2.6 grams per gallon in 1972 to about 2.2 grams per gallon in 1973.

Soft refined lead represented 66% of the total consumption, antimonial lead accounted for 29%, and lead in other alloys mainly solders and bearing metals, accounted for 4% of the total. Lead in copper-base scrap accounted for 1% of consumption.

The domestic supply of lead metal from all sources—primary and secondary production, imports for consumption, stock changes, and stockpile releases—totaled about 157,000 tons more than reported consumption and exports. The apparent excess supply in 1973 amounting to about 10% of reported consumption was attributed partly to unreported consumption and stock buildup, especially by small producers and dealers that do not report to the Bureau of Mines.

The compound annual growth rate in lead consumption during the 10-year period 1964–73 averaged about 2.5% owing largely to increased demand for batteries, which showed an annual growth of 6% during the period and accounted for approximately 50% of the total domestic consumption in 1973 but only 37% in 1964. Per capita lead consumption was 14.6

pounds compared with 14.2 pounds in 1972.

Lead used in pigments, particularly red lead and litharge, increased 28% and accounted for 7% of the total consumption in 1973. Lead antiknock compounds, and miscellaneous and other unclassified uses decreased slightly and accounted for 18% and 3% of the total, respectively. Lead used in other metal products, virtually the same as in 1972, accounted for 22% of the total.

The Lead Industries Association (LIA) reported the expanding use of terne-coated stainless steel in exposed architectural applications for protection against corrosion. The terne metal alloy coating is 80% lead and 20% tin. LIA also reported the increasing use of sheet lead in sound barrier applications such as accoustical polyure-thane foam material used in machinery noise control panels designed to meet Occupational Safety and Health Administration (OSHA) standards.

### **LEAD PIGMENTS**

Lead requirements for the production of lead oxides and pigments totaled 510,000 tons, about 13% more than in 1972. The quantity of lead used in making both white and red lead decreased and constituted only 4% of the total lead consumed in pigments and oxides. Litharge production used about 32% of the total lead requirements, and black oxide production used 64% of the total. Most of the litharge shipments went to battery manufacturers and is included in "Other" in table 20. Litharge shipments increased nearly 31,500 tons and comprised 75% of the total shipments in 1973. Litharge shipped for use in the ceramics industry increased 55% in 1973 and amounted to 20% of the total shipments for the year.

Prices.—The price of basic carbonate white lead in carload lots, freight allowed, remained unchanged at 23.9 cents per pound. The quoted price of red lead oxide (Pb<sub>3</sub>O<sub>4</sub>) 95%, in carload lots at works, was advanced from 18.75–18.90 cents per pound in January to 19.25 cents in February, 20.25–20.45 cents in April, 20.75–21.20 cents in May, to 21–21.20 cents in June, and remained unchanged thereafter to yearend. The price quotation on lead silicate (PbSiO<sub>2</sub>) ranged upward from 20.75–21.75 cents per pound in January, 21.75 cents in April, to 23.0 cents in June and was un-

LEAD 693

changed thereafter. The price quotation of commercial-grade litharge, powdered, in carload lots at works ranged upward from 18 cents per pound in January to 19.5 cents in April, 20–20.25 cents in May, to 20.25 cents in June, and remained unchanged to December when the price quotation was advanced to 21.25–22.75 cents.

The value of shipments of white lead, red lead, and litharge amounted to \$72.9 million in 1973, an average of \$356 per ton compared with \$61.1 million and \$344 per ton in 1972.

Foreign Trade.—Exports of pigment-

grade lead oxides totaled 290 tons valued at \$132,700 and exports of lead oxides other than pigment grade amounted to 61 tons valued at \$60,500. Shipments went to 36 countries.

Imports for consumption of lead pigments and compounds decreased 23% in quantity and 7% in value to \$8.6 million. Litharge, which comprised 70% of the total imports, decreased 7%; imports of chrome yellow, comprising 22% of the total, were 40% less than in 1972. Mexico supplied virtually all the imports of litharge; most of the chrome yellow came from Japan.

### **STOCKS**

Inventories of refined and antimonial lead at primary refineries declined steadily through the first 7 months then trended upward in the last 5 months from the July low. Metal stocks totaling 64,500 tons at the beginning of the year decreased to about 26,100 tons at yearend. Stocks of lead in base bullion declined about 2,700 tons during the year, but the lead content of ore and matte stocks declined nearly 14,700 tons.

Stocks of lead in all forms at consumer and secondary smelting plants totaled 124,100 tons at yearend, indicating an increase of about 5,600 tons during the year. Refined soft lead constituted 68% of the total compared with 62% of the total in 1972.

Stocks of lead at producers and consumers plants totaling about 214,000 tons represented less than a 2-month domestic consumption.

### **PRICES**

The U.S. producer price for commongrade lead on a nationwide basis was reported by Metals Week at 14.50 cents per pound on January 1, was advanced 0.5 cent to 15.0 cents on January 12, to 15.5 cents on February 6, and 16.0 cents on March 6. On April 30, the price quotation became split at 16.0-16.5 cents continuing unchanged at 16.5 cents per pound to June 1. Thereafter, the price was frozen at this level under price control regulations until December 6 when the controls on lead were lifted by the Cost of Living Council. On December 10, the producers quoted price was increased to a range of 18-19 cents per pound. The average monthly producer price increased from 14.50 cents in December 1972 to 17.72 cents in December 1973, a 22% gain during the year. The average price for the year was 16.29 cents compared with 15.03 cents in 1972.

The London Metal Exchange (LME) price, in terms of U.S. currency, reflected strong world demand and increased steadily from a low average of 14.42 cents in January to 22.13 cents in November, rising sharply early in December to a high of 30.28 cents and averaging 26.84 cents for the month. The average LME cash price for the year was 19.47 cents, based on the monthly average Sterling Exchange rate of 245.10 cents, compared with an average price of 13.68 cents in 1972. The LME quotation exceeded the U.S. price for the first time in 8 years.

### FOREIGN TRADE

Exports of lead metal and scrap materials increased sharply due principally to world prices being substantially higher than domestic prices, which were frozen for most of the year. The outflow of lead materials

and scrap (126,450 tons) was nearly 3 times the quantity exported in 1972 and a new record. Wrought and unwrought metal constituted 53% of the total exports, most of which went to Japan, the Netherlands,

and Italy; the remaining 47% was contained in scrap materials, most of which was shipped to Canada, Japan, and Brazil.

General imports of lead materials into the United States dropped nearly 19% to a total of 283,300 tons valued at \$76.1 million. Receipts of lead in concentrates and other crude materials were near the same level as in 1972, but metal receipts dropped nearly 27% to about 178,096 tons, the smallest quantity of metal imports since 1951. The decline in lead imports was attributed partly to price regulations in the

United States and partly to the effect of dumping charges filed against Canadian and Australian exporters by a major domestic producer and the subsequent determination by the U.S. Treasury Department sustaining such charges. Peru was the leading supplier of crude lead materials with nearly 23% of the total, followed by Australia, Honduras, and Canada. Canada continued to be the leading metal supplier with 35% of the total, followed by Australia 26%, Peru 24%, and Mexico 11%.

### **WORLD REVIEW**

In 1973 mine production of lead in non-Communist countries (which includes Yugoslavia) based on data compiled by the Bureau of Mines totaled 2.95 million tons, about 7% more than in 1972. The Bureau estimated mine production in Communist countries at 0.87 million tons. Smelter output of lead in 1973 in non-Communist countries, reported as primary metal insofar as possible to determine by the Bureau, totaled 2.92 million tons. In addition, the Bureau of Mines estimated 0.88 million tons of metal produced in Communist countries to provide a world total of 3.80 million tons of primary lead, about 1% more than in 1972.

The United States maintained its rank as the leading mine producer of lead in 1973, accounting for approximately 16% of the world total, followed by the U.S.S.R., Australia, Canada, Peru, Mexico, and Yugoslavia, each with production exceeding 100,000 tons of lead in ore mined; these seven countries produced 67% of the world total. The 1% gain in the non-Communist country lead output was largely due to production gains in Mexico, Peru, Canada, Yugoslavia, Morocco and Australia, which more than offset losses in Japan, Spain, and the United States. The North America area increase was about 1% and the 1.21 million tons produced represented 41% of the non-Communist country total and 31% of the estimated world total.

The United States also continued to be the leading producer of primary lead metal as well as secondary lead. The U.S.S.R. again ranked second, followed by Australia, Japan, Canada, Mexico, France, the People's Republic of China and Bulgaria. The nine countries each produced more than 100,000 tons and together accounted for 69% of the world total. The North America area accounted for 37% of the non-Communist country metal output and 28% of the estimated world output (excluding U.S. secondary production). The 1% gain in primary metal output by non-Communist countries came chiefly from increases in Australia, Mexico, and Japan. The smelter output data for some countries, particularly France, Japan, and West Germany, includes secondary metal.

According to preliminary data compiled by the International Lead and Zinc Study Group (ILZSG), consumption of refined lead in 1973 by non-Communist countries amounted to 3.8 million tons, about 5% more than in 1972. Most of the increase came from West European countries and Japan. The U.S. accounted for about 40% of the non-communist total consumption. ILZSG comparative statistics on metal production and consumption in non-Communist countries indicate a new supply deficit of about 90,400 tons in 1973, compared with an indicated surplus of 33,000 tons in 1972. The indicated deficit was reflected in producers stocks, which declined about 106,000 tons during the year to nearly 160,000 tons at yearend. Consumers' stocks in the United States, the United Kingdom, and Japan combined decreased about 23,700 tons to 172,000 tons at yearend.

Trade data for the first 9 months of 1973 compiled by ILZSG disclosed that imports of lead bullion and refined lead into Communist countries from the rest of the world totaled about 58,200 tons, 19,700 tons more than exports compared with 40,800 and 11,000 tons, respectively, in the corresponding period of 1972.

LEAD 695

Australia.—Mine output of lead increased nearly 1% to 447,000 tons, and Australia maintained its rank as the world's third ranking lead-producing country.

M.I.M. Holdings Limited treated 2.26 million tons of silver-lead-zinc ore at its Mount Isa operations averaging 6.6% lead and recovered 124,000 tons of lead bullion, 3,800 tons less than in 1972. In June 1973, the company reported primary silver-lead-zinc ore reserves at the Mount Isa mine at 60.6 million tons averaging 6.9% lead, 6.4% zinc, and 4.8 ounces of silver per ton. At the Hilton mine primary silver-lead-zinc ore reserves were estimated at 40.8 million tons averaging 5.8 ounces of silver per ton, 7.7% lead, and 9.6% zinc.11

Lead production at the Port Pirie smelter operated by Broken Hill Associated Smelter, Pty. Ltd. was 201,660 tons, nearly 19,000 tons less than in 1972.

E.Z. Industries Ltd. continued to expand productive capacity at its West Coast mines in Tasmania. During the year, the company milled 546,600 tons of zinc-lead-copper ore chiefly from the Rosebery and Hercules mines containing 5.3% lead and recovered nearly 25,200 tons of lead concentrate, a 15% gain in ore milled and a 5% gain in output of lead concentrate compared with production in 1972. The higher mine output achieved under the double production capacity plan was partially offset by the effects of a 5-week labor strike. The adoption of long-hole open stope drilling and improved loading equipment contributed to the increased tonnage mined at the Rosebery mine compared with that of the preceding year. Ore reserves totaled 10.3 million tons at fiscal yearend. About 96% of the total reserve was in the Rosebery mine; the remainder was in the Hercules and Farrell mines.12

North Broken Hill Ltd. reported that it mined 556,700 tons of lead-zinc-silver ore, about 6,000 tons less than in 1972. The grade of ore was 12.4% lead, 9.20% zinc, and 6.2 ounces of silver per ton, and production was 91,700 tons of lead concentrate containing 67,250 tons of lead and 29.2 million ounces of silver. Ore reserves on June 30 totaled 5.0 million tons, about the same as last year.<sup>13</sup>

Canada.—Canadian mine output of lead contained in ores and concentrates increased 2% in 1973 to 427,400 tons. The gain in output came chiefly from increases at mines in the Yukon and Northwest Territories

and British Columbia, which together accounted for about 84% of the total production.

Cominco, Ltd. reopened its H.B. mine in British Columbia in February and brought output up to rated capacity of 1,000 tons per day in March. The mine had been closed since 1965. Cominco also continued development of the Polaris mine, which is jointly owned by Cominco (75%) Bankeno Mines Ltd. (25%), on Little Cornwallis Island in the Northwest Territories and shipped 3,600 tons of ore for metallurgical tests. Nigadoo River Mines Ltd. began unwatering its New Brunswick mine in preparation for resuming operations that were discontinued in 1971. The 1,000-tonper-day concentrator is scheduled for capacity production by mid-1974. Ore reserves were estimated at 1.2 million tons averaging 3.2% lead, 3.2% zinc, 0.2% copper, and 4.0 ounces of silver per ton.

Cominco, Ltd. continued to operate its Sullivan mine in British Columbia, the Pine Point mine in the Northwest Territories, and the Trail smelter which treated company and custom lead-zinc ores. Ore production at the Sullivan mine was increased about 15% to 2.21 million tons with a combined lead-zinc content of 10.0%; Pine Point ore production was 3.90 million tons averaging 8.9% combined leadzinc and yielding 131,400 tons of lead concentrate. Lead produced at Trail from all sources totaled 172,000 tons, about 2,000 tons more than in 1972. Ore reserves at the Sullivan and H.B. mines totaled 62.0 million tons containing 6.7 million tons combined lead and zinc. Pine Point reserves totaled 38.0 million tons containing 3.1 million tons of zinc and lead. The company also reported zinc-lead ore reserves at the Polaris mine of 25.0 million tons containing 4.7 million tons of combined zinc and lead.14

Brunswick Mining and Smelting Corp. Ltd. reported that it milled 3,288,100 tons of lead-zinc ore yielding 153,500 tons of lead concentrate, about 19,400 tons less than in 1972. Preliminary conversion of the Imperial Smelting Process (ISP) lead-zinc smelter to a smelter treating lead con-

<sup>11</sup> M.I.M. Holdings Limited. 1973 Annual Report. Pp. 5, 7.
12 E. Z. Industries Ltd. 1973 Annual Report. Pp. 9-11.
13 North Broken Hill Ltd. 1973 Annual Report. Pp. 2 2 16

Pp. 2, 8, 16.

Gramman Ltd. 1373 Annual Report. 1973.

P. 89.

centrate only was completed in the second quarter, and 34,450 tons of refined lead was produced compared with 35,980 tons in 1972 (including 7,100 tons of lead purchased and upgraded). Reserves of lead-zinc ore in the No. 12 mine at yearend were 84.7 million tons averaging about 3.8% lead, 9.4% zinc, 0.27% copper, and 2.8 ounces of silver per ton. An additional 3.4 million tons of proven reserves were in the No. 6 mine.<sup>15</sup>

Primary lead output from Canada's two refineries, one at Trail, British Columbia, operated by Cominco, Ltd, and one at Belladune, New Brunswick, operated by Brunswick Mining and Smelting Corp. Ltd., decreased about 3,400 tons to 202,500 tons. Conversion of Brunswick's ISP plant to a straight lead blast furnace and the addition of new refining equipment are expected to increase capacity from 33,000 to 70,000 tons per year when fully operative.

Anvil Mining Corp., a 60%-owned subsidiary of Cyprus Mines Corp., mined 2.90 million tons of lead-zinc-silver ore averaging 4.9% lead, 6.4% zinc, and 1.6 ounces of silver per ton from its open pit mine and concentrating facility in the Yukon Territory. Concentrates produced contained 111,700 tons of lead, 118,100 tons of zinc and 2.58 million ounces of silver. Ore reserves at yearend were estimated at 52.6 million tons with an average grade of 3.1% lead, 5.5% zinc, and 1.1 ounces of silver per ton. At the current mining rate, reserves will last about 14 years.16 Most of Anvil Mining production is sold in Japan and West Germany.

Exports of lead in ores and concentrates increased 8% to 193,400 tons. Refined metal exports totaling 113,600 tons were about 19% less than in 1972. Shipments to the United States accounted for 42% of the total; 44% went to the United Kingdom, and the remaining 14% was shipped to 19 other countries.

Greenland.—Vestgron Mines Ltd., a 63%-owned subsidiary of Cominco, Ltd., began production at the Black Angel mine near Marmorilik in October at the rate of 1,800 tons of ore per day. One shipment of about 20,000 tons of concentrate was made before the fiord was closed by ice. Concentrates were stockpiled for shipment to European smelters in the spring of 1974.<sup>17</sup>

Honduras.—Rosario Resources Corporation reported that it processed 311,600

tons of ore averaging 8.4% lead, 10.0% zinc, and 11.9 ounces of silver per ton in 1973 and recovered lead concentrates containing 21,160 tons of lead along with silver, gold, and zinc. The quantity of ore treated in 1973 was slightly less than in 1972, but average ore grade and metals recovered were greater than in 1972. Assured and probable ore reserves in the main mine area decreased by 153,200 tons to 1.79 million tons grading 10.5% lead, 10.9% zinc, 12.2 ounces of silver, and 0.008 ounce gold per ton. Ore reserves developed in the San Juan ore body increased to 3.05 million tons grading 2.8% lead, 7.5% zinc, 0.3% copper, 2.9 ounces of silver, and 0.002 ounce of gold per ton. Total reserves for both mine areas increased by 54,700 tons to 4.88 million tons averaging 5.6% lead, 8.8% zinc, 0.4% copper, 6.3 ounces of silver, and 0.005 ounce of gold per ton.18 Mine expansion in progress in 1973 included extending the main production shaft 500 feet to the 2,225 level and the development of the San Juan ore body scheduled for initial production in 1974.

Ireland.—Tara Exploration and Development Co. Ltd. reported that its target date for initial production at its Navan mine was revised to late 1975 as a result of delays in obtaining final planning permission to construct surface facilities and the issue of a State mining license. The company reported that the development shaft was advanced to 1,105 feet, only 15 feet short of its target depth of 1,120 feet and that it expected to begin hoisting development ore in July 1974. About 250 feet was raised in the production shaft, which was scheduled to be completed and fully equipped by October 1975. The underground decline tunnel system has now advanced over 6,000 feet.19

At the Tynah mine, Irish Base Metals Ltd. milled 529,400 tons of ore yielding concentrates containing 45,000 tons of lead, 16,400 tons of zinc, 1,350 tons of copper, and 1.46 million ounces of silver. Open pit ore was completely extracted and mine operations were wholly underground at yearend.

<sup>&</sup>lt;sup>15</sup> Brunswick Mining and Smelting Corp. Ltd. 21st Annual Report. 1973, p. 5-6.

<sup>&</sup>lt;sup>16</sup> Cyprus Mines Corp. 1973 Annual Report. Pp. 12-13. <sup>17</sup> Page 25 of work cited in footnote 14.

<sup>18</sup> Rosario Resources Corporation. 1973 Annual Report. Pp. 6-7.

<sup>&</sup>lt;sup>10</sup> Tara Exploration and Development Co. Ltd. 1973 Annual Report. Pp. 7, 11.

The new Irish Government announced that it will withdraw the 20-year tax exemption on mineral deposits brought into production before 1986.

Mexico.—ASARCO Mexicana, S.A., 49%-owned by ASARCO, reported normal operations at its mines and improved operations at the Chihuahua lead smelter in 1973. Production of refined lead increased 10,700 tons to 86,300 tons.<sup>20</sup>

The Fresnillo Co. reported that it mined a total of 1.5 million tons of lead-zinc-silver ore at its Mexican properties and recovered 40,967 tons of lead, 43,000 tons of zinc, and 4.3 million ounces of silver. Most of the metal production came from the Naica and Fresnillo units. Ore reserves at yearend declined about 3% to 4.9 million tons averaging 4.0% lead, 4.4% zinc, and 4.8 ounces of silver per ton.<sup>21</sup>

Peru.—Cerro Corp. reported that its Peruvian operations continued at near record levels during 1973. Refined lead production was 91,300 tons, about 3,000 tons less than in 1972. Approximately 25% of the total lead output came from purchased ores, compared with 47% in 1973. Cerro's subsidiary, Cerro de Pasco Corp., which operated the mines and smelter complex in Peru for 72 years, was expropriated by the Peruvian government effective at year-end.<sup>22</sup>

Lead production in Peru, comprising lead in concentrate for export plus refined lead and lead alloys in smelter products, increased nearly 5% to 218,800 tons.

Nicaragua.—Neptune Mining Co., operated by ASARCO, treated 177,500 tons of ore at the Vesubio lead-zinc mine, and recovered concentrates containing 3,000 tons of lead and 20,600 tons of zinc, an increase of 37% and 26%, respectively, over output in 1972. Development work resulted in increased ore reserves.

Tunisia.—Production of lead ore from Tunisian mines dropped 22% in 1973 to 28,430 tons. However, both production and export of refined lead increased slightly. Imported lead ore, primarily from Algeria and Morocco, totaling 27,950 tons (60% to 70% lead), was blended with domestic ores, which average 40% to 50% lead. Exports of refined lead totaled 25,990 tons, most of which went to Italy and Greece.

Yugoslavia.—Trepca Corp. continued expansion and modernization at its Stari Trg mine scheduled for initial operations in 1975 at a rate of 1 million tons per year. Output of 3 million tons of lead-zinc ore per year is planned by 1977. Annual output from the Trepca complex will be increased to 167,000 tons of lead. The new Zletovo ISP zinc-lead smelter at Titov Veles, Macedonia began production in May. The smelter complex consists of a sinter plant, sulfuric acid plant, an Imperial Smelting furnace plant, and zinc and lead refineries. Output of lead at the plant is expected to total 35,000 tons, which will increase Yugoslavia's smelting capacity to 210,000 tons of lead per year.

### **TECHNOLOGY**

Research and development activities in the lead industry were primarily directed toward improving and expanding current applications of the metal to maintain optimum growth.

The International Lead Zinc Research Organization (ILZRO) continued its cooperative research in such general areas as architectural applications, wrought lead applications, cable sheathing, batteries, organolead chemicals, ceramics, and environmental health. A major effort in the architectural area resulted in the development of single-family dwelling concepts featuring new and conventional applications of lead. The prototype house will be capable of quick assembly by unskilled labor using a few simple tools; it will be expandable and

contractible and will be thermally and acoustically efficient. The ILZRO house of modular design is primarily metal and the materials are recyclable, thus minimizing pollution and promoting conservation. Research continued on developing lead-plastic laminates suitable for all types of packaging applications and for possible use as cable sheathing where resistance to water vapor penetration is required. In the battery field ILZRO, in cooperation with a manufacturer, designed and constructed prototype test vans powered by lead-acid batteries that may establish the advantages and prac-

<sup>20</sup> Page 19 of first work cited in footnote 7. 21 The Fresnillo Co. 1973 Annual Report. Pp.

<sup>&</sup>lt;sup>10-11</sup>. <sup>22</sup> Cerro Corp. 1973 Annual Report. Pp. 16-17.

ticability of using electric vehicles in the transportation field. In the ceramics area, ILZRO research efforts developed basic information on the structure, composition and properties of leaded-glass systems. ILZRO participated in various environmental health projects dealing with the effects of lead on biological organisms. In one such project, ILZRO reported that a comparison of the health of workers in the lead industries demonstrated that lead workers had a longevity better than that of the general population.

Cominco, the largest Canadian lead and zinc producer, reported substantial progress in the pilot-plant study of its new process that could make present conventional lead smelting operations obsolete. The new process, which has already cost \$1.5 million, would eliminate the need for blast furnaces and sinter plants, a constant source of air pollution.

Chrysler Corp. disclosed that early test results of laboratory research indicated that a gasoline additive, ethylene dibromide, and not lead may be primarily responsible for poisoning noble oxidation catalysts. The early results, subject to verification in road tests, indicated that leaded gasoline without ethylene dibromide could be used successfully with platinum-palladium catalysts.

Bureau of Mines investigators at Rolla, Mo., reported significant progress in laboratory research to develop new technology for recovering lead from flotation concentrates to replace present sintering and blast furnace reduction. The new technique, using a vapor phase reduction of lead sulfide, permits recovery of lead metal and elemental sulfur rather than SO<sub>2</sub>. A new hydrometal-lurgical process for recovering lead from scrap batteries that would eliminate SO<sub>2</sub> pollution tested by Bureau metallurgists at

College Park, Md. achieved a 98% reduction and a 94% recovery of lead. The process converts PbSO<sub>4</sub>, Pb<sub>0</sub>, and CaSO<sub>4</sub> by mixing with a slurry of Ca(OH)<sub>2</sub>. Continued progress was reported by Bureau metallurgists on developing an aqueous chlorine and electrolytic oxidation leaching process for extracting metals from leadinc sulfide concentrates. Extractions in the range of 95% to 99% of the contained lead, zinc, copper, and silver were achieved, and 85% of the sulfide content of the concentrate was converted to elemental sulfur.

Cooperative research by the Naval Research Laboratory (NRL) and ILZRO, in conjunction with battery manufacturers, were directed essentially toward improving battery performance and life. Investigations encompassed the effects of charge and discharge on lead plate microstructure, the causes of capacity loss, and the influence of antimony on the morphology of the lead dioxide.<sup>22</sup>

The joint abstracting service of Lead Industries Association and Lead Development Association afforded researchers a worldwide coverage of new research developments in reports and patents classified under such headings as: analysis, batteries, cables, casting, ceramics, chemicals, coatings, composites, electrochemistry, extraction, health and safety, paints and pigments, physical metallurgy and production.<sup>24</sup>

The Geological Survey issued a comprehensive report on U.S. Mineral Resources which included a review of world lead deposits and reserves.<sup>25</sup>

<sup>&</sup>lt;sup>23</sup> Battery Council International, 85th Convention. 1973, pp. 176-183.

<sup>&</sup>lt;sup>24</sup> Lead Development Association, London and Lead Industries Association, New York. Lead Abstracts. Alden Press, Oxford, England, v. 13, Nos. 1-6, 1973, pp. 1-160.

<sup>&</sup>lt;sup>25</sup> United States Mineral Resources. Geol. Sur., Prof. Paper 820, 1973, pp. 313-332.

Table 2.—Mine production of recoverable lead in the United States, by State (Short tons)

| •            |         |         |         |               |         |
|--------------|---------|---------|---------|---------------|---------|
| State        | 1969    | 1970    | 1971    | 1972          | 1973    |
|              | 2       |         |         |               | 6       |
| Alaska       | 217     | 285     | 859     | $1.7\bar{63}$ | 763     |
| Arizona      | 2.518   | 1,772   | 2,284   | 1,153         | 44      |
| California   |         | 21,855  | 25,746  | 31.346        | 28,112  |
| Colorado     | 21,767  |         | 66,610  | 61,407        | 61,744  |
| Idaho        | 65,597  | 61,211  | 1,238   | 1.335         | 541     |
| Illinois     | 791     | 1,532   | 1,200   |               | 0       |
| Kansas       | 395     | 80      |         | 85            | 204     |
| Maine        |         | 57      | 100 001 | 489.397       | 487,143 |
| Missouri     | 355,452 | 421,764 | 429,634 | 287           | 176     |
| Montana      | 1,753   | 996     | 615     |               | 110     |
| Nevada       | 1,420   | 364     | 111     | (1)           | 2,556   |
|              | 2,368   | 3,550   | 2,971   | 3,582         |         |
| New York     | 1,686   | 1,280   | 877     | 1,089         | 2,304   |
|              | 605     | 797     |         |               |         |
| Oklahoma     | (1)     | (1)     |         |               |         |
| Oregon       | 1       | `´ 3    |         |               | ==      |
| South Dakota | 41,332  | 45,377  | 38,270  | 20,706        | 13,733  |
| Utah         | 3,358   | 3,356   | 3,386   | 3,441         | 2,637   |
| Virginia     | 8,649   | 6,784   | 5,177   | 2,567         | 2,217   |
| Washington   | 1,102   | 761     | 752     | 757           | 844     |
| Wisconsin    | 1,102   | 101     | 20      |               |         |
| Other States |         |         |         | 618,915       | 603,024 |
| Total        | 509,013 | 571,767 | 578,550 | 010,919       | 000,024 |

<sup>&</sup>lt;sup>1</sup> Less than ½ unit.

Table 3.—Production of lead and zinc in the United States in 1973, by State and class of ore, from old tailings, etc., in terms of recoverable metal

| ·                                                                                                                                                                    |                                                                                         |                                    | (Shor                | t tons)                                |                           |                                                                                      |                                         |                                                                |                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------|----------------------|----------------------------------------|---------------------------|--------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------|--------------------------|
|                                                                                                                                                                      | Τ.,                                                                                     | ead ore                            |                      | Z                                      | inc ore                   |                                                                                      | Lead-zinc ore                           |                                                                |                          |
| State                                                                                                                                                                | Gross<br>weight<br>(dry<br>basis)                                                       | Lead<br>con-<br>tent               | Zinc<br>con-<br>tent | Gross<br>weight<br>(dry<br>basis)      | Lead<br>con-<br>tent      | Zinc<br>con-<br>tent                                                                 | Gross<br>weight<br>(dry<br>basis)       | Lead<br>con-<br>tent                                           | Zinc<br>con-<br>tent     |
| Alaska Arizona California Colorado Illinois Kentucky Maine Missouri Montana New Jersey New Mexico New York Pennsylvania Tennessee Utah Virginia Washington Wisconsin | 12<br>222<br>692<br>244,660<br><br>7,585,647<br>195<br><br><br><br>500<br><br>7,831,928 | 487,143<br>11<br><br><br><br><br>5 | 2,045<br>            | 224,942<br>9,270<br>(2)<br>230,172<br> | 2,600<br>9 (2)<br>204<br> | 423<br>(2)<br>19,640<br><br>33,027<br>12,035<br>81,455<br>18,857<br>59,570<br>16,683 | 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, | (1)<br>14,752<br>34,639<br><br>13<br>68<br><br>13,733<br>2,211 | 10, 25,520<br>42,871<br> |
| Total<br>Percent of total<br>lead-zinc                                                                                                                               | 7,881,928                                                                               | 85                                 | 18                   |                                        | 2                         | 57                                                                                   |                                         | 11                                                             | 19                       |

See footnotes at end of table.

Table 3.-Production of lead and zinc in the United States in 1973, by State and class of ore, from old tailings, etc., in terms of recoverable metal-Continued

(Short tons) Copper-lead, copper-zinc, and copper-lead-zinc All other sources 3 Total ores State Gross Gross Gross weight Lead Zinc weight Lead Zinc weight Lead Zinc (dry con-(dry conconcon-(dry conconbasis) tent tent basis) tent basis) tent. tent tent Alaska Arizona 93.284 8,407 61,571,820 192 571 20 61,665,104 763 8,427 California \_\_\_\_\_ 1 5,257 <sup>1</sup> 10 1 12 5,479 1,195,393 44 20 Colorado \_\_\_\_\_ 390,354 8.818 10,310 107,502 1,937 1,196 28,112 58,339 Idaho \_\_\_\_\_ 312 459 1,012 2 541 768 61,744 46,107 5,250 273 2 66,848  $^{2}$  5,250 \_\_\_ 66,848 541 Kentucky 273 Maine \_\_\_\_\_ 230,172 204 7,585,647 487,143 Missouri \_\_\_\_\_ --\_\_\_ 82,350 Montana 25,686 152 59 26,209 New Jersey New Mexico 176 73 \_\_ 193,402 --33,027 2,803,668 228 --2,933,577 2,556 12,327 81,455 New York 1,093,838 382,511 --2,304 Pennsylvania \_\_\_\_\_ 18,857 Tennessee \_\_\_\_\_ --1,322,930 4,602 3,457,719 --64,172 16,800 Utah \_\_\_\_\_ --188,311 13,733 Virginia --- <u>-</u> 577,348 2,637 16,683 Washington \_\_\_\_\_ -<u>-</u>2 61,372 274,161 2,217 6,378 Wisconsin \_\_\_\_\_ 379,014 844 8,672 Total \_ 1.806.568 9,010 23,319 64,954,612 4.228 7,808 81,695,390 603,024 478,850 Percent of total lead-zinc \_\_\_ 1 5 1

1

100

Table 4.-Mine production of recoverable lead in the United States, by month (Short tons)

| Month                                 | 1972                                                               | 1973                                                               | Month                                            | 1972                                                      | 1973                                           |
|---------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------|------------------------------------------------|
| January February March April May June | 48,849<br>53,302<br>55,645<br>52,177<br>54,093<br>51,153<br>52,646 | 53,462<br>49,958<br>45,302<br>40,056<br>55,934<br>43,907<br>51,395 | August September October November December Total | 56,866<br>50,654<br>51,625<br>46,540<br>45,365<br>618,915 | 55,662<br>51,394<br>53,743<br>49,006<br>53,205 |

<sup>&</sup>lt;sup>1</sup> Lead-zinc and ore from "Other sources" combined to avoid disclosing individual company

<sup>1</sup> Lead-zinc and ore from Comer sources confidential data.
2 Zinc ore and ore from "Other sources" combined to avoid disclosing individual company confidential data.
3 Lead and zinc recovered from copper, gold, silver, and fluorspar ores, and from mill tailings

LEAD

Table 5.-Twenty-five leading lead-producing mines in the United States in 1973, in order of output

| Rank | Mine                       | County and State   | Operator                                  | Source of lead             |
|------|----------------------------|--------------------|-------------------------------------------|----------------------------|
| 1    | Buick                      | Iron, Mo           | AMAX Lead Co. of Missouri                 | Lead ore.                  |
|      | Fletcher                   | Reynolds, Mo       | St. Joe Minerals Corp                     | Do.                        |
| 3    | Magmont                    | Iron, Mo           | Cominco American, Inc                     | Do.                        |
| -    | Ozark                      | Reynolds, Mo       | Ozark Lead Co                             | Do.                        |
| 4    | Viburnum No. 29            | Washington, Mo     | St. Joe Minerals Corp                     | Do.                        |
| 5    |                            | Iron, Mo           | do                                        | Do.                        |
| 6    | Viburnum No. 28            |                    | The Bunker Hill Co                        | Lead-zinc ore.             |
| 7    | Bunker Hill                | Shoshone, Idaho    | Hecla Mining Co                           | Lead ore.                  |
| 8    | Lucky Friday               | do                 |                                           | Lead-zinc ore.             |
| 9    | Burgin                     | Utah, Utah         | Kennecott Copper Corp                     | Do.                        |
| 10   | Star Unit                  | Shoshone, Idaho    |                                           |                            |
| 11   | Viburnum No. 27            | Crawford, Mo       |                                           | Lead ore.                  |
| 12   | Indian Creek No. 32        | Washington, Mo     | do                                        | Do.                        |
| 13   | Idarado                    | Miguel, Colo.      | Idarado Mining Co                         | Copper-lead-zine<br>ore.   |
| 14   | Leadville                  | Lake. Colo         | American Smelting and                     | Lead-zinc and              |
| 15   | Indian Creek No. 23        | Washington, Mo     | Refining Co                               | lead-zinc-<br>copper ores. |
| 10   | Describe Country           | Dameda Mo          | St. Joe Minerals Corp                     | Lead ore.                  |
|      | Brushy Creek               | Reynolds, Mo       | do                                        | Do.                        |
| 17   | Sunnyside                  |                    | Standard Metals Corp                      | Lead-zinc ore.             |
| 18   | Dayrock                    | Snosnone, Idano    | Don Mines Inc                             | Lead ore.                  |
| 19   | Silver Star                | ao                 | Day Mines, Inc                            | Do.                        |
| 20   |                            | Ouray, Colo        | do                                        | ъ.                         |
| 21   | Austinville and<br>Ivanhoe | . •                | Federal Resources Corp                    | Lead-zine ore.             |
| 22   | Eagle                      | Eagle, Colo        | The New Jersey Zinc Co                    | Zinc_ore.                  |
|      |                            |                    | do                                        | Do.                        |
| 23   | Ground Hog                 | Grant, N. Mex      | American Smelting and<br>Refining Company | Do.                        |
| 24   | Ralmat                     | St Lawrence NY     | St. Joe Minerals Corp                     | Do.                        |
| 25   | Pend Oreille               | Pend Oreille, Wash | Pend Oreille Mines and<br>Metals Co.      | Lead-zinc ore.             |

Table 6.-Refined lead produced at primary refineries in the United States, by source material

|                                                        | 1969      | 1970      | 1971      | 1972 F             | 1973      |
|--------------------------------------------------------|-----------|-----------|-----------|--------------------|-----------|
| Refined lead: 1                                        |           |           |           |                    |           |
| From primary sources:                                  |           |           |           |                    |           |
| Domestic ores and base bullion                         | 513,931   | 528,086   | 573,022   | r 577, <b>39</b> 8 | 567,256   |
| Foreign ores and base bullion                          | 124,724   | 138,644   | 76,993    | 103 <b>,001</b>    | 107,260   |
| Total                                                  | 638,655   | 666,730   | 650,015   | r 680.399          | 674.516   |
|                                                        | 4,966     | 4.367     | 1.223     | 1.189              |           |
| From secondary sources                                 | 4,000     | 4,001     | 1,550     | 1,100              |           |
| Grand total                                            | 643,621   | 671,097   | 651,238   | r 681,588          | 674,516   |
| Calculated value of primary refined lead (thousands) 2 | \$190,702 | \$209,220 | \$180,574 | r \$204,528        | \$219,757 |

Table 7.-Antimonial lead produced at primary lead refineries in the United States

|                                      |                            | Pro-                                           | Antimo                                    | ny content                      | Lead content by difference (short tons      |                                           |                                           |                                                |
|--------------------------------------|----------------------------|------------------------------------------------|-------------------------------------------|---------------------------------|---------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------------|
| Year                                 | duction<br>(short<br>tons) | Short<br>tons                                  | Percent                                   | From<br>domestic<br>ore         | From<br>foreign<br>ore                      | From<br>scrap                             | Total                                     |                                                |
| 1969<br>1970<br>1971<br>1972<br>1973 |                            | 24,741<br>20,438<br>19,686<br>15,051<br>15,455 | 2,082<br>1,184<br>1,191<br>1,050<br>1,167 | 8.4<br>5.8<br>6.0<br>7.0<br>7.5 | 11,507<br>8,826<br>12,247<br>6,136<br>9,020 | 4,743<br>2,829<br>3,869<br>2,049<br>4,203 | 6,409<br>7,599<br>2,379<br>5,816<br>1,065 | 22,659<br>19,254<br>18,495<br>14,001<br>14,288 |

r Revised.

GSA metal is not included in refined lead production.

Value based on average quoted price and excludes value of refined lead produced from scrap at primary refineries.

Table 8.-Stocks and consumption of new and old lead scrap in the United States in 1973 (Short tons, gross weight)

| Class of consumers and             | Stocks      |          | •            | Consumptio   | n       |                   |
|------------------------------------|-------------|----------|--------------|--------------|---------|-------------------|
| type of scrap                      | Jan. 1 r    | Receipts | New<br>scrap | Old<br>scrap | Total   | Stocks<br>Dec. 31 |
| Smelters and refiners:             |             |          |              |              |         |                   |
| Soft lead                          | 2,382       | 35,904   |              | 36,279       | 36,279  | 2,007             |
| Hard lead                          | <b>75</b> 8 | 51,890   |              | 51,992       | 51,992  | 656               |
| Cable lead                         | 1,629       | 26,603   |              | 26,897       | 26,897  | 1,335             |
| Battery-lead plates                | 39,300      | 559,363  |              | 544,438      | 544,438 | 54,225            |
| Mixed common babbitt               | 302         | 6,696    |              | 6,564        | 6,564   | 434               |
| Solder and tinny lead              | 453         | 12,728   |              | 11,991       | 11,991  | 1.190             |
| Type metals                        | 2,392       | 27,766   |              | 27,950       | 27,950  | 2,208             |
| Drosses and residues               | 19,018      | 157,663  | 154,682      |              | 154,682 | 21,999            |
| Total                              | 66,234      | 878,613  | 154,682      | 706,111      | 860,793 | 84,054            |
| Foundries and other manufacturers: |             |          |              |              |         |                   |
| Soft lead                          |             |          |              |              |         |                   |
| Hard lead                          |             |          |              |              |         |                   |
| Cable lead                         |             |          |              |              |         |                   |
| Battery-lead plates                |             |          |              |              |         |                   |
| Mixed common babbitt               | 17          | 7,192    |              | 6,970        | 6,970   | 239               |
| Solder and tinny lead              |             |          |              |              |         |                   |
| Type metals                        |             |          |              |              |         |                   |
| Drosses and residues               |             |          |              |              |         |                   |
| Total                              | 17          | 7,192    |              | 6,970        | 6,970   | 239               |
| All consumers:                     |             |          |              |              |         |                   |
| Soft lead                          | 2,382       | 35,904   |              | 36,279       | 36,279  | 2.007             |
| Hard lead                          | 758         | 51,890   |              | 51,992       | 51,992  | 656               |
| Cable lead                         | 1.629       | 26,603   |              | 26,897       | 26,897  | 1,335             |
| Battery-lead plates                | 39,300      | 559,363  |              | 544,438      | 544,438 | 54,225            |
| Mixed common babbitt               | 319         | 13,888   |              | 13,534       | 13,534  | 673               |
| Solder and tinny lead              | 453         | 12,728   |              | 11,991       | 11,991  | 1,190             |
| Type metals                        | 2,392       | 27,766   |              | 27,950       | 27,950  | 2,208             |
| Drosses and residues               | 19,018      | 157,663  | 154,682      |              | 154,682 | 21,999            |
| Grand total                        | 66,251      | 885,805  | 154,682      | 713,081      | 867,763 | 84,293            |

r Revised.

Table 9.—Secondary metal recovered 1 from lead and tin scrap in the United States in 1973, by type of product

|                                                                                                                        | Lead                                              | Tin .                                 | Antimony                                         | Other                               | Total                                                         |
|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------|--------------------------------------------------|-------------------------------------|---------------------------------------------------------------|
| Refined pig leadRemelt lead                                                                                            | 149,215<br>36,909                                 |                                       |                                                  |                                     | 149,215<br>36,909                                             |
| Total                                                                                                                  | 186,124                                           |                                       |                                                  |                                     | 186,124                                                       |
| Refined pig tinRemelt tin                                                                                              |                                                   | 1,806<br>307                          |                                                  |                                     | 1,806<br>307                                                  |
| Total                                                                                                                  |                                                   | 2,113                                 |                                                  |                                     | 2,113                                                         |
| Lead and tin alloys: Antimonial lead Common babbitt Genuine babbitt Solder Type metals Cable lead Miscellaneous alloys | 13,003<br>34<br>29,088<br>22,878<br>10,544<br>596 | 1,062<br>680<br>161<br>6,147<br>1,178 | 19,212<br>1,374<br>8<br>776<br>2,629<br>52<br>11 | 698<br>2<br>3<br>65<br>4<br>4<br>60 | 396,750<br>15,059<br>206<br>36,076<br>26,689<br>10,600<br>746 |
| TotalTin content of chemical products                                                                                  | 451,921                                           | $9,307 \\ 955$                        | 24,062                                           | 836                                 | 486,126<br>955                                                |
| Grand total                                                                                                            | 638,045                                           | 12,375                                | 24,062                                           | 836                                 | 675,318                                                       |

<sup>&</sup>lt;sup>1</sup> Most of the figures herein represent actual reported recovery of metal from scrap.

Table 10.-Secondary lead recovered in the United States

(Short tons)

|                     | 1969      | 1970      | 1971      | 1972      | 1973      |
|---------------------|-----------|-----------|-----------|-----------|-----------|
| As metal:           |           |           |           |           |           |
| At primary plants   | 4,966     | 4,367     | 1,223     | 1,189     |           |
| At other plants     | 149,344   | 154,800   | 148,911   | 172,168   | 186,124   |
| Total               | 154,310   | 159,167   | 150,134   | 173,357   | 186,124   |
| In antimonial lead: |           |           |           |           |           |
| At primary plants   | 6,409     | 7,599     | 2,379     | 5,816     | 1,065     |
| At other plants     | 336,066   | 340,759   | 340,333   | 340,066   | 374,713   |
| Total               | 342,475   | 348,358   | 342,712   | 345,882   | 375,778   |
| In other alloys     | 107,120   | 89,865    | 103,951   | 97,358    | 92,384    |
| Grand total:        |           |           |           |           |           |
| Quantity            | 603.905   | 597.390   | 596,797   | 616,597   | 654,286   |
| Value (thousands)   | \$180,326 | \$187,461 | \$165,790 | \$185,349 | \$213,166 |

Table 11.-Lead recovered from scrap processed in the United States, by kind of scrap and form of recovery

(Short tons)

| Kind of scrap                                                  | 1972                         | 1972 1973 Form of recovery   |                                                                                             | 1972                              | 1973                              |
|----------------------------------------------------------------|------------------------------|------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------|
| New scrap:                                                     |                              |                              | As soft lead:                                                                               |                                   |                                   |
| Lead-base                                                      | 113,795                      | 110,787                      | At primary plants                                                                           | 1,189                             |                                   |
| Copper-base                                                    | 4,669                        | 4,506                        | At other plants                                                                             | 172,168                           | 186,124                           |
| Tin-base                                                       | 421                          | 403                          | Total                                                                                       | 173.357                           | 186,124                           |
| Total                                                          | 118,885                      | 115,696                      | 10001                                                                                       |                                   |                                   |
| Old scrap: Battery-lead plates All other lead-base Copper-base | 347,881<br>134,209<br>15,620 | 369,819<br>153,938<br>14,831 | In antimonial lead I<br>In other lead alloys<br>In copper-base alloys<br>In tin-base alloys | 345,882<br>82,725<br>14,614<br>19 | 375,778<br>75,545<br>16,805<br>34 |
| Tin-base                                                       | 2                            | 2                            | Total                                                                                       | 443,240                           | 468,162                           |
| Total                                                          | 497,712<br>616,597           | 538,590<br>654.286           | Grand total                                                                                 | 616,597                           | 654,286                           |

 $<sup>^1</sup>$  Includes 5,816 tons of lead recovered in antimonial lead from secondary sources at primary plants in 1972 and 1,065 in 1973.

Table 12.-Lead consumption in the United States, by product

| Product                    | 1972      | 1973      | Product                  | 1972      | 1973      |
|----------------------------|-----------|-----------|--------------------------|-----------|-----------|
| Metal products:            |           |           | Pigments—Continued:      |           |           |
| Ammunition                 | 84,699    | 81,479    | Pigment colors           |           | 16,963    |
| Bearing metals             | 15,915    | 15,657    | Other 1                  | 337       | 477       |
| Brass and bronze           | 19,805    | 22,735    | Total                    | 89,214    | 108,766   |
| Cable covering             | 45,930    | 43,005    |                          |           |           |
| Calking lead               | 22,483    | 20,057    | Chemicals:               |           |           |
| Casting metals             | 7,139     | 7,220     | Gasoline antiknock       |           |           |
| Collapsible tubes          | 4,020     | 2,860     | additives                | 278,340   | 274,410   |
| Foil                       | 4,592     | 4,985     | Miscellaneous            |           |           |
| Pipes, traps, bends        | 17,780    | 21,291    | chemicals                | 849       | 944       |
| Sheet lead                 | 23,667    | 23,394    | Total                    | 279,189   | 275,354   |
| Solder                     | 71,289    | 71,770    |                          |           |           |
| Storage batteries:         |           |           | Miscellaneous uses:      |           |           |
| Battery grids,             |           |           | Annealing                | 4,329     |           |
| posts, etc                 | 347,225   | 365,557   | Galvanizing              |           | 1,294     |
| Battery oxides             | 379,367   | 403,890   | Lead plating             | 638       | 744       |
| Terne metal                | 504       | 2,658     | Weights and ballast      | 21,302    | 20,848    |
| Type metal                 | 19,944    | 21,922    | Total                    | 27,666    | 26,860    |
| Total                      | 1,064,359 | 1,108,480 | Other, unclassified uses |           | 21,749    |
| Pigments:                  |           |           | Grand total 2            | 1,485,254 | 1,541,209 |
| White lead<br>Red lead and | 2,814     | 1,749     |                          |           |           |
| litharge                   | 69,799    | 89,577    |                          |           |           |

<sup>&</sup>lt;sup>1</sup> Includes lead content of leaded zinc oxide and other pigments.
<sup>2</sup> Includes lead which went directly from scrap to fabricated products.

Table 13.-Lead consumption in the United States, by month

(Short tons)

| Month                                      | 1972                                                                     | 1973                                                                      | Month                                              | 1972                                                             | 1973                                                             |
|--------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|
| January February March April May June July | 122,272<br>123,671<br>132,311<br>122,367<br>129,012<br>126,651<br>91,439 | 135,308<br>131,695<br>143,197<br>128,432<br>128,776<br>129,124<br>101,894 | August September October November December Total 1 | 127,368<br>125,984<br>132,241<br>131,438<br>120,500<br>1,485,254 | 125,707<br>124,793<br>140,655<br>131,420<br>120,208<br>1,541,209 |

 $<sup>^{1}</sup>$  Includes lead which went directly from scrap to fabricated products and lead contained in leaded zinc oxide and other pigments.

Table 14.—Lead consumption in the United States in 1973, by class of product and type of material

| Product                         | Soft lead           | Lead in<br>antimonial<br>lead | Lead in alloys | Lead in<br>copper-<br>base scrap | Total              |
|---------------------------------|---------------------|-------------------------------|----------------|----------------------------------|--------------------|
| Metal productsStorage batteries | 184,141             | 70,425                        | 68,228         | 16,239                           | 339,033            |
| Pigments                        | 415,471<br>108,766  | 353,976                       |                |                                  | 769,447<br>108,766 |
| Chemicals Miscellaneous         | $275,026 \\ 12,208$ | $\frac{328}{14.604}$          | 48             |                                  | 275,354<br>26,860  |
| Unclassified                    | 19,750              | 1,188                         | 811            |                                  | 20,800 $21,749$    |
| Total                           | 1,015,362           | 440,521                       | 69,087         | 16,239                           | 1 1,541,209        |

 $<sup>^{1}</sup>$  Includes lead that went directly from scrap to fabricated products, and lead contained in leaded zinc oxide and other pigments.

Table 15.—Lead consumption in the United States in 1973, by State <sup>1</sup> (Short tons)

| State                          | Refined<br>soft lead | Lead in<br>antimonial<br>lead | Lead in<br>alloys  | Lead in<br>copper-<br>base scrap | Total     |
|--------------------------------|----------------------|-------------------------------|--------------------|----------------------------------|-----------|
| California                     | 87,559               | 41.223                        | 5,453              | 799                              | 135,034   |
| Colorado                       | 1,259                | 1,145                         | 79                 |                                  | 2,483     |
| Connecticut                    | 10,959               | 9,500                         |                    | 1,496                            | 21,955    |
| District of Columbia           | 118                  |                               |                    | -,                               | 118       |
| Florida                        | 4,806                | 8,929                         |                    |                                  | 13,735    |
| Georgia                        | 61,197               | 25,671                        | 338                |                                  | 87,206    |
| Illinois                       | 96,295               | 44,303                        | 11,001             | 1,610                            | 153,209   |
| Indiana                        | 116,641              | 51,035                        | 3,638              | 466                              | 171,780   |
| Kansas                         | 12,092               | 10,279                        | 43                 | 133                              | 22,547    |
| Kentucky                       | 7,673                | 13,595                        | 2                  |                                  | 21,270    |
| Maryland                       | 1,060                | 8,526                         | 2,883              | 7                                | 12,476    |
| Massachusetts                  | 2,884                | 684                           | 20                 | 294                              | 3,882     |
| Michigan                       | 13,571               | 21,321                        | 2,785              | 67                               | 37,744    |
| Missouri                       | 30,047               | 9,855                         | 2,014              | 1.093                            | 43,009    |
| Nebraska                       | 3,428                | 988                           | 1,524              | 1,636                            | 7,576     |
| New Jersey                     | 129,780              | 15.467                        | 7,427              | 718                              | 153,392   |
| New York                       | 48,984               | 3.414                         | 11,532             | 458                              | 64,388    |
| Ohio                           | 12,715               | 4,543                         | 8,067              | 2,395                            | 27,720    |
| Pennsylvania                   | 65,413               | 51.211                        | 4,950              | 2,573                            | 124,147   |
| Rhode Island                   | 3,866                | 335                           | -,                 | _,0.0                            | 4,201     |
| Tennessee                      | 1,413                | 17.530                        | 207                | 133                              | 19,283    |
| Virginia                       | 663                  | 2,653                         | 1,031              | 681                              | 5,028     |
| Washington                     | 17,816               | 910                           | 1                  |                                  | 18,727    |
| West Virginia                  | 20,119               | 432                           | -                  |                                  | 20,551    |
| Wisconsin                      | 6,361                | 9.832                         | $\bar{23}$         | 432                              | 16,648    |
| Alabama and Mississippi        | 6,123                | 7.169                         |                    | 463                              | 13,755    |
| Arkansas and Oklahoma          | 5,806                | 3,600                         | 85                 |                                  | 9,491     |
| Hawaii and Oregon              | 4,081                | 6.959                         | 00                 |                                  | 11,040    |
| Iowa and Minnesota             | 6,636                | 12,722                        | $3,7\overline{50}$ | 141                              | 23,249    |
| Louisiana and Texas            | 216,419              | 38,391                        | 1,556              | 471                              | 256,837   |
| Montana and Idaho              | 842                  | 55,501                        | 1,000              | ***                              | 842       |
| New Hampshire, Maine, Vermont, | ~                    |                               |                    |                                  | 042       |
| Delaware                       | 8,635                | 11,223                        | 678                | 173                              | 20,709    |
| North and South Carolina       | 10,068               | 7,076                         |                    |                                  | 17,144    |
| Utah, Nevada, Arizona          | 33                   |                               |                    |                                  | 33        |
| Total                          | 1,015,362            | 440,521                       | 69,087             | 16,239                           | 1,541,209 |

 $<sup>^{1}</sup>$  Includes lead that went directly from scrap to fabricated products and lead contained in leaded zinc oxide and other pigments.

Table 16.-Production and shipments of lead pigments 1 and oxides in the United States

|                                      |                                       | 19                          | 72                                   |                       |                                       | 19                         | 73                                   |                       |  |
|--------------------------------------|---------------------------------------|-----------------------------|--------------------------------------|-----------------------|---------------------------------------|----------------------------|--------------------------------------|-----------------------|--|
| -                                    |                                       |                             | Shipments                            |                       |                                       |                            | Shipments                            |                       |  |
| D . J 4                              | Produc-                               |                             | Value <sup>2</sup>                   |                       | Produc-                               |                            | Val                                  | ue <sup>2</sup>       |  |
| Product                              | tion<br>(short Short                  | Short<br>tons               | Total                                | Average<br>per<br>ton | tion<br>(short<br>tons)               | Short<br>tons              | Total                                | Average<br>per<br>ton |  |
| White lead: Dry In oil 3             | 7,811<br>304                          | 9,728<br>338                | \$4,466,278<br>230,201               | \$459<br>681          | 7,103                                 | 9,544                      | \$4,906,724                          | \$514<br>             |  |
| Total  Red lead Litharge Black oxide | 8,115<br>24,168<br>139,800<br>306,689 | 10,066<br>19,773<br>147,622 | 4,696,479<br>7,266,019<br>49,160,732 | 367                   | 7,103<br>17,339<br>175,167<br>342,283 | 9,544<br>16,023<br>179,144 | 4,906,724<br>6,300,051<br>61,729,436 | 393                   |  |

<sup>&</sup>lt;sup>1</sup> Excludes basic lead sulfate, figures withheld to avoid disclosing individual company confidential data.

<sup>2</sup> At plant, exclusive of container. <sup>3</sup> Weight of white lead only, but value of paste.

Table 17.-Lead content of lead and zinc pigments 1 and lead oxides produced by domestic manufacturers, by source

(Short tons)

|                                  |                    | 1                  | 972               |                     |                                    | 1973               |                  |                    |  |
|----------------------------------|--------------------|--------------------|-------------------|---------------------|------------------------------------|--------------------|------------------|--------------------|--|
| _                                |                    | in pigm            |                   | Total               | Lead in pigments<br>produced from— |                    | Total<br>lead in |                    |  |
| Product -                        | Ore                |                    |                   | lead in<br>pig-     | Or                                 | e                  | Dia              | pig-               |  |
|                                  | Domes-<br>tic      | For-<br>eign       | Pig<br>lead       | ments               | Domes-<br>tic                      | For-<br>eign       | eign             | ments              |  |
| White lead                       |                    |                    | 6,492             | 6,492               |                                    |                    | 5,682<br>15,718  | 5,682<br>15,718    |  |
| Red lead                         |                    |                    | 21,908<br>130,014 | $21,908 \\ 130,014$ |                                    |                    | 162,905          | 162,905<br>326,580 |  |
| Black oxide<br>Leaded zinc oxide | $\bar{\mathbf{w}}$ | $\bar{\mathbf{w}}$ | 292,492           | 292,492<br>W        | $\bar{\mathbf{w}}$                 | $\bar{\mathbf{w}}$ | 326,580          | w                  |  |
| Total                            | w                  | W                  | 450,906           | 450,906             | w                                  | W                  | 510,885          | 510,885            |  |

W Withheld to avoid disclosing individual company confidential data.

1 Excluding lead in basic lead sulfate.

Table 18.—Distribution of white lead (dry and in oil) shipments, by industry (Short tons)

1973 1970 1971 1972 1969 Industry 4,460 6,768 3,198 5,969 4,396 26 18 Ceramics 6,328 3,267 2,351 4.323 4,152Other 9,544 10,066 10,359 8,638 6,781 Total

Table 19.-Distribution of red lead shipments, by industry

| Industry                             | 1969   | 1970   | 1971   | 1972   | 1973   |
|--------------------------------------|--------|--------|--------|--------|--------|
| Paints Storage batteries Other Total | 9,191  | 7,848  | 8,717  | 4,909  | 6,509  |
|                                      | 9,302  | W      | W      | W      | W      |
|                                      | 3,684  | 11,596 | 12,272 | 14,864 | 9,514  |
|                                      | 22,177 | 19,444 | 20,989 | 19,773 | 16,023 |

W Withheld to avoid disclosing individual company confidential data; included with "Other."

<sup>&</sup>lt;sup>1</sup>Excludes basic lead sulfate, figures withheld to avoid disclosing individual company confidential data.

Table 20.—Distribution of litharge shipments, by industry (Short tons)

| Industry                                               | 1969                                              | 1970                                              | 1971                                              | 1972                                              | 1973                                            |
|--------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|-------------------------------------------------|
| Ceramics Insecticides Oil refining Paints Rubber Other | 21,570<br>W<br>1,603<br>1,511<br>1,794<br>109,241 | 24,578<br>W<br>2,016<br>1,315<br>1,663<br>116,771 | 24,337<br>W<br>1,413<br>3,085<br>2,081<br>116,928 | 23,188<br>W<br>1,262<br>7,316<br>2,162<br>113,694 | 35,910<br>W<br>620<br>3,112<br>5,078<br>134,424 |
| Total                                                  | 135,719                                           | 146,343                                           | 147,844                                           | 147,622                                           | 179,144                                         |

W Withheld to avoid disclosing individual company confidential data; included with "Other."

Table 21.-U.S. imports for consumption of lead pigments and compounds

| <u></u> .                                                                                 |                                                           | 972                                                   | 1                                                     | 1973                                         |  |  |
|-------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|----------------------------------------------|--|--|
| Kind                                                                                      | Quantity<br>(short tons)                                  | Value<br>(thousands)                                  | Quantity<br>(short tons)                              | Value<br>(thousands)                         |  |  |
| White lead Red lead Litharge Chrome yellow Other lead pigments Other lead compounds Total | 600<br>1,289<br>15,358<br>7,530<br>1,348<br>425<br>26,550 | \$216<br>377<br>4,147<br>3,809<br>490<br>205<br>9,244 | 401<br>593<br>14,318<br>4,492<br>357<br>354<br>20,515 | \$268<br>188<br>4,840<br>2,972<br>139<br>195 |  |  |

Table 22.—Stocks of lead at primary smelters and refineries in the United States, Dec. 31

(Short tons)

| Stocks                                                                                    | 1969    | 1970    | 1971    | 1972    | 1973   |
|-------------------------------------------------------------------------------------------|---------|---------|---------|---------|--------|
| Refined pig lead Lead in antimonial lead Lead in base bullion Lead in ore and matte Total | 21,283  | 90,866  | 46,762  | 60,840  | 22,018 |
|                                                                                           | 4,448   | 6,988   | 5,318   | 3,626   | 4,062  |
|                                                                                           | 12,726  | 11,710  | 13,803  | 11,514  | 8,845  |
|                                                                                           | 63,403  | 83,421  | 55,777  | 69,593  | 54,922 |
|                                                                                           | 101,860 | 192,985 | 121,660 | 145,573 | 89,847 |

### Table 23.—Consumer stocks of lead in the United States, Dec. 31, by type of material

(Short tons, lead content)

| Year | Refined<br>soft lead | Lead in<br>antimonial<br>lead | Lead in alloys | Lead in<br>copper-base<br>scrap | Total   |
|------|----------------------|-------------------------------|----------------|---------------------------------|---------|
| 1969 | 67,304               | 49,649                        | 8,506          | 945                             | 126,404 |
|      | 82,823               | 42,420                        | 7,344          | 915                             | 133,502 |
|      | 81,934               | 35,700                        | 6,979          | 964                             | 125,577 |
|      | 74,161               | 36,157                        | 6,977          | 1,249                           | 118,544 |
|      | 84,274               | 32,226                        | 6,954          | 667                             | 124,121 |

Table 24.—Average monthly and yearly quoted prices of lead <sup>1</sup> (Cents per pound)

| _         |                  | 1972                     | 1                | 973                      |
|-----------|------------------|--------------------------|------------------|--------------------------|
| Month     | U.S.<br>producer | London<br>Metal Exchange | U.S.<br>producer | London<br>Metal Exchange |
| January   | 14,00            | 11.40                    | 14.82            | 14.42                    |
| February  | 14.60            | 13.33                    | 15.39            | 15.41                    |
| March     | 15.50            | 14.51                    | 16.00            | 16.87                    |
| April     | 15.57            | 14.32                    | 16.02            | 17.54                    |
| May       | 15.60            | 14.40                    | 16.48            | 17.96                    |
| June      | 15.50            | 14.10                    | 16.50            | 19.27                    |
| July      | 15.50            | 13.77                    | 16.50            | 21.28                    |
| August    | 15.41            | 13.50                    | 16.50            | 19.85                    |
| September | 15.00            | 13.71                    | 16.50            | 20.14                    |
| October   | 14.67            | 13.46                    | 16.50            | 21.36                    |
| November  | 14.50            | 13.48                    | 16.50            | 22.13                    |
| December  | 14.50            | 13.98                    | 17.72            | 26.84                    |
| Average   | 15.03            | 13.68                    | 16.29            | 19.47                    |

<sup>&</sup>lt;sup>1</sup> Metals Week. Quotations for United States on a nationwide, delivered basis.

Table 25.-U.S. exports of lead, by country 1

|                                 | 1                        | 972                  | 1973                     |                     |  |
|---------------------------------|--------------------------|----------------------|--------------------------|---------------------|--|
| Destination                     | Quantity<br>(short tons) | Value<br>(thousands) | Quantity<br>(short tons) | Value<br>(thousands |  |
| Unwrought lead and lead alloys: |                          |                      |                          |                     |  |
| Belgium-Luxembourg              | 755                      | \$314                | 1.632                    | \$702               |  |
| Brazil                          | 28                       | 7                    | 8,681                    | 2,744               |  |
| Canada                          | 553                      | 265                  | 1,177                    | 442                 |  |
| Dominican Republic              | 14                       | 6                    | 24                       | 15                  |  |
| Germany, West                   | 4                        | ĭ                    | 554                      | 214                 |  |
| Greece                          | *                        | 1                    | 1.102                    | 60                  |  |
| Honduras                        | 56                       | $\overline{25}$      |                          | 28                  |  |
|                                 |                          |                      | 58                       |                     |  |
| Hong Kong                       | 21                       | 16                   | 119                      | 35                  |  |
| Italy                           | 3,203                    | 897                  | 5,791                    | 2,157               |  |
| Jamaica                         | _5                       | 2                    | . 8                      | 5                   |  |
| Japan                           | 30                       | 24                   | 22,169                   | 9,222               |  |
| Korea, Republic of              | 1                        | 3                    | 1,801                    | 616                 |  |
| Mexico                          | 338                      | 115                  | 878                      | 356                 |  |
| Netherlands                     | 958                      | 426                  | 5,849                    | 2,064               |  |
| Philippines                     | 35                       | 54                   | 57                       | 46                  |  |
| Portugal                        |                          |                      | 208                      | 100                 |  |
| Singapore                       |                          |                      | 71                       | 26                  |  |
| Spain                           | 106                      | īī                   | 35                       | 14                  |  |
| Switzerland                     | 100                      | 11                   | 220                      | 71                  |  |
|                                 | 55                       |                      |                          |                     |  |
| Taiwan                          | 20                       | 18                   | 170                      | 61                  |  |
| Turkey                          | 27                       | 77                   | 788                      | 310                 |  |
| United Kingdom                  | 34                       | 18                   | 270                      | 109                 |  |
| Venezuela                       | 306                      | 179                  | 107                      | 40                  |  |
| Other                           | 138                      | 79                   | 92                       | 65                  |  |
| Total                           | 6,605                    | 2,460                | 51,861                   | 19,502              |  |
| Wrought lead and lead alloys:   |                          |                      |                          |                     |  |
| Australia                       | 28                       | 36                   | 27                       | 64                  |  |
| Belgium-Luxembourg              | 25                       | 24                   | 1,213                    | 458                 |  |
| Brazil                          | 11                       | 6                    | 66                       | 31                  |  |
| Canada                          | 282                      | 246                  | 459                      | 624                 |  |
| Colombia                        | 13                       | 8                    | 13                       | 50                  |  |
| Denmark                         | 19                       | 17                   | 278                      | 24                  |  |
| Dominican Republic              | 39                       | 58                   | 75                       | 167                 |  |
|                                 |                          |                      |                          | 20                  |  |
| Ecuador                         | 6                        | .5                   | 36                       |                     |  |
| France                          | 37                       | 42                   | 30                       | 44                  |  |
| Germany, West                   | 14                       | 16                   | 39                       | 43                  |  |
| Hong Kong                       | 19                       | 16                   | 114                      | 49                  |  |
| Italy                           | 42                       | 34                   | 4,469                    | 1,531               |  |
| Jamaica                         | 27                       | 28                   | 17                       | 11                  |  |
| Japan                           | 114                      | 130                  | 869                      | 502                 |  |
| Korea, Republic of              |                          |                      | 539                      | 353                 |  |
| Mexico                          | 102                      | 106                  | 588                      | 595                 |  |
| Netherlands                     | 301                      | 584                  | 5,279                    | 2.203               |  |
|                                 | 28                       | 31                   | 73                       | 2,203<br>84         |  |
| Panama                          |                          | 1                    | 41                       | 24                  |  |
| South Vietnam                   | 1                        |                      |                          |                     |  |
| Sweden                          | 67                       | 59                   | 37                       | 31                  |  |
| Taiwan                          | 51                       | 62                   | 52                       | 38                  |  |

See footnotes at end of table.

Table 25.-U.S. exports of lead, by country 1-Continued

|                                           | 1                        | 972                  | 19                       | 73                   |
|-------------------------------------------|--------------------------|----------------------|--------------------------|----------------------|
| Destination                               | Quantity<br>(short tons) | Value<br>(thousands) | Quantity<br>(short tons) | Value<br>(thousands) |
| Wrought lead and alloys—Continued         |                          |                      |                          |                      |
| United Kingdom                            | 131                      | \$99                 | 117                      | \$173                |
| Venezuela                                 | 125                      | 105                  | 42                       | 175                  |
| Other                                     | 289                      | 327                  | 242                      | 301                  |
| Total                                     | 1,771                    | 2,040                | 14,715                   | 7,595                |
| Scrap:                                    |                          |                      |                          |                      |
| Belgium-Luxembourg                        | 193                      | 41                   | 55                       | 5                    |
| Brazil                                    | 445                      | 69                   | 5,327                    | 1,149                |
| Canada                                    | 27,123                   | 2,828                | 23,186                   | 3,033                |
| Denmark                                   | 56                       | 7                    | 422                      | 120                  |
| Germany, West                             | 1,809                    | 200                  | 3,189                    | 725                  |
| Hong Kong                                 |                          |                      | 40                       | 14                   |
| Italy                                     | 42                       | 11                   | 1,575                    | 511                  |
| Japan                                     | 1,474                    | 256                  | 9,526                    | 3,010                |
| Korea, Republic of                        |                          |                      | 3,381                    | 828                  |
| Mexico                                    |                          |                      | 37                       | 16                   |
| Netherlands                               | 2,441                    | 579                  | 3,550                    | 847                  |
| Pacific Islands, Trust Territories of the |                          |                      | 45                       | 20                   |
| Pakistan                                  |                          |                      | 55                       | 49                   |
| South Africa, Republic of                 | 109                      | 19                   | 293                      | 48                   |
| Spain                                     |                          |                      | 1,036                    | 260                  |
| Sweden                                    |                          |                      | 448                      | 79                   |
| Taiwan                                    |                          |                      | 4,045                    | 682                  |
| Turkev                                    |                          |                      | 790                      | 138                  |
| United Kingdom                            | 220                      | 61                   | 450                      | 170                  |
| Venezuela                                 | 1,205                    | 180                  | 2,420                    | 522                  |
| Other                                     | 116                      | 13                   | 3                        | 1                    |
| Total                                     | 35,233                   | 4,264                | 59,873                   | 12,227               |
| Grand total                               | 43,609                   | 8,764                | 126,449                  | 39,324               |

<sup>&</sup>lt;sup>1</sup>In addition, foreign lead was reexported as follows: 1972, none; 1973, 3,410 tons (\$1,801,316). Wrought lead and lead alloys 1972, 3 tons (\$12,943): scrap 251 tons (\$25,054 revised); 1973, 6 tons (\$35,295); scrap 103 tons (\$13,441).

Table 26.-U.S. exports of lead, by class

|                      | Blo                              | cks, pigs,                | anodes, e                        | tc.                       |                          | Wrought lead and lead alloys |                                  |                           |                                  |                            |
|----------------------|----------------------------------|---------------------------|----------------------------------|---------------------------|--------------------------|------------------------------|----------------------------------|---------------------------|----------------------------------|----------------------------|
| _                    | Unw                              | rought                    |                                  | rought<br>loys            | rods a                   | , plates,<br>nd other<br>rms |                                  | owder,<br>kes             | Ser                              | ap                         |
| Year                 | Quan-<br>tity<br>(short<br>tons) | Value<br>(thou-<br>sands) | Quan-<br>tity<br>(short<br>tons) | Value<br>(thou-<br>sands) | Quantity (short tons)    | Value<br>(thou-<br>sands)    | Quan-<br>tity<br>(short<br>tons) | Value<br>(thou-<br>sands) | Quan-<br>tity<br>(short<br>tons) | Value<br>(thou-<br>sands)  |
| 1971<br>1972<br>1973 | 2,611<br>5,134<br>46,778         | \$777<br>1,741<br>17,538  | 1,158<br>1,471<br>5,083          | \$618<br>719<br>1,964     | 1,582<br>1,375<br>14,160 | \$1,369<br>1,312<br>7,010    | 574<br>396<br>555                | \$1,125<br>728<br>585     | 17,091<br>35,233<br>59,873       | \$2,268<br>4,264<br>12,227 |

Table 27.-U.S. imports 1 of lead, by country

|                                       | 19'                         | 71                                         | 1972                                           |                           | 1973                        |                           |
|---------------------------------------|-----------------------------|--------------------------------------------|------------------------------------------------|---------------------------|-----------------------------|---------------------------|
| Country                               | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands)                  | Quantity<br>(short<br>tons)                    | Value<br>(thou-<br>sands) | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands) |
| Ore, flue dust, matte                 |                             |                                            |                                                |                           |                             |                           |
| (lead content):                       | 005                         | 0.40                                       | •                                              |                           |                             |                           |
| Argentina                             | 227                         | \$42                                       | 9                                              | \$2                       | 01 500                      | ar or =                   |
| Australia                             | 8,893                       | 1,656                                      | 20,722                                         | 4,350                     | 21,728                      | \$5,257                   |
| Canada                                | 21,885                      | 4,217                                      | 30,338                                         | 6,370                     | 18,063                      | 3,733                     |
| Colombia<br>Guatemala                 | $\frac{211}{1.075}$         | 42<br>93                                   | 216                                            | 48                        | 223                         | 54                        |
| Honduras                              | 15,121                      | 1.543                                      | $17,7\overline{90}$                            | $2.5\overline{43}$        | $20.2\bar{54}$              | 4.229                     |
| Japan                                 | 10,121                      | 1,040                                      | 11,130                                         | 2,040                     | 14,310                      | 2.576                     |
| Mexico                                | 146                         | $\bar{27}$                                 | $1.18\overline{1}$                             | 199                       | 1,791                       | 541                       |
| Nicaragua                             | 110                         |                                            | 3,329                                          | 537                       | 1,934                       | 489                       |
| Peru                                  | 18.393                      | 3.579                                      | 27,820                                         | 6,021                     | 24,033                      | 5.779                     |
| Other                                 | 47                          | 53                                         | 109                                            | 24                        | 147                         | 11                        |
| Total                                 | 65,998                      | 11,252                                     | 101.514                                        | 20,094                    | 102,483                     | 22,669                    |
| 10ta1                                 | 09,998                      | 11,252                                     | 101,514                                        | 20,094                    | 102,483                     | 22,009                    |
| Base bullion (lead content):          |                             |                                            |                                                |                           |                             |                           |
| Canada                                |                             |                                            | 895                                            | 238                       | 4                           | 1                         |
| Mexico                                | 14                          | 4                                          |                                                |                           |                             |                           |
| United Kingdom                        | 27                          | 12                                         |                                                |                           |                             |                           |
| Total                                 | 41                          | 16                                         | 895                                            | 238                       | 4                           | 1                         |
| Pigs and bars (lead content):         |                             |                                            |                                                |                           |                             |                           |
| Australia                             | 46,044                      | 10,107                                     | 35,638                                         | 8,677                     | 45,550                      | 12,274                    |
| Belgium-Luxembourg                    | 153                         | 100                                        | 2,903                                          | 822                       | 27                          | 60                        |
| Burma                                 |                             |                                            | 186                                            | 46                        |                             |                           |
| Canada                                | 56,821                      | 14,015                                     | 82,816                                         | 22,234                    | 61,906                      | 18,940                    |
| Denmark                               | 281                         | 119                                        | 843                                            | 331                       | 242                         | 125                       |
| France                                |                             |                                            | 123                                            | 45                        | ( <sup>2</sup> )            | $\epsilon$                |
| Germany:                              |                             |                                            |                                                |                           |                             |                           |
| East                                  | .==                         | 455                                        | 1,102                                          | 265                       |                             |                           |
| West                                  | 173                         | 411                                        | 1,445                                          | 513                       | 115                         | 236                       |
| Mexico                                | 29,645                      | 6,725                                      | $\begin{array}{c} 35,513 \\ 2.292 \end{array}$ | 8,069<br>693              | $20,388 \\ 275$             | 5,690<br>343              |
| Netherlands<br>Peru                   | $198 \\ 36,372$             | $\begin{array}{c} 75 \\ 9.500 \end{array}$ | 49.260                                         |                           |                             | 12,948                    |
| South Africa, Republic of             | 13,519                      | 4,083                                      | 8.804                                          | $13,320 \\ 2,698$         | 42,772 $5.644$              | 1.718                     |
| Sweden                                | 15,519                      |                                            | 27                                             | 2,098                     | 43                          | 21                        |
| Switzerland                           |                             |                                            | 7,994                                          | 2,067                     | 49                          |                           |
| United Kingdom                        | 3.677                       | $1.2\overline{27}$                         | 11.777                                         | 3.160                     | $1,1\overline{21}$          | 561                       |
| Yugoslavia                            | 8,704                       | 2,258                                      | 1.651                                          | 460                       | 1,121                       | 001                       |
| Other                                 |                             |                                            | 16                                             | 23                        | 13                          | -7                        |
| Total                                 | 195,587                     | 48,620                                     | 242,390                                        | 63,445                    | 178,096                     | 52,929                    |
|                                       | 100,001                     |                                            |                                                |                           |                             |                           |
| Reclaimed scrap, etc. (lead content): |                             |                                            |                                                |                           |                             |                           |
| Australia                             | 1,741                       | 423                                        | 2,472                                          | 559                       | 1,646                       | 346                       |
| Austria                               | 100                         | 27                                         | 2,412                                          | 555                       | 1,040                       | 940                       |
| Bahamas                               | 1                           | -i                                         | 32                                             |                           | 28                          | -3                        |
| Canada                                | 889                         | 228                                        | 356                                            | 101                       | 183                         | 28                        |
| Dominican Republic                    | 000                         |                                            | 42                                             | 11                        | 18                          | -3                        |
| Mexico                                | 642                         | 85                                         | 282                                            | 42                        | 741                         | 103                       |
| Netherlands                           |                             |                                            |                                                |                           | 61                          | 23                        |
| Panama                                |                             |                                            |                                                |                           | 13                          | 10                        |
| United Kingdom                        |                             |                                            | 51                                             | 19                        |                             |                           |
| United Kingdom                        | 10                          | 1                                          |                                                |                           | 2                           | ( <sup>2</sup> )          |
| Other                                 | 10                          | -                                          |                                                |                           |                             |                           |
|                                       | 3,383                       | 765                                        | 3,235                                          | 736                       | 2,692                       | 516                       |

 $<sup>^1</sup>$  Data are "general imports"; that is, they include lead imported for immediate consumption plus material entering the country under bond.  $^2$  Less than  $\frac{1}{2}$  unit.

Table 28.-U.S. imports for consumption 1 of lead, by country

|                                      | 19'                 | 71              | 1972                                        |                 | 1973               |                |
|--------------------------------------|---------------------|-----------------|---------------------------------------------|-----------------|--------------------|----------------|
| Country                              | Quantity<br>(short  | Value<br>(thou- | Quantity<br>(short                          | Value<br>(thou- | Quantity<br>(short | Value<br>(thou |
|                                      | tons)               | sands)          | tons)                                       | sands)          | tons)              | sands          |
| Ore, flue dust, matte                |                     |                 |                                             |                 |                    |                |
| (lead content):                      |                     | <b>0</b> F F    | 0.7                                         | 0.5             |                    |                |
| Argentina<br>Australia               | 290                 | 57 $2,538$      | $\begin{array}{c} 27 \\ 12,887 \end{array}$ | \$7             | 50                 | \$1            |
| Australia<br>Bolivia                 | 11,382<br>9         | $\binom{2}{2}$  | 12,007                                      | 3,150           | 25,897<br>583      | 5,20<br>10     |
| Brazil                               | J                   | (-)             |                                             |                 | 372                | 6              |
| Canada                               | $36,4\overline{06}$ | 8,209           | $14,79\overline{4}$                         | $3.2\bar{63}$   | 12,017             | 2,30           |
| Colombia                             | 227                 | 43              | 234                                         | 41              | 12,011             | 2,00           |
| Honduras                             | 18,803              | 3,798           | 8,300                                       | 1,213           | 21,780             | 2.78           |
| Ireland                              | ·                   |                 |                                             |                 | 129                | <b>1</b>       |
| Mexico                               |                     | 57              | 3,432                                       | 270             | 559                | 10             |
| Morocco                              |                     | 14              | 41                                          | 9               |                    | -              |
| Nicaragua                            | 22.427              |                 | 44.050                                      | 0               | 424                |                |
| Peru                                 |                     | 4,607           | 11,910                                      | 2,596           | 32,535             | 6,71           |
| Other                                | 6                   | 39              | 17                                          | 5               | 9                  |                |
| Total                                | 88,184              | 19,362          | 51,642                                      | 10,554          | 94,355             | 17,40          |
| Base_bullion (lead content):         |                     |                 |                                             |                 |                    |                |
| Canada                               |                     |                 | 895                                         | 238             | 4                  |                |
| Mexico                               | 14                  | 4               |                                             |                 |                    | -              |
| United Kingdom                       | 27                  | 12              |                                             |                 |                    |                |
| Total                                | 41                  | 16              | 895                                         | 238             | 4                  |                |
| Pigs and bars (lead content):        |                     |                 |                                             |                 |                    |                |
| Australia                            | 43,045              | 9,512           | 38,637                                      | 9,272           | 45,550             | 12,27          |
| Belgium-Luxembourg                   | 153                 | 100             | 2,903                                       | 822             | 27                 | 6              |
| Burma                                |                     |                 | 186                                         | 46              |                    |                |
| Canada                               |                     | 14,015          | 83,008                                      | 22,285          | 61,906             | 18,94          |
| Denmark                              | 281                 | 119             | 843                                         | 331             | 242                | 12             |
| France                               |                     |                 | 123                                         | 45              | (2)                |                |
| Germany:                             |                     |                 | 1 100                                       | 965             |                    |                |
| East                                 |                     | 411             | $1,102 \\ 1,445$                            | 265<br>513      | 114                | 28             |
| West<br>Mexico                       |                     | 6,725           | 35,513                                      | 8,069           | 20,388             | 5,69           |
| Netherlands                          |                     | 75              | 2,292                                       | 693             | 275                | 34             |
| Peru                                 | 36,372              | 9.500           | 49,260                                      | 13,320          | 42,772             | 12.94          |
| South Africa, Republic of            | 13,519              | 4,083           | 8,804                                       | 2,698           | 5,644              | 1,71           |
| Sweden                               |                     | -,              | 27                                          | 22              | 43                 | 2              |
| Switzerland                          |                     |                 | 7,994                                       | 2,067           |                    |                |
| United Kingdom                       |                     | 1,223           | 11,794                                      | 3,165           | 1,121              | 56             |
| Yugoslavia                           |                     | 2,258           | 1,651                                       | 460             | 77                 |                |
| Other                                |                     |                 | 16                                          | 23              | 13                 |                |
| Total                                | 192,570             | 48,021          | 245,598                                     | 64,096          | 178,095            | 52,92          |
| Reclaimed scrap, etc.                |                     |                 |                                             |                 |                    |                |
| (lead content):                      |                     |                 |                                             |                 | •                  |                |
| Australia                            | . 976               | 264             | 990                                         | 273             | 1,699              | 38             |
| Bahamas                              | . 1                 | 1               | 32                                          | 4               | 28                 |                |
| Canada                               | . 889               | 228             | 356                                         | 101             | 183                | 2              |
| Dominican Republic                   |                     | 25              | 42                                          | 11              | 18                 |                |
| Mexico                               |                     | 85              | 282                                         | 42              | 741                | 19             |
| Netherlands                          |                     |                 | 51                                          | <u></u>         | 61<br>13           | 2              |
| PanamaUnited Kingdom                 |                     |                 |                                             |                 | 19                 |                |
| Other                                | 10                  | - <u>ī</u>      |                                             |                 | 2                  | (2)            |
|                                      |                     | 579             | 1,753                                       | 450             | 2,745              | 55             |
|                                      | 2,010               | 319             | 1,100                                       | 400             | 2,140              |                |
| Sheets, pipe, and shot:              |                     | _               |                                             |                 |                    |                |
| Belgium-Luxembourg                   | _ 20                | 7<br>37         | 25                                          | 10<br>r 13      | 18                 |                |
| Canada                               | . 82<br>r 1         | r 2             | r 29                                        | . 19            | 8<br>1             |                |
| Germany, West                        |                     | - 2             |                                             |                 | (2)                | (2)            |
| Japan                                |                     | $\bar{23}$      | r 43                                        | r 15            | 11                 | (-)            |
| NetherlandsSouth Africa, Republic of |                     | 20              | 15                                          | 7               | 11                 |                |
| United Kingdom                       |                     | 18              | r 37                                        | r 16            |                    |                |
| Yugoslavia                           |                     |                 | 30                                          | 8               |                    |                |
| Total                                | r 238               | r 87            | r 179                                       | r 69            | 38                 |                |
|                                      |                     |                 |                                             |                 |                    |                |
| Grand Total                          | r 283,551           | r 68,065        | r 300.067                                   | r 75,407        | 275,237            | 70,8           |

 $<sup>^{\</sup>rm r}$  Revised.  $^{\rm 1}$  Excludes imports for refining, classified as "imports for consumption" by the Bureau of the Census.  $^{\rm 2}$  Less than  $\frac{1}{2}$  unit.

Table 29.-U.S. imports for consumption of lead, by class 1

(Thousand short tons and thousand dollars)

| Yea                  |   | flue dus<br>and mat | l in ore<br>t or fume,<br>te, n.s.p.f<br>content) | bullio          | in base<br>on (lead<br>tent) | Pigs              | and bar<br>content         | s scra        | aimed<br>p, etc.<br>ead<br>cent) |                   | s, pipe<br>shot    | Not<br>other-<br>wise<br>speci- | Total<br>value                 |
|----------------------|---|---------------------|---------------------------------------------------|-----------------|------------------------------|-------------------|----------------------------|---------------|----------------------------------|-------------------|--------------------|---------------------------------|--------------------------------|
|                      | _ | Quan-<br>tity       | Value                                             | Quan-<br>tity   | Value                        | Quan-<br>tiţy     | Value                      | Quan-<br>tity | Value                            | Quan-<br>tity     | Value              | fied<br>(value)                 |                                |
| 1971<br>1972<br>1973 |   | 88<br>52<br>94      | 19,362<br>10,554<br>17,409                        | (2)<br>1<br>(2) | 16<br>238<br>1               | 193<br>246<br>178 | 48,021<br>64,096<br>52,927 | 3<br>2<br>3   | 579<br>450<br>522                | (2)<br>(2)<br>(2) | r 87<br>r 69<br>18 | r 305<br>r 316<br>285           | r 68,370<br>r 75,723<br>71,162 |

Table 30.-U.S. imports for consumption of miscellaneous products containing lead

| Year | Babbitt metal, solder, white<br>metal, and other combinations<br>containing lead |                 |                      |  |  |  |  |
|------|----------------------------------------------------------------------------------|-----------------|----------------------|--|--|--|--|
|      | Gross weight<br>(short tons)                                                     | Lead<br>content | Value<br>(thousands) |  |  |  |  |
| 1971 | 1,497                                                                            | 570             | \$4,433              |  |  |  |  |
| 1972 | 1,197                                                                            | 464             | 3,354                |  |  |  |  |
| 1973 | 1,440                                                                            | 533             | 4,780                |  |  |  |  |

Table 31.-Lead: World mine production by country

(Short tons)

| Country 1        | 1971          | 1972      | 1973 Р    |  |
|------------------|---------------|-----------|-----------|--|
| North America:   |               |           |           |  |
| Canada           | 433.168       | 407.887   | 427,441   |  |
| Guatemala        | r 551         | 152       | 112       |  |
| Honduras         | 19.805        | 22.844    | 21.160    |  |
| Mexico 2         | 172,900       | 177,866   | 197,640   |  |
| Nicaragua        | 634           | 4.719     | 3,000     |  |
| United States 3  | 578,550       | 618.915   | 603.024   |  |
| South America:   | ,             | ,         | ,         |  |
| Argentina        | r 43,969      | 41.577    | 39,700    |  |
| Bolivia          | 25,491        | 22,602    | 23,131    |  |
| Brazil           | r 30,684      | 27,565    | 29,53     |  |
| Chile            | r 971         | 509       | 282       |  |
| Colombia         | 226           | 324       | 169       |  |
| Peru 4           | r 182,778     | 208.333   | 218.88    |  |
| Europe:          | 202,          |           | ,         |  |
| Austria 3        | 8,504         | 7.350     | 6.767     |  |
| Bulgaria         | 110,000       | e 110,000 | e 110.000 |  |
| Czechoslovakia e | r 6.400       | r 6.200   | 6,600     |  |
| Finland          | 5,224         | 4.243     | 2,500     |  |
| France           | r 32,816      | 29,343    | 27.60     |  |
| Germany, East e  | r 11.000      | r 7,700   | 7.700     |  |
| Germany, West    | 45,306        | 42,393    | 38.02     |  |
| Greece           | r 11.540      | 17,607    | 20,700    |  |
| Greenland        | ,             | ,         | 9.25      |  |
| Hungary e        | $1.9\bar{10}$ | r 2.610   | 2,80      |  |
| Ireland          | r 56.870      | 65,600    | 61,90     |  |
| Italy            | 34,833        | 37,148    | 30,00     |  |
| Norway           | r 3.376       | 3,455     | 3,33      |  |
| Poland           | r 69,200      | 75,000    | 77,00     |  |
|                  | 1.524         | 1.275     | 1.29      |  |
|                  | 42,000        | 42,000    | 45.00     |  |
|                  | 77.327        | 76.548    | 69.73     |  |
| Spain            | 87,583        | 83,600    | 81,70     |  |
| Sweden           | r 500,000     | 510,000   | 520,00    |  |
| U.S.S.R          | * 1,650       | 440       | 22        |  |
| United Kingdom   | 137,069       | 132,468   | • 136,70  |  |
| Yugoslavia       | 101,000       | 102,400   | 100,10    |  |

See footnotes at end of table.

<sup>&</sup>lt;sup>r</sup> Revised.

<sup>1</sup> Excludes imports for refining and export, classified as "imports for consumption" by the Bureau of the Census.

<sup>2</sup> Less than ½ unit.

Table 31.-Lead: World mine production by country-Continued (Short tons)

| Country 1                          | 1971        | 1972      | 1973 р       |
|------------------------------------|-------------|-----------|--------------|
| Africa:                            |             |           |              |
| Algeria                            | 5,200       | F F00     |              |
| Congo (Brazzaville)                | r 32        | 5,500     | 4,300        |
| Morocco                            |             | 521       | e 550        |
| Nigeria e                          | 85,980      | 95,460    | 119,054      |
| South Africa, Republic of          | 237         | 354       | 390          |
| South-West Africa, Territory of 5  |             | 151       | 1,789        |
|                                    | r 78,813    | 66,128    | 68,006       |
|                                    | r 20,800    | 20,200    | 17,635       |
| Zambia (refined)                   | 30,500      | 28,500    | 27,571       |
| Burma 6                            |             |           | <del>-</del> |
|                                    | 9,920       | r 9,920   | 11,570       |
| China, People's Republic of eIndia | r 110,000   | r 110,000 | 110,000      |
| T. 1                               | r 1,715     | 2,798     | 4,728        |
|                                    | 220         | 220       | 220          |
| T                                  | r 26,500    | 35,000    | 33,000       |
| Japan 7                            | 77,808      | 69,946    | 58,300       |
| Korea, North e                     | 88,000      | r 99,000  | 105,000      |
| Korea, Republic of                 | 18,236      | 16,224    | 14.188       |
| rakistan                           | 7           | r (8)     | (8)          |
| Philippines                        | r e 22      | ( )       | ( )          |
| Thailand                           | r 1.624     | 2.005     | e 2.200      |
| Turkey                             | 7,260       | r e 6.860 | 3,279        |
| Jceania:                           | 1,200       | 0,000     | 3,419        |
| Australia                          | r 444,844   | 443,753   | 445 100      |
| New Zealand 9                      | 1.373       | 1,273     | 447,139      |
|                                    |             |           | 362          |
| Total                              | r 3,742,950 | 3,802,086 | 3,852,190    |

e Estimate. Preliminary. r Revised.

7 Content of concentrates.

8 Less than ½ unit.

9 Contained in lead-copper concentrate.

Estimate. P Preliminary. Revised.

In addition to the countries listed, Uganda and Arab Republic of Egypt may produce lead, but available information is inadequate to make reliable estimates of output levels.

Recoverable metal content of lead in concentrates for export plus lead content of domestic products (refined lead, antimonial lead, mixed bars, and other unspecified items).

products (refined lead, antimonial lead, mixed bars, and other unspecified items).

Recoverable metal.

Recoverable metal; content of lead in concentrates for exports plus lead content of domestic smelter products (refined lead, antimonial lead, and bismuth-lead bars).

All data for 1971 are for fiscal year ending June 30, 1971; data for 1972 and 1973 are a summation of company figures for calendar year 1972 and 1973 for Tsumeb Corp. Limited and for fiscal year ending June 30, 1972, and June 30, 1973, for South-West Africa Co. Limited, South African Iron and Steel Industrial Corporation Ltd., and Rosh Pinah mine. Output of Tsumeb Corp. Limited for period July 1, 1971, through December 31, 1971 (which is not otherwise covered in table), was 30,590 short tons.

Year beginning March 21 of that stated.

Table 32.-Lead: World smelter production by country 1 (Short tons)

| Country                                     | 1971                 | 1972                | 1973 р    |
|---------------------------------------------|----------------------|---------------------|-----------|
| North America:                              |                      |                     |           |
| Canada (refined)                            | <sup>2</sup> 185,555 | 205,978             | 202,500   |
| Guatemala <sup>2</sup>                      | 99                   | 24                  | 72        |
| Mexico (refined)                            | r 166.968            | 171,762             | 190,621   |
| United States (refined) 3                   | 650,015              | 688,584             | 687,739   |
| South America:                              |                      |                     | ,         |
| Argentina                                   | r 48.300             | 43,700              | 41,700    |
| Bolivia (refined, including solder)         | 20                   | e 22                | e 22      |
| Brazil                                      | r 28,270             | 27,594              | 38,357    |
| Peru (refined)                              | 74.004               | 94.311              | 91,361    |
| Europe:                                     | ,                    | ,                   | -2,0      |
| Austria 4                                   | 10,267               | 10.777              | 10,927    |
| Belgium <sup>2</sup>                        | 87,413               | 102,294             | 107,696   |
| Bulgaria <sup>2</sup>                       | 112,650              | 112,440             | e 110,000 |
| Czechoslovakia 2                            | 19,412               | 20,060              | 22,000    |
| France                                      | r 117,183            | 150,061             | 142,200   |
| Germany, East e                             | r 28,000             | 22,000              | 22,000    |
| Germany, West                               | 108,470              | 112,440             | 95,240    |
| Greece (refined)                            | r 21,830             | 22,490              | 22,930    |
| Hungary e 2                                 | 790                  | r 510               | 550       |
| Italy                                       | r 53.447             | 55.758              | 38,639    |
| Netherlands <sup>2</sup>                    | 26.172               | 24,230              | 27.840    |
| Poland (refined) <sup>2</sup>               | 66,400               | 71,980              | 71.650    |
| Portugal (refined)                          | 1,300                | 1,300               | 1,100     |
| Romania e                                   | 40,000               | 40.000              | 43,000    |
| Spain                                       | r 112.452            | 111,052             | 109,495   |
| Sweden (refined)                            | r 43,411             | 52,463              | e 55.000  |
| U.S.S.R. (primary) e                        | r 500,000            | 510,000             | 520,000   |
| U.S.S.R. (primary)                          | 42.580               | 27,615              | 33,407    |
| United Kingdom 5                            | 109,282              | 96.448              | 108.068   |
| Yugoslavia (refined) <sup>2</sup> Africa:   | 109,202              | 30,440              | 100,000   |
| Morocco                                     | 20.631               |                     |           |
| South-West Africa, Territory of (refined) 6 | 64,838               | $70.50\overline{5}$ | 70.098    |
| Tunisia                                     | 21.119               | 7 27.638            | 7 28.619  |
| Zambia (refined)                            | 30,500               | 28,500              | 27,600    |
|                                             | 30,300               | 20,000              | 21,000    |
| Asia:                                       | r 9.672              | 9,294               | 10,915    |
| Burma<br>China, People's Republic of e      | 110,000              | 110.000             | 110,000   |
|                                             | 1.707                | 3,020               | 3,147     |
| India                                       | 200                  | r 210               | 220       |
| Iran e 8                                    | 237.056              | 246.064             | 251.366   |
| Japan (refined) 2                           | r 77.000             | r 83,000            | 88,000    |
| Korea, North e                              | 3,456                | 4,196               | 4,828     |
| Korea, Republic of                          | 3,530                | 2,650               | 3,530     |
| Turkey                                      | 3,930                | 2,000               | 0,000     |
| Oceania:                                    | 356,731              | 383,690             | 408,326   |
|                                             | 50h.751              | 202.020             | 400.040   |
| Australia (refined and bullion)             | r 3,590,730          | 3,744,660           | 3,800,753 |

<sup>c</sup> Estimate. 

Preliminary. 

Revised.

Primary except as noted, or where source does not differentiate.

Includes recovery from secondary materials.

Refined from domestic and foreign ores; excludes lead refined from imported base bullion.

Includes primary lead content of antimonial lead.

Lead bullion from imported ores and concentrates.

Data for 1971 are for years ended June 30, 1971. Data for 1972 and 1973 are for calendar years. Output for the last 6 months of 1971 was 36,506 short tons.

Pig lead only (excludes lead content of antimonial lead).

Year beginning March 21 of year stated.



### Lime

#### By Avery H. Reed 1

Lime output in 1973 increased 4% to 21.1 million tons, a new annual record. Total value was a record \$368.1 million, 8% above

Other highlights of the year included plans by J. E. Baker Co. to install a gascleaning scrubber system at its Millersville, Ohio plant. Black River Mining Co. was doubling its plant at Carntown, Ky., to a total capacity of 700,000 tons per year by late 1975. Colorado Lien Co. planned to build a \$3 million lime plant near Buena Vista, Colo.; a vertical kiln will produce quicklime. Dravo Corp. organized a new company, Dravo Lime Co., which planned to construct a 3,000-ton-per-day lime plant near Maysville, Ky.

The Flintkoke Co. planned to replace its 80-ton-per-day limekiln at Nelson, Ariz. with a new 800-ton-per-day, \$10 million plant.

A strike at Mississippi Lime Co.'s Missouri plant caused serious shortages of lime in the Midwest. This is the largest limekiln in the country. Rangaire Corp. purchased the Tennessee and Virginia lime plants of Foote Mineral Co.; they will operate as Tennessee Lime Co. and Virginia Lime Co. Southern Industries formed a new company, SI Lime Co., which will operate the Longview plant in Alabama and the Pelican State Lime Co. plant in Louisiana.

Energy.-The Bureau of Mines completed a comprehensive canvass of energy used in the mineral industries in 1973. All lime plants were covered.

The canvass showed that the lime industry depended on the use of coal and natural gas for most of its energy requirements. Only 2% of the total energy was purchased electricity. Total energy used was 39.9 billion kilowatt-hours.

Coal supplied 46% and natural gas 45% of the total energy used, mostly for heat in the calciners. The choice of fuel for individual plants was usually based on geographic proximity to supplies; leading coalusing States were Ohio, Pennsylvania, Missouri, Indiana, and Illinois, which together consumed 69% of the coal; leading naturalgas-using States were Ohio, Texas, Pennsylvania, Michigan, and New York, which together consumed 54% of the natural gas.

The lime industry used 2.6 million tons

Table 1.-Salient lime statistics in the United States 1 (Thousand short tons and thousand dollars)

| (                                                                                      |                                      |                                      |                                      |                                      |                                      |
|----------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
|                                                                                        | 1969                                 | 1970                                 | 1971                                 | 1972                                 | 1973                                 |
| Number of plants                                                                       | 201                                  | 194                                  | 187                                  | 185                                  | 175                                  |
| Sold or used by producers:  Quicklime  Hydrated lime  Dead-burned dolomite             | 15,479<br>2,864<br>1,866             | 15,248<br>3,126<br>1,373             | 15,138<br>3,446<br>1,007             | 16,611<br>2,604<br>1,075             | 17,230<br>2,610<br>1,250             |
| Total<br>Value <sup>2</sup><br>Average value per ton                                   | 20,209<br>280,736<br>13.89<br>13.113 | 19,747<br>286,155<br>14.49<br>12.718 | 19,591<br>308,100<br>15.73<br>12.337 | 20,290<br>339,304<br>16.72<br>13.353 | 21,090<br>365,849<br>17.35<br>14.394 |
| Lime sold<br>Lime used<br>Exports <sup>3</sup><br>Imports for consumption <sup>3</sup> | 7,096<br>51<br>184                   | 7,029<br>54<br>202                   | 7,254<br>66<br>242                   | 6,937<br>38<br>248                   | 6,696<br>37<br>334                   |

<sup>1</sup> Excludes regenerated lime. Excludes Puerto Rico.

<sup>&</sup>lt;sup>1</sup> Supervisory physical scientist, Division of Nonmetallic Minerals—Mineral Supply.

Selling value, f.o.b. plant, excluding cost of containers.
 Bureau of the Census.

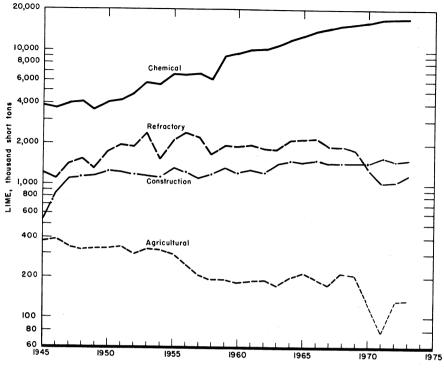



Figure 1.-Trends in major uses of lime.

of coal, 59.6 billion cubic feet of natural gas, 186,000 tons of coke, 848 million kilowatt-hours of purchased electricity, 16.4 million gallons of heavy fuel oil, 9.8 million gallons of diesel oil, 686,000 gallons of gasoline, and 127,000 gallons of propane.

Requirements for each thousand tons of lime produced were 124 tons of bituminous coal, 2.8 million cubic feet of natural gas, 9 tons of coke, 774 gallons of heavy fuel oil, 465 gallons of diesel fuel, 32 gallons of gasoline, and 6 gallons of propane.

Cost of energy used in the lime-manufacturing industry was estimated at \$67.8 million, or \$3.21 per ton of lime produced. Each ton of lime required 1,890 kilowatthours of energy.

Table 2.—Energy used by the lime industry in 1973

(Thousand kilowatt-hours)

| Source                                                                                                     | Energy<br>used                                                                            | Percent                                |
|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------|
| Coal Natural gas Coke Electricity Heavy fuel oil Diesel fuel Gasoline Liquefied petroleum gas Total energy | 18,530,000<br>18,000,000<br>1,417,000<br>847,900<br>717,600<br>399,700<br>25,110<br>4,876 | 46<br>45<br>3<br>2<br>2<br>1<br>1<br>1 |

<sup>&</sup>lt;sup>1</sup> Data does not add to total shown because of independent rounding.

LIME 717

Table 3.—Energy materials used by the lime industry in 1973

| Source and unit                    | Quantity |
|------------------------------------|----------|
| Coalthousand short tons            | 2,629    |
| Natural gasmillion cubic feet      |          |
| Cokethousand short tons            |          |
| Electricitythousand kilowatt-hours |          |
| Heavy fuel oilthousand gallons     |          |
| Diesel oildo                       |          |
| Gasolinedo                         |          |
| Liquefied petroleum gasdo          |          |

Table 4.—Energy materials required by the lime industry in 1973

| Source and unit                                                       | Quantity     |
|-----------------------------------------------------------------------|--------------|
| Coaltons per thousand tons of lime                                    | 124<br>2,820 |
| Natural gascubic feet per ton<br>Coke _tons per thousand tons of lime | 9            |
| Electricitykilowatt-hours per ton<br>Heavy fuel oil                   |              |
| gallons per thousand tonsdo                                           | . 465        |
| Gasolinedo<br>Liquefied petroleum gasdo                               | . 32         |

Table 5.-Cost of energy used in the lime industry in 1973

| Source  | Total<br>energy<br>cost                                                                           | Cost per<br>thousand<br>kilowatt-<br>hours    | Cost per<br>short<br>ton                | Kilowatt-<br>hours per<br>short ton |
|---------|---------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------|-------------------------------------|
| Coal    | \$26,290,000<br>20,860,000<br>9,300,000<br>8,479,000<br>1,636,000<br>983,700<br>240,100<br>63,500 | \$0.65<br>.52<br>.23<br>.21<br>.4<br>.2<br>.1 | \$1.24<br>.99<br>.44<br>.40<br>.8<br>.5 | 876<br>851<br>67<br>40<br>34<br>19  |
| Total 1 | 67,850,000                                                                                        | 1.69                                          | 3.21                                    | 1,890                               |

Data may not add to totals shown because of independent rounding.

#### DOMESTIC PRODUCTION

Lime producers sold or used 21.1 million tons, compared with 20.3 million tons in 1972. Sales of lime increased 8% to 14.4 million tons for a new annual record. Captive lime used by producers decreased 4% and was 8% below the 1971 record. Output of refractory dolomite increased 16% but was 48% below the 1956 record. The number of plants decreased from 186 to 176, and the average output per plant increased from 109,300 tons per year to 120,100 tons.

Five States, Ohio, Pennsylvania, Texas, Missouri, and Michigan, accounted for 54% of the total output.

Leading producing companies were Marblehead Lime Co. with four plants in Illinois, one in Indiana, and one each in Michigan, Pennsylvania, and Missouri; Mississippi Lime Co. in Missouri; Allied Chemical Corp. in New York and Louisiana; Bethlehem Steel Corp. with two plants in Pennsylvania and one in New York; Martin-

Marietta Chemicals in Ohio and Alabama; Pfizer, Inc., in Ohio, Massachusetts, California, and Connecticut; Warner Co. with two plants in Pennsylvania; United States Gypsum Co. with two plants in Texas and one each in Ohio and Louisiana; Diamond Shamrock Chemical Co. in Ohio; and United States Steel Corp. in Ohio. These 10 companies, operating 28 plants, accounted for 42% of the total lime production.

The 12 largest lime plants, each producing more than 400,000 tons per year, accounted for 32% of the total production. There were 39 plants which produced more than 200,000 tons per year and accounted for 67% of the total output.

Leading individual plants were Mississippi Lime's Ste. Genevieve plant, Marblehead's Buffington plant, Allied Chemical Corp.'s Syracuse plant, Bethlehem's Annville plant, and Diamond Shamrock's Painesville plant.

Table 6.-Lime sold or used by producers in the United States by State and kind 1 (Thousand short tons and thousand dollars)

|                |              | 1972           |                    |         |          | 197              | '3                 |         |
|----------------|--------------|----------------|--------------------|---------|----------|------------------|--------------------|---------|
| State          | Hydrated     | Quick-<br>lime | Total <sup>2</sup> | Value   | Hydrated | Quick-<br>lime   | Total <sup>2</sup> | Value   |
| Alabama        | 136          | 603            | 739                | 11,751  | 140      | 741              | 881                | 14,050  |
| Arizona        | w            | w              | 356                | 6,024   | w        | w                | 365                | 7,019   |
| Arkansas       | $\mathbf{w}$ | w              | 150                | 2,456   | w        | w                | 177                | 2,742   |
| California     | 66           | 542            | 608                | 13,059  | 57       | 575              | 632                | 13,602  |
| Colorado       | $\mathbf{w}$ | w              | 187                | 4,070   | 7        | 172              | 178                | 3,371   |
| Florida        | w            | w              | 180                | 3,527   | w        | w                | 187                | 4,026   |
| Hawaii         | w            | w              | 7                  | 266     | w        | w                | - 6                | 238     |
| Kansas         |              | 9              | 9                  | 172     |          | 10               | 10                 | 199     |
| Louisiana      | $\mathbf{w}$ | w              | 908                | 19,614  | w        | w                | 897                | 16,801  |
| Maryland       | 5            | 11             | 17                 | w       | ŵ        | w                | w                  | w       |
| Michigan       | w            | w              | 1,509              | 22,753  |          | 1,545            | 1,545              | 26,055  |
| Missouri       | w            | w              | W                  | w       | 254      | 1,373            | 1,626              | 23,534  |
| Montana        |              | 242            | 242                | 3,003   |          | 210              | 210                | 3,028   |
| Nebraska       |              | 34             | 34                 | 685     |          | 31               | 31                 | 651     |
| New Mexico     |              | 28             | 28                 | w       |          | 44               | 44                 | 793     |
| Ohio           | 243          | 4,171          | 4,413              | 75,569  | 227      | 4,163            | 4.389              | 77,028  |
| Oregon         | w            | w              | 96                 | 2,129   | w        | w                | 106                | 2,552   |
| Pennsylvania   | 380          | 1,511          | 1.891              | 33,802  | 399      | 1,862            | 2,260              | 40,949  |
| Puerto Rico    | 42           | w              | 42                 | 1,776   | 42       |                  | 42                 | 2,215   |
| South Dakota   | w            | w              | $\bar{\mathbf{w}}$ | , w     | 39       | $\bar{2}\bar{4}$ | 63                 | 1,206   |
| Texas          | 609          | 1.021          | 1,631              | 22.181  | 655      | 1.022            | 1,677              | 26,887  |
| Utah           | w            | w              | 171                | 4,216   | w        | w                | 185                | 3,804   |
| Virginia       | 69           | 690            | 758                | 11,739  | 68       | 715              | 782                | 12,205  |
| Wisconsin      | w            | w              | 263                | 5,009   | 111      | 199              | 310                | 6,004   |
| Wyoming        |              | 30             | 30                 | w       |          | 30               | 30                 | 548     |
| Other States 3 | 1,095        | 8,795          | 6,064              | 97,279  | 653      | 5,764            | 4,499              | 78,556  |
| Total 2        | 2,645        | 17,687         | 20,332             | 341,080 | 2,652    | 18,480           | 21,132             | 368,063 |

Table 7.-Lime sold or used by producers in the United States, by State and market 1 (Thousand short tons)

|                |        | •            |              | ,       |        |              |              |         |
|----------------|--------|--------------|--------------|---------|--------|--------------|--------------|---------|
| State          |        | 19           | 72           |         |        | 19           | 73           |         |
| State          | Plants | Sold         | Captive      | Total 2 | Plants | Sold         | Captive      | Total 2 |
| Alabama        | - 5    | $\mathbf{w}$ | w            | 739     | 5      | w            | w            | 881     |
| Arizona        | 8      | 222          | 133          | 356     | 8      | 237          | 128          | 365     |
| Arkansas       | 3      | w            | $\mathbf{w}$ | 150     | 3      | $\mathbf{w}$ | w            | 177     |
| California     | 15     | 223          | 385          | 608     | 15     | 243          | 388          | 632     |
| Colorado       | 11     | 5            | 182          | 187     | 11     | 7            | 172          | 178     |
| Florida        | 3      | $\mathbf{w}$ | w            | 180     | 3      | w            | w            | 187     |
| Hawaii         | 2      | w            | w            | 7       | 2      | w            | $\mathbf{w}$ | 6       |
| Kansas         | 1      |              | 9            | 9       | 1      |              | 10           | 10      |
| Louisiana      | 4      | w            | $\mathbf{w}$ | 908     | 4      | w            | w            | 897     |
| Maryland       | 1      | 17           |              | 17      | 1      | w            | $\mathbf{w}$ | w       |
| Michigan       | 10     | w            | Ŵ            | 1,509   | 9      | w            | w            | 1,545   |
| Missouri       | 4      | w            | $\mathbf{w}$ | · w     | 4      | w            | $\mathbf{w}$ | 1,626   |
| Montana        | 3      |              | 242          | 242     | 3      |              | 210          | 210     |
| Nebraska       | 5      |              | 34           | 34      | 5      | 4            | 27           | 31      |
| New Mexico     | 1      |              | 28           | 28      | 1      |              | 44           | 44      |
| Ohio           | 19     | 2,525        | 1,888        | 4,413   | 19     | 2,914        | 1,476        | 4,389   |
| Oregon         | 3      | w            | w            | 96      | 3      | $\mathbf{w}$ | w            | 106     |
| Pennsylvania   | 11     | $\mathbf{w}$ | $\mathbf{w}$ | 1,891   | 9      | $\mathbf{w}$ | w            | 2,260   |
| Puerto Rico    | 1      | 42           |              | 42      | 1      | 42           |              | 42      |
| South Dakota   | 2      | w            | w            | w       | 1      | 63           |              | 63      |
| Texas          | 15     | 1,061        | 570          | 1,631   | 14     | 1,090        | 587          | 1,677   |
| Utah           | 5      | w            | w            | 171     | 5      | w            | w            | 185     |
| Virginia       | 7      | $\mathbf{w}$ | w            | 758     | 7      | w            | w            | 782     |
| Wisconsin      | 6      | 263          |              | 263     | 5      | 310          |              | 310     |
| Wyoming        | 3      |              | 30           | 30      | 3      |              | 30           | 30      |
| Other States 3 | 38     | 9,028        | 3,446        | 6,064   | 35     | 9,526        | 3,624        | 4,499   |
| Total 2        | 186    | 13,385       | 6,947        | 20,332  | 176    | 14,436       | 6,696        | 21,132  |

W Withheld to avoid disclosing individual company confidential data; included in "Other States."

1 Excludes regenerated lime. Includes Puerto Rico.

2 Data may not add to totals shown because of independent rounding.

3 Includes Connecticut, Idaho, Illinois, Indiana, Iowa, Kentucky, Massachusetts, Minnesota, Mississippi, Nevada, New Jersey, New York, North Dakota, Oklahoma, Tennessee, Washington, West Virginia, and States indicated by symbol W.

W Withheld to avoid disclosing individual company confidential data; included in "Other States."

1 Excludes regenerated lime. Includes Puerto Rico.

2 Data may not add to totals shown because of independent rounding.

3 Includes Connecticut (1 plant), Idaho (4), Illinois (5), Indiana (1), Iowa (1), Kentucky (1),

Massachusetts (2), Minnesota (3), Mississippi (1), Nevada (3), New Jersey (1), New York (2),

North Dakota (1), Oklahoma (1), Tennessee (2), Washington (3), West Virginia (2), and States indicated by symbol W.

LIME 719

| Table 8Lime sold or used by | producers in | the   | United | States, | by | size | of I | plant 1 |
|-----------------------------|--------------|-------|--------|---------|----|------|------|---------|
|                             | (Thousand sh | ort t | ons)   |         |    |      |      |         |

|                       |                                  | 1972                                                    |                                     |                                        | 1973                                                  |                                    |  |  |
|-----------------------|----------------------------------|---------------------------------------------------------|-------------------------------------|----------------------------------------|-------------------------------------------------------|------------------------------------|--|--|
| Size of plant         | Plants                           | Quantity                                                | Percent<br>of total                 | Plants                                 | Quantity                                              | Percent<br>of total                |  |  |
| Less than 10,000 tons | 35<br>33<br>31<br>30<br>21<br>29 | 176<br>537<br>1,087<br>2,207<br>3,052<br>8,508<br>4,765 | 1<br>3<br>5<br>11<br>15<br>42<br>23 | 29<br>31<br>26<br>27<br>24<br>27<br>12 | 155<br>414<br>917<br>1,965<br>3,572<br>7,370<br>6,739 | 1<br>2<br>4<br>9<br>17<br>35<br>32 |  |  |
| Total                 | 186                              | 20,332                                                  | 100                                 | 176                                    | 21,132                                                | 100                                |  |  |

<sup>&</sup>lt;sup>1</sup> Excludes regenerated lime. Includes Puerto Rico.

### CONSUMPTION AND USES

Lime was consumed in every State. Leading consuming States were Ohio, Pennsylvania, Michigan, Indiana, Texas, Illinois, and New York. These seven States, each of which consumed more than 1 million tons, accounted for 64% of the total lime consumed.

Leading quicklime-consuming States were Ohio, Pennsylvania, Michigan, Indiana, Illnois, and Texas, each of which consumed more than 1 million tons. These six States accounted for 60% of the quicklime consumed.

Leading hydrate-consuming States were Texas, Pennsylvania, Ohio, Illinois, Louisiana, and California, each of which consumed more than 100,000 tons. These six States accounted for 54% of the hydrate

consumed.

Lime sold by producers was used for chemicals, 80%; construction, 11%; refractories, 8%; and agriculture, 1%. Captive lime used by producers was 32% of the total, compared with 34% in 1972 and 37% in 1971.

Leading individual uses were basic oxygen steel furnaces, alkalies, water purification, refractories, and paper, which together accounted for 63% of the total consumption, compared with 62% in 1972.

Lime used in agriculture increased 2%. Lime used for refractory dolomite increased 16%. Construction uses continued to expand, increasing 2%. Lime for chemical and industrial use also continued to expand, increasing 3%.

Table 9.-Lime sold or used by producers in the United States, by use 1 (Thousand short tons and thousand dollars)

| Use                               |              |              | 1972               |              |              | 1973         |         |               |  |  |
|-----------------------------------|--------------|--------------|--------------------|--------------|--------------|--------------|---------|---------------|--|--|
|                                   | Sold         | Used         | Total <sup>2</sup> | Value        | Sold         | Used         | Total 2 | Value         |  |  |
| Agriculture                       | 137          |              | 137                | 2,711        | 140          |              | 140     | 2,796         |  |  |
| Construction:                     | •            |              |                    |              |              |              |         |               |  |  |
| Soil stabilization_               | 884          |              | 884                | 17,046       | 874          | 4            | 878     | 15 505        |  |  |
| Mason's lime                      | w            | w            | 411                | 7,924        | 444          | 62           | 506     | 17,705        |  |  |
| Finishing lime                    | ŵ            | ŵ            | 229                | 4,415        | 219          |              |         | 10,216        |  |  |
| Other construction                |              | • • •        |                    | -,           | 210          |              | 219     | 4,422         |  |  |
| uses                              | 60           |              | 60                 | 1,157        | 9            |              | 9       | 100           |  |  |
| Total 2                           | W            | W            | 1,586              | 30,542       | 1.546        | 66           | 1,611   | 182<br>32,525 |  |  |
| Chemical and industria            | 1.           |              |                    |              | 1,010        |              | 1,011   | 02,020        |  |  |
| Steel, BOF                        |              | 1,126        | C 047              | 00 570       | F 410        |              |         |               |  |  |
| Alkalies                          | 10           | 3.222        | 6,047              | 98,570       | 5,612        | 1,454        | 7,065   | 117,138       |  |  |
| Water purification                | w            | 3,222<br>W   | 3,233              | 52,700       | 5            | 2,679        | 2,683   | 48,811        |  |  |
| Paper and pulp                    | w            | w            | 1,403              | 22,870       | 1,458        | 10           | 1,469   | 23,743        |  |  |
| Sugar refining                    | 41           |              | 787                | 12,830       | 832          | 75           | 907     | 14,809        |  |  |
| Steel, open-hearth                | W            | 718          | 759                | 12,370       | 79           | 696          | 775     | 13,937        |  |  |
| Steel, electric                   | W            | W            | 665                | 10,840       | 593          | 82           | 675     | 11,074        |  |  |
| Copper ore                        | w            | W            | 641                | 10,450       | 575          | 65           | 640     | 10,474        |  |  |
| concentration                     | 264          | 283          | 548                | 8,923        | 275          | 355          | 630     | 10.901        |  |  |
| Sewage treatment Aluminum and     | 334          | 100          | 434                | 7,074        | 440          | 12           | 452     | 7,239         |  |  |
| bauxite                           | w            | w            | 368                | 5,998        | w            | 337          | 000     |               |  |  |
| Glass                             | 372          | **           | 372                | 6,064        |              | $\mathbf{w}$ | 390     | 6,639         |  |  |
| Calcium carbide                   | w            | w            | 357                |              | 368          |              | 368     | 5,947         |  |  |
| Petrochemicals                    | ŵ            | w            | w                  | 5,819<br>W   | W            | W            | 216     | 3,710         |  |  |
| Acid mine water                   | **           | **           | vv                 | vv           | 162          |              | 162     | 2,618         |  |  |
| neutralization                    | $\mathbf{w}$ | $\mathbf{w}$ | 49                 | 791          | 71           | 3            | 73      | 1,202         |  |  |
| Precipitated calcium              |              |              |                    |              | -            | _            |         | 1,202         |  |  |
| carbonate                         | w            | w            | 337                | 377          |              |              |         |               |  |  |
| Metallurgy, other                 | W            |              | w                  | w            | $\mathbf{w}$ | w            | 70      | 1,198         |  |  |
| Magnesium metal_                  | w            | W            | 53                 | 868          | w            | w            | 69      | 1,172         |  |  |
| Petroleum refining                |              | W            | w                  | w            | 37           | 15           | 52      | 871           |  |  |
|                                   | 47           |              | 47                 | 765          | 43           |              | 43      | 695           |  |  |
|                                   | w            | W            | w                  | $\mathbf{w}$ | 2            | 40           | 42      | 760           |  |  |
| Plastics<br>Food                  | w            | W            | $\mathbf{w}$       | w            | 37           |              | 37      | 598           |  |  |
|                                   | w            | W            | 77                 | 1,257        | 33           |              | 33      | 533           |  |  |
| Tanning<br>Ore concentration.     | 24           |              | 24                 | 396          | 26           |              | 26      | 420           |  |  |
| other                             | w            | ***          |                    |              |              |              |         |               |  |  |
| Insecticides                      |              | W            | 26                 | 424          | 24           |              | 24      | 388           |  |  |
| Oil well deilier                  | 30           |              | 30                 | 484          | 24           |              | 24      | 388           |  |  |
| Oil well drilling _<br>Fertilizer | 13           |              | 13                 | 211          | 13           |              | 13      | 210           |  |  |
|                                   | 9            |              | 9                  | 146          | 7            |              | 7       | 113           |  |  |
| Paint<br>Rubber                   | 3            | <del></del>  | 3                  | 53           | 3            |              | 3       | 48            |  |  |
| Wire drawing                      | W            | W            | 3                  | 43           | 3            |              | 3       | 48            |  |  |
| Silica brick                      | W            | w            | 2                  | 30           | w            | w            | 2       | 34            |  |  |
| Sulfur removal                    | W<br>W       | w            | 2                  | 27           | 2            |              | 2       | 32            |  |  |
| Other uses 3                      | w            | W            | 1                  | 23           | 1            |              | 1       | 16            |  |  |
| Total                             | w            | w            | 1,581              | 25,759       | 860          | 1,060        | 1,175   | 20,977        |  |  |
|                                   |              |              | 17,534             | 285,785      | 11,585       | 6,546        | 18,131  | 306,743       |  |  |
| Refractory dolomite               | 1,006        | 69           | 1,075              | 22,042       | 1,166        | 84           | 1,250   | 25,999        |  |  |
| Grand total 2                     | 13,395       | 6,937        | 20,332             | 341,080      | 14,436       | 6,696        | 21,132  | 368,063       |  |  |
|                                   |              |              |                    |              |              |              |         |               |  |  |

W Withheld to avoid disclosing individual company confidential data; included with "Other uses."

1 Excludes regenerated lime. Includes Puerto Rico.

2 Data may not add to totals shown because of independent rounding.

3 Includes magnesia from sea water, magnesite, coke, lithium, sand-lime brick, explosives, adhesives, manganese (1972), and uses indicated by symbol W.

LIME 721

Table 10.-Destination of shipments of lime sold or used by producers in the United States in 1973, by State 1

(Short tons)

| State                | Quicklime          | Hydrated<br>lime | Total      |
|----------------------|--------------------|------------------|------------|
| Alabama              | 336,542            | 76,760           | 413,302    |
| Alaska               | w                  | w                | 1,509      |
| Arizona              | $\mathbf{w}$       | w                | 319,629    |
| Arkansas             | 145,374            | 21,715           | 167,089    |
| California           | 765,249            | 107,179          | 872,428    |
| Colorado             | 186,142            | 23,343           | 209,48     |
| Connecticut          | 61,803             | 17,898           | 79,701     |
| Delaware             | 20,263             | 14,954           | 35,217     |
| District of Columbia | 30,628             | 5,944            | 36,572     |
| Florida              | 299,585            | 54,248           | 353,833    |
| Georgia              | 136,325            | 24,003           | 160,328    |
| Hawaii               | 574                | 6.649            | 7,223      |
|                      | 131.956            | 4,879            | 136,835    |
| ***                  | 1,049,563          | 152,729          | 1,202,292  |
| Illinois<br>Indiana  | 1.655.466          | 74.137           | 1,729,603  |
|                      |                    |                  |            |
| Iowa                 | 60,709             | 25,471           | 86,180     |
| Kansas               | 43,826             | 27,517           | 71,343     |
| Kentucky             | 330,582            | 20,113           | 350,695    |
| Louisiana            | 809,459            | 108,840          | 918,299    |
| Maine                | 40,914             | 1,946            | 42,860     |
| Maryland             | 460,996            | 22,087           | 483,083    |
| Massachusetts        | 41,585             | 24,335           | 65,920     |
| Michigan             | 1,903,646          | 41,607           | 1,945,253  |
| Minnesota            | 127,180            | 19,191           | 146,371    |
| Mississippi          | 152,344            | 17,052           | 169,396    |
| Missouri             | 180,537            | 41,079           | 221,616    |
| Montana              | 212,735            | 3,033            | 215,768    |
| Nebraska             | 44,670             | 12,818           | 57,488     |
| Nevada               | 55,600             | 6,706            | 62,306     |
| New Jersey           | 60,244             | 85,980           | 146,224    |
| New Mexico           | 90,091             | 14,509           | 104,600    |
| New York             | 978,644            | 54,167           | 1,032,811  |
| North Carolina       | 76,264             | 33,528           | 109,792    |
| North Dakota         | W                  | w                | 41,347     |
| Ohio                 | 3,257,033          | 167,930          | 3,424,963  |
| Oklahoma             | 137,190            | 67,474           | 204,664    |
| Oregon               | 103,138            | 15,909           | 119,047    |
| Pennsylvania         | 2,201,954          | 253,251          | 2,455,205  |
|                      | 2,201,554          | 7,715            | 7,715      |
|                      | $4.78\overline{1}$ | 3,498            | 8,279      |
| Rhode Island         | 39.920             | 9,492            | 49,412     |
| South Carolina       |                    | 24.375           | 34.949     |
| South Dakota         | 10,574             |                  |            |
| Tennessee            | 102,902            | 52,752           | 155,654    |
| Texas                | 1,010,246          | 637,571          | 1,647,817  |
| Utah                 | 99,176             | 23,083           | 122,259    |
| Virginia             | 119,682            | 36,561           | 156,243    |
| Washington           | 119,924            | 22,020           | 141,944    |
| West Virginia        | 309,074            | 17,818           | 326,892    |
| Wisconsin            | 119,913            | 49,139           | 169,052    |
| Wyoming              | 30,502             | 2,985            | 33,487     |
| Other States 2       | 312,683            | 54,273           | 4,471      |
| Total United States  | 18,468,188         | 2,590,263        | 21,058,451 |
| Exports:             |                    |                  |            |
| Canada               | 8,281              | 12,921           | 21,202     |
| Other countries      | 3,783              | 48,930           | 52,718     |
| Total exports        | 12,064             | 61,851           | 73,915     |
| Grand total          | 18,480,252         | 2,652,114        | 21,132,366 |
|                      |                    |                  |            |

W Withheld to avoid disclosing individual company confidential data; included with "Other States." <sup>1</sup> Excludes regenerated lime. Includes Puerto Rico.
<sup>2</sup> Includes New Hampshire, Vermont, and States indicated by symbol W.

#### **PRICES**

The average value of lime sold or used by producers in 1973 was \$17.42 per ton, an increase of 4% over the 1972 value of \$16.78 per ton.

Values for quicklime sold ranged from \$15.69 for chemical lime to \$16.20 for agricultural lime, \$18.71 for construction, and \$20.70 for refractory dolomite, and averaged \$16.21 per ton.

Values for hydrated lime sold ranged from \$20.33 for construction lime to \$21.72 for chemical lime and \$22.39 for agricultural lime, and averaged \$20.59 per ton.

#### **FOREIGN TRADE**

Exports of lime decreased 2% to 36,914 tons and were 46% below the 1968 record. Of the total quantity exported, Canada received 64%, Mexico 12%, and the United Kingdom 10%. The remaining 14% went to 32 countries, listed in order: Jamaica, Surinam, British Bahamas, West Germany, Dominican Republic, Brazil, Panama, New Zealand, Saudi Arabia, Nicaragua, Bermuda, Ethiopia, Australia, Denmark, Austria, Japan, Leeward and Windward Islands, Sweden, Argentina, Honduras, Pacific Trust

Islands, Venezuela, Liberia, Antilles, Nigeria, British Honduras, Belgium, Tanzania, Philippines, Chile, Angola, and the Netherlands.

Table 11.-U.S. exports of lime

|      | Year | Quantity<br>(short tons) | Value<br>(thousands) |
|------|------|--------------------------|----------------------|
| 1971 |      | 65,862                   | \$1,971              |
| 1972 |      | 37,659                   | 1,242                |
| 1973 |      | 36,914                   | 1,208                |

Table 12.-U.S. imports for consumption of lime

|                     | Hydrated lime |                          | Othe                 | r lime                   | Total                |                          |                      |
|---------------------|---------------|--------------------------|----------------------|--------------------------|----------------------|--------------------------|----------------------|
|                     | Year          | Quantity<br>(short tons) | Value<br>(thousands) | Quantity<br>(short tons) | Value<br>(thousands) | Quantity<br>(short tons) | Value<br>(thousands) |
| 1971                |               | 39,807                   | \$618                | 202,477                  | \$2,690              | 242,284                  | \$3,308              |
| $\frac{1972}{1973}$ |               | . 37,468<br>. 47,309     | 724<br>941           | 210,995<br>286,703       | 3,224<br>4,302       | 248,463<br>334,012       | 3,948<br>5,243       |

#### WORLD REVIEW

Lime is produced all over the world, mainly in the heavily industrialized areas. Source materials are plentiful. The United States ranks second in world production, with 18% of the total; foreign production is reviewed in the following paragraphs.

Canada.—Beachville Lime Ltd., a subsidiary of Dominion Foundries and Steel Ltd., purchased the Beachville, Ontario, lime plant of Cyanamid of Canada Ltd.

Germany, West.—West Germany ranked fourth in world lime output, with 10% of the total production.

Japan.—Japan produced 11% of the world's lime, ranking third. Most of the

lime was used in steel mills.

**Poland.**—Poland produced 7% of the world's lime and ranked fifth among the countries.

U.S.S.R.—The U.S.S.R. was the leading lime-producing country in the world, with 20% of the total output.

United Kingdom.—Tilling Construction Services Ltd. installed a new lime plant with two rotary kilns and preheaters at Swinden.

Zambia.—Ndola Lime Co. was building a lime plant, to produce 550 tons of lime per day.

Table 13.-Quicklime and hydrated lime, including dead-burned dolomite: World production by country

(Thousand short tons)

| Country 1                                 | 1971             | 1972                                     | 1973 P           |
|-------------------------------------------|------------------|------------------------------------------|------------------|
| North America:                            |                  |                                          |                  |
| Canada                                    | r 1,598          | 1,730                                    | 1,826            |
| Costa Rica                                | 12               | 13                                       | 14               |
| Guatemala e                               | 25<br>151        | $\begin{array}{c} 25 \\ 183 \end{array}$ | 25<br>241        |
| Jamaica<br>Nicaragua <sup>e</sup>         | 100              | 100                                      | 100              |
| Puerto Rico                               | 44               | 42                                       | 42               |
| United States (sold or used by producers) | 19,591           | 20,290                                   | 21,090           |
| South America:                            |                  |                                          | -                |
| Brazil e                                  | 2,200            | 2,200                                    | 2,200            |
| Colombia e                                | 1,100            | 1,100                                    | 1,100            |
| Paraguay                                  | 26               | 27                                       | 28               |
| Peru e                                    | 11               | 11                                       | 11               |
| Uruguay                                   | 53               | e 55                                     | 53               |
| Europe:                                   | - 040            | 015                                      | 1 000            |
| Austria                                   | r 849            | 917                                      | 1,060<br>• 3,800 |
| Belgium                                   | r 3,284          | $3,559 \\ 1.047$                         | 1,047            |
| Bulgaria e                                | $1,047 \\ 2,485$ | 2,668                                    | 2,903            |
| Czechoslovakia 2                          | 197              | 219                                      | 239              |
| Denmark                                   | 254              | 259                                      | 257              |
| Finland                                   | 4.901            | 5,330                                    | e 5.500          |
| FranceGermany, East                       | 3,097            | 3,235                                    | e 3,300          |
| Germany, West                             | r 11,634         | 12,030                                   | 12,386           |
| Hungary                                   | r 672            | 702                                      | 737              |
| Ireland                                   | r 59             | r e 72                                   | 84               |
| Italy                                     | 4,630            | <ul><li>4,400</li></ul>                  | e 4,400          |
| Malta                                     | e 61             | 65                                       | e 66             |
| Norway                                    | 110              | r e 110                                  | e 110            |
| Poland 2                                  | r 6,735          | 7,210                                    | 8,483            |
| Portugal                                  | 226              | 320                                      | 279              |
| Romania                                   | 2,481            | 2,684<br>r e 440                         | e 2,800<br>e 440 |
| Spain                                     | 393<br>r 936     | 916                                      | e 915            |
| Sweden 3                                  | r 156            | 165                                      | 152              |
| Switzerland                               | r 23.000         | r 24.000                                 | 24.000           |
| U.S.S.R. •                                | 1,755            | 1,284                                    | 1,125            |
| YugoslaviaAfrica :                        | 1,100            | 2,201                                    | -,               |
| Algeria                                   | r 44             | r e 44                                   | e 44             |
| Egypt, Arab Republic of                   | 42               | 55                                       | e 55             |
| Ethiopia 4                                | r 16             | 52                                       | e 53             |
| Mauritius                                 | e 7              | 7                                        | e 7              |
| Mozambique                                | 10               | 8                                        | 11               |
| South Africa, Republic of (sales)         | 1,205            | 1,317                                    | 1,459            |
| Tanzania                                  | 6                | 2                                        | 7                |
| Tunisia                                   | 183              | 179                                      | 206<br>20        |
| Uganda e                                  | 20               | 20<br>165                                | 165              |
| Zaire <sup>e</sup>                        | 165<br>115       | 115                                      | 120              |
| Zambia e                                  | 119              | 110                                      | 120              |
| Asia:                                     | 118              | 132                                      | 88               |
| Cyprus                                    | 590              | 373                                      | e 375            |
| India                                     | 1,100            | 1.100                                    | 1,100            |
| Iran <sup>e</sup><br>Israel               | 198              | 198                                      | e 200            |
| Japan                                     | 10,934           | 11,166                                   | 13,024           |
| Jordan                                    | 2                | 2                                        | 3                |
| Kuwait e                                  | 1                | 1                                        | 1                |
| Lebanon                                   | 138              | e 132                                    | 168              |
| Mongolia e                                | r 45             | r 45                                     | 45               |
| Philippines                               | r 245            | 312                                      | 166              |
| Saudi Arabia                              | e 24             | 14                                       | • 17             |
| Taiwan                                    | 188              | 195                                      | 150              |
| Oceania:                                  |                  | r 500                                    | 520              |
| Australia e 5                             | r 520            | r 520<br>4                               | 520<br>3         |
| Fiji Islands                              |                  |                                          |                  |
| Total                                     | r 109,789        | 113,566                                  | 118,820          |
|                                           |                  |                                          |                  |

<sup>&</sup>lt;sup>o</sup> Estimate. <sup>p</sup> Preliminary. <sup>r</sup> Revised.

<sup>1</sup> Lime is produced in many other countries besides those listed. Mexico, Venezuela, and the United Kingdom are among the more important countries for which official data are unavailable.

<sup>2</sup> Excludes output by small producers.

<sup>3</sup> Includes burnt dolomite which was excluded in previous editions.

<sup>4</sup> Data for 1971 may be incomplete. Figures for 1972 and 1973 include production in Eritrea.

<sup>5</sup> Year ending June 30 of that stated.

#### **TECHNOLOGY**

The National Lime Association developed a new scrubber for removing sulfur from stack gases. Blaw-Knox Co. has been licensed to produce the scrubber.

licensed to produce the scrubber.

The U.S. Army Corps of Engineers successfully injected lime slurry under pressure to a depth of 6 feet over a large area.

The building erected at the site has shown no signs of settling, while adjacent buildings on unstabilized ground have settled drastically.

The Bureau of Reclamation completed a canal-lining project using lime. The canal bank was stabilized to a depth of 4 feet with 4% quicklime. After 10 months under 18 feet of water, the stabilized soil is hard and strong. Adjacent unstabilized sections have failed.

The Environmental Protection Agency was developing standards for air pollution in the lime industry.

### Magnesium

By E. Chin 1

Production and shipments of magnesium metal by The Dow Chemical Co. were 122,431 short tons and 137,277 short tons, respectively, in 1973. NL Industries, Inc. produced some metal at Rowley, Utah. The magnesium metal plant of American Magnesium Co. at Snyder, Tex., was not in operation throughout the year.

Legislation and Government Programs.

—The General Services Administration (GSA) continued to dispose of all the

magnesium remaining in the national stockpile. In 1972, GSA sold 7,737 short tons of metal from the Government stockpile, compared with 710 tons in 1971. A total of 66,638 short tons was sold during 1973. At yearend, the uncommitted excess in the stockpile was 23,205 short tons of magnesium metal.

Table 1.-Salient magnesium statistics

(Short tons)

|                                                                                                                                                                           | 1969                                                                         | 1970                                                                          | 1971                                                                            | 1972                                                                           | 1973                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| United States: Production: Primary magnesium Secondary magnesium Shipments: Primary Exports Imports for consumption Consumption Price per pound World: Primary production | 99,887<br>13,470<br>117,695<br>27,372<br>4,316<br>95,132<br>35.25<br>221,469 | 112,006<br>12,042<br>118,693<br>35,732<br>3,295<br>93,495<br>35.25<br>242,253 | 123,485<br>14,703<br>120,217<br>24,311<br>3,671<br>1,92,166<br>36,25<br>255,753 | 120,823<br>15,628<br>111,185<br>17,556<br>4,479<br>103,691<br>37,25<br>255,960 | 122,431<br>17,636<br>137,277<br>39,585<br>3,283<br>115,558<br>38.25<br>261,110 |

<sup>&</sup>lt;sup>1</sup> Physical scientist, Division of Nonferrous Metals-Mineral Supply.

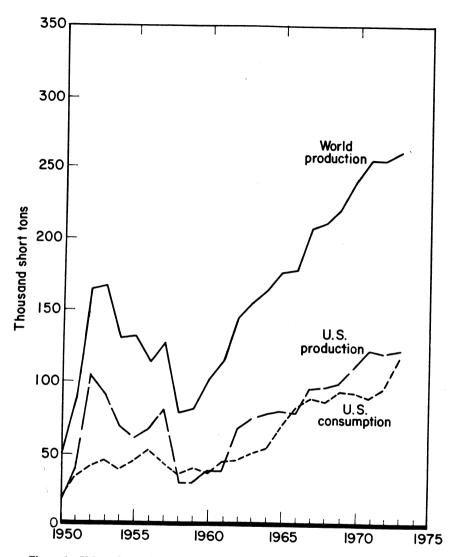



Figure 1.-U.S. and world production and U.S. consumption of primary magnesium.

727

#### **DOMESTIC PRODUCTION**

MAGNESIUM

During the year, The Dow Chemical Co. completed an expansion program for producing metal at its plant in Freeport, Tex. Process modifications and improvements added 10 million pounds of annual capacity to its existing magnesium metal production capacity of 240 million pounds of metal. NL Industries, Inc., produced some metal in 1973 at Rowley, Utah, and was expected to produce magnesium at full rated capacity by late 1974. American Magnesium Co. was closed down throughout 1973, but was expected to resume production in mid-1974.

Northwest Alloys, Inc., a subsidiary of the Aluminum Co. of America (Alcoa), began constructing a new magnesium facility at Addy, Wash. Northwest Alloys will use the Magnetherm process for producing magnesium metal. Startup of this plant, with an intial capacity of 24,000 tons per year of magnesium and an ultimate capacity of 40,000 tons per year, was scheduled for late 1975.

Table 2.-Magnesium recovered from scrap processed in the United States, by kind of scrap and form of recovery

(Short tons)

|                                                                                               |   | 1969                  | 1970                    | 1971               | 1972 =             | 1973 р       |
|-----------------------------------------------------------------------------------------------|---|-----------------------|-------------------------|--------------------|--------------------|--------------|
| Kind of scrap:                                                                                |   |                       |                         |                    |                    |              |
| New scrap:<br>Magnesium-baseAluminum-base                                                     |   | $\frac{4,767}{5,712}$ | 4,564<br>4,698          | 6,722 $4,838$      | 6,993<br>5,646     | 7,4176,118   |
| Total                                                                                         | - |                       | 9,262                   | 11,560             | 12,639             | 13,53        |
| Old scrap:  Magnesium-base  Aluminum-base                                                     |   | 1,700<br>1,291        | 1,518<br>1,262          | 1,719<br>1,424     | 1,445<br>1,544     | 2,52<br>1,57 |
| Total                                                                                         |   | 2,991                 | 2,780                   | 3,143              | 2,989              | 4,10         |
| Grand total                                                                                   |   | 13,470                | 12,042                  | 14,703             | 15,628             | 17,63        |
| Form of recovery:  Magnesium alloy ingot <sup>1</sup> Magnesium alloy castings (gross weight) | · | 3,231<br>11           | 2,006<br>13             | 3,905<br>14        | 3,612              | 2,60<br>1    |
| Magnesium alloy shapes                                                                        |   | 8,378                 | 189<br>7,088<br>24      | 500<br>7,423<br>17 | 275<br>8,790<br>14 | 9,20<br>9,20 |
| Zinc and other alloys                                                                         |   | 65                    | $\frac{24}{80}$ $2,642$ | 478<br>2,366       | $794 \\ 2,134$     | 5,04         |
| Total                                                                                         |   | 13,470                | 12,042                  | 14,703             | 15,628             | 17,68        |

#### **CONSUMPTION AND USES**

magnesium in the of Consumption United States increased over that in 1972 to 115,558 short tons. Magnesium was consumed in two broad categories: Structural products such as castings and wrought products, and distributive or sacrificial applications where advantage is taken of the chemical properties of the metal. Useful structural properties of magnesium include low specific weight, good machinability, hot formability, and high strength. The principal structural applications, which account for about 23% of the total use, are in aircraft, automotive, and other types of materials transportation equipment, in handling, and in power tools, such as powersaws and lawnmowers. The remainder of the consumption is for sacrificial uses, primarily in alloying with other metals, espeprotection, aluminum, cathodic production of nodular iron and the desulfurization of steel, and as a reducing agent in the production of titanium, beryllium, and other metals.

P Preliminary. Revised.

1 Figures include secondary magnesium content of both secondary and primary magnesium alloy ingot.

| Table 3Consumption of primary magnesium in the United States, by use |
|----------------------------------------------------------------------|
| (Short tons)                                                         |

|                                                 | 1969           | 1970   | 1971 r | 1972 г                | 1973 р          |
|-------------------------------------------------|----------------|--------|--------|-----------------------|-----------------|
| or structural products:                         |                |        |        |                       |                 |
| Castings:                                       |                |        |        |                       |                 |
| Die                                             | 7,484          | 9,002  | 7,469  | 9,326                 | 10,417          |
| Permanent mold                                  | 404            | 260    | 142    | 736                   | 888             |
| Sand                                            | 2,562          | 1,735  | 765    | 700                   |                 |
| rought products:                                | -,             | 2,100  | .00    | 100                   | 1,420           |
| Extrusions                                      | 13,110         | 12,250 | 5,587  | 7,749                 | 0.05            |
| Sheet and plate                                 | (1)            | (1)    | 2,918  | 3,817                 | 8,254           |
| Other (includes forgings)                       | (1)            | (1)    | 2.212  |                       | 4,167           |
|                                                 |                | ()     | 2,212  | 1,381                 | 1,427           |
| Total                                           | 23 560         | 23,247 | 19,093 | 23,709                | 00 577          |
| =                                               |                |        | 10,000 | 20,109                | 26,570          |
| or distributive or sacrificial purposes:        |                |        |        |                       |                 |
| Alloys:                                         |                |        |        |                       |                 |
| Aluminum                                        | 37,375         | 36,543 | 37,450 | 43,458                | E0 900          |
| Copper                                          | (²)            | (²)    | 163    | 38                    | 50,860          |
| Zinc                                            | 54             | 35     | 24     | 28                    | 505             |
| Utner                                           | (2) Ja         | (2) 00 | 37     | 109                   | 31<br>18        |
| Cathodic protection (anodes)                    | 6,087          | 5,778  | 7.296  | 6.543                 |                 |
| Chemical                                        | $\binom{2}{2}$ | 8,385  | 8,960  | 9,732                 | 8,060           |
| Nodular Iron                                    | 2,374          | 4,720  | 6,590  | 7,603                 | 11,589          |
| Powder                                          |                | 5,646  | (2)    |                       | 8,724           |
| Scavenger and deoxidizer                        | (2)<br>(2)     | (2)    | 68     | $\overset{(^2)}{327}$ | (²)             |
| Reducing agent for titanium, zirconium, hafnium | ()             | (-)    | 00     | 321                   | 50              |
| uranium, and pervilium                          | 7,363          | 6.300  | 9.053  | 6,089                 | 4 000           |
| Other                                           | 18,319         | 2.841  | 3,432  |                       | 6,889           |
| _                                               | 10,010         | 2,041  | 0,402  | 6,055                 | 2,267           |
| Total                                           | 71,572         | 70,248 | 73,073 | 79,982                | 99 000          |
| _                                               | 11,012         | 10,240 | 10,010 | 19,902                | 88, <b>9</b> 88 |
| Grand total                                     | 95,132         | 93,495 | 92,166 | 103.691               | 115,558         |

P Preliminary. Revised.
I Included with "Extrusions."
Included with "Other."

#### **PRICES**

During 1973, the quoted base price for primary magnesium pig and ingot in 10,000-pound lots, 99.8% magnesium f.o.b. plant, was 38.25 and 39.00 cents per pounds, respectively, compared with corresponding prices of 37.25 and 38.00 cents per pound, respectively, during 1972.

Depending upon the state of preserva-

tion of the metal available from the national stockpile, GSA accepted bids for primary magnesium ranging from 31.75 to 39.30 cents per pound, f.o.b. storage locations. The average price of metal sold by GSA during the year, excluding the negotiated sales of magnesium, was 34.167 cents per pound.

#### **STOCKS**

Producer and consumer stocks of primary magnesium totaled 17,188 short tons as of December 31, 1973. Yearend stocks of primary magnesium alloy ingot were 1,706

tons. Stocks a year earlier were 22,011 short tons of primary metal and 986 short tons of alloy ingot.

Table 4.-Stocks and consumption of new and old magnesium scrap in the United States in 1973

(Short tons)

| Item                            | Stocks       | Receipts -     | C            | onsumption   |                | a. 1              |
|---------------------------------|--------------|----------------|--------------|--------------|----------------|-------------------|
|                                 | Jan. 1       | reccipus       | New<br>scrap | Old<br>serap | Total          | Stocks<br>Dec. 31 |
| Cast scrapSolid wrought scrap 1 | 216<br>1,132 | 1,765<br>4,046 | 645<br>4,577 | 1,199        | 1,844<br>4,577 | 137<br>601        |
| Total                           | 1,348        | 5,811          | 5,222        | 1,199        | 6,421          | 738               |

<sup>&</sup>lt;sup>1</sup> Includes borings, turnings, drosses, etc.

#### **FOREIGN TRADE**

U.S. exports of magnesium increased from 17,556 short tons, valued at \$11.7 million in 1972, to 39,585 tons, valued at \$28.2 million in 1973. Shipments to West Germany, Brazil, the Netherlands, Canada, and Japan accounted for 19%, 17%, 15%, 14%, and 10%, respectively, of the total U.S. exports of magnesium. The remaining 10,399 tons were exported to approximately 20 countries.

Total magnesium imports for consumption decreased 27% from that of 1972. Canada, by far the largest of U.S. sources, contributed 27% of the metal imported. Receipts from the Netherlands and West Germany constituted 18% and 16%, respectively, of the magnesium imports. The remainder of U.S. imports, 1,280 tons, was contributed by 19 other nations.

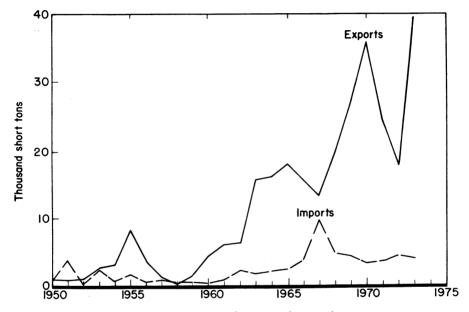



Figure 2.-U.S. imports and exports of magnesium.

Table 5.-U.S. exports of magnesium, by class and country

|                                     |                             |                           | 1972                        | 72                        |                                                      |                                          |                             |                       | 1978                        | 82                    |                                                      |                              |
|-------------------------------------|-----------------------------|---------------------------|-----------------------------|---------------------------|------------------------------------------------------|------------------------------------------|-----------------------------|-----------------------|-----------------------------|-----------------------|------------------------------------------------------|------------------------------|
| Destination                         | Waste and scrap             | d scrap                   | Primary metals,<br>alloys   | metals,<br>ys             | Semifabricated<br>forms, n.e.c.,<br>including powder | ricated<br>n.e.c.,<br>powder             | Waste and scrap             | d scrap               | Primary metals, alloys      | metals,<br>ys         | Semifabricated<br>forms, n.e.c.,<br>including powder | ricated<br>n.e.c.,<br>powder |
|                                     | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands) | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands) | Quantity<br>(short<br>tons)                          | Value<br>(thou-<br>sands)                | Quantity<br>(short<br>tons) | Value<br>(thou-sands) | Quantity<br>(short<br>tons) | Value<br>(thou-sands) | Quantity<br>(short<br>tons)                          | Value<br>(thou-sands)        |
| Angola<br>Arcentina                 | :                           | 1                         | 912                         | 2 <del>8</del> 2          | :                                                    | :                                        | :                           | 1                     | 4.00                        | :8;                   | ;                                                    | 110                          |
| Australia                           | ::                          | : :                       | 313                         | 168                       |                                                      | \$74                                     | 1 1                         | : :                   | 356<br>356                  | 245<br>245            | 24 <u>2</u>                                          | \$47<br>193                  |
| Belgium-Luxembourg                  | :88                         | \$11                      | 135                         | 382                       | o —                                                  | 9                                        | 12                          | . 4                   | 167                         | 104<br>104            | - 0                                                  | တ တ                          |
| Brazil<br>Canada                    | 27                          | <u>:</u> 8                | 5,439<br>3,253              | 3,360<br>1,907            | 3<br>289                                             | $\begin{array}{c} 10 \\ 397 \end{array}$ | 101                         | 44                    | 6,548                       | 4,365<br>3,374        | 243                                                  | 454                          |
| ColombiaE                           | :                           | ;                         | 88                          | - 6                       | 63                                                   | 4                                        | ;                           | 1                     | 14.                         | 18                    | :                                                    | }                            |
| France                              | ::                          | : :                       | 432                         | 247                       | 17                                                   | 48                                       | ; ;                         | : :                   | 335 I                       | $^{(1)}_{222}$        | - 4                                                  | 14                           |
| Germany, West                       | ;                           | :                         | 801                         | 206                       | 58                                                   | 154                                      | 1                           | 1 1                   | 7,185                       | 4,727                 | $16\tilde{7}$                                        | 383                          |
| India                               | 1 1                         | : :                       | 283<br>283<br>283           | 148<br>169                | -                                                    | -                                        | -                           | ŧ                     | 80 <del>4</del>             | 521<br>99             | ;e                                                   | 10                           |
| Indonesia                           | 1                           | : :                       | 2                           | 00                        | : :                                                  | 1 1                                      | : :                         | : :                   | 202                         | 51                    | 1 ;                                                  | 1                            |
| Italy                               | 1 1                         | :                         | 42F                         | 15<br>258                 | 94°5                                                 | 57                                       | ;                           | :                     | 18                          | 19                    | 125                                                  | 166                          |
| Japan                               | :2:                         |                           | 1,000                       | 201                       | 254                                                  | <b>4</b> 80                              | <u> </u> -;                 | ¦63 ;                 | 3,509                       | 2,655                 | 340                                                  | 739                          |
| Netherlands                         | 1:                          | 3 :                       | 382<br>382                  | 228                       | 21°                                                  | 98<br>36                                 | 21 1                        | i :                   | 5.966                       | 3.846                 | 55 e                                                 | 17                           |
| Norway<br>South Africa, Republic of | 1                           | ;                         | 36 <u>5</u>                 | 136                       | !-                                                   | ļ <del>-</del>                           | ;                           | : :                   | 523                         | 341                   | E                                                    | ļ                            |
| Spain                               | : :                         | : :                       | 386                         | 219                       | 101                                                  | 400                                      | : :                         | : :                   | 989<br>989                  | 413                   | 0 4                                                  | 10                           |
| SwitzerlandTaiwan                   | -                           | :                         | 721                         | 444                       | 9                                                    | 10                                       | ;                           | 1                     | 53                          | 17                    | 15                                                   | 36                           |
| United Kingdom                      | : :                         | : :                       | 112                         | 410                       | 16                                                   | 38                                       | : :                         | : :                   | 989<br>989                  | 514                   | (·)<br>12                                            | 38                           |
| Other                               | <b>E</b>                    | <b>E</b>                  | 189<br>186                  | 126                       | 222                                                  | 15<br>64                                 | ¦∞                          | 14                    | 407<br>278                  | 336<br>226            | ¦6                                                   | 28                           |
| Total                               | 94                          | 116                       | 16,642                      | 10,132                    | 820                                                  | 1,454                                    | 44                          | 81                    | 38,323                      | 25,934                | 1,218                                                | 2,227                        |
| 1 Less than ½ unit.                 |                             |                           |                             |                           |                                                      |                                          |                             |                       |                             |                       |                                                      |                              |

| Table 6U.S. exports a | nd imports for | consumption of | i magnesium |
|-----------------------|----------------|----------------|-------------|
|-----------------------|----------------|----------------|-------------|

|                      |                             |                           |                    | EXP                                                  | ORTS                        |                           |                                                                                        |                              |  |  |  |  |
|----------------------|-----------------------------|---------------------------|--------------------|------------------------------------------------------|-----------------------------|---------------------------|----------------------------------------------------------------------------------------|------------------------------|--|--|--|--|
| Year                 | Waste                       | and scra                  | ıp                 |                                                      | nd alloys<br>le form        | Sem                       | Semifabricated forms,<br>n.e.c.                                                        |                              |  |  |  |  |
|                      | Quantity<br>(short tons     |                           | lue<br>sands)      | Quantity<br>(short tons)                             | Value<br>(thousands         |                           | ntity<br>tons)                                                                         | Value<br>(thousands)         |  |  |  |  |
| 1971<br>1972<br>1978 | - 4<br>9<br>- 4             | 4                         | \$107<br>116<br>81 | 23,298<br>16,642<br>38,323                           | \$13,84<br>10,13<br>25,93   | 2                         | 972<br>820<br>1,218                                                                    | \$1,737<br>1,454<br>2,227    |  |  |  |  |
|                      | IMPORTS                     |                           |                    |                                                      |                             |                           |                                                                                        |                              |  |  |  |  |
|                      |                             | Waste and<br>scrap        |                    | Metal                                                | Allo<br>(magne<br>conte     | sium                      | Powder, sheets,<br>tubing, ribbons,<br>wire, and other<br>forms (magnesium<br>content) |                              |  |  |  |  |
|                      | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands) | Quant<br>(sho      | rt (thou-                                            | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands) | Quant<br>(show<br>tons                                                                 | rt (thou-                    |  |  |  |  |
| 1971<br>1972<br>1973 | 2,142<br>3,042<br>2,296     | \$713<br>1,040<br>952     | 1,2                | 300 <b>\$920</b><br>256 <b>950</b><br>578 <b>452</b> | 99<br>168<br>389            | \$286<br>464<br>1,104     | 1                                                                                      | 30 \$39°<br>13 10°<br>20 12° |  |  |  |  |

#### **WORLD REVIEW**

World production of magnesium metal in 1973 was 261,110 short tons, an increase of 51,500 tons over world production in 1972. The United States produced 47% of the world magnesium output, followed by the U.S.S.R. 24%, and Norway 16%. The

remainder of the world production was by Canada, the People's Republic of China, France, Italy, and Japan.

World producers of magnesium in 1973 with annual capacities, processes, and plant locations were as follows:

| Country                        | Company                                                                                                  | Capacity<br>(short<br>tons) | Process                           | Plant location                   |
|--------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------|----------------------------------|
| Canada                         | Chromasco Corporation Limited                                                                            | 12,000                      | Silicothermic                     | Haley,<br>Ontario.               |
| China, People's<br>Republic of | NA                                                                                                       | · ·                         |                                   | Ying-kou,<br>Liaoning.           |
| France                         | Société Générale du Magnesium<br>Péchiney Ugine Kuhlmann S.A. (70%)<br>Société des Produits Azotes (SPA) | 9,000                       | do                                | Marignac.                        |
| Italy                          | (30%).<br>Societá Italiana per il Magnesio e                                                             | •                           | do                                |                                  |
| •                              | Leghe di Magnesio.<br>(Furukawa Magnesium Co<br>UBE Industries, Ltd<br>Herova Electrokemiske Fabbrikker  | 7,700<br>6,600<br>47,000    | do<br>do<br>I. G. Farbenindustrie | Koyama.<br>Yamaguchi.<br>Heroya. |
| U.S.S.R                        | A/S subsidiary of Norsk Hydro-<br>Elektrisk A/S. NA. American Magnesium Co                               | 30,000<br>125,000           | Dow cells                         | Snyder, Tex.<br>Freeport, Tex.   |

NA Not available.

Japan.—Consumption of magnesium in Japan was estimated to be about 17,500 short tons in 1973 compared with 15,400 tons in 1972. Production was estimated to be 12,239 tons in 1973, compared with 12,004 tons in 1972. Imports of magnesium metal into Japan were expected to remain around 3,300 tons in 1973.

Norway.—Norsk Hydro-Elektrisk A/S (Norsk Hydro) announced that it will construct a magnesium production facility at Mongstad. The electrolytic plant will have an annual capacity of 55,100 short tons of metal per year and will be in operation about 1980. Additionally, Norsk Hydro developed a new magnesium chlo-

| Table 7Magnesium: | World    | production | by | country |
|-------------------|----------|------------|----|---------|
|                   | hort ton |            | -  | •       |

| Country                                                                                      | 1971    | 1972     | 1973 р   |
|----------------------------------------------------------------------------------------------|---------|----------|----------|
| Canada China, People's Republic of e France Italy Japan Norway U.S.S.R.e United States Total | 7,234   | 5,924    | 5,830    |
|                                                                                              | 1,100   | 1,100    | 1,100    |
|                                                                                              | 7,954   | 7,550    | e 7,700  |
|                                                                                              | 8,496   | 8,335    | e 7,900  |
|                                                                                              | 10,685  | 12,004   | 12,349   |
|                                                                                              | 39,799  | 40,224   | e 40,800 |
|                                                                                              | 57,000  | 60,000   | 63,000   |
|                                                                                              | 123,485 | 1120,823 | 1122,431 |

Estimate. P Preliminary.

Output of The Dow Chemical Co. only.

ride production process which will be tried in a plant at Heroya, scheduled to be built for the production of anhydrous magnesium chloride, and which would supply sufficient cell feed for the production of 16,500 short tons of metal.

United Kingdom.—The Minor Metals Traders' Association was formed in London in August 1973. Metals included in the association's groupings are magnesium, antimony, bismuth, cadmium, mercury, nickel, and selenium. The association, composed of 21 founding members, hopes to promote the interests of minor metal traders and give dealers in minor metals an entity separate from the London Metal Exchange.

U.S.S.R.—The All-Union Institute of Aluminum, Magnesium, and Electrolysis Industries announced the construction of a new electrolytic pilot plant for the production of magnesium metal and chlorine from magnesium chloride without the use of diaphragms. The new pilot plant, which produces about 2,200 pounds of magnesium and 6,000 pounds of chlorine per day, reportedly uses less floor space and lower power consumption.

#### **TECHNOLOGY**

Joseph Lucas Industries, Ltd., developed a system of dual sheet electrodes for multicell batteries.2 A valuable characteristic of thin-film batteries is that thin sheets or strips can be stacked in electrical series so that high voltages can be produced from units with very small overall dimensions. A sheet of silver chloride is treated photographically to convert the silver chloride on one surface to metallic silver. When the silver chloride side of the sheet is juxtaposed with the face of a sheet of magnesium, the latter becomes an anode and a single cell is formed. The thin pairs of sheets can then be stacked to obtain whatever voltage is desired.

The 29th Annual Meeting of the International Magnesium Association was held at Cherry Hill, N.J., May 6-8, 1973. Papers on the uses of magnesium in steel desulfurization, in alloying, in potential uses by the automotive industry, and on the fluxless melting of magnesium and electrochemical applications for magnesium were

Heretofore, magnesium has not been

competitive with aluminum and zinc diecastings which are produced by the coldchamber process. However, a hot chamber process has been developed for use with magnesium.3 Equipment was designed for working temperatures of about 650° C and provisions were made to prevent the magnesium from oxidizing by blanketing the hot metal with a protective gas containing SO<sub>2</sub>. The hot-chamber process offers a number of significant advantages. Production rates are high; the process lends itself to automation; air inclusions are less of a problem; and the temperature of injected molten metal is not only higher but more uniform in the hot-chamber process than in the cold-chamber process.

Magnesium has been traditionally used in the treatment of cast iron to produce spheroidal graphite iron, in which desulfurization by magnesium is an essential

<sup>&</sup>lt;sup>2</sup> The Mining Record. Silver Makes Possible To Manufacture Thin Batteries. V. 84, No. 41, Oct. 10, 1973, p. 3.

<sup>3</sup> Iron Age. Hot Chamber Process Stirs Magnesium's Hopes. V. 212, No. 8, Aug. 23, 1973, pp. 40.50

chemical reaction.4 However, magnesium has the potential to be a major ingredient in the desulfurization of steel by the Mag-Coke process.<sup>5</sup> Based on metallurgical coke infiltrated with 45% by weight of magnesium, Mag-Coke is introduced into torpedo cars which are used to transfer hot molten iron from the blast furnace to the basic oxygen furnace. By this approach, the sulfur content of steel can be reduced to 0.01% by weight and thus improve the fracture toughness and formability of the end product.

Patents on the purification of magnesium chloride solutions to be used in the electrowinning of magnesium metal and on the purification of magnesium metal obtained from electrolytic cells were issued.6

<sup>4</sup> Fisher, P. A. Desulphurising Iron With Magnesium. Metal Bull. Monthly, No. 5793, Apr. 17,

nesium. Metal Bull. Monthly, No. 5793, Apr. 17, 1973, pp. 15–16.

5 Iron Age. Mag-Coke Catches on as a Way to Produce Low-Sulfur Steels. V. 211, No. 20, May 17, 1973, p. 27.

6 Boyum, O., F. E. Folkestad, and A. Torvund (assigned to Norsk Hydro A.S.). Electrowinning. U. S. Pat. 3,729,550, Apr. 24, 1973.

Bradshaw, W. L. (assigned to The Dow Chemical Co.). Electrowinning. U.S. Pat. 3,734,718, May 22, 1973.



# Magnesium Compounds

By E. Chin 1

World production of magnesite in 1973, excluding output in the United States was about 9,900,000 short tons, slightly higher than that in 1972. Magnesite production in Austria, Greece, North Korea, People's Republic of China, and the U.S.S.R. accounted for 74% of the world total.

The increasing worldwide trend toward greater production of magnesium compounds from sea water, well and lake brines, and dry lake deposits continued to exert competitive pressure on producers of magnesite. During 1973, two domestic companies, one using sea water as a raw material source and the other using well brines, announced the expansion of production capacity for magnesium compounds. A Japanese firm announced plans to produce

magnesium hydroxide from a salt lake in Mexico.

Refractory magnesia, and caustic-calcined and specified magnesias, sold or used by domestic producers in 1973 were 17% above that in 1972. The value of domestic shipments of magnesias rose 27% to nearly \$97,000,000 in 1973.

U.S. imports for consumption of processed magnesite in 1973 were about 158,000 short tons, with Greece accounting for 44% of the total. Exports of magnesite and magnesia were about 60,000 tons in 1973, and as in the 1970–72 period they were primarily to Canada.

<sup>1</sup> Physical scientist, Division of Nonferrous Metals—Mineral Supply.

Table 1.-Salient magnesium compounds statistics

(Thousand short tons and thousand dollars)

|                                             | 1969          | 1970            | 1971            | 1972          | 1973          |
|---------------------------------------------|---------------|-----------------|-----------------|---------------|---------------|
| United States:                              |               |                 |                 |               |               |
| Caustic-calcined and specified magnesias: 1 |               |                 |                 |               |               |
| Shipments:                                  |               |                 |                 |               | 150           |
| Quantity                                    | 125           | $122 \\ 19.301$ | $127 \\ 18,621$ | 128<br>15,856 | 158<br>26,929 |
| Value                                       | 19,876        | 19,301          | 18,021          | 10,000        | 20,020        |
| Exports: 2 Value                            | 2,687         | 3,200           | 2,840           | 3,377         | 4,196         |
| Imports for consumption: 2 Value            | 983           | 702             | 736             | 675           | 734           |
| Refractory magnesia:                        |               |                 |                 |               |               |
| Sold and used by producers:                 |               | 000             | 405             | coc           | 807           |
| Quantity                                    | 737<br>51,843 | 802<br>60,333   | 627<br>50,359   | 696<br>60,331 | 69,943        |
| Value                                       | 01,040        | 00,000          | 00,000          | 00,001        | 00,010        |
| Exports: Value                              | 4,973         | 9,133           | 5,897           | 5,903         | 6,104         |
| Imports:                                    | 5.913         | 7,357           | 9,219           | 9,300         | 13,435        |
| Value                                       | 0,510         | 1,001           | 0,210           | 0,000         | ,             |
| Dead-burned dolomite:                       |               |                 |                 |               |               |
| Sold and used by producers: Quantity        | 1,866         | 1,373           | 1.020           | 1,125         | 1,191         |
| Value                                       | 35,580        | 25,740          | 19,128          | 21,097        | 22,335        |
| orld: Crude magnesite production:           |               |                 |                 |               | 0.004         |
| Quantity                                    | 10,627        | 9,763           | r 10,051        | 9,842         | 9,864         |

r Revised.

<sup>2</sup> Caustic-calcined magnesia only.

<sup>&</sup>lt;sup>1</sup> Excludes caustic-calcined magnesia used in production of refractory magnesia.

#### **DOMESTIC PRODUCTION**

Magnesium hydroxide was produced from sea water and well brines, by Barcroft Co., Basic Magnesia, Inc., Corhart Refractories Co. Inc., The Dow Chemical Co., Harbison-Walker Refractories Co., Kaiser Aluminum & Chemical Corp., Martin Marietta Chemicals, Merck & Co., Inc., and Michigan Chemical Corp. Most of the magnesium hydroxide produced was used in the production of magnesia for basic refractories. Producers of refractory magnesia were Basic Inc., Basic Magnesia, Inc., Corhart Refractories Co., A. P. Green Refractories Co., Harbison-Walker Refractories Co., Kaiser Aluminum & Chemical Corp., and Martin Marietta Chemicals Corp. Total production of refractory magnesia in 1973 was 702,278

Caustic calcined magnesia was produced by Basic Inc., Basic Magnesia, Inc., The Dow Chemical Co., Kaiser Aluminum & Chemical Corp., Martin Marietta Chemicals Corp., and Michigan Chemical Corp. Merck & Co., Inc., Morton Chemical Co., and Michigan Chemical Corp., produced 12,532 tons of specified magnesia. The Dow Chemical Co., Giles Chemical Corp., and Philadelphia Quartz Co., produced 64,566 tons of magnesium sulfate (hydrous). During the year, 10,657 tons of magnesium carbonate were produced by Merck & Co., Inc. Morton Chemical Co., and Michigan Chemical Corp.

Magnesium chloride was produced by The Dow Chemical Co., FMC Corp., Great Salt Lake Minerals & Chemicals Corp., (GSL), and Kaiser Aluminum & Chemical Corp. Most of the magnesium chloride production was used for magnesium metal cell feed.

Early in 1973, Gulf Resources and Chemical Corp. acquired all of theh stock of GSL Corp. from its former German partner, Kali & Salz A.G. GSL produces magnesium chloride brines, potash, sodium sulfate, and industrial salt. In July, GSL began construction of a 3,500-acre addition to its existing solar evaporation ponds, costing \$1.2 million. The completion of the expansion program was scheduled for 1974.

The Dow Chemical Co. announced an expansion of magnesium oxide production capacity at its facilities in Freeport, Tex. Completion, scheduled for mid-1974, will boost its magnesium oxide capacity by approximately 35,000 tons per year.

The U.S. Atomic Energy Commission ap-

proved the Consumers Power petition for a proposed nuclear powerplant at Midland, Mich. The 1.3 million-kilowatt installation was designed to deliver up to 4 million pounds per hour of steam for industrial use by The Dow Chemical Co. at its Midland, Mich., installation.

Table 2.—Dead-burned dolomite sold or used by producers in the United States

(Thousand short tons and thousand dollars)

|                     |      | Sales | of | domestic         | product          |
|---------------------|------|-------|----|------------------|------------------|
|                     | Year | •     | Q  | uantity          | Value            |
| 1969                |      |       |    | 1,866            | 33,580           |
| 1970                |      |       |    | 1,373            | 25,740           |
| $\frac{1971}{1972}$ |      |       |    | $1,020 \\ 1.125$ | 19,128<br>21.097 |
| 1973                | p    |       |    | 1,191            | 22,335           |

P Preliminary.

Martin Marietta began an expansion of its Manistee, Mich., chemical plant, which will result in a 50,000-ton-per-year increase in the production capacity for periclase and a 30,000-ton-per-year increase in the production of magnesium chemicals. The Manistee plant is a unit of the Refractories Division of Martin Marietta. Plans for the Manistee expansion provide for a complete, new, high-purity periclase plant, which is a duplication of the periclase manufacturing plant that Martin Marietta placed on-line there in 1969. The plans also include the installation of a multiplefurnace, briquetting calcining presses, and a high-temperature shaft kiln. In addition, new brine wells, hydrate facilities, and extensive water and air emission controls are included. Completion of the Manistee plant expansion program was scheduled for early in 1975.

Kaiser Aluminum & Chemical Corp. completed the installation of three wet scrubbers on its kiln air discharge system to prevent dust emission at its sea water magnesia plant at Moss Landing, Calif. The first wet scrubber was placed in operation in March 1972, the second in December 1972, and the third in June 1973. The scrubbers replaced the precipitator used formerly and reportedly will improve plant efficiency and air pollution control effectiveness.

Domestic producers of magnesium compounds by raw material source, location, and capacity are as follows:

| Raw material source and producing company                                                                                                                                                   | Location                                                                                                                           | Capacity<br>(short tons<br>MgO<br>equivalent)             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Magnesite:                                                                                                                                                                                  |                                                                                                                                    |                                                           |
| Basic, Inc                                                                                                                                                                                  | Gabbs, Nev                                                                                                                         | _ 150,000                                                 |
| Lake brines:  Great Salt Lake Minerals & Chemicals Corp  NL Industries, Inc  Kaiser Aluminum & Chemical Corp                                                                                | Ogden, Utah<br>Rowley, Utah<br>Wendover, Utah                                                                                      | 75,000                                                    |
| Well brines:  American Magnesium Co The Dow Chemical Co Martin Marietta Chemicals Corp Michigan Chemical Corp Morton Chemical Corp                                                          | Snyder, Tex Ludington, Mich Manistee, Mich St. Louis, Mich Manistee, Mich                                                          |                                                           |
| Seawater:  Basic Magnesia, Inc Barcroft Co Cohart Refractories Co., Inc The Dow Chemical Co FMC Corp Kaiser Aluminum & Chemical Corp Merck & Co., Inc Harbison-Walker Refractories Co Total | Port St. Joe, Fla  Lewes, Del  Pascagoula, Miss  Freeport, Tex Chula Vista, Calif  Moss Landing, Calif Cape May, N.J Cape May, N.J | 5,000<br>40,000<br>285,000<br>5,000<br>150,000<br>100,000 |

#### **CONSUMPTION AND USES**

In 1973 magnesia used in the production of basic refractories increased 16% over that in 1972. Consumption of caustic-calcined magnesia for uses other than the production of refractory magnesia also increased significantly.

Magnesia is used as a fuel additive in burning heavy fuel at steam generating plants to prevent corrosion and acid smut fallout. It is also used for stack gas scrubbing. As an additive to animal feed, magnesia prevents grass tetany in cattle and sheep, promotes increased egg laying, and increases the butterfat content of milk. In

sugar cane processing mills, magnesia prevents scale formation in the evaporators. As an additive in rubber, magnesia is used to neutralize acidity, to keep the molds cleaner, and to improve the rubber cure rate. Other uses for magnesia are in chemicals, construction materials such as plaster and cement, cosmetics, electrical heating rods, fertilizers, medicinals and pharmaceuticals, and pulp and paper.

Other magnesium compounds are used in candy, wine, and water processing; in tannery applications; and in cosmetics and pharmaceuticals.

Table 3.-Magnesium compounds shipped and used in the United States

|                                                                                     | Shipped an                   | d used             |
|-------------------------------------------------------------------------------------|------------------------------|--------------------|
| Year and product                                                                    | Quantity<br>(short tons) (th |                    |
| 1972                                                                                |                              |                    |
| Caustic-calcined and specified (U.S.P. and technical) magnesiasRefractory magnesia  |                              | \$15,856<br>60,331 |
| Magnesium hydroxide (100% Mg(OH)2) 1                                                | 66,671                       | * 3,606<br>* 4,400 |
| Magnesium sulfate (anhydrous and hydrous)  Precipitated magnesium carbonate 1  1973 |                              | 1,476              |
| Caustic-calcined and specified (U.S.P. and technical) magnesiasRefractory magnesia  | 157,668<br>806,548           | \$26,929<br>69,904 |
| Magnesium hydroxide (100% Mg(OH)2) 1                                                | 83,324                       | 4,857              |
| Magnesium sulfate (anhydrous and hydrous) Precipitated magnesium carbonate 1        | 63,011                       | 4,551<br>1,746     |

e Estimate. r Revised

<sup>&</sup>lt;sup>1</sup>Excludes material produced as an intermediate step in the manufacture of other magnesium compounds.

Table 4.-Domestic shipments of caustic-calcined and specified magnesias, by use (Short tons)

| Use                                                        | 1972               | 1973             |
|------------------------------------------------------------|--------------------|------------------|
| Agriculture, nutrition, and pharmaceuticals:               |                    |                  |
| Animal feed and fertilizer                                 | 23,498             | 33,992           |
| Medicinals and pharmaceuticalsSugar, candy, and winemaking | (1)                | (1)              |
| Total                                                      | 4,532              | 4,939            |
| Construction materials:                                    | 28,030             | 38,931           |
| Insulation and wallboard                                   |                    |                  |
| Oxychloride and oxysulfate cement                          | 17.315             | 10 441           |
| Total                                                      | 17,315             | 19,441           |
| Chemical processing, manufacturing, and metallurgical:     | 17,510             | 19,441           |
| Chemical                                                   | 33,831             | 41 004           |
| Electrical heating rods                                    | 2,364              | 41,264<br>2,852  |
| Petroleum additive                                         | · w                | ·                |
|                                                            | W<br>15,312        | W                |
| 1647011                                                    | 15,512<br><b>W</b> | 13,760<br>12,145 |
| Rubber Uranium processing Water treatment                  | 7,411              | 11,893           |
| Water treatment                                            | W.                 | $\mathbf{w}$     |
| IOTAL                                                      | W                  | W                |
| Inspecified uses                                           | $72,712 \\ 10,203$ | 84,409<br>14,887 |
| Grand total                                                | 128,260            |                  |
| W Walland A                                                | 140,200            | 157,668          |

W Withheld to avoid disclosing individual company confidential data; included with "Total."

1 Included with "Sugar, candy and winemaking."

2 Included with "Oxychloride and oxysulfate cement."

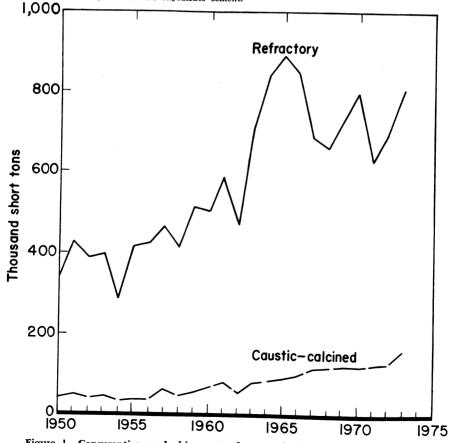



Figure 1.-Consumption and shipments of magnesia in the United States.

#### **PRICES**

Prices for magnesia, calcined, technical, heavy, 85% and 90% (bags, carlot, f.o.b. Luning, Nev.) were quoted during the year at \$50 and \$60 per short ton, respectively, according to the Chemical Marketing Reporter. Magnesia, technical, synthetic rubber-grade, neoprene-grade, light, was quoted at \$0.25 per pound (bags, carlot, freight-equalized).

Prices throughout the year for magnesium carbonate, technical (bags, carlot, freight-equalized), remained the same as in 1972 at \$0.16 per pound and for truckload quantities at \$0.18 to \$0.185 per pound with no change from the 1972 rate. During the year, the price for magnesium hydroxide, NF, powder (drums, carlot, and truckload, works) was \$0.30 per pound. Magnesium chloride, hydrous, 99%, flakes, bags, carlot, works, was quoted at \$80 per ton. The price for magnesium lauryl sulfate, tanks freight-allowed, remained the same as in 1972, at \$0.175 per pound.

### FOREIGN TRADE

Exports of dead-burned magnesite and magnesia in 1973 totaled 50,760 short tons compared with 54,159 tons in 1972. Exports to the principal destination, Canada, were 42,540 tons, 18% lower than in 1972. However, shipments to Mexico, the Netherlands, and West Germany in 1973 were substantially higher than in the previous year.

Exports of magnesite, including crude, caustic-calcined, lump or ground, increased over exports in 1972 and totaled 9,304 tons. Deliveries to Australia, Canada, Italy, Mexico, and West Germany accounted for over 61% of the exports in this class.

Lump or ground caustic-calcined magnesia imports for consumption increased

slightly in 1973 to 10,967 tons and were principally from India and Turkey.

Imports of dead-burned and grain magnesia and periclase containing a maximum of 4% lime increased 17% to 149,051 short tons in 1973. Imports for the same class of material but containing over 4% lime increased from 5,958 tons in 1972 to 8,956 tons in 1973. Total imports of crude and processed magnesite increased 17% over those in 1972 to 168,974 short tons.

Imports of specified magnesium compounds and compounds, not specifically provided for, were valued at \$1,880,000 in 1973 compared with \$1,111,000 in 1972.

Table 5.—U.S. exports of magnesite and magnesia, by country
(Short tons and thousand dollars)

| Destination               | Magne            | site and<br>dead-bu | magnesia<br>rned | ,         | Magnesite, n.e.c., including crude caustic-calcined, lump or ground |       |            |       |
|---------------------------|------------------|---------------------|------------------|-----------|---------------------------------------------------------------------|-------|------------|-------|
| Destination               | 1975             |                     | 1973             |           | 1972                                                                | 2     | 1973       |       |
|                           | Quantity         | Value               | Quantity         | Value     | Quantity                                                            | Value | Quantity   | Value |
|                           |                  |                     |                  | 1         | 113                                                                 | 51    | 119        | 60    |
| Argentina                 | 774              | 115                 | 7                | 14        | 442                                                                 | 237   | 976        | 470   |
| Australia                 | 20               | 9                   | 21               | 14        | 87                                                                  | 36    | 73         | 35    |
| Belgium-Luxembourg        |                  |                     | 55               | 14        | 122                                                                 | 57    | 168        | 79    |
| Brazil                    | 11               | . 6                 | 31               |           | 1,105                                                               | 486   | 1,771      | 762   |
| Canada                    | 51,694           | 5,064               | 42,540           | 4,477     | 75                                                                  | 23    | -,6        | 3     |
| Chile                     | 329              | 22                  | 864              | 86        |                                                                     | 10    | 42         | 23    |
| Colombia                  |                  |                     |                  |           | 19                                                                  | (1)   | <b>7</b> 2 | -ĭ    |
| Costa Rica                |                  |                     |                  |           | 1                                                                   | 17    | 13         | 6     |
| Denmark                   |                  |                     |                  | -=        | 28                                                                  | 11    | 10         | ·     |
| El Salvador               | 5                | 1                   | 5                | 2         | 457                                                                 | 100   | 335        | 197   |
| Finland                   | 6                | 4                   | 1                | 1         | 181                                                                 |       | 347        | 209   |
| France                    | 50               | 5                   | 98               | 8         | 342                                                                 | 209   |            | 719   |
| Germany, West             | 180              | 98                  | 3,108            | 524       | 1,269                                                               | 598   | 1,377      | 113   |
| Honduras                  |                  |                     | 40               | 6         | 25                                                                  | _4    | 55         | 17    |
| Israel                    |                  |                     | 8                | 4         | 29                                                                  | 15    | 33         |       |
|                           | 18               | 15                  |                  |           | 701                                                                 | 332   | 946        | 206   |
| Italy                     | 55               | 39                  | 185              | 29        | 26                                                                  | 14    | 48         | 20    |
| Japan                     | 7                | 4                   | 858              | 87        | 78                                                                  | 22    | 610        | 214   |
| Mexico                    | 48               | 17                  | 1,638            | 239       | 182                                                                 | 72    | 202        | 82    |
| Netherlands               | 32               | 21                  | 5                | 4         | 125                                                                 | 81    | 293        | 130   |
| New Zealand               | 04               | 21                  | ·                |           | 12                                                                  | 6     | 11         | Đ     |
| Peru                      | $\bar{2}\bar{7}$ | 7                   | 45               | 15        | 5                                                                   | 3     | 38         | 21    |
| Philippines               |                  | 75                  | 129              | 93        | 200                                                                 | 94    | 154        | 88    |
| South Africa, Republic of | 104              | (1)                 | 120              |           | 151                                                                 | 63    | 186        | 77    |
| Spain                     | -1               | 50                  | 8 <b>2</b>       | 66        | 362                                                                 | 262   | 464        | 296   |
| Sweden                    | 72               |                     | 84               |           | 51                                                                  | 20    | 74         | 30    |
| Switzerland               | 16               | 3                   | 66               | 11        | 168                                                                 | 52    | 32         | 10    |
| Taiwan                    |                  |                     |                  | 66        |                                                                     | 42    |            |       |
| U.S.S.R                   | _==              | <del>-</del> -      | 221              | 299       |                                                                     | 297   | 514        | 290   |
| United Kingdom            | 566              | 321                 | 469              | 299<br>41 | 154                                                                 | 20    | 280        | 4     |
| Venezuela                 | 50               | 7                   | 267              | 41        | 80                                                                  | 53    | 68         | 4     |
| Yugoslavia                |                  |                     | ==               |           |                                                                     | 101   | 122        | 6     |
| Other                     | 94               | 20                  | 72               | 17        |                                                                     |       |            |       |
| Total                     | 54,159           | 5,903               | 50,760           | 6,104     | 7,037                                                               | 3,377 | 9,304      | 4,19  |

<sup>1</sup> Less than 1/2 unit.

Table 6.-U.S. imports for consumption of crude and processed magnesite, by country (Short tons and thousand dollars)

| <u> </u>                                        | 197      | 2     | 1973     |        |  |
|-------------------------------------------------|----------|-------|----------|--------|--|
| Country                                         | Quantity | Value | Quantity | Value  |  |
| Lump or ground caustic-calcined magnesia:       |          |       |          |        |  |
| Australia                                       | 001      |       |          |        |  |
| Austria                                         | 231      | 27    | 172      | 1      |  |
| Greece                                          | 520      | 19    | 121      |        |  |
| India                                           | 917      | 82    |          |        |  |
| Japan                                           | 6,711    | 378   | 7,885    | 48     |  |
| Netherlands                                     |          |       | 221      | 1      |  |
| Turkey                                          | 222      | 20    | 302      | 3      |  |
|                                                 | 1,775    | 149   | 2,246    | 22     |  |
| United Kingdom                                  |          |       | 20       |        |  |
| Total                                           | 10,376   | 675   | 10,967   | 73     |  |
| Dead-burned and grain magnesia and periclase:   |          |       |          |        |  |
| Not containing lime or not over 4% lime:        |          |       |          |        |  |
| Australia                                       | 964      | 96    | 1 105    |        |  |
| Austria                                         | 8.323    | 526   | 1,105    | 13     |  |
| Brazil                                          | -,       |       | 4,568    | 35     |  |
| Canada                                          | 112      |       | 2,752    | 16     |  |
| Germany, West                                   | 6        | 12    | 30       | '      |  |
| Greece                                          | -        | 3     |          |        |  |
| Ireland                                         | 76,921   | 5,360 | 66,746   | 6,322  |  |
| Italy                                           | 24,827   | 2,004 | 33,226   | 2,74   |  |
| Japan                                           | 3        | (1)   | 6,837    | 820    |  |
| Mexico                                          | 5,434    | 364   | 26,805   | 2,32   |  |
| Poland                                          | 3        | (1)   |          |        |  |
| United Kingdom                                  | 5,616    | 468   |          |        |  |
| United KingdomYugoslavia                        | 5,556    | 466   | 6,982    | 564    |  |
|                                                 | 11       | 1     |          |        |  |
| Total                                           | 127,776  | 9,300 | 149,051  | 13,435 |  |
| Containing over 4% lime:                        |          |       |          | 10,400 |  |
| Austria                                         | 2,717    | 1.00  |          |        |  |
| Canada                                          |          | 163   |          |        |  |
| Greece                                          | 3,208    | 230   | 2,056    | 84     |  |
| Yugoslavia                                      |          |       | 1,990    | 98     |  |
|                                                 | 33       | 2     | 4,910    | 260    |  |
| Total                                           | 5,958    | 395   | 8,956    | 442    |  |
| Total dead-burned, grain magnesia and periclase | 133,734  | 9,695 | 158,007  | 13,877 |  |

 $<sup>^1</sup>$  Less than  $\frac{1}{2}$  unit.

Table 7.-U.S. imports for consumption of magnesium compounds (Short tons and thousand dollars)

(Short was and thousand dollars)

| Year | Oxide or calcined magnesia |       | Magnesium<br>carbonate<br>(precipitated) |       | Magnesium<br>chloride<br>(anhydrous) |       | Magnesium<br>chloride<br>(other) |       | Magnesium<br>sulfate (epsom<br>salts and<br>kieserite) |       | salts<br>comp | esium<br>and<br>ounds,<br>p.f. 1 |
|------|----------------------------|-------|------------------------------------------|-------|--------------------------------------|-------|----------------------------------|-------|--------------------------------------------------------|-------|---------------|----------------------------------|
| ~    | Quan-<br>tity              | Value | Quan-<br>tity                            | Value | Quan-<br>tity                        | Value | Quan-<br>tity                    | Value | Quan-<br>tity                                          | Value | Quan-<br>tity | Value                            |
| 1971 | 628                        | 222   | 138                                      | 60    | 26                                   | 2     | 435                              | 15    | 45,597                                                 | 654   | 2.889         | 304                              |
| 1972 | 690                        | 256   | 139                                      | 73    | 22                                   | 1     | 250                              | 8     | 21.538                                                 | 378   | 2,662         | 395                              |
| 1973 | 673                        | 292   | 138                                      | 88    | 121                                  | 45    | 301                              | 16    | 52,489                                                 | 962   | 3,307         | 477                              |

<sup>&</sup>lt;sup>1</sup> Includes magnesium silicofluoride or fluosilicate and calcined magnesia.

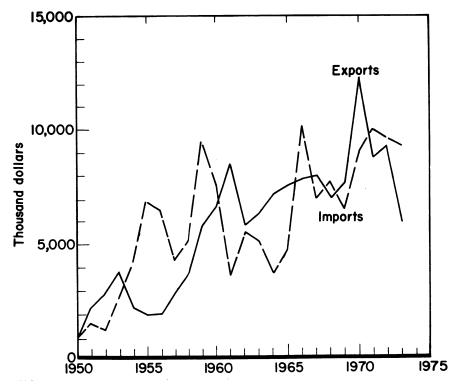



Figure 2.-Value of U.S. exports and imports of magnesia.

#### **WORLD REVIEW**

Brazil.—A new project to produce deadburned magnesite for basic refractorics was to be established in northeast Brazil. The facilities, which will be operated by Refractories do Nordeste S.A. of Fortaleza in Ceará State, were expected to cost over \$13.6 million. The Export-Import Bank was to partly finance a \$4.9 million loan to cover the design, construction, and equipment for the project.

Kalium Mineraçãos announced it will develop a magnesium, potassium, and rock salt deposit in Sergipe. Initial plans called for the installation of a potassium treatment plant with a capacity of 500,000 short tons per year; this phase was scheduled for completion by yearend 1973. Total cost of the project was estimated at \$300 million and was reportedly to be raised by local financing.

Canada.—Canadian Johns-Manville Co., Ltd., terminated its agreement with Canadian Magnesite Mines, Ltd., to assist in the development of a mining operation at Timmins, Ontario. The original plans called for the production of magnesite and talc.

Lundigran Ltd., in conjunction with prospective U.S. partners, announced that it hoped to reopen the Aguaguntha magnesia plant in west Newfoundland. The plant, which was built in 1968, has been shutdown since August 1970.

Greece.—Société Financière de Grèce (Scalistiri) started operation of its first magnesite brick plant at Fourni (near Mantoudi), on the island of Euboea. Scalistiri, which produces over 70% of Greek magnesite exports, began mining magnesite in Euboea in 1959. Initially, raw magnesite was exported, but in 1967 rotary kilns were installed to produce dead-burned magnesite. In 1970, a dressing plant with a capacity of 100,000 short tons per year was installed

Table 8.-Magnesite: World production by country 1

(Short tons)

| Country                       | 1971         | 1972                | 1973 Р                 |
|-------------------------------|--------------|---------------------|------------------------|
| North America: United States  | w            | w                   | w                      |
| South America:                |              |                     |                        |
| Brazil e                      | 296,000      | F 975 000           | 077 000                |
| Mexico                        | 14.350       | * 275,000<br>22,992 | 275,000<br>* 23,000    |
| Europe:                       | 14,000       | 22,332              | ° 25,000               |
| <del>-</del>                  |              |                     |                        |
| Austria                       | 1,715,700    | 1,575,657           | 1,558,972              |
| CzechoslovakiaGreece          | 682,288      | e 680,000           | • 680,000              |
|                               | r 1,049,976  | 1,026,976           | e 1,025,000            |
|                               | 55,000       | 55,000              | 55,000                 |
|                               | 284,947      | 297,624             | e 300,000              |
| U.S.S.R.e                     | 1,600,000    | 1.650.000           | 1.710.000              |
| Yugoslavia                    | 543,126      | 464,815             | 423,287                |
| Africa:                       |              |                     |                        |
| Kenya                         | 244          | e 250               | e 250                  |
| Renya<br>Rhodesia, Southern e | 22,000       | 22,000              | 22,000                 |
| South Africa, Republic of     | 86,711       | 75,830              | e 84,000               |
| Dudan                         | 110          | 110                 | 110                    |
| Tanzania                      | r 1.082      | 894                 | e 880                  |
| Asia:                         | ,            |                     | 000                    |
| China, People's Republic of e | 1,100,000    | 1.100.000           | 1 100 000              |
| India                         | r 326,287    | 300.933             | 1,100,000<br>* 303,000 |
| Iran <sup>2</sup>             | 23,000       | 3,300               | * 5.500                |
| Korea, North e                | 1,900,000    | 1,900,000           | 1.900.000              |
| Pakistan                      | 239          | 324                 | 1,900,000<br>e 330     |
| Turkey                        | 339,306      | 367.384             | e 375,000              |
| Oceania :                     | 555,500      | 301,304             | * 575,000              |
| Australia                     |              |                     |                        |
| Australia<br>New Zealand      | r 19,937     | 22,044              | e 22,000               |
| Total                         | 1,154        | 1,058               | e 1,100                |
| Total                         | r 10,061,457 | 9,842,191           | 9,864,429              |

<sup>&</sup>lt;sup>e</sup> Estimate. <sup>p</sup> Preliminary. <sup>r</sup> Revised. W Withheld to avoid disclosing individual company confidential data.

to maximize recovery of the magnesite from the mining operation. The new refractory brick plant has an annual capacity of 42,000 tons; 18,000 tons will be either white or tar-impregnated fire bricks and the remainder tar bonded brick. Additionally, Scalistiri was conducting research to increase the use of process fines from ore only amenable to fine grinding.

India.—The Uttar Pradesh State Industrial Corp. and Belpahar Refractories Ltd. of Jamshedpur have jointly subscribed to the construction of a magnesite operation at Kafligarh in the Almora district of Uttar Pradesh. The project, which will cost 23 million Rupees,<sup>2</sup> was designed to produce approximately 110 short tons of dead-burned magnesite per day.

Mexico.—Mitsubishi Corp. agreed to pay \$20 million to Seatankers, Inc., the owner of Exportadora de Sal S.A., for the salt field in Baja California, Mexico. Seatankers, Inc., is a subsidiary of the U.S. firm Na-

tional Bulk Carriers, Inc. The Japanese trading firm planned to product and export magnesium hydroxide, bromine, and salt.

Nepal.—The Nepal Bureau of Mines announced the location of a large, high-grade magnesite deposit at Kharidhunga, a village in the Sindupalchock district, approximately 60 miles northeast of Kathmandu. The deposit was estimated to contain approximately 180 millon short tons of magnesite. Results of core drilling to determine the extent of mineralization and beneficiation tests of the ore were favorable and indicated that a mining operation and prodution facilities for basic refractory brick should be established.

Sea water magnesia production facilities throughout the world by country, location, company, and capacity are as follows:

<sup>&</sup>lt;sup>1</sup> Figures represent crude salable magnesite. In addition to the countries listed, Bulgaria, Canada, and Colombia produce magnesite, but output is not reported and available information is inadequate to make reliable estimates of output levels.

<sup>&</sup>lt;sup>2</sup> Year beginning March 21 of that stated.

<sup>&</sup>lt;sup>2</sup> Because of fluctuating exchange rates, a meaningful conversion to U.S. dollars is impractical.

| Country                     | Location                                                       | Company                                                      | Capacity<br>(short tons<br>MgO) |  |
|-----------------------------|----------------------------------------------------------------|--------------------------------------------------------------|---------------------------------|--|
| Canada<br>Ireland<br>Israel | Aguathuna, Newfoundland                                        | Dead Sea Works, Ltd<br>Compagnia Generale de                 | 75,000                          |  |
| Italy                       |                                                                | Magnesio S.P.A.                                              |                                 |  |
| Japan                       | Navetsu<br>Minamata, Onohama, Toyama_                          | Nihon Kasui Kako Co<br>Shin-Nihon Chemical<br>Industries Co. | 187,000                         |  |
| Mexico<br>Norway            | Ube, Yamaguchi<br>Ciudad Madero, Tampico<br>Heroya, Oslo Fjord | Norsk Hydro-Elektrisk<br>Kvaelstof A/S.                      | 50,000<br>80,000                |  |
| United States               | NA                                                             | Steetley, Ltd                                                | 695,000                         |  |

<sup>1</sup> Sea water production facilities appear in tabulation shown in "Domestic Production" section of this chapter.

#### **TECHNOLOGY**

The first large-scale test of the patented process developed by Chemical Construction Corp. and Basic Chemicals of Cleveland (Chemico/Basic), which uses magnesium hydrate to recover sulfur dioxide from powerplant emissions, was in operation at the Mystic station of Boston Edison Co.3 Results demonstrated that over 90% of the sulfur dioxide gases previously emitted from one of the 150-megawatt oil-fired boilers could be converted to marketable sulfuric acid. The stack gases were scrubbed in a large tower containing hydrated magnesium oxide. The sulfur gases reacted with the magnesium hydroxide to form magnesium sulfite, which was then dried. The sulfite was reduced to the oxide of magnesium and sulfur; the former was recycled for use in the scrubbing tower and the latter was converted into sulfuric acid.

The Mystic station test, which is being conducted in cooperation with the U.S. Environmental Protection Agency, will also include a series of experiments to determine the effectiveness of the Chemico/ Basic process under various operating conditions. Additionally, Chemico/Basic was installing a similar recovery system at a coal-fired powerplant operated by Potomac Edison Co. in Maryland.

Other methods for removing sulfur dioxide from emissions using magnesium oxide were described.4 A summary of patents on refractories issued between November 14, 1972, and March 27, 1973, was published by The Refractories Institute production of basic refractory products containing magnesium oxide and magnesite.

Carboline Co. has developed a proprietary catalyst that controls the stability and setting speed of magnesium oxychloride plaster used for fireproofing structural steel.5 The catalyst enables the plaster to be sprayed onto the surface about 11/2 hours after the material has been mixed. Advantages of this plaster material include the lower cost compared with other types of structural steel fireproofing materials; its ability to generate water when exposed to high heat; the ease with which it can be removed after being exposed to fire so that fresh plaster can be applied; and its suitability for weathering in exterior applications.

The Chemicotechnological Institute in the Soviet Union developed a technique that results in a silver electroplate which is more resistant to tarnish.6 By adding magnesium sulfate to an aqueous silver nitrate electrolyte, the resultant silver electroplate was found to be five times more resistant to tarnish than usual.

<sup>3</sup> Industrial Minerals. Chemico/Basic's Success in SO<sub>2</sub> Recovery. No. 70, July 1973, p. 27.
4 Chemical Engineering. Sulfur Dioxide Recovery. V 80, No. 17, July 23, 1973, p. 111.
Chemical Week. A New Type of Gas Absorption Tower for Removing Sulfur Dioxide. V. 112, No. 14, Abr. 4, 1973, p. 47.
5 Chemical Week. Plaster Cools It. V. 113, No. 3, July 18, 1973, p. 25.
Oil and Gas Journal. New Plaster Material Improves Fire Protection. V. 71, No. 4, Jan. 22, 1973. p. 78.
6 Skillings Mining Review. Tarnish Resistant Silver. V. 62, No. 27, July 7, 1973, p. 32.



## Manganese

### By Gilbert L. DeHuff 1

Although a small quantity of manganese nodules was shipped from stocks, there was no actual domestic production of manganese ore, concentrate, or nodules, containing 35% or more manganese, in 1973. With demand high, imports of ferromanganese exceeded the record high established in the previous year, while domestic production dropped and prices of ore, alloy, and metal increased. The General Services Administration (GSA) pressed its sales of surplus stockpile manganese ores, alloys, and metal; and private industry actively continued research that it hoped would lead to commercially mining the nodules of the deep-sea floors.

Legislation and Government Programs.—The Acting Director, Office of Emergency Preparedness, on April 12 revised downward all manganese stockpile objectives. The new objectives were established as follows, in short tons: Natural battery ore, 10,700; synthetic dioxide, none; type A chemical ore, 12,800; type B chemical ore, 12,800; metallurgical ore, 750,500; high-carbon ferromanganese, 200,000; medium-carbon ferromanganese, 10,500; low-carbon ferromanganese, 200,000; and electrolytic metal, 4,750.

Cumulative sales of stockpiled man-

ganese items for the calendar year, as reported by GSA, were as follows (short tons): Synthetic dioxide, 1,681; type B chemical ore, 600; metallurgical ore, 2,406,617 of stockpile grade and 315,484 of nonstockpile grade; high-carbon ferromanganese, 342,148; and electrolytic metal 7,351.

In June, GSA increased its limit for deliveries of metallurgical ore to 500,000 tons for each of fiscal years 1973 and 1974. In December, the limit for fiscal year 1974 was increased to 750,000 tons. Manganese stockpile inventory changes in calendar year 1973 consisted of the following: Synthetic dioxide decreased 2,481 short tons to 14,538 tons; type A chemical ore decreased 328 tons to 146,586 tons; type B chemical ore decreased 167 tons to 100,671 tons; metallurgical ore, stockpile grade, decreased 423,502 tons to 7,249,034 tons; metallurgical ore, nonstockpile grade decreased 11,889 tons to 1,377,882 tons; high-carbon terromanganese was down 64,536 tons to 1,111,525 tons; medium-carbon ferromanganese down 1 ton to 28,920 tons; and electrolytic metal decreased 3,358 tons to 18.153 tons.

Table 1.—Salient manganese statistics in the United States
(Short tons)

|                                                          | 1969      | 1970      | 1971      | 1972      | 1973      |
|----------------------------------------------------------|-----------|-----------|-----------|-----------|-----------|
| Manganese ore (35% or more Mn):                          |           |           | 4.40      | F.77.0    | 239       |
| Production (shipments)                                   | 5,630     | 4,737     | 142       | 578       | 1,509,793 |
| Imports general                                          | 1,959,661 | 1,735,055 | 1,914,264 | 1,620,252 |           |
| Consumption                                              | 2,181,333 | 2,363,937 | 2,155,454 | 2,331,459 | 2,140,058 |
| Manganiferous ore (5% to 35% Mn): Production (shipments) | 430,637   | 368,302   | 198,334   | 147,161   | 203,055   |
| Ferromanganese:                                          | 050 010   | 835,463   | 759,896   | 800,723   | 683,075   |
| Production                                               | 852,019   |           |           | 6,842     | 8,574     |
| Exports                                                  | 1,759     | 21,747    | 4,526     |           | 390,367   |
| Imports for consumption                                  | 307,891   | 290,946   | 242,778   | 348,539   |           |
| Consumption                                              | 1,071,042 | 1,000,611 | 899,011   | 967,968   | 1,116,602 |

<sup>&</sup>lt;sup>1</sup> Supervisory physical scientist, Division of Ferrous Metals—Mineral Supply.

#### **DOMESTIC PRODUCTION**

Except for a small quantity of metallurgical oxide nodules shipped from old stocks by The Anaconda Company, there was neither production nor shipment of manganese ore, concentrate, or nodules, containing 35% or more manganese, in the United States in 1973.

Ferruginous manganese ores or concentrates containing 10% to 35% manganese

were produced and shipped from New Mexico, and shipments continued from the Cuyuna Range of Minnesota. Manganiferous iron ore containing 5% to 10% manganese was neither produced nor shipped in either 1973 or 1972. Manganiferous zinc residuum continued to be recovered from New Jersey zinc ores.

Table 2.—Manganese and manganiferous ore shipped 1 in the United States, by State (Short tons)

| Type and State                                                                              | 1972                   |                      | 1973                   |                      |
|---------------------------------------------------------------------------------------------|------------------------|----------------------|------------------------|----------------------|
| Type and soare                                                                              | Gross<br>weight        | Manganese<br>content | Gross<br>weight        | Manganese<br>content |
| Manganese ore (35% or more Mn, natural): Montana $\_$                                       | 578                    | 305                  | 239                    | 125                  |
| Total                                                                                       | 578                    | 305                  | 239                    | 125                  |
| Manganiferous ore: Ferruginous manganese ore (10% to 35% Mn, natural): Minnesota New Mexico | 119,324<br>27,837      | 15,081<br>3,646      | 170,971<br>32,084      | 21,526<br>4,171      |
| Total Manganiferous iron ore $(5\%$ to $10\%$ Mn, natural)                                  | 147,161                | 18,727               | 203,055                | 25,697               |
| Total manganiferous ore<br>Value manganese and manganiferous ore                            | 147,161<br>\$1,040,000 | 18,727               | 203,055<br>\$1,531,390 | 25,697               |

<sup>&</sup>lt;sup>1</sup> Shipments are used as the measure of manganese production for compiling U.S. mineral production value. They are taken at the point at which the material is considered to be in marketable form for the consumer. Besides direct shipping ore, they include, without duplication, concentrate and nodules made from domestic ores.

#### CONSUMPTION, USES, AND STOCKS

In the production of raw steel (ingots, continuous- or pressure-cast blooms, billets, slabs, etc., and including steel castings), consumption of manganese as ferroalloys, metal, and direct-charged ore was 12.9 pounds per short ton of raw steel produced. Of this total, 11.1 pounds was ferromanganese; 1.3 pounds, silicomanganese; 0.05 pound, spiegeleisen; 0.25 pound, manganese metal; and 0.2 pound, manganese ore. The comparable 1972 total, on the same basis, was 12.6 pounds with ferromanganese at 11.0, silicomanganese at 1.2, spiegeleisen at 0.05, metal at 0.25, and ore at 0.1. In addition to the aforementioned consumption of manganese in 1973, there was consumed per short ton of raw steel produced approximately 1.1 pounds of manganese contained in manganese ore used in making pig iron. In 1972, the quantity was approximately 1.2 pounds.

Domestic producers of manganese ferroalloys continued their capital expenditures for pollution controls, and continued to have problems of power supply. Union Carbide Corp. converted a ferrochromium furnace at its Marietta, Ohio, plant to the production of standard ferromanganese, reportedly making this the first furnace in the country of 35,000 kilovolt-ampere or larger size used for producing standard ferromanganese. The company stopped production of both ferromanganese and silicomanganese at the Ashtabula, Ohio, plant, apparently converting those furnaces to production of silicon ferroalloys.

Electrolytic Manganese Metal.—All of the manganese metal produced domestically was electrolytic, and it is certain that virtually all of that imported was electrolytic metal. Virtually all of the metal consumed was electrolytic metal, but it is possible that some low-carbon ferromanganese, and possibly some manganese-aluminum additives, may have been erroneously reported by consumers as manganese metal.

Table 3.—Consumption and industry stocks of manganese ore 1 in the United States
(Short tons)

|                                                                                               | Consumption                     |                                 | Stocks<br>Dec. 31,              |
|-----------------------------------------------------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|
|                                                                                               | 1972                            | 1973                            | 1973                            |
| By use:  Manganese alloys and metal Pig iron and steel Dry cells, chemicals and miscellaneous | 1,925,715<br>211,157<br>194,587 | 1,684,127<br>237,807<br>218,124 | 1,019,120<br>218,348<br>305,826 |
| Total                                                                                         | 2,331,459                       | 2,140,058                       | 1,543,294                       |
| By origin: Domestic                                                                           | r 29,206<br>r 2,302,253         | 35,961<br>2,104,097             | 47,664<br>1,495,630             |
| Total                                                                                         | 2,331,459                       | 2,140,058                       | 1,543,294                       |

r Revised.

Table 4.—Consumption, by end use, and industry stocks of manganese ferroalloys and metal in the United States, in 1973

(Short tons, gross weight)

| End use                  | Ferromanganese                                                                        |                                                                 | Silico-                                                          | Spiegel-                                           | Manganese                                                          |
|--------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------|
|                          | High-<br>carbon                                                                       | Medium<br>and low-<br>carbon                                    | manganese                                                        | eisen                                              | metal 1                                                            |
| Steel: Carbon            | 764,684<br>5,149<br>81,169<br>71,350<br>430<br>1,549<br>19,995<br>331<br>4,940<br>934 | 120,958<br>5,194<br>24,852<br>9,994<br>293<br>275<br>1,944<br>W | 94,630<br>12,458<br>29,929<br>8,018<br>1,145<br>51<br>4,907<br>W | 11,118<br>1<br>1,653<br>120<br><br>8,695<br><br>26 | 8,133<br>7,580<br>1,784<br>712<br>17<br>650<br>39<br>358<br>14,595 |
| TotalStocks, December 31 | 950,531<br>222,875                                                                    | 166,071<br>33,557                                               | 159,019<br>42,992                                                | 21,613<br>3,732                                    | 35,243<br>4,795                                                    |

W Withheld to avoid disclosing individual company confidential data; included in "Miscellaneous and

unspecified."
1 Virtually all electrolytic.

The metal used to make manganese-aluminum additives is included in table 4 under the "Alloys (excludes alloy steels and superalloys)" category. Production of electrolytic metal in 1973 was 26,175 short tons, compared with 23,200 tons in 1972, and was by the same three companies: Foote Mineral Co., New Johnsonville, Tenn.; Kerr-McGee Chemical Corp., Hamilton (Aberdeen) Miss.; and Union Carbide Corp., Marietta, Ohio. Foote Mineral Co. signed an agreement to become the distributor for the United States and Mexico of the electrolytic manganese metal that will be produced by Delta Manganese (Pty) Ltd., the prospective new producer in the Republic of South Africa.

Ferromanganese.—Bethlehem Steel Co., at Johnstown, Pa., and United States Steel Corp., in the Pittsburg area, continued to be the only domestic ferromanganese pro-

ducers using blast furnaces. Electric furnaces were used to produce ferromanganese by five other companies in eight plants: Airco Alloys Div., Airco Inc., Calvert City, Ky.; Ohio Ferro-Alloys Corp., Philo, Ohio; Roane Electric Furnace Div. of Woodward Corp., a Division of Mead Corp., Rockwood, Tenn.; Tenn-Tex Alloy Corp. of Houston, Houston, Tex.; and Union Carbide Corp., Ferroalloys Div., Alloy, W. Va., Ashtabula and Marietta, Ohio, and Portland, Oreg. Fused salt electrolysis continued to be used by Chemetals Div., Diamond Shamrock Chemical Co., Kingwood, W. Va., to make low-carbon ferromanganese sold under the trade name of Massive Manganese. U.S. shipments of ferromanganese from furnaces totaled 779,000 short tons compared with 727,000 tons in 1972.

<sup>1</sup> Containing 35% or more manganese (natural).

| Table 5Ferromanganese produced in the United States | and | manganese | ore 1 |
|-----------------------------------------------------|-----|-----------|-------|
| consumed in its manufacture                         |     | 9         |       |

| _                                    | Ferron                                              | nanganese pro                        | oduced                                              | Manganese ore <sup>1</sup> consumed (short tons)              |                                             |                                          |  |
|--------------------------------------|-----------------------------------------------------|--------------------------------------|-----------------------------------------------------|---------------------------------------------------------------|---------------------------------------------|------------------------------------------|--|
| Year                                 | Gross<br>weight -                                   | Manganese content                    |                                                     | Gross weight 2                                                |                                             | Per ton of                               |  |
|                                      | (short<br>tons)                                     | Percent                              | Short tons                                          | Foreign                                                       | Domestic                                    | ferroman-<br>ganese <sup>3</sup><br>made |  |
| 1969<br>1970<br>1971<br>1972<br>1973 | 852,019<br>835,463<br>759,896<br>800,723<br>683,075 | 77.3<br>78.5<br>78.6<br>78.3<br>78.8 | 658,837<br>655,436<br>597,205<br>627,358<br>538,119 | 1,992,671<br>2,098,210<br>1,820,408<br>1,896,483<br>1,648,806 | 8,064<br>1,216<br>7,033<br>25,620<br>25,912 | 2.3<br>2.4<br>2.4<br>2.3<br>2.4          |  |

<sup>1</sup> Containing 35% or more manganese (natural).

<sup>2</sup> Includes ore used in producing silicomanganese and metal.

First trees ore used in producing silicomanganese.

Table 6.—Manganese ore used in producing ferromanganese, silicomanganese, and manganese metal in the United States in 1973, by source of ore

| Source                | Gross<br>weight<br>(short<br>tons) | Mn<br>content,<br>natural<br>(percent) |
|-----------------------|------------------------------------|----------------------------------------|
| Domestic 1Foreign:    | 25,912                             | 48                                     |
| Africa                | 674,577                            | 46                                     |
| Australia             | 129,749                            | 47                                     |
| Brazil                | 511,666                            | 49                                     |
| India                 | 175,148                            | 44                                     |
| Mexico                | 86,472                             | 40                                     |
| U.S.S.R. 1            | 23,013                             | 48                                     |
| Other or unidentified | 48,181                             |                                        |
| Total                 | 1,674,718                          | 47                                     |

<sup>1</sup> From U.S. Government surplus stockpile disposals, except for possibly a small tonnage of domestic ore.

Silicomanganese.-Production of silicomanganese in the United States was 184,000 short tons, compared with 153,000 tons in 1972. Shipments from furnaces were 196,000 tons, compared with 146,000 tons in 1972. In 1973, six companies used nine plants to produce silicomanganese: Airco Alloys Div., Airco Inc., Calvert City, Ky., and Theodore (Mobile); Ala.; Interlake Inc., Beverly Ohio; Ohio Ferro-Alloys Corp. Philo, Ohio; Roane Electric Furnace Div., of Woodward Corp., a Division of Mead Corp., Rockwood, Tenn.; Tenn-Tex Allov Corp. of Houston, Houston, Tex.; and Union Carbide Corp., Alloy, W. Va., Marietta, Ohio, and Portland, Oreg. Consumption of silicomanganese was 14.2% that of ferromanganese, compared with 12.8%

Spiegeleisen.—The New Jersey Zinc Co. continued to produce spiegeleisen in electric furnaces at Palmerton, Pa.

Pig Iron.—A total of 354,000 short tons of manganese-bearing ores containing over

5% manganese (natural) was consumed in the production of pig iron (or its equivalent hot metal). Domestic sources supplied 150,000 tons, of which 115,000 tons was manganiferous iron ore containing 5% to 10% manganese, and 35,000 tons was ferruginous manganese ore containing 10% to 35% manganese. Foreign sources supplied 204,000 tons, of which 10,000 tons was manganiferous iron ore, and 194,000 tons contained more than 35% manganese.

Battery and Miscellaneous Industries.—
The ore reported in table 3 includes that consumed in making synthetic manganese dioxide by either electrolytic or chemical means, but it does not include consumption of the synthetic dioxide. Although some synthetic dioxide is used for chemical purposes, most of it is used in the manufacture of dry cell batteries, particularly for the manganese-alkaline battery, premium or heavy-duty Leclanché (manganese dioxide-ammonium chloride-zinc) cells, and as a blend with natural ore in the ordinary Leclanché cell.

The domestic ore and much of the foreign ore used for chemical and miscellaneous purposes did not meet national stockpile specification P-81-R for chemicalgrade ore.

ESB Inc. purchased the Covington, Tenn. synthetic manganese dioxide plant of Lavino Div., International Minerals & Chemical Corp., and resumed production of electrolytic dioxide late in 1973. The plant had been idle for more than a year. ESB has no plans to resume production of synthetic dioxide by chemical means but has moved its grinding operations for natural battery ores from its Ray-O-Vac dry cell plants to Covington.

The long association of the Lavino name with the manganese business came to

an end March 30 when the Lavino Div. (formerly E. J. Lavino & Co.) of International Minerals & Chemical Corp. terminated its business of importing, grinding, and blending battery- and chemical-grade ores.

Kerr-McGee Chemical Corp. increased the capacity of its Henderson, Nev., plant to 8,700 short tons of synthetic manganese dioxide per year, and planned a further increase to 12,000 tons per year by early

# **PRICES**

Manganese Ore.—All manganese ore prices are negotiated, dependent in part on the characteristics and quantity of ore offered, delivery terms, and fluctuating ocean shipping rates. Trade journal quotations reflect the paper's feel for the market. American Metal Market quotes for metallurgical-grade manganese ore containing 46% to 48% manganese carried over from 1972 at 58 to 61 cents, nominal, per long ton unit, c.i.f. eastern seaboard and Gulf ports. In August, they were increased to 61 to 71 cents, nominal, and carried to the end of the year. The quotations for metallurgical ore containing 48% to 50% manganese were 61 to 64 cents, nominal, at the beginning of 1973, and 74 to 84 cents. nominal, at yearend. The Metals Week quotation for metallurgical-grade manganese ore with a minimum manganese content of 48% carried over from 1972 at 63 to 68 cents, same basis. Although some spot sales were reported as appreciably higher, an increase in June to 68 to 75 cents was credited largely to adjustment for February's devaluation of the dollar. In mid-July, the quote was moved to 75 to 85 cents for a "thin market," in mid-November, to 85 to 95 cents, and in mid-December, to \$1.05 to \$1.15, at which it closed the year. The last two ranges were a measure of the contract prices that are normally negotiated toward the end of the year.

Manganese Alloys.—The domestic producer price for standard high-carbon ferromanganese having a minimum manganese content of 78% remained at \$190 per long ton, f.o.b. producer plant or shipping point, until the middle of April when it was increased \$10 to \$200 per long ton, same basis, at which price it remained for the remainder of the year. Early in May, Metals Week increased its quote for imported alloy of this grade to \$190 to \$197 per long ton, delivered in Pittsburgh or Chicago. This remained unchanged to year-end.

Manganese Metal.—The price of standard electrolytic manganese metal held through the first quarter of the year at 33.25 cents per pound, f.o.b. producer plant, for shipments of 30,000 pounds or more. An increase in price of 2 cents became effective for Foote Mineral Co. as of June 1, and earlier for Kerr-McGee Chemical Co. A similar increase announced by Union Carbide Corp. to be effective July 2 was negated by imposition of Government price controls before it could be effected. The result was a dual price, 33.25 and 35.25 cents, for more than half of the year.

# **FOREIGN TRADE**

Ferromanganese exports totaled 8,574 short tons valued at \$2,136,917, compared with 6,842 tons valued at \$1,511,864 in 1972. Of the 1973 total, Canada took 6,637 tons; Switzerland, 988 tons; Mexico, 309 tons; Dominican Republic, 252 tons; El Salvador, 160 tons; Colombia, 93 tons; Republic of South Africa, 66 tons; Brazil, 31 tons; and six other countries received small quantities. Exports classified as "manganese and manganese alloys, wrought or unwrought, and waste and scrap" totaled 4,660 tons valued at \$3,108,688 in 1973. The previous year's exports were 1,504

tons valued at \$1,020,743. This classification includes electrolytic manganese metal and manganese-copper alloys, but it does not include ferromanganese. Exports of ore and concentrate containing more than 10% manganese totaled 57,448 tons valued at \$4,535,463, compared with 25,108 tons at \$3,137,104 in 1972. Most of the 1973 exports were probably imported manganese dioxide ore that may or may not have been subjected to grinding, blending, or otherwise classifying.

The average grade of imported manganese ore was 48% manganese in 1973,

compared with 49% in 1972. Brazil supplied 42% of the U.S. total in 1973, while Gabon's portion dropped to 26%. Imports of manganiferous ore (more than 10% but less than 35% manganese) consisted of 110 short tons from Mexico, having an average manganese content of 34%.

Ferromanganese imports for consumption exceeded the previous year's record high, and a good portion of the total continued to come from foreign companies in which U.S. producers or consumers have substantial interest. Silicomanganese imports for consumption totaled 44,759 short tons containing 30,061 tons of manganese. Sources and tonnage (gross weight) were as follows: Norway, 27,882; Yugoslavia, 5,382; Mexico, 4,832; Spain, 3,417; Japan, 1,323; Sweden, 829; France 498; the United Kingdom, 335; and Canada, 261, Imports for consumption classified as unwrought manganese metal, except alloys, and waste and scrap of such metal, totaled 2,452 short tons, compared with 4,121 tons in 1972. Of the 1973 total, 2,100 tons came from the Republic of South Africa, and 352 tons came from Japan. A small quantity, 11 pounds with a value of \$132.73 per pound, came from Italy.

Imports for consumption classified as "manganese compounds, other" 4,355 short tons in 1973, compared with 7,937 tons in 1972. The sources, gross weights, and values per pound in 1973 were as follows: Japan, 2,784 tons (19.8 cents); West Germany, 1,123 tons (0.6 cents); Belgium-Luxembourg, 300 tons (17.8 cents); the United Kingdom, 147 tons (6.2 cents); and Sweden, less than half a ton (\$1.55). The imports from Japan and Belgium-Luxembourg appear to have consisted largely, if not entirely, of synthetic manganese dioxide.

Tariffs.—Suspension of the duty on manganese ore from most nations, Rate 1, was extended another 3 years (through June 30, 1976) by Public Law 93-99. If duties were in effect, the rate would have been 0.12 cent per pound of contained manganese, the last of the five annual General Agreement on Tariffs and Trade (GATT) reductions effected by Presidential Proclamation 3822 of December 16, 1967. Ore from the U.S.S.R., the People's Republic of China, and certain other specified Communist countries, continued to be subjected to the statutory rate of 1 cent per pound of contained manganese.

Table 7.-U.S. imports 1 of manganese ore (35% or more Mn), by country

|                                                                                                                                                                         |                                 | 1972                                                                                                               |                                                                                                       |                                                                                          |                                                                                       |                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Country                                                                                                                                                                 | Gross<br>weight<br>(short tons) | Mn<br>content<br>(short tons)                                                                                      | Value<br>(thousands)                                                                                  | Gross<br>weight<br>(short tons)                                                          | Mn<br>content<br>(short tons)                                                         | Value<br>(thousands)                                                           |
| Angola <sup>2</sup> Australia Brazil Canada Congo (Brazzaville) <sup>5</sup> Gabon <sup>6</sup> Ghana India Mexico Morocco South Africa, Republic of Zaire <sup>7</sup> | 473 142                         | 17,160<br>40,261<br>192,827<br>5<br>16,760<br>236,821<br>22,062<br>12,400<br>32,731<br>13,936<br>65,742<br>141,990 | \$1,244<br>1,575<br>8,217<br>(4)<br>64<br>10,669<br>1,237<br>620<br>1,803<br>1,277<br>2,7715<br>4,894 | 123,813<br>629,833<br>611<br>393,037<br>38,965<br>105,019<br>26,427<br>119,038<br>73,050 | 61,458<br>299,402<br>354<br>196,114<br>18,601<br>41,206<br>13,923<br>55,920<br>35,657 | \$2,760<br>15,767<br>51<br>10,007<br>1,076<br>2,616<br>1,343<br>2,002<br>1,781 |
| Total                                                                                                                                                                   | 3 1,620,252                     | 792,695                                                                                                            | 34,315                                                                                                | 1,509,793                                                                                | 722,635                                                                               | 37,403                                                                         |

<sup>1</sup> Quantities for general imports and imports for consumption were identical.
2 Part or all of the ore reported to have come from Angola is believed to have originated in Gabon.
3 It appears that up to 225,000 additional tons (gross weight) may have come from Brazil in 1972.
4 Less than 1/2 unit.
5 Actually from Cabon.

<sup>5</sup> Actually from Gabon.
6 In addition in 1972, Gabon imports reported as Congo (Brazzaville) were approximately 35,000 tons. (gross weight), Gabon imports reported as Congo (prazzavine) were approximately 30,000 tons (gross weight), and some or all of the imports reported as Angola probably originated in Gabon.

7 In 1972, actual imports originating in Zaire were approximately 150,000 tons (gross weight); see footnote 6.

|                           |                                 | 1972                          |                      |                                 | 1973                          |                      |  |
|---------------------------|---------------------------------|-------------------------------|----------------------|---------------------------------|-------------------------------|----------------------|--|
| Country                   | Gross<br>weight<br>(short tons) | Mn<br>content<br>(short tons) | Value<br>(thousands) | Gross<br>weight<br>(short tons) | Mn<br>content<br>(short tons) | Value<br>(thousands) |  |
| Belgium-Luxembourg        | 9,911                           | 7,775                         | \$1,172              | ==                              | 0 500                         | <b>\$</b> 660        |  |
| Brazil                    | 0.050                           | 4,592                         | 667                  | 4,858                           | 3,720                         | 410                  |  |
| Canada                    |                                 | 460                           | 211                  | 1,382                           | 1,098                         |                      |  |
| France                    | 100,084                         | 78,382                        | 14,067               | 137,712                         | 106,314                       | 17,803               |  |
| Germany, West             |                                 | 603                           | 267                  | 218                             | 185                           | 96<br>5 100          |  |
| India                     | 13,093                          | 9,950                         | 1,516                | 47,242                          | 35,591                        | 5,160                |  |
| Italy                     |                                 | 2,442                         | 718                  |                                 | 40 455                        | r 007                |  |
| Japan                     |                                 | 23,179                        | 5,374                | 24,264                          | 19,430                        | 5,027                |  |
| Norway                    |                                 | 20,181                        | 3,145                | 26,048                          | 20,525                        | 3,561                |  |
| Rhodesia                  | 1,504                           | 1,210                         | 171                  |                                 |                               | 40.000               |  |
| South Africa, Republic of |                                 | 120.617                       | 20,866               | 138,897                         | 109,143                       | 18,200               |  |
|                           | 102,111                         | ,                             |                      | 5,435                           | 4,367                         | 1,260                |  |
| SpainSweden               | 6,423                           | 5,326                         | 1,672                | 4,311                           | 3,494                         | 1,131                |  |
| United Kingdom            |                                 | (1)                           | (1)                  |                                 |                               |                      |  |
| Onited Kingdom            |                                 |                               |                      |                                 | 200 005                       | F0 900               |  |
| Total                     | 348,539                         | 274,717                       | 49,846               | 390,367                         | 303,867                       | 53,308               |  |

Table 8.-U.S. imports for consumption of ferromanganese, by country

# WORLD REVIEW

Under United Nations auspices, a Georgetown, Guyana, April 30 to May 2 meeting of representatives from developing countries was reported to have favored the development of producer associations for different ores including those of manganese. Bauxite, copper, iron, nickel, and cobalt were other likely candidates.

Worldwide interest in deep-sea manganese nodules continued unabated, with the various active groups firming plans for increased testing in 1974. Summa Corp., Houston, Tex., an affiliate of Hughes Tool Co., took delivery of a 618-foot, 36,000-ton surface ship, the Hughes Glomar Explorer. A huge 324-foot-long barge, resembling a floating drydock, will be sunk to the ocean floor at a suitable Pacific site. Nodules collected by it from the bottom then will be passed through a pipe to the surfaceship. Tests of the Japanese continuous bucket line (CBL) system of nodule recovery were reported to have met with problems under conditions of rough ocean-floor topography and rapidly changing currents but were reported to have been favorable otherwise.

Argentina.—Manganese ore produced in 1972 had an average manganese content of 28%. Ferromanganese production in 1972 totaled 18,000 short tons compared with 10,000 tons in 1971.

Australia.—The manganese mine of Bell Brothers at Woodie Woodie, Pilbara District, Western Australia, closed. The only other significant producer of manganese ore in Western Australia in recent years,

the Longreach group, stopped producing in 1971.2 Calendar year 1973 production data released by the Minister of Mines of Western Australia, totaled 29,000 short tons as measured by sales realized during the period. The ore was metallurgical ore from the Pilbara District, averaging 48.31% manganese. The mining firm of Hancock and Wright was considering a synthetic manganese dioxide plant at Bunbury, Western Australia. It would use Pilbara manganese ore and ferrous sulfate contained in the effluent from a nearby titanium dioxide plant. Ferric hydroxide would be a product of the plant.

On January 31, 1973, the Australian Minister for Minerals and Energy announced that export controls were being imposed on all minerals to be exported in raw or semiprocessed form. One objective was to encourage more processing in Australia.

Belgium.—Société Europenne des Derives du Manganese (SEDEMA) will increase its synthetic manganese dioxide production capacity to 22,000 short tons per year by the end of 1974. SEDEMA uses the chemical process of the former Manganese Chemicals Corp., Baltimore, Md., now Chemetals Div., Diamond Shamrock Chemical Co.3

Brazil.—Production of Amapá mine-run manganese ore in 1973 by Indústria e Comércio de Minerios, S.A (ICOMI) was 2,293,000 short tons. Washed ore produced

<sup>1</sup> Less than ½ unit.

<sup>&</sup>lt;sup>2</sup> Metals Sourcebook. V. 11, No. 1, Jan. 14, 1974, p. 2.

<sup>3</sup> American Metal Market. V. 80, No. 101, May 23, 1973, p. 9.

| Table 9.—Manganese ore: | World p   | roduction by | country 1 |
|-------------------------|-----------|--------------|-----------|
|                         | ort tons) | •            | •         |

| Country                          | Percent Mn • | 1971       | 1972                              | 1973 p      |
|----------------------------------|--------------|------------|-----------------------------------|-------------|
| North America:                   |              |            |                                   | 10.07       |
| Mexico 2                         | 95.1         | 221        |                                   |             |
| United States (shipments)        | 35+          | 294,198    | 325,867                           | 401,268     |
| South America:                   | 52           | 142        | 578                               | 239         |
| Argentina                        | 25 12        |            |                                   |             |
| Bolivia 2 3                      | 25-40        | 15,181     | 12.330                            | • 12,000    |
| Brazil                           | 28+          | 785        | 103                               | 709         |
| Chile                            | 38-50        | 2,868,000  | 2,268,000                         | · 2.378.000 |
| Chile                            | 41–47        | r 31,788   | 17,731                            | 15,911      |
| Colombia                         | NA           | 496        | 542                               | NA<br>NA    |
| Peru                             | 27-33        | r 10,750   | 12.152                            |             |
| Europe:                          |              |            | 10, 102                           | 8,574       |
| Bulgaria                         | 30 +         | 45,000     | 33,000                            | . 00 000    |
| Greece                           | 50           | 6,754      |                                   | • 33,000    |
| nungary                          | 30 <b>–</b>  | 249,743    | 5,848                             | • 5,500     |
| Italy                            | 80 -         | 33,735     | 206,639                           | 207,257     |
| Portugal                         | 37–38        |            | 28,260                            | 28,174      |
| Spain                            | 30           | r 4,116    | 5,895                             | 200         |
| U.S.S.R. 4                       | NA<br>NA     | r 19,848   | 14,519                            | 13,643      |
| Yugoslavia                       |              | 8,067,000  | 8,619,000                         | 8,818,000   |
| Africa:                          | 30 +         | 17,762     | 16,909                            | 10,712      |
| Angola                           |              |            |                                   | ,           |
| Rotewane                         | <b>30</b> +  | 25,353     | 41.557                            | 5,161       |
| Fount Arch Donahling             | <b>30</b> +  | 39,246     | 758                               | 375         |
| Botswana Egypt, Arab Republic of | NA           | 4,716      | 2,655                             | • 2.600     |
| Gabon                            | 50-53        | 2,057,438  | 2,134,800                         | 2,115,105   |
| Ghana                            | 32-50+       | 659,800    | 549,324                           |             |
| Morocco                          | 53           | r 111,836  | 105.896                           | 350,767     |
| South Airica, Republic of        | 30+          | 3,567,666  | 3,606,205                         | 161,102     |
| Zaire                            | 42+          | r 362,733  |                                   | 4,602,839   |
| asia:                            | 20           | - 502,155  | 407,283                           | 368,131     |
| Burma                            | NA           | 123        | 000                               |             |
| China, People's Republic of e    | 30+          |            | 308                               | 308         |
| India •                          | 10-54        | 1,100,000  | 1,100,000                         | 1,100,000   |
| Indonesia                        | 47+          | 2,029,000  | 1,810,000                         | 1,692,000   |
| Iran 6                           |              | 13,181     | 8, <b>309</b>                     | 17.731      |
|                                  | 33+          | 5,500      | ° 5,500                           | • 5,500     |
| Korea, Republic of (South)       | 28-45        | 314,164    | 287,424                           | 208,113     |
| Pakistan                         | 40_          | 2,495      | 2,204                             | 1.897       |
| Philipping                       | NA           | 100        | 140                               | 190         |
| Philippines                      | 52           | 5,658      | 2,746                             | 4.379       |
| Thailand                         | 46-50        | 16,901     | 21,883                            | 40.034      |
| Turkey                           | 35 +         | 14,222     | 16,620                            | 2,815       |
|                                  | •            | ,          | 10,020                            | 2,019       |
| Australia                        | 46-49        | 1,157,703  | 1,287,434                         | 1 670 174   |
| F111                             | 30-50        | 8,440      | 1,201,404                         | 1,678,174   |
| New Hebrides                     | 43-44        | 16,537     | $31$ , $\mathbf{1\bar{3}\bar{7}}$ | NÃ          |
| Total                            | NA           | 23,178,110 | 22,989,556                        | 24,290,408  |

amounted to 1,744,000 tons having a manganese content of approximately 48%. Production of pellets by the new pelletizing plant, which continued to have problems, was 60,000 tons. Exports of washed metallurgical ore by ICOMI were 1,330,000 tons. Brazil produced 85,000 short tons of ferromanganese and 26,000 tons of silicomanganese in 1973.

Canada.—In the latter part of the year, Union Carbide Canada Ltd. started its new 38,000 kilovolt-ampere closed ferromanganese furnace at Beauharnois, Quebec. It was reported to have a capacity of 100,000 tons of high-carbon ferromanganese per year.4

China People's Republic of.-A survey of the People's Republic of China's mineral resources published by the West German Institute for Economic Research concluded,

e Estimate. P Preliminary. Revised. NA Not available.

1 In addition to the countries listed, Cuba, Territory of South-West Africa, and Malaysia also may have produced manganese ore and/or manganiferous ore but informaticn is inadequate to make reliable estimates of output levels. Low grade ore not included in this table has been reported as follows in short tons: Czechoslovakia (about 17% Mn) 1971—53,000; 1972—nil; 1973—1,100; Romania (about 22% Mn) approximately 140,000 tons in each year; Republic of South Africa (15%-30% Mn, in addition to material listed in table) 1971—2 Estimated on the basis of reported contained manganese.

2 Exports.

<sup>&</sup>lt;sup>3</sup> Exports.

Grade unreported. Source: The National Economy of the U.S.S.R., Central Statistical Administration, Mosc

Moscow.

5 Of total 1972 output, 57.6% graded below 35% Mn and of total 1973 output 64% graded below 35% Mn, with the balance in each year grading 35% Mn to 48% or more. (Comparable 1971 production breakdown not available, but export figures give 67% below 35% Mn.)

6 Iranian calendar year beginning March 21 of year stated; all figures apparently are mine run ore.

<sup>&</sup>lt;sup>4</sup> American Metal Market. V. 80, No. 240, Dec. 12, 1973, p. 16.

with respect to manganese, that of the annual output of 1 million metric tons 90% is consumed domestically and most of the 100,000 tons exported goes to Japan.<sup>5</sup>

Gabon.—Battery and chemical-grade ore produced in 1973 totaled 46,000 short tons.

Ghana.—In September, the Government of Ghana assumed control of all export sales of manganese ore. In November, an agreement was signed with Caemi International, The Hague, the Netherlands, appointing that firm the sole worldwide sales agent for Ghana manganese ore. Caemi International is worldwide sales agent for Brazilian Amapá ore. Ghana ore is marketed in the following grades: Battery grade, containing better than 50% manganese; high-grade lump, containing approximately 49% to 50% manganese; high-grade fines, having a similar manganese content; two lower grades, B and C; and carbonate ore, with a manganese content of approximately 32%. Some of the carbonate ore is used in Europe in electric furnaces for metallurgical purposes, but most of it goes to Japan for use in making synthetic manganese dioxide.

Greece.—An agreement was signed November 8 for construction of a 12,000-ton-per-year synthetic (electrolytic) manganese dioxide plant as a joint venture of two Japanese firms, Tekkosha Co. Ltd. (65%) and Mitsubishi Corporation (35%). Plans called for operation to begin by mid-1975, with a goal to supply the local market and export the balance. Exports of pyrolusite in 1972, apparently battery-grade, totaled 5,700 short tons, of which 2,900 tons went to West Germany and 2,400 tons went to France,

India.—Central Provinces Manganese Ore Co. (C.P.M.O.) continued to operate its one remaining mining property, the Balapur Hamesha (Dongri Buzurg) mine in the State of Maharashtra, although uncertainties surrounded legal status of the property. Although all of the company's remaining ore was apparently sold, the company was hindered in making deliveries by a lack of railway wagons.6

The Government of India was reported to have accepted recommendations of the National Committee on Science and Technology (NCST) for construction of a 4,000-short-ton-per-year synthetic (electrolytic) manganese dioxide plant to meet domestic needs. The NCST also was reported to have recommended a plant for

manganese metal and for manganese-based chemicals, apparently for export.<sup>7</sup>

To conserve resources and assist in meeting increasing internal demand, the Government of India on April 1 banned the export of First Grade manganese ore (48% or more manganese), except for previous commitments, and decided to reduce exports of Second Grade ores (35% to 48% manganese).

Of the 1,692,000 short tons of manganese reported as production for 1973, 1,083,000 tons or 64% was ferruginous ore containing less than 35% manganese, 499,000 tons or 29.5% was classified as Second Grade manganese ore containing 35% to 48% manganese, 108,000 tons or 6.4% was First Grade manganese ore, and 1,700 tons or 0.1% was peroxide ore having a maximum manganese dioxide content of 86%. Exports totaled 814,000 tons divided as follows: Ferruginous, 546,000 tons (all to Japan); First Grade, 37,000 tons (Spain, 18,000; Japan, 13,000; South Korea, 7,000); Second Grade, 230,000 tons (Japan, 190,000; Bulgaria, 14,000; Czechoslovakia, 14,000; South Korea, 12,000); Peroxide, 1,400 (all to Japan). Domestic consumption of manganese ore totaled 826,000 tons, of which 380,000 tons was for ferromanganese production, 430,000 tons for iron and steel, 13,000 tons for dry cell manufacture, and 2,000 tons for miscellaneous uses. Imports were 6,000 tons, presumably all of battery grade.

Production of ferromanganese was 152,000 short tons, compared with 179,000 tons in 1972. Capacity of India's seven plants, all of which produced in 1973, remained unchanged at 215,000 tons. Domestic consumption was approximately 91,000 tons according to preliminary reports from consumers. Exports totaled 60,000 tons, with the United States taking 38,000 tons; Egypt, 18,000 tons; and Japan, 3,700 tons.

Indonesia.—Reported production of manganese ore in 1973 contained more than 75% manganese dioxide.

Iran.—Manganese ore produced in 1972 had an average manganese content of 33%.

Ireland.—Mitsui Denman, Ltd., Irish subsidiary of the Japanese firm Mitsui Mining & Smelting Co. Ltd., contracted

<sup>&</sup>lt;sup>5</sup> Metals Week. V. 44, No. 35, Aug. 27, 1973, p. 6.
<sup>6</sup> Mining Journal (London). V. 281, No. 7218, Dec. 21, 1973, p. 514.
<sup>7</sup> Mining Journal (London). V. 280, No. 7181, Apr. 6, 1973, p. 275.

with Lummus Co., Ltd. (LCL), for the construction of a \$15 million synthetic (electrolytic) manganese dioxide plant on Little Island, County Cork. The plant will use a proprietary Mitsui process and have a productive capacity of 12,000 tons per year, with completion of construction expected by mid-1975. The product will be exported to dry cell manufacturers in the European Common Market, LCL is a London-based affiliate of Combustion Engineering Inc.8

Italy.—The manganese ore produced in 1973 averaged 27% manganese content.

Japan.—Tekkosha Co. Ltd. ceased production of electrolytic manganese metal at its 6,000 metric ton per-year Yamagata plant. This dropped the country's annual production capacity to 10,600 from 17,200 short tons.9 Company plans were to double production capacity of its synthetic manganese dioxide plant at Yamagata to 13,200 short tons per year, reportedly by conversion of the metal facility.10 Japanese demand for synthetic manganese dioxide in 1973 was 50,000 short tons, of which 33,000 tons was for the export market.11

Production of natural dioxide ore or concentrate in 1973 was only 100 short tons, averaging 70% manganese dioxide; metallurgical ore or concentrate produced averaged 28.1% manganese. Production of ferromanganese was 680,000 short tons in 1973 and 610,000 tons in 1972; silicomanganese, 415,000 tons in 1973 and 378,000 tons in 1972; electrolytic manganese metal, 11,111 tons in 1973 and 8,456 in 1972; and synthetic manganese dioxide, 41,338 in 1973 and 43,440 in 1972.

Mexico.—Mexico's principal manganese ore producer, Cia. Minera Autlán, was nationalized through the purchase of the substantial minority interest held by Bethlehem Steel Corp. A \$15.5 million loan was obtained from First National City Bank, New York, and construction was to start on a new 50,000-ton-per-year ferromanganese plant near Tampico with the possibility for production to start sometime in 1975. The loan was guaranteed by the State Development Bank, Nacional Financiera, S.A. (NAFINSA). The company's several mines are located in the Molango district of the State of Hidalgo. The deposit from which Autlán has mined battery-grade dioxide ore is approximately 20 miles distant from the larger deposit where its carbonate ore is mined and beneficiated to an oxide nodule for metallurgical use. ESB Incorporated mines battery-grade dioxide ore from a mine in the same part of the district as Autlán's dioxide mine. ESB reports that it has started a calcining operation that will allow the use of lower grade ores than have been mined to date.

Morocco.—All manganese ore produced in 1973 was chemical-grade concentrate having an average manganese dioxide content of 84%.

Philippines.—The manganese ore produced in both 1973 and 1972 was reported to have an average manganese content of 52%.

Portugal.—According to preliminary data, the manganese ore produced in 1973 averaged 37% manganese. In addition, 38,000 short tons of manganiferous iron ore was produced analyzing 42.4% iron and 7.8% manganese.

South Africa, Republic of.—Electrolytic Metal Corp. (Pty) Ltd. (EMCOR) completed its planned expansion of capacity to produce electrolytic manganese metal, and was considering the possibility of a further expansion. Delta Manganese (Pty) Ltd., however, experienced startup problems with its new plant and did not get into production. South African Manganese Ltd., the country's largest producer of manganese ore, reported increased production and shipments, but earnings remained at the same level as those of 1972. High transport costs were largely held responsible for the poor profit showing. In 1972, The Associated Manganese Mines of S.A. Ltd., the second largest producer, made capital expenditures on a new manganese ore mine at NChwaning and on expansion of other manganese mines in the Blackrock area.

Spain.—The manganese ore produced in 1973 had an average manganese content of 30.0%.

Thailand.—Metallurgical-grade ese ore produced in 1973 was of a 46% to 50% manganese grade, and the battery ore was of a 75% manganese dioxide grade.

Yugoslavia.—Estimated production ferromanganese in 1973 was 28,000 short tons.

<sup>&</sup>lt;sup>8</sup> American Metal Market. V. 80, No. 252, Dec. 31, 1973, p. 22.

Metals Sourcebook. V. 11, No. 1, Jan. 14,

<sup>31, 1973,</sup> p. 24.
Metals Sourcebook. V. 11, No. 1, Jan. 14, 1974, p. 3.

9 Japan Metal Bulletin (Tokyo). June 25, 1974, p. 5.

10 Metals Sourcebook. No. 23, Dec. 10, 1973, p.

l.
11 Japan Metal Bulletin (Tokyo). Mar. 12, 1974, p. 5.

755 MANGANESE

# **TECHNOLOGY**

Laboratory investigations of the presulfatization-reduction reported modification of the Bureau's high-temperature differential sulfatization process for utilizing low-grade manganiferous iron ores of the Cuyuna Range, Minn., recovered more than 90% of the manganese as an oxide containing 65% manganese, and 75% of the iron as an oxide concentrate containing 60% iron.12

In a review of U.S. mineral resources geologists of the U.S. Geological Survey set forth the following among their conclusions: There are virtually no domestic reserves of manganese ore, and known resources are very low grade and refractory; the best possibilities for discovery of domestic reserves or resources of "conventional type" would seem to be in finding the source of the manganese of the Pierre Shale (possibly buried under Pleistocene sedimentary rocks in Minnesota or nearby areas), finding a Molango-type (Mexico) deposit, or finding the source of the manganese that is concentrated in the Salton Sea brines.13

The literature on the natural and manmade occurrences of manganese and its biologic effects was critically evaluated by a Panel on Manganese, Div. of Medical Science, National Research Council-National Academy of Sciences. The report was prepared for the Environmental Protection Agency to assist that agency in making its decisions concerning pollutants and their regulation. Average urban ambient-air concentration in the United States for a 12-year period ending in 1965 was approximately 0.10 µg/m3; maximum ambient-air concentrations, occuring almost exclusively at industrial locations, exceeded  $10\mu g/m^3$  but were apparently of that order of magnitude. The threshold limit value (TLV) recommended by the American Conference of Governmental Industrial Hygienists is 5 mg/m<sup>3</sup>. This is generally believed to constitute a low factor of safety for occupationally-exposed susceptible persons when consideration is given to duration and degree of exposure. However, present concentrations in ambient air would appear to provide a substantial margin of safety for the general population. It does not appear that manganese pollution of water can be expected to be a problem, except locally under very unusual

circumstances. The report concludes, "The long-term toxicology of manganese, including fetal effects, still presents a collection of ambiguous answers. For this reason, special care must be exercised before substantial additional sources of manganese are introduced into the environment." The possibility that future widespread use of manganese organometallic fuel additives might create an ambient-air problem requires objective evaluation.14

Experimental work under the Environmental Engineering Programs, University of Southern California, Los Angeles, Calif. showed that manganese dioxide has a large adsorption capacity with respect to mercury, up to 10% mercury by weight, provided chloride concentrations are below those of seawater. It was concluded that manganese dioxide might be important as a mercury scavenger in fresh or brackish water, suggesting the possibility for its apto the treatment of plication waters.15

A new copper-nickel-zinc-manganese alloy, designated IN629, has been developed by the laboratory of International Nickel Ltd., Birmingham, England. It was claimed that this copper-based spring alloy, analyzing 15% nickel, 13% manganese, and 28% zinc, offers considerable improvement in mechanical properties over copper-nickel-zinc (socalled nickel-silver) alloys that are currently used by the electrical and electronics industries for relay springs. Changes in structure, composition, and annealing treatment gave only small variations in the mechanical properties of the alloy.16

Several patents were issued in connection with the Toth process for production of

<sup>12</sup> Joyce, F. E., Jr., and C. Prasky. Sulfatization-Reduction of Manganiferous Iron Ore. Bu-Mines RI 7749, 1973, 17 pp.
13 Dorr, J. V. N., M. D. Crittenden, Jr., and R. G. Worl. Manganese. Ch in United States Mineral Resources, U.S. Geol. Survey Prof. Paper 820, ed. by D. A. Brobst and W. D. Pratt, 1973, pp. 385–399.
14 Division of Medical Sciences, National Research Council-National Academy of Sciences. Medical and Biologic Effects of Environmental Pollutants-Manganese. 1973, 191 pp.
15 Lockwood, R. A., and K. Y. Chen. Adsorp-

rollutants—Manganese. 1973, 191 pp.

15 Lockwood, R. A., and K. Y. Chen. Adsorption of Hg(II) by Hydrous Manganese Oxides.
Environmental Sci. and Technol., v. 7, No. 11,
November 1973, pp. 1028–1034.

16 Ward, D. M., B. J. Helliwell. and P. J. Penrice. Development of a New Cu-Ni-Zn-Mn Spring
Alloy-IN629. Metallurgia & Metal Forming, v.
40, No. 10, October 1973, pp. 319–324.

aluminum metal by the reaction of aluminum trichloride with molten manganese as described in U.S. patent No. 3,615,359, dated October 26, 1971.17 Basically, the process consists of the chlorination of calcined clay by chemical means, with reduction of the resultant aluminum chloride by manganese metal. The manganese is recycled by oxidation of the manganese chloride generated by the aforementioned reduction step and subsequent reduction of the manganese oxide to manganese metal in a blast or shaft furnace. If both the manganese and the chlorine can be recycled as claimed, the process should be relatively pollution-free; because a thermal reaction is used rather than electrolysis, requirements for electricity should be only onetenth those of the current Bayer-Hall techniques. Capital costs per ton of aluminum have been estimated 50% to 75%

less. Applied Aluminum Research Corp. (AARC), New Orleans, together with Bremar Holdings, London merchant bankers, announced plans for a semicommercial plant to be constructed somewhere in Europe to test the technical and economic feasibility of the process. AARC claimed that costs for a commercial operation would be approximately half of those for producing aluminum electrolytically.18

<sup>17</sup> Toth, C., R. V. Bailey, and H. G. Harris, Jr. (assigned to Applied Aluminum Research Corp.). Process for Producing Aluminum U.S. Pat. 3,713,809, Jan. 30, 1973, 7 pp.; Can. Pat. 930,175, July 17, 1973, 23 pp.; and Brit. Pat. 1,318,214, May 23, 1973, 9 pp.
Toth, C., and H. G. Harris, Jr. (assigned to Applied Aluminum Research Corp.). Process for Producing Aluminum. U.S. Pat. 3,713,811, Jan. 30, 1973, 8 pp.

18 Metal Bulletin (London). No. 5814, July 6, 1973, pp. 9-10.

<sup>1973,</sup> pp. 9-10. Metals Week. V. 44, No. 8, Feb. 19, 1973, p.

Metals Week. V. 44, No. 28, July 9, 1973, p. 3.

# Mercury

# By V. Anthony Cammarota, Jr. 1

Primary mercury production of 2,171 flasks 2 in 1973, valued at \$621,405, was the lowest since recordkeeping began in 1850. Of the 24 active mines only five produced over 100 flasks, compared with 12 in 1972. Fourteen mines produced less than 10 flasks each from mined ore, dumps, cleanup operations, or as a byproduct. During the year, only about six mines could be classified as consistent producers.

Secondary production of 10,329 flasks was down from the 1972 level. Some of this material represented mercury released by the General Services Administration (GSA) and some came from the closed mercury-cell chlor-alkali plant of Olin Corp. at Saltville, Va. The company used the mercury at its

other plants.

The consumption of 54,283 flasks in 1973 was 2.6% higher than the previous year. Increases were registered for usage in electrical apparatus, electrolytic preparation of chlorine and caustic soda, and industrial and control instruments, but usage in mildew-proofing paint declined.

The average New York price, after falling 59% over the past 4 years to \$218.28 per flask in 1972, recovered to \$286.23 per flask. Efforts by major mercury-producing countries to establish floor prices apparently were effective in stabilizing prices.

Imports were up sharply from 1972, with Algeria supplying about one-quarter of the total. World production of mercury in 1973 decreased less than 1% from that of 1972, although Spain increased production by

11%.

Government actions during the year included reduction of the mercury objective for the strategic stockpile, the banning of mercury from cosmetics, the promulgation of an air emission standard for mercury plants, and the inclusion of mercury and its compounds in a list of toxic water pollutants.

Legislation and Government Programs.-Government financial assistance on a participatory basis was available for mercury

exploration projects through the Office of Minerals Exploration, U.S. Geological Survey, to the extent of 75% of the acceptable costs. No contracts were executed during 1973.

GSA continued its sale of surplus mercury on a sealed-bid basis at the rate of 500 flasks per month. Sales totaled 2,000 flasks, with prices ranging from \$302 per flask in January to \$268 per flasks in July. Total releases for the year were 2,583 flasks, including 583 flasks transferred to other Government agencies. At the end of the year 4,628 flasks remained available for dis-

In April, the mercury objective for the strategic stockpile was reduced from 126,500 flasks to 42,700 flasks. A bill (H.R. 7153) was introduced into Congress on April 18 to grant authorization for release of the total surplus of 157,362 flasks, but by yearend no action had been taken. As of December 31, 1973, total strategic stockpile accumulations from all programs stood at 200,062 flasks.

The Food and Drug Administration banned the use of mercury in skin-bleaching preparations and in cosmetics except as a preservative in certain eye-area cosmetics.3

The Environmental Protection Agency (EPA) published a national emission standard for mercury applicable to stationary sources that process mercury ore to recover mercury, and to those that use the mercury cell to produce chlorine and caustic soda.4 Emissions to the atmosphere from each source cannot exceed 2,300 grams (5.1 pounds) of mercury per 24-hour period.

<sup>&</sup>lt;sup>1</sup> Physical scientist, Division of Nonferrous Metals—Mineral Supply.

<sup>2</sup> Flask as used throughout this chapter refers to the 76-pound flask.

<sup>3</sup> Federal Register. Use of Mercury in Cosmetics Including Use as Skin-Bleaching Agent in Cosmetic Preparations Also Regarded as Drugs. V. 38, No. 3, Jan. 5, 1973, pp. 853-854.

<sup>4</sup> Federal Register. National Emission Standards for Hazardous Air Pollutants—Asbestos, Beryllium, and Mercury. V. 38, No. 66, Apr. 6, 1973, pp. 8820-8850.

The regulations require that an existing plant must comply with the standard within 90 days after promulgation, unless a waiver is granted. If the Administrator of EPA grants a waiver, a period of up to 2 years for compliance is allowed.

Also, EPA issued a proposed list of toxic pollutants as required by the Federal Water Pollution Control Act Amendments of 1972. Mercury and all its compounds were included. The proposed standards applicable to industrial point sources were designed to protect a variety of water uses.5 Final guidelines establishing test procedures for the analysis of pollutants were issued by EPA.6 The approved analytical method for mercury, flameless atomic absorption, must be used when applying for discharge permits or certification by a State. A daily maximum of 0.00014 pound of mercury per 1,000 pounds of product was the proposed limitation set by EPA for the amount of

mercury that could be discharged from a mercury-cell chlor-alkali plant after application of the best practicable technology currently available. Another regulation by EPA prohibited the dumping or transportation for dumping of wastes containing more than trace concentrations of toxic materials including mercury and its compounds.

Table 1.-Salient mercury statistics

|                                                                                                                                                                                         | 1969                                             | 1970                                             | 1971                                             | 1972                                             | 1973                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
| United States:                                                                                                                                                                          |                                                  |                                                  |                                                  |                                                  |                                                  |
| Producing mines         flasks           Production         flasks           Value         thousands           Exports         flasks           Reexports         do           Imports: | 109<br>29,640<br>\$14,969<br>507<br>108          | 79<br>27,296<br>\$11,130<br>4,653<br>50          | 56<br>17,883<br>\$5,229<br>7,232                 | 7 37<br>7 7,333<br>7 \$1,601<br>400<br>563       | 24<br>2,171<br>\$621<br>342                      |
| For consumptiondodo                                                                                                                                                                     | 31,924<br>30,848<br>22,692<br>77,372<br>\$505.04 | 21,972<br>21,672<br>16,554<br>61,503<br>\$407.77 | 28,449<br>29,750<br>16,862<br>52,257<br>\$292.41 | 28,834<br>29,179<br>15,708<br>52,907<br>\$218.28 | 46,026<br>46,076<br>17,946<br>54,283<br>\$286.23 |
| Productionflasks<br>Price: London, average per flask                                                                                                                                    | 289,267<br>\$536.41                              | 284,014<br>\$411.45                              | 300,634<br>\$282.46                              | 277,584<br>\$203.01                              | 276,203<br>\$273.54                              |

r Revised.

# **DOMESTIC PRODUCTION**

Production came from 24 mines in 1973, down from 37 in 1972. Revisions for 1972 added 16 producers to the 21 previously reported in 1972. The additional producers accounted for an increase of 47 flasks in 1972 production; none of the 16 produced more than 10 flasks.

By yearend 1973, six of the largest operations remained active and were expected to continue into 1974. Seven mines reported production exclusively from dumps, cleanup operations, or as a byproduct. An

additional 7 mines each showed production of 10 flasks or less. Some exploration and development work was conducted by several small operators. The number of mines reporting outputs of 500 to 999 flasks decreased from four to one, and properties producing 100 to 499 flasks decreased from seven to four. Of the total production of 2,171 flasks, 83% came from producers of over 100 flasks. Principal mines in 1973 were as follows:

<sup>&</sup>lt;sup>5</sup> Federal Register. Proposed Toxic Pollutant Effluent Standards. V. 38, No. 247, Dec. 27, 1973, pp. 35388-35395.

<sup>&</sup>lt;sup>6</sup> Federal Register. Guidelines Establishing Test Procedures for Analysis of Pollutants. V. 38, No. 199, Oct. 16, 1973, pp. 28758-28760.

<sup>7</sup> Federal Register. Proposed Environmental Protection Agency Effluent Limitations Guidelines and Standards of Performance and Pretreatment for Inorganic Chemicals Manufacturing Paint Source Category. V. 38, No. 196, Oct. 11, 1973, pp. 28174–28194.

<sup>&</sup>lt;sup>8</sup> Federal Register. Environmental Protection Agency Interim Criteria for Evaluation of Permit Applications for Ocean Dumping. V. 38, No. 94, May 16, 1973, pp. 12872-12877.

| State                            | County                          | Mine                       |
|----------------------------------|---------------------------------|----------------------------|
|                                  | Properties producing 500 to 999 | flasks                     |
| Nevada                           | Pershing                        | Red Bird.                  |
|                                  | Properties producing 100 to 499 | flasks                     |
| Alaska<br>California<br>Do<br>Do | Sonoma                          | Culver-Baer.<br>Guadalupe. |

California produced 56% of the total mercury production, down from 80% in 1972. New Idria Mining and Chemical Co. sold all its equipment but retained the reduction plant at the New Idria mine in San Benito County, Calif. Until its closing in 1972, the mine was one of the largest producers of mercury with employment of about 160. At the New Almaden property, the company sold all its equipment at auction, and sold six parcels of its 3,500-acre site to Santa Clara County. The company retained three parcels of land on which the Santa Clara Quicksilver Co. operated a mine and a 30-ton-per-day furnace. At the Knoxville mine ore was stockpiled and a small amount of metal was produced from dump material. The Culver-Baer mine closed early in the year and sold its prop-

Nevada, with only three mines operating, produced 32% of the total mercury, mostly from the Red Bird mine. In addition, the Carlin Gold Mining Co. continued to recover mercury as a byproduct at its gold mine in Eureka County.

The White Mountain mine in Alaska shipped most of its cinnabar concentrate to Oregon for retorting, but exported a small quantity to the Orient. The Whit-Roy mine in Texas was active for a short time.

The average grade of all ore processed in 1973, including ore treated in concentrators, decreased to 5.9 pounds of mercury per ton. Because of the insufficiency of reported data in 1973, the amount of ore treated and ore grade were based to a large extent on knowledge of producing areas and their historical data.

In spite of a higher level of GSA releases, secondary production of mercury fell to 10,329 flasks from 12,651 flasks in 1972. Dental amalgams, scrap batteries, various types of sludges, mercury from a dismantled chlor-alkali plant, and discarded mercury-containing instruments were the major sources of secondary mercury.

Table 2.-Mercury produced in the United States, by State

| Year and State             | Pro-<br>ducing<br>mines <sup>1</sup> | Flasks | Value <sup>2</sup><br>(thou-<br>sands) |
|----------------------------|--------------------------------------|--------|----------------------------------------|
| 1972                       |                                      |        |                                        |
| California r               | 30                                   | 5.835  | \$1,274                                |
| Idaho                      | i                                    | 161    | 35                                     |
| Nevada                     | 3                                    | 810    | 177                                    |
| Alaska, New York,<br>Texas | 3                                    | 527    | 115                                    |
| Total r                    | 37                                   | 7,333  | 1,601                                  |
| 1973                       |                                      |        |                                        |
| California                 | 18                                   | 1,219  | 349                                    |
| Nevada                     | 3                                    | 698    | 200                                    |
| Alaska, Oregon, Texas      | 3                                    | 254    | 72                                     |
| Total                      | 24                                   | 2,171  | 621                                    |

r Revised.

Table 3.—Mercury ore treated and mercury produced in the United States <sup>1</sup>

|      |     |                          | Mercury | produced                    |
|------|-----|--------------------------|---------|-----------------------------|
| Y    | ear | Ore treated (short tons) | Flasks  | Pounds<br>per ton<br>of ore |
| 1969 |     | 432,591                  | 28,552  | 5.0                         |
| 1970 |     | 424,510                  | 26,795  | 4.8                         |
| 1971 |     | 265,790                  | 17,444  | 5.0                         |
| 1972 |     | r 82,580                 | r 7,004 | 6.5                         |
| 1973 |     | 26,257                   | 2.045   | 5.9                         |

r Revised.

Table 4.—Production of secondary mercury in the United States

(Flasks)

| Year | Industrial production | GSA<br>releases | Total  |
|------|-----------------------|-----------------|--------|
| 1969 | 10,573                | 3,077           | 13,650 |
| 1970 | 7,348                 | 703             | 8,051  |
| 1971 | 10,899                | 5,767           | 16,666 |
| 1972 | 12,139                | 512             | 12,651 |
| 1973 | 7,746                 | 2,583           | 10,329 |

<sup>&</sup>lt;sup>1</sup> Mercury mines only.

<sup>&</sup>lt;sup>2</sup> Value calculated at average New York price.

<sup>&</sup>lt;sup>1</sup> Excludes mercury produced from old surface ores, dumps, and as a byproduct.

# **CONSUMPTION AND USES**

Consumption continued to climb for the second consecutive year, to 54,283 flasks. The largest gains were noted for use in electrical apparatus (16%), electrolytic preparation of chlorine and caustic soda (13%), and industrial and control instruments (9%). The use of mercury in batteries, which accounts for the major part of consumption in electrical apparatus, was responsible for much of the increase in that sector. After a 3-year decline, mercury usage in the chlor-alkali industry increased. The major uses for mercury were electrical apparatus (33%), electrolytic preparation of chlorine and caustic soda (24%), mildewproofing paint (14%), and industrial and control instruments (13%).

Mercury consumption in mildew-proofing paint fell 8% from that of 1972. Although the use of mercurials in paint has not been banned, pending the outcome of a final

decision by EPA, it was reported that many companies have switched to new nonmercurial mildewcides. They have done so not only to avoid last-minute reformulation problems, in the event mercurials are banned, but also because laboratory tests have indicated that these compounds could be satisfactory substitutes.

Chlorine production increased 4% to 10.3 million short tons, but only 24.6% of the total was produced in mercury cells, up slightly from 24.2% in 1972. Consumption of mercury per ton of chlorine produced edged up to 0.39 pound from 0.37 pound in 1972. Linden Chlorine Products Inc. reactivated its mercury-cell plant at Linden, N.J. With the closing of the Olin Corp.'s Ecusta plant in Pisgah Forest, N.C., the number of chlorine plants using mercury cells was reduced to 28.

Table 5.-Mercury consumed in the United States, by use (Flasks)

| (11655) |                                                                                                                              |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|---------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1969    | 1970                                                                                                                         | 1971                                                                                                                                                                                 | 1972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1973                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 2,689   | 1.811                                                                                                                        | 1.477                                                                                                                                                                                | 1.836                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| 195     | 219                                                                                                                          | •                                                                                                                                                                                    | 2,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| 2,958   | 2.238                                                                                                                        |                                                                                                                                                                                      | 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 673                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| 2.880   |                                                                                                                              |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2,679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| 18,490  | •                                                                                                                            | •                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|         | 20,002                                                                                                                       | 10,000                                                                                                                                                                               | 10,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| 20,720  | 15,011                                                                                                                       | 12.154                                                                                                                                                                               | 11.519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13,070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| 1,936   | 1.806                                                                                                                        | •                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 658                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| 6.655   | •                                                                                                                            | •                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| .,      | -,002                                                                                                                        | 1,011                                                                                                                                                                                | 0,011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| 044     | 100                                                                                                                          |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|         |                                                                                                                              |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| •       |                                                                                                                              |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7,571                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|         |                                                                                                                              | _                                                                                                                                                                                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|         |                                                                                                                              | 682                                                                                                                                                                                  | 578                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 606                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| 9,134   | 5,858                                                                                                                        | 2,407                                                                                                                                                                                | 4,258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,913                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| 76 657  | 61 276                                                                                                                       | 59 954                                                                                                                                                                               | 59 995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 54,187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| ,       |                                                                                                                              |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 110     |                                                                                                                              |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| 77,372  | 61,503                                                                                                                       | 52,257                                                                                                                                                                               | 52,907                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 54,283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|         | 2,689<br>195<br>2,958<br>2,880<br>18,490<br>20,720<br>1,936<br>6,655<br>244<br>9,486<br>558<br>712<br>9,134<br>76,657<br>715 | 1969 1970  2,689 1,811 195 219 2,958 2,288 2,880 2,286 18,490 15,952  20,720 15,011 1,936 1,806 6,655 4,832  244 198 9,486 10,149 558 226 712 690 9,134 5,858  76,657 61,276 715 227 | 1969         1970         1971           2,689         1,811         1,477           195         219            2,958         2,238         1,012           2,880         2,286         2,361           18,490         15,952         16,885           20,720         15,011         12,154           1,936         1,806         1,798           6,655         4,832         4,871           244         198         414           9,486         10,149         8,191           558         226         2           712         690         682           9,134         5,858         2,407           76,657         61,276         52,254           715         227         3 | 1969         1970         1971         1972           2,689         1,811         1,477         1,836           195         219         —         —           2,958         2,238         1,012         800           2,880         2,286         2,361         2,983           18,490         15,952         16,885         15,553           20,720         15,011         12,154         11,519           1,936         1,806         1,798         594           6,655         4,832         4,871         6,541           244         198         414         32           9,486         10,149         8,191         8,190           558         226         2         1           712         690         682         578           9,134         5,858         2,407         4,258           76,657         61,276         52,254         52,885           715         227         3         22 |  |  |  |  |

 $<sup>^1</sup>$  Includes fungicides and bactericides for industrial purposes.  $^2$  Includes mercury used for installation and expansion of chlorine and caustic soda plants.

761

Table 6.-Mercury consumed in the United States in 1973

(Flasks)

|        |                                                                                            |                                                                                                                       | Total                                                |
|--------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| mary   | tilled                                                                                     | dary                                                                                                                  | Iotai                                                |
| 1.819  |                                                                                            | 11                                                                                                                    | 1,830                                                |
| 605    |                                                                                            |                                                                                                                       | 673                                                  |
|        |                                                                                            |                                                                                                                       |                                                      |
|        |                                                                                            |                                                                                                                       | 18,000                                               |
| •      |                                                                                            |                                                                                                                       | -                                                    |
| 10,728 |                                                                                            | 2,342                                                                                                                 | 13,070                                               |
| 385    | 257                                                                                        | 16                                                                                                                    | 658                                                  |
| 2,006  | 3,591                                                                                      | 1,558                                                                                                                 | 7,155                                                |
|        |                                                                                            |                                                                                                                       |                                                      |
| 32     |                                                                                            |                                                                                                                       | 32                                                   |
|        |                                                                                            | 53                                                                                                                    | 7,571                                                |
|        |                                                                                            |                                                                                                                       |                                                      |
|        |                                                                                            |                                                                                                                       |                                                      |
|        |                                                                                            |                                                                                                                       |                                                      |
| 36,788 | 11,098                                                                                     |                                                                                                                       | 54,187                                               |
|        | 57                                                                                         | 39                                                                                                                    | 96                                                   |
| 36,788 | 11,155                                                                                     | 6,340                                                                                                                 | 54,283                                               |
|        | 1,819<br>605<br>225<br>11,673<br>10,728<br>385<br>2,006<br>7,518<br>276<br>1,521<br>36,788 | mary tilled  1,819 605 225 1,500 11,673 5,169  10,728 385 257 2,006 3,591 32 7,518 276 329 1,521 252 36,788 11,098 57 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

<sup>1</sup> Includes fungicides and bactericides for in-

dustrial purposes.

<sup>2</sup> Includes mercury used for installation and expansion of chlorine and caustic soda plants.

Table 7.-Stocks of mercury, December 31 (Flasks)

| Year |       | Consumer<br>and<br>dealer      | Total                                                                                                                                                                |
|------|-------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | 2 920 | 19 772                         | 22,692                                                                                                                                                               |
|      |       |                                | 16.554                                                                                                                                                               |
|      |       |                                |                                                                                                                                                                      |
|      | 5,373 | 11,489                         | 16,862                                                                                                                                                               |
|      | 4.171 | 11,537                         | 15,708                                                                                                                                                               |
|      | 3,927 | 14,019                         | 17,946                                                                                                                                                               |
|      | Year  | ducer  2,920 3,861 5,373 4,171 | Year         Producer         and dealer           2,920         19,772           3,861         12,693           5,373         11,489           4,171         11,537 |

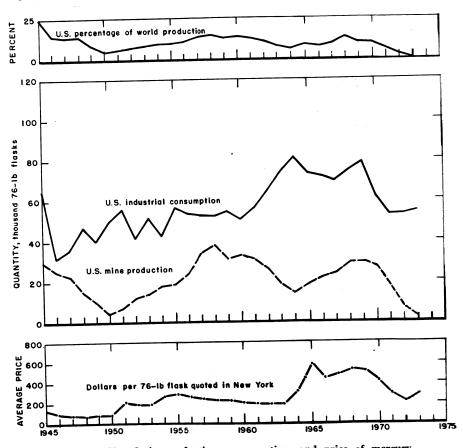



Figure 1.-Trends in production, consumption, and price of mercury.

# **PRICES**

The price of mercury showed signs of settling down from the erratic movements of the past several years. From a January price of \$280 to \$285 per flask, the price rose to \$318 to \$330 per flask in late February with the devaluation of the dollar. By midyear the price had fallen to about \$250 per flask with the news of a possible stockpile release and the promulgation of emission standards by EPA. In June, prices began an uptrend that reached \$310 to \$312 per flask in August. The firmer tone was attributed to a hold-back by foreign sources in order to gain greater control over the market. The yearend price was \$282 to \$288 per flasks. The average price at New York was \$286.23 per flask in 1973.

On December 6 the Cost of Living Council amended the phase 4 price regulations on nonferrous metals, thereby removing the price control on mercury. The control was a moot point for mercury because the price during the period never approached

the freeze base of \$450 to \$460 per flask on May 25, 1970.

Although prices on the London market were below New York prices by as much as \$24 per flask in October, the gap narrowed by yearend to \$5 per flask. Supporting factors for a strengthened foreign market were tenders for mercury from Colombia, India, Taiwan, and Venezuela, and increased Japanese inquiries.

Representatives of the major mercuryproducing countries met several times during the year in January, July, and October to exchange views on market developments and to formulate price policies. At the October meeting in Mexico City, Algeria, Italy, Mexico, Spain, Turkey, and Yugoslavia for the first time signed an agreement to pursue market stability by establishing floor prices and selling only to agents that would follow their marketing policy. It was reported that the producers were looking for a minimum price of \$280 per flask as a base for future long-term contracts.

Table 8.—Average monthly prices of mercury at New York and London
(Per flask)

| Month                | 197                   | 2        | 197        | 1973     |  |  |
|----------------------|-----------------------|----------|------------|----------|--|--|
| 220101               | New York <sup>1</sup> | London 2 | New York 1 | London 2 |  |  |
| January              | \$213.24              | \$208.13 | \$282.50   | \$260.72 |  |  |
| February             | 207.75                | 198.84   | 304.78     | 289.38   |  |  |
| March                | 185.00                | 173.39   | 314.33     | 303.94   |  |  |
| April                | 152.50                | 141.36   | 290.71     | 283.00   |  |  |
| May                  | 171.74                | 153.25   | 266.64     | 257.75   |  |  |
| June                 | 196.36                | 177.39   | 250.75     | 243.72   |  |  |
| July                 | 211.15                | 191.12   | 275.24     | 263,44   |  |  |
| August               | 245.78                | 222.50   | 292.96     | 274.82   |  |  |
| September            | 255.65                | 241.11   | 276.05     | 266.18   |  |  |
| November             | 254.96                | 237.78   | 294.67     | 270.66   |  |  |
| November<br>December | 256.96                | 242.75   | 299.25     | 286.61   |  |  |
|                      | 269.65                | 248.50   | 287.00     | 282.29   |  |  |
| Average              | 218.28                | 203.01   | 286.23     | 273.54   |  |  |

<sup>1</sup> Metals Week, New York.

# **FOREIGN TRADE**

Mercury exports decreased to 342 flasks from 400 flasks in 1972. The major recipients were Canada, the Republic of Korea, and Taiwan.

Imports for consumption, which include mercury imported for immediate consumption plus material withdrawn from bonded warehouses, increased by 60% to 46,026 flasks. General imports, which include mercury imported for immediate consumption plus material entering the country under

bond, totaled 46,076 flasks. The major suppliers, who accounted for 88% of the total, were Canada (38%), Algeria (26%), Spain (16%), and Yugoslavia (8%). Included in the import figures are 998 flasks entering the country as secondary metal from Canada and Mexico. Imports of mercury compounds, mainly as mercury cyanide from Japan, were equivalent to 34 flasks of metal.

The U.S. rate of duty on mercury imports during the year was \$9.50 per flask.

<sup>&</sup>lt;sup>2</sup> Metal Bulletin, London; reported in terms of U.S. dollars.

763 MERCURY

Table 9.-U.S. exports and reexports of mercury

|                      |  | Exp                                  | orts                  | Reexports       |                           |  |  |
|----------------------|--|--------------------------------------|-----------------------|-----------------|---------------------------|--|--|
| Year                 |  | Flasks Value Fla<br>(thou-<br>sands) |                       | Flasks          | Value<br>(thou-<br>sands) |  |  |
| 1971<br>1972<br>1973 |  | 7,232<br>400<br>342                  | \$2,789<br>129<br>170 | 5 <del>63</del> | \$1 <u>21</u>             |  |  |

Table 10.-U.S. imports for consumption 1 of mercury, by country

|                             | 1971   |                           | 1972                |                           | 19                 | 73                        |
|-----------------------------|--------|---------------------------|---------------------|---------------------------|--------------------|---------------------------|
| Country                     | Flasks | Value<br>(thou-<br>sands) | Flasks              | Value<br>(thou-<br>sands) | Flasks             | Value<br>(thou-<br>sands) |
|                             |        |                           | 3,007               | \$1,075                   | 11,876             | \$3,135                   |
| Algeria                     |        | \$2                       | 0,001               | Ψ2,0.0                    | 5                  | 6                         |
| Belgium-Luxembourg          |        | 5,477                     | $13,80\overline{3}$ | 2,686                     | 17,440             | 4,748                     |
| Canada                      | 18,198 | 0,411                     | 10,000              | 2,000                     | 99                 | 29                        |
| China, People's Republic of | 455    | 101                       |                     |                           | •                  |                           |
| Colombia                    | 400    | 101                       |                     |                           | 50                 | 13                        |
| Denmark                     |        | 77                        |                     |                           | 100                | 27                        |
| Germany, West               | 203    | 49                        | 100                 | $\bar{1}\bar{7}$          | 100                |                           |
| Hungary                     |        | ==                        | 100                 | 11                        | $1.0\overline{05}$ | 260                       |
| Italy                       | 250    | 75                        |                     | (9)                       | 1,000              | 200                       |
| Japan                       | 3      | (2)                       | 2                   | (2)                       | $2.7\overline{75}$ | 710                       |
| Mexico                      | 4,786  | 1,160                     | 5,529               | 941                       |                    | 84                        |
| Netherlands                 |        |                           | 53                  | 24                        | 300                | 09                        |
|                             |        |                           | ³ 1,329             | 305                       |                    | 1 50                      |
|                             | 600    | 155                       | 1,461               | 310                       | 626                | 153                       |
|                             |        |                           | 100                 | 23                        | 50                 | 15                        |
| Philippines                 | 2,152  | 659                       | 1,829               | 438                       | 7,286              | 1,834                     |
| Spain                       | _,     |                           | 7                   | 17                        | 7                  | 13                        |
| Sweden                      | -5     | -8                        | 14                  | 22                        | 6                  | . 10                      |
| Switzerland                 | U      | ·                         |                     |                           | 40                 | 12                        |
| Taiwan                      | 1,430  | 366                       | 450                 | 102                       | 700                | 174                       |
| Turkey                      | 1,400  | 900                       | 53                  | 13                        | 13                 | 5                         |
| United Kingdom              | 400    | 113                       | 1,097               | 238                       | 3,648              | 923                       |
| Yugoslavia                  | 420    |                           |                     |                           |                    | 12,151                    |
| Total                       | 28,449 | 8,165                     | 28,834              | 6,211                     | 46,02 <b>6</b>     | 12,191                    |

<sup>&</sup>lt;sup>1</sup> General imports in 1971 were 29,750 flasks (\$8,500,607), Spain 3,353 flasks (\$970,028), Mexico 4,886 flasks (\$1,184,826). In 1972, 29,179 flasks (\$6,232,570), Peru 2,210 flasks (\$458,495), Yugoslavia 1,402 flasks (\$298,345), Spain 1,120 flasks (\$254,677). In 1973, 46,076 flasks (\$12,164,010), Yugoslavia 3,698 flasks (\$935,973).

<sup>2</sup> Less than ½ unit.

<sup>3</sup> Regiond motel.

# WORLD REVIEW

World mercury production decreased to 276,203 flasks from 277,584 flasks in 1972. Italy, Mexico, Spain, and Yugoslavia accounted for 49% of the total. Mercury producers who met during the year to discuss prices also suggested the possibility of establishing a mercury institute to promote mercury uses and to handle producer marketing.

The Organization for Economic Cooperation and Development (OECD), whose 24 member countries include most of the industrialized non-Communist nations of the world, including the United States, recommended elimination of alkyl mercury compounds in agriculture, elimination of mercury compounds from use in the pulp and paper industry, and maximum possible reduction in discharges of mercury from mercury-cell chlor-alkali plants. In 1973, member countries of OECD produced about 46% of the world total.

The Italian Ministry of Public Health has forbidden entirely the use of organic mercury compounds in agriculture. The Soda Industry Association of Japan revealed a plan to reduce chlorine production from mercury cells from the current 95% down to 60% of the country's capacity. In Canada, mercury cells accounted for 46.8% of total chlorine capacity compared with 60.5% in 1972. On the other hand, the U.S.S.R. is expected to have a 140,000-tonper-year chlorine plant onstream by 1976 that will use De Nora mercury cells.

<sup>3</sup> Reclaimed metal.

Mining operations in Yugoslavia were reviewed.9

Table 11.-Mercury: World production, by country

(Flasks)

| Country         | 1971    | 1972    | 1973 р   |
|-----------------|---------|---------|----------|
| Algeria         | 7,136   | 13,361  | e 14.000 |
| Australia       | ´ 9     | 17      | e 20     |
| Canada 1        | 18,500  | 14,600  | 12,500   |
| Chile           | 502     | 640     | 798      |
| China, People's |         |         |          |
| Republic of e   | 26,000  | 26,000  | 26,000   |
| Colombia        | r 193   | 153     | 144      |
| Czechoslovakia  | 5,628   | 6.614   | e 7,000  |
| Finland         | 135     | 212     | e 220    |
| Germany, West   | 2,030   | 2,900   | e 5,800  |
| Ireland         | 2.345   | 1.250   | e 2,000  |
| Italy           | 42,613  | 41.801  | 32,315   |
| Japan           | 5,564   | 5.172   | 3,742    |
| Mexico          | 35,390  | 22,510  | e 28,000 |
| Peru            | r 3,462 | 3.066   | e 3.100  |
| Philippines     | 5,020   | 3,341   | 2,160    |
| Spain           | 50,831  | 53,994  | 60,076   |
| Tunisia         | 340     | 238     | 112      |
| Turkey          | 10,460  | 7,953   | 8.439    |
| U.S.S.R. e      | 50,000  | 50,000  | 52,000   |
| United States   | 17,883  | 7,333   | 2.171    |
| Yugoslavia      | 16,593  | 16,419  | 15,606   |
| Total           |         | 277,584 | 276,203  |

Estimate. P Preliminary. P Revised.
 Output of Cominco Ltd.; excludes production (if any) by minor producers.

Algeria.—The mercury plant at Ismail produced at full capacity during 1973. A new plant about 50 miles from Annaba was expected to be onstream by the end of 1974.

Canada.—Cominco, Ltd., produced 12,500 flasks, 14% less than in 1972. Ore production at its Pinchi Lake mine amounted to 163,000 tons, compared with 203,000 tons in 1972. Assuming that all the ore mined was treated to produce metal, the ore grade increased from 5.5 pounds of mercury per ton in 1972 to 5.8 pounds in 1973. Ore reserves at yearend were reported by Cominco to be 1,600,000 tons containing 120,000 flasks of mercury. Mining opera-

tions at the Pinchi Lake mine, the only mercury mine in Canada, were reviewed.10

Italy.-Mercury production fell 23% but exports declined only slightly. Ore grade dropped to 9 pounds of mercury per ton of ore mined, from 10 pounds in 1972. Ore is becoming more difficult and costly to extract as the working levels extend deeper underground. An official Government announcement stated that Italian mines could maintain their present rate of production for another 12 to 15 years.

Lower demand and falling prices in recent years have brought losses to Italian producers, consequently, production was cut to prevent adding to already substantial stocks. Based on production and trade data of the past several years, the apparent mercury stockpile was about 90,000 flasks at yearend.

Spain.-Production increased 11% 60.076 flasks. Minas de Almadén, the Stateowned company, ordered a complete new mercury plant from the U.S.S.R. The plant will be used to process low-grade ore, tailings, and old dump material. Almadén started a 9-month exploration program in the Almadenejos region.

Early in the year, the Spanish Government approved an agreement for the reorganization of the Mieres and Pola de Lena mines in Asturias. The two mines should be able to supply Spain's domestic mercury requirements. To keep the mines in operation, the Government has guaranteed a minimum price for their output.

<sup>&</sup>lt;sup>9</sup> Bajzelj, U. (The Effects of Mechanization in the Idrija Mercury Mines.) Rudarsko-Metalurski Zbornik, No. 1, 1972, pp. 3-17; translated and published for the U.S. Department of the Interior and the National Science Foundation, Washington, D.C. by the NOLIT Publishing House, Belgrade, Yugoslavia, 1973.
<sup>10</sup> Engineering & Mining Journal. Pinchi Lake: Canada's only mercury mine. V. 174, No. 9, September 1973, pp. 134-135.

| Table 12Mercury: | Exports from | ı Italy, | Spain, | and | Yugoslavia, | by | country |
|------------------|--------------|----------|--------|-----|-------------|----|---------|
| (Flasks)         |              |          |        |     |             |    |         |

|                           |        | •       |          |        |        |                   |        |          |       |
|---------------------------|--------|---------|----------|--------|--------|-------------------|--------|----------|-------|
|                           |        | Italy   |          |        | Spain  |                   | Yı     | ıgoslavi | 3     |
| Destinations —            | 1971   | 1972 r  | 1973 ¹   | 1971   | 1972   | 1973 <sup>2</sup> | 1971   | 1972     | 1973  |
|                           |        |         | 27.4     | 110    | 203    | 348               |        | 1        |       |
| Australia                 | _30    |         | NA       | 116    |        | 145               | -ī     | 609      |       |
| Belgium-Luxembourg        | 752    | 1,102   | 522      | 290    |        |                   | -      |          |       |
| Bulgaria                  | 256    |         | NA       | 55     | 727    | 87                |        |          |       |
| Canada                    |        |         | NA       | 29     | 754    |                   |        |          |       |
| Colombia                  | 341    | (3)     | NA       | 1,189  | 290    |                   | 840    |          |       |
| Czechoslovakia            |        |         | NA       |        |        |                   |        |          |       |
| Ecuador                   |        |         | NA       |        |        | ==                | 450    | 290      |       |
| France                    | 1.141  | 609     | 754      | 1,711  | 2,408  | 1,857             | 362    | 290      |       |
| Germany, East             | 2,102  |         | NA       | 9,138  | 2,002  | 2,843             | 1 500  | 455      |       |
| Germany, West             | 5,300  | 2,002   | NA       | 6,672  | 3,423  | 5,047             | 1,589  | 493      |       |
| Greece                    | 10     |         | NA       | 3      | 29     | 9                 | 3,081  | 1,247    |       |
| reece                     |        |         | NA       |        | 174    |                   |        |          |       |
| Hungary                   |        | 348     | 4,670    | 841    | 3,278  | 2,901             |        | == 1     |       |
| India                     | 400    | 261     | 493      | 841    | 3,539  | 4,351             |        | 87       | ≻ NA  |
| Japan                     | 534    | 290     | 348      | 986    | 377    | 232               |        |          | ĺ     |
| Netherlands               | 921    | 899     | NA       | 1,508  | 696    | 377               | 300    |          | ŀ     |
| Poland                    | 350    |         | NA       | 261    | 145    | 261               |        |          |       |
| Portugal                  |        | 899     | NA       |        | 899    | 3,887             |        |          |       |
| Romania                   | 1,960  |         | NA<br>NA | 812    | 986    | 348               |        |          | ţ     |
| South Africa, Republic of |        |         |          | 2,176  | 2,175  | 2,060             | 210    |          | 1     |
| Sweden                    |        | . 75    | NA       | 348    | 580    | 928               | 600    | 290      | ł     |
| Switzerland               |        | 145     | 1,015    | 493    | 203    | 232               | 000    |          | ı     |
| Taiwan                    |        |         | NA       |        | 6,759  | 5.454             | 1,200  | 899      | l     |
| United Kingdom            | 801    | 3,017   | 406      | 1,653  |        | 5.512             | 5,621  | 9,486    | 1     |
| United States             | 250    | 145     | 261      | 3,336  | 1,044  | 9,912             | -      |          | 1     |
| U.S.S.R                   |        |         | NA       |        |        |                   |        |          | ł     |
| Other countries and       |        |         |          |        |        | 077               | 30     | 261      | 1     |
| undistributed             | 53     | 4 1,218 | 1,666    | 234    | 609    | 377               |        |          |       |
| Total                     | 15,201 | 10,935  | 10,135   | 32,637 | 30,573 | 37,256            | 14,285 | 13,662   | 13,54 |

# **WORLD RESERVES**

Table 13.-Identified mercury resources of the world 1

(Thousand flasks in ore minable at indicated price per flask)

| Country or area              | \$400 | \$1,000 |
|------------------------------|-------|---------|
| North America:               |       |         |
| United States                | 170   | 490     |
| Canada                       | 200   | 400     |
| Mexico                       | 300   | 700     |
| South America                | 50    | 300     |
| Europe:                      |       | 30      |
| Czechoslovakia               | 15    |         |
| Italy                        | 750   | 2,000   |
| Spain                        | 2,500 | 6,000   |
| U.S.S.R                      | 1,000 | 3,000   |
| Yugoslavia                   | 1,000 | 2,000   |
| Africa                       | 30    | 60      |
| Asia:                        | 1.000 | 1,500   |
| China, People's Republic of_ | 60    | 200     |
| Japan                        | 50    | 200     |
| Philippines                  | 60    | 200     |
| Turkey                       |       |         |
| Total                        | 7,185 | 17,080  |

<sup>&</sup>lt;sup>1</sup> Identified resources: Specific identified mineral deposits that may or may not be evaluated as to extent and grade, and whose contained minerals may or may not be profitably recoverable with existing technology and economic conditions.

The U.S. Geological Survey updated its assessment of U.S. and world mercury resources as shown in tables 13 and 14.11 The

Survey stated that at most mercury mines no effort has been made to ascertain the ultimate reserve of the deposit in advance of exploitation. Hence, the total reserves or resources at major world mercury deposits are unknown, but estimates based on production records and geologic information can be made.

Table 14.-Identified mercury resources of the United States, by State

(Thousand flasks in ore minable at indicated price per flask)

| State              | \$400   | \$1,000  |
|--------------------|---------|----------|
| Alaska             | 25      | 100      |
| Arizona            | 1       | 6        |
| ArkansasCalifornia | 100     | 300      |
| Idaho              | 10      | 25<br>30 |
| Nevada<br>New York | 20<br>5 | 50<br>5  |
| Oregon             | 5       | 10       |
| TexasUtah          | 4       | 10<br>1  |
| Washington         |         | 2        |
| Total              | 170     | 490      |

r Revised. NA Not available.

Data for 8 months only.

Data for 9 months only

Less than ½ unit.

Includes 1,015 flasks to Austria.

<sup>&</sup>lt;sup>11</sup> Bailey, E. H., A. L. Clark, and R. M. Smith. Mercury Ch. in United States Mineral Resources. U.S. Geol. Survey Prof. Paper 820, 1973, pp. 401-

### **TECHNOLOGY**

A new mineral, balkanite (Cu<sub>9</sub>Ag<sub>5</sub>HgS<sub>8</sub>), from the Sedmochislenitsi mine in Bulgaria was reportedly the only known sulfide of copper, silver, and mercury, either as a mineral or as a synthetic product.12

Bacteria capable of degrading methylmercury in aquatic sediments were isolated.13 These organisms may serve a useful purpose in maintaining environmental methylmercury concentrations at a mini-

Methods for removing mercury from industrial plant effluents and natural waters received widespread attention. Treating solutions containing mercury (II) ions with a starch xanthatepolycation complex, reduced residual mercury (II) content to extremely low levels.14 Other techniques reported include the absorbtion of mercury on chemically modified cotton cellulose containing amines 15 and by hydrous manganese oxides suspended in solution.16 Laboratory experiments and small-scale field tests were performed to investigate some possible methods, such as dredging and chemical deactivation, to restore mercury-contaminated lakes and rivers.17

A flameless atomic absorption system was developed to analyze ambient mercury levels from 15 nanograms per cubic meter to 10 micrograms per cubic meter by using inseries silver wool collectors. 18 Ambient levels of dimethylmercury, sulfur dioxide, hydrogen sulfide, and nitrogen dioxide did not interfere with the analytical scheme. Another method was described for determining mercury in a variety of matrices including coal and fly ash, which achieves the advantages of a strictly instrumental technique with no chemical manipulations.19 In a typical coal matrix, the sensitivity is about 10 nanograms of mercury per gram of coal, with a precision of about 10% at 100 parts per billion.

Mercury recovery and recycling processes advanced from the laboratory to the pilot plant or commercial use. Rockwell International Corp. reported excellent results in a pilot plant for removing mercury or other metals from wastewaters using a fluidized bed of conductive particles across which a low-voltage, direct current is applied.20 Chemical or electrochemical stripping of the metals from the particles can be used to recover the metals and regenerate the bed. The Georgia-Pacific Corp. put into

operation at its Bellingham, Wash., chlorine plant a chemical process to reclaim mercury from its effluent.21 The mercury is recycled back to the mercury cells. The FMC Corp. uses a process at its Squamish, British Columbia, plant to precipitate mercury from the effluent.22 An extractor solubilizes the mercury in a brine solution, which returns to the plant's mercury cells where elemental mercury is produced and recovered.

At the Bureau of Mines College Park Metallurgy Research Center, a method was developed with the capability of distinguishing between organic and inorganic forms of mercury by using resin-loaded papers.23 Paper chromatography followed by X-ray spectrography or neutron activation analysis found the mercury content of tap water to be 0.1 to 0.2 part per billion compared with 0.1 to 0.3 part per billion using flameless atomic absorption. The

<sup>&</sup>lt;sup>12</sup> Atanassov, V. A., and G. N. Kirov. Balkanite, CuaAgzHgSs, A New Mineral From the Sedmochislenitsi Mine, Bulgaria. Am. Mineral., v. 58, Nos. 1-2, January-February 1973, pp. 11-15.

<sup>&</sup>lt;sup>13</sup> Spangler, W. J., J. L. Spigarelli, J. 1 Rose, and H. M. Miller. Methylmercury: Ba terial Degradation in Lake Sediments. Science v. 180, No. 4082, Apr. 13, 1973, pp. 191-193.

v. 180, No. 4082, Apr. 13, 1973, pp. 191-193.

14 Swanson, C. L., R. E. Wing, W. M. Doane, and C. R. Russell. Mercury Removal From Waste Water With Starch Xanthate-Cationic Polymer Complex. Environmental Sci. and Technol., v. 7, No. 7, July 1973, pp. 614-619.

15 Roberts, E. J., and S. P. Rowland. Removal of Mercury From Aqueous Solutions by Nitrogen-Containing Chemically Modified Cotton. Environmental Sci. and Technol., v. 7, No. 6, June 1973, pp. 552-555.

<sup>&</sup>lt;sup>16</sup> Lockwood, R. A., and K. Y. Chen. Adsorption of Hg(II) by Hydrous Manganese Oxides. Environmental Sci. and Technol., v. 7, No. 11, November 1973, pp. 1028-1034.

November 1973, pp. 1028-1034.

17 Jernelov, A., and H. Lann. Studies in Sweden on Feasibility of Some Methods for Restoration of Mercury-Contaminated Bodies of Water. Environmental Sci. and Technol., v. 7, No. 8, August 1973, pp. 712-718.

18 Long, S. J., D. R. Scott, and R. J. Thompson. Atomic Absorption Determination of Elemental Mercury Collected From Ambient Air on Silver Wool. Anal. Chem., v. 45, No. 13, November 1973, pp. 2227-2233.

<sup>&</sup>lt;sup>19</sup> Weaver, J. N. Determination of Mercury and Selenium in Coal by Neutron Activation Analysis. Anal. Chem., v. 45, No. 11, Septem-ber 1973, pp. 1950-1952.

 $<sup>^{20}</sup>$  Chemical Engineering. V. 80, No. 13, June 11, 1973, p. 78.

<sup>&</sup>lt;sup>21</sup> Chemical Engineering. V. 80, No. 17, July 23, 1973, p. 61.

<sup>22</sup> Chemical Engineering. V. 80, No. 3, Feb. 5, 1973, p. 27.

<sup>&</sup>lt;sup>23</sup> Law, S. L. Resin-Loaded Papers for Methyl Mercury and Inorganic Mercury Determination. Am. Lab., v. 5, No. 7, July 1973, pp. 91-93, 96-97.

MERCURY 767

Bureau of Mines' Reno Metallurgy Research Center, Reno, Nev., published a report describing the electrooxidation process for extracting mercury from cinnabar ore.<sup>24</sup> Power consumption ranged from 10 to 50 kilowatt-hours per ton of ore. Mercury recovery from the pregnant solution was 99.9% pure using 1.5 to 2.0 pounds of zinc and iron, respectively, per pound of mercury contained in solution.

<sup>&</sup>lt;sup>24</sup> Scheiner, B. J., R. E. Lindstrom, and D. E. Shanks. Recovery of Mercury From Cinnabar Ores by Electrooxidation. BuMines RI 7750, 1973, 14 pp.

# Mica

# By Benjamin Petkof 1

For the second time since 1970, there was no reported domestic production of any form of sheet mica. The domestic production of scrap and flake mica continued to rise, and in 1973 output reached the highest ever recorded. Ground mica production increased in both quantity and value. Total exports of mica increased in quantity and value. Imports of processed (including manufactured) and unprocessed (unmanufactured) sheet mica declined in quantity but increased in value. Imports of scrap increased in both quantity and value. The domestic consumption of block and film mica varied little from that of the previous year, but the consumption of mica splittings increased significantly.

Legislation and Government Programs.— During the year, the Government lowered the Defense Material Inventory stockpile objective for all categories of stockpiled sheet mica. The various objectives were reduced as follows: Muscovite block (stained and better), 6 million pounds to 1.6 million pounds; muscovite film (first and second quality), 2 million pounds to 413,000 pounds; muscovite splittings from 19 million pounds to 2.2 million pounds; phlogopite block, 150,000 pounds to 51,000 pounds; and phlogopite splittings, 950,000 pounds to 200,000 pounds. At the end of 1973, the Defense Materials Inventory contained the following quantities of stockpile-grade material: Muscovite block, 10.6 million pounds; muscovite film, 1.4 million pounds; muscovite splittings, 35.8 million pounds; and phlogopite splittings, 4.1 million pounds. The stockpile also contained some nonstockpile-grade material. The General Services Administration continued to dispose of mica from the stockpile.

Table 1.-Salient mica statistics

|                | 1969                                                                                      | 1970                                                                                       | 1971                               | 1972                                                                                     | 1973                                                                               |
|----------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| United States: | W<br>\$3<br>133<br>\$2,893<br>\$2,595<br>\$1,498<br>\$2,595<br>5,077<br>\$2,196<br>6<br>5 | \$2,527<br>\$119<br>\$2,527<br>\$1,299<br>\$2,058<br>5,214<br>\$2,254<br>9<br>6<br>360,768 | \$2,917<br>120<br>\$8,280<br>1,301 | 14<br>\$7<br>160<br>\$4,353<br>\$8,844<br>1,207<br>\$2,026<br>4,324<br>\$1,771<br>7<br>5 | 177<br>\$6,082<br>135<br>\$9,401<br>1,265<br>\$2,106<br>5,178<br>\$1,715<br>8<br>6 |

W Withheld to avoid disclosing individual company confidential data.

# DOMESTIC PRODUCTION

Sheet Mica.—There was no reported domestic production of any form of sheet mica and the outlook for any future domestic sheet mica mining remained unpromising.

Scrap and Flake Mica.—The production of scrap and flake mica surpassed that of the previous year and reached a new

<sup>&</sup>lt;sup>1</sup> Physical scientist, Division of Nonmetallic Minerals—Mineral Supply.

alltime high of 177,076 short tons valued at \$6,081,893. This was an increase of 11% in quantity and 40% in value. North Carolina retained its position as the largest scrap- and flake-producing State with 60% of total production. The remaining output of scrap and flake mica came from Alabama, Arizona, Connecticut, Georgia, New Mexico, and South Carolina. Flake mica was obtained primarily by the beneficiation of material from pegmatite and clay deposits. The domestic output of scrap and

flake was processed into small-particle-sized mica for various industrial end uses.

Ground Mica.—Sales of ground mica increased 5% in quantity and 6% in value over those of 1972. Dry-ground mica accounted for 88% of total sales. Fifteen companies, operating a total of 19 plants, processed scrap and flake mica to a smallparticle size; of these plants, 15 produced dry-ground mica; 3 produced wet-ground; and I produced both wet- and dry-ground.

Table 2.-Mica sold or used by producers in the United States

|                              |                                |               | Sheet m                                          | ica   |                      |                |                                   |                                     |
|------------------------------|--------------------------------|---------------|--------------------------------------------------|-------|----------------------|----------------|-----------------------------------|-------------------------------------|
| Year and State               | Uncut punch<br>and circle mica |               | Uncut mica<br>larger than<br>punch and<br>circle |       | Total sł<br>mica     |                | Scrap and flake mica <sup>1</sup> |                                     |
|                              | Quantity<br>(pounds)           | Value         | Quantity<br>(pounds)                             | Value | Quantity<br>(pounds) | Value          | Quantity<br>(short<br>tons)       | Value                               |
| 1969<br>1970                 | w                              | \$3,244       |                                                  |       | w                    | \$3,244        | 133,058                           | \$2,893,183                         |
| 1971<br>1972                 | 17,005 $14,280$                | 6,652 $7,140$ |                                                  |       | $17,005 \\ 14,280$   | 6,652<br>7,140 | 118,843<br>127,084<br>159,536     | 2,527,450<br>2,916,879<br>4,353,313 |
| 1973:<br>Connecticut         |                                |               |                                                  |       |                      |                | 0.504                             |                                     |
| New Mexico<br>North Carolina |                                |               |                                                  |       |                      |                | 2,504<br>10,200                   | 81,600                              |
| Other 2                      |                                |               |                                                  |       |                      |                | 106,099<br>58,273                 | 4,422,701<br>1,577,592              |
| Total                        |                                |               |                                                  |       |                      |                | 177,076                           | 6,081,893                           |

W Withheld to avoid disclosing individual company confidential data, included with "Other." <sup>1</sup> Includes small-particle-size mica derived from feldspar, kaolin, and sericite benefication. <sup>2</sup> Includes Alabama, Arizona, Georgia, South Carolina, and States indicated by symbol W.

Table 3.-Ground mica sold by producers in the United States, by method of grinding 1

|      |      | Dry-g                       | round                     | Wet-g                       | round                     | Total                       |                           |  |
|------|------|-----------------------------|---------------------------|-----------------------------|---------------------------|-----------------------------|---------------------------|--|
|      | Year | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands) | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands) | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands) |  |
| 1969 |      | 109,152                     | \$5,486                   | 15.704                      | \$2,572                   | 124.856                     | \$8,058                   |  |
| 1970 |      | 101,188                     | 5,070                     | 13,905                      | 2,280                     | 115,093                     | 7,350                     |  |
| 1971 |      | 103,428                     | 5,463                     | 16,176                      | 2,817                     | 119,604                     | 8,280                     |  |
| 1972 |      | 102,625                     | 5,500                     | 25,649                      | 3,343                     | 128,274                     | <sup>2</sup> 8.844        |  |
| 1973 |      | 119,086                     | 6,406                     | 15,712                      | 2,995                     | 134,798                     | 9,401                     |  |

<sup>1</sup> Domestic and some imported scrap. <sup>2</sup> Data may not add to total shown because of independent rounding.

# **CONSUMPTION AND USES**

Sheet Mica.—Consumption of all forms of sheet mica, consisting of block, film, and splittings, showed a significant increase due to greater consumption of splittings, the major form of sheet mica consumed.

Almost 1.2 million pounds of block mica was consumed for the fabrication of vacuum tubes, capacitors, and various other electrical and nonelectrical items. Of the total consumption of block, vacuum tubes required 68% and capacitors accounted for less than 2%. Lower than Stained quality was in greatest demand and accounted for 64\% of total consumption; Stained, 36\%; and Good Stained or better, the remainder. Only a small quantity of film was consumed, primarily for the fabrication of capacitors.

Muscovite block and film were consumed by 14 companies in 7 States: New Jersey with four consuming plants, New York with three, North Carolina with two, and Pennsylvania with one, consumed 74% of domestically fabricated block and film. The consumption of phlogopite block decreased 6% from 74,199 pounds in 1972 to 69,899 pounds in 1973.

Consumption of splittings increased 20% from that of 1972. India and the Malagasy Republic continued to supply the bulk of the splittings consumed domestically. Splittings were fabricated into various built-up mica products by 11 companies with 12 plants in 7 States. Seven companies with eight plants located in New Hampshire, New York, Ohio, and Pennsylvania consumed almost 4.7 million pounds of splittings or 90% of total consumption.

Built-up Mica.—This mica-based alternate material was produced in various forms, primarily for use as an electrical insulating material. The production of built-up mica products in 1973 increased 21% in quantity and 10% in value from that of the previous year. The forms of built-up mica in greatest demand were molding plate (24%), and segment plate (24%).

Reconstituted Mica.—Three companies continued to manufacture this mica-based alternate material from good-quality delaminated scrap mica. The manufacturing companies were the General Electric Co. at Schenectady, N.Y., the Samica Corp. at Rutland. Vt., and the Acim Paper Corp. at New Hyde Park, N.Y. There were no published data available relating to the quantity and value of the reconstituted mica produced during the year.

Table 4.-Fabrication of muscovite ruby and nonruby block and film mica and phlogopite block mica, by quality and end-product use in the United States in 1973

|                     |                                                                         |                                   | (                                      | Pounds)                               |                                           |                                      |                                |                                      |                                           |
|---------------------|-------------------------------------------------------------------------|-----------------------------------|----------------------------------------|---------------------------------------|-------------------------------------------|--------------------------------------|--------------------------------|--------------------------------------|-------------------------------------------|
|                     |                                                                         |                                   | Electron                               | ic uses                               |                                           |                                      |                                |                                      |                                           |
| Variety,            | form, and quality                                                       | Capaci-<br>tors                   | Tubes                                  | Other                                 | Total                                     | Gage<br>glass<br>and dia-<br>phragms | Other                          | Total                                | Grand<br>total                            |
| Muscovit            |                                                                         |                                   |                                        |                                       |                                           |                                      |                                |                                      |                                           |
| ;                   | Good Stained or<br>better<br>Stained<br>Lower than Stained <sup>1</sup> | 877<br>300<br>5,390               | 2,790<br>374,869<br>426,814            | 2,968<br>43,591<br>165,976            | 6,635<br>418,760<br>598,180               | 2,514                                | 15<br>95<br>137,827            | 3,523<br>2,609<br>155,075            | 10,158<br>421,369<br>753,255              |
|                     | Total                                                                   | 6,567                             | 804,473                                | 212,535                               | 1,023,575                                 | 23,270                               | 137,937                        | 161,207                              | 1,184,782                                 |
|                     | r: First quality Second quality Other quality Total                     | 2,557<br>5,766<br>1,050<br>9,373  | 270<br><br><br>270                     | 165<br>100<br><br>265                 | 2,992<br>5,866<br>1,050<br>9,908          | 3<br>)                               | ===                            | 240<br><br><br>240                   | 3,232<br>5,866<br>1,050<br>10,148         |
|                     | k and film: Good Stained or better 2 Stained 3 Lower than Stained Total | 9,200<br>1,350<br>5,390<br>15,940 | 3,060<br>374,869<br>426,814<br>804,743 | 3,233<br>43,591<br>165,976<br>212,800 | 15,493<br>419,810<br>598,180<br>1,033,483 | 2,514<br>17,248                      | 15<br>95<br>137,827<br>137,937 | 3,763<br>2,609<br>155,075<br>161,447 | 19,256<br>422,419<br>753,255<br>1,194,930 |
| Phlogopi<br>qualiti | ite: Block (all<br>es)                                                  |                                   |                                        | 4,148                                 | 4,148                                     | 3                                    | 65,751                         | 65,751                               | 69,899                                    |

 <sup>&</sup>lt;sup>1</sup> Includes punch mica.
 <sup>2</sup> Includes first- and second-quality film.
 <sup>3</sup> Includes other-quality film.

Table 5.-Fabrication of muscovite ruby and nonruby block and film mica in the United States in 1973 by quality and grade

(Pounds)

|                            |                        |         | Grad    | le      |         |                  |
|----------------------------|------------------------|---------|---------|---------|---------|------------------|
| Form, variety, and quality | No. 4<br>and<br>larger | No. 5   | No. 5½  | No. 6   | Other 1 | Total            |
| Block:                     |                        |         |         |         |         |                  |
| Ruby:                      |                        |         |         |         |         |                  |
| Good Stained or better     | 2,404                  | 1,762   | 696     | 1,794   |         | 6,656            |
| Stained                    | 13,454                 | 74,066  | 85,378  | 226,121 | 10.970  | 409,989          |
| Lower than Stained         | 10,177                 | 86,022  | 136,072 | 266,807 | 188,239 | 687.317          |
| Total                      | 26,035                 | 161,850 | 222,146 | 494,722 | 199,209 | 1,103,962        |
| Nonruby:                   |                        |         |         |         |         |                  |
| Good Stained or better     | 2,519                  | 68      | 50      | 865     |         | 9 500            |
| Stained                    | 1.621                  | 5,123   | 1,325   | 3.311   |         | 3,502            |
| Lower than Stained         | 16,250                 | 13,788  | 880     | 2,020   | 33,000  | 11,380<br>65,938 |
| Total                      | 20,390                 | 18,979  | 2,255   | 6,196   | 33,000  | 80,820           |
| Film:                      |                        |         |         | -,      |         |                  |
| Ruby:                      |                        |         |         |         |         |                  |
| First quality              | 852                    | 350     | 400     | 905     |         |                  |
| Second quality             | 895                    | 1,913   | 1,608   | 325     |         | 1,927            |
| Other quality              |                        | •       | •       | 150     | 1 050   | 4,566            |
|                            |                        |         |         |         | 1,050   | 1,050            |
| Total                      | 1,747                  | 2,263   | 2,008   | 475     | 1,050   | 7,543            |
| Nonruby:                   |                        |         |         |         |         |                  |
| First quality              |                        |         | 580     | 725     |         | 1,305            |
| Second quality             |                        |         | 1,300   | 120     |         | 1,300            |
| Other quality              |                        |         |         |         |         | 1,000            |
| Total                      |                        |         | 1,880   | 725     |         | 2,605            |

<sup>&</sup>lt;sup>1</sup> Figures for block mica include all smaller than No. 6 grade and "punch" mica.

Table 6.-Consumption and stocks of mica splittings in the United States, by source country (Thousand pounds and thousand dollars)

|                 | India    |       | Malag    | asy   | Total              |         |
|-----------------|----------|-------|----------|-------|--------------------|---------|
|                 | Quantity | Value | Quantity | Value | Quantity           | Value   |
| Consumption:    |          |       |          |       |                    |         |
| 1969            | 4,799    | 2.005 | 278      | 191   | 5.077              | 2,196   |
| 1970            | 5,013    | 2,109 | 202      | 144   | <sup>1</sup> 5.214 | 1 2.254 |
| 1971            | 4,084    | 1,750 | 93       | 68    | 4.177              | 1,818   |
| 1972            | 4.245    | 1,658 | 79       | 113   | 4,324              | 1,771   |
| 1973            | 5,063    | 1,606 | 115      | 109   | 5,178              | 1,715   |
| Stocks Dec. 31: | ·        | •     |          |       | -,                 | 2,120   |
| 1969            | 2,415    | NA    | 145      | NA    | 2,560              | NA      |
| 1970            | w        | NA    | W        | NA    | 2.013              | NA      |
| 1971            | 1,317    | NA    | 98       | NA    | 1.415              | NA      |
| 1972            | 1,723    | NA    | 86       | NA    | 1,809              | NA      |
| 1973            | 1,246    | NA    | 55       | NA    | 1,301              | ÑA      |

NA Not available. W Withheld to avoid disclosing individual company confidential data.

Data may not add to totals shown because of independent rounding.

Table 7.-Built-up mica1 sold or used in the United States, by product (Thousand pounds and thousand dollars)

| Product         | 19                 | 72    | 1973               |        |  |
|-----------------|--------------------|-------|--------------------|--------|--|
|                 | Quantity           | Value | Quantity           | Value  |  |
| Molding plate   | 851                | 2,369 | 1,109              | 2,274  |  |
| Segment plate   | 1,125              | 2,394 | 1,105              | 2,279  |  |
| Heater plate    | w                  | w     | w                  | w      |  |
| Flexible (cold) | 468                | 971   | 683                | 1,598  |  |
| Tape            | 957                | 3,239 | w                  | w      |  |
| Other           | 357                | 934   | 1.649              | 4,718  |  |
| Total           | <sup>2</sup> 3,757 | 9,907 | <sup>2</sup> 4,547 | 10,869 |  |

W Withheld to avoid disclosing individual company confidential data, included with "Other."

1 Consists of alternate layers of binder and irregularly arranged and partly overlapped splittings.

2 Data may not add to totals shown because of independent rounding.

| Table 8Ground | mica | sold | by | producers | in | the | United | States, | by | use |
|---------------|------|------|----|-----------|----|-----|--------|---------|----|-----|
|---------------|------|------|----|-----------|----|-----|--------|---------|----|-----|

|                                    | 19                          | 972                       | 1973                        |                           |  |
|------------------------------------|-----------------------------|---------------------------|-----------------------------|---------------------------|--|
| Use                                | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands) | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands) |  |
| RoofingWallpaper                   | 18,798<br>492               | \$650<br>79               | 21,582<br>481               | \$792<br>73<br>1,009      |  |
| RubberPaint                        | 5,589<br>27,115<br>497      | W<br>2,816<br>96          | 5,719<br>37,418<br>401      | 3,392<br>80               |  |
| Welding rods  Joint cement Other 1 | W<br>52,111<br>23,672       | W<br>3,308<br>1.894       | W<br>51,116<br>18,081       | W<br>2,879<br>1,176       |  |
| Total                              | 128,274                     | 2 8,844                   | 134,798                     | 9,401                     |  |

W Withheld to avoid disclosing individual company confidential data, included with "Other."

<sup>1</sup> Includes mica used for molded electric insulation, annealing, well drilling, textile and decorative coating, texture paint, and uses indicated by symbol W.

<sup>2</sup> Data does not add to total shown because of independent rounding.

#### **STOCKS**

At yearend there was about 2.02 million pounds of sheet mica in fabricators' stocks. Of this quantity, 64% was splittings and the remainder almost entirely block. Only a minor quantity consisted of film. This information was obtained by direct canvass of sheet mica fabricators. Similar information is unavailable for scrap and flake mica, but it is thought that producers maintain stock inventories equal to 5% to 10% of domestic production.

### **PRICES**

The average value of imported muscovite sheet in 1973, based on consumption data, was as follows: Block, \$1.63 per pound; film, \$5.84 per pound; and splittings \$0.33 per pound. The average value of phlogopite sheet mica, also based on consumption data was as follows: Phlogopite block, \$1.72 per pound; and phlogopite splittings, \$0.95 per pound.

The average value of scrap and flake mica produced during the year was \$34.36 per ton. Prices for ground mica, prepared from scrap and flake, quoted in the Chemical Marketing Reporter show slight increases over those of the previous year. Yearend prices are shown in table 9.

Table 9.-Price of dry- or wet-ground mica in the United States in 1973 1

|                                                                                                                                        | Cents<br>per<br>pound                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Dry-ground: Joint cement, 100 mesh Plastic, 100 mesh Roofing, 20 to 80 mesh Wet-ground: 2 Paint or lacquer, 325 mesh Rubber Wall paper | $\begin{array}{c} 4-5\\ 4-5\\ 2-3\\ 9\frac{1}{2}-10\\ 9\frac{1}{2}-10\\ 10\frac{1}{2}-11\\ \end{array}$ |

<sup>&</sup>lt;sup>1</sup> In bags at works, carlots, unless otherwise noted.

<sup>2</sup> Freight allowed east of the Mississippi River.

# **FOREIGN TRADE**

All classes of mica exports increased 5% in quantity and 11% in value from that of the previous year. About one-half of the sheet, scrap and flake, and ground mica exported was shipped to Canada, France, and the United Kingdom. Exports of mica manufactures increased in both quantity and value. Reported export data did not provide information on the grade or type of mica exported, but it is assumed the major portion of the material exported was ground mica.

Imports of scrap and waste mica almost doubled from those of the previous year. There were no imports of phlogopite mica. Imports of sheet mica declined 22% in quantity, but increased 9% in value. Processed mica imports declined 15% in quantity and increased 36% in value.

Source: Chemical Marketing Reporter. V. 204, No. 27, Dec. 31, 1973.

Table 10.-U.S. exports of mica and manufactures of mica in 1973, by country

| Destination               | film and s<br>and scra | uding block,<br>plittings, waste<br>o, and ground<br>mica | Manufactured         |                      |  |
|---------------------------|------------------------|-----------------------------------------------------------|----------------------|----------------------|--|
|                           | Quantity<br>(pounds)   | Value<br>(thousands)                                      | Quantity<br>(pounds) | Value<br>(thousands) |  |
| Algeria                   | 879,725                | \$86                                                      |                      |                      |  |
| Argentina                 | 106.819                | 23                                                        | 10 11 4              | .27                  |  |
| Australia                 | 133,656                | 20                                                        | 16,414               | \$54                 |  |
| Belgium-Luxembourg        | 165,000                | 13                                                        | 48,663               | 91                   |  |
| Bolivia                   | 148,000                | 15<br>59                                                  | 44,023               | 50                   |  |
| Brazil                    | 140,000                | 59                                                        |                      |                      |  |
| Canada                    | $5,111.0\overline{06}$ | 222                                                       | 53,697               | 168                  |  |
| Chad                      |                        | 329                                                       | 300,742              | 993                  |  |
|                           | 85,200                 | 11                                                        |                      |                      |  |
| D                         | 132,609                | 20                                                        | 7,572                | 17                   |  |
|                           |                        |                                                           | 25,366               | 151                  |  |
| Dominican Republic        | 44,000                 | 6                                                         | 813                  | 2                    |  |
| Egypt                     | 37,700                 | 3                                                         | 1.894                | 6                    |  |
| France                    | 1,336,807              | 93                                                        | 13,781               | 57                   |  |
| Germany, West             | 314,610                | 48                                                        | 7,448                | . 8                  |  |
| Guatemala                 | 86,333                 | 10                                                        | 1,440                | ` 8                  |  |
| Hong Kong                 | 20,110                 | 16                                                        | $1.7\overline{32}$   | -=                   |  |
| Indonesia                 | 80,000                 | 9                                                         | 1,782                | 5                    |  |
| Iran                      | 103,450                | 11                                                        | 2.5                  |                      |  |
| Italy                     | 456,777                |                                                           | 248                  | 1                    |  |
| Jamaica                   |                        | 103                                                       | 37,359               | 125                  |  |
| Japan                     | 23,945                 | 2                                                         | 19,537               | 28                   |  |
| Mexico                    | 851,686                | 730                                                       | 159,469              | 207                  |  |
| 37 /1                     | 407,346                | 36                                                        | 313,855              | 786                  |  |
|                           | 614,833                | 41                                                        | 2,373                | 16                   |  |
|                           |                        |                                                           | 1.562                | 6                    |  |
| DI 11                     | 40,472                 | 4                                                         | 509                  | 3                    |  |
| Philippines               | 35,132                 | 7                                                         | 409                  | š                    |  |
| Singapore                 | 788,200                | 86                                                        | 634                  | 7                    |  |
| South Africa, Republic of | 108,005                | 11                                                        | 19.280               | 26                   |  |
| Spain                     | 245.885                | 31                                                        | 29.837               | 104                  |  |
| Sweden                    | 35,580                 | 5                                                         | 1.632                |                      |  |
| Switzerland               | 17.527                 | 26                                                        | 2,520                | 9                    |  |
| Taiwan                    | ,0                     |                                                           |                      | 5                    |  |
| Trinidad and Tohago       |                        |                                                           | 4,368                | 39                   |  |
| United Arab Emirates      | 376,323                | 75                                                        | 301                  | 1                    |  |
| United Kingdom            |                        | 45                                                        | 553                  | 2                    |  |
| Venezuela                 | 1,029,422              | 245                                                       | 22,711               | 39                   |  |
| Other                     | 564,746                | 47                                                        | 2,896                | 7                    |  |
|                           | 207,560                | 25                                                        | 13,654               | 48                   |  |
| Total                     | 14,588,464             | 2,201                                                     | 1,155,852            | 3,064                |  |

Table 11.-U.S. exports and imports of mica

(Thousand pounds and thousand dollars)

|                      |  | Expo                       |                         | Imports for consumption |                         |                         |                  |                         |                         |  |  |  |
|----------------------|--|----------------------------|-------------------------|-------------------------|-------------------------|-------------------------|------------------|-------------------------|-------------------------|--|--|--|
| Year                 |  | All<br>clas                |                         | Uncut<br>and            |                         | Scra                    | р                | Manufactured            |                         |  |  |  |
|                      |  | Quantity                   | Value                   | Quantity                | Value                   | Quantity                | Value            | Quantity                | Value                   |  |  |  |
| 1971<br>1972<br>1973 |  | 15,182<br>14,959<br>15,744 | 3,768<br>4,752<br>5,265 | 1,355<br>1,494<br>1,169 | 1,171<br>1,162<br>1,269 | 7,284<br>2,641<br>5,072 | 171<br>62<br>116 | 4,464<br>5,644<br>4,785 | 2,476<br>3,183<br>4,325 |  |  |  |

Table 12.-U.S. imports for consumption of mica, by kind and country

| Vest   Phologopie   Phologopi |                      |         |                    |                     |                   | Unma            | nufact     | tured            |          |                |                          |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------|--------------------|---------------------|-------------------|-----------------|------------|------------------|----------|----------------|--------------------------|--------|
| Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Country   Coun | Vonu                 | W       | aste an            | d scrap             |                   |                 |            |                  |          | Ot             | her                      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | Phlogo  | pite               | Oth                 | er                | Dio             | CK III     | ıca              | Musc     |                | Other,                   | n.e.c. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | country              |         |                    |                     |                   |                 |            | Value            |          | Value          | e Quan-                  | Value  |
| 1972   112,000   4 2,529,399   58 895,661   946 109,768   4 4,685,251   212   219   219   219   219   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210   210  | (                    |         |                    |                     |                   |                 |            |                  |          | (thou<br>sands | - tity<br>) (pounds)     |        |
| 1972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      | 188,10  | 7 \$4              | 7,096,451           | \$167             | 989.            | 393        | \$902            | 207.945  | \$54           | 4 158,437                | \$215  |
| Brazil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1972                 | 112,000 | ) 4                | 2,529,399           |                   | 895,            | 361        |                  |          |                |                          | 212    |
| Hong Kong   1,772,198   80 264,561   304 1,594   6 645   35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |         |                    |                     |                   |                 |            |                  |          |                |                          |        |
| Hong Kong   1,772,198   80 264,561   304 1,594   6 645   35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Brazil               |         |                    | 1,300,714           |                   | 720,            |            |                  | -        |                |                          | 68     |
| India                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Hong Kong            |         |                    |                     |                   |                 |            |                  |          | -              |                          | 2      |
| Republic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | India                |         |                    | 3,772,198           | 80                | 264,5           | 61         | 304              | 1,594    |                |                          | 35     |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Malagasy<br>Republic |         |                    |                     |                   | 0.9             | 01         | 10               |          |                | 40 000                   | 77.4   |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |         |                    |                     |                   | 3,0             |            |                  | 1.629    | 11             | . 40,962<br>5 543        |        |
| Splittings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Total                |         |                    | 5,072,912           | 116               | 994,6           | 661        | 1,050            |          |                |                          |        |
| Splittings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |         |                    |                     |                   |                 |            |                  |          |                |                          |        |
| Splittings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |         | <del></del>        |                     | Nat               |                 |            | ctured           |          |                |                          |        |
| Quan-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |         |                    |                     | stam              | cut (           | or<br>ot . |                  | C        | ut or          |                          |        |
| Quan-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |         | Split              | tings               | over              | 0.00            | 6          | Not              | over     | 0.006          | Over 0                   | .006   |
| Quantity   Value   Quan   (thou tity (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou typounds)   Value   (thou |                      |         |                    |                     | ine               | ch in<br>cknose |            |                  |          |                | inch                     | in     |
| tity (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands (bounds)   sands |                      |         | Quan-              | Value               |                   |                 |            |                  |          |                |                          |        |
| 1971                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |         | tity               | (thou-              | tity              | 7 (             | thou-      | tit              | y (tl    | 10u-           | tity                     | (thou- |
| 1972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |         | (pounds            | sands)              | (poun             | ds) sa          | ands)      | (pou             | nds) s   | inds)          | (pounds)                 | sands) |
| 1972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      | 4       | ,065,125           | 1,134               | 52,27             | 1               |            | 79,              | 711      | 1,013          | 113,105                  | 180    |
| Austria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1972                 |         | ,561,968           | 1,123               | 6,57              | 2               | 16         | 96,              | 116      | 1,445          | 105,726                  | 165    |
| Brazil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |         |                    |                     |                   |                 |            |                  |          |                |                          |        |
| Canada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Austria<br>Rrezil    |         |                    |                     | 4 80              | 6               |            |                  |          |                |                          |        |
| France                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Canada               |         | $2,4\overline{61}$ | ī                   |                   |                 |            |                  |          |                | $1,4\overline{43}$       | -6     |
| Hong Kong                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |         |                    |                     | _                 | _               |            |                  |          |                | 30                       | 1      |
| India                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Hong Kong            |         |                    |                     | 86                |                 |            |                  | 37       |                |                          |        |
| Treland   Jamaica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | India                | 8       | ,493,874           | 784                 | 10,02             | 8               | 24         | 134,             | 328      | 2,249          | 129,815                  | 229    |
| Japan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ireland              |         | 300                | āī                  | -                 | -               |            |                  | 32       | 1              |                          |        |
| Malagasy Republic   121,144   90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |         |                    |                     | -                 | _               |            | 1.               | 973      | 38             |                          |        |
| Mexico   South Africa,   Republic of   11,023   6       761   20   653   2   2   2   2   2   2   2   2   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Malagasy             |         | 101 144            |                     |                   |                 |            | •                |          |                |                          |        |
| South Africa, Republic of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |         | 121,144            | 90                  | -                 | -               |            |                  | 62       | 3              | 35                       | ā,     |
| Taiwan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | South Africa         | a.      |                    |                     | _                 | _               |            |                  | ·-       |                |                          |        |
| United Kingdom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Republic o           |         |                    |                     | -                 | -               |            |                  | 761      | 55             | 653                      | 2      |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |         |                    |                     | -                 | _               |            |                  |          |                | $\mathbf{1.7\tilde{62}}$ | 22     |
| Mice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total                | 3       | ,628,802           | 881                 | 15,71             | 4               | 30         | 142,             | 365 2    | 2,411          |                          | 260    |
| Quantity (pounds)   Value (pounds)   Quantity (pounds)   Quantity (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pounds)   Value (pound |                      |         | Mica p             | lates and<br>mica   | built-up          |                 | G          | round<br>ulveriz | or<br>ed | espe           | cially prov              | rided  |
| 1972 294,424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |         |                    | ntity<br>nds)       | Value<br>(thousan | ds)             |            |                  |          | Qu             | antity                   | Value  |
| 1973:    Belgium-  Luxembourg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |         | _                  | 29,198              |                   |                 |            |                  |          |                |                          | 73     |
| Belgium-Luxembourg     466,421     417       Brazil     7,456     1       Canada     15,772     49     108,003     10     6,306     4       Germany, West     33,336     63     -     -     -     108,023     3     17,057     79       Italy     -     -     -     865     1       Mexico     -     -     44     (1)       Netherlands     75,966     68     -     -     311     13       Switzerland     10     1     -     213     (1)       Taiwan     22,950     22     -     -     -     -     -       United Kingdom     -     -     360     (1)     834     12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |         |                    | 294,424             | 274               |                 | 22,04      | 46               | (1)      |                | 006,984                  | 160    |
| Luxembourg     466,421     417       Brazil     -     7,496     1       Canada     15,772     49     108,003     10     6,306     4       Germany, West     33,336     63     -     -     -     -     -     108,023     3     17,057     79       Italy     -     -     -     -     865     1       Mexico     -     -     44     (1)       Netherlands     75,966     68     -     -     311     13       Switzerland     10     1     -     -     213     (1)       Taiwan     22,950     22     -     -     -     -     -       United Kingdom     -     360     (1)     834     12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |         |                    |                     |                   |                 |            |                  |          |                |                          |        |
| Brazil     7,496     1       Canada     15,772     49     108,003     10     6,306     4       Germany, West     33,336     63     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Luxembou             | rg      | _                  | 466,421             | 417               |                 |            |                  |          |                |                          |        |
| Germany, West 33,386 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Brazil               |         | _                  |                     |                   |                 |            |                  |          |                | c 905                    |        |
| Talia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Germany. W           | est     | -                  |                     |                   |                 | 108,0      | <br>             | 10       |                | 6,306                    |        |
| Mexico     -     -     44     (1)       Netherlands     75,966     68     -     -     311     13       Switzerland     10     1     -     -     213     (1)       Taiwan     22,950     22     -     -     -     -       United Kingdom     -     -     360     (1)     834     12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | India                |         | -                  |                     |                   |                 | 108,0      | 23               | -3       |                |                          | 79     |
| Taiwan 22,350 22 United Kingdom 360 (1) 834 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |         | -                  |                     |                   |                 |            |                  |          |                |                          | (1)    |
| Taiwan 22,350 22 United Kingdom 360 (1) 834 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Netherlands          |         | -                  | 75,966              | <b>6</b> 8        |                 |            |                  |          |                |                          | 13     |
| Taiwan 22,350 22 United Kingdom 360 (1) 834 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Switzerland          |         | -                  | 10                  |                   |                 |            |                  |          |                | 213                      | (1)    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | United King          | dom     | -                  | zz, <del>9</del> 50 | 22                |                 | 3          | 60               | (1)      |                | 834                      | 12     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |         |                    | 614,455             | 620               |                 |            |                  |          |                |                          | 109    |

<sup>1</sup> Less than ½ unit.

# **WORLD REVIEW**

World mica production showed some variation from that of previous years, but the major production of sheet muscovite and phlogopite occurred in India and the Malagasy Republic respectively. The United States remained the major world producer of scrap and flake mica.

India.-The pattern of Indian mica production remained unchanged from the previous year. Production was dependent on output from 100 regularly operated mines. Other mines continued to operate intermittently as small cottage industries with small, individual outputs.

Exports of mica continued under the direct control of the Minerals and Metals and Trading Corp. (MMTC). It is anticipated that the MMTC will endeavor to exert control over the mica industry from production to domestic consumption and export.

Indian mica consumption continued to increase for the manufacture of items such as refractories, rubber products, builtup mica, paints, and electronic and electrical apparatus.

Malagasy Republic.—The country mained the major world source of all forms of phlogopite mica with production of almost 2 million pounds of block, splitings, and scrap during the year. Almost two-thirds of production consisted of splittings; the remainder, block and scrap. Exports of phlogopite mica reached 2.2 million pounds, with splittings accounting for slightly over one-half of the total quantity exported.

Table 13.-Mica: World production by country (Thousand pounds)

| (-italiania pounda)                 |           |                    |                    |  |
|-------------------------------------|-----------|--------------------|--------------------|--|
| Country 1                           | 1971      | 1972               | 1973 Р             |  |
| Argentina:                          |           |                    |                    |  |
| Sheet                               | r 353     | 256                | e 270              |  |
| Waste, scrap, etc                   | г 6.823   | 4.616              | e 4.600            |  |
| Brazil <sup>2</sup>                 | r 5,600   | 5,681              | e 5,700            |  |
| Colombia                            | 71        | 84                 | e 90               |  |
| France                              | 6.883     | e 6.800            | e 6.800            |  |
| Guatemala                           |           | 2,639              | e 2,600            |  |
| India:                              |           |                    |                    |  |
| Exports:                            |           |                    |                    |  |
| Block 3                             | 2.915     | 3,309              | 1.770              |  |
| Splittings 4                        | 13.832    | 14.235             | 11.215             |  |
| Scrap 5                             | 35,891    | 38,354             | 49,743             |  |
| Domestic consumption, all classes e | 17,600    | 18,700             | 21,200             |  |
| Total e                             | 70,238    | 74.598             | 83,928             |  |
|                                     | 10,200    | 74,598             | 83,928             |  |
| Malagasy Republic (phlogopite):     |           |                    |                    |  |
| Block                               | 74        | 127                | 276                |  |
| Splittings                          | 978       | 751                | 1,248              |  |
| Scrap                               | 244       | 413                | 438                |  |
| Mexico                              | 1,561     | 1,821              | 1,724              |  |
| Mozambique (including scrap)        | 2,094     |                    |                    |  |
| Norway (including scrap)            | 7,668     | <sup>2</sup> 9,048 | <sup>2</sup> 9,672 |  |
| Portugal                            | 1,786     | 3,651              | e 3,700            |  |
| South Africa, Republic of:          |           |                    |                    |  |
| Sheet                               | 7         | 4                  | (6)                |  |
| Scrap                               | 15,785    | 9,359              | 13,248             |  |
| Sri Lanka                           | 694       | 428                | e 400              |  |
| Tanzania:                           |           |                    |                    |  |
| Sheet                               | r 82      | 40                 | 71                 |  |
| Scrap e                             | 29        | 29                 | 29                 |  |
| United States:                      |           |                    |                    |  |
| Sheet                               | 17        | 14                 |                    |  |
| Scrap and flake                     | 254,168   | 319,072            | 354,152            |  |
| U.S.S.R. (all grades)               | 84,000    | 86,000             | 88,000             |  |
| Yugoslavia                          | 1,221     | 278                | e 330              |  |
| Total                               | r 460,376 | 525,709            | 577,276            |  |
|                                     | ,         | ,                  |                    |  |

<sup>&</sup>lt;sup>e</sup> Estimate. <sup>p</sup> Preliminary. <sup>r</sup> Revised. <sup>1</sup> In addition to the countries listed, the People's Republic of China, Romania, Southern Rhodesia, South-West Africa, and Sweden are known to produce mica, but available information is inadequate to make reliable estimates of output levels. <sup>2</sup> Exports.

<sup>3</sup> Includes micanite and other built-up.

<sup>4</sup> Includes condenser film, washer, and discs.
5 Includes sheet, strips, and powder.
6 Less than ½ unit.

# **TECHNOLOGY**

A recent government publication reviewed the resource position of mica and concluded that although the United States had undiscovered and paramarginal resources of sheet mica, the necessary hand labor required to mine and prepare sheet mica deterred any exploration, development, or mining. The report concluded that reserves and resources of flake mica were adequate to meet future demand.2

Experimental work was conducted to observe the effect on reinforcement capability of adding mica, which has a high aspect ratio (flake equivalent diameter to thickness ratio), to polystyrene copolymer and polyester resin. Mica flakes with aspect ratios above 100 imparted a high degree of reinforcement to thermoplastic or thermosetting materials under a given set of conditions.3

<sup>2</sup> Lesure, F. G. Mica. Ch. in United States Mineral Resources. Geol. Survey Prof. Paper 820, 1973, pp. 415-423. <sup>3</sup> Lusis, J., R. T. Woodhams, and M. Xanthos. The Effect of Flake Aspect Ratio on the Flexural Properties of Mica Reinforced Plastics. Polymer Eng. and Sci., v. 13, No. 2, March 1973, pp. 139-145.



# Molybdenum

# By Andrew Kuklis 1

World molybdenum output increased slightly above that of 1972. Consumption, on the other hand, rose significantly in response to a strong worldwide demand for molybdenum. Consumption exceeded production for the first time since 1965. World industrial inventories of molybdenum declined to 129.8 million pounds or approximately normal requirements.

In response to greater demand for mo-

lybdenum, several mines reopened, others resumed producing at capacity, and some expanded mining operations. However, some molybdenum mines remained marginal operations because of low prices resulting from an oversupplied and competitive market. Prices on foreign markets began to improve at midyear and at yearend domestic prices returned to their higher published level.

Table 1.-Salient molybdenum statistics

(Thousand pounds contained molybdenum and thousand dollars)

|                                                            | 1969                  | 1970               | 1971              | 1972                | 1973               |
|------------------------------------------------------------|-----------------------|--------------------|-------------------|---------------------|--------------------|
| United States: Concentrate:                                |                       | 444 050            | 100 500           | 112,138             | 115,859            |
| ProductionShipments                                        | 99,807<br>103,009     | 111,352 $110,381$  | 109,592<br>97,882 | 102,197             | 135,097<br>217,721 |
| ValueConsumption                                           | $173,819 \\ 73,275$   | 190,077 $76,101$   | 164,917<br>66,399 | 170,530<br>62,560   | 82,477<br>458      |
| Imports for consumption<br>Stocks, Dec. 31: Mine and plant | (¹)<br>8 <b>,39</b> 8 | $\frac{25}{9,715}$ | 854<br>29,077     | $385 \\ 45,243$     | 21,99              |
| Primary products: Production                               | 68,526                | 75,383             | 67,016            | 64,841              | 85,04              |
| Shipments                                                  | 77,726<br>51,622      | 76,095<br>45,337   | 66,654<br>40,950  | 75,538 $45,558$     | 108,68<br>57,04    |
| Stocks, Dec. 31: Producers                                 | 17,844<br>2159,470    | 25,904<br>181,429  | 31,048<br>171,064 | 28,898<br>r 174,418 | 22,38<br>181,15    |
| World: Production                                          | 100,1.0               |                    |                   |                     |                    |

r Revised.

Legislation and Government Programs. -President Nixon signed into law a Con-(S2551)authorizing the gressional bill General Services Administration (GSA) to dispose of 36.5 million pounds of molybdenum from the national stockpile. Previous legislative action by Congress released 4.3 million pounds of molybdenum for sale. Most of the material will be sold to domestic producers under a long-term buyback contract. Also, GSA was expected to offer approximately 8 million pounds of molybdenum over an extended period, initially on a sealed-bid basis and later (depending on market conditions) on a shelfitem basis.

At yearend, molybdenum in the national stockpile totaled 38.0 million pounds.

Table 2.—U.S. Government molybdenum stockpile material inventories on Dec. 31, 1973

(Thousand pounds contained molybdenum)

| Type material                                                  | National<br>(stragetic)<br>stockpile |
|----------------------------------------------------------------|--------------------------------------|
| Molybdenum, disulfide<br>Molybdenum, ferro<br>Molybdenum oxide | 24,416<br>4,980<br>8,651             |
| Total                                                          | 38,047                               |

During the year, GSA sold more than 5.8 million pounds. Approximately 2.9 million pounds of molybdenum was classed as sold but unshipped.

<sup>1</sup> Less than ½ unit.

<sup>&</sup>lt;sup>2</sup> Non-communist countries.

<sup>&</sup>lt;sup>1</sup> Mining engineer, Division of Ferrous Metals
-Mineral Supply.

Table 3.—U.S. Government molybdenum stockpile material, sold but unshipped on Dec. 31, 1973 1

(Thousand pounds contained molybdenum)

| Type material                                                  | National<br>(strategic)<br>stockpile<br>1,176<br>227<br>1,522 |  |
|----------------------------------------------------------------|---------------------------------------------------------------|--|
| Molybdenum, disulfide<br>Molybdenum, ferro<br>Molybdenum oxide |                                                               |  |
| Total                                                          | 2,925                                                         |  |

<sup>1</sup> Not included in table 2.

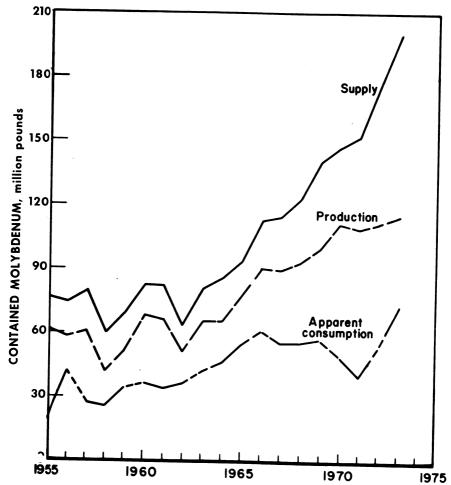



Figure 1.—Apparent consumption, production, and supply of molybdenum in the United States.

# **DOMESTIC PRODUCTION**

Domestic production of molybdenum increased 3.7 million pounds in 1973 and was over 3% higher than in 1972. For the molybdenum producing industry, 1973 was another record year. Higher production rates at byproduct operations accounted for the increased output. Ores processed at concentrators for recovery of molybdenum totaled 204.5 million tons; of which, the bulk was byproduct ores. Mines producing only molybdenum reduced their output over 5% in 1973 compared with 1972 output. Molybdenum output from byproduct sources rose to 42% of total production from the 37% reported in 1972, continuing the upward trend of past years.

Demand for molybdenum was strong during 1973 because of record consumption by the steel industry. Mine and plant inventories were reduced significantly. The domestic molybdenum industry enjoyed continuous operations during 1973 as no serious labor problems interrupted production schedules.

Three mines produced over 67 million pounds of molybdenum from primary ores; of these, two were in Colorado and one was in New Mexico. As in past years, the Climax mine of American Metal Climax, Inc. (AMAX), was the world's largest producer with over 29% of the total.

The 48.8 million pounds of molybdenum produced at byproduct plants increased 18% over 1972 figures. The increase was

due to a strong demand for copper and other byproduct minerals. Of the 14 plants processing copper porphyry ore containing molybdenum, 10 increased their output, 3 had lower production, and 1 previously closed plant resumed operating in 1973. The Silver Bell facility of American Smelting and Refining Co. (Asarco) did not recover molybdenum during 1973.

Molybdenum recovered from uranium ores declined 23,600 pounds and that from tungsten ores declined 93,995 pounds compared with 1972 figures.

According to 1973 data, Pennzoil Co., parent company of Duval Corp. and Duval Sierrita Corp., was the leading domestic producer of byproduct molybdenum. Kennecott Copper Corp., with four operations, remained in second place. Other large producers of byproduct molybdenum were, in order of quantity, Magma Copper Co. and Anamax Mining Co. Six companies, four byproduct producers and two primary producers, accounted for over 96% of the United States output of molybdenum, or over 63% of the world's production in 1973.

The marked improvement in demand for molybdenum resulted in increased activities associated with expanding current production facilities, and increased exploration for molybdenum minerals and exploitation of new molybdenum deposits.

Development of an open pit mine at

Table 4.—Production, shipments, and stocks of molybdenum products in the United States

(Thousand pounds contained molybdenum) 1973 1972 1972 1973 1972 1973 Molybdic Metal Ammonium powder molybdate oxide 1 21 200 651 1,681 Received from other producers\_\_\_\_\_Gross production during year\_\_\_\_\_ 7,591 10,645 8,174 4,567 3,607 133,615 70,335 63,280 95,734 47,800 47,934 4,109 4,571 472 3,637 940 3,484 1,055 Used to make other products listed here\_\_\_\_\_ 3,631 Net production\_\_\_\_\_ š 2,738 3,484 ,658 586 55,720 23,701 84,353 ,578 580 542 Producer stocks, Dec. 31 Sodium Other 2 Total molybdate 14,477 164,053 79,007 85,046 1,785 16,154 3,164 12,990 15,599 8,848 119,753 54,912 64,841 200 166 385 Received from other producers\_\_\_\_\_\_\_ Gross production during year\_\_\_\_\_\_ Used to make other products listed here\_\_\_\_\_ 14,255 3,151 11,104 12,353 1,116 1,539 1,538 1,593 280 ,111 Net production 108,687 22,387 75,538 1,149 292 Shipments 3,765 3,667 28,898 Producer stocks, Dec. 31

<sup>&</sup>lt;sup>1</sup> Includes molybdic oxide, briquets, molybdic acid, and molybdenum oxide.

<sup>2</sup> Includes ferromolybdenum calcium molybdate, phosphomolybdic acid, molybdenum disulfide, pellets, molybdenum pentachloride, and molybdenum hexacarbonyl.

Climax by AMAX was completed by yearend. The initial production rate ranged from 3,000 to 4,000 tons, but was expected to increase eventually to 25,000 tons of molybdenum ore per day. The open pit mine will provide flexibility in operation at the Climax property to meet changing market conditions and offset production losses due to gradual closing of the Urad mine. During 1973, an additional flotation stage was added to the regrind circuit at the Climax mill to improve concentrate grade. Also, it enabled the company's conversion plant to upgrade technical grade oxide products.

AMAX continued development of the Henderson molybdenum mine near Empire, Colo. Major work projects underway in 1973 were driving a haulage tunnel through the Continental Divide and construction of a concentrator. Approximately one-half of the 9.3-mile-long tunnel was completed at yearend. Satisfactory progress was made on the concentrator but its completion was not expected until late in 1974. Production at the Henderson mine was scheduled to begin in 1976 at a rate of about 30,000 tons of ore per day. Ultimately, the mine was expected to produce about 50 million pounds of molybdenum annually.

AMAX mined the 300 millionth ton of molybdenum ore at the Climax operation on January 11, 1973. Published information indicated that more ore had been produced at the Climax mine than at any underground mine in North America. According to production data, the record "ore ton" came from the Phillipson level of the mine, a producing area in operation for over 40 years. The 200 millionth "ore ton" was reached on January 27, 1966, less than 7 years ago. Estimated ore reserves at Climax are considered sufficient to operate the mine for an additional 40 years. To maintain the current underground production rate of 43,000 tons per day, a new 600 level was developed at a cost of over \$50 million.

AMAX Specialty Metals Corp., a division of AMAX, announced plans for construction of a molybdenum conversion plant at Fort Madison, Iowa. The facility will produce crystalline ammonium molybdate and derivative products for use in the chemical, metallurgical, and petrochemical industries. Also, the molybdenum conversion

plant at Langeloth, Pa., will be modernized. It was estimated that total expenditures for both projects would exceed \$25 million.

The Fort Madison facility eventually will be expanded to roast molybdenite concentrate and produce a complete line of molybdenum products. Additional plant capacity will be necessary because of expansion of mining operations at Climax and development of new molybdenum production at the Henderson mine. The Iowa location was selected because of developing markets in the Midwest, availability of railroad and water transportation, and proximity to the company's mining operations in Colorado. Construction of the new Iowa facility and expansion of the existing Langeloth plant were scheduled for completion in 1975.

Cyprus Mines Corp. reported reserves of 100 million tons of ore having an average grade of 0.148% molybdenite at the Thompson Creek deposit near Clayton, Idaho. The company has conducted considerable exploratory work in the area since 1967. To date, an incline to the ore body and extensive footage of drifts and crosscuts were completed. Company officials approved additional expenditures of \$1.3 million for continuation of development and related work on the deposit. Final studies were underway to determine the economic potential of the deposit at mining rates of 20,000 tons per day and upward. An estimated \$70 to \$75 million would be required to develop the deposit.

The Esperanza copper-molybdenum mine of Duval Corp. near Tucson, Ariz., resumed production in January. Operations were suspended at yearend 1971 because of mounting inventories of copper and molybdenum concentrate. A cutback smelter throughput by Asarco, processor of Duval's copper concentrate, caused the accumulation of a large inventory of copper concentrate which contributed to the mine shutdown. The inventory was reduced to manageable levels by exports of 36,000 tons of copper concentrate to foreign markets, principally Japan. Employment of approximately 350 workers was expected to have a beneficial effect on the area's economy. Modification in processing at the concentrator was completed during shutdown and resulted in a 25% increase in throughput.

Molybdenum output at the operations of

Duval Sierrita Corp. rose 22% that of 1972. Molybdenum recovery was expected to continue to increase in 1974. Throughput of 89,000 tons of ore per day was reached in the concentrator during December, an increase of 5,000 tons compared with previous months of 1973.

Molybdenum Corp. of America (Molycorp) terminated about 20% of its work force at the Questa mine early in the year. It was the second cutback in employment at the facility in 2 years. The first cutback was in July 1971 when the firm laid off 250 workers. Curtailment of production effected approximately 100 employees, principally open pit miners. The concentrator was expected to operate at current production levels. Management stated that the weakness in demand for molybdenum had resulted in low prices for the mineral and related products and subsequently rising inventories at the plant.

# CONSUMPTION AND USES

Domestic consumption of molybdenum in concentrate form increased 32% compared with that of 1972. The 82.5 million pounds consumed was the highest on record and exceeded the previous high in 1968 by nearly 7 million pounds. Virtually, all the concentrate consumed was converted to molybdic oxide at plants in Arizona, Colorado, New Jersey, Ohio, Pennsylvania, and Utah. A small quantity of the concentrate was used in producing purified molybdenum disulfide for lubricant purposes; output of purified molybdenum disulfide increased for the second consecutive year.

Domestic consumption of molybdenum materials by end uses rose significantly in 1972 (table 5). The 25% increase over 1972 figures was the highest reported since 1959. Consumption increased because heavy demand for capital goods resulted in higher production levels for general purpose alloy, stainless and tool steels. Molybdic oxide accounted for over 68% of the molybdenum products consumed in 1973 compared with 66% in 1972. The remaining molybdenum products were ferromolybdenum (18%), ammonium and sodium molybdate (2%), and other molybdenum materials (12%).

Of the reported consumption 70% was used in steel production, 8% was used in cast irons, 5% in super alloys, 3% in alloys, and 5% in mill products such as

Table 5.-Consumption of molybdenum materials, by end use in 1973 a contained molyhdenum

| (Thousand pounds contained molybdenum)        |                    |                                        |                                     |       |        |
|-----------------------------------------------|--------------------|----------------------------------------|-------------------------------------|-------|--------|
| End use                                       | Molybdic<br>oxides | Ferro-<br>molyb-<br>denum <sup>1</sup> | Ammonium<br>and sodium<br>molybdate |       | Total  |
| a. 1                                          |                    |                                        |                                     |       |        |
| Steel:                                        | 1,117              | 265                                    |                                     | 17    | 1,399  |
| CarbonStainless and heat resisting            |                    | 1,965                                  |                                     | 111   | 8,476  |
|                                               | 40 010             | 1,538                                  |                                     | 245   | 21,596 |
| Full alloys<br>High-strength low-alloy        | 2.290              | 417                                    |                                     | 10    | 2,717  |
| High-strength low-alloy                       | 498                | 110                                    |                                     |       | 608    |
| Electric                                      |                    | 1,303                                  |                                     | 28    | 4,992  |
| Tool                                          | , , , ,            | 3,329                                  |                                     | 137   | 4,370  |
| Cast irons                                    |                    | 479                                    |                                     | 1,363 | 3,059  |
| Superalloys (exclude steels and superalloys): | 1,21               | 2.0                                    |                                     | -,    | •      |
| Welding and alloy hard-facing rods and        |                    |                                        |                                     |       |        |
| materials                                     | w                  | 313                                    |                                     | 36    | 349    |
| Other alloys 3                                |                    | 646                                    |                                     | 176   | 901    |
| Mill products made from metal powder          |                    |                                        |                                     | 2,997 | 2,997  |
| Chemical and ceramic uses:                    |                    |                                        |                                     | •     |        |
|                                               | 731                |                                        | 495                                 | 23    | 1,249  |
| Pigments                                      | 4 505              |                                        | 634                                 |       | 2,341  |
| Catalysts                                     | ,                  | 2                                      | 10                                  |       | 1,059  |
| Other                                         |                    | 138                                    | 45                                  |       | 936    |
| Miscellaneous and unspecified                 | . 000              | 100                                    |                                     |       |        |
| m + 1                                         | 38.833             | 10,505                                 | 1,184                               | 6,527 | 57,049 |
| TotalConsumer stocks Dec. 31                  |                    | 2,209                                  | 193                                 |       | 8,126  |
| Consumer stocks Dec. of                       | - 4,402            |                                        |                                     |       |        |

W Withheld to avoid disclosing individual company confidential data, included in "Miscellaneous and unspecified."

3 Includes magnetic and nonferrous alloys.

<sup>&</sup>lt;sup>2</sup> Includes purified molybdenum disulfide, molybdenite concentrate added directly to steel, molybdenum metal powder, molybdenum metal pellets, and other molybdenum materials. 1 Includes calcium molybdate.

sheet, rod, and wire. The chemical industry consumed 8% for use in making pigments, catalysts, and other uses.

Research was continued in an effort to develop new uses for molybdenum products such as catalysts for car emission controls and coal gasification. Other new applications of molybdenum under investigation included high-strength steels for stronger automobile bumpers and oil well casing in drill holes of great depth, and an im-

proved super alloy for aircraft and industrial gas turbine engines.

Since 1971, over 200,000 tons of highstrength steel containing molybdenum have been consumed to manufacture oil and gas transmission pipe for service in geographical areas of subzero temperature. With new pipeline projects scheduled in Alaska and the U.S.S.R., a market estimated at 20 million pounds of molybdenum was projected for this requirement in the next decade.

# **STOCKS**

The industrial inventory of molybdenum in concentrate and compounds totaled 52.5 million pounds, 34% less than at yearend 1972. Molybdenum in stocks at

mines dropped 51%, those at producer plants decreased 23%, but those at consumer plants increased 66% compared with 1972 figures.

# **PRICES**

Published prices for high-quality molybdenum concentrate and compounds, which were established in May 1969, remained unchanged throughout the year. Because there was some discounting in 1972, domestic producers announced at year end resumption of sales at published prices. The Cost of Living Council removed molybdenum from price control on December 7, 1973. The following tabulation shows published domestic prices at yearend 1973

for molybdenum and related products per pound of contained molybdenum:

| Climax concentrate              | \$1.72    |
|---------------------------------|-----------|
| Byproduct concentrate           | 1 40-1 65 |
| Climax oxide/bags               | 1 91      |
| Climax oxide/cans               | 1 92      |
| Dealers oxide                   | 1 86      |
| K-1 oxide                       | 1.78      |
| K-2 oxide                       | 1.71      |
| Ferromolybdenum (Climax lump)   | 2.21      |
| Ferromolybdenum (Climax powder) | 2.27      |
| Ferromolybdenum (Dealer)        | 9.10      |
| - cciaci, sactium (Dealer)      | 2.10      |

Source: Metals Week, Dec. 31, 1973.

#### **FOREIGN TRADE**

U.S. exports of molybdenum concentrate and oxide were the highest on record and exceeded the previous record high in 1969 by 28%. The Nation shipped to foreign markets an equivalent of 64% of the 1973 domestic output, principally to industrialized countries of the world. The 1973 record high in exports was due to an increase in world demand and relatively low prices for U.S. products on foreign markets caused by the de-valued and downward floating dollar.

The Netherlands again was the principal recipient, receiving over 40% of the total. Most of the material entering the Netherlands was converted to other molybdenum products and re-shipped to other European countries.

Ferromolybdenum valued at \$3.2 million

was exported to 16 countries; Japan received nearly 61% of total value of shipments. Other molybdenum materials exported included metal and alloys in crude form and scrap, wire, powder, and semifabricated forms. Total value of this material was reported at \$5.2 million, significantly higher than in 1972.

U.S. exports are summarized in tables 6, 7, and 8.

Table 6.—Molybdenum reported by producers as shipments for export from the United States

(Thousand pounds contained molybdenum)

| Product                                   | 1972   | 1973                      |
|-------------------------------------------|--------|---------------------------|
| Molybdenite concentrate<br>Molybdic oxide | 14.577 | 48,529<br>38,471<br>2,851 |

MOLYBDENUM 785

Table 7.-U.S. exports of molybdenum ore and concentrates (including roasted concentrates), by country

(Thousand pounds contained molybdenum and thousand dollars)

| Country                   | 197                | 72     | 197      | 13      |
|---------------------------|--------------------|--------|----------|---------|
| Country                   | Quantity           | Value  | Quantity | Value   |
| Argentina                 | 8                  | 16     | 36       | 70      |
| Australia                 | 117                | 196    | 354      | 531     |
| Austria                   | 389                | 638    |          |         |
| Belgium-Luxembourg        | 3.708              | 5,990  | 6,017    | 9.799   |
| Brazil                    | 359                | 612    | 947      | 1,621   |
| Canada                    | 386                | 714    | 1,364    | 2,205   |
| Czechoslovakia            | 130                | 234    | -,       | -,      |
| France                    | 1,123              | 1,595  | 1,585    | 2,533   |
| Germany:                  | -,                 | -,     | -,       | -,      |
| East                      |                    |        | 162      | 236     |
| West                      | $5,2\overline{12}$ | 7.172  | 8,892    | 12.517  |
| India                     | 35                 | 53     | 136      | 150     |
| Italy                     | 598                | 1,020  | 950      | 1,606   |
| Japan                     | 9.113              | 14.302 | 13.113   | 22,264  |
| Mexico                    | 405                | 569    | 690      | 939     |
| Netherlands               | 19.207             | 32,743 | 29,888   | 50,754  |
| New Zealand               | 28                 | 41     | 15       | 22      |
| Philippines               | 3                  | 7      | 11       | 17      |
| South Africa, Republic of | 114                | 178    | 190      | 317     |
| Spain                     | 18                 | 29     | 45       | 87      |
| Sweden                    | 2.013              | 3,245  | 4,611    | 6.849   |
| Switzerland               | (1)                | 0,240  | 584      | 630     |
| United Kingdom            | 2,199              | 3.372  | 4,207    | 6.948   |
| Venezuela                 | 185                | 292    | 149      | 269     |
| Other                     | 12                 | 20     | 12       | 23      |
| Ouici                     | 12                 | 20     | 14       | 20      |
| Total                     | 45,362             | 73,039 | 73,958   | 120,387 |

 $<sup>^1</sup>$  Less than  $\frac{1}{2}$  unit.

Table 8.—U.S. exports of molybdenum products (Thousand pounds, gross weight, and thousand dollars)

| Product and country                                                                                                                                                         | 197                                     | 72                                          | 197                                 | 13                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------|-------------------------------------|------------------------------------------------------------------|
| Product and country                                                                                                                                                         | Quantity                                | Value                                       | Quantity                            | Value                                                            |
| Ferromolybdenum: 1                                                                                                                                                          |                                         |                                             |                                     |                                                                  |
| Argentina                                                                                                                                                                   | 62                                      | 83                                          | 126                                 | 165                                                              |
| Australia                                                                                                                                                                   | 130                                     | 175                                         | 116                                 | 155                                                              |
| Brazil                                                                                                                                                                      | 40                                      | 58                                          | 70                                  | 97                                                               |
| Canada                                                                                                                                                                      | 74                                      | 149                                         | 220                                 | 309                                                              |
| Germany, West                                                                                                                                                               | 186                                     | 183                                         |                                     |                                                                  |
| India                                                                                                                                                                       | 11                                      | 16                                          |                                     |                                                                  |
| Japan                                                                                                                                                                       | 81                                      | 64                                          | 1,356                               | 1.920                                                            |
| Netherlands                                                                                                                                                                 | 7                                       | 9                                           | 13                                  | 20                                                               |
| Philippines                                                                                                                                                                 | 7                                       | 10                                          | 2                                   |                                                                  |
| South Africa, Republic of                                                                                                                                                   | 75                                      | 102                                         | 125                                 | 19                                                               |
| Sweden                                                                                                                                                                      | 220                                     | 290                                         | 88                                  | 110                                                              |
| Taiwan                                                                                                                                                                      |                                         |                                             | 7                                   | 9                                                                |
| Thailand                                                                                                                                                                    |                                         |                                             | 82                                  | 131                                                              |
| Other                                                                                                                                                                       | 16                                      | 24                                          | 19                                  | 31                                                               |
| Total                                                                                                                                                                       | 000                                     | 4 400                                       |                                     |                                                                  |
|                                                                                                                                                                             |                                         |                                             | 9 994                               | 38 157                                                           |
|                                                                                                                                                                             | 909                                     | 1,163                                       | 2,224                               | 3,151                                                            |
| Metal and alloys in crude form and scrap:                                                                                                                                   |                                         |                                             | 2,224                               | 3,151                                                            |
| Metal and alloys in crude form and scrap:<br>Belgium-Luxembourg                                                                                                             | 3                                       | 9                                           | 2,224                               |                                                                  |
| Metal and alloys in crude form and scrap:<br>Belgium-Luxembourg                                                                                                             | 3<br>4                                  | 9                                           | <u>-</u> - <u>-</u> - <u>ī</u>      | <del></del>                                                      |
| Metal and alloys in crude form and scrap: Belgium-Luxembourg                                                                                                                | 3<br>4<br>3                             | 9<br>17<br>16                               |                                     |                                                                  |
| Metal and alloys in crude form and scrap:  Belgium-Luxembourg                                                                                                               | 3<br>4<br>3<br>23                       | 9<br>17<br>16<br>39                         | 1<br>6<br>131                       |                                                                  |
| Metal and alloys in crude form and scrap:  Belgium-Luxembourg                                                                                                               | 3<br>4<br>3<br>23<br>8                  | 9<br>17<br>16<br>39<br>51                   |                                     | - ;<br>;<br>;<br>192                                             |
| Metal and alloys in crude form and scrap: Belgium-Luxembourg                                                                                                                | 3<br>4<br>3<br>23<br>8<br>45            | 9<br>17<br>16<br>39<br>51<br>58             | 1<br>6<br>131<br>4<br>2             |                                                                  |
| Metal and alloys in crude form and scrap:  Belgium-Luxembourg                                                                                                               | 3<br>4<br>3<br>23<br>8                  | 9<br>17<br>16<br>39<br>51                   |                                     |                                                                  |
| Metal and alloys in crude form and scrap: Belgium-Luxembourg                                                                                                                | 3<br>4<br>3<br>23<br>8<br>45            | 9<br>17<br>16<br>39<br>51<br>58             | 1<br>6<br>131<br>4<br>2             | 192<br>213<br>14                                                 |
| Metal and alloys in crude form and scrap: Belgium-Luxembourg. France. Germany, West. Japan South Africa, Republic of. United Kingdom. Other                                 | 3<br>4<br>3<br>23<br>8<br>45            | 9<br>17<br>16<br>39<br>51<br>58<br>9        | 1<br>6<br>131<br>4<br>2<br>4        | 192<br>27<br>11                                                  |
| Metal and alloys in crude form and scrap:  Belgium-Luxembourg. France. Germany, West. Japan. South Africa, Republic of United Kingdom Other.  Total                         | 3<br>4<br>3<br>23<br>8<br>45<br>3       | 9<br>17<br>16<br>39<br>51<br>58<br>9        | 1<br>6<br>131<br>4<br>2<br>4<br>148 | 199<br>27<br>11<br>14<br>259                                     |
| Metal and alloys in crude form and scrap:  Belgium-Luxembourg                                                                                                               | 3<br>4<br>3<br>23<br>8<br>45<br>3<br>89 | 9<br>17<br>16<br>39<br>51<br>58<br>9<br>199 | 1<br>6<br>131<br>4<br>2<br>4<br>148 | 192<br>27<br>11<br>14<br>255                                     |
| Metal and alloys in crude form and scrap: Belgium-Luxembourg. France. Germany, West Japan. South Africa, Republic of. United Kingdom Other. Total Wire: Argentina Australia | 3<br>4<br>3<br>23<br>8<br>45<br>3<br>89 | 9<br>17<br>16<br>39<br>51<br>58<br>9<br>199 | 1<br>6<br>131<br>4<br>2<br>4<br>148 | 195<br>2°<br>11<br>14<br>255                                     |
| Metal and alloys in crude form and scrap:  Belgium-Luxembourg                                                                                                               | 3<br>4<br>3<br>23<br>8<br>45<br>3<br>89 | 9<br>17<br>16<br>39<br>51<br>58<br>9<br>199 | 131<br>4<br>2<br>4<br>148           | 193<br>22<br>11<br>1-<br>253                                     |
| Metal and alloys in crude form and scrap: Belgium-Luxembourg. France. Germany, West Japan. South Africa, Republic of. United Kingdom Other. Total Wire: Argentina Australia | 3<br>4<br>3<br>23<br>8<br>45<br>3<br>89 | 9<br>17<br>16<br>39<br>51<br>58<br>9<br>199 | 1<br>6<br>131<br>4<br>2<br>4<br>148 | 3,155<br>192<br>27<br>11<br>14<br>2552<br>28<br>62<br>103<br>238 |

See footnote at end of table.

Table 8.-U.S. exports of molybdenum products-Continued

(Thousand pounds, gross weight, and thousand dollars)

| Product and country                   | 197             | 2                | 1973          |             |
|---------------------------------------|-----------------|------------------|---------------|-------------|
| rroduct and country                   | Quantity        | Value            | Quantity      | Value       |
| re—Continued                          |                 |                  |               |             |
| Finland                               | 1               | 11               | (2)           | 10          |
| France                                | $3\overline{2}$ | 214              | 70            | 479         |
| Germany, West                         | 14              | 108              | 72            | 52          |
| India                                 | î               | 5                | ï             | 021         |
| Italy                                 | 5               | 32               | 8             | 5È          |
| Japan                                 | 32              | 195              | 52            | 362         |
| Mexico                                | 8               | 133              | 7             | 161         |
| Netherlands                           | v               | 100              | 5             | 160         |
| Philippines                           | -ī              | $\bar{2}\bar{6}$ | ĭ             | 34          |
| Singapore                             | î               | ő                | (2)           | 07          |
| Spain                                 | (2)             | 4                | 22            | 158         |
| United Kingdom                        | 11              | 150              | 15            | 269         |
| Other                                 | (2)             | 20               | 4             | 38          |
| · · · · · · · · · · · · · · · · · · · |                 |                  | <del></del>   |             |
| Total                                 | 173             | 1,551            | 357           | 3,10        |
| wder:                                 |                 |                  |               | <del></del> |
| Canada                                | 3               | 12               | 10            | 38          |
| France                                | 2               | 16               | 3             | 11          |
| Germany, West                         | 5               | 16               | 3             | 11          |
| Italy                                 | 1               | 4                |               | 1.          |
| Japan                                 | (2)             | 1                | (²)<br>125    | 428         |
|                                       | (-)             | _                |               |             |
| Netherlands                           |                 |                  | 3<br>5        | 11          |
| Spain                                 | 3 <u>0</u>      | 177              |               | 145         |
| Sweden                                |                 | 114              | 41            |             |
| Switzerland<br>United Kingdom         | 9               | 21               | $\frac{1}{2}$ | 3           |
|                                       | (2)<br>(2)      | 2                |               |             |
| Other                                 | (*)             | 6                | 2             | 18          |
| Total                                 | 50              | 192              | 195           | 672         |
| mifabricated forms, n.e.c.:           |                 |                  |               |             |
| Australia                             | 2               | 17               | 4             | 30          |
| Belgium-Luxembourg                    | (2)             | 2                | 3             | 22          |
| Brazil                                | 1               | 2                | 6             | 46          |
| Canada                                | 12              | 106              | 22            | 158         |
| France                                | 9               | 109              | 4             | 102         |
| Germany, West                         | 4               | 41               | 4             | 37          |
| India                                 | 18              | 13               | (2)           | 3           |
| Italy                                 | 6               | 30               | 4             | 3           |
| Japan                                 | 4               | 51               | 38            | 191         |
| Mexico                                | 10              | 18               | 1             | 18          |
| Netherlands                           | 64              | 231              | 69            | 264         |
| South Africa, Republic of             | 29              | 185              | (²)           | 18          |
| Sweden.                               |                 | 100              | 16            | 84          |
| Switzerland                           | (2)             | $\bar{4}$        | (2) 16        | 1           |
| Taiwan                                | (2)             | 13               | (2)           | 18          |
| United Kingdom                        | 18              | 152              | 23            | 159         |
| Other                                 | 18<br>2         | 132              | 23<br>13      | 47          |
| Total                                 | 181             | 987              | 209           | 1,216       |

<sup>&</sup>lt;sup>1</sup> Ferromolybdenum contains about 60% to 65% molybdenum.

<sup>2</sup> Less than ½ unit.

Although the Nation is self-sufficient in molybdenum materials, a small quantity of concentrate, manufactured molybdenum products, and waste and scrap enters the United States from numerous countries throughout the free world. High tariff rates preclude the importation of such materials in large quantities.

Molybdenum concentrate containing 458,315 pounds of molybdenum valued at \$962,904 was received from three countries, namely, Canada, Peru, and France. Canada supplied nearly all the material. The gross weight of scrap imported from six coun-

tries totaled 94,961 pounds, valued at \$197,424. The Netherlands supplied nearly 35% of the valued shipments. Imports of 36,400 pounds (gross weight) of wrought and unwrought metal valued at \$373,935 came from nine countries. Austria and Sweden were the principal suppliers.

Molybdenum chemicals and related products entering the United States include ammonium molybdate containing 395,577 pounds of molybdenum valued at \$826,481; molybdenum compounds containing 297,760 pounds of molybdenum valued at \$614,066; potassium molybdate contain-

ing 115 pounds of molybdenum valued at \$1,404; mixtures of inorganic compounds containing 2,586 pounds of molybdenum valued at \$23,134; and molybdenum orange pounds, valued 1.062,721 totaling \$528,690.

# **WORLD REVIEW**

No official statistics were available on molybdenum output in the U.S.S.R., the People's Republic of China, and other Communist nations, but estimates for those countries were included in the world total in table 9. Non-communist world production of 158.8 million pounds was principally from the United States (73%), Canada (17%), Chile (8%), with Japan and Peru accounting for virtually all the remainder.

Australia.-Mt. Arthur Molybdenum NL conducted geological exploration on mineral leases in Queensland. Also, the company obtained a prospecting lease in the and exploratory Westmoreland district work was underway. The Wolfram Camp facility processed some tungsten-molybdenum ores during the year.

Canada.—Molybdenum output increased 3 million pounds in 1973 and was 10% over that of 1972. A higher production rate at the Endako mine and completion of the first full year of operation at two byproduct molybdenum mines accounted for most of the rise in Canadian output. Record yearend 1972 stocks estimated at 20 million pounds were reduced over 50% in 1973.

Canada ranked second to the United States among world producers of molybdenum and supplied approximately 15% of 1973 world production, an increase of 1%over that of 1972.

Improvement in the world molybdenum demand situation resulted in reopening of mines, expansion of existing operations, active exploration programs, principally in British Columbia. A number of geological reports describing molybdenum mineralization in Canada and the western Cordilleran Belt of North and South America were published.2

Gibraltar Mines Ltd., a subsidiary of Placer Development Ltd., completed the first full year of operation at its coppermolybdenum mine near McLeese Lake, British Columbia. The concentrator processed over 15 million tons of ore from which 122 million pounds of copper and one-half million pounds of molybdenum were recovered. The average daily throughput at the mill was 41,300 tons com-

<sup>2</sup> DeGeoffroy, J., and T. K. Wignall. Statistical Models for Porphyry-Copper-Molybdenum Deposits of the Cordilleran Belt of North and South America. Can. Min. and Met. Bul., v. 66, No. 733, May 1973, pp. 84–90.

Drummond, A. D., S. J. Tennant, and R. J. Young. The Interrelationship of Regional Metamorphism, Hydrothermal Alteration and Mineralization at Gibraltar Mines Copper Deposit in British Columbia. Can. Min. and Met. Bul., v. 66, No. 730, February 1973, pp. 48–55.

Kesler, Stephen E. Copper, Molybdenum, and Gold Abundances in Porphyry Copper Deposits. Econ. Geo., v. 68, No. 1, January-February 1973, pp. 106–112.

pp. 106-112.
Petruk, William. The Tungsten-Bismuth-Molybdenum Deposit of Brunswick Tin Mines Ltd.: Its Mode of Occurrence, Mineralogy and Amenability to Mineral Beneficiation. Can. Min. and Met. Bul., v. 66, No. 732, April 1973, pp. 113-130.

Table 9.-Molybdenum: World mine production by country

(Thousand pounds contained molybdenum)

| Country 1                                                                                                                                                     | 1971                                                                              | 1972                                                                         | 1973 Р                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Country 1  Australia e Bugaria e Canada (shipments) Chile China, People's Republic of e Japan Korea, Republic of Mexico Norway Peru Pru Philippines U.S.Š.R.e | 130<br>310<br>22,663<br>13,935<br>3,300<br>613<br>231<br>174<br>725<br>1,782<br>9 | 130<br>310<br>24,493<br>13,045<br>3,300<br>494<br>110<br>172<br>414<br>1,712 | 130<br>310<br>27,450<br>12,974<br>3,300<br>346<br>112<br>90<br>289<br>1,592 |
| United States                                                                                                                                                 | 109,592                                                                           | 112,138                                                                      | 115,859                                                                     |

Estimate.
 Preliminary.
 Revised.
 In addition to the countries listed, Argentina, North Korea, Nigeria, Romania, South-West Africa, and Spain also produce molybdenum, but information is inadequate to make reliable estimates of output levels.

pared with 39,500 tons in 1972. The installation of automatic control systems on three grinding circuits accounted for improved concentrator throughput.

Additional mining equipment was placed in service to compensate for increasing stripping ratio and haulage distance. Ore was mined principally from the Gibraltar East Stage Pit. Development of the Granite Lake Stage Pit was continued during the year. The project included removal of overburden by a contractor, drainage of a nearby lake, and dredging of nearly 1 million cubic yards of silt. Mine production at the Granite Lake Stage Pit was scheduled to start at midyear 1974.

Lornex Mining Corp. Ltd. completed the first full year of operations at its open pit copper-molybdenum mine, 33 miles south of Ashcroft in the Highland Valley area, British Columbia. Approximately 14 million tons of ore was processed at the concentrator. The milling rate averaged over 38,000 tons daily. Molybdenum output amounted to nearly 3.5 million pounds. The molybdenum concentrate was sold to Phillip Brothers, New York, a division of Engelhard Minerals & Chemicals Corp. Ore reserves were estimated at 292.8 million tons averaging 0.42% copper and 0.014% molybdenite. A report describing unique operation was published.3

Bethlehem Copper Corp. Ltd. spent \$3.6 million for a detailed engineering study of the J-A copper-molybdenum ore deposit, 25 miles southeast of Ashcroft also in the Highland Valley area of British Columbia. The deposit is in close proximity to the company's existing copper mine and milling operations. The study recommended a mining operation having a capacity of 25,000 tons of ore per day. An estimated \$60 million would be required to develop the ore body. The deposit contains proven ore reserves totaling 286 million tons having an average grade of 0.43% copper and 0.017% molybdenite. The mine was scheduled for production in 1976.

At midyear, operation of the Endako mine, Placer Development Ltd., reached designed capacity of 15 million pounds of molybdenum per year. The mine operated at reduced capacity since August 1971 because of an oversupply of molybdenum. The return to full production resulted in employment of 70 additional workers hence increasing the work force to over

400 employees. Additional production equipment was placed in service at the facility to improve metallurgical recovery and increase roasting and mining capacity. An expansion program at the facility will be continued during 1974 and 1975. Proven and probable ore reserves at the Endako pit at yearend 1973 totaled 153 million tons grading 0.143% molybdenite and at the adjacent Denak pit 21 million tons grading 0.159 molybdenite. At yearend, the company announced an intensive exploration program for 1974 in order to increase molybdenum reserves.

The Endako concentrator processed 8.4 million tons of ore from which nearly 12 million pounds of molybdenum was recovered. Approximately 8.5 million pounds of molybdic oxide was produced at the roasting plant. The company reported inventory of molybdenum at yearend totaling 5.7 million pounds, a decline of 2.2 million pounds from yearend 1972.

Highmont Mining Corp. Ltd., operated by Teck Corp. Ltd., continued development of copper-molybdenum mineralization in the Highland Valley district of British Columbia. The deposit will be developed as two open pit mines and will produce at a rate of 25,000 to 27,000 tons of ore per day. Mineralization extends close to the surface, hence overburden removal costs were expected to be minimal. The deposit contains an estimated 150 million tons of ore having an average grade of 0.28% copper and 0.051% molybdenite. Pilot plant testing of the ore in 1968 resulted in metallurgical recoveries of 92% for copper and 83% for molybdenum. An estimated \$70 million was expected to be spent on the mine and concentrator facility.

Hecla Operating Co. Ltd., Canadian exploration subsidiary of Hecla Mining Co., U.S.A., continued exploration and metallurgical testing at the Liard-Schaft Creek copper-molybdenum deposit owned by Silver Standard Mines Ltd. in northwestern British Columbia. Work projects underway and/or completed during 1973 included additional exploratory drilling, bulk sampling, and pilot plant testing of ore. Also, a road was constructed to the property. A detailed feasibility study also was prepared to ascertain the economic potential of the

<sup>&</sup>lt;sup>3</sup> Mamen, Chris. Lornex-300M Tons on Tap. Can. Min. J., v. 94, No. 8, August 1973, pp. 23-26.

deposit at a mining rate of 25,000 to 40,000 tons per day. The deposit contains an estimated 300 million tons of ore grading 0.40% copper and 0.036% molybdenite.

Brynnor Mines Ltd., a subsidiary of Noranda Mines Ltd., was expected to reopen the Boss Mountain molvbdenum mine early in 1974 because of increasing worldwide demand for the mineral. The mine, located near Williams Lake, British Columbia, commenced production in May 1965. The mill was designed to process ore at a rate of 1,700 tons per day. Owing to an oversupply of molybdenum in the early 1970's, the mine suspended production on December 3, 1971. Mine production for the last year of operation totaled 534,500 tons of ore from which over 2 million pounds of molybdenum was recovered. At yearend 1971, ore reserves were reported at nearly 3 million tons, having an average grade of 0.40% molybdenite.

Deep Grid Analysis Ltd. conducted detailed geophysical exploration of two molybdenum targets in the St. Lawrence area, Newfoundland. A systematic drilling program was planned to evaluate positive vibrations received during the study. The molybdenum targets, buried under Pleistocene sediments, cover an area of about 500 acres. Results of soil sampling conducted in past years inferred the presence of significant molybdenum mineralization in the area. Funds for additional investigative work was authorized by Radex Minerals Ltd., owner of the property.

Climax Molybdenum Corp. of British Columbia, subsidiary of AMAX, U.S.A., conducted a feasibility study on the Ruby Creek molybdenum deposit near Atlin, British Columbia, owned by Adanac Mining & Exploration Ltd. Work completed in 1973 included two diamond drill holes totaling 5,000 feet, relogging split cores of previous drilling projects, and collection of rock specimen for thin section and petrographic study. One hole drilled to a depth of 3,000 feet showed good molybdenum for the first 600 feet. The other hole drilled to a depth of 2,000 feet had molybdenum mineralization between 170 and 420 feet. Should the investigation conclude that the deposit can be mined profitably, then AMAX would provide the necessary funds for its development.

Kerr Addison Mines Ltd. made a similar study of the deposit in 1970 and dropped

its option in 1971. The company spent nearly \$3 million on underground exploration, diamond drilling, and other related work. The study resulted in increasing ore reserves from 70 million tons grading 0.141% molybdenite at a stripping ratio of 1.3 to 1, to ore reserves of over 104 million tons grading 0.16% molybdenite and a stripping ratio in the order of 0.63 to 1. The improvement in demand for molybdenum accounted for the renewed interest in the deposit.

AMAX purchased the assets and property of British Columbia Molybdenum Ltd., owned by Kennecott Copper Corp., at Kitsault, British Columbia. The mine and mill, having a capacity of 6,000 tons of ore per day, commenced operation early in 1968 and was closed on April 28, 1972, because of weak molybdenum prices and high operating cost. Approximately 22 million pounds of molybdenum were produced during the period. Ore reserves were reported at 40 million tons grading 0.23% molybdenite.

Greenland.—Arktish Minekompagni A/S, a joint venture of Nordisk Mineselskab A/S and AMAX, conducted exploration on a large molybdenite deposit north of Scoresbysund, eastern Greenland. The deposit (Malmberg) contains an estimated 120 million tons of ore grading 0.25% molybdenite and another 100 million tons of ore grading 0.20% molybdenite.

Iran.—The Sar-Cheshmeh Copper Mining Co. continued development of a vast copper-molybdenum deposit near Kerman, south-central Iran. Ralph M. Parsons Co. was awarded a \$400 million contract to provide project management, engineering design and related work, and construction and associated services for the mine site, crushing plant, concentrator, and smelter. The facility was expected to process approximately 42,000 tons of ore per day to produce 145,000 tons of blister copper annually and an undisclosed amount of molybdenum. Operations were scheduled to reach full production during 1977.

Mexico.—Asarco Mexicana S.A. and Cía. Mexicana de Cobre S.A. continued engineering studies in preparation for development of the La Caridad copper-molybdenum deposit in the Province of Sonora, Mexico. An open pit mine, mill, smelter, and refinery (costing \$300 million) with a throughput of 250,000 tons of metal an-

nually was contemplated. Some 40 million tons of overburden will be removed to reach the ore deposit. Ore reserves were estimated at 700 million tons having an average grade of 0.76% copper and 0.016% molybdenite. Parson-Jurden Corp., a Division of Ralph M. Parsons Co., was the contractor on the project. At yearend, company officials reported obtaining \$150 million to initiate construction of the facility.

Tormex Mining Developers Inc. and Industrias Peñoles S.A. negotiated a conditional purchase contract for the Santo Tomás mineral property near Choix from a group of Mexican and American vendors. Santo Tomás consists of 23,000 acres of land and a porphyry copper deposit containing molybdenum and other minerals. The ore deposit, amendable to open pit mining, was discovered in 1970. Some 40 diamond drill holes were completed which outlined 200 million tons of ore averaging about 0.4% copper and an undisclosed amount of molybdenum, gold, and silver. The ore deposit is about 5,000 feet long and 1,000 feet wide. It is adjacent to the Reforma silver-lead-zinc mine which produces ore at a rate of 500 tons per day.

Mongolia.—Development was underway of the vast Erdentyin-Owo copper-molybdenum deposit located 150 miles northwest of Ulan Bator, Mongolia. To date, an electric powerline (connected to the Soviet grid system) and a 105 mile railroad to the Trans-Mongolian line were completed. An open pit mine, concentrator, and townsite were in various stages of construction. The project was receiving financial assistance from U.S.S.R. and the mine-mill facility was expected to provide copper and molybdenum concentrate for export markets.

Norway.—A/S Knaben Molybdaengruber suspended operations at the underground Knaben mine Kvinesdal, Norway, because of rising production costs, weakness in the demand for molybdenum and subsequent low prices, and increasing inventories. The Knaben mine, Europe's only molybdenum producer, has been in operation since 1885, except for the years 1919 and 1923, and a short period during World War II. Production was rather stable during recent years and for 1971 (latest figures available) amounted to 344,252 short tons of ore from which 646,270 pounds of molybdenum were recovered.

Panama.—Cobre Panama S.A., a subsidiary formed by a Japanese consortium composed of Mitsui Mining & Smelting Co. Ltd., Dowa Mining Co. Ltd., Mitsubishi Metal Corp., and Nittetsu Mining Co. Ltd., signed a 4-year exploration contract with the Government of Panama. The company will make a feasibility study and conduct exploration work for copper, molybdenum, tin, lead, and zinc over an area totaling nearly 100,000 acres near Petaquilla in the Donoso District of Colon. A vast coppermolybdenum deposit was discovered in the area by a United Nation's financed exploration project for underdeveloped countries in 1968. Some 5,000 feet of diamond drilling was completed during the initial study which outlined a mineralized belt containing an estimated 300 million tons of copper-molybdenum ore. Cobre Panama S.A. will spend about \$1.5 million for additional diamond drilling over a period of 2 years. The company negotiated an option to develop the mineral deposit in the area at the conclusion of its investigation.

Peru.—Cía. Minera Cerros Negros, a subsidiary of Homestake Mining Co. (U.S.A.) and Mitsubishi Mining Co. Ltd. (Japan), agreed to conduct additional exploration work and make a feasibility study of the Pashpap copper-molybdenum deposit situated in the Province of Huaylas. Ore reserves were estimated at 53 million tons having an average grade of 0.86% copper and 0.03% molybdenite. Should the study conclude that the deposit is economically minable, the company would invest \$22 million for development of a mine and concentrator having a capacity to process 6,000 tons of ore per day. Approximately 48,000 tons of copper concentrate and 1.7 million pounds of molybdenum would be produced annually.

A consortium which included Empresa Minera del Perú (Minero Perú) and five Japanese companies agreed to conduct a \$2 million feasibility investigation of the Michiquillay copper-molybdenum deposit east of the city of Cajamarca, northern Peru. In recent years, Asarco spent several million dollars on diamond drilling of the deposit and on construction of access roads. A principal feature of the study will be to estimate construction and operating costs of slurry pipelining the concentrate from the mill to the coast, a distance of 184 miles. The ore reserves at Michiquil-

lay were estimated at 628 million tons having an average grade of 0.72% copper and an undisclosed amount of molybdenum. It was reported that an estimated \$457 million would be required to develop the deposit. Minero Perú engineers anticipate construction of a mine-mill facility with a capacity to process about 40,000 tons of ore per day.

Southern Peru Copper Corp. (SPCC) obtained financing of \$200 million from a number of United States, Canadian, European, and Japanese banks to continue development of the Cuajone copper-molybdedeposit located some 550 southeast of Lima. The property has been under development since 1969 when it was estimated that about \$500 million would be required to complete the project. Work underway during 1973 included overburden stripping and construction of a railroad tunnel. Some 200 million tons of overburden must be removed to expose the ore body. To date, SPCC expenditures amounted to over \$160 million and they expect to spend an additional \$152.4 million of company funds to complete the project. Company officials were negotiating longterm sales contracts for the planned output of 180,000 tons of blister copper annually to assure completion of the project in 1976. Work projects scheduled for 1974 included construction of a concentrator, expansion of the Ilo smelter, and building new townsite and ancillary facilities.

Sweden.-Molyscand AB, a joint venture of Kema Nord AB, A. Johnson & Co. and Höganäs AB, conducted research and development on a process for the production of molybdic oxide by a chemical extraction method. The process would eliminate pollution problems associated with traditional methods of oxide production. A pilot plant was expected to commence operation early in 1974.

# **TECHNOLOGY**

The effects of varying amounts of molybdenum, carbon, chromium, and cobalt on yield strength, toughness, and tempering martensitic steels behavior of described.4 Maximum toughness at a given yield strength was obtained when steel was tempered until the carbides were completely dissolved. Molybdenum was primarily responsible for secondary hardening. Dispersion of the carbides accounted for the excellent combination of strength and toughness exhibited by these steels.

Tensile strength tests were conducted on oxidized and unoxidized polycrystalline molybdenum specimens and results de-A surface oxidation treatment scribed.5 by heating at 500° C resulted in producing a thin oxide film on the specimens. Tensile tests performed on both of these polycrystalline molybdenum specimens proved that the oxide film had no effect on the ductile-brittle transition temperature. Embrittlement by surface oxidation is characteristic of group V elements of the periodic table, but not of those in group VI in which oxygen is almost completely insoluble.

A process for extracting molybdenum metal from calcium molybdate by aluminothermic reduction was investigated.6 Calcium molybdate was reduced with aluminum in a refractory-lined open-top vessel to produce aluminothermic molybdenum. The material was then processed by electron-beam melting and by molten salt electrorefining to remove the aluminum. The final molybdenum metal compared favorable with that produced by other processes.

Pitting, stress corrosion, and general corrosion in ferritic stainless steels and other alloys were investigated.7 Defects in metals have been a continuing problem in many industrial and chemical plants, especially those utilizing a corrosive process. A new ferritic stainless steel was developed which overcomes the disadvantage of many austenitic and ferritic stainless steels. The material has the traditional immunity of ferstainless steel to stress-corrosion

<sup>&</sup>lt;sup>4</sup> Speich, G. R., D. S. Dabkowski, and L. F. Porter. Strength and Toughness of Nickel-Iron Alloys Containing Carbon, Chromium, Molybdenum, and Cobalt. Met. Trans., v. 4, No. 1, January 1973, pp. 305-315.

<sup>5</sup> Schlosser, S., A. A. Johnson, and K. Mukherjee. The Low Temperature Tensile Properties of Surface Oxidized Poly-crystalline Molybdenum. Mater. Sci. & Eng., v. 11, No. 2, February 1973, pp. 81-86.

<sup>6</sup> Mehra, O. K., D. K. Bose, and C. K. Gupta. Molybdenum Metal by the Aluminothermic Reduction of Calcium Molybdate. Met. Trans., v. 4, No. 3, March 1973, pp. 691-694.

<sup>7</sup> Steigerwald, Robert F. New Ferritic Stainless Steel to Resist Chlorides and Stress-Corrosion Cracking. Tech. Assoc. of the Pulp and Paper Ind., v. 56, No. 4, April 1973, pp. 129-133.

resistance and fabricability. The latter physical property was obtained by the addition of chromium and molybdenum.

The production of molybdenum carbide by electrolysis of sodium molybdate was described.8 Sodium molybdate was dissolved in a fused bath of sodium carbonate, sodium tetraborate, sodium fluoride, and potassium fluoride and the carbide produced by molten salt electrolysis. Under optimum conditions of bath composition, bath temperature, and cathode current density, a maximum electrodeposition rate of the carbide was obtained. The carbide then admixed with a controlled amount of molybdenum dioxide for vacuum thermal sintering treatment to yield molybdenum metal of purity comparable to conventional extraction processes.

An inert gas fusion method to determine oxygen in molybdenum metal using a limited platinum bath was described.9 In addition to its economical advantage, the method had higher sensitivity, and greater precision and accuracy. Since molybdenum often contains oxygen concentrations of only a few ppm, a high bath-to-metal ratio had an adverse influence on sensitivity and precision. The reduction in cost of the analysis was due to smaller amounts of the noble metal required for the method.

The sintering properties and chemical stability of molybdenum in the presence of an organic binder and a reducing atmosphere was investigated.10 Molybdenum powders sintered under constant rates of heating resulted in an effective activation energy of 37 kilocalories per mole. A thermochemical diagram showed the carbonization or oxidation of molybdenum during the sintering process under various dew points. By proper control of the atmosphere and particle size, shrinkage limited to 20% was achieved in molybdenum powder sintered to 1,550° C. Nitridization did not occur in the forming gas atmosphere in the presence of carbon.

Elevated temperature strength of chromium-molybdenum steel with varying carbon contents was investigated because of its potential use in liquid-metal fast breeder reactors.11 Reducing carbon content had little influence on elevated-temperature tensile strength of annealed steel. Creeprupture strength of the annealed material decreased as the carbon content was lowered. The combined effects of carbide coar-

sening and decarburization during exposure of fine-grained commercial steel to liquid sodium caused substantial reducin elevated temperature tensile strength and moderate reductions in rupture strength. Lubricating properties of solid lubricant was described.12

Molybdenum disulfide and graphite are the most commonly used lubricants. Their outstanding lubricating properties are obtained from the layered crystal structure of the minerals. In general, molybdenum lubricants have the advantage of good stability at high temperatures and in a chemically reactive environment. They also have design advantageous of lighter weight, improved dynamic and mechanical stability, and more simplified design than conventional oil and grease lubricants.

Gamma coarsening and elevated-temperature hardness was investigated as a function of molybdenum content, time, and temperature in superalloys and results published.13 The alloys were selected from specimens containing 1, 3, 41/2, and 6 weight-percent aluminum, 31/2 weight-percent titanium, and 0, 2, 5, and 8 weightpercent molybdenum. The alloy specimens were solution-treated, thence aged to 112 hours at 1,700° F and to 1,000 hours at 1,400° F. Molybdenum retarded the coarsening of gamma on aging; this retarding effect was most pronounced in alloys containing 6 weight-percent aluminum. Hardness testing in a vacuum at temperatures to 1,750° F showed that molybdenum also

<sup>&</sup>lt;sup>8</sup> Suri, A. K., T. K. Mukherjee, and C. K. Gupta. Molybdenum Carbide by Electrolysis of Sodium Molybdate. J. Electrochem. Soc., v. 120, No. 5, May 1973, pp. 622-624.

<sup>9</sup> Pauwels, J. A., A. Kahles, and G. Kraft. The Determination of Oxygen in Molybdenum by the Inert Gas Fusion Method Using a Limited Platinum Bath. J. Less-Common Met., v. 30, No. 1, January 1973, pp. 173-176.

<sup>10</sup> Young, Wayne S. Molybdenum Sintering and the Molybdenum-Oxygen-Carbon System. J. Less-Common Met., v. 32, No. 3, September 1973, pp. 321-331.

Common Met., v. 32, No. 3, September 1973, pp. 321-331.

11 Sponseller, D. L., M. Semchyshen, and P. J. Grobner. Effects of Low-Carbon Content and Exposure to Liquid Sodium on Elevated Temperature Behavior of Chromium-Molybdenum Steel. Pres. at Mater. Eng. Congress Symp., Gleveland, Ohio, Oct. 19-22, 1970; ASM paper in Proc., American Metal Climax, Inc., May 1973, pp. 73-112.

12 Campbell, Mahlon E. Solid Lubricants—Where They Stand Today. Chem. Eng., v. 80, No. 10, October 1973, pp. 56-66.

13 Bliss, V., and D. L. Sponseller. The Effect of Molybdenum on Gamma Coarsening and on Elevated-Temperature Hardness in Some Experimental Nickel-Base Alloys. Met. Trans., v. 4, No. 8, August 1973, pp. 97-104.

increased the elevated temperature hard-

The effect of corrosion on iron-chromium alloys containing 2, 4, 6, and 8% molybdenum in a solution of sulfuric acid at a temperature of 77° F were described.14 The effect of molybdenum on potential current density curves was determined potentiostatically. Increasing molybdenum content caused the critical current density to decrease and the open circuit potential to become increasingly noble. Alloys with 8% molybdenum did not show any anodic dissolution and passivated spontaneously. Some theoretical considerations of the passivation mechanism were discussed in connection with additional electrochemical measurements.

Patents were granted for upgrading lowgrade molybdenum flotation products from a bulk copper-sulfide molybdenum-sulfide primary concentrate; 15 purification rhenium containing solutions obtained in the processing of molybdenite; 16 extraction of molybdenum and rhenium from molybdenite without atmospheric pollution;17 sulfuric acid leaching of sulfide ores of molybdenum; 18 extraction of molybdenum and rhenium values from molybdenite concentrate;19 extraction of molybdenum and rhenium from oxidation leaching solutions with nitric acid; 20 pollution-free recovery method for rhenium from molybdenum; 21 roasting molybdenite to produce oxide; 22 extraction of molyb-

denum from aqueous solutions obtained by leaching alkali-fused molybdenum; 23 recovery of molybdenite and rhenium from molybdenite.24

14 Rockel, M. B. The Effect of Molybdenum on the Corrosion Behavior of Iron-Chromium Alloys. Corrosion, v. 29, No. 10, October 1973, pp.

\*\* Kockel, M. B. The Effect of Molybdenum on the Corrosion Behavior of Iron-Chromium Alloys. Corrosion, v. 29, No. 10, October 1973, pp. 393-396.

\*\*Is Bloom, P. A., S. J. Hussey, and L. Evans (assigned to U.S. Secretary of the Interior). Upgrading of Low-Grade Molybdenite Flotation Products. U.S. Pat. 3,714,325, Jan. 30, 1973.

\*\*Is Ziegler, M. (assigned to W. C. Heraeus G.m.b.H.). Ion Exchange. U.S. Pat. 3,733,388, May 15, 1973.

\*\*I Martin, B. E., and M. B. MacInnes (assigned to GTE Sylvania Inc.). Extraction of Molybdenum and Rhenium From Molybdenite Without Atmospheric Pollution. U.S. Pat. 3,725,524, Apr. 3, 1973.

\*\*Is Fuchs, W. (assigned to Treadwell Corp.). Sulfuric Acid Leaching of Sulfide Ores of Molybdenum. U.S. Pat. 3,726,667 Apr. 10, 1973.

\*\*Is Daugherty, E. W., A. F. Erhard, and J. L. Drobnick (assigned to Molybdenum Corp. of America). Extraction of Molybdenum and Rhenium From Molybdenite. U.S. Pat. 3,739,057, June 12, 1973.

\*\*Deterson, H. D. (assigned to Molybdenum Corp. of America). Extraction of Molybdenum and Rhenium From Oxidation Leaching of Molybdenite. U.S. Pat. 3,751,555, Aug. 7, 1973.

\*\*Extruesi, P. R. Electrowinning, Pollution-Free Recovery Method of Rhenium From Molybdenite. U.S. Pat. 3,751,565, Sept. 25, 1973.

\*\*Extruesi, P. R. Electrowinning, Pollution-Free Recovery Method of Rhenium From Molybdenite. U.S. Pat. 3,751,655, Sept. 25, 1973.

\*\*Extruesi, P. R. Electrowinning, Pollution-Free Recovery Method of Rhenium From Molybdenite. U.S. Pat. 3,761,655, Sept. 25, 1973.

\*\*Extruesi, P. R. Electrowinning, Pollution-Free Recovery Method of Rhenium From Molybdenite. U.S. Pat. 3,761,655, Sept. 25, 1973.

\*\*Extruesi, P. R. Electrowinning, Pollution-Free Recovery Method of Rhenium From Molybdenum From Aqueous Solutions Obtained by Leaching Alkalifused Molybdenite. U.S. Pat. 3,770,869, Nov. 6, 1973.

\*\*Extruesi, P. R. Electrowinning, Pollution-From Aqueous Solutions Obtained by Leaching Alkalifused Molybdenite. U.S. Pat. 3,770,869, Nov. 6, 1973.

1973. <sup>24</sup> Lake, J. L., J. E. Litz, R. B. Coleman, M. Goldenberg, and M. Vojkovic (assigned to Continental Ore Corp.). Recovery of Molybdenum and Rhenium From Molybdenite. U.S. Pat. 3,770,414, Nov. 6, 1973.



# Natural Gas

# By William B. Harper, 1 Robert J. Jaske, 2 and Leonard L. Fanelli 3

Natural gas consumption of nearly 23 trillion cubic feet (Tcf) in 1973 was slightly below that of 1972. The largest decrease in consumption was a 373-billion-cubic-feet (Bcf) reduction by electric utility companies. This was due to curtailment of both interruptible and firm deliveries by pipeline companies. These curtailments were most significant during the summer months when peak power demand occurs. The next largest reduction was in residential usage amounting to 247 Bcf. This was attributed to warmer than normal weather during the 1973 heating season months. These decreases were almost offset by increased demand by industrial users whose consumption increased 7% or almost 0.6 Tcf. Marketed production totaled 22.65 Tcf in 1973, a volume nearly 0.116 Tcf, or 0.5%higher than that of 1972.

Approximately 29 Bcf of natural gas was exported by pipeline, of which 51.4% was moved to Canada. Mexico received the remaining 14 Bcf of natural gas exported by pipeline. In addition, 48.3 Bcf of LNG was exported to Japan from Alaska during 1973.

Net pipeline imports exceeded 1 Tcf in 1973 for the second consecutive year. Canada accounted for all but 0.1% of pipeline imports in 1973. Imports from Mexico dropped 80%, from 8.1 Bcf in 1972 to 1.6 Bcf in 1973. In addition, 1,167,000 barrels of liquefied natural gas (LNG), equivalent to just over 4 Bcf, were imported from Algeria and Canada.

Proved reserves of natural gas declined again as withdrawals (production) exceeded, by a wide margin, additions to reserves from new discoveries and extensions of known fields. Also, previous estimates of reserves were revised downward, particularly in Texas. The decrease for Texas was 4.7 Tcf in 1973 following a 1.5 Tcf decrease in 1972.

The average value of natural gas at the wellhead moved upward 3.0 cents from 18.6 cents to 21.6 cents per thousand cubic feet (Mcf).

Petroleum engineer, Division of Fossil Fuels
 Mineral Supply.
 Survey statistician, Division of Fossil Fuels
 Mineral Supply.

Table 1.-Salient statistics of natural gas in the United States

|                                          | 1969       | 1970       | 1971       | 1972        | 1973       |
|------------------------------------------|------------|------------|------------|-------------|------------|
| Supply:                                  |            |            |            |             |            |
| Marketed production 1                    | 20,698,240 | 21,920,642 | 22,493,012 | 22,531,698  | 22,647,549 |
| million cubic feet                       | 1,379,488  | 1,458,607  | 1,507,630  | 1,757,218   | 1,532,820  |
| Withdrawn from storagedo                 | 726,951    | 820,780    | 934,548    | 1,019,496   | 1,032,901  |
| Importsdo<br>Totaldo                     | 22,804,679 | 24,200,029 | 24,935,190 | 25,308,412  | 25,213,270 |
|                                          |            |            |            |             |            |
| Disposition:                             | 20,922,800 | 22,045,799 | 22,676,581 | 23,009,445  | 22,965,914 |
| Consumption                              | 51,304     | 69,813     | 80,212     | 78,013      | 77,169     |
| Exports ========                         | 1,498,988  | 1,856,767  | 1,839,398  | 1,892,952   | 1,974,324  |
| Storeddo<br>Lost in transmission, etcdo  | 331,587    | 227,650    | 338,999    | 328,002     | 195,863    |
| Totaldo                                  | 22,804,679 | 24,200,029 | 24,935,190 | 25,308,412  | 25,213,270 |
| Value at wellhead: Totalthousand dollars | 3,455,615  | 3,745,680  | 4,085,482  | r 4,180,462 | 4,894,072  |
| Average<br>cents per thousand cubic feet | 16.7       | 17.1       | 18.2       | 18.6        | 21.6       |

Kevised.
 Marketed production of natural gas represents gross withdrawals less gas used for repressuring and quantities vented and flared.

<sup>&</sup>lt;sup>1</sup> Mineral specialist, Division of Fossil Fuels—Mineral Supply.

Pipeline networks were expanded again in 1973. Specific figures on line additions are not available. Construction of new synthetic gas (SNG) plants using liquid hydrocarbons, such as naphtha and natural gas liquids, for feedstocks advanced in 1973. There were 3 SNG plants operating, 4 in the startup and testing stage, and 14 under construction.

Coal gasification received additional impetus as the result of an agreement between the U.S. Department of the Interior and the American Gas Association (AGA) to jointly finance a pilot plant program that will cost about \$120 million over a 4-year period. This project is being funded through the Department of the Interior's Office of Coal Research. Pilot plants include the Institute of Gas Technology's HYGAS process at Chicago, Ill., and the Consolidation Coal Co.'s CO2-Acceptor process at Rapid City, S. Dak. A third plant, Bituminous Coal Research's BI-GAS process, is being constructed at Homer City, Pa., and should be finished during 1974.

The Bureau of Mines is developing a synthane process with emphasis on producing more methane directly in the gasifier, thus reducing the load in the methanation step. A pilot plant at Bruceton, Pa., is scheduled to be completed in 1974.

Lack of additional gas supplies has created problems for both transmission companies and distributors. Firm volume curtailments for the period April 1973-March 1974, reported by 42 pipeline transmission companies, totaled 1.19 Tcf according to the Federal Power Commission.

Legislation and Government Programs.— Federal Power Commission (FPC) Area Rate Proceedings:

South Louisiana Area.—Subsequent to affirmation by the Fifth Circuit Court of FPC Opinion 598, the Supreme Court was petitioned by the New York Public Service Commission and others to review the Fifth Circuit Court's decision. By way of background, FPC Opinion 598 accepted the United Distribution Companies Settlement Proposal in the Area Rate Proceeding (AR 61-2 et al, AR 69-1). The Settlement Proposal provided for a new gas price of 26.0 cents per Mcf on contracts dated since October 1, 1968; flowing gas prices were 22.375 cents onshore and 21.375 cents offshore on contracts dated prior to October 1, 1968. Also in the proposal were provisions for contingent price escalations of 0.5 cents,

1.0 cents, and 1.5 cents per Mcf upon a total commitment of 7.5 Tcf, 11.25 Tcf, and 15.0 Tcf, respectively, of new gas reserves to interstate pipelines in South Louisiana prior to October 1, 1977. The Settlement Proposal included a moratorium on further rate increases until October 1, 1976 for flowing gas and until October 1, 1976 for flowing gas. Also involved were refunds of approximately \$150 million, but with provision for work-off at a rate of 1 cent per Mcf upon commitment of new gas reserves to interstate pipelines in South Louisiana over a 5-year period.

Other Southwest Area.—FPC Opinion 607 determined rates in the area ranging from 19.4 cents to 20.6 cents per Mcf for gas produced under contracts dated before October 1, 1968. The area includes Mississippi, Arkansas, 4 counties in northwest Alabama, northern Louisiana, Texas Railroad Commission Districts 5, 6, and 9, and 56 counties in eastern and southeastern Oklahoma.

For production under contracts dated after October 1, 1968, rates ranged from 22.5 cents to 26.0 cents. In January 1972, the FPC issued an opinion on rehearing (No. 607-A) that included a proviso giving natural gas producers the option of meeting their refund responsibilities by the dedication of new reserves to interstate commerce. This opinion was sent on appeal to the U.S. Court of the Fifth Circuit, and the Court upheld the FPC decision in Opinion 607, establishing rates for pre-1961 contracts, 1961-68 contracts, and post-October 1, 1968, "new" gas contracts.

A petition was filed on September 6, 1973, by the Mobil Oil Corp. for a writ of certiorari to review the Fifth Circuit decision. Subsequently, the Supreme Court affirmed the Fifth Circuit decision upholding the FPC decision in Opinion 607.

Appalachian and Illinois Basin Areas.—Four natural gas companies filed a petition in January 1972, asking that ceiling rates for gas purchases from the Appalachian Basin be increased to at least 50 cents per Mcf. Because the four companies faced a severe shortage of natural gas, they requested the increase. The FPC, in Opinion 639, denied the request to increase the price of gas in the Appalachian Area to 50 cents for Mcf on contracts dated after February 1, 1972, in order to not perpetuate and extend the contract vintage system of producer pricing.

Pipeline Safety.—Based on failure reports from which table 2 was developed, the Office of Pipeline Safety (OPS) estimated that 67.4% of the gas distribution incidents and 57.7% of the transmission line failures during 1973 resulted from outside force damage. In 1973, an amendment to the Federal Gas Pipeline Safety Standards revised the term "service line" and resulted in the regulation of certain service lines in distribution systems not previously regu-

lated by the U.S. Department of Transportation. Another amendment was the extension in 49 CFR Part 190 on odorization of gas. This allowed for time to complete a separate rule-making proceeding on transmission line odorizing, initiated by notice of proposed rule making on August 15, 1973. Another amendment in 1973 concerned flexibility in qualifying pipe for use in gas pipelines.

# DOMESTIC PRODUCTION

Gross production of natural gas represents the total amount produced, including marketed production of gas, gas returned to the formation for pressure maintenance, and the gas vented or flared. In 1973, gross production aggregated nearly 24.1 Tcf, slightly above the 24.0 Tcf produced in 1972. However, marketed production increased 115.8 Bcf, or approximately 0.5%, during 1973 as the quantity of gas used for repressuring declined.

There was a 1.7% increase in the gross production from gas wells, from 19.04 Tcf in 1972 to 19.37 Tcf in 1973. This more than offset a reduction of 0.278 Tcf in gas produced from oil wells. Increased gross production occurred in Louisiana, New Mexico, Colorado, Michigan, Montana. Ohio, Utah, Pennsylvania, and Virginia. Significant gains also occurred in some of the smaller gas producing States which includes Alabama and Florida. Availability and the startup of new natural gas processing plants in Alabama and Florida in which sulfur recovery units are incorporated were the prime causes for these production increases. Much of the natural gas in this region has a high sulfur content. Higher prices for gas, however, provided an incentive to extract the sulfur so that the gas would be acceptable for pipeline transmission. The sulfur extracted from the gas is sold to fertilizer manufacturers.

On the negative side, there was a sizable reduction in gross withdrawals of gas in Texas. However, this was more than offset by the gain in gross withdrawals in Louisiana. A decrease in withdrawals from both gas wells and oil wells resulted in a drop in Texas gas production of 0.26 Tcf in 1973. There was, however, a reduction in gas used for repressuring and gas vented and flared so that the drop in marketed

production was narrowed to 0.144 Tcf or a 1.6% net decrease. Marketed production in Louisiana was 3.4% higher in 1973 largely because of a 6% increase in withdrawals from gas wells.

In California, marketed production of gas declined 7.8% in 1973 following a 20.5% drop that occurred in 1972. In the last 2 years the total drop in marketed California production amounts to 163.3 Bcf. Similar to that in 1972, the decrease during 1973 was primarily in gas withdrawals from oil wells. This was coupled with some decrease in withdrawals from gas wells. The 1973 volume changes from 1972 were a decrease of 12.1 Bcf for gas wells and a decrease of 29.7 Bcf for oil wells. The latter shows a leveling off from the 134.6 Bcf drop in gas withdrawals from oil wells experienced in 1972. However, the decreased withdrawals from gas wells reversed a 1972 gain of 10.8 Bcf. The established trend over the last 6 years has been a steady drop in gross withdrawals from both oil and gas wells. The average decrease was 58 Bcf per year for the last 6 years. An unusually large drop of 123.8 Bcf was reported in 1972 and is included in the 6year average. There are no indications of a reversal of the declining trend. Some lessening in the drop in California could come about if the Kettleman Hills field were utilized to a greater degree. Kettleman now is basically a gasfield with relatively high reservoir pressures and only minimal oil production.

Rising prices for natural gas and the endorsement by the Courts, of FPC Area Rate Proceedings Opinions, encouraged gas exploration and production. During 1973, there were 7,169 gas wells drilled and completed compared with 4,928 gas wells in 1972 or a gain of 45.4% as shown in table

4. There were 900 exploratory gas well completions in 1973 as compared with 60! similar wells in 1972, a gain of 49.8%.

Likewise, higher prices for natural gas have made it economical to build natural gas processing plants with sulfur recovery units. As a result, efforts are being made to drill and explore for gas whether it be sweet or sour. This effort was noticeable in States where production has been small, such as in Alabama. Production in that State in 1973 approximately tripled; proved reserves increased from 245.7 Bcf as of December 31, 1972, to 327.4 Bcf as of December 31, 1973, an increase of 33.2%.

Gas wells also include condensate wells producing from high-pressure natural gas reservoirs. Some of these reservoirs produce considerable quantities of liquid hydrocarbons such as pentanes and heavier, described generically as "condensate."

Significant increases in gas well completions in 1973 were widespread. Reduced activity occurred in only six States: Illinois, Kentucky, Louisiana, Montana, Nebraska, and Virginia.

It is interesting to note, however, that the accelerated pace of gas well drilling activity is taking place primarily onshore. Offshore gas well exploratory drilling in 1973 was far below that of 1972. However, offshore development well drilling increased sharply in Louisiana in 1973.

There has been a steady increase in the number of gas and condensate wells producing. In 1968, for example, there were 114,391 producing wells, and by the end of 1973, there were 124,168 wells producing. Most of this increase has occurred after 1970.

# **CONSUMPTION AND USES**

Consumption of natural gas in 1973 totaled 22.966 Tcf a slight decrease from 1972. Gas delivered to consumers aggregated 19.825 Tcf, a small decline from the comparable total of 19.880 Tcf in 1972.

Residential use in 1973 decreased by 4.8% to 4.879 Tcf. The decrease was due to warmer than normal temperatures in the heating season months. The decrease in use was accompanied by a 1.9% increase in number of residential users.

Over the decade 1963–73, the number of househeating customers grew from 33.45 million to 40.65 million or at an annual growth rate of 2.15%. Between 1972 and 1973 growth contracted to 1.9%. Trends in the number of househeating accounts by Census Regions for the years 1963, 1972, and 1973 are shown in the following tabulation:

| Census regions     | Gas househeating customers (thousand |        |        |
|--------------------|--------------------------------------|--------|--------|
| -                  | 1963                                 | 1972 г | 1973   |
| New England        | 1,476                                | 1.616  | 1,603  |
| Middle Atlantic    | 7,272                                | 7.699  | 7,713  |
| East North Central | 7,487                                | 9.152  | 9,386  |
| West North Central | 2,692                                | 3,309  | 3,399  |
| South Atlantic     | 2,723                                | 3,387  | 3.513  |
| East South Central | 1,628                                | 1,848  | 1,959  |
| West South Central | 3,877                                | 4,599  | 4.575  |
| Mountain           | 1.357                                | 1,939  | 2.021  |
| Pacific            | 4,939                                | 6,322  | 6,476  |
| Total              | 33,451                               | 39,871 | 40,645 |

r Revised.

By far the largest segment in the consumer-use category is the industrial group. About 44.1% of the gas delivered to consumers is used by industry. Industrial uses in 1973 accounted for 8.74 Tcf, a 7% increase over that of 1972. Most of the gas used by industry is consumed as fuel, and more than 1.07 Tcf was used as refinery fuel as indicated in the footnote in table 8. Natural gas is also an important petrochemical feedstock. Most of the ammonia produced in the United States is obtained by reforming natural gas to produce the hydrogen-nitrogen mix required for ammonia synthesis. It is calculated that, on the average, natural gas consumed per ton of ammonia amounts to about 37 Mcf. This would mean that more than 0.57 Tcf of natural gas was used to produce the 15.4 million tons of synthetic ammonia made in 1973. Methanol production is another important petrochemical industry consumer of natural gas. There were nearly 7.2 million short tons of methanol produced in 1973. Using 36 Mcf per short ton as a yardstick, it is calculated that 0.26 Tcf of natural gas was consumed in methanol production. Data necessary for the calculation of other petrochemical feedstock consumption are not available.

The downtrend in natural gas consumption by electric utilities that started in 1972 continued in 1973 when use de-

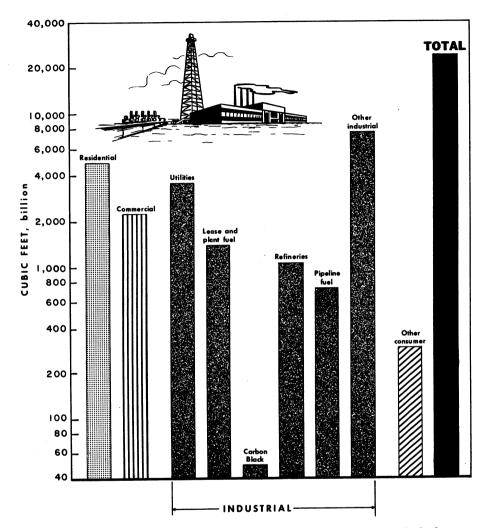



Figure 1.-Disposition of natural gas consumed in the United States by principal use.

clined slightly, to 3.60 Tcf from 3.98 Tcf. All areas showed a decrease except West North Central, which increased consumption slightly.

There was a slight decrease in the number of commercial consumers in 1973 from 3,357,000 to 3,335,000. Use of gas in this category, however, increased very slightly to 2,288 Tcf from 2,286 Tcf.

In addition to gas delivered to consumers, there are three categories of gasuse separately classified; namely, lease and plant fuel, pipeline fuel, and extraction losses. The loss in gas processing plants (shrinkage) increased 0.9% in 1973. In 1973, these plants processed 19.68 Tcf of natural gas (86.9% of marketed production), a decrease of 1.1% from the 19.91 Tcf processed in 1972.

Although there has been a marked growth in natural gas use ever since long-distance natural gas transmission lines became a reality, the tight supply situation is becoming more and more critical for

pipeline transmission companies. In fact, the shortage of gas forced major interstate gas pipeline companies to curtail service. During the April 1973-March 1974 season, 17 of the 42 major pipelines listed in table 10, reported firm total volume curtailments aggregating almost 1.57 Tcf or 8.3% of their firm requirements of nearly 18.8 Tcf of natural gas. Table 10 is based on data submitted to the FPC. A breakdown of actual interruptible sales and curtailments for the period April 1973 through March 1974 is shown in table 11.

The uncertainties as to the availability

of new gas supplies is also having an impact on expansion of pipeline networks. Data showing the growth of the pipeline networks is shown in the following tabulation:

Mileage, natural gas pipelines

|                      | 1961  | 1971  | 1972  | 1973 |
|----------------------|-------|-------|-------|------|
| Field and gathering_ | 56.7  | 66.5  | 67.1  | NA   |
| Transmission         | 191.9 | 256.9 | 260.2 | NA   |
| Distribution         | 410.4 | 611.3 | 623.9 | NA   |
| Total                | 659.0 | 934.7 | 951.2 | NA   |

NA Not available.

#### **RESERVES**

Production of natural gas has exceeded discoveries of new gas during 5 of the last 6 years, and 1973 proved to be no exception. During 1973, production exceeded discoveries by a wide margin, and proved reserves of natural gas dropped from 266.1 Tcf at yearend 1972 to 250.0 Tcf at yearend 1973, or a decline of 6.1%, according to the Natural Gas Reserves Committee of AGA.

Net additions to reserves reported for the United States in 1973 aggregated nearly 6.5 Tcf. The largest segment, some 6.2 Tcf, was derived from extensions to known fields. More than one-half of the 2.0 Tcf total for new reservoir discoveries in oil-fields came from Louisiana. In addition, discoveries of new fields totaled almost 2.15 Tcf of reserves. On the negative side, however, previous estimates or reserves in some States were revised. On balance, there was a revision reduction for the United States, as a whole, of nearly 3.5 Tcf.

There were some increases in the reserves of natural gas in 13 States. However,

significant increases occurred in only seven States. Michigan had the largest increase, 0.25 Tcf. Next in order were Colorado, Alaska, New Mexico, Pennsylvania, Alabama, and Mississippi. These increases aggregated about 1 Tcf. On the negative side, reserves in major gas-producing States declined sharply. Texas gas reserves deropped from 95.0 Tcf to 84.9 Tcf, a decline of more than 10 Tcf. Likewise, in Louisiana, proved reserves decreased 5.8 Tcf or 7.8% to 69.15 Tcf.

Natural gas reserves committed to interstate pipelines declined in 1973 for the sixth consecutive year. Committed dedicated domestic reserves fell by 12.4 Tcf in 1973, declining from 146.9 Tcf to 134.4 Tcf. Gas produced and purchased by pipelines amounted to 13.7 Tcf, which is 3.6% down from the 14.2 Tcf reported in both 1971 and 1972. The reserve-production ratio for interstate reserves dropped from 10.3 at the end of 1972 to 9.8 by the yearend 1973. These data are shown in the following tabulations:

1973 Yearend domestic reserves, production, and purchases of interstate natural gas pipeline companies

(Billion cubic feet at 14.73 psia at 60° F)

|                                                                                                        | Major supply companies | Minor supply companies | Total   |
|--------------------------------------------------------------------------------------------------------|------------------------|------------------------|---------|
| Number of companies                                                                                    | 25                     | 38                     | 63      |
| Gas reserves at yearend: Company owned Independent producer contracts  Total Percent of total          | 12,453                 | 721                    | 13,174  |
|                                                                                                        | 119,568                | 1,704                  | 121,272 |
|                                                                                                        | 132,021                | 2,425                  | 134,446 |
|                                                                                                        | 98.2                   | 1.8                    | 100.0   |
| Annual production and purchases:  Company owned Independent producer contracts  Total Percent of total | 766                    | 64                     | 830     |
|                                                                                                        | 12,652                 | 213                    | 12,865  |
|                                                                                                        | 13,418                 | 277                    | 13,695  |
|                                                                                                        | 98.0                   | 2.0                    | 100.0   |

# Preliminary summary of domestic natural gas reserves of interstate natural gas pipeline companies

(Billion cubic feet at 14.73 psia at 60° F)

| 1. Total dedicated gas reserves as of Dec. 31, 1972                              | 146,894 |
|----------------------------------------------------------------------------------|---------|
| 2. Revisions and additions during 1973 (item 1 minus item 3)                     |         |
| 3. Gas reserves as of Dec. 31, 1972 and changes during 1973 (item 4 plus item 5) | 148,141 |
| 4. Gas produced during 1972                                                      |         |
| 5. Total dedicated gas reserves as of Dec. 31, 1973                              | 134,446 |

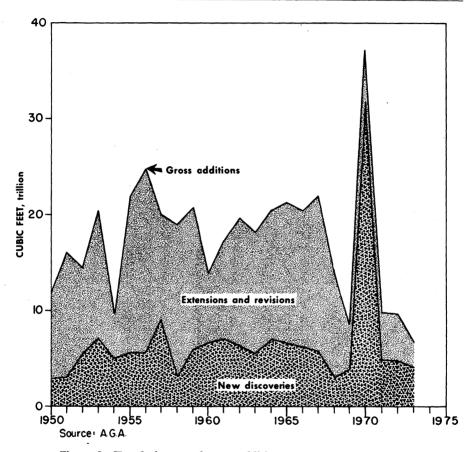



Figure 2.-Trends in annual gross additions to natural gas reserves.

In addition to exploration for new resources in the United States, American companies are involved, either independently or with Canadian companies, in exploring and drilling for oil and gas in Canada's Arctic Islands, the Maritime Provinces, and in the Mackenzie Delta. By the end of 1973, Canada's gas reserves had increased by 2.5 Tcf, which is approximately equal to current production rates. Gas re-

serves by the end of 1973 were calculated to be adequate for a 23-year supply. Alberta continued to be the primary supplier of oil and gas. The contribution by other areas such as the Mackenzie Delta and the Arctic Islands is anticipated to be significant by the end of the decade; by then Alberta's resources will have reached peak development.

# PRODUCTIVE CAPACITY

The daily productive capacity for natural gas at the end of 1973 was estimated to be 78,231 MMcf, according to the AGA, compared with 85,998 MMcf per day as of December 31, 1972, a decline of 7,767 MMcf per day or almost 9%. Productive

capacity in nonassociated gas fell to 64,160 MMcf from 69,144 MMcf. Likewise, capacity in associated-dissolved gas was reduced to 14,071 MMcf from 16,854 MMcf per day as of December 31, 1972.4

#### **STORAGE**

The development of additional underground storage capacity for natural gas, after slackening in 1970, moved at a faster pace in subsequent years. Total reservoir capacity increased 239 Bcf, or 4.0%, from 6.040 Tcf in 1972 to 6.279 Tcf by yearend 1973. The number of underground storage facilities expanded from 348 in 1972 to 360 in 1973. These storage facilities are located in 26 States.

Most storage reservoirs are depleted fields that originally contained dry gas. Of the 360 reservoirs, for example, 284 or nearly 79% were the dry-gas type. Most of these dry-gas reservoirs are located in the northeastern United States, primarily in the oldest petroleum provinces. The second largest concentration is found in the Midwest, in Michigan, where there are 32 such

reservoirs. In Pennsylvania, where oil production dates back to 1859, some 68 dry-gas fields have been converted to storage facilities. West Virginia has 34 dry-gas reservoirs.

<sup>&</sup>lt;sup>4</sup> The productive capacity of natural gas from nonassociated reservoirs is defined as the maximum daily rate at which such gas can be produced from natural reservoirs under specified conditions on March 31 of any given year. The determination of productive capacity on March 31 of any given year is based on proved reserves of nonassociated gas reservoirs as of the preceding December 31. The productive capacity of associated-dissolved gas is based on the productive capacity of crude oil and the estimated producing gas-oil ratios that would result from such capacity operation during the first 90 days of a given year. The productive capacity of associated gas from gas wells is usually based on the volumetric withdrawal of crude oil from related oil wells at capacity rates during the first 90 days of a given year as determined by the American Petroleum Institute (API) Committee on Reserves and Productive Capacity.

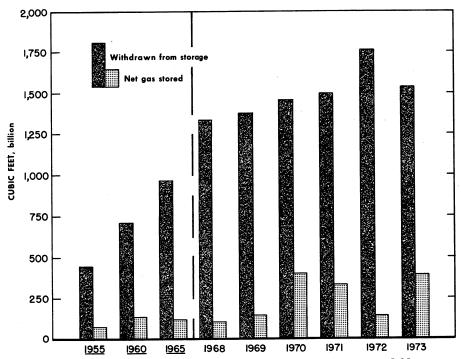



Figure 3.-Trends in net gas stored underground in U.S. storage fields.

Where depleted fields, whether oil or gas, are not available, other types of underground storage come into use. For example, there are 49 acquifers in 9 States in which natural gas is stored. Illinois is the leader with 20 acquifers. Indiana ranks second with 11. Acquifer storage accounts for 29.4% of the total storage capacity.

In addition to storage underground, there is a marked growth in the storage aboveground of natural gas liquefied by lowering temperatures. When natural gas is converted to a liquid by reducing its temperature to -258° F (-161° C) it occupies only 1/620th the space necessary for conventional vapor storage. Liquefied natural gas (LNG) storage is used for peak shaving purposes during the high-consumption, winter months.

During 1973, the total amount of gas moved into storage aggregated 1.974 Tcf as shown in table 17. Over the same period, 1.533 Tcf was drawn down, leaving a net stored of 442 Bcf for 1973.

The following table summarizes LNG facility type and storage capacity:

| Facility              | Status             | Capacity<br>(Bcf) | Number of plants |
|-----------------------|--------------------|-------------------|------------------|
| Peak shaving          | Operational        | 35.571            | 38               |
| Do<br>Large satellite | Under construction | 13.615<br>5.757   | 12<br>18         |
| Do                    | Under construction | 6.400             | 2                |
| Small satellite       | Operational        | .139              | 26               |

The development of storage reservoirs has been an important factor in meeting peak natural gas demand, particularly in the residential househeating market in which there is a high degree of seasonal variation. There is a concentration of underground storage facilities relatively close to the largest markets for residential

heating. Illinois, for example, had 571 Bcf of natural gas stored in 29 reservoirs at the end of 1973. In Pennsylvania, there were 614 Bcf stored in 68 dry-gas reservoirs. These two States accounted for 1.185 Tcf or 30.3% of the total stored gas in underground reservoirs.

# VALUE AND PRICE

Marketed production of natural gas again increased in value during 1973. Values totaled \$4,894,072,000 as compared with a revised figure of \$4,180,462,000 in 1972, or an increase of 17%. These values are based on marketed production of 22.648 Tcf in 1973 with an average value of 21.6 cents per Mcf. In 1972, marketed production totaled 22.532 Tcf with an average value of 18.6 cents per Mcf. Two States, Texas and Louisiana, accounted for 74.0% of the total marketed production. These two States plus Oklahoma and New Mexico accounted for 87% of production and 85.9% of total value.

Average values increased in those States close to markets or doing a sizable intrastate volume relative to total marketed production. In the intrastate category is Alabama where average value of gas at the wellhead advanced from 35.2 cents per Mcf to 38.2 or an increase of 8.5%. In Pennsylvania, value climbed from 30.3 cents per Mcf in 1972 to 42.0 cents in 1973 for

a rise of 11.7 cents or 38.6%. In several other States relatively close to large markets, such as New York, Pennsylvania, and West Virginia, unit values also increased.

Wholesale Prices.—Increases in wholesale prices for gas also have been significant, particularly in those markets that have substantial use of gas for residential heating. The FPC collects data on the average wholesale prices in large metropolitan areas. In 12 of the 14 areas surveyed by the FPC, residential heating provides a significant market for natural gas. A 7-year historical series of average wholesale natural gas prices in the 14 large metropolitan areas, in cents per Mcf, is shown in table 19.

Comparing July 1, 1973 prices with those prevailing on July 1, 1972, wholesale rates in 11 of the 14 cities increased by 1 cent to 8 cents or more per Mcf. At the same time there were decreases in the wholesale prices for gas in Cleveland, Ohio, Pittsburgh, Pa., and Washington, D.C.

The wholesale prices for gas for those

NATURAL GAS 805

cities cited are based on the effective FPC gas tariffs. In cities served by more than one pipeline, prices are based on weighted average charges. Prices reflect deliveries at the city gate except for Los Angeles and San Francisco, where distributors purchase gas at the California-Oregon and California-Arizona State lines.

Retail Prices.—At the retail level, the Bureau of Labor Statistics (BLS) compiles price information for fuels and energy, relative to development of the BLS Consumer Price Index. Average prices for fuels and energy are published monthly for the 20 Standard Metropolitan Statistical Areas.

At retail, gas is sold by gas utilities either in therms or in Mcf units. A therm contains 100,000 Btu. For illustrative purposes, if I cubic foot of natural gas contains about 1,000 Btu, I therm would be equivalent to about 100 cubic feet of natural gas. Since both the average wellhead value and the FPC wholesale price series are on million-cubic-foot basis, the BLS retail price series shown in table 20 has been converted from

100 therms to 10 therms so that the retail price approximates the cost of 1 Mcf.

Although retail prices of natural gas have been moving upward for some time now, significant increases are a recent development. For example, the price of gas at retail was \$1.447 for 10 therms in Boston in 1965. By the end of 1970 that price was \$1.568 or 8.4% higher than in 1965. Between the end of 1970 and the end of 1973, however, the retail price of gas in Boston jumped from \$1.568 to \$2.103, a 34.1% increase. New York prices increased from \$1.363 to \$1.887 or 38.4% from the end of 1970 to the end of 1973. Further increases are a foregone conclusion in light of actions taken by the FPC in Opinions and Orders related to pricing.

On June 21, 1974 the Federal Power Commission issued opinion No. 699 (R-389B) establishing a single uniform national base rate of  $42\phi/Mcf$  at standard conditions of pressure and temperature. Effective date was January 1, 1973 for new gas and new/renewed contracts on old gas.

# FOREIGN TRADE

Exports of natural gas totaled 77 Bcf in 1973, and 62.6% of the total volume was shipped in liquid form from Port Nikiski, Alaska.

The LNG exports were to Japan and totaled 48.35 Bcf valued at \$27,969,903, as compared with 47.88 Bcf valued at \$26,694,585 in 1972.

Exports via pipeline in 1973 were almost equally divided between Canada and Mexico. Pipeline exports to Canada, nearly all of which exited at Detroit, declined 4.7% to 14.8 Bcf in 1973.

Exports of natural gas via pipelines to Mexico had been trending upward from 9.5 Bcf in 1965 to nearly 15.8 Bcf in 1971 but dropped to 14.0 Bcf in 1973.

Imports of natural gas from Canada exceeded the 1 Tcf mark for the second consecutive year in 1973. Imports from Canada by means of pipelines were 1.03 Tcf, a modest increase of 1.9%. Canadian gas imports by pipelines averaged nearly 2,814,000 Mcf per day as compared with almost 2,757,000 Mcf per day in 1972.

The value of natural gas imported from Canada increased 15.2% to \$357,750,000 in 1973 from \$310,521,000 in 1972, or a rise of 15.2%. This jump in value reflected

the overall increase in the price of gas to 34.83 cents per Mcf in 1973 from 30.77 in 1972. Most of these price increases were on gas entering the States of Washington, Idaho, and Montana. There were nine companies importing Canadian gas in 1973.

Although imports from Canada have been growing, imports from Mexico have been decreasing drastically. Imports from Mexico entering the United States at McAllen, Tex., were 79.9% lower in 1973, primarily because supplies available for export to the United States are diminishing rapidly. From 50.97 Bcf in 1967, imports from Mexico had decreased to 1.63 Bcf by the end of 1973.

In addition to pipeline imports, 1,167,387 barrels of LNG were imported. At 14.73 psia, this volume is equivalent to 4.055 Bcf of natural gas. Algeria was the source of 83.5% of the LNG imports. The remainder originated in Canada.

The inability to obtain FPC approvals within a prescribed time resulted in cancellations of contracts for additional supplies of LNG from Algeria. Some of these contracts, however, are being renegotiated, particularly where negotiations are related to provisions on prices.

# **WORLD REVIEW**

Marketed production of natural gas, worldwide, climbed to a record high in 1973. World production totaled 44.917 Tcf according to estimates, and of this figure, the United States accounted for 22.648 Tcf or 50.4%. In 1968, for sample comparison, the United States accounted for 61.5% of the world total marketed production.

The U.S.S.R. was second to the United States, accounting for 18.3% of world production. During 1973, marketed production in the U.S.S.R. was estimated to have been 8.33 Tcf, an increase of 516 Bcf over that of 1972. The completion of a natural gas pipeline across Czechoslovakia paved the way to move Soviet natural gas to Italy and West Germany. The new line connects the U.S.S.R. and Austria and has a flow-through capacity of 990 Bcf. Czechoslovakia will take 13%, or 129 Bcf.

Soviet natural gas began flowing to West Germany in 1973. A proposed 3,000-mile pipeline from the Tyumen gas deposits in western Siberia would carry up to 247 Bcf of gas annually to Germany and Austria by 1980.

Negotiations are under way between some U.S. companies and the U.S.S.R. wherein 2 Bcf of Siberian gas would be delivered to the east coast of the United States. This would be in exchange for financial assistance in connecting the gas reserves with seaports, a distance of about 1,800 miles, where it would be liquefied and transported by a fleet of 20 tankers. Another 2 Bcf of gas would come to the west coast of the United States from Siberian fields situated some 2,000 miles from the eastern Siberian coast. Japan is an interested party in the latter venture and could be a financial contributor and receive some of the gas. Reportedly, 10 tankers would be involved in this operation. Both of the aforementioned projects are 6 or more years distant.

The cooperation of American oil, gas, and engineering companies in assisting in the development of Soviet resources has received impetus from the discussions between the United States and the U.S.S.R. in May 1972.

In July 1972, the Occidental Petroleum Corp. signed a 5-year scientific and technical agreement covering (1) exploration, production, and usage of oil and gas, (2)

agricultural fertilizers and chemicals, (3) metal treating and metal plating, and (4) the utilization of solid wastes.

Other American companies, such as El Paso Natural Gas Co., Bechtel Corporation, Texas Eastern Transmission Corp., Tenneco Corp., and Brown & Root, Inc., have been negotiating with the U.S.S.R. relative to development of its oil and gas potential.

Canadian production of natural gas, and natural gas liquids, continued at recordbreaking levels through 1973. This reflects in part the sharp increase in prices for petroleum products, including natural gas liquids and synthetic products. Marketed production of natural gas rose about 8.2% during 1973 to just under 8,700 Mcf per day. This is a reduction in the growth rate, compared with that of previous years, and is due to a combination of Provincial royalty increases and Federal export control. As in past years, the bulk of production came from the Provinces of Alberta. Saskatchewan, and British Columbia, which accounted for in excess of 98% of the total production. Small quantities were also produced in Manitoba, Ontario and the Northwest Territories as well as New Brunswick. Developments throughout the world. which led to rising prices and supply shortages, had a direct bearing on the increased demand for Canadian gas by the United States. This in turn contributed to the imposition of export and price controls by the Canadian Government in a conservative move to avert anticipated shortfalls they feel could occur in supply to Canadian consumers. By yearend, a system of absolute quotas had been established, and the Government had levied export taxes which they appear to believe will bring Canadian prices more in line with world prices.

The search for gas in shallow formations continued as a priority exploration target in southern Alberta. A large amount of this activity was centered in an area called the British Block, which was formerly reserved for military testing. Approximately 8,000 square miles were made available for exploration, and considerable drilling was initiated. The area is estimated to contain upwards of 4 Tcf of gas. The first 27 tests of the scheduled 50-well drilling program

have been drilled, and all were reported successful. Offshore drilling continued near Sable Island, 175 miles east of Halifax. Nova Scotia. An announcement of a new significant oil discovery was made in mid-1973 by the team of Mobil Oil Canada, and Texas Eastern Transmission Corp. This makes a total of four significant discoveries since 1966 when drilling began in this area. In the MacKenzie Delta, moderate exploration continued through 1973, with announcements of several new oil and gas finds. Very little information has been made available; however, it is felt that this area probably contains a number of major fields.

In the Arctic Islands, exploration also continued at a moderate pace; several new gas finds were made during 1973. However, there are still not enough proven reserves to warrant the building of a pipeline to transport the gas to market areas. It is hoped that continued drilling through 1974 will produce additional reserves.

Canadian Arctic Gas Study Limited (CAGSL) has not yet made any presentation before the National Energy Board (NEB) or the Federal Power Commission (FPC) for its project to move Alaska North Slope and Canadian Arctic gas to the United States and eastern Canadian markets. Resistance by the NEB to further gasexport applications is likely pending a review of gas reserves in Canada.

A major achievement in 1973 was the world's first drilling of an offshore well from a floating ice platform 8 miles off Melville Island.

In the Netherlands, marketed production in 1973 totaled 2.49 Tcf. This is 21.5% greater than that in 1972.

The Netherlands reserves of natural gas were estimated at 84.8 trillion cubic feet as of December 31, 1973. The prior estimate was 70.6 trillion cubic feet. By 1975, production is expected to plateau at from 3.0 to 3.2 Tcf per year. It is expected that about half of the gas will be exported to West Germany, France, and Belgium-Luxembourg. Some gas will go to Italy and Switzerland through a pipeline expected to be completed in 1974. The line will be 34 inches in diameter and just over 500 miles long. It will handle 211.9 billion cubic feet of gas per year.

Romania's 1973 natural gas production is estimated at about 1.03 Tcf or about

8.2% higher than the 0.95 Tcf produced in 1972. Most of the gas produced is used domestically. Industry use, for fuel and petrochemical feedstocks, is an important consumer in Romania.

The North Sea remains one of the most promising natural gas areas of the world outside the U.S.S.R. and the Middle East, and is one of the fastest developing natural gas areas in the world. Estimates of North Sea area reserves, range widely from 70 to 200 Tcf. Production from the United Kingdom gasfields in the southern North Sea have increased one-third from 2,426,000 Mcf per day in 1972 to 3,250,000 Mcf per day in 1973. Exploratory drilling and geological surveys continued in the North Sea waters of Norway, Denmark, West Germany, the Netherlands, and the United Kingdom. The area of interest has expanded to include the Celtic Sea south of Ireland, the Atlantic Ocean north of Scotland, and the Baltic Sea south of Sweden. A newly developed gasfield south of Cork, Ireland, is believed to contain 1 Tcf of natural gas.

Of the 576 wells completed in the North Sea by the end of 1973, 135 were drilled in the last year. The majority of these, 473, are exploratory. By the winter of 1973–74, 38 or more jackup and semisubmersible drilling rigs were operating in the North Sea and adjacent waters. Future drilling should quicken since 50 of the 90 drilling rigs now under construction are slated for North Sea use.

Algeria's marketed production is becoming a progressively more important factor to the United States in view of long-range plans to import natural gas as LNG. El Paso Natural Gas Co.'s plans to import 1 Bcf per day of gas are proceeding, and deliveries are scheduled to start in April 1976. Negotiations on a second agreement were in progress at yearend 1973. A contract already in effect involves imports of 42 MMcf per day by Distrigas of Boston. A third company, Eascogas LNG, Inc., has been granted conditional approval by the FPC to import up to 0.652 Bcf per day.

Algerian sources estimate that nation's gas reserves at 150 Tcf. Further, by 1976 they believe natural gas will be one of Algeria's most important sources of foreign income. U.S. imports of Algerian LNG increased by 66.8%, from 2.032 Bcf in 1972 to 3.388 Bcf in 1973. In addition, Algeria's

state-owned company Société Nationale pour las Recherche la Production, le Transport, la Transformation et la Commercialisation des Hydrocarbures (Sonatrach) has been negotiating with companies from West Germany, Belgium, France,

Spain, and Britain to provide Europe with long-term supplies of LNG. West Germany is showing interest in financing port facilities to enhance their receiving Algerian LNG.

# **TECHNOLOGY**

The expected long-term scarcity of natural gas has stimulated action on the part of industry and Government to spearhead research in the development of gasification of coal to obtain a high-Btu gas that is virtually the same in characteristics as pipeline-quality natural gas.

Construction of a \$12 million Synthane process facility at Bruceton, Pa., to develop the Bureau of Mines coal gasification process is expected to be completed in August 1974. This pilot plant will be the fourth in a series to evaluate coal gasification for high-Btu gas. Currently, plants consist of the Institute of Gas Technology's HYGAS process at Chicago, Ill., and Consolidation Coal Co.'s CO2-Acceptor process at Rapid City, S. Dak. The third pilot coal gasification plant is being built under a 1971 agreement between the Office of Coal Research and the AGA at Homer City, Pa., and is scheduled for completion in 1974. It will incorporate Bituminous Coal Research's BI-GAS process. A high-Btu gas is to be the end product, although the plant will have built-in design capability to produce low-Btu gas. The Synthane gasifier is designed to operate at 1,000 pounds per square inch and 1,800° F, and to produce 100,000 standard cubic feet per hour (scfh) of coal gas. One-fourth of the raw gas will be further processed to produce 13,000 scfh of pipeline-quality gas. A commercial plant would have a capacity of 250,000 Mcf of pipeline-quality gas per day.

In the low-Btu gas category, a Westing-house-led team is working to develop the process. A pilot plant is scheduled to be built to handle 15 tons of coal per day and should be completed in 1974.

There are 47 SNG plants in various stages ranging from operational to those projects which have been cancelled. Three plants are operational with work in progress on 19, planning underway on 4, and 21 either suspended or cancelled. The three operational plants have a capacity of 340,000 Mcf per day. Plants now nearing completion and in startup will add another 896,000 Mcf per day.

Subsurface nuclear detonation is another method for augmenting the supply of natural gas. The Atomic Energy Commission has conducted three experiments to determine the feasibility of using nuclear stimulation in the recovery of natural gas in tight formations. The first, the 1967 Gas Buggy experiment in New Mexico, was a 29-kiloton shot. The second, a 43-kiloton shot, was at Rulison, Colo. in 1969. Both proved that the flow of gas could be stimulated, but there was some tritium contamination.

The third experiment, also in Colorado, was the Project Rio Blanco Phase I. This was the near simultaneous detonation of three 30-kiloton nuclear explosives spaced one above the other more than I mile underground. The detonation took place on May 17, 1973. Production testing by flaring gas started on November 14, 1973. Results indicated only the top cavity was open to the production well which was drilled to evaluate the results of the stimulation. Production was disappointing with a rapid pressure drop occurring within a very short period of gas flaring. A directed hole is being drilled with the middle cavity as the objective. Status of the lowermost cavity is completely unknown.

Table 2.-Gas pipeline failures reported during 1972-73 1

|                                                    | T     | otal            |      | Fatal  | ities |               |      | Inju   | ıries |               | Esti      | imated            |
|----------------------------------------------------|-------|-----------------|------|--------|-------|---------------|------|--------|-------|---------------|-----------|-------------------|
| _                                                  | of fa | mber<br>ailures | Emp  | loyees | emp)  | on-<br>loyees | Emp  | loyees | emp   | on-<br>loyees | propert   | y damage<br>alue) |
|                                                    | 1972  | 1973            | 1972 | 1973   | 1972  | 1973          | 1972 | 1973   | 1972  | 1973          | 1972      | 1973              |
| Distribution system:                               |       |                 |      |        |       |               |      |        |       |               |           |                   |
| Corrosion<br>Damage by outside                     | 121   | 133             |      | 1      | 2     | 2             | 9    |        | 56    | 69            |           |                   |
| forces<br>Construction defect<br>or material       | 630   | 602             |      |        | 20    | 16            | 15   | 13     | 141   | 133           | \$574,146 | \$517,619         |
| failure                                            | 90    |                 | 1    |        | 3     | 11            | 3    | 10     | 52    | 53            |           |                   |
| Other causes                                       |       |                 | 1    |        | 1     | 3             | 5    | 25     | 13    | 30            |           |                   |
| Total                                              | 884   | 893             | 2    | _ 1    | 26    | 32            | 32   | 48     | 262   | 285           | 574,146   | 517,619           |
| Transmission system:  Corrosion  Damage by outside | 74    | 63              |      |        |       |               |      | 1      |       | ]             |           |                   |
| forces<br>Construction defect<br>or material       | 219   | 272             |      |        |       |               | 8    |        | 4     | 15            | 2,424,747 | 6,283,996         |
| failure                                            | 80    | 111             |      |        | 2     |               | 4    |        | 1     | - 1           |           |                   |
| Other causes                                       | 36    | 25              | 3    | 1      | 1     | 1             | 11   | 2      | 8     | $\bar{i}$     |           |                   |
| Total                                              | 409   | 471             | 3    | 1      | 3     | 1             | 23   | 3      | 13    | 16            | 2,424,747 | 6,283,996         |
| Grand total                                        | 1,293 | 1,364           | 5    | 2      | 29    | 33            | 55   | 51     | 275   | 301           | 2,998,893 | 6,801,615         |

<sup>&</sup>lt;sup>1</sup> In addition to this table compiled from written gas pipeline failure reports received by the Office of Pipeline Safety during 1973, there were 7 fatalities and 25 injuries resulting from gas distribution incidents that occurred in 1973 but were not reported until after December 31. Also, additional incidents reported to OPS by telephonic notice during 1973, but which did not require followup written reports, indicated that there were 17 fatalities and 47 injuries from distribution system failures.

Source: Office of Pipeline Safety, Department of Transportation.

Table 3.—Gross withdrawals and disposition of natural gas in the United States (Million cubic feet at 14.73 psia)

|                          | Cana              | ss withdraw          | als                |                             | Disposition         |                         |
|--------------------------|-------------------|----------------------|--------------------|-----------------------------|---------------------|-------------------------|
| State                    | From gas<br>wells | From oil<br>wells    | Total 1            | Marketed<br>produc-<br>tion | Repres-<br>suring   | Vented<br>and<br>flared |
| 1972                     |                   |                      |                    | 0.044                       |                     | 96                      |
| labama                   | 2,601             | 2,009                | 4,610              | 3,644 $125,596$             | $75,7\overline{19}$ | 21,59                   |
| laska                    | 126,198           | 96,707               | $222,905 \\ 809$   | 125,596<br>442              |                     | 36                      |
| rizona                   | 431               | 378                  | 169,171            | 166.522                     |                     | 2,64                    |
| rkansas                  | 125,319           | 43,852               | 555,392            | 487.278                     | 68,114              | _,                      |
| alifornia                | 304,049           | 251,343              | 122,122            | 116,949                     | 415                 | 4.75                    |
| olorado                  | 94,401            | 27,721               | 15,805             | 15,521                      |                     | 28                      |
| lorida                   | 1 107             | 15,805<br>1,806      | 3,000              | 1,194                       |                     | 1,80                    |
| linois                   | $1,194 \\ 355$    | 1,800                | 355                | 355                         |                     | -                       |
| ndiana                   | 751,921           | $141,8\overline{15}$ | 893,736            | 889,268                     | 1,787               | 2,68                    |
| ansas                    | 63,648            | 111,010              | 63,648             | 63,648                      |                     |                         |
| entuckyouisiana          | 6,924,204         | 1,235,559            | 8,159,763          | 7,972,678                   | 123,418             | 63,66                   |
| ouisiana[aryland         | 244               |                      | 244                | 244                         |                     |                         |
| laryland                 | 13,523            | 21,730               | 35,253             | 34,221                      |                     | 1,0                     |
| lississippi              | 94,320            | 25,377               | 119,697            | 103,989                     | 12,036              | 3,6                     |
| lissouri                 | 9                 |                      | 9                  | 9                           | $4\overline{41}$    | 4.2                     |
| Iontana                  | 34,958            | 3,179                | 38,137             | 33,474                      |                     | 1,2                     |
| ehraska                  | 2,779             | 1,962                | 4,741              | 3,478                       |                     | 5,6                     |
| New Mexico               | 944,463           | 277,294              | 1,221,757          | 1,216,061                   |                     | 0,0                     |
| lew York                 | 3,679             |                      | 3,679              | $3,679 \\ 32,472$           |                     | r 20,7                  |
| orth Dakota              | r 597             | r 52,661             | r 53,258<br>89,995 | 89,995                      |                     |                         |
| hio                      | 72,765            | 17,230 $492,223$     | 1,927,949          | 1,806,887                   | 82,265              | 38,7                    |
| klahoma                  | 1,435,726         | 2,460                | 73,958             | 73,958                      | ,                   |                         |
| Pennsylvania             | 71,498<br>8       | 2,400                | 10,000             |                             | 8                   |                         |
| South Dakota             | 25                | 180                  | 205                | 25                          |                     | 1                       |
| 'ennessee                | 7,409,894         | 2,140,575            | 9,550,469          | 8,657,840                   | 832,808             | 59,8                    |
| exas                     | 25,783            | 49,881               | 75,664             | 39,474                      | 30,684              | 5,5                     |
| Jtah                     | 2,787             | ,                    | 2,787              | 2,787                       | . ==                |                         |
| Virginia                 | 213,845           | 1,291                | 215,136            | 214,951                     | 185                 |                         |
| West Virginia<br>Wyoming | 321,368           | 70,479               | 391,847            | 375,059                     | 8,412               | 8,3                     |
| Total                    |                   | r4,973,517 1         | 24,016,109         | 22,531,698                  | 1,236,292           | r 248,1                 |
| 1973                     |                   |                      |                    |                             |                     | 1,8                     |
| Alabama                  | 8,148             | 5,013                | 13,161             | 11,271                      | 87,302              | 4,9                     |
| Alaska                   | 123,986           | 99,302               | 223,288            | 131,007                     |                     | 2,2                     |
| A rizona                 | 139               | 263                  | 402                | $\substack{125 \\ 157,529}$ |                     | 1,9                     |
| Arkansas                 | 120,068           | 39,408               | 159,476            | 449,369                     | 62.218              | 1.9                     |
| California               | 291,984           | 221,602              | 513,586 $141,442$  | 137,725                     | 709                 | 3,0                     |
| Colorado                 | 105,541           | 35,901               | 33,857             | 33,857                      |                     | -,-                     |
| Florida                  | 1 000             | 33,857               | 1,638              | 1,638                       |                     |                         |
| Illinois                 | 1,638             |                      | 276                | 276                         |                     |                         |
| Indiana                  | 276<br>745,662    | $151,6\overline{27}$ | 897,289            | 893,118                     | 1,794               | 2,8                     |
| Kansas                   |                   | 101,021              | 62,396             | 62,396                      |                     |                         |
| Kentucky                 |                   | 1,143,462            | 8,491,194          | 8,242,423                   | 146,680             | 102,                    |
| Louisiana                |                   |                      | 298                | 298                         |                     |                         |
| Maryland<br>Michigan     |                   | 22,424               | 45,696             | 44,579                      |                     | 1,                      |
| Michigan<br>Mississippi  | 00' == 0          | 26,985               | 117,761            | 99,706                      | 7,288               | 10,                     |
| Mississippi<br>Missouri  |                   |                      | 33                 | 33                          | 1 005               | 3.                      |
| Missouri<br>Montana      | 55,329            | 5,602                | 60,931             | 56,175                      | 1,065               | 3,                      |
| Montana<br>Nebraska      | 2,610             | 2,060                | 4,670              | 3,836                       | $1.0\overline{22}$  | 3,                      |
| New Mexico               | 954,632           | 268,930              | 1,223,562          | 1,218,749                   | 1,022               | ο,                      |
| New York                 | 4,555             |                      | 4,539              | 4,539                       |                     | 22,                     |
| North Dakota             | _ 282             | 49,954               | 50,236             | 27,703                      |                     | 22,                     |
| Ohio                     | 76,931            | 16,679               | 93,610             | 93,610 $1,770,980$          | 82.396              | 36.                     |
| Oklahoma                 | 1,455,293         | 434,494              |                    | 78,514                      | 02,000              | 55,                     |
| Pennsylvania             | 76,234            | 2,280                | 78,514<br>10       | 10,014                      | $\bar{1}\bar{0}$    |                         |
| South Dakota             | . 10              | 165                  |                    | $\bar{20}$                  |                     |                         |
| Tennessee                | _ 20              | 2.007.141            | 9,289,945          | 8,513,850                   | 739,962             | 36,                     |
| Texas                    | 1,282,804         |                      |                    | 42,715                      | 28,132              | 7,                      |
| Utah                     | _ 22,849          | 55,662               | 5,101              | 5,101                       |                     | .,                      |
| Virginia                 | 5,101             | $1,1\overline{14}$   |                    | 208,676                     | 140                 |                         |
| West Virginia            | 207,702           | 71,677               |                    | 357,731                     | 12,643              | 6,                      |
|                          |                   |                      |                    |                             |                     |                         |
| Wyoming                  |                   |                      |                    |                             | 1,171,361           | 248,                    |

Source: Figures based on reports received from State agencies and Bureau of Mines estimates.

r Revised.

1 Marketed production plus quantities used in repressuring and vented and flared.

2 Partly estimated; includes direct losses on producing properties and residue blown to the air.

811 NATURAL GAS

Table 4.—Gas and oil well completions in the United States, by State, 1968-73

| a               |       | Ga    | s com | pletion | ns 1      |                    |                  | C      | oil com      | pletions       | , 2      |           |
|-----------------|-------|-------|-------|---------|-----------|--------------------|------------------|--------|--------------|----------------|----------|-----------|
| State           | 1968  | 1969  | 1970  | 1971    | 1972      | 1973               | 1968             | 1969   | 1970         | 1971           | 1972     | 1973      |
| Alabama         | 1     | 1     | 5     | 6       | 9         | 10                 | 9                | 10     | 7            | 8              | 13       | 18        |
| Alaska          | 7     | 11    | 5     | 1       | 2         | 3                  | 77               | 38     | 67           | 27             | 12       | 20        |
| Arizona         |       | 2     |       | 2       | 1         | 1                  | 4                | 9      | 1            |                | 5        | ==        |
| Arkansas        | 46    | 40    | 36    | 29      | 39        | 40                 | 103              | 151    | 100          | 127            | 96       | 91        |
| California      | 77    | - 59  | 56    | 60      | 62        | 65                 | 2,191            | 1,543  | 1,697        | 1,459          | 1,045    | 879       |
| Colorado        | 50    | 47    | 47    | 148     | 124       | 148                | 108              | 158    | 142          | 154            | 300      | 228       |
| Florida         |       |       |       |         |           |                    | 3                | . 6    | 14           | 8              | 65       | 24        |
| Illinois        | 1     | 5     | 5     | 16      | 18        | 13                 | 544              | 417    | 311          | 252            | 255      | 240       |
| Indiana         | 14    | 7     | 4     | 2       | 5         | 8                  | 122              | 129    | 93           | 81             | 92       | 67        |
| Kansas          | 90    | 184   | 108   | 112     | 368       | 384                | 1,210            | 1,271  | 1,044        | 1,099          | 880      | 592       |
| Kentucky        | 205   | 142   | 111   | 135     | 166       | 157                | 383              | 296    | 275          | 244            | 230      | 158       |
| ¥ . •.••        |       |       |       |         |           |                    |                  |        |              |                |          |           |
| Louisiana:      | 143   | 123   | 157   | 237     | 451       | 269                | 310              | 309    | 263          | 390            | 291      | 234       |
| North<br>South  | 210   | 230   | 232   | 200     | 234       | 284                | 560              | 471    | 497          | 398            | 375      | 337       |
|                 | 184   | 190   | 150   | 184     | 133       | 231                | 476              | 372    | 382          | 258            | 253      | 287       |
| Offshore        | 104   |       |       |         |           |                    |                  |        |              |                |          |           |
| Total Louisiana | 537   | 543   | 539   | 621     | 818       | 784                | 1,346            | 1,152  | 1,142        | 1,046          | 919      | 858       |
| Michigan        | 28    | 15    | 19    | 33      | 34        | 41                 | 73               | 73     | 49           | . 81           | 87       | 73        |
| Mississippi     | 12    | 16    | 12    | 13      | 13        | 28                 | 161              | 195    | 211          | 175            | 87       | 70        |
| Missouri        |       |       |       | 1       |           |                    | 12               | 17     | 10           | .6             |          | 7.7       |
| Montana         | 40    | 31    | 74    | 33      | 125       | 123                | 319              | 186    | 64           | 45             | 83       | 46        |
| Nebraska        |       | 1     | 2     | 1       | 2         | .==                | 64               | 57     | 39           | 47             | 48       | 33<br>280 |
| New Mexico      | 150   | 263   | 159   | 186     | 238       | 498                | 512              | 561    | 341          | 401            | 502      | 280       |
| New York        | 10    | 12    | 17    | 7       | 22        | 27                 | 83               | 112    | 69           | -83            | 96<br>23 | 40        |
| North Dakota    |       |       | _1    | 1       |           | 270                | 49               | 49     | 48           | 49             | 426      | 398       |
| Ohio            | 230   | 395   | 683   | 608     | 721       | 940                | 726              | 645    | 503          | $391 \\ 1.174$ | 1.025    | 898       |
| Oklahoma        | 370   | 397   | 321   | 238     | 341       | 539                | 1,323            | 1,604  | 1,343<br>441 | 394            | 534      | 525       |
| Pennsylvania    | 253   | 277   | 250   | 199     | 297       | 434                | 472              | 547    | 441          | 2              | 4        | 525       |
| South Dakota    |       | -=    |       |         |           |                    |                  | 4      | $\bar{24}$   | 57             | 14       | 24        |
| Tennessee       | _ 6   | 7     | 4     | 23      | 9         | 10                 | 0.770            | 4.256  | 4,137        | 3,880          | 3,963    |           |
| Texas           | 763   | 903   | 774   | 810     | 943<br>13 | $\frac{1,475}{25}$ | 3,779 $38$       | 4,256  | 29           | 30             | 73       | 104       |
| Utah            | 5     | 16    | 10    | 6       | 18        | 29<br>7            |                  | 1      |              | 50             | 10       |           |
| Virginia        |       | 455   |       | 100     |           | 514                | $1\overline{19}$ | 135    | 192          | 133            | 84       | 72        |
| West Virginia   | 522   | 652   | 553   | 496     | 488<br>52 | 61                 | 501              | 699    | 627          | 405            | 345      | 381       |
| Wyoming         | 39    | 57    | 45    | 43      | 52        | 01                 | 901              | 099    | 021          | 400            | 010      |           |
| Grand total     | 3,456 | 4,083 | 3,840 | 3,830   | 4,928     | 6,335              | 14,331           | 14,368 | 13,020       | 11,858         | 11,306   | 9,902     |

 $<sup>^1</sup>$  Includes multiple completion wells that produce gas from all zones.  $^2$  Includes multiple completion wells that produce gas from one or more zones but oil from at least one zone.

Source: American Petroleum Institute Quarterly Review of Drilling Statistics for the United States, Annual Summaries 1968 to 1973, inclusive.

Table 5.-Exploratory wells drilled in the United States

| State           |      |      | s com |      |      |      |      | 0     | il comp | letions | 2    |      |
|-----------------|------|------|-------|------|------|------|------|-------|---------|---------|------|------|
| - State         | 1968 | 1969 | 1970  | 1971 | 1972 | 1973 | 1968 | 1969  | 1970    | 1971    | 1972 | 1973 |
| Alabama         | 1    |      | 1     | 2    | 6    | 5    |      | 3     | 2       | 3       | 2    | 4    |
| Alaska          | 1    |      | 1     |      | 1    | 1    | 3    |       | 23      | ĭ       |      | 2    |
| Arizona         |      |      |       | 1    | 1    | 1    | 1    | 1     |         |         |      |      |
| Arkansas        | 8    | 5    | 4     | 2    | 1    | 2    | 4    | 11    | 7       | 9       | 7    | 4    |
| California      | 7    | 7    | 8     | 5    | 9    | 17   | 20   | 24    | 28      | 21      | 17   | 17   |
| Colorado        | 5    | 14   | 15    | 27   | 29   | 29   | 16   | 46    | 26      | 29      | 71   | 38   |
| Florida         |      |      |       |      |      |      |      | 1     | 2       |         | 2    | 3    |
| Illinois        |      | 1    | 2     | 4    | 2    | 1    | 21   | 31    | 16      | 24      | 20   | 22   |
| Indiana         | 3    | 5    | 3     | 1    | 3    | 3    | 20   | 25    | 8       | 14      | 11   | 11   |
| Kansas          | 22   | 25   |       | 14   | 26   | 40   | 171  | 173   | 131     | 131     | 117  | 98   |
| Kentucky        | 38   | 20   | 26    | 12   | 18   | 16   | 50   | 29    | 21      | 23      | 30   | 18   |
| Louisiana:      |      |      |       |      |      |      |      |       |         |         |      |      |
| North           | 6    | 8    | 10    | 10   | 12   | 4    | 11   | 12    | 9       | 8       | 8    | 1    |
| South           | 44   | 73   | 48    | 37   | 62   | 48   | 42   | 29    | 25      | 22      | 16   | 21   |
| Offshore        | 43   | 12   | 11    | 25   | 5    | 2    | 32   | 16    | -6      | 13      |      |      |
| Total Louisiana | 93   | 93   | 69    | 72   | 79   | 54   | 85   | 57    | 40      | 43      | 24   | 22   |
| Michigan        | 4    | 3    | 7     | 13   | 21   | 31   | 13   | 7     | 9       | 26      | 34   | 38   |
| Mississippi     |      | 3    | 2     | 3    | 4    | 15   | 26   | 30    | 25      | 13      | 9    | 13   |
| Missouri        |      |      |       |      |      |      |      | 2     |         |         |      |      |
| Montana         | 15   | 9    | 20    | 16   | 29   | 28   | 27   | 23    | 21      | 4       | 15   | 10   |
| Nebraska        |      |      |       |      |      |      | 25   | 17    | 10      | 7       | 10   | 7    |
| New Mexico      | 8    | 11   | 8     | 7    | 27   | 25   | 29   | 26    | 16      | 6       | 14   | 9    |
| New York        | 1    | 1    | 2     | 3    | 3    | 3    |      |       |         |         | 1    | 2    |
| North Dakota    |      |      |       |      |      |      | 5    | 15    | 7       | 8       | 7    | 4    |
| Ohio            | 14   | 24   | 17    | 7    | 24   | 31   | 28   | 5     | 1       |         | 2    |      |
| Oklahoma        | 39   | 57   | 43    | 27   | 55   | 69   | 52   | 110   | 59      | 42      | 37   | 35   |
| Pennsylvania    | 13   | 10   | 21    | 3    | 20   | 41   | 11   | 4     | 2       | 1       | 3    | 3    |
| South Dakota    |      |      |       |      |      |      |      |       |         | 2       |      | 4    |
| Tennessee       | 6    | 6    | 1     | 14   | 7    | 8    |      | 3     | 5       | 16      | 4    | 6    |
| Texas           | 158  | 264  | 179   | 172  | 183  | 410  | 267  | 330   | 256     | 186     | 179  | 207  |
| Utah            | 1    | 6    | 4     | 4    | 2    | 13   | 2    | 8     | 9       | 8       | 22   | 4    |
| Virginia        | 77   |      |       |      |      | 2    |      |       |         |         |      |      |
| West Virginia   | 40   | 37   | 31    | 18   | 35   | 39   | 3    | 2     |         | 1       | 1    | 4    |
| Wyoming         | 9    | 15   | 7     | 10   | 16   | 16   | 75   | 101   | 66      | 33      | 45   | 34   |
| Grand total     | 486  | 616  | 471   | 437  | 601  | 900  | 954  | 1,084 | 790     | 651     | 684  | 619  |

<sup>1</sup> Includes multiple completion wells that produce gas from all zones.
2 Includes multiple completion wells that produce gas from one or more zones but oil from at least one zone.

Source: American Petroleum Institute Quarterly Review of Drilling Statistics for the United States, Annual Summaries 1968 to 1973, inclusive.

Table 6.-Producing wells and condensate wells in the United States

| PAD district and State    | Producing<br>as of<br>Dec. 31,<br>1968 1 | Producing<br>as of<br>Dec. 31,<br>1969 1 | Producing<br>as of<br>Dec. 31,<br>1970 1 | Producing<br>as of<br>Dec. 31,<br>1971 1 | Producing<br>as of<br>Dec. 31,<br>1972 1 | Producing<br>as of<br>Dec. 31,<br>1973 1 |
|---------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| District 1:               |                                          |                                          |                                          |                                          |                                          |                                          |
| Maryland                  | 15                                       | 13                                       | 16                                       | 14                                       | 16                                       | 15                                       |
| New York                  | 1,155                                    | 818                                      | 600                                      | 600                                      | $650 \\ 16,600$                          | 789<br>1 <b>6</b> .600                   |
| Pennsylvania              | 17,000 $111$                             | 16,600<br>111                            | 16,239 $115$                             | 16,586 $115$                             | 18,600                                   | 16,600                                   |
| Virginia<br>West Virginia | 18,214                                   | 18,600                                   | 20,702                                   | 21,025                                   | 21.324                                   | 21.400                                   |
|                           |                                          |                                          | 37,672                                   | 38.340                                   | 38,720                                   | 38,982                                   |
| Total                     | 36,495                                   | 36,142                                   | 37,672                                   | 38,340                                   | 38,720                                   | 38,984                                   |
| District 2:               |                                          |                                          |                                          |                                          |                                          |                                          |
| Illinois                  | 5                                        | 5                                        | .8                                       | 14                                       | 31                                       | 36                                       |
| Indiana                   | 265                                      | 263                                      | 50                                       | 83                                       | 87                                       | 106                                      |
| Kansas                    | 8,509                                    | 8,567                                    | 8,660                                    | 8,585 $7.413$                            | $8,621 \\ 7.099$                         | 8,785 $7.224$                            |
| Kentucky                  | $6,290 \\ 199$                           | $6,413 \\ 211$                           | $6,913 \\ 1.235$                         | 1.171                                    | 1,099                                    | 1.145                                    |
| Michigan<br>Missouri      | 119                                      | 11                                       | 1,255                                    | 2,171                                    | 3                                        | 2                                        |
| Nebraska                  | 36                                       | 35                                       | 35                                       | 29                                       | 29                                       | 29                                       |
| North Dakota              | 19                                       | 33                                       | 29                                       | 29                                       | 21                                       | 44                                       |
| Ohio                      | 7.211                                    | 7.334                                    | 7.789                                    | 8.179                                    | 8,630                                    | 9,406                                    |
| Oklahoma                  | 8,337                                    | 8,432                                    | 8,168                                    | 8,507                                    | 8,457                                    | <b>8,86</b> 8                            |
| Tennessee                 | 23                                       | 26                                       | 15                                       | 20                                       | 45                                       | 6                                        |
| Total                     | 30,905                                   | 31,330                                   | 32,913                                   | 34,032                                   | 34,340                                   | 35,651                                   |
| District 3:               |                                          |                                          |                                          |                                          |                                          |                                          |
| Alabama                   | 1                                        | 1                                        | 2                                        |                                          | 15                                       | 15                                       |
| Arkansas                  | 947                                      | 998                                      | 1.008                                    | 1,013                                    | 1,041                                    | 876                                      |
| Louisiana                 | 9,163                                    | 9,354                                    | 9,690                                    | 9,748                                    | 9,456                                    | 10,551                                   |
| Mississippi               | 347                                      | 322                                      | 325                                      | 400                                      | 252                                      | 250                                      |
| New Mexico                | 8,754                                    | 9,100                                    | 8,848                                    | 9,388                                    | 9,679                                    | 9,711                                    |
| Texas                     | 23,805                                   | 23,689                                   | 23,417                                   | 23,280                                   | 23,373                                   | 23,805                                   |
| Total                     | 43,017                                   | 43,464                                   | 43,290                                   | 43,829                                   | 43,816                                   | 45,208                                   |
| District 4:               |                                          |                                          |                                          |                                          |                                          |                                          |
| Colorado                  | 810                                      | 805                                      | 861                                      | 928                                      | 934                                      | 1,050                                    |
| Montana                   | 1.196                                    | 1,098                                    | 739                                      | 1,056                                    | 1,116                                    | 1,118                                    |
| Utah                      | 165                                      | 171                                      | 173                                      | 178                                      | 200                                      | 158                                      |
| Wyoming                   | 787                                      | 521                                      | 800                                      | 840                                      | 887                                      | 850                                      |
| Total                     | 2,958                                    | 2,595                                    | 2,573                                    | 3,002                                    | 3,137                                    | 3,176                                    |
| District 5:               |                                          |                                          |                                          |                                          |                                          |                                          |
| Alaska                    | 18                                       | 44                                       | 51                                       | 40                                       | 50                                       | 52                                       |
| Arizona                   | 4                                        | 4                                        | 4                                        | 5                                        | 4                                        | 4                                        |
| California                | $99\bar{4}$                              | 897                                      | 980                                      | 962                                      | 1,086                                    | 1,095                                    |
| Total                     | 1,016                                    | 945                                      | 1,035                                    | 1,007                                    | 1,140                                    | 1,151                                    |
| Total United States       | 114,391                                  | 144,476                                  | 117,483                                  | 120,210                                  | 121,153                                  | 124,168                                  |

<sup>&</sup>lt;sup>1</sup> Based on State estimates and State reports.

Table 7.-Consumption of natural gas by use and by State, 1973

(Million cubic feet at 14.73 psia)

|                                                     | Delivered 1                         | Delivered to consumers         | Extract                             | Extraction loss                | Lease and                           | plant fuel                     | Pipeline fuel                       | ne fuel                        | Total                               | 38.1                           |
|-----------------------------------------------------|-------------------------------------|--------------------------------|-------------------------------------|--------------------------------|-------------------------------------|--------------------------------|-------------------------------------|--------------------------------|-------------------------------------|--------------------------------|
| Region and State                                    | Quantity<br>(million<br>cubic feet) | Value<br>(thousand<br>dollars) | Quantity<br>(million<br>cubic feet) | Value<br>(thousand<br>dollars) | Quantity<br>(million<br>cubic feet) | Value<br>(thousand<br>dollars) | Quantity<br>(million<br>cubic feet) | Value<br>(thousand<br>dollars) | Quantity<br>(million<br>cubic feet) | Value<br>(thousand<br>dollars) |
| New England: Connecticut                            | 62,584                              | 117,370                        | 1                                   | 1                              | :                                   | · ·                            | 25                                  | 10                             | 62,609                              | 117,380                        |
| Varior Vew Manufaction  Massachusetts  Rhode Island | 13,881<br>154,967<br>20,540         | 23,326<br>309,915<br>41,813    |                                     | 111                            | 111                                 | 111                            | 580<br>19                           | 222                            | $13,881 \\ 155,547 \\ 20,559$       | 23,326<br>310,137<br>41,821    |
| Total                                               | 251,972                             | 492,424                        |                                     |                                | ;                                   | !                              | 624                                 | 240                            | 252,596                             | 492,664                        |
| Middle Atlantic: New Jorsey New York Pennsylvania   | 300,886<br>679,079<br>758,187       | 461,929<br>945,861<br>832,526  | 17                                  | 288                            | 442<br>2,725                        | 244                            | 680<br>3,026<br>22,385              | 169<br>825<br>7,235            | 301,566<br>682,547<br>783,368       | 462,098<br>946,930<br>841,111  |
| Total                                               | 1,738,152                           | 2,240,316                      | 7.1                                 | 28                             | 3,167                               | 1,566                          | 26,091                              | 8,229                          | 1,767,481                           | 2,250,139                      |
| East North Central:                                 | 1,128,649                           | 1,044,700                      | 13,534                              | 3,289                          | 246                                 | 78                             | 21,371                              | 5,693                          | 1,163,800                           | 1,053,760                      |
| Indiana<br>Michigan                                 | 529,604<br>905,777                  | 435,546 $837,059$              | 1,581                               | 531                            | 2,551                               | 749                            | 12,696<br>12,023                    | 3,380<br>4,160                 | 542,300<br>921,932                  | 438,926<br>842,499             |
| Ohio                                                | 1,087,810 $362,541$                 | 972,041 $347,835$              | 1 1                                 | 1 1                            | 3,548                               | 1,600                          | 12,798<br>5,420                     | 3,879                          | 1,104,156<br>367,961                | 977,520<br>349,309             |
| Total                                               | 4,014,381                           | 3,637,181                      | 15,115                              | 3,820                          | 6,345                               | 2,427                          | 64,308                              | 18,586                         | 4,100,149                           | 3,662,014                      |
| West North Central:<br>Iowa                         | 348,156                             | 257,517                        | 100 67                              | 1000                           | 22000                               | 120                            | 16,484                              | 8,570                          | 364,640                             | 261,087                        |
| Minnesota                                           | 355,372                             | 288,401                        | 49,909                              | 6,019                          |                                     | 06,890                         | 5,439                               | 1,496                          | 860,811                             | 289,897                        |
| Nebraska<br>Nostk Dalote                            | 214,226                             | 135,001                        | 474                                 | 1600                           | 1,809                               | 429                            | 13,597                              | 2,414<br>2,543                 | 230,106                             | 138,066                        |
| South Dakota                                        | 31,209                              | 25,367                         | 4,000                               | 21                             | 702,77                              | 1,041                          | 12                                  | 4 4                            | 31,221                              | 25,201                         |
| Total                                               | 1,885,418                           | 1,285,111                      | 47,352                              | 9,060                          | 46,934                              | 11,706                         | 117,647                             | 27,561                         | 2,097,351                           | 1,333,438                      |
| South Atlantic: Delaware Florida Georgia            | 22,949<br>304,587<br>341,971        | 27,674<br>213,166<br>277,914   | 2,886                               | 1,229                          | 3,027                               | 887                            | 3,884<br>6,118                      | $1,1\overline{69}$ $1,560$     | 22,949<br>314,384<br>348,089        | 27,674<br>216,451<br>279,474   |
| of Columbia                                         | 199,153<br>154,879                  | 250,505 $138,737$              | 1 1                                 | ; ;                            | 474                                 | 289                            | 2,334<br>5,992                      | 572<br>1.407                   | 201,961 $160.871$                   | 251,366<br>140.144             |
| South CarolinaVirginia West Virginia                | 149,623<br>146,850<br>166,624       | 123,192<br>166,192<br>127,783  | 9.428                               | 3.045                          | 170<br>2.160                        | 66                             | 3,524<br>5,828<br>17,532            | 1,620<br>6.903                 | 153,147<br>152,848<br>195,744       | 124,098<br>167,878<br>138,504  |
| Total Total                                         | 1,486,636                           | 1,325,163                      | 12,314                              | 4,274                          | 5,831                               | 2,015                          | 45,212                              | 14,137                         | 1,549,993                           | 1,345,589                      |

Table 7.—Consumption of natural gas by use and by State, 1973—Continued (Million cubic feet at 14.73 psia)

|                     | Delivered                           | Delivered to consumers                  | Extraction loss                     | ion loss                       | Lease and                           | plant fuel                     | Pipeline fuel                       | le fuel                          | Tota]                               | 17                             |
|---------------------|-------------------------------------|-----------------------------------------|-------------------------------------|--------------------------------|-------------------------------------|--------------------------------|-------------------------------------|----------------------------------|-------------------------------------|--------------------------------|
| Region and State    | Quantity<br>(million<br>cubic feet) | Value<br>(thousand<br>dollars)          | Quantity<br>(million<br>cubic feet) | Value<br>(thousand<br>dollars) | Quantity<br>(million<br>cubic feet) | Value<br>(thousand<br>dollars) | Quantity<br>(million<br>cubic feet) | Value<br>(thousand<br>dollars) c | Quantity<br>(million<br>cubic feet) | Value<br>(thousand<br>dollars) |
| East South Central: |                                     |                                         |                                     | :<br>:                         |                                     | -                              |                                     |                                  |                                     |                                |
| Alabama             | 250,944                             | 177,547                                 | 199                                 | 41                             | 1,329                               | 522                            | 19,795                              | 5,186                            | 272,267                             | 183,296                        |
| Kentucky            | 209,556                             | 163,022                                 | 5,441                               | 1,241                          | 1,238                               | 329                            | 34,678                              | 8,724                            | 250,913                             | 173,316                        |
| Tennessee           | 263,901                             | 174,912                                 | 9                                   | 617                            | 1,263                               | 446                            | 28,456                              | 6,952                            | 293,620                             | 182,310                        |
| Total               | 974,865                             | 650,063                                 | 6,518                               | 1,497                          | 9,982                               | 2,552                          | 140,305                             | 34,786                           | 1,131,670                           | 688,898                        |
| West South Central: |                                     |                                         |                                     |                                |                                     |                                |                                     |                                  |                                     |                                |
| Arkansas            | 309,380                             | 151,869                                 | 1,118                               | 299                            | 3,000                               | 726                            | 15,423                              | 3,948                            | 328,921                             | 156,842                        |
| Louisiana           | 1,592,829                           | 635,545                                 | 206,833                             | 73,219                         | 336,832                             | 78,819                         | 80,198                              | 19,568                           | 2,216,692                           | 807,151                        |
| Texas               | 3,688,652                           | 1,377,525                               | 466,143                             | 168,744                        | 828,139                             | 160,659                        | 104,587                             | 21,336                           | 5,087,521                           | 1,728,264                      |
| Total               | 6,096,305                           | 2,379,239                               | 735,741                             | 257,612                        | 1,248,204                           | 253,924                        | 226,269                             | 50,610                           | 8,306,519                           | 2,941,385                      |
| Mountain:           |                                     |                                         |                                     |                                |                                     |                                |                                     |                                  |                                     |                                |
| Arizona             | 190,300                             | 131,394                                 | li.                                 |                                | 39                                  | œ                              | 23,984                              | 5,186                            | 214,323                             | 136,588                        |
| Colorado            | 314,225                             | 181,605                                 | 4,674                               | 1,154                          | 7,202                               | 1,548                          | 2,580                               | 567                              | 328,681                             | 184,874                        |
| Montana             | 84.286                              | 58,862                                  | 918                                 | 213                            | 4.281                               | 831                            | 1,663                               | 349                              | 91.148                              | 60,255                         |
| Nevada              | 73,072                              | 55,029                                  | 1                                   | !                              | <b>!</b> !                          |                                | 1                                   | 1                                | 73,072                              | 55,029                         |
| New Mexico          | 174,742                             | 86,513                                  | 55,782                              | 12,439                         | 52,553                              | 9,261                          | 29,516                              | 6,375                            | 312,593                             | 114,588                        |
| Utah<br>Woming      | 120,060 $78.719$                    | 79,506                                  | 3,489 $16.093$                      | 928<br>3.975                   | 2,435 $21.151$                      | $\frac{441}{3.405}$            | 8.729                               | 178<br>2.078                     | 126,595<br>124,692                  | 81,053<br>43.283               |
| Total               | 1,086,800                           | 670,792                                 | 80,956                              | 18,709                         | 87,661                              | 15,494                         | 71,732                              | 16,301                           | 1,327,149                           | 721,296                        |
| Pacific:            | 200                                 | 10, 20                                  |                                     |                                |                                     | 107 0                          | 1                                   |                                  | 040 10                              | 000                            |
| Alaska              | 47,686                              | 35,477                                  | 986                                 | 279                            | 15,217                              | 3,485                          | 170                                 | 4.0<br>84.0                      | 64,059                              | 39,289                         |
| Oregon              | 90,010                              | 109,495                                 | 06#,11                              | 60,0                           | £10,41                              | 000,00                         | 8 716                               | 3,008                            | 107,961                             | 105 633                        |
| Washington          | 190,498                             | 161,511                                 | <b>! !</b>                          | ! !                            | 1 1                                 | 1 1                            | 7,363                               | 2,414                            | 197,861                             | 163,925                        |
| Total               | 2,290,742                           | 1,763,106                               | 18,484                              | 8,976                          | 87,791                              | 29,321                         | 35,989                              | 13,248                           | 2,433,006                           | 1,814,651                      |
| Total United States | 19,825,271                          | 14,443,395                              | 916,551                             | 303,976                        | 1,495,915                           | 319,005                        | 728,177                             | 183,698                          | 22,965,914                          | 15,250,074                     |
|                     |                                     | *************************************** |                                     |                                |                                     |                                |                                     |                                  |                                     |                                |

Tabel 8.—Quantity and value of natural gas delivered (Million cubic feet

|                                  |                                       |                                     |                                |                                       |                   | cubic feet                     |
|----------------------------------|---------------------------------------|-------------------------------------|--------------------------------|---------------------------------------|-------------------|--------------------------------|
|                                  | Re                                    | esidential                          |                                |                                       | Commercia         | ıl                             |
| Region and State                 | Number of<br>consumers<br>(thousands) | Quantity<br>(million<br>cubic feet) | Value<br>(thousand<br>dollars) | Number of<br>consumers<br>(thousands) |                   | Value<br>(thousand<br>dollars) |
| New England:                     |                                       |                                     |                                |                                       |                   |                                |
| Connecticut                      | 361                                   | 30,261                              | 67,996                         | 30                                    | 14,190            | 26,517                         |
| Maine, Vermont,<br>New Hampshire | 69                                    | 6.027                               | 13,100                         | 5                                     | 3,234             | 5,582                          |
| Massachusetts                    | 1,023                                 | 83,988                              | 201,655                        | 67                                    | 34,263            | 65,063                         |
| Rhode Island                     | 150                                   | 11,417                              | 27,090                         | 9                                     | 3,666             | 7,200                          |
| Total                            | 1,603                                 | 131,693                             | 309,841                        | 111                                   | 55,353            | 104,362                        |
| Middle Atlantic:                 |                                       |                                     |                                |                                       |                   |                                |
| New Jersey                       | 1,619                                 | 136,625                             | 284,590                        | 183                                   | 59,043            | 92,698                         |
| New York                         | 3,878                                 | 342,608                             | 596,481                        | 262                                   | 123,582           | 174,705                        |
| Pennsylvania                     | 2,216                                 | 292,531                             | 433,238                        | 149                                   | 108,022           | 126,346                        |
| Total                            | 7,713                                 | 771,764                             | 1,314,309                      | 594                                   | 290,647           | 393,749                        |
| East North Central:              |                                       |                                     |                                |                                       | 242.022           | 100.00                         |
| Illinois                         | $\frac{2,871}{1,065}$                 | 445,723<br>155,039                  | 540,457<br>185,272             | $\frac{217}{107}$                     | 212,922<br>74,066 | 190,661<br>73,318              |
| Indiana<br>Michigan              | 2,043                                 | 341,607                             | 403,779                        | 177                                   | 172,202           | 166,750                        |
| Ohio                             | 2,577                                 | 439,212                             | 487,525                        | 208                                   | 185,033           | 172,081                        |
| Wisconsin                        | 830                                   | 110,524                             | 157,994                        | 70                                    | 51,764            | 59,253                         |
| Total                            | 9,386                                 | 1,492,105                           | 1,775,027                      | 779                                   | 695,987           | 662,063                        |
| West North Central:              |                                       |                                     |                                |                                       |                   |                                |
| Iowa                             | 614                                   | 91,310                              | 106,833                        | 64                                    | 59,892            | 55,280                         |
| Kansas                           | 617                                   | 96,468                              | 72,062                         | 58                                    | 48,902            | 26,749                         |
| Minnesota                        | $649 \\ 1.059$                        | 102,671                             | 133,883<br>178,263             | 59<br>76                              | 53,384<br>75,632  | 51,550<br>64,136               |
| Missouri<br>Nebraska             | 326                                   | $153,543 \\ 50,383$                 | 52,449                         | 49                                    | 36,571            | 28,269                         |
| North Dakota                     | 54                                    | 8,204                               | 9,385                          | 8                                     | 9.875             | 8,621                          |
| South Dakota                     | 80                                    | 11,190                              | 13,364                         | 10                                    | 9,854             | 7,706                          |
| Total                            | 3,399                                 | 513,769                             | 566,239                        | 324                                   | 294,110           | 242,311                        |
| South Atlantic:                  |                                       |                                     |                                |                                       |                   |                                |
| Delaware                         | 78                                    | 7,514                               | 13,921                         | 5                                     | 3,093             | 4,287                          |
| Florida                          | 384                                   | 16,295                              | 44,029                         | 29                                    | 19,442            | 29,007                         |
| Georgia                          | 799                                   | 86,191                              | 112,336                        | 61                                    | 43,663            | 41,043                         |
| Maryland and District            | 859                                   | 86,670                              | 145,679                        | 65                                    | 37,308            | 48,214                         |
| of Columbia<br>North Carolina    | 288                                   | 28,435                              | 42,795                         | 42                                    | 17,903            | 22,450                         |
| South Carolina                   | 255                                   | 22,758                              | 37,596                         | $\tilde{25}$                          | 14,743            | 15,493                         |
| Virginia                         | 481                                   | 51,618                              | 86,670                         | 41                                    | 27,650            | 34,563                         |
| West Virginia                    | 369                                   | 55,686                              | 54,238                         | 33                                    | 23,993            | 18,259                         |
| Total                            | 3,513                                 | 355,167                             | 537,264                        | 301                                   | 187,795           | 213,316                        |
| East South Central:              |                                       |                                     |                                |                                       |                   |                                |
| Alabama                          | 603                                   | 55,685                              | 76,177                         | 41                                    | 32,131            | 23,809                         |
| Kentucky                         | 588                                   | 80,233                              | 79,350                         | 58                                    | 38,585            | 31,871                         |
| Mississippi<br>Tennessee         | 337<br>431                            | 31,422<br>45,993                    | 34,218<br>49,557               | 34<br>54                              | 15,316 $41,759$   | 11,151<br>39,212               |
| Total                            | 1,959                                 | 213,333                             | 239,302                        | 187                                   | 127,791           | 106,043                        |
| =                                |                                       |                                     |                                |                                       |                   |                                |
| West South Central: Arkansas     | 412                                   | 48,883                              | 42,626                         | 51                                    | 31,360            | 19,857                         |
| Louisiana                        | 893                                   | 93,072                              | 90,559                         | 68                                    | 28,730            | 19,450                         |
| Oklahoma                         | 654                                   | 73,744                              | 67,771                         | 62                                    | 36,582            | 23,815                         |
|                                  | 2,616                                 | 241,478                             | 250,896                        | 233                                   | 103,374           | 68,950                         |
| Texas                            |                                       |                                     |                                |                                       |                   |                                |

See footnotes at end of table.

NATURAL GAS

to consumers in 1973, by type of consumer and by State

at 14.73 psia)

| Indust                              | rial <sup>1</sup>              | Electric                            | utilities                      | Other co                            | nsumers <sup>2</sup>           | Tot                                 | al<br>————                     |
|-------------------------------------|--------------------------------|-------------------------------------|--------------------------------|-------------------------------------|--------------------------------|-------------------------------------|--------------------------------|
| Quantity<br>(million<br>cubic feet) | Value<br>(thousand<br>dollars) | Quantity<br>(million<br>cubic feet) | Value<br>(thousand<br>dollars) | Quantity<br>(million<br>cubic feet) | Value<br>(thousand<br>dollars) | Quantity<br>(million<br>cubic feet) | Value<br>(thousand<br>dollars) |
| 16,903                              | 21,281                         |                                     |                                | 1,230                               | 1,576                          | 62,584                              | 117,370                        |
| 3,775                               | 4,178                          | 756                                 | 387                            | 89                                  | 79                             | 13,881                              | 23,326                         |
| 26,349                              | 34,201                         | 5,342                               | 2,906                          | 5,025                               | 6,090                          | 154,967                             | 309,915                        |
| 4,445                               | 5,943                          | 30                                  | 17                             | 982                                 | 1,563                          | 20,540                              | 41,813                         |
| 51,472                              | 65,603                         | 6,128                               | 3,310                          | 7,326                               | 9,308                          | 251,972                             | 492,424                        |
| E0 040                              | 60 169                         | 24,067                              | 13,117                         | 2,803                               | 3,361                          | 300,886                             | 461,929                        |
| $78,348 \\ 124,203$                 | 68,163<br>112,901              | 69.532                              | 40,954                         | 19,154                              | 20,820                         | 679,079                             | 945,861                        |
| 346,121                             | 263,398                        | 3,270                               | 1,903                          | 8,243                               | 7,641                          | 758,187                             | 832,526                        |
| 548,672                             | 444,462                        | 96,869                              | 55,974                         | 30,200                              | 31,822                         | 1,738,152                           | 2,240,316                      |
| 101 550                             | 900 550                        | 90.009                              | 20,350                         | 5,608                               | 3,673                          | 1,128,649                           | 1,044,700                      |
| $424,573 \\ 287,485$                | 289,559<br>169,616             | 39,823 $10,245$                     | 4,989                          | 2,769                               | 2,351                          | 529,604                             | 435,546                        |
| 337,484                             | 234,214                        | 46,412                              | 26,084                         | 8,072                               | 6,232                          | 905,777                             | 837,059                        |
| 435,844                             | 293,323                        | 16,091                              | 9,285                          | 11,630                              | 9,827                          | 1,087,810                           | 972,041                        |
| 167,338                             | 113,623                        | 29,667                              | 15,279                         | 3,248                               | 1,686                          | 362,541                             | 347,835                        |
| 1,652,724                           | 1,100,335                      | 142,238                             | 75,987                         | 31,327                              | 23,769                         | 4,014,381                           | 3,637,181                      |
| 101 010                             | CO 104                         | 61,847                              | 25,543                         | 3,458                               | 1,667                          | 348,156                             | 257,517                        |
| 131,649<br>173,549                  | 68,194<br>62,478               | 176,174                             | 70,293                         | 3,772                               | 1,350                          | 498,865                             | 232,932                        |
| 115,821                             | 63,007                         | 56,661                              | 23,344                         | 26,835                              | 16,617                         | 355,372                             | 288,401                        |
| 118,795                             | 54,764                         | 54,262                              | 22,844                         | 15,406                              | 6,904                          | 417,638<br>214,226                  | 326,911<br>135,001             |
| 71,053                              | 31,263                         | 54,100                              | 21,965                         | 2,119                               | 1,055                          | 19,952                              | 18,982                         |
| 1,524<br>5,391                      | 828<br>2,194                   | $\frac{349}{4,060}$                 | $148 \\ 1,713$                 | $7\bar{14}$                         | 390                            | 31,209                              | 25,367                         |
| 617,782                             | 282,728                        | 407,453                             | 165,850                        | 52,304                              | 27,983                         | 1,885,418                           | 1,285,111                      |
|                                     |                                |                                     |                                |                                     |                                |                                     |                                |
| 10,032                              | 8,156                          | 2,310                               | 1,310                          | ==                                  | 0.410                          | 22,949                              | 27,674 $213,166$               |
| 95,669                              | 55,584                         | 168,308                             | 82,134                         | 4,873<br>3,590                      | 2,412 $3,141$                  | 304,587 $341,971$                   | 277,914                        |
| 174,135                             | 106,571                        | 34,392                              | 14,823                         |                                     | -                              | •                                   |                                |
| 60,660                              | 47,012                         | 8,870                               | 3,752                          | 5,645                               | 5,848                          | 199,153                             | 250,505                        |
| 95,652                              | 65,235                         | 7,748                               | 4,517                          | 5,141                               | 3,740                          | 154,879<br>149,623                  | 138,737<br>123,192             |
| 85,707                              | 55,538                         | 25,105                              | 13,732                         | $1,310 \\ 9.982$                    | 833<br>7,896                   | 146,850                             | 166,192                        |
| 53,428<br>84,690                    | 35,156<br>53,693               | 4,172<br>394                        | $1,907 \\ 162$                 | 1,861                               | 1,431                          | 166,624                             | 127,78                         |
| 659,973                             | 426,945                        | 251,299                             | 122,337                        | 32,402                              | 25,301                         | 1,486,636                           | 1,325,168                      |
|                                     |                                |                                     |                                |                                     |                                | 050.044                             | 177,547                        |
| 159,756                             | 76,044                         | 2,377                               | 918                            | $995 \\ 7,212$                      | 599<br>5,035                   | 250,944<br>209,556                  | 163,022                        |
| 75,459                              | 43,313                         | 8,067                               | $3,453 \\ 25,014$              | 8,385                               | 35,975                         | 250,464                             | 165,300                        |
| 135,498<br>159,949                  | 58,942<br>79,495               | 59,843<br>11,985                    | 4,039                          | 4,215                               | 2,609                          | 263,901                             | 174,91                         |
| 530,662                             | 257,794                        | 82,272                              | 33,424                         | 20,807                              | 44,218                         | 974,865                             | 680,78                         |
|                                     |                                |                                     |                                |                                     |                                |                                     |                                |
| 178,429                             | 70,479                         | 48,279                              | 17,912                         | 2,429                               | 995                            | 309,380                             | 151,86<br>635,54               |
| 1,085,216                           | 410,212                        | 355,023                             | 104,377                        | 30,788                              | 10,947                         | 1,592,829<br>505,444                | 214,30                         |
| 138,563                             | 50,160                         | 252,734                             | 70,513                         | 3,821<br>51,696                     | 2,041<br>17,163                | 3,688,652                           | 1,377,52                       |
| 2,031,210                           | 635,769                        | 1,260,894                           | 404,747                        |                                     |                                |                                     |                                |
|                                     | 1,166,620                      | 1,916,930                           | 597,549                        | 88,734                              | 31,146                         | 6,096,305                           | 2,379,23                       |

Table 8.-Quantity and value of natural gas delivered to consumers

(Million cubic feet

|                     | Re                                    | esidential                          |                                |                                       | Commercia                           | ıl                             |
|---------------------|---------------------------------------|-------------------------------------|--------------------------------|---------------------------------------|-------------------------------------|--------------------------------|
| Region and State    | Number of<br>consumers<br>(thousands) | Quantity<br>(million<br>cubic feet) | Value<br>(thousand<br>dollars) | Number of<br>consumers<br>(thousands) | Quantity<br>(million<br>cubic feet) | Value<br>(thousand<br>dollars) |
| Mountain:           |                                       |                                     |                                |                                       |                                     |                                |
| Arizona             | 491                                   | 36,280                              | 49,631                         | 38                                    | 29,475                              | 22,932                         |
| Colorado            | 639                                   | 98,454                              | 81,262                         | 78                                    | 66,144                              | 45,999                         |
| Idaho               | 86                                    | 9.947                               | 15,129                         | 13                                    | 7.845                               | 9.022                          |
| Montana             | 155                                   | 24,923                              | 27,066                         | 21                                    | 16,786                              | 13,513                         |
| Nevada              | 88                                    | 9,048                               | 13,916                         | 4                                     | 8,942                               | 8,870                          |
| New Mexico          | 220                                   | 23,730                              | 23,812                         | $2\hat{4}$                            | 11,945                              | 8,419                          |
| Utah                | 261                                   | 48,647                              | 48,015                         | 16                                    | 8,982                               | 7,141                          |
| Wyoming             | 81                                    | 13,868                              | 10,610                         | 10                                    | 12,348                              | 6,680                          |
| Total               | 2,021                                 | 264,897                             | 269,441                        | 204                                   | 162,467                             | 122,576                        |
| Pacific:            |                                       |                                     |                                |                                       |                                     |                                |
| Alaska              | 23                                    | 5.024                               | 7.908                          | 3                                     | 5,681                               | 6,442                          |
| California          | 5,938                                 | 615,719                             | 714.850                        | 352                                   | 223,420                             | 193,258                        |
| Oregon              | 224                                   | 22,271                              | 39,228                         | 28                                    | 13.434                              | 19,746                         |
| Washington          | 291                                   | 36,468                              | 56,598                         | 38                                    | 31,310                              | 39,638                         |
| Total               | 6,476                                 | 679,482                             | 818,584                        | 421                                   | 273,845                             | 259,084                        |
| Total United States | 40,645                                | 4,879,387                           | 6,281,859                      | 3,335                                 | 2,288,041                           | 2,235,576                      |

Source: Federal Power Commission.

<sup>&</sup>lt;sup>1</sup> Includes refinery fuel use of 1,073,742 MMcf and 49,682 MMcf for carbon black production.

<sup>2</sup> Includes deliveries to municipalities and public authorities for institutional heating, street lighting, etc.

in 1973, by type of consumer and by State-Continued

at 14.73 psia)

| Indus                               | trial <sup>1</sup>             | Electric                            | utilities                      | Other co                            | nsumers <sup>2</sup>           | Tot                                 | tal                            |
|-------------------------------------|--------------------------------|-------------------------------------|--------------------------------|-------------------------------------|--------------------------------|-------------------------------------|--------------------------------|
| Quantity<br>(million<br>cubic feet) | Value<br>(thousand<br>dollars) | Quantity<br>(million<br>cubic feet) | Value<br>(thousand<br>dollars) | Quantity<br>(million<br>cubic feet) | Value<br>(thousand<br>dollars) | Quantity<br>(million<br>cubic feet) | Value<br>(thousand<br>dollars) |
| 65,707                              | 32,262                         | 56,501                              | 25,143                         | 2,337                               | 1,426                          | 190,300                             | 131,394                        |
| 87,325                              | 32,747                         | 58,602                              | 19,925                         | 3,700                               | 1,672                          | 314,225                             | 181,605                        |
| 32,062                              | 18,885                         |                                     | ,-                             | 1,542                               | 1,022                          | 51,396                              | 44,058                         |
| 37,898                              | 16,145                         | 2,322                               | 820                            | 2,357                               | 1,318                          | 84,286                              | 58,862                         |
| 10,342                              | 8,201                          | 40,538                              | 21,445                         | 4,202                               | 2,597                          | 73,072                              | 55,029                         |
| 60,318                              | 22,981                         | 65,125                              | 26,311                         | 13,624                              | 4,990                          | 174,742                             | 86,513                         |
| 58,114                              | 22,897                         | 4,302                               | 1,441                          | 15                                  | 12                             | 120,060                             | 79,506                         |
| 50,861                              | 15,970                         | 784                                 | 263                            | 858                                 | 302                            | 78,719                              | 33,825                         |
| 402,627                             | 170,088                        | 228,174                             | 95,348                         | 28,635                              | 13,339                         | 1,086,800                           | 670,792                        |
| 14,985                              | 10,864                         | 15,400                              | 7.176                          | 6,596                               | 3,087                          | 47,686                              | 35,477                         |
| 649,757                             | 346,320                        | 455,063                             | 204,323                        | 9,354                               | 4,742                          | 1,953,313                           | 1,463,493                      |
| 59,745                              | 41,762                         | 3,507                               | 1,704                          | 288                                 | 185                            | 99,245                              | 102,625                        |
| 121,697                             | 64,621                         |                                     |                                | 1,023                               | 654                            | 190,498                             | 161,51                         |
| 846,184                             | 463,567                        | 473,970                             | 213,203                        | 17,261                              | 8,668                          | 2,290,742                           | 1,763,106                      |
| 8,743,514                           | 4,378,142                      | 3,605,333                           | 1,362,982                      | 308,996                             | 215,554                        | 19,825,271                          | 14,474,11                      |

Table 9.—Production of natural gas liquids at natural gas processing plants, and disposition of residue gas in the United States in 1972-73, by State (Million cubic feet at 14.73 psia at 60° F unless otherwise stated)

|                                      | Total natural<br>gas liquids                                   |                             | Extrac-                          |                      |                       | Disposi                | Disposition of residue gas             | lue gas                                   |                         |                     |
|--------------------------------------|----------------------------------------------------------------|-----------------------------|----------------------------------|----------------------|-----------------------|------------------------|----------------------------------------|-------------------------------------------|-------------------------|---------------------|
| State                                | and ethane<br>production<br>(thousand<br>42-gallon<br>barrels) | Natural<br>gas<br>processed | tion<br>loss<br>(shrink-<br>age) | Used<br>at<br>plants | Returned to formation | Vented<br>or<br>flared | Shipped to trans-<br>mission companies | Direct<br>deliver-<br>ies to<br>consumers | Unac-<br>counted<br>for | Total               |
| 1972                                 |                                                                |                             |                                  | 0                    |                       | ;                      |                                        |                                           |                         |                     |
| ArkansasConference                   | 807                                                            | 386.664                     | 24.905                           | 3,056                | 201.614               | 7.028                  | 520,257                                | 3,262                                     | 3 931                   | 361,759             |
| Colorado                             | 2,994                                                          | 104,116                     | 4,114                            | 2,787                | 5,148                 | 240                    | 91,938                                 | 4 !                                       | -111                    | 100,002             |
| Florida, Pennsylvania, West Virginia | 8,118                                                          | 326,092                     | 11,625                           | 4,119                | 22                    | ;                      | 309,466                                | 797                                       | 63                      | 314,467             |
| Illinois and KentuckyKansas          | 30.604                                                         | 376,310<br>1.497.319        | 19,409                           | 9.268                | 1.884                 | -8<br>85               | 351,114 $1.374.268$                    | 71.362                                    | 138                     | 356,901             |
| Louisiana                            | 151,075                                                        | 6,337,328                   | 197,967                          | 106,614              | 123,331               | 3,022                  | 5,190,052                              | 719,411                                   | -3,069                  | 6,139,361           |
| Michigan                             | 1,228                                                          | r 43,810                    | 1,912                            | 1,624                | 811                   | 113                    | r 39,654                               | 100                                       | - 30 <del>4</del>       | r 41,898            |
| Montana and IItah                    | 823<br>2.841                                                   | 61,757                      | 4.221                            | 4.371                | 19.867                | 1.076                  | 31.718                                 | 070                                       | 504                     | 57.536              |
| Nebraska and North Dakota            | 2,429                                                          | 35,021                      | 3,738                            | 4,174                | 6,849                 | 83                     | 19,905                                 | 8                                         | 187                     | 31,283              |
| New Mexico                           | 38,197                                                         | 1,126,192                   | 54,157                           | 53,218               | 5,528                 | 2,714                  | 856,568                                | 146,671                                   | 7,336                   | 1,072,035           |
| Oklahoma                             | 41,707                                                         | 1,116,872                   | 56,376                           | 45,604               | 76,872                | 207                    | 842,165                                | 92,869                                    | 2,779                   | 1,060,496           |
| Texas                                | 319,061<br>10,706                                              | 8,139,408<br>298,439        | 470,105<br>16,228                | 317,136<br>9,692     | 931,461 $13,636$      | 9,825<br>566           | 5,566,168<br>248,432                   | 811,374<br>9,407                          | 33,339<br>478           | 282,211             |
| Total                                | 638,216 r                                                      | r 19,906,893                | 907,993                          | 588,045              | 1,392,101             | 24,970 r               | 24,970 r 15,053,996                    | 1,894,768                                 | 45,020 r                | 15,020 r 18,998,900 |
|                                      |                                                                |                             |                                  |                      |                       |                        |                                        |                                           |                         |                     |
| Arkansas                             | 653                                                            | 26.135                      | 1.118                            | 2.513                | 194                   | 00                     | 20.030                                 | 2.618                                     | -346                    | 25.017              |
| California and Alaska                | 12,906                                                         | 359,841                     | 18,484                           | 21,410               | 204,859               | 946                    | 73,907                                 | 40,326                                    | - 91                    | 341,357             |
| 1                                    | 3,402                                                          | 110,662                     | 4,674                            | 3,107                | 4,145                 | 60 T                   | 98,747                                 | 1 0                                       | 120                     | 105,988             |
| Florida, Pennsylvania, West Virginia | 8,554                                                          | 375,090                     | 12,385                           | 4,391                | 11                    | !                      | 357,722                                | 9 681                                     | 16                      | 362,705             |
| Kansas                               | 30,416                                                         | 1.503,142                   | 43.909                           | 9.746                | 1.678                 | 1.69                   | 1.866.017                              | 82.363                                    | 128                     | 1.459.751           |
| Louisiana                            | 150,607                                                        | 6,524,729                   | 206,833                          | 108,812              | 130,323               | 2,863                  | 5,213,818                              | 866,070                                   | -3,990                  | 6,317,896           |
| Michigan                             | 1,063                                                          | 37,384                      | 1,581                            | 1,295                | 1,778                 | 61                     | 32,743                                 |                                           | <b>4</b> 2              | 35,803              |
| Mississippi and Alabama              | 717                                                            | 29,081                      | 1,077                            | 1,590                | 3,605                 | ij                     | 20,746                                 | 1,991                                     | 72                      | 28,004              |
| Montana and Utah                     | 3,111                                                          | 56,960                      | 4,407                            | 4,328                | 18,847                | 873                    | 27,913                                 | !                                         | 592                     | 52,553              |
| Nebraska and North Dakota            | 2,246                                                          | 33,369                      | 3,443                            | 3,305                | 6,266                 | 2.8.7                  | 19,858                                 | 100                                       | 410                     | 29,826              |
| New Mexico                           | 39,500                                                         | 1,101,341                   | 287,00                           | 48,582               | 4,764                 | 3,178                  | 860,313                                | 122,409                                   | 6,818                   | 1,045,559           |
| Taxes                                | 43,718                                                         | 7,682,830                   | 01,047                           | 999,710              | 278,77                | 7,671                  | 897,361                                | 748 699                                   | 5,587                   | 7 917 687           |
| Wyoming                              | 10,588                                                         | 303,519                     | 16,093                           | 10,386               | 10,946                | 576                    | 257,539                                | 8,722                                     | -743                    | 287,426             |
| Total                                | 634,423                                                        | 19,679,291                  | 916,551                          | 571,706              | 1,288,157             | 17,515                 | 14,859,281                             | 1,961,183                                 | 64,898                  | 18,762,740          |
|                                      |                                                                |                             |                                  |                      |                       |                        |                                        |                                           |                         |                     |

r Revised.

Table 10.-Comparison of actual firm requirements and firm curtailments for year April 1973 through March 1974 with projections for year April 1974 through March 1975

(Million cubic feet)

|                                            |                           | otal for yea<br>1973-March |                                |                           | al for year<br>974-March 1 | .975                           |
|--------------------------------------------|---------------------------|----------------------------|--------------------------------|---------------------------|----------------------------|--------------------------------|
| <del>-</del>                               | I                         | Actual                     |                                | F                         | rojected                   |                                |
| _                                          | Firm<br>require-<br>ments | Volume<br>curtailed        | Per-<br>cent<br>cur-<br>tailed | Firm<br>require-<br>ments | Defi-<br>cienc <b>y</b>    | Per-<br>cent<br>Defi-<br>cient |
| Alabama-Tennessee Natural Gas Co           | 26,540                    |                            |                                | 31,678                    |                            |                                |
| Algonquin Gas Transmission Co              | 153,746                   | 9,882                      | 6.42                           | 166,956                   | 12,454                     | 7.46                           |
| Arkansas Louisiana Gas Co                  | 556,958                   | 164,200                    | 29.48                          | 547,725                   | 175,092                    | 31.96                          |
| Cities Service Gas Co                      | 557,176                   | 38,610                     | 6.92                           | 583,192                   | 95,203                     | 16.32                          |
| Colorado Interstate Gas Co                 | 389,174                   |                            |                                | 370,738                   |                            |                                |
| Columbia Gas Transmission Corp.1_          | 1,357,586                 |                            |                                | 1,465,366                 | 84,253                     | 5.74                           |
| Consolidated Gas Supply Corp. <sup>2</sup> | 700,691                   |                            |                                | 776,782                   | 7,965                      | 1.02                           |
| East Tennessee Natural Gas Corp            | 98,826                    |                            |                                | 109,106                   |                            |                                |
| Eastern Shore Natural Gas Corp             | 11,153                    | 42                         | .38                            | 10,848                    |                            |                                |
| El Paso Natural Gas Co.3                   | 1,801,829                 | 113,109                    | 6.27                           | 1,461,897                 | 248,268                    | 16.98                          |
| Florida Gas Transmission Co                | 28,090                    |                            |                                | 39,288                    |                            |                                |
| Great Lakes Gas Transmission Co            | 424,844                   |                            |                                | 419,066                   |                            |                                |
|                                            | 82,828                    |                            |                                | 81,153                    |                            |                                |
| Kansas-Nebraska Natural Gas Co             | 23,238                    |                            |                                | 25,292                    |                            |                                |
| Kentucky-West Virginia Gas Co              | 20,200                    |                            |                                | 20,202                    |                            |                                |
| Lawrenceburg Gas                           | 5,322                     |                            |                                | 5,419                     |                            |                                |
| Transmission Corp                          |                           | $1\overline{07}$           | $2.\overline{20}$              | 4,873                     | 705                        | 14.46                          |
| Louisiana-Nevada Transit Co                | 4,846                     |                            |                                | 14,319                    | 100                        | 14.40                          |
| McCulloch Interstate Gas Corp              | 17,740                    |                            |                                | 939,514                   |                            |                                |
| Michigan Wisconsin Pipe Line Co _          | 922,267                   |                            |                                |                           |                            |                                |
| Mid-Louisiana Gas Co                       | 32,042                    |                            |                                | 33,752                    |                            |                                |
| Midwestern Gas Transmission Co             | 349,004                   |                            |                                | 351,056                   |                            |                                |
| Mississippi River                          | 203,916                   | 2,601                      | 1.28                           | 222,582                   |                            |                                |
| Transmission Corp                          | 35,669                    | 2,001                      |                                | 38,242                    |                            |                                |
| Montana-Dakota Utilities Co                |                           | 221,823                    | $18.\overline{58}$             | 1.200,971                 | 208,792                    | 17.38                          |
| Natural Gas Pipeline Co. of America        | 1,193,911                 | 221,020                    |                                | 29,818                    | 200,102                    |                                |
| North Penn Gas Co                          | 28,084                    | $9.4\overline{46}$         | 1.06                           | 834,795                   | 6.375                      | .76                            |
| Northern Natural Gas Co                    | 884,834                   |                            | 12.79                          | 428,922                   | 37,758                     | 8.80                           |
| Northwest Pipeline Corp.3                  | 84,468                    | 10,807                     |                                |                           | 31,100                     | 0.00                           |
| Pacific Gas Transmission Co                | 423,279                   | 05.514                     | 4 50                           | 415,845                   | $70.7\overline{91}$        | 8.66                           |
| Panhandle Eastern Pipe Line Co             | 827,568                   | 37,514                     | 4.53                           | 817,162                   | 10,191                     | 0.00                           |
| South Georgia Natural Gas Co               | 10,694                    | ==                         | ==                             | 10,908                    |                            |                                |
| Southern Natural Gas Co                    | 597,284                   | 53                         | .01                            | 631,733                   |                            |                                |
| Tennessee Gas Pipeline Co.,                |                           |                            |                                |                           |                            |                                |
| a division of Tenneco, Inc                 | 1,353,094                 |                            |                                | 1,383,990                 |                            |                                |
| Tennessee Natural Gas Lines, Inc -         | 34,725                    |                            |                                | 24,817                    |                            | 10 ==                          |
| Texas Eastern Transmission Corp -          | 1,069,704                 | 133,212                    | 12.45                          | 1,098,682                 | 204,022                    | 18.56                          |
| Texas Gas Pipe Line Corp                   | 4,747                     |                            |                                | 2,432                     |                            | . ==                           |
| Texas Gas Transmission Corp                | 742,677                   |                            |                                | 737,118                   | 34,123                     | 4.62                           |
| Transcontinental Gas Pipe                  | •                         |                            |                                |                           |                            |                                |
| Line Corp                                  | 1,085,833                 | 160,557                    | 14.78                          | 1,103,725                 | 246,497                    | 22.33                          |
| Transwestern Pipeline Co                   | 358,355                   | 5,116                      | 1.42                           | 366,290                   | 63,653                     | 17.38                          |
| Trunkline Gas Co                           | 587,077                   | 157,019                    | 26.74                          | 592,855                   | 204,344                    | 34.46                          |
| United Gas Pipe Line Co                    | 1,565,442                 | 506,682                    | 32.36                          | 1,608,438                 | 658,738                    | 40.96                          |
| United Natural Gas Co                      | 97,259                    |                            |                                | 101,971                   |                            |                                |
| West Texas Gathering Co                    | 96,666                    |                            |                                | 90,114                    |                            |                                |
| Western Gas Interstate Co                  | 7,613                     |                            |                                | 8,421                     |                            |                                |
| Western Gas Interstate Of                  | 1,010                     |                            |                                |                           |                            |                                |
| Total                                      | 18,836,799                | 1,570,780                  | 8.34                           | 19,187,851                | 2,359,033                  | 12.29                          |
| Less pipeline to pipeline curtailments     | XX                        | 379,446                    | XX                             | XX                        | 513,263                    | XX                             |
| Net curtailments                           | XX                        | 1,191,334                  | XX                             | XX                        | 1,845,770                  | XX                             |
| net curtainments                           | AA                        | 1,101,004                  | 44                             | 4141                      | _,020,0                    |                                |

Source: Federal Power Commission.

XX Not applicable.

¹ Columbia Gas Transmission Corp. states that during the period November 1973 through March 1974 a 2% curtailment was imposed on all CD, WS and G customers; however, due to warmer than normal weather, energy conservation, etc., actual curtailment cannot be ascertained.

² Consolidated Gas Supply Corp. data is on an "as measured" basis.

³ On Jan. 31, 1974, El Paso divested its Northwest Division System properties to Northwest Pipeline Corp. Northwest has filed actual data for February and March 1974, as well as projected data for the period Apr. 1, 1974, through Mar. 31, 1975.

Table 11.-Comparison of actual interruptible sales and curtailments for year April 1973 through March 1974 with projected requirements and deficiencies for year April 1974 through March 1975

(Million cubic feet)

|                                                                                                                                       | Actus                                  | al-year Apı<br>March 197      |                                |                                        | d-year Apr<br>Iarch 1975               |                                    |
|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------|--------------------------------|----------------------------------------|----------------------------------------|------------------------------------|
|                                                                                                                                       | Inter-<br>ruptible<br>require-<br>ment | Vol-<br>ume<br>cur-<br>tailed | Per-<br>cent<br>cur-<br>tailed | Inter-<br>ruptible<br>require-<br>ment | Vol-<br>ume<br>defi-<br>cient          | Per-<br>cent<br>defi-<br>ciency    |
| Alabama-Tennessee Natural Gas Co _Algonquin Gas Transmission CoArkansas Louisiana Gas CoColorado Interstate Gas Co                    | 15,349<br>10,652<br>6,525<br>26,994    | 3,467<br>10,652<br>6,525      | 22.59<br>100.00<br>100.00      | 16,069<br>12,366<br>19,533<br>37,910   | 4,903<br>12,366<br>19,533<br>10,447    | 30.51<br>100.00<br>100.00<br>27.56 |
| East Tennessee Natural Gas Corp Eastern Shore Natural Gas Co El Paso Natural Gas Co. Florida Gas Transmission Co                      | 23,683<br>1,792<br>44,301<br>129,031   | 1,241<br>33,861<br>28,908     | 69.25<br>76.43<br>22.40        | 26,154<br>2,284<br>142,741             | $2,0\overline{06}$ $66,6\overline{49}$ | 87.83<br>46.69                     |
| Kansas-Nebraska Natural Gas Co<br>Louisiana-Nevada Transit Co<br>Mississippi River Transmission Corp _<br>Montana-Dakota Utilities Co | 33,034<br>1,989<br>35,292<br>20,970    | 17<br>29,304<br>256           | .85<br>83.03<br>1.22           | 29,657<br>5,585<br>35,285<br>21,742    | 2,174<br>35,285<br>330                 | 38.93<br>100.00<br>1.52            |
| Northern Natural Gas Co Northwest Pipeline Corp. Panhandle Eastern Pipe Line Co                                                       | 3,777<br>4,155<br>73,725               | 4,155<br>12,057               | $100.\overline{00} \\ 16.35$   | 16,247<br>11,902<br>72,129             | 9,484<br>20,959                        | 79.68<br>29.06                     |
| South Georgia Natural Gas Co<br>Southern Natural Gas Co<br>Tennessee Natural Gas Lines, Inc<br>Texas Gas Transmission Corp            | 16,499<br>168,041<br>15,479<br>4,020   | 8,357<br>97,023<br>1,909      | 50.65<br>57.74<br>12.33        | 16,285<br>135,325<br>15,949<br>4,080   | 8,357<br>97,729<br>4,415<br>3,107      | 51.32<br>72.22<br>27.68<br>76.15   |
| Transwestern Pipeline Co  Total Less pipeline to pipeline curtailments Net curtailments                                               | 1,038<br>636,346<br>XX<br>XX           | 237,732<br>29,420<br>208,312  | 37.36<br>XX<br>XX              | 1,029<br>622,272<br>XX<br>XX           | 297,744<br>46,380<br>251,364           | 47.85<br>XX<br>XX                  |

Source: Federal Power Commission.

XX Not applicable.

<sup>1</sup> On Jan. 31, 1974, El Paso divested its Northwest Division System properties to Northwest Pipeline Corp. Northwest has filed actual data for February and March 1974, as well as projected data for the period Apr. 1, 1974, through Mar. 31, 1975.

Table 12.-Marketed production, interstate shipments, and total consumption of natural gas in the United States, 1973 (Million cubic feet)

|                                                                                                                        |                                                     |                                                                                  | Interstate movements                                                                                | ments                                                                                                      |                                                        |                                                                       |                                                                                       |
|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| State and region                                                                                                       | Marketed<br>production                              | Receipts                                                                         | Deliveries                                                                                          | Net<br>receipts (+)<br>or<br>deliveries (-)                                                                | Change in<br>underground<br>storage                    | Transmission<br>loss and<br>unaccounted<br>for                        | Consump-<br>tion                                                                      |
| New England: Connecticut Maine, New Hampshire, Vermont Massachusetts Rhode Island Total                                | -11111                                              | 151,382<br>14,275<br>181,232<br>92,655<br>439,544                                | 87,523<br>-23,211<br>71,889<br>182,623                                                              | 63,859<br>14,275<br>158,021<br>20,766<br>256,921                                                           | 242<br>2,468<br>2,220                                  | 1,008<br>394<br>4,942<br>201<br>6,545                                 | 62,609<br>13,881<br>155,547<br>20,559<br>252,596                                      |
| Middle Atlantic: New Jersey New York Pennsylvania Total                                                                | 4,539<br>78,514<br>83,053                           | 779,068<br>944,949<br>2,048,053<br>3,772,070                                     | 474,786<br>249,573<br>1,276,144<br>2,000,453                                                        | 304,332<br>695,376<br>771,909<br>1,771,617                                                                 | 404<br>1,160<br>44,570<br>46,134                       | 2,362<br>16,208<br>22,486<br>41,055                                   | 301,566<br>682,547<br>783,368<br>1,767,481                                            |
| East North Central: Illinois Indiana Michigan Ohio Wisconsin Total                                                     | 1,638<br>276<br>44,579<br>93,610<br>                | 2,329,907<br>2,047,305<br>925,952<br>2,978,272<br>439,371<br>8,720,807           | 1,085,154<br>1,487,347<br>14,736<br>1,929,823<br>81,686<br>4,598,746                                | 1,244,753<br>559,958<br>911,216<br>1,048,449<br>367,685<br>4,122,061                                       | 74,622<br>14,151<br>31,695<br>25,411<br>166<br>145,945 | 8,069<br>3,783<br>2,168<br>12,492<br>-10,442                          | 1,163,800<br>542,300<br>921,932<br>1,104,156<br>367,961<br>4,100,149                  |
| West North Central:  Iowa Kansa Kansa Minnesota Misorri Nobraska North Dakota South Dakota                             | 898,118<br>33<br>3,836<br>27,703                    | 1,323,459<br>2,079,962<br>604,262<br>1,644,311<br>1,361,501<br>11,058<br>62,663  | 937,517<br>2,314,562<br>246,767<br>1,210,425<br>1,133,627<br>4,308<br>31,089                        | 385,942<br>-234,600<br>357,495<br>433,886<br>227,374<br>6,750<br>31,574                                    | 16,659<br>9,652<br>531<br>1,117<br>3,152               | 4,643<br>497<br>- 8,847<br>- 5,995<br>- 1,548<br>- 944<br>- 149       | 364,640<br>648,369<br>360,811<br>426,807<br>230,106<br>35,397<br>31,221               |
| South Atlantic: Delaware Florida Georgia Maryland and District of Columbia North Carolina Virginia West Virginia Total | 33,857<br>298<br>298<br>5,101<br>208,676<br>247,982 | 25,456<br>282,070<br>1,388,633<br>871,572<br>1,022,225<br>1,008,381<br>1,543,718 | 1,996<br>1,044,611<br>667,919<br>710,868<br>871,572<br>871,572<br>884,454<br>1,515,862<br>5,667,282 | 23,460<br>282,070<br>344,072<br>344,072<br>264,960<br>160,704<br>150,653<br>153,927<br>27,866<br>1,347,702 | 255<br><br><br>                                        | 256<br>1,548<br>-4,017<br>4,198<br>-2500<br>5,997<br>17,278<br>22,491 | 22,949<br>314,384<br>348,089<br>201,961<br>160,871<br>153,144<br>195,744<br>1,549,993 |

See footnotes at end of table.

Table 12.—Marketed production, interstate shipments, and total consumption of natural gas in the United States, 1973—Continued (Million cubic feet)

214,323 328,681 56,045 250,913 314,870 293,620 673,385 5,087,521 73,072 312,593 126,595 124,692 64,059 2,063,125 107,961 197,861 8,306,519 1,327,149 2.433.006 22,965,914 1,131,670 Consumb **Transmission** unaccounted loss and -2,517 8,650 -6,427 5,803 5,509 9,822 34,963 10,497 34,394 1,682 5,620 -345 -1,027 1,286 6,564 -5,211 2,275 -3,848 197 1,073 195,863 89,676 -303 9,671 Change in underground 554 16,245 6,488 1,580 24,867 586 84,911 22,202 1,404 4,565 3,043 1,627 2,640 17,165 16,327 26,815 09,103 441,504 receipts (+) deliveries (-) 259,033 213,412 215,225 300,983 181,800 -5,905,85774,358 —896,549 -48,346 1,636,723 108,347 988,653 -1,064,89686,609 -235,610-459,235898,576 955.732 -10,179,484201,852 -3,390,531Interstate movements 2,898,432 3,979,588 6,420,802 4,202,057 Deliveries 2,519,599 7,162,687 2,333,024 3,941,863 ,318,062 126,573 469,131 46,280 1,740,552 147,833 332,248 48,346 382,264 502,473 2 56,889,213 7,500,879 5,957,173 4,180,679 933,083 1,533,942 328,439 524,831 84,791 74,358 844,003 234,442 96,638 2,701,399 1,256,830 1,268,128 551,332 3,157,465 4,193,000 6,636,027 4,503,040 1,636,7<u>23</u> 490,611 2,831,659 Receipts 5,777,689 1 57,844,945 18,489,532 704,325 8,721,444 $1,218,7\overline{49}$  42,715 357,731157,529 8,242,423 1,770,980 8,513,850 11,271 62,396 99,706 20 131,007 449,369 580.376 22,647,549 173,393 56,175 18,684,782 Marketed production 813,220 Total United States Colorado New Mexico Washington State and region Tennessee Montana -----Texas ....-Alaska -----West South Central: (daho -----Alabama ..... East South Central: Mississippi Arkansas Oklahoma Wyoming California Jouisiana Kentucky Arizona Total Total Oregon Total Nevada Mountain: Utah

<sup>1</sup> Includes receipts from Canada of 437,857 MMcf into Idaho; 267,401 MMcf into Washington; 262,434 MMcf into Minnesota; 50,064 MMcf into Mortana; and from Mexico 1,632 MMcf into New York; 3,912 MMcf into Vermont; and from Mexico 1,632 MMcf into Texas; and liquefied natural gas (gaseous equivalent) imports into Massachusetts of 3,888 MMcf from Algeria and 667 MMcf from Ganada.

<sup>2</sup> Includes deliveries to Canada of 14,756 MMcf from Michigan; 88 MMcf from Montana and into Mexico; 9,522 MMcf from Texas; 4,477 MMcf from Arizona; and liquefied natural gas exports of 48,846 MMcf to Japan from Alaska.

Table 13.—Interstate pipeline movements of natural gas in the United States (Billion cubic feet at 14.73 psia)

|                                            |                               | Net receipts from | ots from                          |                         |                                                       | Net de       | Net deliveries to |          | Net                                                |
|--------------------------------------------|-------------------------------|-------------------|-----------------------------------|-------------------------|-------------------------------------------------------|--------------|-------------------|----------|----------------------------------------------------|
| State and region                           | Within region                 | egion             | Outside region                    | gion                    | Within region                                         |              | Outside region    | gion     | and                                                |
|                                            | State                         | Quantity          | State                             | Quantity                | State                                                 | Quantity     | State             | Quantity | deliveries $(-)^{1}$                               |
| New England:<br>Connecticut                | Massachusetts                 | 7.7               | New York                          | 143.7                   | Rhode Island                                          | 87.5         | 1                 | -        | 63.9                                               |
| Vermont                                    | Massachusetts<br>Rhode Island | 10.4<br>66.8      | 0                                 | 3.9<br>105.3            | Connecticut                                           | 7.7          |                   |          | $\begin{smallmatrix} 14.3\\158.0\end{smallmatrix}$ |
| Rhode Island                               | Connecticut                   | 87.5              | Canada<br>Algeria                 | 13.4                    | New Hampshire<br>———————————————————————————————————— | 10.4<br>66.8 | 1 ; 1             | 111      | 20.7                                               |
| Total                                      | 1,                            | 172.4             |                                   | 257.0                   | -                                                     | 172.4        |                   |          | 256.9                                              |
| Middle Atlantic:<br>New Jersey<br>New York | Pennsylvania<br>New Jersey    | 778.6<br>474.3    | Canada                            | <br>                    | New York                                              | 474.3        | Connecticut       | 143.7    | 304.3                                              |
| Pennsylvania                               |                               |                   | Maryland<br>West Virginia<br>Ohio | 655.2<br>820.7<br>564.6 | New Jersey<br>New York                                | 464.5        | Delaware          | 25.5     | 771.9                                              |
| Total                                      | 1                             | 1,717.4           | 1                                 | 2,046.0                 | 1                                                     | 1,717.4      | 1                 | 274.5    | 1,771.6                                            |
| East North Central:                        | - 1                           | ;                 | Iowa<br>Kentucky                  | 602.7<br>495.1          | Indiana<br>Wisconsin                                  | 673.5        |                   | 1 1      | 1,244.8                                            |
| Indiana                                    | Illinois<br>Ohio              | 673.5<br>844.3    |                                   | 1,018.4 1,160.2         | Ohio                                                  | 1,273.7      | Canada            | 14.7     | 560.0 $911.2$                                      |
| Ohio                                       | Wisconsin<br>Indiana          | 81.7<br>1,273.7   | Kentucky                          | $1,315\overline{.0}$    | Michigan                                              | 844.3        | Pennsylvania      | 564.6    | 1,048.4                                            |
| Wisconsin                                  | Illinois                      | 198.0             | Minnesota                         | 241.4                   | Michigan                                              | 81.7         | west virginia     | 101.4    | 357.7                                              |
|                                            | 1                             | 3,071.2           |                                   | 4,002.0                 | 7                                                     | 9,011.2      | 1                 | (10.0    | 4,122.1                                            |
| West North Central:                        | Missouri<br>South Dakota      | 192.0             | 11                                | 11                      | Minnesota                                             | 323.3        | Illinois          | 602.7    | 385.9                                              |
| Kansas                                     | Nebraska<br>                  | 1,119.6           | Oklahoma                          | 2,057.4                 | Missouri                                              | 929.9        | Colorado          | 51.7     | -234.6                                             |
| Minnesota                                  | Iowa<br>South Debote          | 323.3             | Canada                            | 262.4                   | Nebraska<br>North Dakota                              | 1,310.4      | Wisconsin         | 241.4    | 357.5                                              |
| Missouri                                   | Kansas                        | 929.9             |                                   | 714.3                   | Iowa                                                  | 192.0        | Illinois          | 1,018.4  | 433.9                                              |
| Nebraska                                   | Kansas                        | 1,310.4           |                                   | 1.2.4                   | Iowa<br>South Debote                                  | 1,119.6      | 11                | 11       | 227.9                                              |
| North Dakota                               | Minnesota<br>Nebraska         | 10.6              | Wyoming<br>Montana<br>Montana     | 40.5<br>40.5            | Iowa Minnesota                                        |              | Wyoming           | ¦ ¦9.    | 31.6                                               |
| Total                                      | 1 1                           | 3,910.0           |                                   | 3,123.8                 |                                                       | 3,910.0      |                   | 1,914.8  | 2,208.9                                            |

Table 13.-Interstate pipeline movements of natural gas in the United States-Continued

(Billion cubic feet at 14.73 psia)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Net receipts from | ots from                |          |                                  | Net deliveries to      | eries to             |          | Net                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------|-------------------------|----------|----------------------------------|------------------------|----------------------|----------|----------------------|
| State and region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Within region  | gion              | Outside region          | egion    | Within region                    | gion                   | Outside region       | zion     | and                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | State          | Quantity          | State                   | Quantity | State                            | Quantity               | State                | Quantity | deliveries $(-)^{1}$ |
| South Atlantic:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                   |                         |          |                                  |                        |                      |          |                      |
| Florida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Georgia        | 12                | Pennsylvania<br>Alahama | 25.5     | Maryland                         | 2.0                    | 1                    | 1        | 23.5                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | : 1               | Alabama                 | 1,388.7  | Florida                          | 7.1                    | Tennessee            | 15.3     | 344.1                |
| Maryland and District of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1              | 1                 | 1                       | 1        | South Carolina                   | 1,022.2                | 1                    | !        | 1                    |
| Columbia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | 2.0               | ;                       | }        | ł                                | 1                      | Pennsylvania         | 655.2    | 205.0                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | West Virginia  | 10.4              | !                       | ŀ        | ŀ                                | . !                    | . !                  | 1        | !                    |
| North Carolina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | South Carolina | 871.7             | ;                       | 1        | Vinginia                         | 0.017                  | !                    | ;        | 1001                 |
| South Carolina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Georgia        | 1,022.2           |                         |          | North Carolina                   | 871.6                  | !!                   | 1 1      | 150.6                |
| Virginia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | North Carolina | 710.9             | Tennessee               | 9.1      | District of Columbia             |                        | ł                    | ;        | 153.9                |
| West Virginia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | West Virginia  | 281.7             | Kentucky<br>Ohio        | 1,009.4  | Maryland<br>Maryland<br>Virginia | 833.7<br>10.4<br>281.7 | Pennsylvania         | 820.7    | 27.8                 |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | 3,753.6           | :                       | 2,839.0  | 1                                | 3,753,6                |                      | 1.491.2  | 1.347.7              |
| East South Central:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                   |                         |          |                                  |                        |                      |          |                      |
| Alabama                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mississippi    | 3,147.9           | !                       | }        | Tennessee                        | 1,225.2                | Florida              | 274.9    | 259.0                |
| Kentucky                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Tennessee      | 4.193.0           | 1                       | }        | :                                | }                      | Georgia              | 1,388.7  | 019.4                |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ;              | 1                 | 1                       | <b>:</b> | ; ;                              | 1 1                    | Indiana              | 1.160.2  | 1                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ;              | 1                 | ł                       | ;        | ;                                | 1                      | West Virginia        | 1,009.4  | 1 1                  |
| Wississippi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1              | ;                 | Automon                 | 100      | A 10 hours                       | 100                    | •                    | 1,315.0  | 10                   |
| THE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TAXABLE TA | ; ;            | 1                 | Louisiana               | 4 827 8  | лараша<br>Теппессее              | 3 262 5                | v irginia            | 9.1      | 210.2                |
| Tennessee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Alabama        | 1,225.2           | Georgia                 | 15.3     | Kentucky                         | 4,193.0                | <b>!</b>             |          | $301.\overline{0}$   |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mississippi    | 3,262.5           | 11                      | 1        | 1                                | 1                      |                      | ;        | 1                    |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | 11,828.6          | ;                       | 6,641.0  | 1                                | 11,828.6               |                      | 5,652.4  | 988.6                |
| West South Central:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1000           | 1 007 0           |                         |          |                                  |                        |                      | i        |                      |
| FIRST CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Oklahoma       | 110.9             | ;                       | ;        | 1                                | 1                      | Mississippi          | 1,787.9  | 181.8                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Texas          | 585.3             | 1 1                     | !        | ; ;                              | 1                      | 110000111            | 0        | !                    |
| Louisiana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Texas          | 919.7             | ; ;                     |          | Arkansas                         | 1,997.8                | Mississippi          | 4,827.8  | - 5.905.8            |
| Oklahoma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Texas          | 1,194.7           | 1                       | !        | Arkansas                         | 110.9                  | Colorado             | 91.2     | -1,065.0             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ;              | 1                 | ;                       | I<br>I   | 1                                | !                      | Missouri             | 1.       | ;                    |
| Texas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I<br>I         | <u> </u>          | 1                       | ľ        | Arkanese                         | 100                    | Namsas<br>New Mevico | 2,057.4  | 3 200                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ; ;            | 1 1               | 1 1                     | ! ;      | Louisiana                        | 919.7                  | Mexico               | 7.9      | 0,050.0              |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1              | 1                 | 1 1                     | 1 1      | Oklahoma                         | 1,194.7                | 1                    | <u></u>  | 1 1                  |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -              | 4,808.4           | -                       | 1        | 1                                | 4,808.4                |                      | 10,179.6 | -10,179.5            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                   |                         |          |                                  |                        |                      |          |                      |

| Mountain:<br>Arizona         | New Mexico            | 1,526.8       | 1                  | 11             | Nevada              |               | California<br>Mexico   | 1,269.2        | 215.9   |
|------------------------------|-----------------------|---------------|--------------------|----------------|---------------------|---------------|------------------------|----------------|---------|
| Colorado                     | New Mexico<br>Wyoming | 52.7<br>116.0 | Kansas<br>Oklahoma | 51.7 U<br>91.2 | Utah                | 107.6         | Nebraska<br>Workington | 498.7          | 12.12   |
| Idaho                        | Utah                  | 61.7          | Oregon<br>Canada   |                | Nevada<br>          |               | washington             | 40 5           | 128     |
| Montana                      | Wyoming               | 30.3          | Canada             | 50.0           | 11                  | 1 1           | North Dakota           | 1.3            | 1075    |
| Nevada                       | Idaho                 | 33.5<br>40.8  | 111                |                | ; ;                 | 1 1           |                        | ; ;            | 6.4.0   |
| New Mexico                   |                       | 1             | Texas              | 683.0          | Arizona<br>Jolorado | 1,526.8       |                        | 11             | 1       |
| Utah                         | Colorado              | 107.6         | 1 1                |                | Arizona<br>Idaho    | 3.6<br>61.7   | : 1                    | : 1;           | 0.00    |
| Wyoming                      | W yoming              | 0 1           | South Dakota       | 9.             | Jologrado           | 116.0<br>30.3 | Nebraska               | 45.6           | -239.0  |
| •                            | ;                     | 1 1           | i                  | ; <b>-</b>     | Jtah                | 44.8          | !                      | 1              | 1 0 0 1 |
| Total                        | ! !                   | 2,017.3       | 1                  | 1,327.8        | 1                   | 2,017.3       | -                      | 1,787.0        | -409.2  |
| ifie:                        |                       |               | 1                  | 1              | 1                   | :             | Japan                  | 1 48.3         | - 48.3  |
| California                   | Oregon                | 367.5         | Arizona            |                | California          | 367.5         | Idaho                  | 13.4           | 108.3   |
| Oregon Washington Washington | Wasnington            |               | Canada<br>Idaho    | 267.4          | Oregon              | 437.9         | : :                    | ; ;            | 201.9   |
|                              | !                     | 856.8         | Tuestio            | 1,960.3        |                     | 826.8         |                        | 61.7           | 1,898.6 |
| United States                | 1                     | 1             | Canada             | 1,013.1        | 11                  | 1 1           | Japan<br>Mexico        | 1 48.3<br>12.4 | 955.7   |
| Total United States          |                       | 1             |                    | 1,016.5        | !                   |               | -                      | 60.7           | 955.7   |

Data may not add to totals shown because of independent rounding. Liquefied natural gas.

Table 14.-Estimated total proved reserves of natural gas in the United States (Million cubic feet at 14.73 psia at 60° F)

|                        |                                       |                  | Ch               | Changes in re                    | reserves during                                     | 1973                                                |              | Re                      | Reserves as of | Dec. 31, 1973                 | 60                            |
|------------------------|---------------------------------------|------------------|------------------|----------------------------------|-----------------------------------------------------|-----------------------------------------------------|--------------|-------------------------|----------------|-------------------------------|-------------------------------|
| State                  | Reserves<br>as of<br>Dec. 31,<br>1972 | Revi-<br>sions   | Exten-<br>sions  | New<br>field<br>discov-<br>eries | New<br>reservoir<br>discoveries<br>in old<br>fields | Net change<br>in under-<br>ground<br>stor-<br>age 1 | Produc-      | Total<br>gas            |                | Asso-<br>ciated-<br>dissolved | Under-<br>ground<br>storage 3 |
| AlabamaAlaska          | 245,714                               | ı                | 114,138          | 6,000                            | ŀ                                                   | 1                                                   | 7,892        | 327,375                 | 309,338        | 18,037                        | 1                             |
| Arkansas               | 2,455,877                             | 1                | 13,870           | 1.000                            | 1.050                                               | 789                                                 | 130,815      | 31,642,626              | 5,210,166      | 26,432,460                    | 102 70                        |
| Colora do              | 5,328,862                             | 50,488           | 192,094          | 99,000                           | 11,850                                              | -4,101                                              | 478,356      | 5,199,837               | 2,380,028      | 2,540,137                     | 279,672                       |
| Florida                | 1,030,200                             | •                | 4.207            | 20,358                           | 1,956                                               | 2,060                                               | 134,276      | 1,868,299               | 1,592,362      | 250,904                       | 25,033                        |
| Illinois               | 545,361                               |                  | : 1              | ! !                              |                                                     | -163.974                                            | 2.840        | 380.525                 | 1 103          | 24 195                        | 955 997                       |
| Indiana                | 87,324                                |                  | 1                | 1                                | }                                                   | -19,787                                             | 1,364        | 66,682                  | 2,178          | 3,789                         | 60,715                        |
| Kentucky               | 11,938,716                            |                  | 311,385          | 31,124                           | 10                                                  | 16,687                                              | 899,460      | 11,722,395              | 11,411,765     | 203,533                       | 107,097                       |
| Louisiana 4            | 938,082                               |                  | 19,869           | 2,051                            | 1,559                                               | -31,979                                             | 62,396       | 864,921                 | 709,030        | 43,187                        | 112,704                       |
| Michigan               | 1.296.815                             |                  | 23,400           | 250 938                          | 1,209,264                                           | 0,547                                               | 8,457,596    | 69,151,613              | 57,239,668     | 11,732,832                    | 179,113                       |
| Mississippi            | 1,104,336                             | 123,374          | 20,281           | 36,691                           | 1.741                                               | -11.548                                             | 96.657       | 1,046,006               | 968 414        | 190,711                       | 624,597                       |
| Montana                | 1,064,036                             |                  | 29,224           | 16,861                           | 29,852                                              | 4,563                                               | 60,209       | 1,092,449               | 821,513        | 85,625                        | 185.311                       |
| New Mexico             | 10 995 647                            |                  | 525              | 17                               | 16                                                  | 438                                                 | 4,446        | 48,816                  | 13,779         | 8,795                         | 26,242                        |
| New York               | 139,184                               |                  | 996,057<br>4.725 | 61,751                           | 14,663                                              | $\frac{16,301}{-2.784}$                             | 1,194,706    | 12,488,363              | 9,814,816      | 2,657,246                     | 16,301                        |
| North Dakota           | 441,625                               |                  | 54,306           | 12                               |                                                     | 1                                                   | 37,099       | 448.184                 | 6,379          | 018 177                       | 104,500                       |
| Ohio                   | 1,146,677                             | -4,903           | 168,378          | 19,544                           | <b>!</b>                                            | -60,778                                             | 89,527       | 1,179,391               | 649,260        | 159,383                       | 370.748                       |
| Uklanoma               | 14,492,030                            |                  | 704,569          | 127,942                          | 7,390                                               | 10,004                                              | 1,777,787    | 14,098,735              | 11,183,035     | 2,675,836                     | 239,864                       |
| Termstvania            | 1,406,948                             | •                | 153,275          | 12,100                           | 2,000                                               | -1,428                                              | 78,514       | 1,494,381               | 876,818        | 12,050                        | 605,513                       |
| Utah                   | 1.022.110                             | -4, (19,011      | 67,710           | 19 505                           | 099,637                                             | - 1,172<br>17                                       | 8,240,478    | 84,936,502              | 60,530,423     | 24,268,979                    | 137,100                       |
| Virginia               | 35,921                                |                  | 6,300            | 100                              | !                                                   | Ī                                                   | 5,029        | 1,024,723               | 97,970         | 481,697                       | 1,650                         |
| West Virginia          | 2,345,957                             |                  | 148,710          | 8,478                            | 5,371                                               | -20,409                                             | 168,023      | 2,319,828               | 1.912.318      | 52.319                        | 355.191                       |
| Wyoming Other States 5 | 4,088,728<br>269.987                  | 87,240 — $3.195$ | 113,023          | 142,843                          | 54,065<br>400                                       | 382                                                 | 376,758      | 4,109,523               | 3,413,115      | 641,032                       | 55,376                        |
| Total United States _  | 266,084,846 -                         | -3,4             | 6,177,286        | 2,152,151                        | 1,970,368                                           | -354,282                                            | 22,605,406 2 | 249,950,207 172,245,938 | 172,245,938    | 73,587,760                    | 4,116,509                     |

<sup>1</sup> The net difference between gas stored in and gas withdrawn from underground storage reservoirs inclusive of adjustments and native gas transferred from other reserve categories. (Adjustments include change of reporting basis to report only gas reserves considered recoverable with a net result of a 781,819 MMcf reduction.

<sup>2</sup> Preliminary net production.

<sup>3</sup> Gas held inderground reservoirs (including native and net injected gas) for storage purposes.

<sup>4</sup> Includes offshore reserves.

<sup>5</sup> Includes Arizona, Iowa, Maryland, Minnesota, Missouri, South Dakota, Tennessee, and Washington.

Source: Committee on Natural Gas Reserves. American Gas Association.

NATURAL GAS 829

Table 15.-Estimated daily productive capacity of natural gas in the United States 1 (Million cubic feet per day at 14.73 psia at 60° F)

|              | Produ                   | ctive capaci                  | ty     |                | Produ                   | ctive capaci                  | ty     |
|--------------|-------------------------|-------------------------------|--------|----------------|-------------------------|-------------------------------|--------|
| State        | Non-<br>asso-<br>ciated | Associ-<br>ated-<br>dissolved | Total  | State          | Non-<br>asso-<br>ciated | Associ-<br>ated-<br>dissolved | Total  |
| Alabama      | 47                      | 12                            | 59     | New Mexico     | 2,579                   | 1,094                         | 3,673  |
| Alaska       | 549                     | 72                            | 621    | New York       | 12                      |                               | 12     |
| Arkansas     | 688                     | 37                            | 725    | North Dakota   | 1                       | 123                           | 124    |
| California 2 | 1.086                   | 744                           | 1,830  | Ohio           | 253                     | 32                            | 285    |
| Colorado     | 441                     | 71                            | 512    | Oklahoma       | 6,928                   | 1,720                         | 8,648  |
| Florida      |                         | 93                            | 93     | Pennsylvania   | 220                     | 3                             | 223    |
| Illinois     | 1                       | 7                             | 8      | Texas 2        | 21,726                  | 5,919                         | 27.645 |
| Indiana      |                         | 3                             | 3      | Utah           | 120                     | 84                            | 204    |
| Kansas       | 4.047                   | 182                           | 4.229  | Virginia       | 27                      |                               | 27     |
| Kentucky     | 215                     | 10                            | 225    | West Virginia  | 505                     | 5                             | 510    |
| Louisiana 2  | 23,072                  | 3,258                         | 26,330 | Wyoming        | 844                     | 370                           | 1,214  |
| Michigan     | 346                     | 131                           | 477    | Other States 3 | 2                       |                               | _ 2    |
| Mississippi  | 235                     | 60                            | 295    | Total          | 64,160                  | 14.071                        | 78.231 |
| Montana      | 209                     | 35                            | 244    | 10tai          | 04,100                  | 14,011                        | 10,201 |
| Nebraska     | 7                       | 6                             | 13     |                |                         |                               |        |

Source: Committee on Natural Gas Reserves, American Gas Association.

Table 16.-Underground storage statistics, December 31, 1973 (Million cubic feet at 14.73 psia at 60° F)

|               | Number                |            | Туре              | of re | servoir |                |                       | Total stored<br>gas in                               | Total                                           |
|---------------|-----------------------|------------|-------------------|-------|---------|----------------|-----------------------|------------------------------------------------------|-------------------------------------------------|
| State         | of<br>reser-<br>voirs | Dry<br>gas | Oil<br>and<br>gas | Oil   | Water   | Other          | Number<br>of<br>wells | underground<br>reservoirs<br>(million<br>cubic feet) | reservoir<br>capacity<br>(million<br>cubic feet |
| Arkansas      | 5                     | 5          |                   |       |         |                | 22                    | 10,829                                               | 42,540                                          |
| California    | 7                     | 3          | 4                 |       |         |                | 289                   | 156,196                                              | 381,459                                         |
| Colorado      | 6                     | 4          | 1                 |       |         | <sup>1</sup> 1 | 63                    | 18,641                                               | 30,007                                          |
| Ilinois       | 29                    | 8          |                   | 1     | 20      |                | 1,478                 | 571,314                                              | 951,933                                         |
| ndiana        | 28                    | 17         |                   |       | - 11    |                | 889                   | 72,981                                               | 159,914                                         |
| owa           | 7                     |            |                   |       | 7       |                | 318                   | 163,320                                              | 328,800                                         |
| Kansas        | 17                    | 17         |                   |       |         |                | 749                   | 83.594                                               | 116,333                                         |
| Kentucky      | 21                    | 15         | 2                 |       | -4      |                | 1,117                 | 83,231                                               | 203,376                                         |
| Louisiana     | -6                    | 6          |                   |       |         |                | 119                   | 174,162                                              | 239,488                                         |
| Maryland      | í                     | ĭ          |                   |       |         |                | 66                    | 27,983                                               | 64,770                                          |
| Michigan      | 36                    | 32         |                   | -1    |         | 22             | 2.547                 | 430,779                                              | 801.127                                         |
| Minnesota     | 1                     | 02         | -                 | -     | 1       |                | 45                    | 4,475                                                | 20,000                                          |
| Mississippi   | 4                     | 3          |                   |       | _       | 2 1            | 69                    | 78,442                                               | 109.517                                         |
| dissouri      | 1                     | 0          |                   |       | ~ī      | -              | 73                    | 27,997                                               | 45,000                                          |
| •             | 5                     | - <u>-</u> |                   |       | -       |                | 134                   | 139,173                                              | 213,152                                         |
|               |                       | 1          |                   |       |         |                | 15                    | 17.873                                               | 39,270                                          |
| Vebraska      | 1                     |            |                   |       | -ī      |                | 42                    | 6.792                                                | 53,876                                          |
| New Mexico    | 2<br>18               | 1<br>18    |                   |       | 1       |                | 738                   | 101,654                                              | 141.728                                         |
| New York      |                       | 22         |                   |       |         |                | 3,063                 | 373,114                                              | 505.389                                         |
| Ohio,         | 22                    |            |                   |       |         |                |                       |                                                      | 317,451                                         |
| Oklahoma      | 11                    | 10         | 1                 |       |         |                | 192                   | 225,127                                              | 783,450                                         |
| Pennsylvania  | 68                    | 68         | -=                |       |         |                | 2,141                 | 614,076                                              | 186.464                                         |
| Cexas         | 17                    | 6          | 5                 | 6     |         |                | 181                   | 91,463                                               |                                                 |
| Jtah          | 1                     |            |                   |       | 1       |                | . 8                   | 1,777                                                | 1,783                                           |
| Washington    | 2                     |            |                   |       | 2       |                | 61                    | 19,364                                               | 20,048                                          |
| West Virginia | 35                    | 34         | 1                 |       |         |                | 1,163                 | 369,031                                              | 435,893                                         |
| Wyoming       | 9                     | 8          |                   |       | 1       |                | 25                    | 42,844                                               | 86,002                                          |
| Total         | 360                   | 284        | 15                | 8     | 49      | 4              | 15,607                | 3,906,232                                            | 6,278,770                                       |

Source: American Gas Association.

During the heating season immediately following Dec. 31, 1973.
 Includes offshore productive capacity.
 Includes Arizona, Iowa, Maryland, Minnesota, Missouri, South Dakota, Tennessee, and Wash-

<sup>&</sup>lt;sup>1</sup> Coal. <sup>2</sup> Salt.

Table 17.-Natural gas stored in and withdrawal statistics

(Million cubic feet at 14.73 psia)

|                        |                | 1972      |                      |                 | 1973               |         |
|------------------------|----------------|-----------|----------------------|-----------------|--------------------|---------|
| State                  | Total          | Total     | Net                  | Total           | Total              | Net     |
|                        | stored         | withdrawn | stored               | stored          | withdrawn          | stored  |
| Alabama                | 568            | 439       | 129                  | 1,070           | 516                | 554     |
| Alaska                 |                |           |                      | 16,327          |                    | 16,327  |
| Arkansas               | 1,316          | 1,187     | 129                  | 2,218           | 1,632              | 586     |
| California             | 118,758        | 73,087    | 45,671               | 92,331          | 65,516             | 26,815  |
| Colorado               | 8,502          | 9,024     | 522                  | 10,673          | 5,383              | 5,290   |
| Connecticut            |                |           |                      | 683             | 441                | 242     |
| Delaware               |                | ·         |                      | 255             |                    | 255     |
| Illinois               | 237,098        | 197,188   | 39,910               | 233,11 <b>2</b> | 158,590            | 74,522  |
| Indiana                | 40,220         | 40,296    | -76                  | 46,617          | 32,466             | 14,151  |
| lowa                   | 53,137         | 45,858    | 7,279                | 57,011          | 40,352             | 16,659  |
| Kansas                 | 46,810         | 48,391    | -1,581               | 42,910          | 33,258             | 9,652   |
| Kentucky               | 51,437         | 43,138    | 8,299                | 54,392          | 38,147             | 16,245  |
| Louisiana              | 84,201         | 84,734    | 533                  | 151,287         | 66,376             | 84,911  |
| Maryland               | 7.920          | 8,192     | -272                 | 11,328          | 12,229             | 901     |
| Massachusetts          | 1,496          | 422       | 1.074                | 413             | 2,881              | 2,468   |
| Michigan               | 275,460        | 306,491   | -31,031              | 299,766         | 268,071            | 31,695  |
| Minnesota              | ,              | ,         | ,                    | 829             | 298                | 531     |
| Mississippi            | 83,548         | 7.944     | 75.604               | 29,089          | 22,601             | 6,488   |
| Missouri               | 10,188         | 8,692     | 1.496                | 10,847          | 9,730              | 1,117   |
| Montana                | 8.801          | 7.281     | 1,520                | 16,969          | 12,404             | 4,565   |
| Nebraska               | 8,837          | 2,282     | 6,555                | 5,280           | 2,128              | 3,152   |
| New Jersey             | 1,765          | 1,785     | -20                  | 1.867           | 1,463              | 404     |
| New Mexico             | 1,100          | 2,100     |                      | 5,067           | 2,024              | 3.043   |
| New York               | 32,777         | 42.894    | $-10.1\overline{17}$ | 40,277          | 39,117             | 1,160   |
| North Carolina         | 02,            | 12,001    | 20,221               | 97              | ,                  | 97      |
| Ohio                   | 163.884        | 185,454   | $-21.5\overline{70}$ | 179.078         | 153,667            | 25,411  |
| Oklahoma               | 59,061         | 66,852    | -7.791               | 88,000          | 65,798             | 22,202  |
| •                      | 55,001         | 00,002    | 1,101                | 189             | 00,100             | 189     |
| Oregon<br>Pennsylvania | 315,183        | 322,254   | $-7.07\overline{1}$  | 321,757         | 277,187            | 44,570  |
| Rhode Island           | 919,109        | 022,204   | 1,011                | 97              | 91                 | ,6      |
| South Carolina         |                |           |                      | 48              | 42                 | 6       |
|                        |                |           |                      | 1,606           | 26                 | 1,580   |
| Tennessee              | $87.2\bar{51}$ | 47.269    | 39.982               | 46,592          | 45,188             | 1,404   |
| Texas                  | 906            | 691       | 215                  | 2,320           | 693                | 1.627   |
| Utah                   | 278            | 93        | 185                  | 320             | 137                | 183     |
| Virginia               | 9,608          | 6.365     | 3,243                | 8,598           | 5.680              | 2,918   |
| Washington             |                | 194,109   | -22.163              | 184.984         | 161,474            | 23,510  |
| West Virginia          | 171,946        | 134,109   | -22,103              | 166             | 101,414            | 166     |
| Wisconsin              | 11 000         | 4.806     | $7.1\bar{9}\bar{0}$  | 9,854           | $7.2\overline{14}$ | 2,640   |
| Wyoming                | 11,996         |           |                      |                 |                    |         |
| Total                  | 1,892,952      | 1,757,218 | 135,734              | 1,974,324       | 1,532,820          | 441,504 |

Table 18.-Quantity and value of marketed production of natural gas in the United States

|               |                                                  | 1972                           |                                                                       |                                                  | 1973                           |                                                       |
|---------------|--------------------------------------------------|--------------------------------|-----------------------------------------------------------------------|--------------------------------------------------|--------------------------------|-------------------------------------------------------|
| State         | Quantity<br>(million<br>cubic feet) <sup>1</sup> | Value<br>(thousand<br>dollars) | Average<br>wellhead<br>value<br>(cents per<br>thousand<br>cubic feet) | Quantity<br>(million<br>cubic feet) <sup>1</sup> | Value<br>(thousand<br>dollars) | Average wellhead value (cents per thousand cubic feet |
| Alabama       | 3,644                                            | 1,282                          | 35.2                                                                  | 11,271                                           | 4,307                          | 38.2                                                  |
| Maska         | 125,596                                          | 18,463                         | 14.7                                                                  | 131,007                                          | 19,483                         | 14.9                                                  |
|               | 442                                              | 80                             | 18.1                                                                  | 125                                              | 23                             | 18.4                                                  |
| Arizona       | 166,522                                          | 28,808                         | 17.3                                                                  | 157,529                                          | 28,985                         | 18.4                                                  |
|               | 487,278                                          | 179,318                        | 36.8                                                                  | 449,369                                          | 167,615                        | 37.3                                                  |
| California    | 116,949                                          | 1,930                          | 16.5                                                                  | 137,725                                          | 24,304                         | 17.7                                                  |
| colorado      | 15,521                                           | 4,967                          | 32.0                                                                  | 33,857                                           | 11,613                         | 34.3                                                  |
| florida       | 1,194                                            | 334                            | 28.0                                                                  | 1,638                                            | 573                            | 35.0                                                  |
| llinois       | 355                                              | 55                             | 15.5                                                                  | 276                                              | 38                             | 13.8                                                  |
| ndiana        | 889,268                                          | 127,859                        | 14.4                                                                  | 893,118                                          | 138,521                        | 15.5                                                  |
| ansas         |                                                  | 15,976                         | 25.1                                                                  | 62,396                                           | 21,839                         | 35.0                                                  |
| Kentucky      | 63,648                                           | 1,626,426                      | 20.4                                                                  | 8,242,423                                        | 1,846,303                      | 22.4                                                  |
| Louisiana     | 7,972,678                                        | 1,020,420                      | 20.9                                                                  | 298                                              | 69                             | 23.3                                                  |
| Maryland      | 244                                              | 10,506                         | 30.7                                                                  | 44,579                                           | 17,495                         | 39.2                                                  |
| Michigan      | 34,221                                           | r 22,670                       | r 21.8                                                                | 99,706                                           | 22,846                         | 22.9                                                  |
| Mississippi   | 103,989                                          | 22,670                         | 24.9                                                                  | 33                                               | 8                              | 24.2                                                  |
| Missouri      | 9                                                | 4.117                          | 12.3                                                                  | 56,175                                           | 13,240                         | 23.6                                                  |
| Montana       | 33,474                                           | 4,117<br>619                   | 17.8                                                                  | 3,836                                            | 698                            | 18.2                                                  |
| Nebraska      | 3,478                                            |                                | 18.5                                                                  | 1,218,749                                        | 287,889                        | 23.6                                                  |
| New Mexico    | 1,216,061                                        | 225,420                        | 32.6                                                                  | 4,539                                            | 1.590                          | 35.0                                                  |
| New York      | 3,679                                            | 1,199                          | 32.6<br>16.8                                                          | 27,703                                           | 5,457                          | 19.7                                                  |
| North Dakota  | 32,472                                           | 5,455                          | 39.2                                                                  | 93,610                                           | 39,786                         | 42.5                                                  |
| Ohio          | 89,995                                           | 35,271                         |                                                                       | 1,770,980                                        | 334,110                        | 18.9                                                  |
| Oklahoma      | 1,806,887                                        | 294,523                        | 16.3                                                                  | 78,514                                           | 32,976                         | 42.0                                                  |
| Pennsylvania  | 73,958                                           | 22,389                         | 30.3                                                                  | 20                                               | 6                              | 30.0                                                  |
| Tennessee     | 25                                               | 8                              | 30.0                                                                  | 8,513,850                                        | 1,735,221                      | 20.4                                                  |
| Texas         | 8,657,840                                        | 1,419,886                      | 16.4                                                                  | 42,715                                           | 8,159                          | 19.1                                                  |
| Utah          | 39,474                                           | 6,711                          | 17.0                                                                  | 5,101                                            | 1.688                          | 33.1                                                  |
| Virginia      | 2,787                                            | 892                            | 32.0                                                                  |                                                  | 64,481                         | 30.9                                                  |
| West Virginia | 214,951                                          | 64,485                         | 30.0                                                                  | 208,676                                          | 64,749                         | 18.1                                                  |
| Wyoming       | 375,059                                          | 60,760                         | 16.2                                                                  | 357,731                                          |                                | 21.6                                                  |
| Total         | 22,531,698                                       | r 4,180,462                    | 18.6                                                                  | 22,647,549                                       | 4,894,072                      | 41.0                                                  |

<sup>&</sup>lt;sup>1</sup> Marketed production of natural gas represents gross withdrawals less gas used for repressuring and quantities vented and flared.

Source: Figures based on reports received from State agencies and Bureau of Mines estimates.

Table 19.-Average wholesale prices for 14 large cities and adjacent areas 1 (Cents per Mcf)

| Standard metropolitan                                                                                                                                                                                                                      | July 1, | July 1, | July 1, | July 1, | July 1, | July 1,           | July 1,           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|---------|---------|-------------------|-------------------|
| statistical area                                                                                                                                                                                                                           | 1965    | 1967    | 1969    | 1970    | 1971    | 1972 <sup>2</sup> | 1973 <sup>2</sup> |
| Baltimore Boston Chicago 3 Cleveland 3 Detroit Los Angeles 3 4 Minneapolis-St. Paul Newark (and New Jersey suburbs of New York 3 Philadelphia 3 Pittsburgh 3 St. Louis (Missouri portion only) San Francisco-Oakland 3 4 Washington, D.C.3 | 45.85   | 42.32   | 41.98   | 43.98   | 52.60   | 53.22             | 54.51             |
|                                                                                                                                                                                                                                            | 58.32   | 60.37   | 68.64   | 65.76   | 76.17   | 76.73             | 83.61             |
|                                                                                                                                                                                                                                            | 38.59   | 30.03   | 29.63   | 31.93   | 36.04   | 36.65             | 44.76             |
|                                                                                                                                                                                                                                            | 43.75   | 42.76   | 40.50   | 44.64   | 49.09   | 52.90             | 52.14             |
|                                                                                                                                                                                                                                            | 38.69   | 37.11   | 38.82   | 39.91   | 41.48   | 47.34             | 51.21             |
|                                                                                                                                                                                                                                            | 31.85   | 31.24   | 31.60   | 34.63   | 38.78   | 40.74             | 42.25             |
|                                                                                                                                                                                                                                            | 37.88   | 35.20   | 36.29   | 36.80   | 42.59   | 45.14             | 52.03             |
|                                                                                                                                                                                                                                            | 44.44   | 42.23   | 43.90   | 43.45   | 47.18   | 53.61             | 56.91             |
|                                                                                                                                                                                                                                            | 42.29   | 41.51   | 41.52   | 42.51   | 45.98   | 51.93             | 54.17             |
|                                                                                                                                                                                                                                            | 43.70   | 40.76   | 43.20   | 43.42   | 46.90   | 53.28             | 56.64             |
|                                                                                                                                                                                                                                            | 39.30   | 38.85   | 38.37   | 43.44   | 49.78   | 49.26             | 48.24             |
|                                                                                                                                                                                                                                            | 33.60   | 33.74   | 33.77   | 37.26   | 47.62   | 49.37             | 53.96             |
|                                                                                                                                                                                                                                            | 31.17   | 28.68   | 30.81   | 33.67   | 35.17   | 36.52             | 39.24             |
|                                                                                                                                                                                                                                            | 50.09   | 48.39   | 47.13   | 51.06   | 61.64   | 60.29             | 59.74             |

¹ The prices for July 1, 1965 through July 1, 1969 are from press releases issued by the FPC. The July 1, 1970, July 1, 1971 and Jan. 1, 1972 prices are based on 1970 sales volumes by pipelines to distributors (FPC Form 2). The prices for July 1, 1972 were based on 1971 sales volumes by pipelines to distributors, and the July 1, 1973 prices were based on 1972 sales volumes by pipelines to distributors (FPC Form 2).

² Reflects contingent rates in effect subject to subsequent reduction and refunds as of July 1, of year indicated.

² Wholesale service furnished by more than one pipeline company. Average prices are computed from the weighted average charges of all suppliers.

¹ Deliveries are not at city gates. Distributors must transport from State lines (California-Oregon and California-Arizona).

Source: Federal Power Commission.

Table 20.—Average price of residential heating gas by area 1966–1973 (Dollars per 10 therms)

| Standard metropolitan<br>statistical area                                                                                                                                       | Janu-<br>ary<br>1966                                                                             | Janu-<br>ary<br>1967                                                                                     | Janu-<br>ary<br>1968                                                                                     | Janu-<br>ary<br>1969                                                                    | Janu-<br>ary<br>1970                                                                             | Janu-<br>ary<br>1971                                                                                       | Janu-<br>ary<br>1972                                                                                       | Janu-<br>ary<br>1973                                                                                        | Janu-<br>ary<br>1974                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Atlanta Baltimore Boston Buffalo Chicago-Northwest Indiana Cincinnati Cleveland Dallas Detroit Houston Kansas City Milwaukee Minneapolis-St. Paul New York-Northeast New Jersey | 0.824<br>1.189<br>1.420<br>.867<br>.926<br>.764<br>.734<br>.852<br>.767<br>.582<br>1.067<br>.860 | 0.824<br>1.284<br>1.416<br>.878<br>.932<br>.757<br>.736<br>.727<br>.850<br>.767<br>.575<br>1.067<br>.823 | 0.824<br>1.225<br>1.426<br>.870<br>.944<br>.771<br>.729<br>.740<br>.850<br>.772<br>.569<br>1.067<br>.810 | 0.824<br>1.265<br>1.436<br>.905<br>.895<br>.752<br>.755<br>.850<br>.871<br>.871<br>.851 | 0.824<br>1.332<br>1.499<br>.932<br>.965<br>.799<br>.747<br>.866<br>.875<br>.681<br>1.247<br>.877 | 0.824<br>1.327<br>1.568<br>1.028<br>1.021<br>.812<br>.858<br>.849<br>.873<br>.928<br>.669<br>1.272<br>.913 | 1.009<br>1.513<br>1.802<br>1.218<br>1.110<br>.943<br>.896<br>.863<br>.953<br>.957<br>.717<br>1.350<br>.998 | 1.107<br>1.513<br>1.814<br>1.223<br>1.130<br>.974<br>.938<br>.890<br>.998<br>1.000<br>.720<br>.391<br>1.073 | 1.117<br>1.564<br>2.103<br>1.461<br>1.207<br>.992<br>.928<br>.888<br>1.155<br>1.042<br>.771<br>1.446<br>1.119 |
| Philadelphia Pittsburgh St. Louis San Francisco-Oakland Seattle Washington, D.C U.S. average                                                                                    | 1.370<br>.806<br>.839<br>.599<br>1.182<br>1.095                                                  | 1.380<br>.796<br>.839<br>.610<br>1.157<br>1.347                                                          | 1.379<br>.809<br>.838<br>.608<br>1.150<br>1.287                                                          | 1.380<br>.845<br>.842<br>.610<br>1.150<br>1.315                                         | 1.381<br>.880<br>.916<br>.622<br>1.159<br>1.362                                                  | 1.430<br>.970<br>.979<br>.714<br>1.159<br>1.360                                                            | 1.459<br>1.018<br>1.093<br>.762<br>1.249<br>1.505                                                          | 1.531<br>1.064<br>1.097<br>.840<br>1.270<br>1.569                                                           | 1.714<br>1.144<br>1.173<br>.920<br>1.530<br>1.599                                                             |

Source: Bureau of Labor Statistics, Monthly release, "Release Prices and Indexes of Fuels and Electricity" table 7; US. average, table 2.

Table 21.-Liquefied natural gas (LNG) exports, 1973

| _                           |                                                  | Exports to Japa                                        | n                |
|-----------------------------|--------------------------------------------------|--------------------------------------------------------|------------------|
|                             | Phillips Petroleum Co. from Port Nikiski, Alaska | Marathon<br>Oil Co.<br>from<br>Port Nikiski,<br>Alaska | Total<br>Exports |
| Volume shipped:             |                                                  |                                                        |                  |
| Barrels42 U.S. gallons      | 9,731,938                                        | 4,203,005                                              | 13,934,943       |
| Mcf equivalent @ 14.73 psia | 33,716,918                                       | 14,629,438                                             | 48,346,356       |
| Average Btu per cubic feet  | 1,015                                            | 1,015                                                  | 1,015            |
| Total dollars               | 19,506,041                                       | 8,463,862                                              | 27,969,903       |
| Average pricecents per Mcf  | 57.85                                            | 57.86                                                  | 57.86            |

Source: Federal Power Commission.

Table 22.-Natural gas exports via pipeline: Volume, value, and unit cost, 1972-1973

| F                                                                     | Point of exit                     | Gas volume<br>(thousand cubic f     | Gas volume<br>(thousand cubic feet at<br>14.73 psia and 60° F) | Percent<br>change    | Value<br>(thousand<br>dollars) | and<br>rs)          | Average price (cents per thousand cubic feet) | price<br>thousand<br>feet) |
|-----------------------------------------------------------------------|-----------------------------------|-------------------------------------|----------------------------------------------------------------|----------------------|--------------------------------|---------------------|-----------------------------------------------|----------------------------|
| Exporting companies                                                   |                                   | 1972                                | 1978                                                           |                      | 1972                           | 1973                | 1972                                          | 1973                       |
|                                                                       | EXPORTS                           | EXPORTS TO CANADA                   |                                                                |                      |                                |                     |                                               |                            |
| Interstate company:<br>Panhandle Eastern Pipe Line Co                 | Detroit River-River Rouge, Mich - | 15,426,455                          | 14,735,650                                                     | -4.5                 | 7,746                          | 8,090               | 50.21                                         | 54.91                      |
| Intrastate company:                                                   | Sweeterses Mont                   | 126,223                             | 87,822                                                         | -30.4                | 47                             | 33                  | 37.24                                         | 37.57                      |
|                                                                       |                                   | 15,552,678                          | 14,823,472                                                     | -4.7                 | 7,793                          | 8,123               | 50.11                                         | 54.80                      |
|                                                                       | EXPORTS                           | EXPORTS TO MEXICO                   |                                                                |                      |                                |                     |                                               |                            |
| Interstate company:<br>El Paso Natural Gas Co                         | Naco, Ariz                        | 4,521,863                           | 4,477,062                                                      | -1.0                 | 1,860                          | 2,001               | 41.13                                         | 44.70                      |
| Intrastate companies: Del Norte Natural Gas Co Texas Gas Utilities Co | El Paso, Tex                      | 2,719,557<br>1,825,244<br>4,281,604 | 3,770,477<br>1,489,487<br>3,011,513                            | 38.6<br>18.4<br>29.7 | 1,300<br>608<br>1,078          | 1,916<br>589<br>872 | 47.81<br>33.31<br>25.18                       | 50.82<br>39.54<br>28.97    |
| 1 1                                                                   |                                   | 1,230,715                           | 1,250,722                                                      | 1.6                  | 3,309                          | 3,804               | 26.25<br>32.90                                | 39.96                      |
| Total Mexico                                                          |                                   | 14,578,983                          | 13,999,261                                                     | -4.0                 | 5,169                          | 5,805               | 35.45                                         | 41.48                      |
| Grand total exports                                                   |                                   | 30,131,661                          | 28,822,733                                                     | -4.3                 | 12,962                         | 13,928              | 43.02                                         | 48.33                      |
|                                                                       |                                   |                                     |                                                                |                      |                                |                     |                                               |                            |

<sup>1</sup> In addition Northern Natural Gas Co. delivered 28,600,169 Mcf produced from the Tiger Ridge Area, Montana, to Consolidated Natural Gas Co. at a point on the Montana-Sasketchewan border for transportation and received 28,337,735 Mcf into its line again on the Minnesota-Manitoba border, near Emerson, Manitoba.

Source: Federal Power Commission.

Table 23.-Natural gas imports via pipeline: Volume, value, and unit cost, 1972-73

| Importing companies                                                               | Point of entry                          | Gas volume<br>(thousand cubic feet a | Gas volume<br>(thousand cubic feet at<br>14.73 psia and 60° F) | Percent | Value<br>(thousar | Value<br>(thousand<br>dollars) | Average (cents per cubic | Average price<br>(cents per thousand<br>cubic feet) |
|-----------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------|----------------------------------------------------------------|---------|-------------------|--------------------------------|--------------------------|-----------------------------------------------------|
|                                                                                   |                                         | 1972                                 | 1973                                                           | cinange | 1972              | 1973                           | 1972                     | 1973                                                |
|                                                                                   | IMPOF                                   | IMPORTS FROM CANADA                  |                                                                |         |                   |                                |                          |                                                     |
| Interstate companies:<br>El Paso Natural Gas Co                                   | Whatcom, Wash                           | 255,495,902                          | 267,400,874                                                    | 4.7     | 83.210            | 96.367                         | 39.57                    | 36.04                                               |
| Great Lakes Gas Transmission Co                                                   | Eastport, Idaho<br>Noyes, Minn          | 50,945,293<br>111,340,821            | 50,427,625<br>1117,355,103                                     | -2.0    | 16,511            | 17,881                         | 32.40                    | 35.46                                               |
| Inter-City Minnesota Pipeline Ltd. <sup>2</sup><br>Michigan Wisconsin Pipeline Co | Warroad, Minn. <sup>3</sup>             | 8,098,257                            | 4 7,898,143                                                    | -2.5    | 3,595             | 3,333                          | 44.39                    | 42.21                                               |
| Midwestern Gas Transmission Co                                                    | do                                      | 119,116,649                          | 118,931,089                                                    | <br>  6 | 35,927            | 0,232<br>35,745                | 33.56<br>30.16           | 34.15<br>30.05                                      |
| racinc Gas Transmission Co<br>Tennessee Gas Pipeline Co                           | Eastport, Idaho                         | 383,890,217<br>3,672,185             | 387,429,680                                                    | 6.      | 110,352 $1,913$   | 138,524                        | 28.75<br>52.09           | 35.75                                               |
| Total interstate                                                                  | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 950,859,324                          | 967,692,514                                                    | 1.8     | 293,571           | 336,518                        | 30.87                    | 34.78                                               |
| Intrastate companies:<br>The Montana Power Co<br>Do                               | Whitlash, Mont                          | 16,390,602                           | 19,349,636                                                     | 18.1    | 3,905             | 5,377                          | 23.82                    | 27.79                                               |
| St. Lawrence Gas Co., Inc.                                                        | Massena, N.Y. Highgate Falls, Vt        | 5,898,854<br>3,745,406               | 5,546,469<br>3,912,384                                         |         | 3,417<br>2,245    | 10,084<br>3,318<br>2,453       | 52.93<br>57.93<br>59.95  | 52.83<br>59.83<br>62.70                             |
| Total intrastate                                                                  |                                         | 58,233,433                           | 59,523,246                                                     | 2.2     | 16,950            | 21,232                         | 29.71                    | 35.67                                               |
| Total Canada                                                                      |                                         | 1,009,092,757                        | 1,027,215,760                                                  | 1.8     | 310,521           | 357,750                        | 30.77                    | 34.83                                               |
|                                                                                   | IMPOR                                   | IMPORTS FROM MEXICO                  |                                                                |         |                   |                                |                          |                                                     |
| Interstate company:     Texas Eastern Transmission Corp Intrastate company:       | McAllen, Tex                            | 8,109,658                            | 1,632,007                                                      | -79.9   | 1,340             | 271                            | 16.52                    | 16.62                                               |
| City of Roma, Texas                                                               | Roma, Tex                               | 30,884                               | 1                                                              | -       | 7                 | ;                              | 22.67                    | ;                                                   |
| lotal Mexico                                                                      |                                         | 8,140,542                            | 1,632.007                                                      | -80.0   | 1,346             | 271                            | 16.55                    | 16.62                                               |
| Grand total imports                                                               |                                         | 1,017,233,299 1,028,847,767          | 1,028,847,767                                                  | 1.1     | 311,868           | 358,021                        | 30.66                    | 34.80                                               |

Trans-Canada 45 Et. Clair and Sault Ste. Marie, Mich.
Trans-Canada 45 Et. Clair and Sault Ste. Marie, Mich.
Trans-Canada 45 Et. Clair and Sault Ste. Marie, Mich.
Trans-Cate Minnesota Pipelines Ltd. replaced ICG Transmission Ltd., which was listed as an interstate company, as holder of authorization in Docket "Sep-Order 9/26/73.
To CPTO-289-Order 9/26/73.
The conder port of entry is International Falls, Minn.

In addition to this amount 10,289,301 Mcf were received from Trans-Canada Pipe Line Ltd. for transportation and redelivery to Trans-Canada at Baudette, Minn.

Source: Federal Power Commission Form 14.

Table 24.-Liquefied natural gas (LNG) imports, 1973

|                                | ]                                                        | From Alger                                                | ia.              |                                                                  | F                 | rom Cana                          | da 1            |                  |
|--------------------------------|----------------------------------------------------------|-----------------------------------------------------------|------------------|------------------------------------------------------------------|-------------------|-----------------------------------|-----------------|------------------|
| _                              | Boston<br>Gas Co.,<br>received<br>at<br>Boston,<br>Mass. | Distrigas<br>Corp.<br>received<br>at<br>Everett,<br>Mass. | Total<br>Algeria | Lowell<br>Gas Co.,<br>received<br>at<br>Tewks-<br>bury,<br>Mass. | dence<br>Gas Co., | Taunton<br>Gas,<br>received<br>at | Total<br>Canada | Total<br>imports |
| Volume received:               |                                                          |                                                           |                  |                                                                  |                   |                                   |                 |                  |
| Barrels<br>42 U.S. gallons     | 95,093                                                   | 879,706                                                   | 974,799          | 50,241                                                           | 33,094            | 109,253                           | 192,588         | 1,167,387        |
| Mcf equivalent @<br>14.73 psia | 320,576                                                  | 3,067,734                                                 | 3,388,310        | 173,775                                                          | 114,871           | 378,571                           | 667,217         | 4,055,527        |
| Average Btu per<br>cubic feet  | 1,142                                                    | 1,067                                                     | 1,074            | 1,077                                                            | 1,051             | 1,058                             | 1,062           | 1,072            |
| Value:<br>Total dollars        | 694,795                                                  | 2,265,757                                                 | 2,960,552        | 431,974                                                          | 273,820           | 584,660                           | 1,290,454       | 4,251,006        |
| Average price<br>cents per Mcf | 216.73                                                   | 73.86                                                     | 87.38            | 248.58                                                           | 238.37            | 154.44                            | 193.41          | 104.82           |

<sup>&</sup>lt;sup>1</sup> Imported by truck.

Source: Federal Power Commission.

Table 25.-Natural gas: World production by country

(Million cubic feet)

|                     | 19                   | 71           | 19                   | 72                | 197                  | З р            |
|---------------------|----------------------|--------------|----------------------|-------------------|----------------------|----------------|
| Country 1           | Gross                | Marketed     | Gross                | Marketed          | Gross                | Marketed       |
| Country             | production 2         | production 3 | production 2         | production 3      | production 2         | production     |
| North America:      |                      |              |                      |                   |                      |                |
| Barbados            | 129                  | 106          | 123                  | 85                | e 120                | e 8            |
| Canada              | 2,825,904            | 2,499,024    | 3,316,153            | 2,913,537         | 3,587,000            | 3,152,41       |
| Mexico              | 643,416              | 478,552      | 660,232              | 496,019           | 676,750              | ° 510,00       |
| Trinidad and        | 0.00,000             | ,            |                      |                   |                      |                |
| Tobago              | 109,814              | 65,074       | 104,307              | 67,150            | 119,979              | 64,38          |
| United States       | 24.088.031           | 22,493,012   | 24,016,109           | 22,531,698        | 24,067,202           | 22,647,54      |
| South America:      | ,,                   | ,,           |                      |                   |                      |                |
| Argentina           | r 286,651            | r 228,121    | 277,643              | 218,350           | 314,807              | e 235,00       |
| Bolivia             | r 81,101             | 1.427        | 120,965              | 37,552            | 151,199              | 57,85          |
| Brazil              | 41,566               | e 8,300      | 43,861               | e 8,500           | 41,668               | e 8,30         |
| Chile 4             | 282,034              | 126,252      | 285,074              | 144,051           | 273,209              | 144,98         |
| Colombia            | 111,288              | 51.186       | 115,622              | 60,988            | 113,229              | 59,96          |
| Ecuador             | 9,620                | e 500        | 5,328                | e 500             | 12,269               | e 1,00         |
| Peru                | r 67,915             | r 16.937     | 64,440               | 17,164            | e 68,000             | • 18,00        |
| Venezuela           | 1.680.252            | 368,230      | 1,625,196            | 387,723           | 1,745,726            | 459,94         |
|                     | 1,000,202            | 000,200      | 1,020,100            |                   |                      |                |
| Europe:<br>Albania  | 5 4.453              | 4,453        | e 5 5.032            | e 5.032           | e 5 5,500            | e 5,5(         |
|                     |                      | 64,293       | 69,327               | 65,459            | 80,163               | 80.09          |
| Austria             | 66,790               | 1,780        | <sup>5</sup> 1,695   | 1,695             | e 5 1.900            | e 1.90         |
| Belgium 6           | 5 1,780              | r 11,547     | 5 7,769              | 7,769             | e 5 8,000            | e 8,00         |
| Bulgaria            | r 5 11,547           | 43,190       | 5 41,212             | 41,212            | e 5 41,000           | e 41.00        |
| Czechoslovakia 7    | <sup>5</sup> 43,190  | 45,190       | 934                  | (8)               | 2,191                | (8)            |
| Denmark e           |                      | 050 400      | 386,694              | 260,374           | 387,118              | ` 266,30       |
| France              | 380,690              | 252,463      | 300,034              | 200,012           | 001,110              |                |
| Germany,            |                      |              | 5 100 COF            | 183,635           | 5 245,000            | 245,0          |
| East 6              | 5 100,752            | 100,752      | <sup>5</sup> 183,635 | 100,000           | - 240,000            | 240,0          |
| Germany,            |                      |              | 440 000              | COO 710           | e 660,000            | e 650,0        |
| West 7              | 562,779              | 555,194      | 643,275              | 633,713           | <sup>5</sup> 169.933 | 169.9          |
| Hungary 9           | <sup>5</sup> 131,123 | 131,123      | 5 145,143            | 145,143           |                      | 541.2          |
| Italy               | r 5 472,845          | r 472,845    | 5 501,009            | 501,009           | 5 541,267            | 2,494,6        |
| Netherlands 7 _     | 1,546,669            | 1,536,499    | 2,063,073            | 2,052,443         | 2,501,467            | (8)            |
| Norway e            | 3,123                | (8)          | 18,200               | (8)               | 16,759               | 212,8          |
| Poland 7            | r 5 190,098          | r 190,098    | <sup>5</sup> 205,636 | 205,636           | 5 212,840            | e 980.0        |
| Romania             | 943,568              | r 891,726    | 978,667              | 925,663           | 1,032,522            | • 980,0<br>• 1 |
| Spain               | r 5 141              | r 141        | e 5 85               | e 85              | • 500                |                |
| U.S.S.R             | • 7.900,000          | 7,500,729    | • 8,200,000          | 7,818,1 <b>36</b> | • 8,800,000          | 8,334,2        |
| United              | .,,                  |              |                      |                   |                      | - 000 0        |
| Kingdom 7 -         | r 5 656,814          | r 656.814    | 5 942,826            | 942,826           | e 5 980,000          | • 980,0        |
| Yugoslavia -        | 5 40,647             | 40,647       | <sup>5</sup> 43,861  | 43,861            | <sup>5</sup> 46,933  | 46,9           |
| Africa:             | 10,011               | ,            |                      |                   |                      |                |
| Algeria             | e 260,000            | 105,096      | e 350,000            | e 110,000         | e 360,000            | e 150,0        |
|                     | e 27,000             | e 1,500      | 31,393               | e 2,000           | e 36,000             | e 2,3          |
| Angola<br>Congo     | - 21,000             | 2,500        | ,                    | • • •             |                      |                |
|                     | r 5 535              | r 535        | <sup>5</sup> 523     | 523               | 5 551                | 5              |
| $(Brazzaville)_{-}$ | 099                  | - 000        | 020                  |                   |                      |                |

See footnotes at end of table.

Table 25.-Natural Gas: World production by country-Continued (Million cubic feet)

| _                | 1:                               | 971                                 | 19                               | 72                     | 197                    | 73 p                   |
|------------------|----------------------------------|-------------------------------------|----------------------------------|------------------------|------------------------|------------------------|
| Country 1        | Gross<br>production <sup>2</sup> | Marketed<br>production <sup>3</sup> | Gross<br>production <sup>2</sup> | Marketed<br>production | Gross<br>production 2  | Marketed<br>production |
| Africa—Continued |                                  |                                     |                                  |                        |                        |                        |
| Egypt 6          | 31.000                           | 0.000                               |                                  |                        |                        |                        |
| Gabon            |                                  | 3,000                               | r 25,000                         | 2,500                  | 18,000                 | 2,000                  |
| Libya            | 10,594                           | r 1,095                             | e 12,000                         | 1,201                  | e 14,000               | 1,402                  |
|                  | 556,531                          | e 25,000                            | 496,075                          | e 100,000              | 562,900                | e 160,000              |
| Morocco          | 1,680                            | 1,608                               | 1,822                            | 1.763                  | 2,302                  | e 2.200                |
| Nigeria          | r 458,167                        | r 3,920                             | 604,639                          | 5.615                  | e 680,000              | e 6,000                |
| Rwanda e         | <sup>5</sup> 35                  | 35                                  | 5 35                             | 35                     | <sup>5</sup> 35        | 35                     |
| Tunisia          | 327                              | 35                                  | 1.353                            | 699                    |                        |                        |
| Asia:            | <b>02.</b>                       | 00                                  | 1,000                            | 099                    | 4,513                  | 4,018                  |
| Afghanistan 10   | r 5 93,054                       | r 93.054                            | 5 100 000                        | 100 000                |                        |                        |
| Bahrain          | 25,364                           |                                     | 5 102,200                        | 102,200                | e <sup>5</sup> 110,000 | e 110,000              |
| Bangladesh _     |                                  | 17,902                              | 63,419                           | r e 40,000             | 82,855                 | 56,575                 |
|                  | 5 20,000                         | 20,000                              | <sup>5</sup> 21,900              | 21,900                 | <sup>5</sup> 26,000    | 26,000                 |
| Brunei           | e 120,000                        | r 7,769                             | e 170,000                        | 15.997                 | e 220,000              | ° 200,000              |
| Burma 11         | e 8,600                          | 2,333                               | 11.300                           | 3,900                  | e 12,000               | 5,400                  |
| China, People's  |                                  | -                                   | ,                                | 0,000                  | 12,000                 | 0,400                  |
| Republic of e    | r 185,000                        | 80,000                              | r 215.000                        | 90,000                 | 260,000                | 100.000                |
| India            | r 53,290                         | r 26,886                            | 55,224                           |                        |                        |                        |
| Indonesia        | 121,158                          | 44.449                              |                                  | 32,736                 | 59,124                 | 32,242                 |
| Iran             |                                  |                                     | 146,481                          | 43,562                 | 186,137                | 28,425                 |
|                  | 1,305,228                        | 298,962                             | 1,469,730                        | 447,908                | 1,698,691              | 701,678                |
| Iraq             | e 220,000                        | 30,722                              | e 185,000                        | e 30,000               | e 250,000              | e 35,000               |
| Israel           | <sup>5</sup> <b>4,378</b>        | 4,378                               | <sup>5</sup> 4,386               | 4.386                  | <sup>5</sup> 1.911     | 1,911                  |
| Japan 7 12       | r 96,354                         | r 95.574                            | 96,763                           | 95,677                 | 100,442                | 93,908                 |
| Kuwait 13        | 643,053                          | e r 185,000                         | 660,000                          | 189,437                | e 605,000              | ° 190,000              |
| Malaysia         |                                  | ,                                   | 000,000                          | 100,401                | - 000,000              | ° 190,000              |
| (Sarawak) _      | e 25.000                         | 2,297                               | e 35.000                         | 0.005                  |                        |                        |
| Oman e           | 90,000                           | 1,500                               |                                  | 3,325                  | e 35,000               | 3,187                  |
| Pakistan         | <sup>5</sup> 107,680             |                                     | 90,000                           | 1,500                  | 90,000                 | 1,500                  |
|                  |                                  | 107,680                             | <sup>5</sup> 118,680             | 118,680                | 5 132,100              | 132,100                |
| Qatar<br>Saudi   | 159,418                          | 46,480                              | ° 180,000                        | e 52,000               | 246,185                | 55,828                 |
| Arabia 13        | 938,347                          | 96,050                              | 1.126.974                        | 98.578                 | e 1,440,000            | ° 105,000              |
| Syria e          | 36,000                           | 7.000                               | 40.000                           |                        |                        |                        |
| Taiwan           | 38,520                           | 38,427                              |                                  | 8,000                  | 37,000                 | 7,000                  |
|                  |                                  |                                     | 44,632                           | 44,186                 | 51,358                 | e 51,000               |
| United Arab      | 25,000                           | 5,000                               | 24,000                           | 5,000                  | 24,000                 | 5,000                  |
| Emirates:        |                                  |                                     |                                  |                        |                        |                        |
| Abu Dhabi        | 365,543                          | 39,749                              | e 412,000                        | e 45,000               | 520,000                | e 55.000               |
| Dubai e _        | 36,000                           | 10,000                              | 44,000                           | 12,000                 | 55,000                 | e 15,000               |
| Oceania :        | 23,000                           | 10,000                              | 44,000                           | 12,000                 | 99,000                 | ~ 19,000               |
| Australia        | 5 79.049                         | 79.049                              | 5 110 700                        | 110 500                | * * * * * * * * * *    |                        |
| New Zealand      |                                  |                                     | 5 112,583                        | 112,583                | <sup>5</sup> 144,765   | 144,765                |
| riew Lealand_    | 10,627                           | 8,592                               | 12,484                           | e 9,000                | 14,824                 | 14,750                 |
| Total            | r 49,437,262 r                   | 40,281,692                          | 52,037,722                       | 42,568,899             | 54,984,944             | 44,917,032             |

e Estimate. <sup>p</sup> Preliminary. r Revised.

jected into reservoirs.

<sup>5</sup>Gross production not reported; marketed output has been reported in lieu of a gross production

<sup>3</sup> Gross production not reported; marketed output has been reported in lieu of a gross production estimate because the quantity flared, vented, and/or reinjected is believed to be small.

<sup>6</sup> Total production is obtained from coal mines.

<sup>7</sup> Includes output from coal mines as follows, in million cubic feet: Czechoslovakia: 1971—12,289; 1972—12,000 (estimate); 1973—12,000 (estimate); 1973—12,000 (estimate); 1973—12,013; 1972—12,361; 1973—1,200 (estimate); Poland: 1971—7,734; 1972—7,770 (estimate); 1973—7,800 (estimate); United Kingdom; 1971—4,838; 1972—4,485; 1973—4,400 (estimate); Japan: 1971—10,418; 1972—9,358; 1973—9,200 (estimate).

<sup>8</sup> No marketed production reported; there probably is some small field use in both Denmark and Norway, and in the case of the latter there was extraction of natural gas liquids reported in 1973, but available information is inadequate to make reliable estimates.

<sup>9</sup> Available statistics, used for both gross and marketed production, comprise marketed production plus gas injected into reservoirs for repressuring, but exclude gas vented and/or flared. In 1968 (latest available figure), gas used for repressuring constituted only 0.4% of the total. Information is inadequate to make a reliable estimate of gas vented and/or flared, but it is believed to be small. <sup>10</sup> Series revised to reflect output in calendar year from that of year beginning March 21 of that stated used in previous editions.

Deries revised to renect output in carendar year from that of year segments stated used in previous editions.

11 Data are for year ending June 30 of that stated.

12 Series revised to include output from coal mines, not previously included.

13 Includes ½ of production reported for the former Kuwait-Saudi Arabia Neutral Zone.

<sup>\*</sup> Estimate. P Preliminary. Revised.

In addition to the countries listed, Cuba, Mongolia, and Thailand produce crude oil and presumably produce natural gas, but available information is inadequate to estimate output levels and the share of gross production that is classifiable as marketed.

Comprises all marketed production (see footnote 3) plus gas vented, flared, reinjected for repressuring, and used to drive turbines (without being burned).

Comprises all gas collected and utilized as fuel or as a chemical industry raw material, including gas used in oilfields and/or gasfields as a fuel by producers, even though it is not actually sold.

Apparently, natural gas that is vented or flared is not included in reported gross production; marketed output presented here is the difference between reported gross production and reported injected into reservoirs.

# Natural Gas Liquids

By David A. Carleton 1 and Leonard L. Fanelli 2

Production of natural gas liquids at natural gas processing plants declined for the first time since late in the 1950's. Production of 634.4 million barrels (1.74 million barrels per day was down 0.6% from that of 1972, reflecting primarily a decline in the availability of natural gas for proc-During the summer and months, supply shortfalls of some natural gas liquids were created as consumers increased inventories preparatory to anticipated critical shortages during the 1973-74 winter.

Natural gas liquids are products obtained from the processing of natural gas at natural gasoline plants, cycling plants, and fractionators. Included are ethane, (LPGpetroleum gases liquefied propane, butane, propane-butane mixtures, and isobutane), natural gasoline, isopentane, plant condensate, and finished prodincluding motor gasoline, special naphthas, kerosine, jet fuel, distillate fuel oil, and miscellaneous products.

Natural gas liquids supplied approximately 3.4% of energy requirements, 4.1% of energy production, and 7.4% of petroleum demand in the United States. Their position in the energy market increased slightly in the past decade. The output was valued at \$1.86 billion, up 28% from 1972. The unit value rose 29% to \$2.93 per barrel compared with \$2.28 per barrel in 1972. The 1973 heating seasons were plagued by supply uncertainties and price fluctuations. Supply patterns were further complicated by inventory anomalies, allocation programs, and conservation efforts. Supply complications combined with abnormally warm heating seasons resulted in dislocations in the fuel usage patterns.

The only major natural gas liquids component to increase significantly in production was ethane. This reflected expanded demand for this product as a

petrochemical feedstock and increased recovery capability at processing plants. Production rose nearly 8 million barrels, or 7.5%, in 1973, following a 20-million-barrel increase (25%) in 1972.

A series of events that occurred in 1972 led to considerable dislocation in the propane market in 1973. Price controls instituted in July 1972 froze the price that large oil companies (the historic wholesale buyers) could pay for propane. Concomitantly, small companies, those with less than 30 employees could purchase and sell propane without price controls. As a result, the large companies found it difficult in early 1973 to bid successfully for propane. Furthermore, major natural gas consumers (industrial firms, electric powerplants, and natural gas utilities), fearing a shortage of that product, sought propane as a substitute or standby fuel and were active propane purchasers during spring and summer. This represented a significant demand for propane and resulted in a major diversion of propane from established markets.

Because of lower-than-normal midyear inventories and the prospect that residential and commercial consumers would not have adequate propane supplies during the 1973-74 winter, President Nixon announced a mandatory propane allocation program which became effective on October 3, 1973. This program was generally successful in that propane was available during the heating season; however, several factors had a moderating impact on demand. These included an unusually warm winter, conservation efforts, and resistance to sharply higher consumer prices.

The average unit value of natural gas liquids production was \$2.93 per barrel, an

<sup>&</sup>lt;sup>1</sup> Petroleum specialist, Division of Fossil Fuels Mineral Supply. <sup>2</sup> Survey statistician, Division of Fossil Fuels Mineral Supply.

increase of 29% from the \$2.28 per barrel in 1972. LPG, including ethane, exhibited the greatest increase, 39%, by rising to \$2.66 per barrel. All other natural gas liquids items increased in unit value except finished gasoline and naphtha which decreased 8%. The general rise in unit value occurred during the middle 6 months of 1973, because of the following: (1) The marketing diversion referred to above, (2) the fear by retailers that they would be unable to obtain adequate supplies, (3) the general fear of a general natural gas shortage, (4) the embargo on exports to the United States by certain Middle East and African nations, and (5) the unilateral increases in foreign crude oil prices, together with the refineries' authorization to "pass on" to consumers a portion of the increase.

Data presented in this chapter were compiled from operating reports of natural gasoline plants, cycling plants, and fractionators that process natural gas. Included are all natural gas liquids except the small volume considered to be insignificant in national and State totals, recovered at pipeline compressor stations and gas dehydration plants. Plant condensate is included in natural gas liquids; field-separated condensate, however, is included with crude oil. Ethane and liquefied gases such as butane and propane, recovered from the crude oil refining operations, are classed as liquefied refinery gases (LRG) and reported as refinery products.

Annual reports were received from all large producers and distributors and from most of the dealers that sell more than 100,000 gallons of LPG per year. To reflect total shipments, the sample of dealer shipments was expanded by Petroleum Administration for Defense (PAD) districts on the basis of domestic demand in the district.

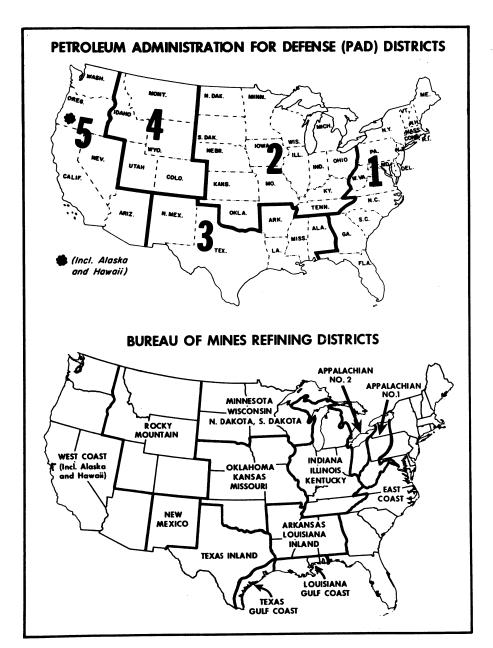



Figure 1.-Maps of PAD Districts and Bureau of Mines Refining Districts.

## DOMESTIC PRODUCTION

The overall production of natural gas liquids declined for the first time in over a decade as the availability of natural gas for processing was reduced. Whereas output of most natural gas liquids decreased slightly, the major changes were a 7.5% increase in ethane production and a 2.4% decrease in propane production. The following tabulation presents quantity and percent changes between 1972 and 1973 production of the major natural gas liquids groups:

|                                   | Thousand<br>barrels | Percent   |
|-----------------------------------|---------------------|-----------|
| Ethane                            | +7,529              | +7.5      |
| LPG: Propane                      | -5,153<br>-79       | -2.4<br>1 |
| Total LPG<br>Natural gasoline and | -5,232              | -1.5      |
| isopentaneOther natural gas       | -1,993              | -1.2      |
| liquids                           | -4,097              | -13.8     |
| Total                             | -3,793              | -1.0      |

There were 786 natural gas processing plants in the United States at the beginning of 1973, down from 805 the previous year. These plants had a natural gas throughput capacity of 73,260 million cubic feet, down 2.5% from 75,137 million cubic feet on January 1, 1972. Nearly 47% of the plants were in Texas, and 17% were in Louisiana.<sup>3</sup> The number of companies operating plants was also down, declining from 131 in 1972 to 125 in 1973.

 $^3$  Oil and Gas Journal. V. 71, No. 28, July 9, 1973, p. 98.

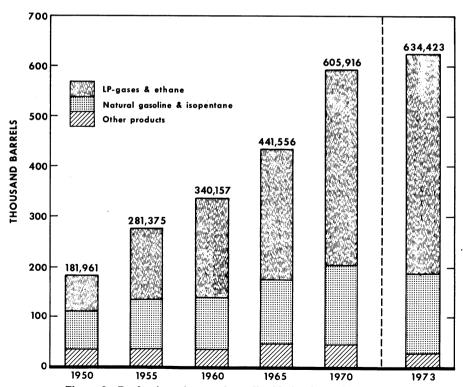



Figure 2.-Production of natural gas liquids in the United States.

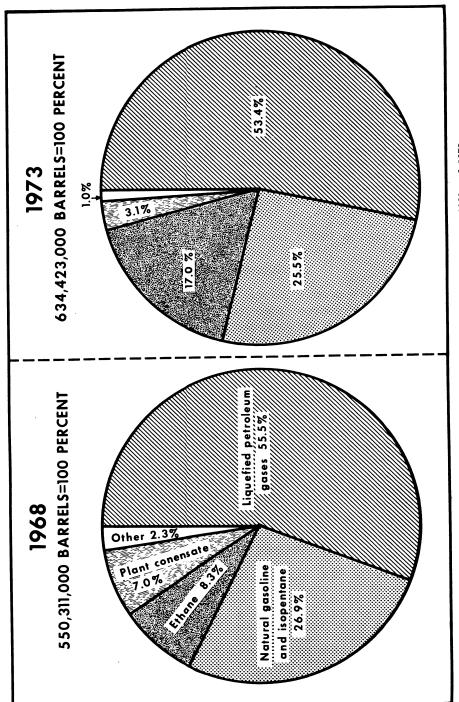



Figure 3.-The relative production of natural gas liquids components, 1968 and 1973.

#### **RESERVES**

The American Gas Association (AGA) Reserves Committee estimated that proved reserves of natural gas liquids at yearend 1973 were 6,455 million barrels. This was 5% less than in 1972, and represented the sixth consecutive year in which proved reserves declined since the high of 8,614 million barrels was reached in 1967. Although net changes in reserves by reason of extensions, revisions, and discoveries increased by more than 400 million barrels during the year, this was less than the amount of natural gas liquids produced. According to AGA data, the 1973 reserve-to-production ratio was 8.7:1, compared with 13.4:1 in 1967. A decline in

the reserve-to-production ratio from 9.0:1 in 1972 resulted in spite of the greatest increase in new additions to reserves since 1968. Most of the new additions were revisions of estimates of previously proven fields in Texas. States with the largest reserves at yearend 1973 were Texas with 44% of the national total, and Louisiana with 31%. Sizable reserves were also in New Mexico, Kansas and Oklahoma. Louisiana experienced the greatest reduction in reserves, 143 million barrels. Of the States with major reserves, New Mexico had the greatest percentage decline. 18%.

## CONSUMPTION AND USES

Liquid products from natural gas liquids plants are generally shipped either to major storage terminals for distribution to retailers and consumers or to refineries for either blending or processing. In 1973, 41% of the natural gas liquids output (about 260.0 million barrels) was shipped to refineries. Inputs to refineries, including 37.5 million barrels of imports, totaled 297.5 million barrels, one-half of which was run to crude oil distillation units and one-half to blending units. The following tabulation shows shipments (inputs) into refineries in 1.000 barrels:

|                    | 1972    | 1973    | Percent<br>change |
|--------------------|---------|---------|-------------------|
| Propane            | 3,934   | 2,755   | -30.0             |
| Butanes:           |         |         |                   |
| Isobutane          | 34,629  | 35,723  | +3.2              |
| Normal butane _    | 31,800  | 25,990  | -18.3             |
| Other butanes _    | 11,364  | 11,267  | -8.5              |
| Total butanes_     | 77,793  | 72,980  | -6.2              |
| Butane-propane mix | 3,466   | 4,486   | +29.4             |
| Natural gasoline   | 156.879 | 154,455 | -1.6              |
| Isopentane         | 7.183   | 5.895   | -17.9             |
| Plant condensate   | 53,190  | 56,911  | +7.0              |
| Total              | 302,445 | 297,482 | -1.6              |

Generally, the lighter natural gas liquids (propane and butane) are blended at refineries, and the heavier items are run to process units. Shipments to storage terminals, including some directly to retailers and consumers, amounted to 374.4 million barrels. Essentially all ethane produced was shipped directly to chemical plants.

## PRODUCTIVE CAPACITY

According to the AGA, estimated productive capacity at yearend 1973 was 2,404,000 barrels per day, a decline of 463,000 barrels per day, or 16%, during the year. Each of the top seven States declined in productive capacity during the year. Texas led, losing 190,000 barrels per day (15% of its capacity), followed by Louisiana, 108,000 barrels per day (12%); Kansas, 84,000 barrels per day (37%); New Mexico, 56,000 barrels per day (33%); and Oklahoma 26,000 barrels per day

(13%). At yearend the distribution of productive capacity by leading States was: Texas, 43%; Louisiana, 32%; Oklahoma, 7%; Kansas, 6%; and New Mexico, 5%.

As natural gas liquids production is a function of natural gas production and processing, productive capacity is dependent upon rates of gas production from crude oil and natural gas reservoirs. The AGA has defined productive capacity of natural gas liquids as the amount of

hydrocarbon liquids that would be produced coincident with the estimated productive capacity of natural gas based on unit recoveries at normal producing rates. Such estimated capacities are not limited by lack of capacity of processing plants or other surface facilities, and it is emphasized that adequate facilities would be required to effect the recovery of liquids from the natural gas produced at these rates. It should also be recognized that such facilities cannot be enlarged quickly. Therefore, the estimated natural gas liquid capacities which relate to increased production of gas from oil and gas wells operating at their productive capacities are theoretical and may not be realized in event of an emergency.4 Although productive capacity estimates determined in accordance with the above definition are theoretical, they are useful in determining potential avail-

Domestic demand for LPG and liquefied refinery gases (LRG) totaled 409.1 million barrels in 1973, down slightly from 413.6 million barrels in 1972. Of the 1973 domestic demand, 281.4 million barrels was for LPG produced at natural gas proc-

essing plants, 89.7 million barrels was for LRG for fuel use and 38.0 million barrels was for LRG for chemical use. Propane (including propylene) demand accounted for 318.0 million barrels, or 77.7% of total LPG and LRG demand. Demand for plant propane was 218.6 million barrels. Refinery propane and propylene demand was 99.4 million barrels, of which 74.1 million barrels was for fuel use and 25.3 million barrels was for chemical use.

Domestic demand for butane (including butylene) increased to 81.7 million barrels. Plant demand was 62.3 million barrels, whereas refinery demand was 19.4 million barrels, of which 12.7 million barrels was for fuel use and 6.7 million barrels was for chemical use.

The domestic demand for ethane (including some ethylene) increased 12% to 119.4 million barrels in 1973. Virtually all ethane was used for petrochemical feedstocks. According to the U.S. Tariff Commission, production of ethylene, the principal use for ethane, increased to a record 22.4 billion pounds in 1973. This compares with 5.9 billion pounds in 1960 and 18.5 billion pounds in 1971.

#### **STOCKS**

Stocks of natural gas liquids, which reached a record of 116.2 million barrels on September 30, 1972, fell to critical levels in February 1973. Particularly precarious was propane stocks which totaled 31.7 million barrels and were equivalent to only 24 days of domestic demand. For the corresponding month in 1972, propane stocks were equivalent to 38 days of demand. The February 1973 stocks of propane were of considerable concern since the 1972-73 winter was not exceptionally cold. Propane demand in February 1972 was 14% higher than in February 1973. By yearend 1973, as a result of the demand-constraining factors previously mentioned, stocks had returned to more secure levels, being equivalent to 59 days of December 1973 average daily demand.

Total natural gas liquids stocks at both refineries and plants and bulk terminals at yearend 1973 totaled 98.9 million barrels, 14.7 million barrels more than at yearend 1972. About three-fourths of this total was in underground storage. Natural gas liquids stocks at refineries amounted to 4.8 million barrels, a decrease of 0.2 million barrels from stocks at yearend 1972, whereas stocks at plants and terminals totaled 94.1 million barrels, 14.9 million barrels more than at yearend 1972. By type of liquid, the major yearend stocks changes were for propane, up 11.0 million barrels; butane, up 5.1 million barrels; and ethane, down 2.0 million barrels.

#### PRICES AND VALUES

The average unit value of natural gas liquids was \$2.93 per barrel, up a substantial 29% during the year. The exceptionally large increase resulted from a variety of factors: The general rise in well-head prices for natural gas, marketing factors resulting from propane shortages

during early and mid-1973, efforts to supplement depleted inventories during the

<sup>&</sup>lt;sup>4</sup> American Gas Association, American Petroleum Institute, and Canadian Petroleum Association. Reserves of Crude Oil, Natural Gas in the United States and Canada and United States Productive Capacity as of December 31, 1973. V. 27, May 1974, p. 108.

Arab embargo on exports to the United States and resultant shortages of petroleum products including liquefied refinery gases, and the diversion of propane and other natural gas liquids into untraditional markets because of the natural gas shortages and the rapidly expanding petrochemical industry.

Future prices for propane increased uniformly throughout the year; however, quotations at supply areas recorded significant increases earlier than those at consuming areas. Average monthly futures

increased 9.85 cents per gallon, or 142% at Wood River, Ill., and 8.40 cents per gallon, or 140% at Mt. Belvieu, Tex. New York had the smallest increase; 4.20 cents per gallon, or 46%. Unit price of LPG and ethane increased more than that of other natural gas liquids. The increase was \$0.75 per barrel (1.79 cents per gallon), or 39%. The only unit price to decline was that for finished gasoline and naphtha. This suggests that these small amounts were probably contaminated and sold at distressed prices.

#### **FOREIGN TRADE**

In 1973 liquefied petroleum gases and plant condensate became the third most important item of liquid hydrocarbon imports, following residual and distillate fuel oils. The 85.3 million barrels imported were 34% greater than 1972 imports. The significant increase was occasioned by the critical shortage in the early part of the year that accompanied efforts to rebuild inventories, and by dwindling supplies associated with the Arab embargo on petroleum exports to the United States. In 1973, the United States imported LPG from 22 countries, compared with only 9 in 1972. Principal among these were Canada and Venezuela which supplied 81% and 15% respectively of the total. Canada accounted for essentially all of the natural gas plant condensate. Canada is providing some of the feedstock for the production of synthetic high Btu gas as shown in

plant condensate data in table 17.

Whereas PAD District II was the principal importer of LPG (essentially all from Canada) District III had the greatest increase, rising from 0.8 million barrels in 1972 to 9.1 in 1973. Although some of this was used in the petrochemical industry in PAD III, large amounts were shipped to other districts, principally PAD II and IV for heating and crop drying.

Mexico is the major destination of LPG exports, receiving 92% of the total, followed by Japan (4%) and Canada nearly 4%. Exports were down 13% from 1972, reflecting the propane shortage in the United States. Much of LPG exported to Mexico was used for heating and cooking in border areas. LPG exports comprised butane, 8%; propane, 32%; and butane-propane mixtures, 60%.

#### **WORLD REVIEW**

The United States and Canada continued to dominate natural gas plant liquids output, together accounting for an estimated three-fourths of total world production. The U.S.S.R. was also an important producer, ranking third and comprising 8% of the total. Significant gains in output have been made in recent years, especially in major associated natural gas producing countries. Venezuela's production of 33.9 million barrels in 1973 was 33% more than in 1971. Natural gas liquids production from the Middle East's three major producers of associated natural gas, Iran, Kuwait and Saudi Arabia, also reached a record high of 71,259,000 barrels or 36% above 1972.

Most of the increase occurred in Saudi Arabia, as evidenced in table 19.

In Canada, the National Energy Board approved a project relating to the export of propane and ethane. Included was a 1.2-billion-pound-per-year ethylene plant located at Fort Saskatchewan using ethane feedstock and two pipelines from Edmonton to Sarnia, one of which is a 12-inch-diameter line for natural gas liquids and the other a 10-inch line for ethylene. Plans are to export over an extended period 169 million barrels of ethane to a synthetic gas plant at Green Springs, Ohio.

Canada, the only foreign country for which natural gas liquid reserves data were available had proved reserves of 1,595 million barrels at the end of 1973. This was down by 108 million barrels and represented the fourth consecutive year of decline.

Atlantic Richfield Co. announced plans to build a \$75 million natural gas liquids plant in the Java Sea, offshore Indonesia. The totally offshore plant will process natural gas associated with the offshore Ardjuna oilfield about 90 miles north of Djarkata. Construction was scheduled to begin in mid-1974, and operation was set for 1975.

The National Iranian Oil Co. (NIOC) and Transco Companies, Inc. of the United States will be equal partners in a \$650 million natural gas liquids project to be built in southwestern Iran. About 750 million cubic feet per day of associated gas from five oilfields will be run to six extraction plants, which will produce 60,000 barrels per day of natural gas liquids. The product will be one-third propane, one-third butane, and one-third pentane plus. The liquids will be moved in a 12-inch pipeline to Kharg Island where they will be shipped to Transco's previously announced \$85 million synthetic gas plant in eastern Pennsylvania.

Plans are underway in Kuwait to double the existing natural gas liquids output, which reached 22.1 million barrels in 1973.

The consortium Santo-Delhi-Vamgos, plans to complete a natural-gas-processing plant at Moomba in Australia in 1977. The output will be feedstock for a petrochemical plant planned by Redcliffs, S.A.

Other natural gas processing plants

planned or under construction include expanding the 5.2-million-barrel-per year propane-butane plant at Hassi Messaud Algeria, to 8.6 million barrels per day; completion of a 700,000-barrel-per-year LPG plant in Santa Fe Province in Argentina; increasing the 1.5-million-barrel-per-year processing plant at Nienburg, West Germany, to 4.2 million barrels per year, and expanding and constructing 12 plants in Canada, having a combined capacity of 130 million barrels per year. The largest of these was a 34-million-ton-per-year plant at Brazcau, Alberta.

The joint venture of Broken Hill Pty. Co., Ltd., and ESSO Australia, Ltd., that operates the only natural gas processing plant in Australia at Longford, Victoria, announced that capacity will be doubled. When completed in mid-1975, the plant is expected to produce 53,000 barrels per day of propane and butane and 12,500 barrels per day of ethane.

The Hungarian Oil and Gas Trust completed the first stage of its natural gas-processing plant at Szank. The plant can process 141 million cubic feet per day of associated natural gas from fields in the Szeged area. The plant was built with the assistance of U.S.S.R. technicians. The annual output capacity is as follows:

|                    | Thousand<br>barrels |
|--------------------|---------------------|
| Propane and butane |                     |
| Isobutane          |                     |
| Isopentane         | . 418               |
| Natural gasoline   |                     |
|                    | 4,120               |

Plans are to double the capacity by 1975.

Table 1.—Plant production, stocks at plants and terminals, shipments from plants of natural gas processing plant products in 1973 (Thousand barrels)

|                                                                     |                            |                              |                            |                                         |                            | ,                            |                            |                            |                                                 |                             |                                                          |                                                 |                                |                              |
|---------------------------------------------------------------------|----------------------------|------------------------------|----------------------------|-----------------------------------------|----------------------------|------------------------------|----------------------------|----------------------------|-------------------------------------------------|-----------------------------|----------------------------------------------------------|-------------------------------------------------|--------------------------------|------------------------------|
| Ducktor                                                             | To T                       | H <sub>O</sub> P             | 2                          | <b>A</b>                                | Moss                       | Įu                           | Lili                       | ΔΔ                         | Cont                                            | +00                         | Now                                                      | 200                                             | Total                          | 1070                         |
| Ethane.                                                             | o atti.                    | 1,00.                        | Mai.                       | Phi:                                    | THE BY                     | omic                         | eury                       | Page.                      | ndbr.                                           |                             | ***                                                      | 7                                               | 0)61                           | 7161                         |
| Production<br>Stocks Stocks Shipments                               | 8,999<br>7,139<br>8,912    | 8,417<br>7,126<br>8,430      | 9,725<br>7,173<br>9,678    | 8,805<br>6,869<br><b>9,</b> 10 <b>9</b> | 9,097<br>6,976<br>8,990    | 8,602<br>6,733<br>8,845      | 8,792<br>6,734<br>8,791    | 8,966<br>6,374<br>9,326    | 8,670<br>6,193<br>8,851                         | 9,316<br>6,139<br>9,370     | 9,272<br>5,381<br>10,030                                 | 9,559<br>5,023<br>9,917                         | $^{108,220}_{5,023}_{110,249}$ | 100,691<br>7,052<br>97,004   |
| Liquefied petroleum gases: Production Stocks Stocks Shipments       | 28,377<br>52,835<br>43,349 | 26,980<br>44,657<br>35,158   | 28,925<br>47,164<br>26,418 | 28,924<br>53,764<br>22,324              | 29,317 $62,180$ $20,901$   | 28,163<br>71,277<br>19,066   | 27,720<br>81,612<br>17,385 | 27,649<br>87,236<br>22,025 | 27,361<br>92,196<br>22,401                      | 28,661<br>92,262<br>28,595  | 27,985<br>87,128<br>33,119                               | 28,751<br>83,086<br>32,793                      | 338,813<br>83,086<br>323,534   | 344,045<br>67,807<br>356,532 |
| Sportane: Production Stocks                                         | 537<br>69<br>567           | 425<br>63<br>431             | 470<br>40<br>493           | 466<br>31<br>475                        | 507<br>25<br>513           | 504<br>35<br>494             | 480<br>28<br>487           | 470<br>28<br>470           | 461<br>26<br>463                                | 496<br>496                  | 430<br>25<br>431                                         | 582<br>32<br>575                                | 5,828<br>32<br>5,895           | 7,251<br>99<br>7,183         |
| Natural gasoline: Production Stocks Shipments                       | 11,822<br>3,396<br>11,711  | $^{10,935}_{3,273}_{11,058}$ | 12,308<br>3,145<br>12,436  | $^{12,010}_{3,607}_{11,548}$            | 12,668<br>3,788<br>12,487  | $^{12,650}_{4,192}_{12,246}$ | 14,755<br>4,226<br>14,721  | 15,055<br>4,576<br>14,705  | 13,747<br>4,642<br>13,681                       | 13,890<br>4,975<br>13,557   | $\begin{array}{c} 13,460 \\ 4,992 \\ 13,443 \end{array}$ | 12,580<br>5,043<br>12,529                       | 155,880<br>5,043<br>154,122    | 156,450<br>3,285<br>156,812  |
| France Condensate: Production Stocks Shipments                      | $^{1,733}_{677}$           | 1,558<br>649<br>1,586        | $^{1,737}_{695}$           | 1,716<br>754<br>1,657                   | 1,757<br>739<br>1,772      | 1,475<br>649<br>1,565        | $^{1,674}_{567}$           | 1,615<br>623<br>1,559      | 1,567<br>655<br>1,535                           | 1,648<br>624<br>1,679       | 1,664<br>627<br>1,661                                    | $^{1,694}_{739}$                                | 19,838<br>739<br>19,862        | 22,022<br>763<br>21,853      |
| Motor gasolne: Production Stocks Shipments                          | 327<br>131<br>320          | $\frac{288}{117}$            | $\frac{330}{151}$          | 301<br>169<br>283                       | 307<br>120<br>356          | 199<br>92<br>227             | 211<br>84<br>219           | 212<br>67<br>229           | $\begin{array}{c} 218 \\ 81 \\ 204 \end{array}$ | 218<br>85<br>214            | 205<br>75<br>215                                         | $\begin{array}{c} 213 \\ 83 \\ 205 \end{array}$ | 3,029<br>83<br>3,070           | 4,182<br>124<br>4,285        |
| Special naphrhas: Production                                        | 19<br>8<br>19              | 19<br>10<br>17               | 20<br>21                   | 21<br>21                                | 19<br>7<br>21              | 17<br>19                     | 17<br>4<br>18              | 17<br>17                   | 15<br>4<br>15                                   | 16<br>15                    | 15<br>4<br>16                                            | 15<br>7<br>12                                   | 210<br>7<br>211                | 264<br>8<br>267              |
| Other products: Kerosine: Production Stocks Shipments               | 69<br>38<br>74             | 72<br>52<br>58               | 78<br>51<br>79             | 71<br>53<br>69                          | 71<br>66<br>58             | 47<br>33<br>80               | 44<br>41<br>41             | 51<br>37<br>55             | 51<br>34<br>48                                  | 51<br>47<br>58              | 48<br>37<br>58                                           | 46<br>37<br>46                                  | 704<br>37<br>710               | 1,063<br>1,221               |
| Strokes inel on: Stocks Shipments                                   | 97<br>35<br>97             | 73<br>34<br>74               | 868                        | 76<br>25<br>80                          | 85<br>27<br>83             | 64<br>25<br>66               | 62<br>32<br>55             | 33 G                       | 88<br>22<br>22                                  | 62<br>35<br>65              | 58<br>36<br>57                                           | 57<br>40<br>53                                  | 835<br>40<br>830               | $^{1,220}_{35}$              |
| Miscelaneous products: Production Stocks Shipments                  | 101<br>15<br>108           | 90<br>16<br>89               | 91<br>93                   | 98<br>16<br>96                          | 89<br>14<br>91             | 80<br>16<br>78               | 86<br>84<br>68             | 92<br>18<br>108            | 83<br>83                                        | 86<br>17<br>87              | 811<br>84                                                | 88<br>16<br>87                                  | 1,066<br>16<br>1,072           | 1,028<br>r 22<br>r 1,017     |
| Other products total: Production Stocks Shipments                   | 267<br>88<br>279           | 235<br>102<br>221            | 254<br>94<br>262           | 245<br>94<br>245                        | 245<br>107<br>232          | 191<br>74<br>224             | 197<br>107<br>164          | 199<br>88<br>218           | 194<br>110<br>172                               | 199<br>99<br>210            | 188<br>88<br>199                                         | 191<br>93<br>186                                | 2,605<br>93<br>2,612           | 3,311<br>100<br>3,461        |
| All products, total: Production Stocks.                             | 52,081<br>64,343<br>66,976 | 48,857<br>55,997<br>57,203   | 53,769<br>58,471<br>51,295 | 52,488<br>65,297<br>45,662              | 53,917<br>73,942<br>45,272 | 51,801<br>83,057<br>42,686   | 53,846<br>93,362<br>43,541 | 54,183<br>98,996<br>48,549 | 52,233<br>103,907<br>47,322                     | 54,444<br>104,215<br>54,136 | 53,219<br>98,320<br>59,114                               | 53,585<br>94,106<br>57,799                      | 634,423<br>94,106<br>619,555 1 | 638,216<br>79,238<br>647,399 |
| r Revised.<br><sup>1</sup> Includes 2 thousand barrels of jet fuel. |                            |                              |                            |                                         |                            |                              |                            |                            |                                                 |                             |                                                          |                                                 |                                |                              |

Table 2.-Total production of products of natural gas processing plants, by State and month, 1973

|                                      | ı      | -      | Thousand | d barrels | (s)    | ı      |        |        |        |        |        |        |         |
|--------------------------------------|--------|--------|----------|-----------|--------|--------|--------|--------|--------|--------|--------|--------|---------|
| State                                | Jan.   | Feb.   | Mar.     | Apr.      | May    | June   | July   | Aug.   | Sept.  | Oct.   | Nov.   | Dec.   | Total   |
| Arkansas                             | 54     | 49     | 52       | 44        | 44     | 47     | 67     | 63     | 62     | 61     | 57     | 63     | 653     |
| California                           | 1,060  | 972    | 1,079    | 1,045     | 1,062  | 1,007  | 1,035  | 1,005  | 977    | 1,014  | 953    | 982    | 12,194  |
| Colorado                             | 263    | 252    | 270      | 263       | 291    | 287    | 283    | 305    | 296    | 311    | 292    | 289    | 3,402   |
| Florida, Pennsylvania, West Virginia | 713    | 693    | 817      | 714       | 433    | 949    | 741    | 746    | 717    | 736    | 772    | 496    | 8,554   |
| Illinois and Kentucky                | 874    | 830    | 1,017    | 1,077     | 1,124  | 1,085  | 1,064  | 1,077  | 1,081  | 1,114  | 1,000  | 1,130  | 12,473  |
| Kansas                               | 2,780  | 2,558  | 2,732    | 2,482     | 2,441  | 2,375  | 2,477  | 2,329  | 2,584  | 2,444  | 2,544  | 2,710  | 30,456  |
| Louisiana                            | 12,810 | 11,831 | 13,261   | 12,860    | 12,922 | 12,221 | 12,449 | 12,722 | 11,870 | 12,773 | 12,031 | 12,857 | 150,607 |
| Michigan                             | 66     | 91     | 92       | 96        | 105    | 92     | 96     | 82     | 94     | 77     | 79     | 48     | 1,063   |
| Mississippi and Alabama              | 09     | 56     | 9        | 62        | 64     | 57     | 62     | 99     | 29     | 61     | 53     | 25     | 717     |
| Montana, Utah, Alaska                | 278    | 252    | 282      | 282       | 312    | 306    | 310    | 307    | 277    | 280    | 453    | 484    | 3,823   |
| Nebraska and North Dakota            | 185    | 183    | 188      | 184       | 195    | 186    | 193    | 193    | 189    | 189    | 184    | 177    | 2,246   |
| New Mexico                           | 3,206  | 2,896  | 3,271    | 3,097     | 3,369  | 3,233  | 3,366  | 3,457  | 3,313  | 3,475  | 3,376  | 3,441  | 39,500  |
| Oklahoma                             | 3,495  | 3,311  | 3,755    | 3,608     | 3,654  | 3,511  | 3,607  | 3,652  | 3,649  | 3,749  | 3,866  | 3,861  | 43,718  |
| Texas                                | 25,296 | 24,052 | 26,005   | 25,817    | 29,964 | 25,855 | 27,212 | 27,344 | 26,221 | 27,262 | 26,661 | 25,740 | 314,429 |
| Wyoming                              | 806    | 831    | 883      | 857       | 937    | 863    | 884    | 835    | 872    | 868    | 868    | 922    | 10,588  |
| Total United States                  | 52,081 | 48,857 | 53,769   | 52,488    | 53,917 | 51,801 | 53,846 | 54,183 | 52,233 | 54,444 | 53,219 | 53,585 | 634,423 |

Table 3.—Production of natural gas liquids at natural gas processing plants, and disposition of residue gas in the United States in 1972-73, by State

(Million cubic feet at 14.73 psia at 60°F unless otherwise stated)

|                                    | Total<br>natural<br>gas liquids                  | , and the second       | Extrac-           |                      |                       | Disposition            | ition of residue                        | lue gas                                 |                         |              |
|------------------------------------|--------------------------------------------------|------------------------|-------------------|----------------------|-----------------------|------------------------|-----------------------------------------|-----------------------------------------|-------------------------|--------------|
| State                              | production<br>(thousand<br>42-gallon<br>barrels) | gas<br>processed       | (shrink-<br>age)  | Used<br>at<br>plants | Returned to formation | Vented<br>or<br>flared | Shipped to<br>transmission<br>companies | Direct<br>deliveries<br>to<br>consumers | Unac-<br>counted<br>for | Total        |
| 1079                               |                                                  |                        |                   |                      |                       |                        |                                         |                                         |                         |              |
| Arkansas                           | 208                                              | r 28,027               | 1,197             | 3,056                | 241                   | 14                     | r 20,257                                | 3,262                                   | 9 011                   | r 26,830     |
| California                         | 12,028                                           | 311,947                | 24,156            | 20,775               | 138,387               | 408<br>240             | 91,038                                  | 20,77                                   | 2,811                   | 100,002      |
| Floride Donneylvenie West Virginia | 8.118                                            | 326.092                | 11.625            | 4,119                | 22                    | ; ;                    | 309,466                                 | 797                                     | 63                      | 314,467      |
| Ķ                                  | 12,707                                           | 376,310                | 19,409            | 2,716                | 100                   | 18                     | 351,114                                 | 2,933                                   | 138                     | 356,901      |
| Kansas                             | 30,604                                           | 1,497,319              | 197 967           | 9,268                | 123,331               | 3.022                  | 5.190.052                               | 719,411                                 | 9,069                   | 6,139,861    |
| Michigan                           | 1.228                                            | r 43,810               | 1,912             | 1,624                | 811                   | 113                    | r 39,654                                |                                         | -304                    | r 41,898     |
| Mississippi and Alabama            | 829                                              | 29,538                 | 1,301             | 1,426                | 4,837                 | 18                     | 21,116                                  | 826                                     | 35                      | 28,237       |
| Montana, Utah, Alaska              | 5,726                                            | 136,474                | 4,970             | 5,836                | 83,094                | 7,695                  | 33,255                                  | 10                                      | 1,624                   | 131,504      |
| Nebraska and North Dakota          | 2,429                                            | 35,021                 | 3,738             | 4,174<br>59,919      | 0,04<br>0,04<br>0,04  | 9 714                  | 256,500                                 | 146 671                                 | 7 336                   | 1 072 035    |
| New Mexico                         | 41 707                                           | 1,120,132              | 56,376            | 45.604               | 76.872                | 207                    | 842.165                                 | 92.869                                  | 2,779                   | 1,060,496    |
| Texas                              | 319,061                                          | 8,139,408              | 470,105           | 317,136              | 931,461               | 9,825                  | 5,566,168                               | 811,374                                 | 33,339                  | 7,669,303    |
| Wyoming                            | 10,706                                           | 298,439                | 16,228            | 9,692                | 13,636                | 990                    | 248,432                                 | 9,407                                   | 4.18                    | 117,202      |
|                                    | 638,216                                          | r 19,906,893           | 907,993           | 588,045              | 1,392,101             | 24,970                 | r 15,053,996                            | 1,894,768                               | 45,020                  | r 18,998,900 |
| 1973:                              |                                                  |                        |                   |                      | ,                     |                        | 000                                     |                                         | 97.0                    | 200          |
| Arkansas                           | 653                                              | 26,135                 | 1,118             | 2,513                | 194                   | <b>x</b> 0             | 20,030                                  | 2,618                                   | 9 210                   | 25,017       |
| California                         | 12,194<br>3 402                                  | 110,662                | 4.674             | 3.107                | 4.145                 | 109                    | 98,747                                  | 1                                       | -120                    | 105,988      |
| Florida Pennsylvania West Virginia | 8,554                                            | 375,090                | 12,385            | 4,391                | 11                    | ;                      | 357,722                                 | 581                                     | 11                      | 362,705      |
| cky.                               | 12,473                                           | 358,142                | 18,975            | 2,793                | 10                    | 1 8                    | 333,518                                 | 2,681                                   | 175                     | 339,167      |
| Kansas                             | 30,456                                           | 1,503,660<br>6,594,799 | 48,909<br>206,833 | 108 812              | 130.323               | 2.863                  | 5.213.818                               | 866.070                                 | -3.990                  | 6.317,896    |
| Mishigan                           | 1.063                                            | 37,384                 | 1,581             | 1,295                | 1,778                 | 61                     | 32,743                                  | 1                                       | -74                     | 35,803       |
| Mississimi and Alahama             | 717                                              | 29,081                 | 1,077             | 1,590                | 3,605                 | 1                      | 20,746                                  | 1,991                                   | 72                      | 28,004       |
| Montana, Utah, Alaska              | 3,823                                            | 140,416                | 5,393             | 6,175                | 92,070                | 1,819                  | 29,871                                  | 906'9                                   | -1,818                  | 135,028      |
| Nebraska and North Dakota          | 2,246                                            | 33,369                 | 3,443             | 3,305                | 6,266                 | 28.                    | 19,858                                  | 100                                     | 410                     | 1 045 550    |
| New Mexico                         | 39,500                                           | 1,101,341              | 55,782            | 48,582               | 4,764                 | 3,178                  | 807,861                                 | 122,409                                 | 9,010                   | 1,040,002    |
| Oklahoma                           | 214 429                                          | 7 683 830              | 466 143           | 299.738              | 823,369               | 7.671                  | 5.279.049                               | 748.629                                 | 59,231                  | 7,217,687    |
| Wyoming                            | 10,588                                           | 303,519                | 16,093            | 10,386               | 10,946                | 576                    | 257,539                                 | 8,722                                   | -743                    | 287,426      |
| Total                              | 634,423                                          | 19,679,291             | 916,551           | 571,706              | 1,288,157             | 17,515                 | 14,859,281                              | 1,961,183                               | 64,898                  | 18,762,740   |
|                                    |                                                  |                        |                   |                      |                       |                        |                                         |                                         |                         |              |

Dominad

Table 4.-Natural gas liquids production and value at natural gas processing plants, by State and product

|                                      | Number                    | LPG                               | 3 and ethane                  | ne                         | Natural ga                        | gasoline and          | isopentane                 |                                   | Plant condensate      | ate                        |
|--------------------------------------|---------------------------|-----------------------------------|-------------------------------|----------------------------|-----------------------------------|-----------------------|----------------------------|-----------------------------------|-----------------------|----------------------------|
| State                                | ating<br>com-<br>panies 1 | Quantity<br>(thousand<br>barrels) | Value<br>(thou-sands)         | Dollars<br>per<br>barrel 2 | Quantity<br>(thousand<br>barrels) | Value<br>(thou-sands) | Dollars<br>per<br>barrel 2 | Quantity<br>(thousand<br>barrels) | Value<br>(thou-sands) | Dollars<br>per<br>barrel 2 |
| Аткапаа                              | 4                         | 449                               | \$1,688                       | \$3.76                     | 187                               | \$797                 | \$4.26                     | 9                                 | \$27                  | \$4.45                     |
|                                      | 20                        | 5,329                             | 19,824                        | 3.72                       | 6,352                             | 21,279                | 3.35                       | 513                               | 2,196                 | 4.28                       |
|                                      | œ                         | 1,978                             | 6,488                         | 3.28                       | 1,414                             | 4,256                 | 3.01                       | 10                                | 39                    | 3.91                       |
| Florida, Pennsylvania, West Virginia | rð (                      | 7,477                             | 21,530                        | 2.88                       | 1,077                             | 3,632                 | 3.37                       | !                                 | 11                    | 11                         |
| Illinois and Kentucky                |                           | 11,970                            | 84,818<br>58,819              | 2.91<br>9.91               | 499<br>7 986                      | 17,659                | 3.54<br>95.                | 4 r.                              | 15<br>90              | 3.75<br>2.97               |
| Louisiana                            | 32                        | 102,701                           | 253,671                       | 2.47                       | 39,495                            | 133,888               | 3.39                       | 4,446                             | 18,406                | 4.14                       |
| Michigan                             | eo <del>-</del>           | 691                               | 2,529                         | 3.66                       | 366                               | 1,168                 | 3.19                       | 4,5                               | 14                    | 3.61                       |
| Montana. IItah Alaska                | 4 00                      | 2.236                             | 1,452                         | 2.58                       | 1.580                             | 974<br>6.360          | 3.48<br>4.03               | 940                               | 200                   | 4. e.                      |
| Nebraska and North Dakota            | ıφ                        | 1,737                             | 4,819                         | 2.77                       | 506                               | 1,668                 | 3.30                       | · eo                              | 12                    | 4.00                       |
| New Mexico                           | 113                       | 29,652                            | 74,427                        | 2.51                       | 9,519                             | 31,318                | 3.29                       | 281                               | 992                   | 3.53                       |
| Oklahoma                             | 35                        | 29,044                            | 95,264                        | 3.28                       | 13,728                            | 45,714                | 9.00                       | 825                               | 2,970                 | 3.60                       |
| Wyoming                              | 188                       | 7,237                             | 22,507                        | 3.11                       | 3,038                             | 9,539                 | 3.14                       | 313                               | 1,108                 | 3.54                       |
| Total                                | 125                       | 447,033                           | 1,188,289                     | 2.66                       | 161,708                           | 568,214               | 3.51                       | 19,838                            | 78,189                | 3.94                       |
|                                      | Number                    | Finished g                        | Finished gasoline and naphtha | naphtha                    | Ō                                 | Other products 3      | ts 3                       |                                   | Total                 |                            |
|                                      | ating                     | Quantity                          | Value                         | Dollars                    | Quantity                          | Value                 | Dollars                    | Quantity                          | Value                 | Dollars                    |
|                                      | com-<br>panies 1          | (thousand<br>barrels)             | (thou-sands)                  | per<br>barrel 2            | (thousand<br>barrels)             | (thou-sands)          | per<br>barrel 2            | (thousand barrels)                | (thou-<br>sands)      | per<br>barrel 2            |
| Arkansas                             | 4                         | 1                                 |                               | 1                          | 11                                | \$37                  | \$3.40                     | 653                               | \$2.549               | \$3.90                     |
| æ                                    | 20                        | !                                 | 1                             | !                          | 1                                 | !                     | 1                          | 12,194                            | 43,299                | 3.55                       |
| ij,                                  | 00 l                      | !                                 | ;                             | 1                          | 1                                 | !                     | 1                          | 3,402                             | 10,783                | 3.17                       |
| Florida, Fennsylvania, West Virginia | <b>a</b> ee               | ;                                 | !                             | !                          | 1                                 | !                     | ŀ                          | 12,473                            | 36,102                | 2.94<br>9.93               |
| Kansas                               | 12                        |                                   | 1 1                           | !!                         | <sup>6</sup>                      | 9                     | 3.11                       | 30,456                            | 71,504                | 2.35                       |
| Louisiana                            | 35                        | 2,349                             | \$9,443                       | \$4.02                     | 1,616                             | 5,300                 | 3.28                       | 150,607                           | 420,708               | 2.79                       |
| Mississippi and Alahama              | .ი 4                      | 1                                 | ; ;                           | 1 ;                        | N 00                              | 30                    | 3.75<br>3.75               | 1,063                             | 2,718                 | 3.50                       |
| Montana, Utah, Alaska                | 00                        | ; ;                               | 1                             | 1                          | 1                                 | : 1                   | ;                          | 3,823                             | 12,160                | 3.18                       |
| Nebraska and North Dakota            | ت                         | ;                                 | 1                             | 1                          | 19                                | 10                    | 18                         | 2,246                             | 6,499                 | 2.89                       |
| New Mexico                           | 18                        | 1                                 | 1                             | !                          | 191                               | 139                   | 2.90                       | 39,500                            | 106,876               | 2.71                       |
| Texas                                | 89<br>89                  | 890                               | 4,459                         | $5.\overline{01}$          | 797                               | 2,574                 | 3.23                       | 314,429                           | 937,078               | 2.98                       |
|                                      | 18                        | :                                 | 1                             |                            |                                   | 1                     | 1                          | 10,588                            | 33,154                | 3.13                       |
| Total                                | 125                       | 3,239                             | 13,902                        | 4.29                       | 2,605                             | 8,479                 | 3.25                       | 634,423                           | 1,857,073             | 2.93                       |

<sup>1</sup> A producer operating in more than 1 State is counted only once in arriving at U.S. total. <sup>2</sup> Represents average unit value of sales throughout the year. <sup>3</sup> Includes kerosine, distillate fuel oil, and miscellaneous products.

Source: Company reports and Bureau of Mines estimates.

Table 5.-Production of natural gas liquids and ethane at natural gas processing plants in the United States in 1973

|                                               |                 |                  | Lique            | fied petro       | Liquefied petroleum gases     | 82             |                  | Natural                       | į · · · · · · · · · · · · · · · · · · · | Finished                   | All                      |         |
|-----------------------------------------------|-----------------|------------------|------------------|------------------|-------------------------------|----------------|------------------|-------------------------------|-----------------------------------------|----------------------------|--------------------------|---------|
| PAD Districts and States                      | Ethane          | Propane          | Normal<br>butane | Other<br>butanes | Butane-<br>propane<br>mixture | Iso-<br>butane | Total            | gasoline<br>and<br>isopentane | conden-<br>sate                         | gasoline<br>and<br>naphtha | other<br>prod-<br>ucts 1 | Total   |
| District I                                    | (2)             | 3,759            | 929              | 777              | 1                             | 291            | 5,756            | (8)                           | 1                                       | 1                          | ;                        | 8,554   |
| District II:                                  |                 |                  |                  |                  |                               |                |                  |                               |                                         |                            |                          |         |
| Michigan                                      | !               | 463              | 85               | 39               | 94                            | 10             | 691              | 366                           | 4                                       |                            | 5                        | 1.063   |
| Kansas<br>Nebrodio end Monte Delini           | 3,744           | 14,266           | 3,975            | 1,074            | 60                            | 1,401          | 20,719           | 5,986                         | ю                                       | 1                          | 87                       | 30,456  |
| Oklahoma                                      | 1.908           | 18.089           | 4.929            | 2.546            | 108                           | 1 542          | 1,722            | 506                           | 8<br>8<br>8<br>8                        | 1                          | 191                      | 2,246   |
| Other States 3                                | 2 9,172         | 3,457            | 656              | 1                | 3 ;                           | 406            | 4,519            | 2 1,576                       | 4                                       | 1 1                        | 171                      | 12,473  |
| Total District II                             | 2 14,839        | 37,333           | 10,257           | 3,711            | 127                           | 3,359          | 54,787           | 2 22,162                      | 841                                     | :                          | 125                      | 89,956  |
| District III: Alabama and Mississippi         | 11              | 161 238          | 114              | 37               | 108                           | 7.1            | 383<br>449       | 280                           | 46<br>6                                 |                            | 811                      | 717     |
| Louisiana:<br>Gulf<br>Inland                  | 31,191          | 40,547           | 12,588           | 610              | 81                            | 12,352         | 66,178           | 38,173                        | 3,893                                   | 1,513                      | 1,279                    | 142,227 |
| Total Louisiana                               | 32,420<br>4,283 | 42,897<br>14,533 | 13,429           | 794              | 222                           | 12,939         | 70,281           | 39,495<br>9.519               | 4,446                                   | 2,349                      | 1,616                    | 150,607 |
| Texas:                                        |                 |                  |                  |                  |                               |                |                  |                               |                                         |                            |                          |         |
| Gulf                                          | 16,475          | 15,986           | 5,401            | 575              | 681                           | 4,331          | 26,974           | 13,187                        | 2,004                                   | 209                        | 169                      | 59,018  |
| East (field)                                  | 774             | 3.345            | 2,364            | 4,969            | 202                           | 3,244          | 66,163           | 25,466<br>2,049               | 3,204<br>37                             | 1                          | o 5                      | 116,283 |
| Panhandle<br>Other                            | 892<br>17.051   | 14,006           | 3,087            | 7,454            | 1.681                         | 1,626          | 26,194<br>39,706 | 11,957                        | 33                                      | 1 189                      | . 48<br>8 48             | 39,124  |
| Total Texas                                   | 56,633          | 102,869          | 30,274           | 14,827           | 2,588                         | 14,495         | 165,053          | 77,681                        | 13,375                                  | 068                        | 797                      | 314.429 |
| Total District III                            | 98,336          | 160,698          | 48,493           | 19,859           | 3,212                         | 29,273         | 261,535          | 127,162                       | 18,154                                  | 3,239                      | 2,480                    | 505,906 |
| District IV: Colorado Montana and Utah Woming | 4               | 1,253            | 720              | 670              | 11                            | 181            | 1,978            | 1,414                         | 10                                      | 11                         | 11                       | 3,402   |
| Total District IV                             | 45              | 6,808            | 2,234            | 2,064            | 15                            | 300            | 11,406           | 5,320                         | 330                                     | ! !                        |                          | 17,101  |
| Total United States                           | 108,220         | 212,886          | 62,147           | 26,619           | 3,509                         | 33,652         | 338,813          | 161,708                       | 19,838                                  | 3,239                      | 2,605                    | 634,423 |

<sup>&</sup>lt;sup>1</sup> Includes jet fuel, kerosine, distillate, and other.
<sup>2</sup> District I ethane and natural gasoline and isopentane data included with District II, Other States.
<sup>3</sup> Other States includes Florida, Illinois, Kentucky, Pennsylvania and West Virginia for ethane and natural gasoline and isopentane only.

Table 6.—Production of natural gasoline by vapor pressure and PAD district in the United States, in 1973

(Thousand barrels)

| Reid vapor pressure                                                                                                                                                    | District<br>I                     | District<br>II                                             | District<br>III                                      | District<br>IV                                     | District<br>V                                      | Total                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------|
| Over 12 pounds including 14 pounds<br>Over 14 pounds including 18 pounds<br>Over 18 pounds including 22 pounds<br>Over 22 pounds including 26 pounds<br>Over 26 pounds | 251<br>815<br><br>11<br><br>1,077 | 2,811<br>6,174<br>4,373<br>593<br>1,289<br>5,556<br>20,796 | 62,918<br>21,668<br>7,754<br>859<br>12,808<br>15,747 | 925<br>1,892<br>837<br>50<br>203<br>1,282<br>5,189 | 830<br>40<br>119<br>1,193<br>966<br>3,916<br>7,064 | 67,735<br>30,589<br>13,083<br>2,706<br>15,266<br>26,501<br>155,880 |

Table 7.-Comparison of 1972 and 1973 gas liquids production and value

|                                                 |                                | isand<br>rels     | Percent        | Thou<br>doll      | ars               | Percent  | Doll<br>pe<br>bar | er           | Percent<br>change |
|-------------------------------------------------|--------------------------------|-------------------|----------------|-------------------|-------------------|----------|-------------------|--------------|-------------------|
| -                                               | 1972                           | 1973              | change -       | 1972              | 1973              | change _ | 1972              | 1973         |                   |
| LPG and ethane                                  | 444,736                        | 447,033           | +0.5           | 847,810           | 1,188,289         | +40.2    | 1.91              | 2.66         | +39.3             |
| Natural gasoline and isopentanePlant condensate | $\substack{163,701 \\ 22,022}$ | 161,708<br>19,838 | $-1.2 \\ -9.9$ | 500,425<br>74,728 | 568,214<br>78,189 |          | 3.06<br>3.39      | 3.51<br>3.94 |                   |
| Finished gasoline and<br>naphthasOther products | 4,446<br>3,311                 | 3,239<br>2,605    |                | 20,737<br>8,533   | 13,902<br>8,479   | 6        | 4.66<br>2.58      | 4.29<br>3.25 | +26.0             |
| Total or average                                | 638,216                        | 634,423           | 6              | 1,452,233         | 1,857,073         | +27.9    | 2.28              | 2.93         | +28.5             |

Table 8.—Estimated proved recoverable reserves of natural gas liquids in the United States
(Thousand barrels)

|               |                              | Changes in 1             |                                                            | Reserv             | es Dec. 31,              | 1973          |
|---------------|------------------------------|--------------------------|------------------------------------------------------------|--------------------|--------------------------|---------------|
| State         | Reserves<br>Dec. 31,<br>1972 | Extensions and revisions | New field<br>and new<br>reserv-<br>oir<br>discov-<br>eries | Non-<br>associated | Associated—<br>dissolved | -<br>Total    |
| Alahama       | 27,606                       | +16,617                  | 1,080                                                      | 43,408             | 1,184                    | 44,592<br>343 |
| Alaska        | 442                          |                          |                                                            |                    | 343                      |               |
| Arkansas      | 7,778                        | -1,611                   | .==                                                        | 3,364              | 1,680                    | 5,044         |
| California 1  | 126,726                      | -8,452                   | 150                                                        | 3,195              | 102,768                  | 105,963       |
| Colorado      | 16,079                       | +7,536                   | 5                                                          | 10,534             | 10,319                   | 20,853        |
| Florida       | 8,800                        | -5,159                   |                                                            |                    | 3,307                    | 3,307         |
| Illinois      | 814                          | -814                     |                                                            |                    |                          |               |
| Indiana       | 14                           | -14                      |                                                            | ==                 | 0.770                    | 007 000       |
| Kansas        | 393,082                      | +23,779                  | 1,039                                                      | 378,555            | 8,743                    | 387,298       |
| Kentucky      | 46,782                       | +423                     | 1,204                                                      | 45,324             | 000 105                  | 45,324        |
| Louisiana 1   | 2,135,837                    | +75,137                  | 28,483                                                     | 1,672,350          | 320,187                  | 1,992,537     |
| Michigan      | 19,026                       | +1,989                   | 5,514                                                      | 7,507              | 17,539                   | 25,046        |
| Mississippi   | 14,620                       | +721                     | 248                                                        | 7,495              | 6,595                    | 14,090        |
| Montana       | 4,413                        | <b>— 97</b>              |                                                            | 694                | 2,931                    | 3,625         |
| Nebraska      | 1,630                        | +13                      |                                                            | 511                | 781                      | 1,292         |
| New Mexico    | 502,787                      | 51,533                   | 232                                                        | 294,227            | 118,953                  | 413,180       |
| North Dakota  | 45,367                       | +10,000                  |                                                            | 79                 | 53,266                   | 53,345        |
| Oklahoma      | 335,161                      | -8,277                   | 2,318                                                      | 189,714            | 99,388                   | 289,102       |
| Pennsylvania  | 735                          |                          |                                                            | 659                |                          | 659           |
| Texas 1       | 2,891,583                    | +261,819                 | 14,685                                                     | 1,341,127          | 1,489,016                | 2,830,143     |
| Utah          | 34,002                       | +20,927                  |                                                            | 472                | 52,072                   | 52,544        |
| West Virginia | 82,084                       | +5,627                   | 695                                                        | 82,755             |                          | 82,755        |
| Wyoming       | 91,191                       | +4,664                   | 31                                                         | 42,061             | 41,604                   | 83,665        |
| Total         | 6,786,559                    | +353,295                 | 55,684                                                     | 4,124,031          | 2,330,676                | 6,454,707     |

<sup>&</sup>lt;sup>1</sup> Includes offshore.

Source: American Gas Association.

Table 9.-Estimated productive capacity of natural gas liquids in the United States 1 (Thousand barrels per day)

|                         | Product            | ive capacity                  |       |
|-------------------------|--------------------|-------------------------------|-------|
| State                   | Non-<br>associated | Associ-<br>ated—<br>dissolved | Total |
| Alabama                 | 2                  | 1                             | 5     |
| Arkansas                | $\bar{2}$          | ī                             | Š     |
| California <sup>2</sup> | ī                  | 43                            | 44    |
| Colorado                | 4                  | -6                            | 10    |
| Florida                 | -                  | ĭ                             | 1     |
| Kansas                  | 135                | â                             | 144   |
| Kentucky                | 8                  | •                             | 117   |
| Louisiana <sup>2</sup>  | 679                | 97                            | 776   |
| Michigan                | 5                  | 6                             | 11    |
| Mississippi             | 2                  | ž                             | Ē     |
| Montana                 | ī                  | 2                             | 9     |
| Nebraska                | ī                  | ĩ                             | 9     |
| New Mexico              | $6\overline{4}$    | 48                            | 112   |
| North Dakota            | •••                | 6                             | 112   |
| Oklahoma                | $1\overline{12}$   | 66                            | 178   |
| Texas <sup>2</sup>      | 575                | 464                           | 1.039 |
| Utah                    | 1                  | 7                             | 1,000 |
| West Virginia           | 15                 | •                             | 15    |
| Wyoming                 | 15                 | $\bar{2}\bar{1}$              | 36    |
| Total                   | 1,622              | 782                           | 2,404 |

 $<sup>^{\</sup>rm 1}$  During the heating season immediately following Dec. 31, 1973.  $^{\rm 2}$  Includes offshore productive capacity.

Source: American Gas Association.

Table 10.-Production, stocks, and demand of liquefied gases and ethane at gas-processing plants and refineries

|                                                              | Ethane  | Propane | Butane     | Butane-<br>propane<br>mix-<br>tures |        | Total   |
|--------------------------------------------------------------|---------|---------|------------|-------------------------------------|--------|---------|
| Production:                                                  |         |         |            |                                     |        |         |
| At gas-processing plantsAt refineries:                       | 108,220 | 212,886 | 88,766     | > <sup>3,509</sup>                  | 33,652 | 447,033 |
| For fuel use                                                 |         | 73,531  | 13,036     | 3,003                               |        | 89,570  |
| For chemical use                                             | 9,194   | 25,329  | 6,666      | 3,491                               | 2,576  | 47,256  |
| Total<br>Net change in stocks:<br>Liquefied petroleum gases: | 117,414 | 311,746 | 108,468    | 10,003                              | 36,228 | 583,859 |
| At gas-processing plants                                     | _2 029  | 11,485  | 4,900      | -118                                | 988    | 13,250  |
| At refineries                                                | 2,025   | 167     | <b>-56</b> | 97                                  | -472   | -264    |
| Liquefied refinery gases:                                    |         | 101     | 00         | ٠.                                  | 7,2    | 201     |
| For fuel use                                                 |         | 560     | 310        | 166                                 |        | 84      |
| For chemical use                                             |         | 22      | 1          | 1                                   | 26     | 50      |
| Exports                                                      |         | 5,501   | 4,455      |                                     |        | 9,956   |
| Imports                                                      |         | 25,614  | 22,187     |                                     |        | 47,801  |
| Use at refineries                                            |         | 2,755   | 39,327     | 3,027                               | 35,112 | 80,221  |
| Domestic demand:                                             |         |         |            |                                     |        |         |
| At gas-processing plantsAt refineries:                       | 110,249 | 218,592 | 62,327     | 503                                 |        | 391,671 |
| For fuel use                                                 |         | 74,091  | 12,726     | 2,837                               |        | 89,654  |
| For chemical use                                             | 9,194   | 25,335  | 6,665      | 3,490                               | 2,550  | 47,234  |
| Total                                                        | 119,443 | 318,018 | 81,718     | 6,830                               | 2,550  | 528,559 |
| Yearend stocks:<br>Liquefied petroleum gases:                |         | -       |            |                                     |        |         |
| At gas-processing plants                                     | 5.023   | 59,704  | 15.289     | 826                                 | 7.267  | 88,109  |
| At refineries                                                |         | 357     | 1,369      | 128                                 | 959    | 2,813   |
| Liquefied refinery gases:                                    |         |         | •          |                                     |        | •       |
| For fuel use                                                 |         | 4,399   | 2,471      | 533                                 |        | 7,403   |
| For chemical use                                             |         | 187     | 16         | 3                                   | 110    | 316     |
| Total                                                        | 5,023   | 64,647  | 19,145     | 1,490                               | 8,336  | 98,641  |

Table 11.-Natural gas liquids used as refinery input in the United States in 1973, by Bureau of Mines refinery district and by month (Thousand barrels)

|                                                                                |                |                |                      | 3              | THE PROPERTY   | Datters)       |                 |                |                |                 |                 |                |                   |
|--------------------------------------------------------------------------------|----------------|----------------|----------------------|----------------|----------------|----------------|-----------------|----------------|----------------|-----------------|-----------------|----------------|-------------------|
| District                                                                       | Jan.           | Feb.           | Mar.                 | Apr.           | May            | June           | July            | Aug.           | Sept.          | Oct.            | Nov.            | Dec.           | Total             |
| East Coast Appalachian                                                         | 74<br>208      | 35<br>299      | 33<br>294            | 37<br>258      | 85<br>229      | 28<br>287      | 43<br>167       | 22<br>212      | 30<br>177      | 25<br>179       | 68<br>313       | 21<br>256      | 501<br>2,879      |
| Indiana, Illinois, Nentucky,                                                   | 3,349          | 3,156          | 2,999                | 2,667          | 2,792          | 2,318          | 2,912           | 2,623          | 2,592          | 2,287           | 2,423           | 2,846          | 32,964            |
| Dakota, Wisconsin, North<br>Dakota, South Dakota<br>Oklahoma, Kansas, Missouri | 1,157<br>2,096 | 1,194          | 1,212                | 1,183          | 1,188          | 1,101          | 1,153<br>1,913  | 1,126          | 1,057 2,063    | 731<br>2,210    | 901<br>2,329    | 1,124<br>2,371 | 13,127<br>23,758  |
| Texas:<br>InlandGulf Coast                                                     | 2,056<br>9,835 | 1,707<br>8,374 | 1,884<br>9,160       | 1,786<br>8,088 | 1,927<br>7,763 | 1,971          | 2,027<br>10,940 | 2,070          | 1,882          | 1,905<br>10,552 | 1,930<br>10,287 | 1,918          | 23,063<br>114,526 |
| Total                                                                          | 11,891         | 10,081         | 11,044               | 9,874          | 9,690          | 10,239         | 12,967          | 13,085         | 12,127         | 12,457          | 12,217          | 11,917         | 137,589           |
| Louisiana-Arkansas:<br>Louisiana Gulf Coast<br>Arkansas and Louisiana          | 3,854          | 3,444          | 3,690                | 3,395          | 3,740          | 3,511          | 3,386           | 3,935          | 3,662          | 4,427           | 4,310           | 4,292          | 45,646            |
| Total                                                                          | 4,120          | 3,705          | 4,049                | 3,711          | 4,043          | 4,168          | 3,857           | 4,367          | 4,134          | 4,929           | 4,769           | 4,787          | 50,639            |
| Other Rocky Mountain West Coast                                                | 1,182 $1,833$  | 1,277<br>1,659 | 83<br>1,389<br>1,675 | 1,038<br>1,481 | 1,149<br>1,548 | 1,096<br>1,623 | 1,396<br>1,775  | 1,595<br>1,489 | 1,191<br>1,485 | 1,399<br>1,491  | 1,454<br>1,697  | 1,075<br>1,570 | 15,241<br>19,326  |
| Total United States                                                            | 26,011         | 23,395         | 24,495               | 21,981         | 22,722         | 22,699         | 26,318          | 26,600         | 24,992         | 25,883          | 26,290          | 26,096         | 297,482           |

1 Comprised of plant condensate (including imports), natural gasoline, LPG, and isopentane.

Table 12.—Liquefied refinery gases and ethane produced at refineries for fuel and chemical use in 1973

| PAD districts and States | Ethane     | Propane        | Butane   | Butane-<br>propane<br>mixture | Total        |
|--------------------------|------------|----------------|----------|-------------------------------|--------------|
| District I:              |            |                |          |                               |              |
| New Jersey               | <b>5</b> 8 | 6,450          | 1,511    | 210                           | 8,229        |
| Pennsylvania             |            | 7,213          | 937      |                               | 8,150        |
| Other States 1           |            | 4,058          | 379      |                               | 4,437        |
| Total District I         | 58         | 17,721         | 2,827    | 210                           | 20,816       |
| District II:             |            |                |          |                               |              |
| Illinois                 |            | 10,912         | 141      |                               | 11,053       |
| Indiana                  | _===       | 766            | 314      |                               | 1,080        |
| Kansas                   | 520        | 3,978          | 95       | 1                             | 4,594        |
| Kentucky                 |            | $815 \\ 1.224$ | 104      | 2                             | 815<br>1.330 |
| Michigan<br>Ohio         |            | 4,473          | 362      | _                             | 4,835        |
| Oklahoma                 |            | 3.145          | 233      | 426                           | 3,804        |
| Other States 2           |            | 2,246          | 72       | 262                           | 2,580        |
| Total District II        | 520        | 27,559         | 1,321    | 691                           | 30,091       |
| District III:            |            |                |          |                               |              |
| Alabama and Mississippi  |            | 1,727          | 57       | 99                            | 1,883        |
| Arkansas                 |            | 178            | 42       |                               | 220          |
| Louisiana:               |            |                |          |                               |              |
| Gulf                     | 2,960      | 15,350         | 1,752    | 2,470                         | 22,532       |
| Inland                   |            | 113            | 216      | 154                           | 483          |
| Total Louisiana          | 2,960      | 15,463         | 1,968    | 2,624                         | 23,015       |
| New Mexico               |            | 203            | 166      |                               | 369          |
| Texas:                   |            |                |          |                               |              |
| Gulf                     | 5,040      | 22,065         | 10,588   | 147                           | 37,840       |
| Inland                   | 108        | 2,530          | 857      | 12                            | 3,507        |
| Total Texas              | 5,148      | 24,595         | 11,445   | 159                           | 41,347       |
| Total District III       | 8,108      | 42,166         | 13,678   | 2,882                         | 66,834       |
| District IV:             |            |                |          |                               |              |
| Colorado                 |            | 139            | 189      |                               | 328          |
| Montana                  |            | 784            | 60       | 57                            | 901          |
| Utah                     |            | 453            | 17       | 23                            | 493          |
| Wyoming                  |            | 226            | 195      | 93_                           | 514          |
| Total District IV        | F00        | 1,602          | 461      | 173                           | 2,236        |
| District V               | 508        | 9,812          | 3,991    | 2,538                         | 16,849       |
| Total United States      | 9,194      | 98,860         | 3 22,278 | 6,494                         | 136,826      |

Includes Delaware, New York, Virginia, and West Virginia.
 Includes Minnesota, Missouri, Nebraska, North Dakota, Tennessee, and Wisconsin.
 Includes 2,576,000 barrels of isobutane used for petrochemical feedstock.

Table 13.—Refinery input and stocks of natural gas plant products and refinery output and stocks of liquefied refinery gases, by product

|                             |        |        |          | *          |          |         |
|-----------------------------|--------|--------|----------|------------|----------|---------|
|                             |        | 1      | PAD Dist | ricts      |          | United  |
|                             | I      | II     | III      | IV         | v        | States  |
| Natural gas plant products: |        |        |          |            |          |         |
| Refinery inputs:            |        |        | 0.050    | 7          | 35       | 2,755   |
| Propane                     | ==     | 435    | 2,278    | 965        | 1.672    | 35,723  |
| Isobutane                   | 38     | 12,171 | 20,877   | 965<br>385 | 3.174    | 25,990  |
| Normal butane               | 148    | 7,419  | 14,864   |            | 1.190    | 11.267  |
| Other butane                | 89     | 6,345  | 1,839    | 1,804      |          | 4.486   |
| Butane-propane mix          | . ==   | 335    | 2,720    | 282        | 1,149    | 160,350 |
| Natural gasoline            | 153    | 19,515 | 130,465  | 1,673      | 8,544    |         |
| Plant condensate            | 2,126  | 24,455 | 16,643   | 10,125     | 3,562    | 56,911  |
| Total                       | 2,554  | 70,675 | 189,686  | 15,241     | 19,326   | 297,482 |
| Stocks at refineries: 1     |        |        |          |            |          |         |
| Propane                     |        |        | 287      | 70         | ==       | 357     |
| Isobutane                   |        | 211    | 703      | 23         | 22       | 959     |
| Normal butane               |        | 196    | 798      | 20         | 20       | 1,034   |
| Other butane                |        | 35     | 274      | 26         |          | 335     |
| Butane-propane mix          |        | 4      | 112      | 12         |          | 128     |
| Natural gasoline            |        | 209    | 841      | 4          | 31       | 1,085   |
| Plant condensate            |        | 397    | 207      | 330        | 2        | 936     |
| Total                       |        | 1,052  | 3,222    | 485        | 75       | 4,834   |
| Liquefied refinery gases:   |        |        |          |            |          |         |
| Refinery outputs:           |        |        |          |            |          |         |
| Propane and/or propylene    | 17,721 | 27,559 | 42,166   | 1,602      | 9,812    | 98,860  |
| Butane and/or butylene      | 2,827  | 1,219  | 12,049   | 447        | 3,160    | 19,702  |
| Butane-propane mix          | 210    | 691    | 2,882    | 173        | 2,538    | 6,494   |
| Isobutane                   |        | 102    | 1,629    | 14         | 831      | 2,576   |
| Total                       | 20,758 | 29,571 | 58,726   | 2,236      | 16,341   | 127,632 |
| =                           |        |        |          |            |          |         |
| Stocks at refineries: 1     | 0.10   | 1 550  | 1 775    | 77         | 313      | 4.586   |
| Propane and/or propylene    | 843    | 1,578  | 1,775    | 12         | 333      | 2.487   |
| Butane and/or butylene      | 12     | 460    | 1,670    | 17         | 294      | 536     |
| Butane-propane mix          |        | 214    | 11       | 3          | 53<br>53 | 110     |
| Isobutane                   |        | 45     | 9        |            |          |         |
| Total                       | 855    | 2,297  | 3,465    | 109        | 993      | 7,719   |

<sup>&</sup>lt;sup>1</sup> Stocks as of December 31, 1973.

Table 14.—Refinery input of LPG, by product and PAD district (Thousand barrels)

| Item                         | PAD district |        |        |       |            | United |
|------------------------------|--------------|--------|--------|-------|------------|--------|
|                              | I            | II     | III    | IV    | v          | States |
| 1971                         |              |        | 0.500  |       | 451        | 3,273  |
| Propane                      | 257          | 59     | 2,506  | 847   | 3.669      | 29,363 |
| Normal butane                | 686          | 8,402  | 15,759 |       | 1,191      | 11,121 |
| Other butanes                | 11           | 6,105  | 2,651  | 1,163 | 2,207      | 32,351 |
| Isobutane                    | 24           | 9,648  | 19,547 | 925   |            | 3,587  |
| Butane-propane mix           |              | 417    | 2,065  | 371   | 734        |        |
| Total LPG                    | 978          | 24,631 | 42,528 | 3,306 | 8,252      | 79,695 |
| 1972                         |              |        |        |       | <b>5</b> 0 | 3,934  |
| Propane                      |              | 5      | 3,851  |       | 78         |        |
| Normal butane                | 215          | 9,287  | 18,171 | 782   | 3,345      | 31,800 |
| Other butanes                | 53           | 6,513  | 2,340  | 1,238 | 1,220      | 11,364 |
| Isobutane                    | 73           | 10,127 | 21,817 | 878   | 1,734      | 34,629 |
| Butane-propane mix           |              | 340    | 1,880  | 374   | 872        | 3,466  |
| Total LPG                    | 341          | 26,272 | 48,059 | 3,272 | 7,249      | 85,198 |
| 1973                         |              |        |        | _     | 0.5        | 2,75   |
| Propane                      |              | 435    | 2,278  | 7     | 35         |        |
| Normal butane                | 148          | 7,419  | 14,864 | 385   | 3,174      | 25,990 |
| Other butanes                | 89           | 6,345  | 1,839  | 1,804 | 1,190      | 11,26  |
|                              | 38           | 12,171 | 20,877 | 965   | 1,672      | 35,723 |
| Isobutane                    |              | 335    | 2,720  | 282   | 1,149      | 4,486  |
| Butane-propane mix Total LPG | 275          | 26,705 | 42,578 | 3,443 | 7,220      | 80,22  |

Table 15.-Stocks of natural gas liquids and ethane in the United States (Thousand barrels)

|               |                         | LP gases and<br>ethane |                         | Natural gasoline and isopentane |                         | finished<br>cts and<br>ndensate | Total<br>at plants    | m-+-1                       |                |
|---------------|-------------------------|------------------------|-------------------------|---------------------------------|-------------------------|---------------------------------|-----------------------|-----------------------------|----------------|
| Date          | At plants and terminals | At re-<br>fineries     | At plants and terminals | At re-<br>fineries              | At plants and terminals | At re-<br>fineries              | and<br>termi-<br>nals | Total<br>at re-<br>fineries | Grand<br>total |
| Dec. 31:      |                         |                        |                         |                                 |                         |                                 |                       |                             |                |
| 1969          | 53,981                  | 571                    | 3,368                   | 1.557                           | 1,203                   | 232                             | 58,552                | 2,360                       | 60.912         |
| 1970          | 60,595                  | 794                    | 4,323                   | 1,765                           | 1.074                   | 451                             | 65,992                | 3,010                       | 69,002         |
| 1971          | 83,659                  | 3,693                  | 3,678                   | 1.485                           | 1.084                   | 419                             | 88,421                | 5,597                       | 94,018         |
| 1972<br>1973: | 74,859                  | 3,077                  | 3,384                   | 1,418                           | 995                     | 510                             | 79,238                | 5,005                       | 84,243         |
| Jan. 31       | 59,974                  | 2,402                  | 3,465                   | 1,360                           | 904                     | 687                             | 64,343                | 4,449                       | 68,792         |
| Feb. 28       | 51,783                  | 2,489                  | 3,336                   | 1,424                           | 878                     | 696                             | 55,997                | 4.609                       | 60,606         |
| Mar. 31       | 54,337                  | 3,326                  | 3,185                   | 1,418                           | 949                     | 658                             | 58,471                | 5,402                       | 63,873         |
| Apr. 30       | 60,633                  | 3,691                  | 3,638                   | 1,535                           | 1,026                   | 743                             | 65,297                | 5,969                       | 71,266         |
| May 31        | 69,156                  | 3,942                  | 3,813                   | 1,647                           | 973                     | 1,119                           | 73,942                | 6,708                       | 80,650         |
| June 30       | 78,010                  | 3,888                  | 4,227                   | 1.488                           | 820                     | 1,000                           | 83,057                | 6,376                       | 89,433         |
| July 31       | 88,346                  | 3,920                  | 4,254                   | 1,399                           | 762                     | 950                             | 93,362                | 6,269                       | 99,631         |
| Aug. 31       | 93,610                  | 3,806                  | 4,604                   | 1,410                           | 782                     | 856                             | 98,996                |                             | 105,068        |
| Sept. 30      | 98,389                  | 3,953                  | 4,668                   | 1,249                           | 850                     |                                 | 103,907               |                             | 110,002        |
| Oct. 31       | 98,401                  | 3,285                  | 5,001                   | 1,362                           | 813                     |                                 | 104,215               |                             | 109,639        |
| Nov. 30       | 92,509                  | 3,447                  | 5,017                   | 1,373                           | 794                     | 1,052                           | 98,320                |                             | 104,192        |
| Dec. 31       | 88,109                  | 2,813                  | 5,075                   | 1,085                           | 922                     | 936                             | 94,106                |                             | 98,940         |

<sup>&</sup>lt;sup>1</sup> Includes 74,787,000 barrels in underground storage.

Table 16.-Average monthly prices, liquefied petroleum gas (propane) in the United States (Cents per gallon)

|                           | (           | er guilor |       |       |       |               |       |
|---------------------------|-------------|-----------|-------|-------|-------|---------------|-------|
|                           | Jan.        | Feb.      | Mar.  | Apr.  | Мау   | June          | July  |
| New York: 1               |             |           |       |       |       |               |       |
| 1972                      | 8.50        | 8.50      | 8.50  | 8.50  | 8.50  | 8.50          | 8.50  |
| 1973                      | 9.18        | 9.18      | 9.18  | 9.36  | 9.48  | 10.42         | 10.89 |
| Oklahoma: 1               |             |           |       | •     | 0.40  | 10.12         | 10.00 |
| 1972                      | 5.25        | 5.25      | 5.25  | 5.25  | 5.25  | 5.25          | 5.25  |
| 1973                      | 5.67        | 5.90      | 6.46  | 6.93  | 8.30  | 9.28          | 9.50  |
| Mt. Belvieu, Tex.: 2      |             | 0.00      | 0.10  | 0.50  | 0.00  | 3.20          | 5.50  |
| 1972                      | 5.58        | 5.58      | 5.58  | 5.58  | 5.58  | 5.58          | 5.58  |
| 1973                      | 6.02        | 6.21      | 6.74  | 7.22  | 8.39  |               |       |
| Baton Rouge, La.: 1       | 0.02        | 0.21      | 0.14  | 1.24  | 0.09  | 9.44          | 9.88  |
| 1972                      | 5.73        | 5.73      | 5.73  | F 50  |       |               |       |
| 1973                      | 6.21        |           |       | 5.73  | 5.73  | 5.73          | 5.73  |
| Wood River, Ill.:         | 0.21        | 6.40      | 6.91  | 7.26  | 8.49  | 9.16          | 9.25  |
|                           |             |           |       |       |       |               |       |
| 1000                      | 6.45        | 6.45      | 6.45  | 6.45  | 6.45  | 6.45          | 6.45  |
|                           | 6.96        | 6.96      | 7.15  | 8.09  | 8.71  | 8.79          | 8.79  |
| Los Angeles, Calif.: 1973 | 6.72        | 6.72      | 6.86  | 6.92  | 6.92  | 7.78          | 7.78  |
| ·                         | Aug.        | Sept.     | Oct.  | Nov.  | Dec.  | Aver<br>for y |       |
| New York:1                |             |           |       |       |       |               |       |
| 1972                      | 8.50        | 8.95      | 9.18  | 0.10  | 0.10  | _             |       |
| 1973                      | 10.89       | 12.14     |       | 9.18  | 9.18  |               | 71    |
| Oklahoma: 1               | 10.09       | 12.14     | 11.69 | 12.37 | 13.38 | 10.           | 68    |
| 1972                      | 5.25        | 5.60      | 5.67  | 5.67  | 5.67  | E             | 38    |
| 1973                      | 9.50        | 11.40     | 13.83 | 13.83 | 13.86 |               |       |
| Mt. Belvieu, Tex.: 2      |             | 22.10     | 10.00 | 10.00 | 10.00 | 9.            | 58    |
| 1972                      | 5.58        | 5.93      | 6.02  |       |       | _             |       |
| 1973                      | 9.88        | 10.78     |       | 6.02  | 6.02  |               | 71    |
| Baton Rouge, La.: 1       | <b>3.00</b> | 10.78     | 12.79 | 12.97 | 14.42 | 9.            | 56    |
| 1972                      | F 50        | 2.10      |       |       |       |               |       |
|                           | 5.73        | 6.12      | 6.21  | 6.21  | 6.21  | 5.            | 88    |
| Wood River, Ill.:         | 9.25        | 10.07     | 11.50 | 11.85 | 13.28 | 9.            | 13    |
|                           |             |           |       |       |       |               |       |
| 1070                      | 6.45        | 6.88      | 6.96  | 6.96  | 6.96  | 6.            | 61    |
| 1973                      | 8.79        | 11.08     | 13.56 | 15.03 | 16.81 | 10.0          |       |
| Los Angeles, Calif.: 1973 | 7.78        |           |       |       |       |               |       |

<sup>&</sup>lt;sup>1</sup> Producers' net contract prices (after some discounts and summer-fill allowances) for propane, tank cars, and/or transport trucks.

<sup>2</sup> For pipeline input, minimum 10,000 barrels.

Source: Platt's Oil Price Handbook and Oilmanac.

Table 17.-LPG 1 and plant condensate imported into the United States, by country (Thousand barrels)

| (Thou                          | (Thousand barrels) |               |          |  |  |  |  |  |  |
|--------------------------------|--------------------|---------------|----------|--|--|--|--|--|--|
|                                | 1971               | 1972          | 1973     |  |  |  |  |  |  |
| LPG:                           |                    |               |          |  |  |  |  |  |  |
| Algeria                        |                    |               | 55<br>38 |  |  |  |  |  |  |
| Australia                      |                    |               | 38<br>97 |  |  |  |  |  |  |
| Belgium                        | ==                 | 25.25         |          |  |  |  |  |  |  |
| Canada                         | 21,710             | 27,853        | 31,653   |  |  |  |  |  |  |
| Chad                           |                    | -55           | 1        |  |  |  |  |  |  |
| Chile                          |                    | 126           | 138      |  |  |  |  |  |  |
| France                         |                    |               | 225      |  |  |  |  |  |  |
| Indonesia                      | 8                  |               | 5        |  |  |  |  |  |  |
| Iran                           | 157                | -=            | 118      |  |  |  |  |  |  |
| Kuwait                         |                    | 5             | .2       |  |  |  |  |  |  |
| Liberia                        |                    | . ==          | 54       |  |  |  |  |  |  |
| Libya                          | 1                  | 120           | 594      |  |  |  |  |  |  |
| Malaysia                       |                    | 68            | 131      |  |  |  |  |  |  |
| Mexico                         | 4                  |               | .==      |  |  |  |  |  |  |
| Netherlands                    |                    |               | 237      |  |  |  |  |  |  |
| Netherlands Antilles           | 230                |               | 235      |  |  |  |  |  |  |
| Norway                         |                    |               | 103      |  |  |  |  |  |  |
| Oman                           |                    | 25            | 32       |  |  |  |  |  |  |
| Saudi Arabia                   | 350                | 210           | 595      |  |  |  |  |  |  |
| Singapore                      |                    |               | 1        |  |  |  |  |  |  |
| United Arab Emirates           |                    |               | 9        |  |  |  |  |  |  |
| United Kingdom                 |                    | 1             | 856      |  |  |  |  |  |  |
| Venezuela                      | 3,183              | 3,993         | 12,622   |  |  |  |  |  |  |
| Virgin Islands                 | <b>5</b>           |               |          |  |  |  |  |  |  |
| Other                          | 7                  |               |          |  |  |  |  |  |  |
|                                | 25,655             | 32,401        | 47,801   |  |  |  |  |  |  |
| Total                          | 20,000             | 02,101        |          |  |  |  |  |  |  |
| Imports by PAD District:       |                    |               |          |  |  |  |  |  |  |
| District I                     | 4,775              | <b>5,3</b> 36 | 8,549    |  |  |  |  |  |  |
| District II                    | 10,859             | 14,441        | 18,417   |  |  |  |  |  |  |
| District III                   | 794                | 787           | 9,116    |  |  |  |  |  |  |
| District IV                    | 3,060              | 5,405         | 5,496    |  |  |  |  |  |  |
| District V                     | 6,167              | 6,432         | 6,223    |  |  |  |  |  |  |
| Plant condensate:              |                    |               |          |  |  |  |  |  |  |
| Canada                         | 13,288             | 31,282        | 37,460   |  |  |  |  |  |  |
| Venezuela                      | 33                 | 146           | 15       |  |  |  |  |  |  |
| Total                          | 13,321             | 31,428        | 37,475   |  |  |  |  |  |  |
|                                | 38,976             | 63,829        | 85,276   |  |  |  |  |  |  |
| Total LPG and plant condensate | 90,510             |               |          |  |  |  |  |  |  |

<sup>&</sup>lt;sup>1</sup> Includes LRG.

Table 18.—LPG <sup>1</sup> exported from the United States, by country (Thousand barrels and thousand dollars)

|                      | (Th              | ousand bar       | reis and th                         | iousana a        | onars)           |            |                                     |        |
|----------------------|------------------|------------------|-------------------------------------|------------------|------------------|------------|-------------------------------------|--------|
|                      |                  | 1972             |                                     |                  |                  | 1973       |                                     |        |
| Country              | Butane           | Propane          | Butane-<br>propane<br>mix-<br>tures | Total            | Butane           | Propane    | Butane-<br>propane<br>mix-<br>tures | Total  |
| Bahamas              | (2)              | 26               | (2)                                 | 26               | (2)              | 1          |                                     | 1      |
| Bahrain              | (²)              |                  | (2)                                 | (2)              |                  |            | 1                                   | 1      |
| Belgium              | (2)              | ( <sup>2</sup> ) | ·                                   | (²)              | 1                |            |                                     | 1      |
| Bermuda              |                  |                  | ( <sup>2</sup> )                    | (²)              |                  |            | 1                                   | 1      |
| Brazil               | 47               |                  |                                     | ` 47             |                  |            | ( <sup>2</sup> )                    | (2)    |
| Canada               | 10               | 11               | 97                                  | 118              | 210              | 36         | `116                                | 362    |
| Colombia             | (2)              |                  |                                     | (2)              |                  | 1          | (2)                                 | 1      |
| Dominican Republic - | `´1              | (2)              |                                     | `´1              | ( <sup>2</sup> ) | ī          | .,                                  | 1      |
| France               | -                | `´28             | ( <sup>2</sup> )                    | 28               | · /              |            | (2)                                 | (2)    |
| Finland              |                  | 20               | (2)                                 | ( <sup>2</sup> ) |                  |            | 1                                   | 1      |
| Germany, West        | ( <sup>2</sup> ) |                  | (²)                                 | (²)              |                  | (2)        | 1                                   | 1      |
| Guatemala            | (-)              |                  | `´5                                 | `´5              |                  | ` 1        | 9                                   | 10     |
| Israel               | ( <sup>2</sup> ) | (2)              | Ū                                   | (2)              | (2)              | 3          |                                     | 3      |
| Italy                | (2)              | (2)              | (2)                                 | (2)              | (2)              | 2          | (2)                                 | 2      |
| Japan                | (2)              | 888              | (2)                                 | ` 888            | (²)              | 401        |                                     | 401    |
| Mexico               | 759              | 2,773            | 6,798                               | 10,330           | <b>`</b> 537     | 2,738      | 5,852                               | 9,127  |
| Netherlands          | 12               | 2,110            | ( <sup>2</sup> )                    | 12               |                  |            | (2)                                 | (2)    |
| New Zealand          | 2                |                  | (2)                                 | 2                |                  | 1          | (2)                                 | 1      |
| South Africa.        | _                |                  | ` '                                 |                  |                  |            |                                     |        |
| Republic of          |                  | ( <sup>2</sup> ) | 1                                   | 1                |                  | (2)        | 1                                   | 1      |
|                      | (2)              | (-)              | ( <sup>2</sup> )                    | (2)              |                  | (2)        | ī                                   | 1      |
| Spain                | (2)              |                  | \-' <sub>1</sub>                    | `´´2             | (2)              | (2)<br>(2) | 2                                   | 2      |
| United Kingdom       | (2)              | 9                | 6                                   | 15               | `´3              | `´4        | 2                                   | 9      |
| Other                |                  |                  |                                     |                  |                  |            |                                     | 9,927  |
| Total                | 831              | 3,736            | 6.908                               | 11,475           | 751              | 3,189      | 5,987                               |        |
| Total Value          | 2,672            | 23,192           | 20,717                              | 46,581           | 3,855            | 23,345     | 29,991                              | 57,191 |

Data include LRG.
 Less than ½ unit.

Source: Bureau of the Census.

Table 19.-Natural gas plant liquids:

(Thousand 42-gallon

| <u>.</u>                     |             |             | 1971           |                                  |              |
|------------------------------|-------------|-------------|----------------|----------------------------------|--------------|
| Country 1                    | Propane     | Butane      | Subtotal       | Natural<br>gasoline<br>and other | Total        |
| North America:               |             |             |                |                                  |              |
| Canada                       | 24.226      | 15,447      | 39,673         | 40 000                           | 00           |
| Mexico                       | NA          | NA          |                | 46,898                           | 86,571       |
| Trinidad and Tobago          | ŇA          | NA          | NA             | e 2,362                          | 21,362       |
| United States                | 212,143     | 92,717      | 304.860        | 141                              | 141          |
| South America:               | 212,140     | 32,111      | <b>804,800</b> | 312,955                          | 617,815      |
| Argentina                    | 3,200       | 3,623       | 6 000          |                                  |              |
| Bolivia                      | NA          | NA          | -,             | ° 1,700                          | • 8,523      |
| Brazil                       | NA<br>NA    | NA<br>NA    | .48            | _46                              | 94           |
| Chile                        | 1.092       |             | NA             | NA                               | 1,373        |
| Colombia                     | 1,778       | 720         | 1,812          | 1,901                            | 3,713        |
| Ecuador                      |             | 777         | 2,555          | 1,073                            | 3,628        |
| Peru                         | NA          | NĄ          | 52             | NA                               | 52           |
| PeruVenezuela                | 320         | 7           | 327            | 509                              | 836          |
| VenezuelaEurope:             | NA          | NA          | 16,392         | 9,152                            | 25,544       |
| Tā .                         |             |             |                |                                  | •            |
| France                       | 1,630       | 1,645       | 3,275          | 3,162                            | 6.437        |
| Germany, West                |             |             |                | 114                              | 114          |
|                              |             |             |                | 589                              | 589          |
| Netherlands                  |             |             |                |                                  | 000          |
|                              | NA          | NA          | NA             | ÑĀ                               | 235          |
| U.S.S.R. e 2                 | NA          | NA          | NA             | NA                               | 62.000       |
| United Kingdom               |             |             |                | 1.226                            | 1.226        |
| I ugosiavia                  | NA          | NA          | e 420          | 267                              | • 687        |
| Airica:                      |             |             | 720            | 201                              | - 001        |
| Algeria                      | NA          | NA          | NA             | 5.919                            | F 010        |
| Libya                        | e 200       | e 600       | • 800          | • 1.700                          | 5,919        |
| Asia:                        | 200         | 000         | - 000          | 1,700                            | <b>2,500</b> |
| Brunei •                     | NA          | NA          | NA             | NA                               | =00          |
| Indonesia                    | ŇĀ          | NA          | 36             |                                  | 700          |
| Iran                         | 3.900       | 3.400       |                | NA                               | 36           |
| Japan                        | NA          | 3,400<br>NA | 7,300          | 3,000                            | 10,300       |
| Kuwait                       | 7.106       |             | 123            | 27                               | 150          |
| Pakistan e                   | 7,106<br>NA | 6,558       | 13,664         | 5,403                            | 19,067       |
| Saudi Arabia                 |             | NA          | NA             | NA                               | 60           |
|                              | NA          | NA          | • 10,000       |                                  | e 13,000     |
| Taiwan<br>Oceania: Australia | 229         | 212         | 441            | 127                              | 568          |
| - Culturalia                 | NA          | NA          | NA             | NA                               | 1,692        |
|                              | 3 255,824   |             |                |                                  |              |

e Estimate. P Preliminary. NA Not available.

In addition to the countries listed, others, including most notably Hungary, New Zealand, the mation is inadequate to make reliable estimates of output levels. Every effort has been made to exclude natural gas liquids obtained from field treatment facilities including wellhead separators, oil output. In some cases, however, sources do not clearly specify whether data presented represent country figures in this table may include field condensate. Where this appears to be the case, the 2 May include field condensate.

3 Total of listed figures only, and as such represents as incomplete total, because for some coun sources, and insufficient data are available to estimate the distribution of these totals by individual does the summation of this subtotal and natural gasoline and other equal the reported natural gas

World production, by country

barrels)

|            |                 | 1972        |                                  |              |                  |           | 1973 р          |                                 |                       |
|------------|-----------------|-------------|----------------------------------|--------------|------------------|-----------|-----------------|---------------------------------|-----------------------|
| Propane    | Butane          | e Subtotal  | Natural<br>gasoline<br>and other | Total        | Propan           | e Butane  |                 | Natura<br>I gasolin<br>and othe | e Total               |
| 30,431     | 19,766          | 50,197      | 60,674                           | 110,871      | 34,208           | 23,055    | F7 000          | 60.000                          |                       |
| NA         | NA              | 21,065      | 2.579                            | 23,644       | NA<br>NA         |           |                 | 62,899                          |                       |
| NA         | NA              | NA          | 137                              | 137          | MA               | NA        | 22,274          | 4,299                           | 26,57                 |
| 218,039    | 92,459          | 310,498     | 327,718                          | 638,216      | 212,886          | 92,275    | 305,161         | 79<br>329,262                   | 634,423               |
| 3,171      | 4,094           | 7.265       | e 1.800                          |              |                  | -         |                 | •                               | 001,120               |
| NA         | NA<br>NA        | 51          | e 100                            | e 9,065      | NA               | NA        |                 | NA.                             | e 9,000               |
| NA         | NA              | NA          |                                  | e 151        | e 24             | e 24      | e 48            | e 100                           | e 148                 |
| 1,664      | 1,161           | 2,825       | NA                               | e 1,400      | NA               | NA        |                 | NA                              | e 1.400               |
| 1,220      | 726             | 1,946       | 2,159                            | 4,984        | 1,811            | 1,161     |                 | 2,075                           | 5.047                 |
| NA         | NA              | 1,946<br>50 | 1,016                            | 2,962        | 1,271            | 733       |                 | 928                             | 2,932                 |
| 308        | 2               | 310         | 119                              | 169          | NA               | NA        | e 50            | e 120                           | e 170                 |
| NA         | NÃ              | 20,819      | 447                              | 757          | 296              | 3         | 299             | 449                             | 748                   |
| 1111       | MA              | 20,819      | 10,116                           | 30,935       | NA               | NA        | 23,382          | 10,487                          | 33,869                |
| 1,729      | 1,893           | 3,622       | 3,112                            | 6,734        | e 1,800          | e 1,900   | e 3,700         | e 3.100                         | e 6,800               |
|            |                 |             | 114                              | 114          | ,                | _,,,,,    | 0,100           | e 115                           | • 115                 |
|            |                 |             | 551                              | 551          |                  |           |                 | ° 550                           | e 550                 |
| 27.        |                 |             | 380                              | 380          |                  |           |                 | e 400                           | • 400                 |
| NA         | NA              | NĀ          | NA                               | 250          | NA               | NA        | NĀ              | NA                              | 260                   |
| NA         | NA              | NA.         | NA                               | 67,000       | NA               | NA        | NA              | NA                              | 79.000                |
| $\bar{NA}$ | $\overline{NA}$ |             | 2,157                            | 2,157        |                  |           |                 | e 2,500                         | ° 2,500               |
| NA         | NA              | e 420       | 267                              | e 687        | NA               | NĀ        | • 420           | e 267                           | e 687                 |
| NA         | NA              | NA          | 7,084                            | 7.084        | NA               | NA        | NA              | 4 10 100                        |                       |
| 537        | 2,328           | 2,865       | 7,417                            | 10,282       | e 530            | e 2.290   | e 2,820         | ° 12,400<br>° 10,000            | • 12,400<br>• 12,820  |
| NA         | NA              | NA          | NA                               | 700          | 37.4             |           | •               |                                 | -                     |
| NA         | ŇĀ              | e 10        | e 30                             | e 40         | NA               | NA        | NA              | NA                              | 700                   |
| 4,380      | 3,639           | 8.019       | 3,983                            | 12,002       | NA<br>* 4.910    | NA        | 10              | 33                              | 43                    |
| NA         | NA              | 137         | 31                               | 168          |                  | e 4,170   | e 9,080         | e 4,580                         | e 13,660              |
| 7,629      | 7,376           | 15.005      | 5.580                            | 20,585       | NA               | NA        | 151             | 44                              | 195                   |
| NA         | NA              | NA          | NA                               | 20,585<br>65 | 8,478            | 7,783     | 16,261          | 5,888                           | 22,149                |
| NA         | NA              | 15,784      | 4,007                            | 19,791       | NA<br>NA         | NA        | NA              | NA                              | 70                    |
| 329        | 303             | 632         | 163                              | 795          |                  | NA        | 25,628          | 9,822                           | 35,450                |
| NA         | ŇA              | 13,920      | 105                              | 13,920       | 428<br><b>NA</b> | 304<br>NA | 732<br>• 13,900 | 201<br>e 3,200                  | 933                   |
| 69,437 3 1 | 33,747          | 3 475,440 3 |                                  | 986,596      |                  |           |                 |                                 | * 17,100<br>1,040,383 |

People's Republic of China, and Romania, may also produce natural gas plant liquids, but inforinclude in this table only those natural gas liquids produced by natural gas processing plants, and because the latter are normally blended with crude oil and thus are included in statistics on crude only output of natural gas processing plants, or if they include field output. Thus, some of the country has been so footnoted, but it may also be true in the case of other countries.

tries, only total of butane and propane or only total natural gas plant liquids is reported in type. Summation of totals of propane and butane thus does not equal the reported subtotal, nor plant liquid total.



# **Nickel**

## By John D. Corrick 1

Nickel supply and demand came into approximate balance throughout the world in the latter part of 1973. Balance was brought about by greatly increased demand in the United States, Western European countries, and Japan. Apparently the 3 years of surplus supply did not alter the course of the nickel industry. The supply base was greatly expanded and the dominance of the International Nickel Co. of Canada Ltd. (Inco) and Société le Nickel S.A. (SLN) of New Caledonia was partly diminished by other nickel producers expanding their production.

Domestic nickel consumption increased 24% in 1973 compared with that of 1972, and exceeded the record consumption in 1966 by 5%. The pattern of nickel consumption was little changed from previous years. However, that portion of nickel consumed in stainless and heat-resisting steels increased at a faster rate in recent years than did nickel consumption in other

major end use categories.

The price of nickel in ferronickel was increased 6 to 7 cents per pound at midyear by SLN. Inco followed SLN's lead and increased the price of oxide sinters 90 and 75 by 3 cents per pound. Inco's price was equivalent to those quoted for SLN's ferronickel, recognizing the iron value in ferronickel.

World trade in nickel was singularly marked by the changing supply base. Imports into the United States of Soviet Union nickel for consumption increased nearly fortyfold compared with those of 1972; imports from the Dominican Republic increased about fivefold; and Southern Rhodesian producers supplied nearly 8 million pounds. The United States imported a record 191,000 tons of nickel in 1973.

Legislation and Government Programs. -A proposed rule change regarding rated nickel orders was published in the October 1, 1973, Federal Register. The proposed rule permits nickel producers and distributors to reject rated orders for nickel (other than DX-rated orders and directives issued by the U.S. Department of Commerce, Bureau of Competitive Assessment and Business Policy) that are received by them less than 10 days before the month in which delivery is requested. The proposal also provides that producers and distributors of nickel shall comply with directives, including those that require the set-aside of an individual producer's or distributor's supply of nickel for acceptance of rated orders during specified periods of time.

Table 1.—Salient nickel statistics (Short tons)

1973 1972 1969 1970 1971 United States:

Mine production 1 \_\_\_\_\_Plant production: 18,272 15,933 17,036 16,864 17,056 15,731 35,926 21,671 13,895 15,654 15,558 15,810 Primary \_\_\_\_\_ 23,159 31,456 156,252 155,719 24,708 29,657 26,143 142,183 33,295 Secondary \_\_\_\_\_\_Exports (gross weight) \_\_\_\_\_\_Imports for consumption \_\_\_\_\_\_ 18,775 22,070 34,758 173,870 191,073 197,723 129,332 141,737 159,286 26,260 128,802 \_\_\_\_\_ Consumption 28,946 16,005 16,574 Stocks Dec. 31: Consumer ---133-153 103-128 128-133 133 \_\_cents per pound\_\_ 726,014 r 702,027 683.122 536,608 692,710 World: Mine production \_\_\_\_\_

<sup>&</sup>lt;sup>1</sup> Physical scientist, Division of Ferrous Metals Mineral Supply.

r Revised.

<sup>&</sup>lt;sup>1</sup> Mine shipments.

#### DOMESTIC PRODUCTION

The Hanna Mining Co. at Riddle, Oreg., was the sole producer of primary nickel in the United States in 1973. By-product nickel salts were produced at copper and other metal refineries; part of the byproduct nickel originated from scrap. Amax Nickel Division of American Metal Climax Inc. began constructing, expanding, and rehabilitating the Port Nickel, La., refinery formerly owned by Freeport Sulphur Co. (Freeport Minerals Co.). The renovated plant will produce 80 million pounds of nickel per year along with varying quantities of

copper, cobalt, and ammonium sulfate. Feed material will be in the form of a copper-nickel matte initially imported from Bamangwato Concessions Ltd. (BCL) of Botswana. Considerable interest was expressed in the copper-nickel deposits of Northeastern Minnesota in 1973. Numerous hearings were held by Minnesota's Environmental Quality Council regarding the question of immediate development of the deposits or instituting a moratorium on development. However, at yearend no significant results were reported.

Table 2.-Primary nickel produced in the United States

(Short tons, nickel content)

|                                         | 1969   | 1970   | 1971   | 1972   | 1973   |
|-----------------------------------------|--------|--------|--------|--------|--------|
| Domestic oreByproduct of metal refining | 13,096 | 12,649 | 13,073 | 13,226 | 12,937 |
|                                         | 2,714  | 2,909  | 2,581  | 2,505  | 958    |

Table 3.—Nickel recovered from nonferrous scrap processed in the United States, by kind of scrap and form of recovery

(Short tons)

| Kind of scrap             | 1972         | 1973         | Form of recovery                                                          | 1972            | 1973            |
|---------------------------|--------------|--------------|---------------------------------------------------------------------------|-----------------|-----------------|
| New scrap:<br>Nickel-base | 3,038        | 1.403        | As metal                                                                  | 1,166           | 1,358           |
| Copper-base               | 1,948<br>500 | 4,598<br>600 | In nickel-base alloys<br>In copper-base alloys<br>In aluminum-base alloys | 2,694<br>6,738  | 1,192<br>11,739 |
|                           | 5,486        | 6,601        | In ferrous and high-<br>temperature alloys 1                              | 1,056<br>24.003 | 908<br>18,025   |
| Old scrap:<br>Nickel-base | 29.440       | 25,557       | In chemical compounds                                                     | 269             | 73              |
| Copper-baseAluminum-base  | 600<br>400   | 637<br>500   | Total                                                                     | 35,926          | 33,295          |
| Total                     | 30,440       | 26,694       |                                                                           |                 |                 |
| Grand total               | 35,926       | 33,295       |                                                                           |                 |                 |

<sup>&</sup>lt;sup>1</sup> Includes only nonferrous nickel scrap added to ferrous high-temperature alloys.

#### **CONSUMPTION AND USES**

Consumption of ferronickel was an even more significant part of total nickel consumption in the United States in 1973, than it was in 1972. However, the increased usage was due more to the availability and price spread between nickel in ferronickel and that of pure nickel than it was to any change in technology of usage as in the past. Nickel in ferronickel accounted for 18% of the total nickel consumed in 1973, compared with 14% in 1972, and was consumed principally in stainless and alloy steels. The pattern of nickel consumption

in 1973 was little changed from that of 1972; 33% of the total consumed was used to make stainless steels, 12% was used in alloy steels, 15% was used in nickel plating, 26% was used to make high-nickel alloys and superalloys, and 2% was used in iron castings. End use market data available to the Bureau of Mines did not indicate any significant change in the worldwide pattern of nickel consumption.

Data on secondary nickel reported in table 8 are incomplete and are based on

November and December reports of approximately 200 companies that report monthly, and the 1973 reports of approximately 450 companies that report annually. The information is included in this chapter to

acquaint the reader with the type of material that will be available in future publications and to initiate this series of data. It should be used only as an indicator of secondary nickel consumption.

Table 4.-Stocks and consumption of new and old nickel scrap in the United States in 1973

(Gross weight, short tons)

| Class of consumer and                        | Stocks,<br>begin-  |          | C      | onsumption | n      | Stocks,        |
|----------------------------------------------|--------------------|----------|--------|------------|--------|----------------|
| type of scrap                                | ing of<br>year     | Receipts | New    | Old        | Total  | end of<br>year |
| Smelters and refiners:                       |                    |          |        |            |        |                |
| Nickel and nickel alloys                     | 2,862              | 684      | 753    | 1,057      | 1,810  | 1,736          |
| Monel metal                                  | r 645              | 2,185    | 381    | 2,070      | 2,451  | 379            |
| Nickel silver 1                              | 456                | 4,186    | 582    | 3,571      | 4,153  | 489            |
| Cupronickel 1                                | 140                | 655      |        | 528        | 528    | 267            |
| Nickel residues                              | 1,936              | 8,578    | 7,066  |            | 7,066  | 3,448          |
| Total                                        | <sup>r</sup> 5,443 | 11,447   | 8,200  | 3,127      | 11,327 | 5,553          |
| Foundries and plants of other manufacturers: |                    |          |        |            |        |                |
| Nickel and nickel alloys                     | 3,760              | 27,072   |        | 22,964     | 22,964 | 7,868          |
| Monel metal                                  | 9                  | 102      | 2      | 92         | 94     | 17             |
| Nickel silver 1                              | 2,519              | 17,834   | 17,671 |            | 17,671 | 2,682          |
| Cupronickel 1                                | 1,622              | 10,176   | 10,612 | 150        | 10,762 | 1,036          |
| Nickel residues                              | 109                | 680      | 383    | 276        | 659    | 130            |
| Total                                        | 3,878              | 27,854   | 385    | 23,332     | 23,717 | 8,015          |
| Grand total:                                 |                    |          |        |            |        |                |
| Nickel and nickel alloys                     | 6,622              | 27,756   | 753    | 24,021     | 24,774 | 9,604          |
| Monel metal                                  | 654                | 2,287    | 383    | 2,162      | 2,545  | 396            |
| Nickel silver 1                              | 2.975              | 22,020   | 18,253 | 3,571      | 21,824 | 3,171          |
| Cupronickel 1                                | 1.762              | 10.831   | 10,612 | 678        | 11,290 | 1,303          |
| Nickel residues                              | 2.045              | 9,258    | 7,449  | 276        | 7,725  | 3,578          |
| Total                                        | r 9,321            | 39,301   | 8,585  | 26,459     | 35,044 | 13,578         |

Table 5.-Nickel (exclusive of scrap) consumed in the United States, by form 1 (Short tons)

| Form                          | 1969    | 1970    | 1971    | 1972    | 1973    |
|-------------------------------|---------|---------|---------|---------|---------|
| Metal                         | 99,096  | 112,825 | 95,639  | 110,422 | 121,821 |
| Ferronickel                   | 17,804  | 15,230  | 11,515  | 22,806  | 36,371  |
| Oxide powder and oxide sinter | 19,133  | 21,369  | 16,554  | 19,315  | 33,257  |
| Salts                         | 2,647   | 3,792   | 2,376   | 3,939   | 3,668   |
| Other                         | 3,057   | 2,503   | 2,718   | 2,804   | 2,606   |
| Total                         | 141,737 | 155,719 | 128,802 | 159,286 | 197,723 |

<sup>&</sup>lt;sup>1</sup> Metallic nickel salts consumed by plating industry are estimated.

r Revised.
<sup>1</sup> Excluded from totals because it is copper-base scrap, although containing considerable nickel.

Table 6.—U.S. consumption of nickel (exclusive of scrap) in 1973, by use and form (Short tons)

| Use                                                 | Commer-<br>cially<br>pure<br>unwrought<br>nickel | Ferro-<br>nickel | Nickel<br>oxide | Nickel<br>sulfate<br>and<br>other<br>nickel<br>salts | Other<br>forms | Total<br>of<br>figures<br>shown |
|-----------------------------------------------------|--------------------------------------------------|------------------|-----------------|------------------------------------------------------|----------------|---------------------------------|
| Steel:                                              |                                                  |                  |                 |                                                      |                |                                 |
| Stainless and heat-resisting                        | 17.882                                           | 27,837           | 19,925          |                                                      | 183            | 65,827                          |
| Alloys (excludes stainless)                         | 7.853                                            | 6.562            | 9,409           |                                                      | 85             | 23,909                          |
| Superalloys                                         | 11.877                                           | 476              | 86              |                                                      | 342            | 12,781                          |
| Nickel-copper and copper-nickel alloys              | 7,331                                            |                  | 43              |                                                      | 49             | 7,423                           |
| Permanent magnet alloys                             |                                                  | 687              | 343             |                                                      | 11             | 6,777                           |
| Other nickel and nickel alloys                      | 35,897                                           | 390              | 2,011           | 5                                                    | 300            | 38,603                          |
| Cast irons                                          | 2,557                                            | 414              | 735             |                                                      | 1.107          | 4,813                           |
| Electroplating 1                                    | 26,533                                           |                  | 33              | 3,218                                                | 110            | 29.894                          |
| Chemicals and chemical uses                         |                                                  |                  | 151             | 312                                                  | 9              | 1,550                           |
| Other uses 2                                        | 5,077                                            | 5                | 521             | 133                                                  | 410            | 6,146                           |
| Total reported by companies canvassed and estimated | 121,821                                          | 36,371           | 33,257          | 3,668                                                | 2,606          | 197,723                         |

<sup>&</sup>lt;sup>1</sup> Based on monthly estimated sales to platers.

Table 7.—Nickel (exclusive of scrap) in consumer stocks in the United States, by form

(Short tons)

| Form                            | 1971   | 1972 r | 1973   |
|---------------------------------|--------|--------|--------|
| Metal                           | 11.499 | 18,516 | 11.987 |
| Ferronickel<br>Oxide powder and | 2,539  | 3,959  | 7,792  |
| oxide sinter                    | 970    | 2.806  | 8,018  |
| Salts                           | 381    | 477    | 477    |
| Other                           | 616    | 502    | 672    |
| Total                           | 16,005 | 26,260 | 28,946 |

r Revised.

Table 8.—Consumption, stocks, receipts, shipments and/or sales of purchased secondary nickel in 1973, by use 1

(Short tons)

| Use                                                 | Receipts     | Consumption  | Shipments<br>or<br>sales | Stocks<br>end of<br>year |
|-----------------------------------------------------|--------------|--------------|--------------------------|--------------------------|
| Steel:                                              |              |              |                          |                          |
| Stainless and heat-resisting                        | 32,229       | 30,336       | 1.351                    | 3,514                    |
| Alloy (excludes stainless)                          | 1.249        | 1,101        | 38                       | 296                      |
| Superalloys                                         |              | (2)          | ( <sup>2</sup> )         | (2)                      |
| Nickel-copper and copper-nickel alloys              | 865          | 882          | ` 6                      | 464                      |
| Permanent magnet alloys                             | w            | W            |                          | w                        |
| Other nickel and nickel alloys                      | 1,346        | 1,320        |                          | 165                      |
| Cast irons                                          | 96           | 114          |                          | 20                       |
| Electroplating                                      | $\mathbf{w}$ | $\mathbf{w}$ |                          | w                        |
| Chemicals and chemical uses                         | $\mathbf{w}$ | w            |                          |                          |
| Other uses                                          | 113          | 124          | (2)                      | 28                       |
| Total reported by companies canvassed and estimated | 35,898       | 33,877       | 1,395                    | 4,487                    |

W Withheld to avoid disclosing individual confidential data; data on permanent magnet alloys, electroplating, and chemicals and chemical uses included with other uses.

<sup>&</sup>lt;sup>2</sup> Includes batteries, ceramics, and other alloys containing nickel.

<sup>&</sup>lt;sup>1</sup> Data should not be considered as annual owing to its incompleteness.

<sup>&</sup>lt;sup>2</sup> Less than 1 unit.

#### **PRICES**

The producer price for electrolytic nickel was unchanged at \$1.53 per pound during the year. Prices were unchanged for domestically produced nickel in ferronickel in 1973, the quoted price was \$1.38 per pound. The price of foreign produced ferronickel was increased on July 9 by NC Trading Co., the sales agent for SLN, by 6 to 7 cents per pound. The new prices were FN4, \$1.43 per pound nickel content; FN3, \$1.47 per pound nickel content; and FNC, \$1.45 per pound nickel content. Falconbridge Nickel Mines Ltd. increased the price of ferronickel

7 cents per pound to \$1.46 effective July 13. Inco, increased prices of nickel oxide sinter-90 to \$1.43 per pound nickel content, and nickel oxide sinter-75 to \$1.40 per pound nickel content, effective July 20. The new Inco price was equivalent to those quoted for SLN ferronickel, recognizing the iron value in ferronickel. These price changes for nickel produced in foreign countries narrowed the differential between prices quoted for pure nickel and that quoted for nickel in ferronickel and in other forms of nickel suited for steelmaking.

#### **FOREIGN TRADE**

U.S. exports of nickel, nickel alloy, and catalysts were 20% more than those of 1972. Exports of nickel waste and scrap decreased 26% from that of 1972.

Canada continued to be the principal supplier of nickel to the United States in 1973 and accounted for 63% of the total nickel imported for consumption. Nevertheless, Canada's portion of the total imports was 10 percentage points less than in 1972. The Dominican Republic nearly re-

placed Norway as the second most important source of imported nickel. The strong influx of ferronickel that began in 1972 continued through 1973; imports of ferronickel more than doubled. The Dominican Republic and New Caledonia were responsible for the major portion of ferronickel imported into the United States in 1973. The total of nickel in all forms imported for consumption in 1973 was 10% more than was imported in 1972.

Table 9.-U.S. exports of nickel and nickel alloy products, by class

|                                           | 19                               | 1971                      |                       | 1972                      |                                  | 1973                      |  |
|-------------------------------------------|----------------------------------|---------------------------|-----------------------|---------------------------|----------------------------------|---------------------------|--|
| Class                                     | Quan-<br>tity<br>(short<br>tons) | Value<br>(thou-<br>sands) | Quantity (short tons) | Value<br>(thou-<br>sands) | Quan-<br>tity<br>(short<br>tons) | Value<br>(thou-<br>sands) |  |
| Unwrought                                 | 4,287                            | \$8,614                   | 2,178                 | \$6,469                   | 3,764                            | \$10,549                  |  |
| Bars, rods, angles, shapes sections       | 4,904                            | 16,828                    | 2,140                 | 9,038                     | 1,949                            | 9,647                     |  |
| Plates, sheets, strip                     | 3,351                            | 14,675                    | 3,455                 | 16,625                    | 3,827                            | 20,470                    |  |
| Anodes                                    | 334                              | 1,147                     | 481                   | 1,490                     | 752                              | 2,400                     |  |
| Wire                                      | 643                              | 3,269                     | 553                   | 2,638                     | 697                              | 3,818                     |  |
| Powder and flakes                         | 696                              | 2,754                     | 341                   | 2,800                     | 514                              | 4,813                     |  |
| Foil                                      | 7                                | 41                        | 11                    | 28                        | 11                               | 61                        |  |
| Catalysts                                 | 3,740                            | 10,018                    | 2,573                 | 6,794                     | 2,478                            | 6,584                     |  |
| Tubes, pipes, blanks, fittings therefore, | 2.134                            | 9,985                     | 1,499                 | 8,831                     | 1,825                            | 9,815                     |  |
| Waste and scrap                           | 6.047                            | 7,239                     | 8,440                 | 9,055                     | 6,253                            | 7,646                     |  |
| Total                                     | 26,143                           | 74,570                    | 21,671                | 63,768                    | 22,070                           | 75,803                    |  |

Table 10.-U.S. imports for consumption of nickel products, by class

|                              | 19                               | 71                        | 19                               | 72                        | 1973                             |                           |
|------------------------------|----------------------------------|---------------------------|----------------------------------|---------------------------|----------------------------------|---------------------------|
| Class                        | Quan-<br>tity<br>(short<br>tons) | Value<br>(thou-<br>sands) | Quan-<br>tity<br>(short<br>tons) | Value<br>(thou-<br>sands) | Quan-<br>tity<br>(short<br>tons) | Value<br>(thou-<br>sands) |
| Ore                          | 13,173                           | \$297                     | 258                              | \$6                       | 8,207                            | \$190                     |
| Unwrought                    | 100,531                          | 259,931                   | 125,364                          | 330,825                   | 120,083                          | 343,494                   |
| Oxide and oxide sinter       | 5,769                            | 11,604                    | 5,988                            | 12,038                    | 6.301                            | 13,466                    |
| Slurry 1                     | 32,944                           | 73,656                    | 28,222                           | 57,085                    | 38,729                           | 81,814                    |
| Bars, plates, sheets, anodes | 79                               | 302                       | 198                              | 683                       | 320                              | 1,156                     |
| Rods and wire                | 768                              | 3,642                     | 694                              | 2.964                     | 790                              | 3,959                     |
| Shapes, sections, angles     | (2)                              | 1                         | 1                                | 7                         | (2)                              | 1                         |
| Pipes, tubes, fittings       | 10                               | 47                        | 63                               | 314                       | 570                              | 2,579                     |
| Powder                       | 1                                | 3                         | 4,499                            | 14,109                    | 7.196                            | 22,770                    |
| Flakes                       | 2,708                            | 8,234                     | 331                              | 909                       | 95                               | 297                       |
| Waste and scrap              | 1,336                            | 1,896                     | 2,306                            | 3.517                     | 2,642                            | 3,906                     |
| Ferronickel                  | 26,233                           | 16,986                    | 51,741                           | 35,857                    | 89,780                           | 70,532                    |
| Total (gross weight)         | 183,552                          | 376,599                   | 219,665                          | 458,314                   | 274,713                          | 544,164                   |
| Nickel content (estimated)   | 142,183                          | XX                        | 173,870                          | XX                        | 191,073                          | XX                        |

XX Not applicable.

<sup>1</sup> Nickel-containing material in slurry, or any form derived from ore by chemical, physical, or any other means, and requiring further processing to recover nickel or other metals.

<sup>2</sup> Less than ½ unit.

Table 11.-U.S. imports for consumption of new nickel products 1, by country

(Short tons)

|                          | Metal   | tal            | Pov<br>and | Powder<br>and flakes | Oxide<br>oxide | Oxide and oxide sinter |                 | Slurry and other <sup>2</sup> | other 2         |        |
|--------------------------|---------|----------------|------------|----------------------|----------------|------------------------|-----------------|-------------------------------|-----------------|--------|
| Country                  | 1972    | 1973           | 1972       | 1973                 | 1972           | 1973                   | 1,              | 1972                          | 11              | 1973   |
|                          | (gross  | (gross weight) | (gross     | (gross weight)       | (gross         | (gross weight)         | Gross<br>weight | Nickel<br>content             | Gross<br>weight | Nickel |
| Australia                | 487     | 1,974          | 195        | 2,265<br>889         | 5,967          | 6,227                  | 28,188          | 22,792                        | 38,626          | 30,824 |
| Dominican Republic       |         | 406            |            | 1                    | 1              | 1                      | !               | ;                             | !               | ;      |
| Dinlond                  | 55      | 26             | 7          | !                    | 1              | 1                      | ŀ               | ŀ                             | ;               | !      |
| Fillianu                 | 558     | 1,312          | 249        | 7                    | 15             | 40                     | <u>(E)</u>      | (°)                           | !               | !      |
| Cormany West             | 561     | 71             | 11         | -                    | 1              | 1                      | ;               | ł                             | !               | 1      |
| Mozambiene               | 67      | 149            | ;          | !                    | 1              | 1                      | 1:              | ļ                             | }               | !      |
| Netherlands              | 166     | 15             | ;          | 20                   | !              | (3)                    | 11              | m                             | 1               | ŗ      |
|                          | 17.295  | 14,515         | !          | 48                   | 1              | 1                      | !               | 1                             | !               | 1      |
| Rhodesia Southern        | 1,801   | 3,944          | 1          | !                    | !              | !                      | 1               | 1                             | 1               | }      |
| South Africa Republic of | 2,791   | 3,037          | 215        | 330                  | 1              | ļ                      | 1               | 1                             | 1               | 1      |
| Sweden                   | (E)     | 61             | 1          | (3)                  | !              | 1                      | 1               | ;                             | 1               | !      |
| Switzerland              | 1       | 99             | ;          | -                    | 1              | !                      | ;               | :                             | ;               | 1      |
| U.S.S.R.                 | 94      | 3,264          | 9          | 11                   | ;              | 1;                     | 16              | 16                            | 10              | 47     |
| United Kingdom           | 4,135   | 7,208          | 2,645      | 3,715                | 1              | 14                     | 23              | 77                            | 2               | F      |
| Uruguay                  | 20      | i              | !          | 13                   | !              | 16                     | !               | 1                             | 100             | 14     |
| Other                    | 34      | 1              | 20         | 20                   | 9              | 20                     | 1               |                               | 99              |        |
| Total                    | 125,364 | 120,083        | 4,830      | 7,291                | 2,988          | 6,301                  | 28,222          | 22,816                        | 38,729          | 30,877 |

Ore, short tons: 1972—258; Canada 52, Colombia 70, Philippines 136; 1973, Australia 113, Colombia 8,094, France less than 1 short ton.
"Nickel-containing materials in slurry, or any form derived from ore by chemical, physical, or any other means, and requiring further processing to recover nickel or other metals.
"Less than ½ unit.

#### **WORLD REVIEW**

Australia.-At midyear, six nickel mines were operating in Australia. The Redross nickel mining project in Western Australia was reopened in 1973 by the partnership of Anaconda Inc., the Australian subsidiary of The Anaconda Company of the United States, Conzinc Riotinto of Australia, Ltd. (CRA), and New Broken Hill Consolidated Ltd. (NBHC). Anaconda held a 60% interest, CRA 262/3%, and NBHC 131/3%. Full production, rated at 10 million pounds per year of nickel concentrate, was expected by 1974 with reserves adequate for 7 years of operation at this rate. Initially the ore was to be toll-milled at Western Mining's Kalgoorlie concentrator. The concentrate was to be shipped from the port of Esperance to Sherritt Gordon Mines Ltd.'s refinery at Fort Saskatchewan, Canada. for toll-refining. At yearend, the partnership was conducting economic feasibility studies to determine if a nickel smelter. using Anaconda's Arbiter process, should be built in Western Australia.

There were only two significant new

nickel finds in Australia in 1973. One of the finds was at Forrestania, 170 miles southwest of Kambalda. The discovery was being explored by American Metals Climax Inc., American Oil Co., a subsidiary of Standard Oil Co. (Indiana), and several small Australian companies. The other discovery was near the Pilbara Coast at Sherlock Bay. Texas Gulf, Inc., was exploring the find. Preliminary estimates by company officials were 75 million tons of ore averaging 0.5% nickel.2

Western Mining Corporation Ltd. dedicated its new flash smelter at Kalgoorlie in April 1973. The furnace at Kalgoorlie was blown in on December 5, 1972, and had a rated capacity of 25 tons of nickel concentrate per hour utilizing the Outokumpu Oy process. Prior to smelting, the concentrate assayed 11% to 13% nickel and 1.02% to 1.20% copper. Smelting produced a high-grade matte containing approximately 75% nickel plus copper. Western

<sup>2</sup> Financial Times. Capital Nickel Goes Into Production. No. 26,146, Aug. 28, 1973, p. 26.

Table 12.-Nickel: World mine production 1, by country (Short tons)

| Strain (content of ore)   0   3,500   3,500   3,500   3,500   3,500   26   29   e.g.   20   29   e.g.   20   29   20   20   20   20   20   20 | Country 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1971                                                                                                                                                | 1972                                                                                                                                                 | 1973 Р                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                               | Australia (content of concentrate) Brazil (content of ore) e Burma (content of speiss) Canada a  Cuba (content of oxide and sulfide) e Dominican Republic Finland: Content of concentrate Content of nickel sulfate Greece (recoverable content of ore) Indexico (content of ore) 4  Mexico (content of ore) Morocco (content of ore) Morocco (content of ore) Now Caledonia (recoverable) 5 Norway (content of ore) e Rhodesia, Southern (content of concentrate) Poland (content of ore) e South Africa, Republic of U.S.S.R. (content of ore) e | **39,185<br>3,500<br>266<br>294,342<br>39,000<br>220<br>3,867<br>136<br>11,655<br>21,800<br>• 55<br>110<br>**111,636<br>2,200<br>12,800<br>r 14,062 | 39,442<br>3,500<br>299<br>258,987<br>5,500<br>19,200<br>5,687<br>211<br>12,500<br>24,738<br>655<br>220<br>98,015<br>425<br>2,200<br>13,200<br>12,849 | 1978 P  44,163 3,500 8 268,908 35,000 6 26,000 6,220 13,900 22,946 8 330 109,005 6 440 2,200 13,200 6 11,500 150,000 |

e Estimate. <sup>p</sup> Preliminary. r Revised.

Insofar as possible, this table represents mine production of nickel; where data relate to some more highly processed form, the figures given have been used in lieu of unreported actual mine output to provide some indication of the magnitude of mine output and are so noted par-

mine output to provide some indication of the magnitude of mine output and are so noted parenthetically following the country name.

<sup>2</sup> In addition to the countries listed, Albania and East Germany also produce nickel from mines, but available information is inadequate to make reliable estimates of output levels.

<sup>3</sup> Refined nickel and nickel content of oxides and salts produced, plus recoverable nickel in

exported matter and speiss.
Includes a small amount of cobalt not recovered separately. 5 Nickel-cobalt content of metallurgical plant products, plus recoverable nickel-cobalt in exported

NICKEL 869

Table 13.-Nickel: World smelter production 1, by country (Short tons)

| Country 2                   | 1971      | 1972     | 1973 Р   |
|-----------------------------|-----------|----------|----------|
|                             | 15.400    | 18,200   | 36,700   |
| Australia                   | r 2,800   | 3,100    | e 3,100  |
| Brazil 3                    | r 182,200 | 145,200  | 178,400  |
| Canada 3                    | 35,000    | r 35,000 | 35,000   |
| Cuba e 3                    | 900       | 900      | 900      |
| Czechoslovakia e            | 374       | 19.200   | e 26.000 |
| Dominican Republic 4        |           | 6,016    | 6.400    |
| Finland                     | 4,288     |          | e 12,500 |
| France                      | 9,486     | 14,409   | e 220    |
| Germany. West               | 220       | 220      |          |
| Greece                      | 11,655    | 12,500   | 13,900   |
| Japan 5                     | r 113,100 | 87,600   | • 88,000 |
| New Caledonia 6             | r 49,614  | 61,983   | 63,091   |
| Norway                      | r 46,043  | 47,739   | 47,075   |
| Poland e                    | 2,200     | r 1,700  | 1,700    |
| Rhodesia. Southern e 3      | r 11.000  | r 11,000 | 11,000   |
| South Africa, Republic of 3 | r 11,000  | 11,000   | 11,000   |
|                             | 42,700    | 35,200   | e 40.800 |
| United Kingdom              | 130,000   | 140,000  | 150,000  |
| U.S.S.R. e                  | 100,000   | 140,000  |          |
| United States:              | 2.581     | 2.505    | 958      |
| Byproduct of metal refining |           | 13,226   | 12,937   |
| Recovery from domestic ore  | 13,073    |          |          |
| Total                       | r 683,634 | 666,698  | 739,681  |

r Revised. e Estimate. P Preliminary.

Refined nickel plus nickel content of ferronickel produced from concentrates unless otherwise

specified. <sup>2</sup> In addition to the countries listed, East Germany and North Korea are believed to produce metallic nickel and/or ferronickel, but information is inadequate to make reliable estimates of output levels.

<sup>3</sup>Includes nickel content of nickel oxide and nickel fonte in addition to metallic nickel and ferronickel.

4 Nickel content of ferronickel only (no refined nickel is produced).
5 Includes electrolytic nickel as follows, in short tons: 1971—17,077; 1972—18,189; 1973—23,249; the difference between these figures and the listed total is the nickel content of ferronickel, nickel oxide and nickel fonte.

6 Nickel-cobalt content of ferronickel and matte.

Mining produces over 70 million pounds of nickel annually, or nearly 8% of the free world's output. The company marketed nickel in the United States, the United Kingdom, other European countries, India, and Japan. In addition to Western Mining's nickel production from the Kambalda region, the company was expanding its exploration activities across Lake Lefroy into the Paris-St. Ives region. At yearend, Western Mining had increased its proven reserves in the Kambalda and St. Ives region from 22.7 million tons containing 3.29% nickel to 24 million tons containing 3.24% nickel.

Development of the Greenvale nickeliferous laterite deposit by Freeport Queensland Nickel Inc., a wholly owned subsidiary of Freeport Minerals Co. of the United States, and Metals Exploration N.L. of Australia continued on schedule during 1973. Early in 1973 a contract was let for the construction of the town of Greenvale in Queensland. At the same time, the treatment plant foundation was poured at Yabulu, near the coast, 140 miles from the mine site. Stripping of mine overburden also began in early 1973 as did construction of a 140-mile-long railway connecting the mine at Greenvale with the Yabulu treatment plant. The plant was designed to treat a million dry tons of ore annually and produce over 50 million pounds of nickel. The hydrometallurgical process was based on ammoniacal leaching of pyrometallurgical reduced ore. Western Europe was to receive the major portion of output; Japan was to receive about 18%.

A joint venture between Poseidon N.L., Western Mining Corporation, Ltd. and Sherritt Gordon Mines, Ltd., of Canada to develop the Windarra nickel deposit in Western Australia gathered momentum in 1973. Ore production was to begin in August 1973, but was unconfirmed at year-Poseidon reportedly Nevertheless, awarded, in late 1973, a contract to Ruwolt Pty. Ltd. to supply mineral processing equipment for the Mt. Windarra project. The equipment, valued at \$1.4 million, included an apron feeder, a Symons cone crusher, 6 grinding mills, and 13 Paramount vibrating feeders.

Technical feasibility of mining the Agnew nickel deposit in Western Australia was confirmed in 1973. Exploration activities were conducted by Selection Trust Ltd. and Consolidated African Selection Trust Ltd. At yearend, indicated reserves were 40 million tons of ore averaging 2% nickel. Australian participation in the development of the Agnew deposit, through Selcast Exploration Ltd., was 18%.

At yearend, the Australian Government was preparing to reveal a new national petroleum and minerals authority bill.<sup>3</sup> The bill would foster a new Government policy toward insuring maximum Australian ownership of the nation's mineral wealth. Foreign ownership of Australian mineral wealth had been estimated at 62%. The immediate and long-range effects of the bill, should it become law, on foreign investments, mineral exploration, and mining in Australia were uncertain at yearend.

Botswana.—BCL expected to begin mining the Selebi-Pikwe copper-nickel deposits early in 1974. Ore concentrating and smelting facilities reportedly were completed in 1973. The matte produced from the smelting process was to be refined at Amax Nickel's rehabilitated plant in Louisiana, United States. Considerable exploration for copper-nickel deposits was conducted during 1973 with several new discoveries being evaluated at yearend.

Canada.—Canada remained the world's leading producer of nickel accounting for nearly 37% of the total world mine output. Nickel production was reported as 268,908 tons of contained metal, a 3.8% increase over that produced in 1972. The principal producers of nickel in Canada remained Inco, Falconbridge Nickel Mines Ltd., and Sherritt Gordon Mines Ltd.

Inco mined a total of 19.7 million dry tons of ore having an average nickel content of 1.4% in 1973, compared with 19.2 million tons having an average nickel content of 1.3% in 1972. Company officials reported that the higher average grade of ore mined in 1973 over that of 1972 was a result of improved grade control in mining operations and increased production from mines having higher grade ore. In 1973 Inco had 16 mines in full or partial production, 13

in Ontario and 3 in Manitoba. Three mines remained on standby status in 1973. They were the Totten and Murray mines in Ontario and the Soaba in Manitoba. The company expected to reactivate the Crean Hill mine and the Leback West mine early in 1974. Inco officially opened its Copper Cliff nickel refinery in October 1973. The plant was expected to reach its full designed capacity of 125 million pounds of nickel per year in pellet and powder forms by mid-1974. The Copper Cliff facility was the only plant in North America producing nickel pellets.

Falconbridge and Sherritt Gordon remained the No. 2 and No. 3 producers, respectively, of nickel in Canada in 1973. However, Falconbridge, as a result of problems with research and equipment deliveries, coupled with the failure of its nickeliron pellet refinery in 1972, had to schedule changes in its air pollution abatement plans for the Sudbury area of Northern Ontario. Falconbridge's program called for major revisions to its smelting process and other facilities at a cost estimated at more than \$40 million. The revised process was designed to improve working conditions in the plants and bring about a significant reduction in sulfur dioxide emissions to the atmosphere. The revisions were to incorporate fluid-bed roasting, electric smelting, and treatment facilities for roaster gases. These changes would eliminate the need for sintering, which is a source of sulfur dioxide in the existing smelter complex and process, and would replace existing blast furnace operations. According to company officials, production from the processing complex will not be affected during the conversion nor will the capacity of the plant be increased when the revisions are completed. Giant Mascot Mines Ltd., made its first shipment of nickel concentrate from its Hope mine to the Sherritt Gordon refinery near Edmonton in 1973. Giant Mascot was to supply Sherritt Gordon with a nickel concentrate grading 10% to 12% nickel and 2% copper. Exploration to maintain and expand existing ore reserves was begun in 1973.

The principal Canadian nickel producers and their 1973 production, sales or deliv-

<sup>&</sup>lt;sup>3</sup> Engineering and Mining Journal. Changes in Australia's Minerals Policy to be Revealed by Labor Government. V. 175, No. 1, January 1974, p. 40.

NICKEL 871

| eries to customers  | as given | in | their | annual |
|---------------------|----------|----|-------|--------|
| report to stockhold | ers were | as | follo | ws:    |

| Company                                                            | Type of operation | Thousand pounds |
|--------------------------------------------------------------------|-------------------|-----------------|
| International Nickel<br>Co. of Canada, Ltd_<br>Falconbridge Nickel | Delivery          | 517,000         |
| Mines Ltd                                                          | do                | 99,408          |
| Sherritt Gordon<br>Mines Ltd                                       | Sales             | 17,499          |

Early in 1973 officials of Boliden A.B. of Stockholm, Sweden, announced that the company would invest a second \$1 million in a joint venture with Great Lakes Nickel, Ltd., of Toronto, Ontario, to develop the Great Lakes nickel-copper mining property near Thunder Bay, Ontario. The investment was used to complete work on Boliden's feasibility report. The report completed in July 1973, recommended construction of a mine and mill with an initial designed capacity of 1.8 million tons per year. Capital costs of this initial stage were calculated at \$31.2 million, with expected startup by mid-1975. The company also recommended that the deposit be mined by the underground room and pillar method in order to obtain minimum dilution and to provide the lowest development and production costs. A two-stage autogenous grinding system and flotation process would be used to separate nickel and copper concentrates. Indicated ore reserves were confirmed at 32.8 million tons averaging 0.36% copper and 0.20% nickel. Potential reserves included an additional 40 million tons of ore. Boliden was to secure markets for the concentrate.

The fuel shortage that occurred late in 1973 required major nickel producers to review their energy requirements. Canadian production was not adversely affected by fuel shortages. Canada not only has large reserves of petroleum but also relies heavily on hydroelectric power for the production of nickel.

Colombia.—Negotiations were carried out during 1973 between the Colombian Nickel Co. (CONICOL) and the Instituto de Fomento Industrial (IFI) of Colombia in an attempt to resolve problem areas that existed between the various parties. Estimates for start up, should all problems be resolved, were from 40 to 45 months.

Cuba.—Cuba rearranged its sales price

on nickel to the U.S.S.R. to \$2.265 per pound of contained nickel as part of the recent Cuban-U.S.S.R. plan to renovate and modernize both the Moa Bay and Nicaro nickel facilities and develop the new Punta Gorda nickel deposit. The new price was to prevail for a period of 7 years (1973–80). The price was estimated to be about 90 cents per pound more than Inco's price for similar quality material. Work on renovating the Moa Bay and Nicaro nickel facilities was to begin in 1973. Government officials were hopeful that Cuban production would ultimately reach 126,000 tons of nickel per year or an increase of 90,000 tons.

Dominican Republic.-Falconbridge Dominicana C. por A. operated its plant at Bonao at about 87% of designed capacity of 63 million pounds per year of nickel in ferronickel. The plant's designed throughput was not to be sustained until completion of the warranty inspection of three turbine generators, installation of improved metal handling facilities, and modifications to the ore preparation circuit. Falconbridge exported approximately 70,000 tons of nickel in 1973, valued at about \$75 million, Nearly 50% of the exports went to Europe, 40% to the United States, and the balance to Japan. Under the company's contract it was obligated to explore an area of 78.000 hectares for additional nickel. The new exploration was to begin in early 1974. At yearend 1972, reserves were reported to be 70.8 million dry tons grading 1.6% nickel.

Finland.—Finland's total productive capacity for nickel ore was increased early in 1972 when the open pit at Keretti, Vuonos became operational. Underground production from the Vuonos nickel ore body began in November 1973. The deposit was discovered in 1965 and developed for initial production in 1972 at a cost of about \$27.5 million. Plans were to mine and process 1.6 to 2.0 million tons per year of nickel ore from the two zones. To date the Vuonos operation has shown an efficiency of 80% in recovering nickel contained in a 6% nickel concentrate.

The nickel refining process developed by Outokumpu was a pioneering effort in hydrometallurgy and electrowinning techniques. The nickel refining section of the

<sup>&</sup>lt;sup>4</sup> International Nickel Co. of Canada, Ltd. 1973 Annual Report. P. 12.

Harjavalta complex was first established as a 3,300-ton-per-year plant in 1959, its 1973 capacity was 11,000 tons per year of electrolytic nickel.

Greece.-Greece's only nickel producer, Société Minière et Métallurgique de Larymna S.A. (LARCO), produced approximately 15,000 tons of nickel in 60,000 tons of ferronickel in 1973, LARCO mined nickel ore from a laterite deposit at Larymna, 71 miles northeast of Athens, Greece. The ore contained 1% to 1.6% nickel. A larger but lower grade lateritic ore body with 1.1% nickel was located on the island of Euboea. Total reserves were estimated at over 240 million tons. LARCO's capacity was to be expanded to 80 million pounds of nickel per year at a later date if warranted by future demand. The company commissioned a new (third) rotary kiln for production of ferronickel at the Larymna plant early in 1973. LARCO's open pit mines on the island of Euboea were being expanded during the year. Studies were being conducted by the company in 1973 to determine the feasibility of converting the Aghios Ioannis mines from underground to open pit. Currently, about 80% of the ore treated comes from Euboea and 20% from the Aghios Ioannis deposit. LARCO has been able to lower the arsenic content of its ferronickel by using larger portions of the virtually arsenic-free ore from Euboea.

Intercontinental Mining and Abrasives, Inc. was constructing a nickel refinery near Lake Ionina. The refinery, costing \$30 million, was to produce 12 million pounds of ferronickel per year. The project was to be completed by 1974.

Guatemala.—Exploraciones Explotaciones Mineras Izabal S.A. (EXMIBAL), completed negotiations in 1973 with the Guatemalan Government for the development of nickel deposits in the country. EXMIBAL owned a lateritic nickel deposit near Lake Izabal. Contracts were let to McKee Latin America, Inc., for designing and constructing the processing plant and related facilities, and to the Montreal Engineering Co., Ltd., for designing the powerplant. Construction began in 1973 on the first phase of the project. The plant was to be commissioned by the end of 1976. Annual production was to be 25 million pounds of nickel in the form of 75% nickel matte. Inco, the principal owner of EXMIBAL, secured loans during the year of \$15 million from the World Bank affiliate International Corp. and \$13.5 million from the U.S. Export-Import Bank. Total cost of the project was estimated to be \$90 million.

Indonesia.-A decision to proceed with the first phase of the lateritic mining and processing project of P.T. International Nickel Indonesia, a wholly owned subsidiary of Inco, was announced in April 1973. At yearend, construction had begun, and contracts were awarded to the Dravo Corp. for general engineering and construction work, to the Montreal Engineering Co., Ltd., for designing the powerplant, and to International Design Consultants of Jakarta for designing the town site in Sulawesi. The plant was to become operational in 1976. Proposed output of nickel, as 75% nickel matte, was increased in 1973 from 30 million to approximately 35 million pounds per year. Company officials estimated that reserves were sufficient to permit production to be increased to more than 100 million pounds of nickel annually at a later date.

The Indonesian Mining Corp., P.N. Tambang (ANEKA), continued construction of a smelter at Pomalaa, designed to produce 4,000 tons of nickel per year in ferronickel by late 1974 or early 1975. Japan was to import the entire output. In other developments, the Indonesian Nickel Development Co. of Japan began surveying nickel ore deposits in the Halmahera area of the Molucca Islands late in 1973. Preliminary estimates indicated 240 million wet tons of lateritic ore with a nickel content ranging from 1.3% to 1.4%. Company officials expected the survey to take approximately I year and that a comprehensive development plan would be drafted by 1975. To date, the largest planned Indonesian nickel operation was that of P.T. Pacific Nickel Indonesia. The company planned to produce 100 million pounds of nickel per year from deposits on Gag Island, Irian Barat. At yearend, pilot plant testing of the ore had been completed, and feasibility studies were being made by Sherritt Gordon, the prime company in this undertaking. Other companies involved in this venture were the United States Steel Corp., Newmont Mining Corp., and KonNICKEL 873

inklijke Nederlandsche Hoogovens en Staalfabrieken, N.V. The preliminary project completion date was given as 1975. However, at yearend, financing arrangements had not been completed.

New Caledonia.—Production of nickel ore in New Caledonia in 1973 was 11% greater than that produced in 1972. Nickel smelter production increased 2% in 1973 over that of 1972. More specifically, ferronickel output decreased by 1% and matte production increased by 7% compared with that of 1972. With a settlement of price differences between Japanese consumers and the independent mining industry in New Caledonia, exports of nickel ore to Japan increased 26% in 1973 compared with exports in 1972.

New Caledonia's principal nickel producer Société le Nickel, S.A. (SLN) experienced considerable difficulties in 1973. Major problem areas for SLN Caledonia were export taxes, averaging 11% ad valorem, and revaluing of the franc by 20% against the dollar in 1973. At yearend, the French Government had proposed that the New Caledonian administration reduce the tax burden in 1974 on SLN by about \$13 million. An additional proposal by the French Government was that the New Caledonian Power Utility (ENERCAL) buy SLN's power station for approximately \$45 million. At yearend Kaiser Aluminum & Chemical Corp. announced an agreement whereby SLN would purchase Kaiser's 50% interest in New Caledonian Co. This would give SLN full ownership. The transaction was contingent upon necessary Government approvals and actions. SLN installed its third 33,000-kilowatt furnace at Domiambo at midyear. The new addition increased SLN's smelter capacity to about 85,000 tons per year of nickel contained in ferronickel and matte. A new mine was commissioned at Si Reiss II during 1973. When the new mine reaches capacity, the mining complex will be able to produce 2.4 million tons of ore per year.

A proposal submitted February 1973, by Inco for mining a low-grade lateritic ore body near Goro on the island's southernmost extremity had not been acted upon by the French at yearend. If approved, Inco hoped to produce approximately 20,000 tons per year of nickel and 1,400 tons per year of cobalt by 1978, at an estimated capital

investment of \$275 million. The company planned to more than double the output of nickel to 45,000 tons per year at a later date. The project was dependent upon Inco acquiring mining rights to the Goro deposits presently held by the French Bureau de Recherches Géologiques et Minières. Another project involving the Goro deposit was submitted by Freeport Minerals Co. of the United States and Société Nationale des Pétroles d'Aquitaine of France.

A third project still active at yearend was the Compagnie Française d'Entreprises Minères Métallurgiques et d'Investissements Ugine (COFREMMI), Pechinev mann, Granges Co. proposal to develop garneritic ores at Tiebaghi in the northwestern part of New Caledonia. COFREMMI, a Patiño subsidiary, was to operate the mine, selling the ore at a profit to the smelter, which was to be owned by all three Pechinev yearend partners. Near Granges withdrew from the Tiebaghi project. Nevertheless, COFREMMI indicated it planned to proceed on its own. Reportedly, Government approval had been received and financing was being arranged at yearend. Tentatively, the project was slated for completion by 1975 and would have a capacity of 36,000 tons per year of nickel in ferronickel.

Philippines.-Construction of the Nonoc nickel refinery by Marinduque Mining & Industrial Corp. made significant progress in 1973 with engineering and equipment procurements being completed. During the year, pier facilities for oceangoing tankers and a tank farm were completed, a 3/4mile long air strip became operational, all-weather roads completed, and housing for senior and junior staff members neared completion. Also nearing completion at yearend was a dam on the Sabang River in northern Dinagat Island designed to provide water and standby power for the Nonoc operation. The first mining block was developed in 1973. Nickel production was expected to begin in August 1974. With a designed capacity of 3.8 million dry tons of ore annually, the refinery will make the Philippines the largest pure nickel producer in Southeast Asia. The Sherritt Gordon ammonium carbonate leach process will be used to extract nickel from the lateritic

The Philippine Government, which until

this year had sought to defer new nickel ventures until the Marinduque project was onstream, reversed itself and gave the go ahead to two potentially important nickel projects. One project, a joint venture between Atlas Consolidated Mining Development Corp. and Mitsubishi Metal Mining Co. Ltd. of Japan to develop laterite deposits on Palawan and build a 35-millionpound-per-year nickel refinery was expected to proceed. Company officials of Atlas stated that pilot plant tests, conducted by Freeport Minerals Co., had confirmed the technical feasibility of utilizing the Freeport process in treatment of the Palawan ore. The second project was to exploit lateritic nickel deposits in northern Luzon. The partners in this venture were New Frontier Mines and Hochmetals of Panama. Annual capacity of the New Frontier operation was to be 33 million pounds of nickel.

In 1973 the Philippine Government altered its export laws covering nickel to permit the shipment of beneficiated ores rather than refined metal. To date, there have been five proposals submitted to the Board of Investments for ore exporting operations. Among companies interested in the recent Government ruling was Pacific Metals Co., Ltd., which agreed to purchase from Universal Oil Products Co. its 40% interest in Rio Tuba Nickel Mining Corp. of the Philippines. Exploration of Rio Tuba deposit has confirmed 32 million dry tons of ore with an average grade of 2.2% nickel. Total ore reserves were estimated at 81 million dry tons averaging about 1.6% nickel. The higher grade nickel ore was suitable for direct shipment to nickel smelters in Japan where Pacific Metals, a subsidiary of Nippon Steel Co., operated plants that produce ferronickel alloys.

#### **TECHNOLOGY**

Based on the number of reports and patents issued in 1973, nickel research has slowed somewhat during the past few years. Nevertheless, research can be expected to increase as the need for cryogenic storage vessels and energy related uses grow. Scientists at Bureau of Mines laboratories continued their investigations on methods of recovering nickel and copper from the Duluth gabbro of Minnesota. A reduction-roast, magnetic-separation process, as applied to gabbro flotation concentrate containing 0.9% nickel and 4.2% copper, reportedly yielded more than 95% nickel and copper in a magnetic concentrate.

The Bureau's scientists filed an invention report in 1973 in which they described an efficient extraction treatment process for low-grade lateritic ores. The oxide ore was selectively reduced and leached in an ammonia-ammonium sulfate system to recover 90% of the nickel and more than 80% of the cobalt. The nickel was selectively removed by liquid ion extraction and subsequently recovered by electrolysis; cobalt was precipitated from the leach solution as cobalt sulfide.

A new process for the recovery of nickel and cobalt from limonites by aqueous chlorination in sea water was described in a joint paper by scientists of Dartmouth College, Hanover, N.H. and Delft University of

Technology, Delft, the Netherlands.5 The process was based on selective reduction of the ore pyrometallurgically and aqueous chlorination in sea water. Reportedly, advantages gained from the process were as follows: High recovery of nickel and cobalt, rapid dissolution rates, and the use of saline in place of fresh water. Scientists at Republic Steel Corp. reported on a new process for extracting nickel from laterites, silicates, and sulfides utilizing hydrothermal sulphidization and oxidation steps followed by hightemperature cementation-in-pulp. Reportedly, the process was adaptable to iron-rich laterites, magnesium-rich silicates, and sulfide ores. Company officials reported yield recoveries consistently above 90%.6

The ad hoc interdisciplinary panel of experts formed by the Committee of Biological Effects of Atmospheric Pollutants, Division of Medical Sciences of the National Research Council to study nickel as a possible hazardous pollutant and toxic material finished its work. Its report was still being processed at yearend.

<sup>&</sup>lt;sup>5</sup> Roorda, H. J., and P. E. Queneau. Recovery of Nickel and Cobalt From Limonites by Aqueous Chlorination in Sea Water. Inst. Min. and Met. (Sec. C), v. 182, No. 799, June 1973, pp. C79 C87.

<sup>&</sup>lt;sup>6</sup> Engineering and Mining Journal. Republic's New Nickel Process Digests Laterites. Silicates, or Sulphides. V. 174, No. 5, May 1973, pp. 80-81.

NICKEL 875

Numerous patents were issued during 1973 on mining deep sea manganese nodules and subsequent recovery of nickel. In general, recovery techniques included both pyrometallurgy and hydrometallurgy to extract the metal values from nodules. Officials of Inco reported that the company's Ocean Mining Development group was continuing to investigate the feasibility of recovering nickel-bearing nodules from the ocean floor.7 No details regarding the investigations were reported.

The Canadian National Research Council (NRC) in conjunction with its studies relating to the use of hydrogen as a fuel, announced a program directed at developing storage canisters containing metals as sponges. Alloys of nickel were among a list of metals being studied by NRC scientists in 1973. Inco metallurgists developed a coppernickel-zinc-manganese spring alloy (IN-629) particularly suited for use in relay leaf springs and connectors. The alloy should find applications in the electrical and electronics industries, particularly in telecommuncations where ease of forming, moderate strength with high ductility, and good corrosion resistance are needed.8 Inco metallurgists also introduced a powder metallurgy steel having excellent physical properties and not requiring heat treatment. The 2% nickel steel (IN-861) in the sintered condition had tensile strengths in the range of 70,000 to 90,000 pounds per square inch. Possible uses for the new nickel steel powder reportedly would be in parts presently cast and machined and as a substitute for other powder metallurgy alloy mixes.9

Officials of Latrobe Steel Co. of Latrobe, Pa., announced the development of a new high-temperature, high-strength (super) alloy composed principally of nickel, cobalt, and chromium. Reportedly, the alloy will be suited for jet engine components and high-stress parts as well as in marine and petrochemical machinery and equipment. The alloy was reported to have high corrosion resistance as well as high resistance to crevice corrosion and stress corrosion cracking in hostile environments. The alloy was designated Multiphase MP159 and contained 25.5% nickel, 35.5% cobalt, 19% chromium, 9% iron, 7% molybdenum, 3% titanium, 0.6% columbium and 0.2% aluminum.10

National Aeronautics and Space Adminis-

tration (NASA) scientists reported the development of a nickel base (chromium free) superalloy having twice the strength of the strongest previously available cast nickel base alloy. Designated WAX-20, the alloy was composed of 17% to 20% tungsten, 6% to 7% aluminum, 1.4% to 1.6% zirconium, 0.1% to 0.2% carbon, with the balance nickel. The alloys melting point was reported as 2,375° F with a tensile strength of 20,000 pounds per square inch at 2,200°

NASA scientists at the Lewis Research Center's Energy Conversion and Materials Science Section announced the development of a photographic film and processing procedure utilizing nickel in place of silver. The film, used in X-ray and electron beam photography, was insensitive to light. The image was reported to be comparable with those produced by the common silver-based photographic process.12 General Electric engineers reported on the use of carbonyl nickel powder in the company's first fastrecharge, nickel-cadmium battery. The new batteries were capable of being recharged in less than 15 minutes at low cost compared with nearly 2 hours required by more costly and exotic cells used in space work. Reportedly, the nickel carbonyl permitted the formation of porous nickel battery plates, which was essential for controlling rapid recharging. The nickel-cadmium cells have long discharge-recharge cycle life and remain viable when not in use. Company officials expect the cells to find use in home tools, two-way radios, medical instruments, photographic equipment, and standby power for lighting.18

<sup>7</sup> International Nickel Co. of Canada Ltd. 1973

Annual Report. P. 15.

S Ward, D. M., B. J. Helliwell, and P. J.
Penrice. Development of a New Cu-Ni-Zn-Mn
Spring Alloy—IN-629. Metallurgia and Metal
Forming, v. 40, No. 10, October 1973, pp.

<sup>319-324.</sup>Canadian Mining and Metallurgical Bulletin.

New P/M Alloy. V. 66, No. 733, May 1973,
p. 113.

In American Metal Market. Latrobe Claims
 New Strong, Corrosion-Resistant Alloy. V. 80,
 No. 244, Dec. 18, 1973, p. 16.

<sup>11</sup> Foundry. New High Temperature St. loy. V. 101, No. 10, October 1973, p. 28. Superal-

<sup>&</sup>lt;sup>12</sup> Industrial Research. TR100 Photographic and Optical Equipment. V. 15, No. 10, Sept. 18, 1973, p. 42.

<sup>&</sup>lt;sup>13</sup> Ruth, J. P. Carbonyl Nickel Powder Plays Key Role in GE's New Rapid Recharge Battery. Am. Metal Market, v. 80, No. 92, May 10, 1973, pp. 2, 10.

| • |  |  |  |
|---|--|--|--|
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |

# Nitrogen

#### By William F. Keyes 1

Production of fixed nitrogen (that is nitrogen in compounds) increased 2% in 1973. Production of elemental nitrogen continued to grow rapidly, increasing by 17% in 1973. Exports of fixed nitrogen increased 15% during the period and net exports in-

creased from 363,000 to 539,000 short tons of contained nitrogen. Domestic ammonia plants produced at about 95% of capacity during the year and estimated consumption increased 5%. Plans to construct one ammonia plant were announced.

Table 1.-Salient nitrogen statistics (Thousand short tons of contained nitrogen)

|                                     | 1969     | 1970     | 1971     | 1972   | 1973 Р |
|-------------------------------------|----------|----------|----------|--------|--------|
| United States:                      |          |          |          |        |        |
| Production as ammonia               | r 10,678 | r 11,531 | r 12,107 | 12,651 | 12,870 |
| Production as nitrogen gas          | 4,807    | 5.477    | 6.087    | 7.011  | 8.171  |
| Exports of nitrogen compounds 1     | 1,645    | 1,400    | 999      | 1,310  | 1,506  |
| Imports for consumption of nitrogen |          |          |          |        |        |
| compounds 1                         | 738      | 942      | 907      | 947    | 967    |
| Consumption 1                       | r 9.953  | r 10.891 | r 11,903 | 12,333 | 12,980 |
| World: Production 1                 | 39,556   | 42,747   | 45,357   | 47,398 | 51,500 |

Preliminary. r Revised.

#### DOMESTIC PRODUCTION

Domestic production of anhydrous ammonia increased nearly 2% in 1973, while production of elemental nitrogen increased 17%. No new ammonia plants were brought into production during the year. Ammonia plants operated at 93% of capacity during the first 6 months of 1973 and at almost 98% of capacity during the last 6 months of 1973, according to The Fertilizer Institute.

Nitrogen is derived from air, and the chief raw material in the production of fixed nitrogen, as ammonia, was natural gas. Local shortages of natural gas caused some curtailment of ammonia production during the year. A survey by The Fertilizer Institute showed that plant days lost because of gas interruption were 605 in 1970, 773 in 1971, and 1,317 in 1972.2 Industry estimates to the U.S. Department of Commerce in the fall of 1973 indicated a probable loss of 382,000 tons in the 1973-74 fertilizer year. Later estimates cut this figure to 231,000 tons.3

Agrico Chemical Co. announced plans to build an ammonia plant with a capacity of 425,000 tons annually to be located on the Verdigris River east of Tulsa, Okla. The plant was to cost \$46 million, including a 600,000-ton urea ammonium nitrate solution plant. The complex was scheduled to be in operation in 1975.4

W. R. Grace & Co. announced that it would construct a \$17 million urea production facility at its Memphis, Tenn., complex. The new facility will have a capacity of 350,000 tons per year when it reaches full production late in 1975 and will replace Grace's current 138,000-ton-per-year Memphis urea facility.5

CF Industries, Inc. awarded a contract for a 1,000 short-ton-per-day urea plant at Donaldsonville, La., having settled a dispute over noise pollution.6

- Physical scientist, Division of Nonmetallic Minerals—Mineral Supply.
   Chemical Week. V. 113, No. 8, Aug. 22, 1973,

- Chemical Marketing Reporter. V. 205, No. 23, June 10, 1974, p. 4.

  4 Chemical Marketing Reporter. V. 203, No. 7, Feb. 12, 1973, p. 3.

  5 Chemical and Engineering News. V. 51, No. 7, Inc. 22, 1973, p. 4. 30, July 23, 1973, p. 4.
  6 Nitrogen (London). No. 82, March/April
- 1973, p. 18.

<sup>&</sup>lt;sup>1</sup> Estimated, excludes nitrogen gas.

Table 2.-Nitrogen production in the United States

(Thousand short tons of contained nitrogen)

|                                                                        | 1969     | 1970     | 1971     | 1972             | 1973 P |
|------------------------------------------------------------------------|----------|----------|----------|------------------|--------|
| Anhydrous ammonia: Synthetic plants 1Ammonia compounds, coking plants: | r 10,516 | r 11,384 | r 11,972 | 12,512           | 12,737 |
| Ammonia liquor                                                         | 12       | 12       | 12       | 11               | 6      |
| Ammonium sulfate                                                       | 143      | 126      | 114      | 128              | 127    |
| Ammonium phosphates                                                    | 7        | 9        | 9        | ( <sup>2</sup> ) | (2)    |
| Total Nitrogen gas 1                                                   | r 10,678 | r 11,531 | r 12,107 | 12,651           | 12,870 |
|                                                                        | 4,807    | 5,477    | 6,087    | 7,011            | 8,171  |

P Preliminary. Revised.

Bureau of the Census Current Industrial Reports.

Table 3.-Major nitrogen compounds produced in the United States

(Thousand short tons, gross weight)

| Compound                      | 1972 r         | 1973 p               |
|-------------------------------|----------------|----------------------|
| AcrylonitrileAmmonium nitrate | 557<br>6,881   | 676<br><b>6.9</b> 52 |
| Ammonium sulfate 1            | 1,986<br>6,499 | 2,110<br>6,834       |
| Nitric acid<br>Urea           | 7,981<br>3,467 | 7,439<br>3,560       |

<sup>&</sup>lt;sup>p</sup> Preliminary. r Revised.

1 Includes arimonium sulfate from coking

Sources: Bureau of the Census and Tariff

The urea ammonia facility at St. Helens, Oreg., formerly operated by the Shell Chemical Co. was reopened by Reichhold Chemicals Inc. after having been closed the previous year by Shell.7

Phillips Petroleum Co. was expected to close its Cactus Ammonia Plant at Etter, Tex., on Nov. 1, 1973. The plant, which was one of the oldest in the United States was reportedly closed because of mounting costs of operation due to obsolete design.8

Plans to construct an air separation plant with an initial capacity of 270 tons per day were announced by Union Carbide Corp. The plant to be located in Garland, Tex., will produce liquid oxygen, nitrogen, and argon and should be onstream by late 1974. Cost will exceed \$3 million.9 A seventh 1,200-ton-per-day plant,

to produce high-purity oxygen, nitrogen, an argon at its atmospheric gas complex in East Chicago, Ind., was also announced by Union Carbide.

An air separation facility with a capacity to produce 250 tons per day of oxygen, nitrogen, and argon was to be built by the Industrial Gases Division of Chemitron Corp. near Toledo, Ohio.10

Industrial Gases Division of Airco Inc. planned to construct a 400-ton-per-day air separation plant in the Albany, N.Y., area.11

Three new industrial gas plants were announced by Air Products & Chemicals Inc. Each will have a capacity of 300 tons daily. They will be located near Toledo, Ohio, Albany, N.Y., and Tulsa, Okla., and will have a combined liquid production capacity in excess of 325,000 tons per year.12

The Chemitron Corp. was constructing a \$5 million air separation plant to produce 150 tons per day of oxygen, nitrogen, and argon.13

<sup>&</sup>lt;sup>2</sup> Included with ammonium sulfate to avoid disclosing individual company data.

Chemical Marketing Reporter. V. 203, No. 11, Mar. 12, 1973, p. 7.
 Farm Chemicals. V. 136, No. 10, October

<sup>1973,</sup> p. 54.

9 Chemical Marketing Reporter. V. 203, No. 9,

<sup>&</sup>lt;sup>3</sup> Chemical Marketing Reporter. V. 203, No. 7, Feb. 26, 1973, p. 916.

<sup>10</sup> Chemical Marketing Reporter. V. 203, No. 15, Apr. 9, 1973, p. 7.

<sup>11</sup> Chemical Marketing Reporter. V. 203, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204, No. 204

<sup>&</sup>lt;sup>11</sup> Chemical Marketing Reporter. v. 200, No. 22, May 28, 1973, p. 24. <sup>12</sup> Page 7 of work cited in footnote 11. <sup>13</sup> Chemical Age International. V. 106, No. 2812, June 8, 1973, p. 23.

Table 4.-Domestic producers of urea

(Thousand short tons per year of urea)

| Company                                 | Location           | Capacity |  |
|-----------------------------------------|--------------------|----------|--|
| Agrico Chemical Co                      | Donaldsonville, La | 200      |  |
| Agway, Inc                              |                    | 60       |  |
| Air Products & Chemicals, Inc           |                    | 23       |  |
| Allied Chemical Co                      |                    | 230      |  |
| Do                                      |                    | 125      |  |
| Do                                      |                    | 100      |  |
| D0                                      |                    | 145      |  |
| American Cyanamid Co                    |                    | 70       |  |
| Arkla Chemical Corp                     | Heicha, Mia        |          |  |
| Atlas Chemicals Div., Imperial Chemical | Joplin, Mo         | 64       |  |
| Industries America, Inc                 |                    | . 11     |  |
| Borden Chemical Co                      |                    |          |  |
| CF Industries, Inc                      | - Fremont, Nebr    | 45       |  |
| Cherokee Nitrogen, Inc                  | Pryor, Okia        | - ==     |  |
| Collier Carbon & Chemical Corp          | Kenal, Alaska      |          |  |
| Do                                      | Brea, Calif        | ===      |  |
| Columbia Nitrogen Corp                  | Augusta, Ga        |          |  |
| E.I. DuPont de Nemours & Co             | Belle, W. Va       | 40       |  |
| Farmers Chemical Co                     |                    | 165      |  |
| Do                                      |                    | 45       |  |
| Farmland Industries, Inc                |                    |          |  |
| Farmland Industries, Inc                |                    | 140      |  |
| W. R. Grace & Co                        |                    | 61       |  |
| Hawkeye Chemical Co                     |                    |          |  |
| Hercules, Inc                           |                    |          |  |
| Do                                      |                    | 80       |  |
| Kaiser Agricultural Chemicals Co        |                    |          |  |
| Mississippi Chemical Corp               | 1azoo Oity, miss   |          |  |
| Mobil Chemical Co                       | Beaumont, Tex      |          |  |
| Ninak Inc                               | Pryor, Okia        |          |  |
| Do                                      | Kerens, 1ex        |          |  |
| Olin Corn                               | Lake Charles, La   |          |  |
| Phillips Pacific Chemical Co            | Kennewick, wash    | - ==     |  |
| Phillips Chemical Co                    | Dearite, Nebi      |          |  |
| Premier Petrochemical Co                | Pasadena, 1ex      |          |  |
| Reichhold Chemicals, Inc                | St. Helens, Oreg   | . 55     |  |
| Tennessee Valley Authority              | Muscle Shoals, Ala | . 66     |  |
| Terra Chemical International, Inc       | TO 1 37 1 T        | . 123    |  |
| Triad Chemicals Co                      |                    | . 420    |  |
| Triad Unemicals U0                      |                    | . 25     |  |
| USS Agri-Chemicals, Inc                 | C 1 C 1 C          | . 155    |  |
| Valley Nitrogen Producers, Inc          |                    | 35       |  |
| Do                                      | Lima Ohio          | _ 238    |  |
| Vistron Corp                            |                    |          |  |
| Wycon Chemical Co                       | Cheyenne, wyo      | 4.341    |  |
| Total                                   |                    | 4,041    |  |

Source: Harre, Edwin A. Fertilizer Trends 1973. Bulletin Y-77, National Fertilizer Development Center, Tennessee Valley Authority, Muscle Shoals, Ala. June 1974, p. 49.

#### **CONSUMPTION AND USES**

Domestic consumption of fixed nitrogen increased 647,000 tons or about 5% in 1973 compared with 1972 consumption.

Fertilizers were the major use of fixed nitrogen. Approximately three-quarters of the production was used for this purpose. Other uses of nitrogen compounds were in explosives, resins, fibers, animal feed, and plastics.

The two major uses of elemental nitrogen were to exclude air from industrial processes and, in liquid form, to provide low temperatures in food processing and scientific applications. It is estimated that 18% of elemental nitrogen use was in cryogenics.

#### **PRICES**

Prices of the major nitrogen compounds remained stable during the year until phase IV controls on fertilizers were lifted by the Cost of Living Council (COLC) in October. It was explained by the COLC that while producers could not justify price increases by COLC guidelines, needed fertilizer was

being attracted abroad by higher prices. After exemption of fertilizers, prices of ammonium nitrate, anhydrous ammonia, urea, and diammonium phosphate increased strongly while imported and domestic sodium nitrate prices remained steady, as did the price of ammonium sulfate.

Table 5.—Price quotations for major nitrogen compounds in 1973
(Per short ton)

| Compound                                                                                                                                                                                                                        | Jan. 1            | Dec. 31            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|
| Ammonium nitrate, domestic, fertilizer-grade, 33.5% nitrogen, bulk, delivered_Ammonium sulfate, standard-grade, commercial, bulk, f.o.b. worksAmydrous ammonia, fertilizer, wholesale, tanks, delivered east of Rockies, except |                   | \$47-\$78<br>15-25 |
| Aqueous ammonia, 29.4% NH3, anhydrous basis, tanks, freight equalized east of                                                                                                                                                   | 55–65             | 60–110             |
| Delivered east coast                                                                                                                                                                                                            | 65–70<br>60–65    | 76–79<br>60–65     |
| Sodium nitrate, domestic, agricultural, bulk, carlots, f.o.b. works<br>Bags, carlots, f.o.b. works                                                                                                                              | 51.50<br>55.50    | 51.50<br>55.50     |
| Sodium nitrate, imported, commercial, bulk, carlots, f.o.b. Atlantic and Gulf warehouses                                                                                                                                        | 51.50             |                    |
| 100-pound bags, carlot, same basisUrea:                                                                                                                                                                                         | 55.50             | 51.50<br>55.50     |
| Industrial, 46% nitrogen, bulk, 50-ton carlots, delivered EastAgricultural, 46% nitrogen, bulk, same basis                                                                                                                      | 64-76<br>62-63    | 75–107<br>73–107   |
| Agricultural, 45% nitrogen, bulk, 50-ton carlots, delivered East<br>Diammonium phosphate, fertilizer grade, 18-46-0, bulk, carlots, f.o.b. Florida                                                                              | 60-61             | 72-104             |
| worksBags, same basis                                                                                                                                                                                                           | 55–66<br>61–73.50 | 75–110             |

Source: Chemical Marketing Reporter.

#### **FOREIGN TRADE**

Exports of fixed nitrogen increased 15% in 1973, in terms of nitrogen content, while the value of exports rose 43%. A strong increase was registered in exports of ammonium phosphates which rose 23% in volume and 50% in value. Ammonium phosphates accounted for 59% of the value of fixed nitrogen exports. Urea exports decreased 15% in volume and increased 31% in value compared with 1972. Urea ac-

counted for 10% of the total value of fixed nitrogen exports.

Imports of fixed nitrogen increased 2% in nitrogen content and 17% in value. Most of the increase was accounted for by larger imports of urea. Imports of sodium nitrate, all from Chile, declined 39% in 1973, continuing the decline registered the previous year.

Table 6.-U.S. exports and imports for consumption of major nitrogen compounds (Thousand short tons and thousand dollars)

|                                                               |                                                  | 1972                                         |            | 1973            |                            |                 |
|---------------------------------------------------------------|--------------------------------------------------|----------------------------------------------|------------|-----------------|----------------------------|-----------------|
| Compound                                                      | oound Gross Nitro-<br>weight gen Val             |                                              | Value<br>e | Gross<br>weight | Nitro-<br>gen<br>content * | Value           |
| EXPORTS                                                       |                                                  |                                              |            |                 |                            |                 |
| Industrial chemicals: Anhydrous ammonia                       |                                                  |                                              |            |                 |                            |                 |
| and chemical grade aqua (ammonia                              | 101                                              | 100                                          | 4.943      | 186             | 153                        | 9,185           |
| content) Fertilizer materials:                                | 161                                              | 132                                          | 4,940      | 100             | 199                        | 3,100           |
| Ammonium nitrate                                              | 22                                               | 7                                            | 1,183      | 41              | 14                         | 3,670           |
| Ammonium phosphates                                           | 1.816                                            | 327                                          | 126,046    | 2.235           | 402                        | 189,065         |
| Ammonium sulfate                                              | 520                                              | 107                                          | 14.006     | 528             | 109                        | 15,378          |
| Anhydrous ammonia and aqua (am-                               | 020                                              | 10.                                          | 14,000     | 020             | 100                        | 10,010          |
| monia content)                                                | 551                                              | 452                                          | 17,001     | 717             | 588                        | 32,045          |
| Nitrogenous chemical materials n.e.c                          | 66                                               | 20                                           | 6.171      | 28              | 8                          | 1,896           |
| Sodium nitrate                                                | 1                                                | (1)                                          | 74         | 1               | (1)                        | 59              |
| Urea                                                          | 500                                              | 228                                          | 25,298     | 427             | 194                        | 33,054          |
| Mixed chemical fertilizers                                    | 367                                              | 37                                           | 27,719     | 375             | 38                         | 34,084          |
| Total                                                         | 4,004                                            | 1,310                                        | 222,441    | 4,538           | 1,506                      | 318,436         |
| IMPORTS                                                       |                                                  |                                              |            |                 |                            |                 |
| Industrial chemicals: Ammonium nitrate                        | 5                                                | 2                                            | 250        | 4               | 2                          | 270             |
| Fertilizer materials:                                         | Ü                                                | -                                            | 200        | -               | -                          |                 |
| Ammonium nitrate                                              | 378                                              | 127                                          | 16.576     | 338             | 112                        | 15.367          |
| Ammonium nitrate—limestone mixtures                           | (1)                                              | (1)                                          | 13         | 10              | 2                          | 393             |
| Ammonium phosphates                                           | ` 5́01                                           | `´90                                         | 31.070     | 393             | 51                         | 27,290          |
| Ammonium sulfate                                              | 264                                              | 54                                           | 7,310      | 299             | 62                         | 10,610          |
| Calcium cyanamide or lime nitrogen                            | 3                                                | (1)                                          | 312        | 4               | 1                          | 462             |
| Calcium nitrate                                               | 47                                               | 7                                            | 1,092      | 156             | 24                         | 5,064           |
| Nitrogen solutions                                            | 149                                              | 45                                           | 4,763      | 193             | 58                         | 7,380           |
| Anhydrous ammonia                                             | 386                                              | 317                                          | 17,001     | 312             | 256                        | 15,468          |
| Potassium nitrate or saltpeter, crude                         | 21                                               | 3                                            | 1,673      | 48              | 6                          | 3,101           |
| Potassium nitrate, sodium nitrate                             |                                                  |                                              |            |                 | _                          |                 |
| mixtures                                                      | 28                                               | 4                                            | 1,447      | 53              | .8                         | 2,737           |
| Sodium nitrate                                                | 111                                              | 18                                           | 3,865      | 69              | 11                         | 2,833           |
| Urea                                                          | 556                                              | 253                                          | 25,565     | 674             | 337                        | 38,865          |
| Nitrogenous fertilizers n.s.p.f<br>Mixed chemical fertilizers | $\begin{array}{c} \bf 34 \\ \bf 200 \end{array}$ | $\begin{smallmatrix} 7\\20\end{smallmatrix}$ | 1,710      | 91<br>193       | 18<br>19                   | 4,973<br>11,642 |
|                                                               |                                                  |                                              | 12,390     |                 |                            |                 |
| Total                                                         | 2,683                                            | 947                                          | 125,037    | 2,837           | 967                        | 146,455         |

Estimate.

#### **WORLD REVIEW**

In recognition of an approaching shortage of nitrogenous fertilizers, plans were announced, and in certain cases construction started on numerous plants to produce the basic material, ammonia, for these products. The People's Republic of China, the U.S.S.R., and India were active in this regard, as well as other countries, particularly those with a ready supply of natural gas.

Angola.—A plan was announced to build a 230,000 short-ton-per-year ammonium sulfate plant as well as other plants for sulfuric acid and superphosphate. A fertilizer plant with a capacity of 250,000 short tons per year was also planned for the Caala region and was expected to be onstream in 1976.14

Bahrain.—A project to establish a nitrogenous fertilizer plant to produce 500,000 short tons per year, costing around \$115 million, was under study by an Indian technical team.15 The project would include

a 1,100-short-ton-per-day ammonia plant and a 1,650-short-ton-per-day urea facility.

Bangladesh.—A credit of \$80 million to construct a new 220,000-short-ton-per-day ammonia plant at Chittagong was authorized by the Indian Government.16

Bolivia.—Yacimientos Petrolíferos Fiscales Bolivianos (YPFB) has reached agreement with Yacimientos Petrolíferos Fiscales de Argentina to build a 1,100-short-ton-per-day ammonia plant and a 1,650-ton urea plant, probably at Santa Cruz. The plants will use domestic natural gas.17

Brazil.—Petrobrás Química S.A. awarded a contract to Kellogg International Corp. for the design and engineering of a 1,000-

<sup>1</sup> Less than 1/2 unit.

<sup>14</sup> Chemical Age International. V. 107, No. 2837, Nov. 30, 1973, p. 18.
15 Chemical Age International. V. 107, No. 2825, Sept. 7, 1973, p. 17.
16 Nitrogen (London). No. 85, September—October 1973, p. 13.
17 Nitrogen (London). No. 86, November—December 1973, p. 14.

ton-per-day ammonia plant and an 880-tonper-day urea plant to be built at Camacari. Bahia. Cost of the project was estimated at \$60 million and initial production was expected in 1975. The natural gas feedstock will be supplied by Petróleo Brasileiro S.A. from nearby gasfields.18

A 1,100-short-ton-per-day ammonia plant, with a 660-ton urea plant, was announced for Rio Grande do Sul State. A new company, Cia Rio Grandense de Nitrogenados S.A., with a 51% participation by the State government, was to operate the ammonia facility.19

Canada.—The calcium cyanamide plant of Cyanamid of Canada Ltd. was shutdown after having operated since 1907. Demand for the product as fertilizer had decreased. Other factors, including new technology, increased power costs, and environmental considerations, contributed to the closing.20

Allarco Chemicals Ltd. planned to build a 1,100-ton-per-day ammonia plant, with a 1,650-ton-per-day urea plant, at Medicine Hat, Alberta.21

Brockville Chemical Industries, Ltd. announced plans to build and operate a 500-ton-per-day plant costing \$4 million to produce nitric acid at Maitland, Ontario. The plant was scheduled for startup during the second quarter of 1975. It will raise the productive capacity at Maitland to 1,000 tons per day.22

China, People's Republic of.—In the first sale of its kind by a U.S. firm, three 1.100short-ton-per-day ammonia plants were ordered from the M. W. Kellogg Co. of Houston, Tex. The plants will use natural gas feedstock and the total cost was estimated at more than \$70 million. Two ammonia plants sold earlier in the year to the People's Republic of China by Toyo Engineering of Japan also were to use Kellogg's ammonia process.23

A Kellogg affiliate, Kellogg Continental (Amsterdam) signed a contract to design, supply materials, and erect five 1,620-tonper-day urea units. Total cost was estimated at about \$55 million. This sale supplemented an earlier contract for three identtical plants valued at \$37 million. The first unit was slated for startup in late 1976.24

Egypt, Arab Republic of.—An agreement was reached between the Egyptian Industrialization Authority, the World Bank, and the Arab Development Fund for constructing a nitrogenous fertilizer plant in the Nile Delta area. The unit, located at Talcha, will have a capacity of 630,000 short tons per year. It is expected to supply the entire nitrogenous fertilizer requirements of lower Egypt.25

Hungary.—A 1,100-ton-per-day ammonia plant, being constructed at Pét, was scheduled for commissioning in 1975.28

India.—The capacity of the ammonia plant being constructed by Mangalore Chemicals and Fertilizers is to be increased from the originally planned 240,000 short tons per year to a total of 565,000 tons per year. Including additional investment in mixed fertilizers, the total investment was expected to be \$150 million in addition to the original \$75 million.

The Indian government was planning a 990-short-ton-per-day ammonia plant based on coal. This would be linked to a 1,390short-ton-per-day urea plant. The technology was expected to be similar to that installed by the contractor, Imperial Chemical Industries, Ltd., at a coal-based urea plant the Republic of South Africa. In addition, three public sector coal-based urea plants were being constructed in India; at Talcher (Orissa), Korba (Madhya Pradesh), and Ramgundam (Andhra Pradesh).27

A new 1,000 short-ton-per-day ammonia plant based on fuel oil was to be built at Nongal, Punjab; a contract for design and construction was signed with Friedrich Uhde GmbH, of West Germany.28

Iran.—The Shahpur Chemical Co. awarded Krebs et Cie. a contract to expand their urea plant from 500 to 700 tons per day.29

Iraq.—A large fertilizer production complex based on natural gas will be built

<sup>18</sup> Chemistry and Industry. No. 10, May 19,

<sup>1973,</sup> p. 473.

19 Work cited in footnote 16.

work cited in Advance 10.

20 Chemical Age International. V. 107, No.
2823, Aug. 24, 1973, p. 15.

21 Nitrogen (London). No. 84, July—August

<sup>&</sup>lt;sup>22</sup> Nitrogen (London). No. 54, July—August 1973, p. 10. <sup>22</sup> Chemical Marketing Reporter. V. 204, No. 24, Dec. 10, 1973, p. 27. <sup>23</sup> Chemical & Engineering News. V. 51, No. 29, July 16, 1973, p. 11. <sup>24</sup> Chemical Week. V. 113, No. 11, Sept. 12, 1072 p. 17

A Chemical Week. V. 113, No. 11, Sept. 12, 1973, p. 17.
 Chemical Age International. V. 107, No. 2836, Nov. 23, 1973, p. 20.
 Page 16 of work cited in footnote 6.
 Chemical Age International. V. 107, No. 2824, Nov. 9, 1973, p. 15.
 Chemical Age International. V. 107, No. 2826, Sept. 14, 1973, p. 6.
 Chemical Age International. V. 107, No. 2827, Sept. 21, 1973, p. 18.

NITROGEN 883

at Basrah by the Ministry of Industry under a contract awarded to Mitsubishi Heavy Industries. A urea plant, with a capacity of 1,430 short tons per day, and an ammonia plant, with a capacity of 880 tons per day, will be included in the complex, the total cost of which was estimated to be over \$100 million.30

Ireland.—The State-sponsored fertilizer company, Nitrigin Eireann Teoranta (NET), announced plans to build a \$50 million plant for processing ammonia from natural gas or naphtha in the Cork Harbor area. The capacity of the plant will be 1,100 short tons of ammonia per day. It will employ 350 people and production is expected to start in 1977. If natural gas becomes available from the Irish offshore area, the gas will be used in the plant, although the plant is designed initially to use naphtha as a raw material. Of the total production, about one-third will be exported, one-third will be used at NET's fertilizer plant at Arklow, County Wicklow, and the balance will be processed on the site to manufacture about 500 tons per day of urea.31

Italy.—An ammonium nitrate plant with a capacity of 1,100 short tons per day was under construction at the Azienda Nazionale Idrogenazione Combustibili S.p.A. petrochemical complex at Ravenna. The plant is scheduled to begin production at the end of 1974.32

Korea, Republic of (South).-As part of its third 5-year plan (1972-76), Korea will build a second petrochemical complex and a \$181 million fertilizer operation at Yosu on the southern coast. The complex will include an ammonia plant with a capacity of 550,000 short tons per year, a urea plant with a capacity of 250,000 tons per year, and capacity for 17,000 tons per year of ammonium nitrate. All the fertilizer units will be owned by Korea Integrated Chemicals, a joint venture of Honam Fertilizer and the Korean Government.33

The sixth large fertilizer plant at Chung Ju came into operation. The capacity of the new plant is 330,000 short tons per year of ammonia and 255,000 tons per year of urea. The plant which used naphtha feedstock was built with the help of a foreign consortium consisting of the U.S. Agency for International Development, Barclay's Corp., and the Mitsubishi Industrial Group.34

Libya.—A 1,100-short-ton-per-day ammonia plant was to be built at Marsa el Brega for Libya's National Oil Corporation. A contract for supply of the plant and offsites was placed with Friedrich Uhde GmbH of Dortmund, West Germany. The plant is due onstream in 1976.35

Pakistan.—A urea ammonium phosphate plant will be designed and supplied by Sim Chem, a division of Simon-Carves, for the Pakistan Fertilizer Co., Ltd., at Karachi. The design capacity is 220,000 tons per year and the plant will be financed through a World Bank loan.36

The Pakistan Industrial Development Corporation issued a tender for the design and engineering of a fertilizer complex to be built at Multan. It was to include a 1,000-short-ton-per-day ammonia plant.87

The National Fertilizer Corp., owned by the Government of Pakistan, decided to build a second major nitrogenous fertilizer plant beside the present plant at Multan. The project will include a 1,000-short-tonper-day ammonia plant, two nitric acid plants of 660-short-ton-per-day capacity each, one 1,120-ton-per-day prilled nitrophosphate plant and one 1,600-ton-per-day prilled ammonium nitrate plant. The engineering and procurement contract for the ammonia plant was awarded to Kellogg International Corp. Total cost of the entire expansion was expected to be \$100 million, approximately \$75 million of which will be foreign exchange cost provided by the Asian Development Bank, the World Bank, and the Abu Dhabi National Oil Co. The latter will obtain 30% of the share capital.38

Romania.—Expansion of the Azotul Four ammonia unit at Piatra Neamt was completed. The additional capacity will increase nitrogen fertilizer output by 140,000 tons per year.39

Spain.—A 330,000-short-ton-per-year am-

Chemical Age International. V. 107, No. 2831, Oct. 19, 1973, p. 24.
 U.S. Embassy, Dublin, Ireland. State Department Airgram A-161, Nov. 28, 1973. 1 p.
 Chemical Age International. V. 107, No. 2819, July 27, 1973, p. 13.
 Chemical Week. V. 112, No. 26, June 27, 1973.

<sup>33</sup> Chemical Week. V. 112, No. 26, June 27, 1973, p. 39.

34 Page 19 of work cited in footnote 25.

35 Chemical Marketing Reporter. V. 204, No. 22, Nov. 26, 1973, p. 34.

36 Page 5 of work cited in footnote 15.

37 Page 19 of work cited in footnote 4.

38 U.S. Consulate, Karachi, Pakistan. State Department Airgram A-53, May 17, 1974. P. 3.

39 Chemical Age International. V. 107, No. 2835, Nov. 16, 1973, p. 21.

monia plant and a 180,000-short-ton-per-year urea plant were under construction by Unión Explosivos Rio Tinto S.A. at Seville. The plants were expected to be completed in 1975.40

A \$4 million contract for the engineering, procurement and construction of a 330short-ton-per-day urea plant at Malaga was awarded by Amoniaco Español S.A. to McKee-CTIP Ingenieros of Madrid. When the plant is completed in September 1974, it will produce urea prills for direct use as fertilizer

Sudan-The Sudanese Government awarded a \$60 million contract to a subsidiary of Compagnie Française des Petroles covering the installation of a plant to produce 440 short tons per day of ammonia and 740 tons per day of urea. Naphtha feedstock was expected to come from a nearby refinery owned by the British Petroleum Co., Ltd. and the Royal Dutch/Shell group.

Taiwan.—A 330,000-short-ton-per-year ammonia plant and a 110,000-ton urea plant were expected to be built by Taiwan Fertilizer Co. at Miaoli.41

Trinidad and Tobago.—A project for two-phase construction of a 1,200-ton-perday ammonia plant, followed by another ammonia unit of the same size and a 3,000ton-per-day methanol plant was announced. The project will be a fifty-fifty joint venture between W. R. Grace & Co. and the National Petroleum Co., which is controlled by the Trinidad-Tobago Government. The first phase of the project will cost an estimated \$50 million and should be in operation in 1976. The second phase will cost \$80 million. Natural gas for the plant will be supplied from offshore gas wells. The product will be marketed in the United States, Europe, and South America.42

Turkey.—An air separation plant, with a production capacity of 600,000 cubic feet per day of gases, including nitrogen, argon, helium, and acetylene, was opened by

Anatolian Industrial Gas at Izmit, near Istanbul.43

An ammonia urea complex was also to be built in the Izmit area for Igsas Istanbul Gubre Sanayii A.S. Some 1,100 tons per day of ammonia and 1,100 tons per day of urea will be produced starting late in 1975. Design, construction, and procurement will be carried out by the firm of Friedrich Uhde GmbH. The project is financed in part by a \$24 million loan from the International Bank for Reconstruction and Development.44 Total cost was estimated at \$57 million.

U.S.S.R.—A 20-year barter arrangement for the joint production and sale of fertilizers was signed by Occidental Petroleum Corp. of the United States and the Soviet Government. Occidental was to contract for building several ammonia and urea plants in the U.S.S.R. and to supply 1 million tons per year of superphosphoric acid. In return the Soviet Government would supply up to 1 million tons of potash, 1 to 1.5 million tons of urea, and 3 million tons per year of ammonia to Occidental, which would market it in the United States. Total value of the deal was estimated at \$8 billion. The ammonia complex would be built at Kuibyshev, southeast of Moscow.45

A contract for the construction of seven chemical plants in the Soviet Union was awarded to the Italian firm, Montecatini Edison S.p.A. Included will be two ammonia plants, each of 550,000-short-ton-peryear capacity, and one urea plant, also of 550,000-short-ton-per-year capacity.46

 <sup>40</sup> Chemical Age International. V. 107, No. 2820, Aug. 3, 1973, p. 12.
 41 Page 14 of work cited in footnote 16.
 42 Chemical Week. V. 112, No. 19, May 9,

<sup>30, 1973,</sup> p. 31.

General Week. V. 113, No. 4, July 25, 1973, p. 24.

NITROGEN 885

Table 7.—Fertilizer nitrogen compounds: World production and consumption for years ended June 30, by country (Thousand short tons of contained nitrogen)

|                                                                 |                    | Production         |                    | Consumption               |                 |            |
|-----------------------------------------------------------------|--------------------|--------------------|--------------------|---------------------------|-----------------|------------|
| Country                                                         | 1970-71            | 1971 - 72          | 1972 - 73          | 1970–71                   | 1971–72         | 1972-78    |
| T /1 A                                                          |                    |                    |                    |                           |                 |            |
| North America:<br>Canada                                        | 800                | 887                | 882                | 322                       | 386             | 485        |
| Costa Rica                                                      | 13                 | 19                 | 18                 | <sup>1</sup> 41           | <sup>1</sup> 30 | 1 29       |
| Cuba                                                            | 5                  | e 11               | 12                 | <sup>1</sup> 175          | e 1 110         | ¹ 121      |
| Dominican Republic                                              |                    |                    |                    | 17                        | 29              | 29         |
| El Salvador e                                                   | 9                  | 9                  | 2                  | 50                        | 69              | 72         |
| Guatemala                                                       | 227                | e 3                | 000                | 32                        | 15              | 26         |
| Mexico                                                          | 364<br>48          | 361<br>13          | 393<br>20          | 483                       | 572             | 572        |
| Netherlands Antilles e                                          | 110                | 104                | 126                | <del>-</del> <del>6</del> | 7               | -8         |
| Trinidad and Tobago e 2<br>United States (includes Puerto Rico) | 8,996              | 8,919              | 9,339              | 8,134                     | 8,016           | 8,339      |
| outh America:                                                   | 0,330              | 0,010              | 0,000              | 0,101                     | 0,010           | 0,000      |
| Argentina                                                       | 38                 | 44                 | 42                 | 45                        | 50              | 54         |
| Brazil 1                                                        | 24                 | 75                 | 78                 | 307                       | 307             | 43         |
| Chile 1                                                         | e 137              | e 139              | e 117              | 49                        | 53              | 5          |
| Colombia 1                                                      | e 64               | 76                 | 79                 | e 71                      | 97              | 154        |
| Ecuador e                                                       | 2                  | 28                 | 2<br>30            | • <sup>20</sup>           | 9<br>90         | 1-<br>9-   |
| Peru <sup>3</sup>                                               | e 22               | 28<br>6            | 6                  | 1 28                      | 1 37            | 1 39       |
| Venezuela                                                       | 11                 | 0                  | U                  | - 40                      | - 91            | - 0        |
| urope:<br>Albania <sup>e 1</sup>                                | 31                 | 33                 | 40                 | 30                        | 32              | 3          |
| Austria                                                         | 241                | 255                | 253                | 139                       | 154             | 15         |
| Belgium                                                         | 654                | 676                | 712                | 184                       | 184             | 18         |
| Bulgaria 1                                                      | 663                | 619                | 577                | 418                       | 355             | 39         |
| Czechoslovskie                                                  | 1 388              | e 1 404            | <sup>1</sup> 451   | e 462                     | e 462           | e 51       |
| Denmark                                                         | 81                 | 83                 | 85                 | 319                       | 340             | 36         |
| Finland                                                         | 213                | 221                | 268                | 187                       | 201             | 20         |
| France                                                          | 1,489              | 1,562              | 1,622              | 1,602                     | 1,681           | 1,83       |
| Germany, East <sup>1</sup>                                      | 436                | 428                | 472                | 564                       | 636             | 71         |
| Germany, West                                                   | 1,659              | 1,456              | 1,621              | 1,246<br>221              | 1,247 $227$     | 1,31<br>23 |
| Greece                                                          | 195                | 214                | 243                |                           | 434             | 46         |
| Hungary <sup>1</sup><br>Iceland <sup>1</sup>                    | 386                | 416<br>8           | 412<br>9           | 431<br>13                 | 454<br>15       | 1          |
| Iceland 1                                                       | 8<br>• 87          | • 97               | e 93               | 96                        | 108             | 14         |
| Ireland                                                         | 1,054              | 1,140              | 1,152              | 655                       | 689             | 76         |
| Italy                                                           | 1,034<br>e 2       | e 2                | e 2                | 12                        | 13              | i          |
| LuxembourgNetherlands                                           | 1,055              | 1,144              | 1,328              | 447                       | 412             | 41         |
| Moneyear                                                        | 408                | 423                | 436                | 86                        | 90              | 8          |
| Poland Portugal Romania 1                                       | <sup>1</sup> 1,135 | <sup>1</sup> 1,191 | <sup>1</sup> 1,265 | 907                       | 1,000           | 1,07       |
| Portugal                                                        | 105                | e 161              | 165                | 84                        | e 136           | 14         |
| Romania 1                                                       | 713                | 911                | 963                | 404                       | 475             | 46         |
| Spain                                                           | 653                | 742                | 758                | 678                       | 684             | 78         |
| Spain<br>Sweden <sup>4</sup>                                    | 180                | 195                | 187                | 249                       | 258             | 25<br>4    |
| Switzerland                                                     | 28                 | 27                 | 29                 | 40<br>5,076               | 41<br>5,712     | 6,19       |
| U.S.S.R. <sup>1</sup>                                           | 5,978              | 6,674              | e 7,500<br>899     | 5 883                     | 5 1,025         | 5 1.04     |
| United Kingdom 4                                                | 824                | 852<br>280         | 294                | 324                       | 367             | 3'         |
| Yugoslavia 1                                                    | 294                | 200                | 234                | 024                       | 00.             |            |
| frica:                                                          | 25                 | 43                 | 55                 | 32                        | 87              | 9          |
| Algeria o                                                       | 1 130              | e 1 132            | ¹ 167              | 6 365                     | 6 358           | 6 3        |
| Egypt, Arab Republic of<br>Ivory Coast e                        | 2                  | 2                  | 8                  | 19                        | 16              | 1 1        |
| Kenya e                                                         |                    |                    |                    | 24                        | 20              |            |
| Morocco 1                                                       | e 14               | 22                 | 13                 | e 41                      | 53              | •          |
| Mozambique                                                      | 1                  | 2                  | 10                 | 5                         | _7              |            |
| Rhodesia. Southern e                                            | 40                 | 67                 | 64                 | 54                        | 78              | (          |
| Rhodesia, Southern e<br>Senegal                                 | 5                  | . 8                | 10                 | 4                         | 6               |            |
| South Africa, Republic of e 1                                   | 220                | 246                | 273                | 199                       | 230             | 2'         |
| Sudan e                                                         |                    |                    |                    | 49<br>9                   | 53<br>12        | ,          |
| Tanzania                                                        | ,                  | 11                 | , 1                | 14                        | 20              |            |
| Tunisia e                                                       | 11                 | 10                 | 8                  | 22                        | 36              | 9          |
| Zambia                                                          | 7                  | 10                 | 0                  | 22                        | 50              |            |
| sia:                                                            | 28                 | 28                 | 101                | 44                        | 46              |            |
| Bangladesh e                                                    | 17                 | 17                 | 55                 | 16                        | 24              |            |
| BurmaChina, People's Republic of e 1 7                          | 1,356              | 1,833              | 2,265              | 3,264                     | 3,268           | 3,6        |
| India                                                           | 924                | 1,043              | 1,159              | 1,639                     | 1,941           | 1,9        |
| IndiaIndonesia                                                  | 50                 | 53                 | 66                 | e 222                     | 216             | 3          |
| Iran                                                            | e 34               | e 95               | 119                | 72                        | 118             | 1          |
| Iraq                                                            | e 7                | 12                 | 22                 | e 13                      | 15              |            |
| Israel                                                          | 22                 | 22                 | 26                 | 35                        | 36              |            |
|                                                                 | 2,320              | 2,343              | 2,705              | 8 962                     | 8 743           | 8 8        |
| Japan  Korea, North e 1  Korea, Republic of 1  Kuwait           | 226                | 243                | 254                | 226                       | 239             | 2          |
| Korea, Republic of 1                                            | 425                | • 496              | 461                | 392                       | e 383           | 4          |
|                                                                 |                    | 000                | 907                |                           |                 |            |
| Kuwait                                                          | 94                 | 203                | 297<br>3           | 1 21                      | 32              |            |

See footnotes at end of table.

Table 7.-Fertilizer nitrogen compounds: World production and consumption for years ended June 30, by country-Continued

(Thousand short tons of contained nitrogen)

| Countries                      |                  | Production | ı       | Consumption |         |         |
|--------------------------------|------------------|------------|---------|-------------|---------|---------|
| Country                        | 1970–71          | 1971-72    | 1972-73 | 1970-71     | 1971-72 | 1972-78 |
| Asia—Continued                 |                  |            |         |             |         |         |
| Malaysia, West e               | 29               | 47         | 44      | 65          | 77      | 88      |
| Pakistan 9                     | 141              | 237        | 302     | 277         | 400     | 420     |
| Philippines                    | 53               | e 65       | 61      | 131         | e 134   | 126     |
| Saudi Arabia e                 | 25               | 38         | 76      | 191         |         |         |
| Sri Lanka                      | 20               |            |         | e 64        | 2       | 2       |
| Syrian Arab Republic           |                  | 4          | 17      |             | 49      | 63      |
|                                | $2\overline{16}$ | 209        | 209     | 29          | 35      | 3′      |
| mi . · i                       | e 1 11           | 1 11       | 18      | 170         | 194     | 176     |
| D1- 1                          |                  |            |         | e 47        | e 68    | e 68    |
| 77.                            | e 90             | e 81       | 160     | 268         | 316     | 413     |
| Vietnam, North e 1             |                  |            |         | 42          | 34      | 12      |
| Vietnam, South e 1             | .==              | .==        |         | 77          | 108     | 165     |
| Oceania: Australia •           | 160              | 187        | 201     | 159         | 138     | 182     |
| Other:                         |                  |            |         |             |         |         |
| North and Central America e 11 |                  |            |         | 76          | 82      | 87      |
| South America e 12             |                  |            |         | 29          | 36      | 37      |
| Europe 13                      |                  |            |         | 2           | 2       | 2       |
| Africa e 14                    |                  |            |         | 101         | 121     | 123     |
| Asia e 15                      |                  |            |         | 44          | 42      | 55      |
| Oceania 16                     |                  |            |         | 14          | 29      | 42      |
| World total                    | 36,291           | 38,716     | 42,202  | 34,939      | 36,749  | 39,608  |

e Estimate.

<sup>1</sup> Calendar year referring to the first part of the split year.
<sup>2</sup> Excludes nitrogen content of anhydrous ammonia produced for export in that form for subsequent processing elsewhere.

Includes guano.

Fertilizer year: June-May.

Deliveries by manufacturers or importers to first buyers.

Fertilizer year: November-October.

<sup>6</sup> Fertilizer year: November-October.

<sup>7</sup> United States Bureau of Mines estimate based on United Nations' estimate for the People's Republic of China and Taiwan (reported as a single figure) less the British Sulphur Corp. Ltd. reported figure for Taiwan alone.

<sup>8</sup> Includes data for Okinawa prefecture (formerly known as Ryukyu Islands).

<sup>9</sup> Excluding data for Bangladesh shown separately above.

<sup>10</sup> Source: British Sulphur Corp. Ltd. Statistical Supplement No. 8, November-December 1973, London 1973, pp. 14-15.

<sup>11</sup> Includes Barbados, British Honduras, Guadeloupe, Haiti, Honduras, Jamaica, Martinique, Nicaragua, Panama, St. Kitts. Nevis and Anguilla, St. Lucia, and St. Vincent.

<sup>12</sup> Includes Bolivia, Guyana, Paraguay, Surinam, and Uruguay.

<sup>13</sup> Includes Channel Islands (Jersey only) and Isle of Man.

<sup>14</sup> Includes Angola, Botswana, Cameroon, Central African Republic, Chad, Congo (Brazzaville), Dahomey, Equatorial Guinea, Ethiopia, Ghana, Guinea, Liberia, Libya, Malagasy Republic, Malawi, Mali, Mauritius, Nigeria, Reunion, Sierra Leone, Somalia, Swaziland, Togo, Uganda, Upper Volta, and Zaire.

<sup>15</sup> Includes Afghanistan, Burundi, Cyprus, Jordan, Khmer Republic, Laos, Mongolia, Nepal, and

<sup>15</sup> Includes Afghanistan, Burundi, Cyprus, Jordan, Khmer Republic, Laos, Mongolia, Nepal, and

Singapore.

16 Includes Fiji Islands and New Zealand.

Source: Statistical Office of the United Nations, Statistical Yearbook, 1973. New York, 1974, pp. 270-271, 513-515, unless otherwise specified.

#### **TECHNOLOGY**

The sulfur-coated urea (SCU) product developed by the Tennessee Valley Authority was intensively studied during the year. Application of molten sulfur was found to be superior to the previous dry application to coat the urea. Improvements included better coating efficiency and uniformity, less dust and mist formation, simplified coating drum design, and decreased requirements for preheating the urea. SCU was originally produced with a sealing coat of wax over the sulfur. During the year progress was made in eliminating the

wax coating when desired. It was found that SCU was more effective in rice cultivation where the fields are alternately flooded and drained as in developing nations where water supplies are inadequate. SCU maintains its slow release characteristics. Furthermore, it has the advantage of supplying nitrogen in the ammonium form which suffers less from leaching and volatilization than the nitrate form.47

<sup>&</sup>lt;sup>47</sup> National Fertilizer Development Center, Tennessee Valley Authority. 1973 Annual Report, pp. 3 and 5.

NITROGEN 887

The detection of atmospheric nitrogen compounds, including low concentrations of nitrogen oxides, is of considerable interest in determining air quality. A method of detecting these compounds by flame chemiluminescence was described.48 A hydrogenrich oxyhydrogen flame was used as the medium for excitation of characteristic nitrogen bands. The emission observed in the reaction between atomic hydrogen and NO was viewed photometrically. The detection limit was 0.150 parts per million for nitrogen oxides. Sulfur dioxide was also detected in concentrations of 0.004 parts per million.

A method was proposed for analyzing nitric oxide-nitrogen dioxide mixtures by reacting them with iron in sulfolane. The sensitivity of the method is only moderate but it appears to have potentialities for the analysis of grab samples collected at NO<sub>x</sub> emission sources.49 Ît was reported that nitric oxide can be measured in an air sample with a new laser magnetic resonance device developed by the National Bureau of Standards. The Zeeman effect, a split of molecular energy levels under a magnetic field, is particularly pronounced for nitric oxide at a wave length of 5.307 micrometers. No other contaminant exhibits this effect at this frequency.50

NO<sub>x</sub> abatement from flue gases in Japan was described.<sup>51</sup> Japanese environmental emission and control standards and measurement methods were covered. Thirteen processes were described for NO<sub>x</sub> abatement from waste gases. Two promising developments were a new type of burner for combustion modification and catalytic reduction for NO<sub>x</sub> removal from flue gases.

The Arbiter process was developed by The Anaconda Company and a plant to produce 100 tons per day of copper product was under construction at the Anaconda. Montana smelter. The process, which is pollution-free, was essentially an ammonia leach using oxygen but requiring no pressure or elevated temperature. It was claimed that the process can treat lower grade and highly pyritic concentrates such as those from old tailings.52 The plant was estimated to cost \$22 million and will produce 36,000 tons per year of copper. This investment cost was estimated to be about 60% of the investment for a conventional smelter of equivalent capacity.

<sup>48</sup> Krost, K. J., J. A. Hodgeson, and R. K. Stevens. Flame Chemiluminescence Detection of Nitrogen Compounds. Anal. Chemistry, v. 45, No. 11, September 1973, pp. 1800-1804.
49 Coetzee, J. F., D. R. Balya. and P. K. Chattopadhyay. Differential Kenetic Analysis of Nitric Oxide-Nitrogen Dioxide Mixtures by Reaction With Iron (II) in Sulfolane as Solvent. Anal. Chemistry, v. 45, No. 13, November 1973, pp. 2266-2268.

Anal. Chemistry, v. 45, No. 13, November 1913, pp. 2266-2268.

50 Chemical and Engineering News. V. 51, No. 31, July 30, 1973, p. 11.

51 Tohata, H., and J. Ando. Nitrogen Oxide Abatement Technology in Japan, 1973. National Technical Information Service, U.S. Department of Commerce, Springfield, Va. 22151, 977 cm.

<sup>37</sup> pp.
52 Chemical Engineering. V. 80, No. 9, Apr.
16, 1973, p. WW.



# Peat

## By Eugene T. Sheridan 1 and Donald P. Mickelsen 2

Peat production in the United States increased 10% in 1973, principally because of greater output at several of the larger operations. Although the number of active plants decreased by 5, production increased in 13 States. The largest production gains were recorded in Michigan, Indiana, Pennsylvania, Washington, and South Carolina.

Commercial sales of peat were 2% higher than in 1972, but the total value of peat sold, f.o.b. plant, rose 6% as the average value of all peat sold in 1973 increased \$0.44 per ton.

Imports increased 4%, and the quantity of peat imported in 1973 was about one-half the quantity produced domestically. Ninety-five percent of the peat imported was shipped from Canada.

World production was estimated at 106.5 million short tons. The U.S.S.R. was the largest producer with an output estimated at 96 million tons, 90% of the world total.

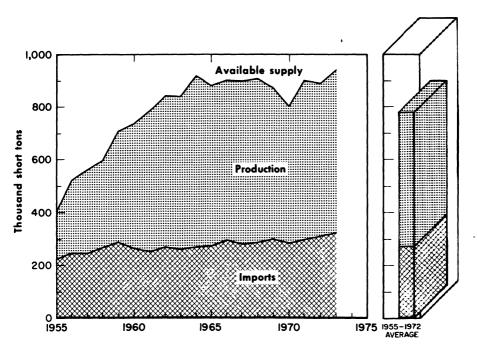



Figure 1.-Production, imports, and available supply of peat in the United States.

<sup>&</sup>lt;sup>1</sup> Mineral specialist, Division of Fossil Fuels -Mineral Supply.

<sup>&</sup>lt;sup>2</sup> Statistical assistant, Division of Fossil Fuels —Mineral Supply.

#### DOMESTIC PRODUCTION

The 58,000-ton increase in production resulted mainly from a larger output of humus. Of the reported total production, about one-half was reed-sedge peat, whereas the remainder was about equally divided between moss peat and humus.

Peat was produced in 22 States in 1973. Michigan remained the largest producer, with about one-third of the Nation's output. Illinois, Indiana, New Jersey, Florida, and Pennsylvania followed in output in the order named. These States, with Michigan, had three-fourths of the total production.

Active operations decreased from 103 to 98, but average output per plant increased 16% to 6,475 tons. Three-fourths of the operations, however, had outputs smaller than the average. Only 28 plants had production in excess of 5,000 tons, and only 6 plants produced more than 25,000 tons.

Roughly one-third of the peat was sold as produced with no processing other than air drying. Most of the remainder was shredded, and a small quantity was subjected to thermal drying.

Table 1.-Salient peat statistics

| 1970    | 1971                                                                  | 1972                                                                                                                      | 1973                                                                                                                                                            |
|---------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                                                                       |                                                                                                                           |                                                                                                                                                                 |
| 122     | 120                                                                   | 103                                                                                                                       | 98                                                                                                                                                              |
| 516,825 | 605,382                                                               | 576,712                                                                                                                   | 634,503                                                                                                                                                         |
| 525,603 | 599,548                                                               | 606,679                                                                                                                   | 620,583                                                                                                                                                         |
| \$5,986 | \$7,011                                                               | \$7,112                                                                                                                   | \$7,547                                                                                                                                                         |
| \$11.39 | \$11.69                                                               | \$11.72                                                                                                                   | \$12.16                                                                                                                                                         |
| 283,211 | 296,283                                                               | 310.521                                                                                                                   | 323,501                                                                                                                                                         |
| 808,814 | 895,831                                                               | r 917,200                                                                                                                 | 944.084                                                                                                                                                         |
| 92,026  | r 100,103                                                             | 116,029                                                                                                                   | P 106,481                                                                                                                                                       |
|         | 122<br>516,825<br>525,603<br>\$5,986<br>\$11.39<br>283,211<br>808,814 | 122 120<br>516,825 605,382<br>525,603 599,548<br>\$5,986 \$7,011<br>\$11.39 \$11.69<br>283,211 296,283<br>808,814 895,831 | 122 120 103 516,825 605,882 576,712 525,603 599,548 606,679 \$5,986 \$7,011 \$7,112 \$11.39 \$11.69 \$11.72 283,211 296,283 \$310,521 808,814 895,831 \$917,200 |

Preliminary. r Revised.

Table 2.—Peat produced in the United States in 1973, by kind (Short tons)

| Kind       | Unpre-<br>pared | Shredded | Kiln-<br>dried<br>only | Shredded<br>and<br>kiln-<br>dried | Total   |
|------------|-----------------|----------|------------------------|-----------------------------------|---------|
| Moss       | 64,365          | 82,465   |                        | 2,625                             | 149,455 |
| Reed-sedge | 107,557         | 229,426  |                        |                                   | 336,983 |
| Humus      | 25,544          | 120,343  | 2,178                  |                                   | 148,065 |
| Total      | 197,466         | 432,234  | 2,178                  | 2,625                             | 634,503 |

<sup>1</sup> Commercial sales plus imports.

PEAT 891

Table 3.-Production and commercial sales of peat in the United States in 1973, by State

|                |                  |                         | Commercial sales        |                           |                    |  |
|----------------|------------------|-------------------------|-------------------------|---------------------------|--------------------|--|
|                | Produc-          |                         | Quan-                   | Value                     |                    |  |
| State          | Active<br>plants | tion<br>(short<br>tons) | tity<br>(short<br>tons) | Total<br>(thou-<br>sands) | Average<br>per ton |  |
| California     | 3                | 21,799                  | 20,803                  | \$373                     | \$17.91            |  |
|                | 8                | 28,413                  | 28,040                  | 163                       | 5.81               |  |
| Florida        | š                | 43,777                  | 44,062                  | 384                       | 8.71               |  |
| Colorado       | 1                | 385                     | 385                     | 4                         | 9.09               |  |
| Georgia        | 6                | 71,552                  | 71,551                  | 1,037                     | 14.49              |  |
| Illinois       | 9                | 49,506                  | 50.741                  | 475                       | 9.36               |  |
| Indiana        | 2                | W                       | w                       | w                         | w                  |  |
| Iowa           | 3                | 5,817                   | 4,686                   | 177                       | 37.67              |  |
| Maine          | 1                | 2,349                   | 2,349                   | 29                        | 12.24              |  |
| Maryland       | ÷                | 2,400                   | 2,400                   | 78                        | 32.50              |  |
| Massachusetts  | 17               | 236,340                 | 232,330                 | 2,172                     | 9.35               |  |
| Michigan       | 1,               | 236,340<br>W            | 232,330<br>W            | , w                       | w                  |  |
| Minnesota      | 9                | 720                     | 720                     | ŵ                         | ŵ                  |  |
| Montana        | 1                |                         | 44,088                  | 514                       | 11.65              |  |
| New Jersey     | 4                | 46,472                  | 2,750                   | 50                        | 18.13              |  |
| New Mexico     | 1,               | 2,750                   | 11.221                  | 166                       | 14.78              |  |
| New York       | 4                | 11,221                  |                         | 64                        | 16.49              |  |
| Ohio           | 8                | 3,899                   | 3,899                   | 411                       | 14.77              |  |
| Pennsylvania   | 9                | 30,293                  | 27,802                  |                           | w                  |  |
| South Carolina | 1                | 17,200                  | 14,000                  | w                         | 23.36              |  |
| Vermont        | 1                | 95                      | 95                      | 2                         |                    |  |
| Washington     | 5                | 21,467                  | 21,467                  | 110                       | 5.13               |  |
| Wisconsin      | 2                | 2,261                   | 1,959                   | 208_                      | 106.15             |  |
| Total          | 98               | 634,503                 | 620,583                 | 7,547                     | 12.16              |  |

W Withheld to avoid disclosing individual company confidential data; included in total.

Table 4.-Relative size of peat operations in the United States

| Size                                                                                                                          | Active :<br>Pe<br>Number       |                                            | Produc<br>Short<br>tons                                              | Percent<br>of<br>total                     | Active                         | Percent<br>of<br>total                     | Produc<br>Short<br>tons                                              | Percent<br>of                              |
|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------|----------------------------------------------------------------------|--------------------------------------------|--------------------------------|--------------------------------------------|----------------------------------------------------------------------|--------------------------------------------|
|                                                                                                                               | Pe                             | ercent                                     | Short                                                                | Percent<br>of                              |                                | of                                         |                                                                      | of                                         |
|                                                                                                                               |                                |                                            |                                                                      | COLAI                                      | Number                         | totai                                      | tons                                                                 | total                                      |
| Under 500 tons<br>500 to 999 tons<br>1,000 to 4,999 tons<br>5,000 to 14,999 tons<br>15,000 to 24,999 tons<br>Over 25,000 tons | 26<br>11<br>38<br>18<br>6<br>4 | 25.2<br>10.7<br>36.9<br>17.5<br>5.8<br>3.9 | 6,142<br>7,678<br>86,279<br>170,153<br>111,240<br>195,220<br>576,712 | 1.0<br>1.3<br>15.0<br>29.5<br>19.3<br>33.9 | 19<br>11<br>40<br>15<br>7<br>6 | 19.4<br>11.2<br>40.8<br>15.3<br>7.2<br>6.1 | 3,620<br>7,798<br>98,076<br>123,368<br>117,439<br>284,202<br>634,503 | 0.6<br>1.2<br>15.5<br>19.4<br>18.5<br>44.8 |

### CONSUMPTION AND USES

Commercial sales and imports both increased in 1973, and the amount of peat available for consumption was about 3% greater than in 1972.

Peat was used for a variety of purposes, but 87% of total commercial sales reported by producers was for general soil improvement. Among the principal markets for this peat were nurseries and greenhouses, which used peat as a mulch and a medium for growing plants and shrubs; landscape gardeners and contractors, who used peat for building lawns, golf course greens, and for transplanting trees and shrubs; and garden, hardware, and variety stores, which

sold peat to homeowners for mulching and for improving lawn and garden soils. Most of the remaining peat was sold for use in potting soils and for packing flowers and shrubs, but small quantities were used in mushroom beds and mixed fertilizers, and for earthworm culture and seed inoculant.

Fifty-eight percent of the tonnage of peat sold commercially by producers was packaged. Packaged peat, however, accounted for more than two-thirds of the total value of sales. Of the total peat sold in packages, about two-thirds was reed-sedge peat, about one-fifth was moss peat, and the remainder was humus.

States leading in sales of packaged peat were Michigan, Illinois, and Indiana, which, together, reported 80% of the total sales of

packaged peat. Michigan was the largest producer of packaged peat with 56% of the total sales.

Table 5.-Commercial sales of peat in the United States in 1973, by kind and use

| _                                           | Moss                        | 3                         | Hun                         | ıus                       | Reed-                       | sedge                     |
|---------------------------------------------|-----------------------------|---------------------------|-----------------------------|---------------------------|-----------------------------|---------------------------|
| Use                                         | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands) | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands) | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands) |
| Bulk:                                       |                             |                           |                             |                           |                             |                           |
| Soil improvement<br>Other uses              | 47,475<br>33,631            | \$435<br>244              | 74,400<br>10,969            | \$756<br>109              | 71,584<br>22,769            | \$593<br>169              |
| Total 1                                     | 81,106                      | 680                       | 85,369                      | 866                       | 94,353                      | 761                       |
| Packaged: Soil improvement Other uses Total | 60,634<br>3,683<br>64,317   | 1,222<br>124<br>1,346     | 239,352<br>6,709<br>246,061 | 2,746<br>121<br>2.867     | 46,867<br>2,510<br>49,377   | 746<br>282<br>1,028       |
| Total:                                      |                             |                           |                             |                           |                             | 1,020                     |
| Soil improvement<br>Other uses              | 108,109<br>37,314           | 1,657<br>368              | 313,752<br>17,678           | $\frac{3,502}{231}$       | 118,451<br>25,279           | 1,338<br>451              |
| Grand total                                 | 145,423                     | 2,025                     | 331,430                     | 3,733                     | 143,730                     | 1,789                     |

<sup>&</sup>lt;sup>1</sup> Data may not add to totals shown because of independent rounding.

Table 6.-Commercial sales of peat in the United States in 1973, by use

| _                            | In bulk                     | ς.                        | In packa                    | ages                      | Tota                        | ıl 1                      |
|------------------------------|-----------------------------|---------------------------|-----------------------------|---------------------------|-----------------------------|---------------------------|
| Use                          | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands) | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands) | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands) |
| Soil improvement             | 193,459                     | \$1,784                   | 346,853                     | \$4,713                   | 540.312                     | \$6,497                   |
| Seed inoculant               | 25                          | (2)                       | 2,675                       | 257                       | 2,700                       | 257                       |
| Packing flowers, shrubs, etc | 27,455                      | 222                       | 928                         | 23                        | 28,383                      | 244                       |
| Potting soils                | 20,300                      | 169                       | 9.262                       | 248                       | 29,562                      | 417                       |
| Mushroom beds                | 1.586                       | 21                        | 0,202                       | 240                       | 1,586                       |                           |
| Earthworm culture            | 5.334                       | 55                        | $\bar{37}$                  | $(\bar{2})$               | 5,371                       | 21<br>55                  |
| Mixed fertilizers            | 12,599                      | 55                        |                             | (-)                       |                             |                           |
| Adsorption medium            | 70                          | 1                         |                             |                           | $12,599 \\ 70$              | 55                        |
| Total 1                      |                             | 2 2 2 2                   |                             |                           |                             | 1                         |
| 10001                        | 260,828                     | 2,307                     | 359,755                     | 5,241                     | 620,583                     | 7,547                     |

 $<sup>^1</sup>$  Data may not add to totals shown because of independent rounding.  $^2$  Less than  $\frac{1}{2}$  unit.

## PRICES AND SPECIFICATIONS

Prices of peat at individual operations varied greatly in 1973, with the price depending mainly upon the kind of peat sold, the amount of processing, and whether the material was sold packaged or in bulk.

The overall average value per ton, f.o.b. plant, for all peat sold in 1973 was \$12.16. This was an increase of \$0.44 per ton over the average value of 1972. The bulk of the increase was attributed mainly to higher average receipts for peat sold by producers in Minnesota, Illinois, and Iowa.

The average price of bulk peat increased \$0.65 per ton to \$8.84. Packaged prices, however, decreased an average of \$0.11 per ton to \$14.57. The average price for bulk

peat was influenced mainly by higher overall prices for bulk sales by producers in Florida, New Jersey, Indiana, and Pennsylvania. The decline in the unit value of packaged peat was attributed to generally smaller receipts for each ton of packaged peat sold by Michigan producers.

In a few instances, producers did not report the value of the peat they sold, and a value was assigned to their sales that was based upon the average value of peat sold within the State.

Imported peat had a total value of \$18.8 million. The total value of imported peat was 9% greater than in 1972, partially because there was 13,000 tons more peat

PEAT 893

imported but, also, because the average value per ton increased from \$55.30 to \$58.00.

Although the average value of imported peat was over four times that of domestically produced packaged peat, their values are not comparable because they are assigned at different marketing levels. Also, imported peat has different physical properties than most of the domestic peat, and it usually is sold on a volume basis rather than by weight. Each 100 pounds of a typical air-dried imported peat will measure approximately 12 bushels, whereas the same quantity of a typical domestic peat will

measure 3 to 4 bushels. Only a few domestic operations produced peat with properties similar to those of the imported kind.

Peat is broadly classified in the United States as moss peat, reed-sedge peat, and humus, according to the materials from which it has been formed and its degree of decomposition. Moss peat is a type that has been formed principally from sphagnum, and/or other mosses; reed-sedge peat has originated mainly from reeds, sedges, and other swamp plants; and humus is peat too decomposed for identification of its biological origin.

## FOREIGN TRADE

The quantity of peat imported into the United States in 1973 totaled 324,000 short tons. This was 4% more peat than was imported in 1972 and the largest quantity imported in any year to date.

Canada provided the bulk of the imports, supplying 95% of the total peat imported. Virtually all of the remaining foreign peat was supplied by Europe.

European shipments increased 44% principally because of substantially larger shipments from West Germany. West Germany supplied 96% of the peat imported from Europe.

Imported peat was classified according

to use as poultry- and stable-grade peat and fertilizer-grade peat. Of the total imported, 98% was fertilizer-grade peat. Except for a duty of \$0.50 per long ton levied on poultry- and stable-grade peat from communist countries, there is no tariff on peat.

Foreign peat entered the United States through 29 customs districts in 1973, but 84% of the total was shipped through the Buffalo and Ogdensburg, N.Y.; Detroit, Mich.; Pembina, N. Dak.; St. Albans, Vt.; and Seattle, Wash., customs districts. The largest quantity, 90,000 tons, was shipped through the Ogdensburg district.

Table 7.-U.S. imports for consumption of peat moss, by grade and country

|                         | Poultry<br>stable g                      | and<br>rade               | Ferti<br>gra                |                           | To                          | Total                                  |  |
|-------------------------|------------------------------------------|---------------------------|-----------------------------|---------------------------|-----------------------------|----------------------------------------|--|
| Country                 | Quantity<br>(short<br>tons)              | Value<br>(thou-<br>sands) | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands) | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands)              |  |
| 1972                    |                                          |                           |                             |                           |                             |                                        |  |
| CanadaFrance            | 2,057                                    | \$162                     | 296,743<br>14               | \$16,335                  | 298,800                     | \$16,497                               |  |
| Germany, West           | 857                                      | 46                        | 7,337                       | 450                       | 14<br>8,194                 | 496                                    |  |
| Norway<br>Poland        | 22                                       | - <u>-</u> 2              | 14                          | 1                         | 14<br>22                    | 1<br>2                                 |  |
| Sweden                  | 187<br>r 33                              | 6<br>3                    | 3,075                       | 163                       | 3,262<br>r 33               | 169                                    |  |
| Taiwan<br>U.S.S.R.      | $\begin{array}{c} 22 \\ 110 \end{array}$ | $\frac{1}{2}$             |                             |                           | 22<br>110                   | 1 2                                    |  |
| United Kingdom          |                                          |                           | 50                          | 1                         | 50                          | 1                                      |  |
| Total                   | г 3,288                                  | 222                       | 307,233                     | 16,951                    | r 310,521                   | 17,173                                 |  |
| 1973                    |                                          |                           |                             |                           |                             |                                        |  |
| Canada                  | 4,718                                    | 271                       | 301,887                     | 17,475                    | 306,605                     | 17,746                                 |  |
| Germany, West<br>Guyana | 1,104                                    | 66                        | 15,012<br>18                | 870                       | 16,116<br>18                | 936                                    |  |
| Hong Kong               | 7                                        | 20                        | 10                          | 1                         | 7                           | $\begin{array}{c} 1 \\ 20 \end{array}$ |  |
| Ireland                 | 13                                       | 10                        | 172                         | 18                        | 185                         | 28                                     |  |
| Japan                   |                                          |                           | 50                          | 2                         | 50                          | 2                                      |  |
| Netherlands<br>Norway   |                                          |                           | 7                           | 1                         | 7                           | 1                                      |  |
|                         | 3                                        | 4                         |                             |                           | 3                           | 4                                      |  |
| Poland<br>Thailand      | ·                                        |                           | 332                         | 17                        | 332                         | 17                                     |  |
| U.S.S.R.                | $\bar{1}\bar{7}$                         |                           | 19                          | 1                         | 19                          | 1                                      |  |
| United Kingdom          | 11                                       | 1                         | 114<br>21                   | 4                         | 131                         | 5                                      |  |
| Venezuela               |                                          |                           | 21<br>7                     | ( <sup>1</sup> )          | $^{21}_{7}$                 | (1)                                    |  |
| Total                   | 5,862                                    | 372                       | 317,639                     | 18,390                    | 323,501                     | 18,762                                 |  |

Table 8.—U.S. imports for consumption of peat moss in 1973, by grade and customs district

| _                    | Poultr<br>stable            | y and<br>grade            | Fertilizer                  | grade                     | То                          | tal                       |
|----------------------|-----------------------------|---------------------------|-----------------------------|---------------------------|-----------------------------|---------------------------|
| Customs district     | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands) | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands) | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands) |
| Anchorage, Alaska    |                             |                           | 69                          | \$4                       | 69                          | \$4                       |
| Baltimore, Md        | 16                          | \$1                       | 1,160                       | 68                        | 1.176                       | 69                        |
| Boston, Mass         | 7                           | ī                         | 452                         | 30                        | 459                         | 31                        |
| Buffalo, N.Y         | 243                         | 14                        | 24,811                      | 1,382                     | 25,054                      | 1,396                     |
| Charleston, N.C      | 231                         | 10                        | 91                          | 4                         | 322                         | 1,550                     |
| Chicago, Ill         | 13                          | 10                        |                             | *                         | 13                          | 10                        |
| Cleveland, Ohio      |                             |                           | 18                          | - <u>-</u>                | 18                          | 4                         |
| Detroit, Mich        | 109                         | 5                         | 47,934                      | $2.93\overline{4}$        | 48.043                      | 2,939                     |
| Duluth, Minn         |                             | •                         | 5.039                       | 459                       | 5,039                       | 459                       |
| Great Falls, Mont    |                             |                           | 13,291                      | 776                       | 13.291                      | 776                       |
| Houston, Tex         |                             |                           | 1.452                       | 74                        |                             |                           |
| Los Angeles, Calif   | 66                          | 3                         | 1,283                       | 127                       | 1,452                       | 74                        |
| Miami, Fla           |                             | Ü                         | 313                         | 14                        | 1,349                       | 130                       |
| Milwaukee, Wis       |                             |                           | 20                          | 14                        | 313                         | 14                        |
| Mobile, Ala          | 55                          | 3                         | 617                         | 40                        | $\frac{20}{672}$            | 1                         |
| New Orleans, La      | 00                          | 0                         | 2,862                       |                           |                             | 43                        |
| New York, N.Y        | 86                          | 6                         | 1,399                       | 127                       | 2,862                       | 127                       |
| Norfolk, Va          |                             | -                         |                             | 86                        | 1,485                       | 92                        |
| Ogdensburg, N.Y      |                             |                           | 695                         | 32                        | 695                         | 32                        |
| Pembina, N. Dak      | $1.1\bar{52}$               | $\overline{79}$           | 89,525                      | 4,796                     | 89,525                      | 4,796                     |
| Philadelphia, Pa     | 126                         | 18                        | 22,377                      | 1,206                     | 23,529                      | 1,285                     |
| Portland, Maine      | 3.087                       | 167                       | 949                         | 61                        | 1,075                       | 79                        |
| Portland, Oreg       | 148                         |                           | 14,176                      | 814                       | 17,263                      | 981                       |
| St. Albans, Vt       | 84                          | 10                        | 103                         | 7                         | 251                         | 17                        |
| San Francisco, Calif |                             | 3                         | 36,226                      | 1,924                     | 36,310                      | 1,927                     |
| San Juan, P.R        | 49                          | 3                         | 318                         | 20                        | 367                         | 23                        |
| Savannah, Ga         |                             |                           | 1,000                       | 69                        | 1,000                       | 69                        |
| Seattle, Wash        |                             | 7.7                       | 127                         | 7                         | 127                         | 7                         |
| Tampa, Fla           | 23                          | 15                        | 48,428                      | 3,177                     | 48,451                      | 3,192                     |
|                      | 367                         | 24                        | 2,904                       | 147                       | 3,271                       | 171                       |
| Total                | 5,862                       | 372                       | 317,639                     | 18,390                    | 323,501                     | 18,762                    |

r Revised.

Less than ½ unit.

Table 9.-Peat moss imported for consumption from Canada and West Germany in 1973, by grade and customs district

|                         |                          | Canada          |                     |                       |                          | West G          | West Germany        |                 |
|-------------------------|--------------------------|-----------------|---------------------|-----------------------|--------------------------|-----------------|---------------------|-----------------|
|                         | Poultry and stable grade | y and<br>grade  | Fertilizer<br>grade | izer<br>le            | Poultry and stable grade | y and<br>grade  | Fertilizer<br>grade | zer<br>e        |
| Customs district        | Quantity<br>(short       | Value<br>(thou- | Quantity<br>(short  | Value<br>(thou-       | Quantity<br>(short       | Value<br>(thou- | Quantity<br>(short  | Value<br>(thou- |
|                         | tons)                    | sands)          | tons)               | sands)                | tons)                    | sands)          | tons)               | sands)          |
| Anchorage Alaska        | 1                        | ļ               | 69                  | \$4                   | ł                        | ŀ               | 1                   | ij              |
| Baltimore, Md           | 1 1                      | 1               | 1                   | 1                     | 16                       | \$1             | 1,153               | \$67            |
| Boston, Mass            | 7 0                      | <del>.</del>    | 10.70               | 1 900                 | 1                        | 1               | 290                 | 13              |
| Buffalo, N.Y            | 24.5                     | 14              | 110,47              | 1,004                 | 231                      | 10              | 91                  | 14              |
| Cleveland Ohio          |                          | 1               | 18                  | 4                     |                          | ;               | 1                   | ł               |
| Detroit, Mich           | 109                      | ю               | 47.934              | 2,934                 | ŀ                        | ł               | ļ                   | 1               |
| Duluth, Minn            | !                        | ļ               | 5,039               | 459                   | ŀ                        | !               | !                   | 1               |
| Great Falls, Mont       | ;                        | 1               | 13,291              | 97.7                  | i                        | 1               | 1 9 6 6             | 15              |
| Houston, Tex            | 1                        | 1               | I                   | 1                     | 10                       | ļ°              | 1,000               | 197             |
| Los Angeles, Calif      | 1                        | !               | 1                   | !                     | 00                       | 0               | 213                 | 141             |
| Miami, Fla              | 1                        | !               | 16                  | <b>!</b> <del>-</del> | i                        | ŀ               | 010                 | 1               |
| Milwaukee, wis          | 1                        | !               | 9                   | 4                     | i re                     | 100             | 617                 | 19              |
| Now Orleans La          | 1                        | ¦ ¦             | 88                  | 67                    | 3                        | ۱ ۱             | 2,674               | 119             |
| New York, N.Y           | 17                       | 1               | 1                   | 1                     | 22                       | 4               | 1,321               | 85              |
| Norfolk, Va             | !<br>!                   | ŀ               | 100                 | 12                    | !                        | 1               | 689                 | 32              |
| Ogdensburg, N.Y         | 10                       | İ               | 89,500              | 4,734                 | ł                        | ŀ               | 1                   | i               |
| Pembina, N. Dak         | 1,152                    | 6.              | 22,311              | 1,200                 | $1\overline{20}$         | ¦∞              | $8\overline{19}$    | 56              |
| Portland, Maine         | 3,087                    | 167             | 14,157              | 813                   | 19                       | ! .             | 10                  | 10              |
| Portland, Oreg          | 13                       | ļ¢              | 200 26              | 1 000                 | 148                      | 70              | 103                 | ,               |
| St. Albans, Vt.         | <b>4</b> 1               | o               | 607,06              | 1,340                 | 49                       | ¦°°             | 318                 | <u>50</u>       |
| San Juan, P.R           | 1 1                      | 1               | !                   | ;                     | 1                        | 1               | 1,000               | 69              |
| Savannah, Ga            | 1:                       | !               | 10                  | !!                    | 1                        | ł               | 127                 |                 |
| Seattle, WashTampa. Fla | 19                       | ۲ ۱             | 48,428              | 3,177                 | 367                      | 24              | 2,855               | 143             |
| Total                   | 4,718                    | 271             | 301,887             | 17,475                | 1,104                    | 99              | 15,012              | 870             |

## WORLD REVIEW

World production of peat in 1973 was estimated at 106 million short tons, 8% less than the revised output reported for 1972.

The U.S.S.R. was by far the largest peat producer with an estimated 90% of the world production. According to published U.S.S.R. figures, 30 million tons of peat was produced by State enterprises for agricultural use, and an estimated 66 million tons was produced for fuel. Agricultural peat was used for general soil improvement and the manufacture of fertilizers, and fuel peat was used for generating electric power and for domestic and industrial heating.

Ireland ranked second in peat production with an estimated output of 6 million short tons. Virtually all of Ireland's production was fuel peat that was used for generating electric power and for heating households. A small amount of agricultural peat was produced, principally, for export.

West Germany, the third-ranking peat producer with 1.9 million short tons, provided about 2% of the world output. Most of the West German production was agricultural peat, with less than one-fifth consumed as a fuel.

Other producers ranking in output in the order named were the United States, the Netherlands, Finland, and Canada. The combined output of these countries was, however, only 2% of the total. Although fourth in world production, output of the United States was only 0.6% of the world total.

Table 10.-Peat: World production by country

(Thousand short tons)

| Country 1                             | 1971             | 1972      | 1973 р    |
|---------------------------------------|------------------|-----------|-----------|
| Argentina, agricultural use           | 4                | 7         | 11        |
| Canada, agricultural use              | r 337            | 376       | 11<br>390 |
| Denmark, fuel e                       | 6                | 910<br>6  | 890<br>6  |
| Finland:                              | v                | O         | ь         |
|                                       |                  |           |           |
| Agricultural useFuel                  | 259              | 140       | 265       |
|                                       | 112              | 166       | 171       |
| France, agricultural use              | 85               | 117       | ° 121     |
| Germany, West:                        |                  |           |           |
| Agricultural use                      | r 1.493          | 1 7 40    |           |
| ruei                                  |                  | 1,548     | e 1,640   |
| Hungary, agricultural use e           | $\frac{352}{72}$ | 313       | 308       |
|                                       | 72               | 72        | 72        |
| Ireland:                              |                  |           |           |
| Agricultural use                      | 63               | e 70      | e 70      |
| Fuel                                  | 6.058            | r c 6,000 | e 6.000   |
| Israel, agricultural use e            | 22               | 22        | 22        |
| Japan •                               | 80               | 80        | 80        |
| Korea, Republic of, agricultural use  | 4                | 4         | e 4       |
| Netherlands e                         | 440              | 440       | 440       |
| Norway:                               | 110              | 440       | 440       |
|                                       |                  |           |           |
| Agricultural useFuel                  | 17               | r e 20    | e 20      |
| Fuel                                  | 6                | e 6       | e 6       |
| Poland:                               |                  |           |           |
| Agricultural use e                    |                  |           |           |
| Fuel •                                | 55               | 55        | ∫40       |
| Spain                                 |                  |           | (10       |
|                                       | 20               | r e 20    | e 20      |
| Sweden:                               |                  |           |           |
| Agricultural use                      | r 125            | 115       | e 110     |
| Fuel                                  | 33               | 36        | e 40      |
| U.S.S.R.:                             | 00               | 30        | ° 40      |
|                                       |                  |           |           |
| Agricultural use <sup>e</sup><br>Fuel | 30,000           | 30,000    | 30,000    |
| Inited States agricultural            | r 59,855         | 75,839    | e 66,000  |
| United States, agricultural use       | 605              | 577       | 635       |
| Total                                 | r 100,103        | 116,029   | 106,481   |
| Fuel peat included in total           | r 66,422         | 82,366    |           |
|                                       | 00,422           | 04,300    | 72,541    |

e Estimate. Preliminary. Revised.

<sup>&</sup>lt;sup>1</sup> In addition to the countries listed, Austria, Canada, Iceland and Italy produce a negligible quantity of fuel peat. No data are available for East Germany, a major producer.

PEAT 897

## **TECHNOLOGY**

Experimental research conducted at the University of Sherbrooke, Quebec, Canada,3 indicated that peat moss, being a highly porous material, can be used as an adsorbing agent for the treatment of polluted water. In one study, moss peat was tested for its adsorbing power for beef extract and an alkyl benzene sulphonate (ABS) solution, contaminants sometimes found in municipally polluted water. Studies on the effects of time of contact, particle size, and concentration of pollutants in adsorption revealed a chemical oxygen demand (COD) reduction of around 27% for beef extract, and 72% to 95% for the ABS solution. The proposed water treatment process would filter polluted water through columns of peat moss to produce a relatively clean water. The peat then, if not toxic, could be used as a fertilizer, formed into building materials, or dewatered and burned.

Field and laboratory studies, also conducted by the University of Sherbrooke 4 have shown that peat moss can be used as an absorbing agent for oil recovery. Laboratory measurements indicate that peat moss has a stronger affinity for oil than straw, the absorbent presently being used for oil spill cleanup. Tests proved that peat moss, because of its highly porous and fibrous nature, can absorb up to eight times its own weight in oil. Field experiments were conducted at actual oil spill sites where, it was found, that peat moss spread before a vertically placed screen, acting as a boom, would easily stop an oil patch. Field tests also proved peat moss to be effective in beach cleanup when, spread on the beach and picked up with rakes, it removed at least 95% of the oil. It is indicated from field and laboratory studies that peat moss is a very effective absorbent for oil cleanup.

Additional research work at the University of Sherbrooke 5 evaluated the use of peat as a building material. Peat, when mixed with portland or other cements, produces a lightweight concrete, which is a good thermal and sound insulator. Through research, a process was developed for fabricating a material called peatcrete. Peatcrete is produced by first screening the peat through a No. 4 seive for better cohesion, then mixing with the cement. The best cement, water, peat mixture was found to be 1:2:2. After mixing, the peat/cement mixture was compacted into cylinders under a pressure of 18 pounds per square inch for 24 hours, after which the cylinders were dried at a temperature of 120° F. for 7 days. The resulting peatcrete had a compressive strength of 250 pounds per square inch and was very light, having a specific gravity of between 0.05 and 0.07. The peatcrete was cohesive enough to be sawed, drilled, nailed, and otherwise worked without disintegrating or splitting. Research is continuing into the development of industrial fabrication of peat-cement panels.

<sup>&</sup>lt;sup>3</sup> Tinh, V. Q., R. Leblanc, J. M. Janssens, and M. Ruel. Peat Moss—A Natural Adsorping Agent for the Treatment of Polluted Water. Can. Min. and Met. Bull., Montreal, Canada. V. 64, March 1971, pp. 99–104.

<sup>4</sup> D'Hennezel, F., and B. Coupal. Peat Moss—A Natural Absorbent for Oil Spills. Can. Min. and Met. Bull., Montreal, Canada. V. 65, January 1972, pp. 51–53.

<sup>5</sup> Oliver, R. Peatcrete. Eng. J., Montreal, Canada, V. 54, November 1971, pp. 25–27.

## **Perlite**

## By Arthur C. Meisinger 1

The quantity of crude perlite sold or used in 1973 fell short of the record 545,000 tons established in 1972; however, the 544,000 tons sold or used in 1973 was obtained from a record quantity of 759,000 tons of crude perlite mined. Value of crude perlite sold or used in 1973 was 10% less than the record value set in 1972.

Compared with 1972 production, expanded

perlite was produced at six fewer plants, but the quantities produced and sold or used declined only 3,000 tons and 3,500 tons, respectively. The value of expanded perlite (\$28.0 million) in 1973 was also just under the record total of \$28.4 million set in 1972. New Mexico and Illinois continued to be the leading States in production of crude and expanded perlite, respectively.

Table 1.—Crude and expanded perlite produced and sold or used by producers in the United States

| (Thousand | chort | tone | and | thougand | dollars) |
|-----------|-------|------|-----|----------|----------|
|           |       |      |     |          |          |

|      |          |               | Crud  | e perlite                 |       |                   |                      |          |          |
|------|----------|---------------|-------|---------------------------|-------|-------------------|----------------------|----------|----------|
|      |          |               |       | Used at                   |       | m. +-1            | Expa                 | nded per | lite     |
| Year | Quantity | Quantity Solo |       | plant to make<br>expanded |       | Total<br>quantity | Quantity<br>produced | Sold o   | r used   |
|      | mined    | 2010          |       | mater                     | ial   | sold and<br>used  | produced             | Quantity | Value    |
|      | -        | Quantity      | Value | Quantity                  | Value | useu              |                      |          |          |
| 1969 | 613      | 205           | 2,087 | 266                       | 3,013 | 471               | 405                  | 402      | 22,100   |
| 1970 | 607      | 176           | 2,056 | 280                       | 2,848 | 456               | 420                  | 416      | 24,972   |
| 1971 | 495      | 175           | 2.062 | 257                       | 2,879 | 432               | 389                  | 385      | 23,156   |
| 1972 | 649      | 224           | 2.540 | 321                       | 3,691 | 545               | 427                  | 421      | r 28,397 |
| 1973 | 759      | 238           | 2,771 | 306                       | 2,819 | 544               | 424                  | 418      | 28,005   |

r Revised.

## **DOMESTIC PRODUCTION**

Production of crude perlite in 1973 was reported by 11 companies in 7 States. Twelve mines were in operation compared with 13 mines in 1972. A record quantity (759,000 tons) of crude perlite was mined and surpassed the previous record quantity of 1972 by 110,000 tons. New Mexico continued to be the principal producing State with 89% of the U.S. crude perlite mined. Other producing States, in descending order, were Arizona, California, Nevada, Colorado, Idaho, and Texas.

The quantity of crude perlite sold or used to make expanded perlite products in 1973 was only 911 tons under the record total of 545,000 tons established the previous year. Value of crude perlite sold or used,

however, declined 10% from the record value of \$6.2 million in 1972.

Crude perlite was expanded at 76 plants in 30 States in 1973. The quantity of expanded perlite produced was 424,000 tons, compared with 427,000 tons in 1972. The value of expanded perlite also declined slightly from the record 1972 value of \$28.4 million; value of expanded perlite sold and used in 1973 was \$28.0 million.

The leading State in production of expanded perlite was Illinois. Other States with significant production in 1973 were California, Colorado, Florida, Indiana, Kentucky, Mississippi, New Jersey, Pennsylvania, and Texas.

<sup>&</sup>lt;sup>1</sup> Industry economist, Division of Nonmetallic Minerals—Mineral Supply.

Table 2.-Expanded perlite produced and sold by producers in the United States

|                |                                          | 1972                             |                           |                                     |                              | 1973                             |                           |                                     |
|----------------|------------------------------------------|----------------------------------|---------------------------|-------------------------------------|------------------------------|----------------------------------|---------------------------|-------------------------------------|
|                | Quan-                                    | Sol                              | d or used                 |                                     | Quan-                        | Sold                             | or used                   |                                     |
| State          | tity<br>pro-<br>duced<br>(short<br>tons) | Quan-<br>tity<br>(short<br>tons) | Value<br>(thou-<br>sands) | Aver-<br>age<br>value<br>per<br>ton | tity pro- duced (short tons) | Quan-<br>tity<br>(short<br>tons) | Value<br>(thou-<br>sands) | Aver-<br>age<br>value<br>per<br>ton |
| California     | 21,227                                   | 21,221                           | \$1,827                   | \$86.12                             | 24,442                       | 23,652                           | \$2,071                   | \$87.54                             |
| Florida        | 19,124                                   | 18,249                           | 1,001                     | 54.84                               | 23,378                       | 22,613                           | 1,287                     | 56.92                               |
| Indiana        | 14,866                                   | 16,331                           | 968                       | 59.27                               | 14,878                       | 14,801                           |                           |                                     |
| Kansas         | 767                                      | 767                              | 59                        | 76.71                               | 900                          | 893                              | 1,021<br>97               | 69.01                               |
| Maryland       | (1)                                      | 3.208                            | 299                       | 93.22                               | (1)                          | (¹)                              | • •                       | 108.87                              |
| Missouri       | (1)                                      | (1)                              | (1)                       | (1)                                 | 3.930                        | 3,930                            | (¹)<br>362                | (1)<br>92.24                        |
| New York       | 5,739                                    | 5,739                            | 469                       | 81.76                               | 6,526                        | 6,128                            | 495                       | 80.70                               |
| Ohio           | 12,791                                   | 12,791                           | 774                       | 60.52                               | 12,099                       | 12,099                           | 748                       | 61.85                               |
| Pennsylvania   | 29,231                                   | 29,790                           | 1.667                     | 55.97                               | 36,490                       | 35,230                           | 2,055                     | 58.33                               |
| Texas          | 21,696                                   | 21.210                           | 1,270                     | 59.87                               | 18,273                       | 18,452                           | •                         |                                     |
| Other States 2 | r 301,128                                | r 292,033                        | r 20.063                  | r 68.70                             | 282,646                      | 280,053                          | 1,210<br>18,659           | 65.57                               |
| Total          | 426,569                                  | 421,339                          | r 28,397                  | r 67.40                             | 423,562                      | 417,851                          | 28,005                    | 66.63<br>67.02                      |

r Revised.

## CONSUMPTION AND USES

Domestic consumption of expanded perlite was nearly 417,800 tons in 1973—only 3,500 tons below the record 421,300 tons consumed in 1972. The percent disposition of expanded perlite in the United States is shown in table 3. Filter aid, plaster and concrete aggregates, formed products, and insulation board (included with "Other" uses) were the principal domestic uses of expanded perlite. Compared with that of 1972, use of expanded perlite in filter aids increased 3%, and use in horticultural aggregates increased 2%. Decreases in expanded perlite for plaster aggregate, concrete aggregate, and low-temperature insulation were 2%, 1%, and 2%, respectively. Other uses totaled 46% and included primarily insulation board, and lesser uses such as paint textures, foundry castables and

bonding agents, polishing compounds, and miscellaneous industrial and agricultural products.

Table 3.-End use of expanded perlite (Percent)

| Use                        | 1972       | 1973 |
|----------------------------|------------|------|
| Filter aid                 | 16         | 19   |
| Plater aggregate           | 12<br>12   | 10   |
| Concrete aggregate         | -8         | 7    |
| Horticulture aggregate     | 3          | 5    |
| Low-temperature insulation | 4          | ž    |
| Masonry and cavity fill    | _          | _    |
| insulation                 | (1)        | 1    |
| Fillers                    | (1)<br>(2) | 2    |
| Formed products            | (²)        | 8    |
| Other 3                    | 57         | 46   |

## **PRICES**

Producers sold crushed, cleaned, and sized crude perlite to expanding plants at an average price of \$11.64 per short ton in 1973, and the portion used by producers in their own expanding plants was valued at an average of \$9.21 per ton. The weighted average of both categories was \$10.28 per

ton—a decrease of \$1.16 from the 1972 price.

Expanded perlite sold or used, according to expanders, had an average value of \$67.02 compared with \$67.40 per ton in 1972. However, average values by States in 1973 ranged from \$34 to \$151 per ton.

<sup>&</sup>lt;sup>1</sup> Revised.

<sup>1</sup> Included with "Other States."

<sup>2</sup> Includes Colorado, Georgia, Idaho, Illinois, Iowa, Kentucky, Louisiana, Maine, Maryland (1972 quantity produced only and 1973), Massachusetts, Michigan, Minnesota, Mississippi, Missouri (1972), Nebraska, Nevada, New Hampshire, New Jersey, Oregon, Tennessee, Utah, and Wisconsin.

<sup>&</sup>lt;sup>1</sup> Less than 1%. <sup>2</sup> Included with "Other" to avoid disclosing individual company confidential data.

Includes insulation board.

PERLITE 901

## **WORLD REVIEW**

Greece.—Data on perlite production in 1973 were not available; however, the quantity of crude perlite produced in 1972 was approximately 136,500 tons—a decrease of 20% from the 171,300 tons (revised) reported in 1971. Although crude perlite production in Greece declined in 1972 for the second consecutive year, the quantity of perlite screened and sized (120,300 tons) in 1972 for export increased over that (104,500 tons) produced in 1971.

The country's largest perlite producer, Silver and Barytes Ores Mining Co., Athens, announced plans to enlarge its perlite facilities on the island of Milos with the construction of a new crushing and screening plant at Vouthia Bay. The current plant has a capacity of about 150,000 tons per year. The new plant is expected to increase graded perlite capacity to around 350,000 tons per year by 1975. Crude perlite reserves of Silver and Barytes Ores on Milos was estimated to be 150 million tons.2 The company also has a small perlite-expanding plant (2,000 tons per year) in Athens that largely supplies expanded perlite for markets in Greece.

Other producers of crude perlite in Greece are N. Buras and Co. with deposits on Kos, and L. K. Sarides Mining Enterprises S. A. The latter company started mining on Milos in 1972 and reportedly shipped 7,000 tons of crude perlite in 1973.<sup>3</sup> The company's mines are at Tsigrado and Vounalia.

Hungary.—Production of crude perlite in Hungary was last reported in 1971 as 67,100 tons. No data were available for 1973, but production has probably averaged 70,000 tons or better for the last 2 years. Production estimates were based on increasing exports and research interest by Hungary in developing new uses for expanded perlite.

Crude perlite from the open pit mine at Pálháza, northern Hungary, was preheated and mixed with bitumen at the Tapolca insulation material plant in 1973. The new insulation product (bituminous perlite) is reportedly resistant to decay and bacterial attack. The plant's production in 1973 was about 247,000 cubic feet.

The Research Institute of the Silicate Industry in Hungary announced a process to produce foam-glass granules from ground crude perlite. The process, using conventional foam-glass techniques, produces a material that has a vesicular structure with high internal strength and low permeability. The foam-glass perlite granules, properly mixed with portland cement and water, reportedly produced an unusually strong lightweight insulation concrete. These lightweight concretes are commercially attractive because the lower permeability of foam-glass perlite granules, compared with expanded perlite, requires less water and up to 30% less cement in formulating.

Also in 1973, a new horticultural use of expanded perlite for propagating tree saplings was developed jointly by the Hungarian Perlite Institute and the Department of Forestry, Budapest University, Budapest, Hungary. The method consists of forming cold beds, about 5 feet wide and 1 to 1½ feet deep, that are filled with an 8- to 10-inch layer of perlite kept moist and enriched with a chemical fertilizer. Each 10.8-square-foot area of the perlite beds is reported to have the capacity of raising up to 2,200 seedbed plants.<sup>5</sup>

Philippines.—The quantity of crude perlite mined by the Trinity Lodge Mining Corp. in 1973 was 909 tons, and represented a substantial increase over that produced in 1972.

Turkey.—Approximately 19,100 tons of crude perlite was produced in 1973, 43% less than the 33,500 tons produced in 1972. Producers and/or expanders of perlite in Turkey are Pabalk Ticaret Limited, Sirketi, Istanbul; Elyafli Çimento Sanayii ve Ticaret, A.S., Istanbul; and Etibank General Management, Ankara.

<sup>&</sup>lt;sup>2</sup> Industrial Minerals. Greece. A Wealth of Industrial Minerals. No. 75, December 1973, p. 49.

p. 49.
 Industrial Minerals. Greece. A Wealth of Industrial Minerals. No. 75, December 1973, p. 29.

Pp. 29.

4 Industrial Minerals. Company News and Mineral Notes. No. 75, December 1973, p. 67.

5 Rock Products. International Report. V. 77, No. 2, February 1974, p. 88.



# Crude Petroleum and Petroleum Products

By David A. Carleton,1 William B. Harper,2 Bernadette Michalski,2 and Betty M. Moore<sup>3</sup>

## CONTENTS

|                     | Page |                                      | Page |
|---------------------|------|--------------------------------------|------|
| Salient statistics  | ິ3   | Asphalt and road oil                 | 10   |
| Crude petroleum     | 4    | Other products                       | 10   |
| Production          | 4    | Transportation and distribution      | 11   |
| Consumption         | 5    | Crude oil                            | 11   |
| Productive capacity | 6    | Refined products                     | 12   |
| Drilling activity   | 6    | Pipelines                            | 12   |
| Reserves            | 6    | Rail, tank truck, barge, and tankers | 14   |
| Refined products    | 7    | Stocks                               | 14   |
| Gasoline            | 7    | Prices                               | 14   |
| Jet fuels           | 9    |                                      | 17   |
| Liquefied gases     | 9    | Foreign trade                        |      |
| Kerosine            | 9    | Native asphalt                       | 17   |
| Distillate fuel oil | 9    | World review                         | 18   |
| Residual fuel oil   | 10   | Technology                           | 29   |

The United States petroleum industry experienced considerable change and development during 1973, occasioned by additional government involvement and a growing awareness among the public of petroleum industry dynamics. Principal events were the decline in U.S. liquid hydrocarbon production, widespread petroleum product shortages, dwindling inventories, an embargo by some Arab countries on exports to the United States, and substantial price increases. Government activities involved cessation of the mandatory import controls, decontrolling prices, establishing a two-tier pricing system, creating new allocation programs, adopting a new license-fee system to replace import duties, and the issuance of consumption-constraining legislation.

Crude oil production (including lease condensate), which totaled 9.2 million barrels per day (bpd) in 1973, was the lowest since 1968 and 3% lower than that of 1972. The decline resulted from the exhaustion of older fields and the absence of discoveries of new fields. At yearend, final permission was given to construct the Alaska pipeline. When completed, the line will permit production on the North Slope to increase initially by an estimated 600,000 bpd.

Domestic demand for petroleum products, which increased 5.4% during the year, was inhibited during late 1973, particularly by shortages and by conservation efforts. This was the second lowest rate of increase since 1964 reflecting, also, unusually warm winter weather. Domestic demand for refined products, which averaged 17.3 million bpd, might have fallen considerably short of this level had not demand been stimulated in early 1973 by the continued conversion of powerplants from high-sulfur coal use to low-sulfur residual fuel oil use. Further-

<sup>&</sup>lt;sup>1</sup> Petroleum specialist, Division of Fossil Fuels

<sup>—</sup>Mineral Supply.

<sup>2</sup> Mineral industry specialist, (Petroleum) Division of Fossil Fuels—Mineral Supply.

<sup>3</sup> Statistical assistant, Division of Fossil Fuels -Mineral Supply.

more, demand was up because of the substitution of petroleum products for a curtailed use of natural gas. In addition there were higher than normal additions to motor gasoline inventories, both at secondary levels and at the consumer storage level.4

The decline in domestic production of liquid hydrocarbons in 1973 made it necessary to meet with imports the rising demand for petroleum products. Imports which totaled 6.2 million bpd, a 30% increase from 1972 levels, consisted of about one-half crude oil and one-half finished and unfinished products. The Western Hemisphere continued as the principal source of imported oil, providing nearly two-thirds of the total.

Inventories of liquid hydrocarbons at primary storage facilities were well below those of 1972 until near yearend, and throughout most of the year stock levels were of concern. At yearend 1973, however, stocks were equivalent to 58 days of domestic demand or virtually the same as a year earlier. It should be noted that roughly 20% to 30% of these stocks are either tank bottoms or pipeline fill, or are in other equipment in order to assure continuous operations, and are therefore unavailable for shipment.

The lone Federal offshore lease sale took place off Mississippi, Alabama, and Florida on December 20. Total high bids for the sale reached \$1.5 billion as companies placed 373 bids on 89 of the 147 tracts available for leasing. The U.S. Department of the Interior also announced that it established lease-sale boundaries containing, for future sale, 6 million acres offshore California. Interior also announced that it plans to speed-up lease sales in areas offshore Alaska, California, Texas, and Louisiana. The California State Lands Commission lifted the moratorium on new oilwell drilling on State-owned offshore land.

Geophysical and geological exploration increased in 1973 as the outlook for petroleum exploration improved over previous years. According to the Hughes Tool Co., an average of 1,373 rotary rigs were active in 1973, the highest since 1966. However, according to the American Petroleum Institute (API), there were 26,592 exploratory and development wells drilled during the year, down 2.6% from the 1972 figures. Factors causing this decline were weather, lack of steel, shortages of drilling crews, and economic conditions.

The API estimated that reserves of crude oil declined for the third consecutive year as production withdrawals continued to outstrip additions to reserves. Reserves of 35.3 billion barrels, at yearend 1973 represented a reserves-to-production ratio for crude oil of 11:1 based on 1973 production. The largest single additions to reserves occurred in 1970 when Alaska's North Slope discoveries were included for the first time. Since World War II, reserves-to-production ratios have trended downward from a high of 13.6:1 in 1949 and to a low of 9.2:1 in 1969.

Refinery throughput capacity at yearend 1973 amounted to 14.2 million barrels per (calendar) day, up 3% from yearend 1972. Following the early 1973 discontinuance of import quotas on crude oil and petroleum products, many refiners announced expansion plans that could have increased throughput capacity by nearly 1.5 million bpd by the end of 1976. Most of the proposed new capacity was scheduled to use imported crude oil. However, at the close of 1973 many of these plans and other longer range projects were either cancelled or suspended because of the uncertainties of supply, characterized by the Arab oil embargo during the latter part of the year. Output of refined products from U.S. refineries accounted for only 75% of total demand for refined petroleum products in 1973. Only 35% of residual fuel oil demand was met with domestic refinery output.

<sup>4</sup> Certain terms as used in this chapter are

<sup>&</sup>lt;sup>4</sup> Certain terms as used in this chapter are more or less unique to the petroleum industry. Principal terms and their meaning are—

Total demand.—A derived figure representing total new supply plus decreases or minus increases in reported stocks. Because there are substantial secondary and consumers' stocks that are not reported to the Bureau of Mines this figure varies considerably from consumption.

Domestic demand.—Total demand less exports.

New supply of all oils.—The sum of crude oil production, plus production of natural gas liquids, plus benzol (coke-oven) used for motor fuel, hydrogen, and other hydrocarbons, plus imports of crude oil and other petroleum products. products.

Transfers.—Crude oil conveyed to fuel-oil stocks without processing, or reclassification of products from one product category to another. All oils.—Crude petroleum, natural gas liquids, and their derivatives.

Exports.—Includes shipments to United States territories, possessions, and free trade zones.

Imports.—Includes receipts from United States territories, possessions, and free trade zones.

Table 1.-Salient statistics of crude petroleum, refined products, and natural gas liquids in the United States

(Thousand 42-gallon barrels unless otherwise indicated)

|                                                                 | 1969         | 1970         | 1971                 | 1972         | 1973 ₽           |
|-----------------------------------------------------------------|--------------|--------------|----------------------|--------------|------------------|
| Crude petroleum:                                                |              |              |                      |              |                  |
| Domestic production (including                                  |              |              |                      | 0 455 900    | 3.360,903        |
| lease condensate)                                               | 3,371,751    | 3,517,450    | 3,453,914            |              |                  |
| World production                                                | r 15,222,511 | r 16,718,708 | 17,662,793           | 18,600,501   |                  |
| U.S. proportionpercent                                          | 22           | 21           | 20                   | 19           | 14               |
| Exports 1                                                       | 1,436        | 4,991        | 20<br>503<br>613,417 | 187          |                  |
| Imports 2                                                       | 514,114      | 483,293      | 613,417              | 811,135      | 1,183,996        |
| Stocks, end of year                                             | 265,227      | 276,367      | 259,648              | 246,395      | 242,418          |
| Rune to etille                                                  | 3,879,605    | 3,967,503    | 4,087,809            | 4,280,863    | 4,537,254        |
| Weller of Jamestia muskust at walls:                            |              |              |                      |              |                  |
| Totalthousands_                                                 | \$10,426,680 | \$11,173,726 | \$11,692,998         | \$11,706,510 | \$13,057,905     |
| Average per barrel                                              | \$3.09       | \$3.18       | \$3.39               | \$5.59       | -\$-0.0 <b>3</b> |
| Total producing oil wells Dec. 31                               |              | 530,990      | 517,318              | 508,443      | 497,378          |
| Total oil wells completed during                                | ,            | •            | =                    |              |                  |
| year (successful wells)                                         | 14,368       | 13,020       | 11,858               | 11,306       | 9,902            |
| Refined products:                                               | ,            | ,            | ,                    |              |                  |
| Exports 1                                                       | 83,449       | 89,467       | 81,342               | 81,202       | 83,515           |
| Imports (including unfinished oils                              | 00,220       | ,            | ,                    | •            |                  |
| and plant condensate) 3                                         | 641,437      | 764,769      | 819.463              | 924,179      | 1.079.527        |
| Stocks, end of year 4                                           |              |              |                      |              |                  |
| Completed refineries, end of year                               |              |              |                      |              |                  |
| Daily crude-oil capacity                                        |              |              |                      |              | 14,489           |
|                                                                 | 12,014       | 10,020       | 10,10.               | 20,110       | 22,200           |
| Natural gas liquids: Production                                 | 580.241      | 605,916      | 617,815              | 638,216      | 634,423          |
| Production                                                      | 58,552       |              |                      |              |                  |
| Stocks, end of year                                             | 00,002       | 00,552       | 00,421               | 10,200       | 0 2,2 0 0        |
| All oils:                                                       | 5,249,056    | 5,463,259    | 5,638,853            | 6,076,346    | 6.386,643        |
| Total disposition of primary supply                             |              |              |                      |              |                  |
| Exports                                                         | 04,000       | 34,400       | 01,040               | 01,000       | 01,010           |
| Total domestic demand for products (including crude-oil losses) | 5,164,171    | 5,368,801    | 5,557,008            | 5,994,957    | 6,302,431        |
| (including crude-oil losses)                                    | 5,164,171    | 5,368,801    | 5,557,008            | 5,994,957    | 6,302,4          |

P Preliminary (except for crude production and value). Prevised.

1 U. S. Department of Commerce data.

2 Reported to the Bureau of Mines.

3 U. S. Department of Commerce data, except for unfinished oils and plant condensate which are Bureau of Mines.

4 Stocks of refined products also include stocks of unfinished oils, natural gasoline, plant condensate and isopentane.

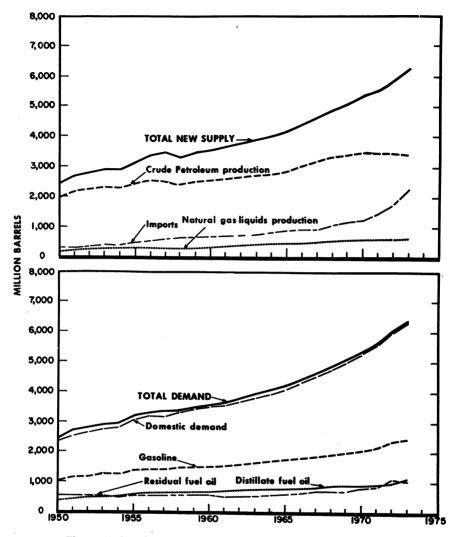



Figure 1.-Supply and demand of all oils in the United States.

## CRUDE PETROLEUM

## **PRODUCTION**

Production of crude oil (including lease condensate) declined again in 1973, after recovering slightly in 1972. Total production of 3.36 billion barrels, nearly 9.2 million bpd, 3.0% less than that of 1972. The decline occurred in 18 of the country's 31 producing States. Of these, Louisiana had the greatest loss, 165,214 bpd or down 6.8%

from 1972. Others with less production were Oklahoma, 45,011 bpd (-7.9%); California, 29,992 bpd (-3.2%); New Mexico, 26,134 bpd (-8.6%); Texas, 19,216 bpd (-0.5%); Mississippi, 13,693 bpd (-8.2%); and Illinois, 11,521 bpd (-12.1%).

Florida was the only State that recorded significant production gains. Output, mostly from fields in the northwestern part of the State, averaged 89,575 bpd, up 43,282 bpd or 93.5% from that of 1972. Others with increased production during the year were Utah, up 16,674 bpd (22.9%); Wyoming, 5,214 bpd (1.4%); Colorado, 12,534 bpd (14.3%); Alabama, 4,775 bpd (17.6%); and Michigan, 4,449 bpd (12.5%).

The general decline in output resulted from the exhaustion of many of the older fields, lagging secondary and tertiary programs and the paucity of large discoveries to reverse significantly the declining productive capacity.

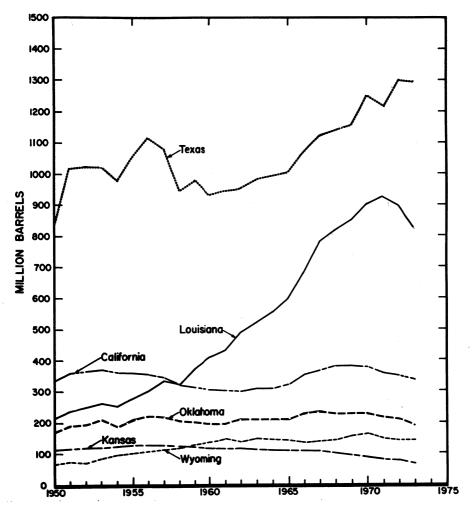



Figure 2.—Production of crude petroleum in the United States, by principal producing States.

## CONSUMPTION

Refineries processed 4.5 billion barrels (12.4 million bpd) of crude oil, of which 74% was domestic crude and 26% was from foreign sources. The amount processed was

6% more than that refined in 1972 and represented 91.1% of the January 1, 1973, operable refining capacity of 13.6 million bpd. This was the second highest operating ratio in the past decade.

The highest average monthly operating

ratio was reached in June when 94.3% of the operable throughput capacity was in use. This was the highest monthly rate reached since December 1969 and the fourth highest in the past decade. Refinery input and operating ratios were at record levels during the spring of 1974, because of the summer motor gasoline shortage in 1973. Conversely, the ratio of input to operable capacity in December was among the lowest December operating ratios during the past decade. In December 1973 the government announced plans to allocate crude oil to all refiners at an input ratio of approximately 85% of throughput capacity, owing to the shortage resulting from the Arab embargo on oil shipments to the United States. These were scheduled for adaptation under the mandatory allocation program effective December 27.

## PRODUCTIVE CAPACITY

According to the API the maximum crude oil output that could be attained in the United States as of January 1, 1974 was 9.7 million bpd. This was the lowest since 1960 and was 0.6 million bpd or 6% less than that on January 1, 1973. Texas and Louisiana suffered the greatest losses, declining a combined 0.3 million bpd. Colorado and Wyoming had the largest increases totaling 0.03 million bpd. These estimates were based on the assumption that such production could be achieved in 90 days with existing wells, well equipment, and present surface facilities, plus work changes that could be accomplished within that time. No productive capacity was credited to the North Slope of Alaska since there was no way to market the oil, and installation of producing and pipeline facilities were incomplete.

Although the United States had, for many years, a surplus productive capacity that could be called on to meet emergency needs, it became apparent in 1973 that the country no longer has an effective surplus capacity. Most of the surplus capacity is in fields in Eastern Texas.

### DRILLING ACTIVITY

Although well completions were up in 1972 after several years of decline, well completions were down again in 1973. The success ratio improved, however, since 61% of the wells completed in 1973 yielded

commercial quantities of either oil or gas, compared with 59% in 1972. In 1973, nearly 61% of the successful wells drilled were oil producers compared with 70% in 1972 and 88% in 1954. Of the States having considerable drilling activity, Ohio and California had the best success ratios, 89% and 78% respectively.

In December 1973, the California State Lands Commission ended a 4-year moratorium on new oil well drilling on State-owned offshore lands. The ban on offshore drilling was imposed after a well on federally leased land in the Santa Barbara Channel blew out on January 28, 1969. The lifting of the ban followed the completion of a report which emphasized that equipment and recovery systems not available in 1969 now made the possibility of a similar accident far less likely.

On December 20, the U.S. Department of the Interior held its lone 1973 offshore lease sale. Total high bids for the sale, which covered Federal lands off Mississippi, Alabama, and Florida reached \$1.5 billion. Companies placed 373 bids on 89 of the 147 tracts available for leasing, exposing a total of \$3.4 billion.

#### RESERVES

The API Committee on Petroleum Reserves estimated proved recoverable reserves of crude oil as of December 31, 1973, to be 35,300 million barrels, a decline of 1,039 million barrels for the year.

Gains in proved reserves were accomplished in seven States, led by New Mexico, which added 60 million barrels. Losses in proved reserves occurred in 19 States, in those States having significant reserves, the largest losses occurring in Louisiana (452 million barrels), Texas (387 million barrels), California (66 million barrels), and Kansas (52 million barrels).

According to API, indicated additional reserves from known reservoirs amounted to 5,144.4 million barrels. These are potentially available crude oil reserves in known reservoirs expected to respond to fluid injection and other improved recovery techniques. Most of the indicated additional reserves are in Texas (2,083.3 million barrels), California (1,506.6 million barrels), and New Mexico (319.5 million barrels).

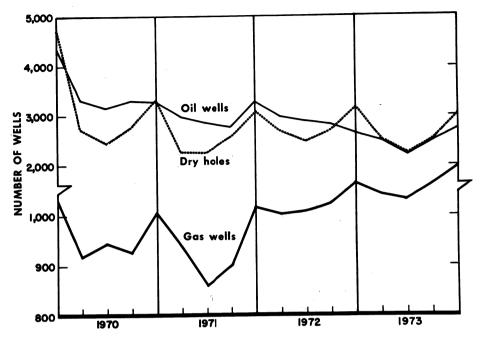



Figure 3.-Wells drilled for oil and gas in the United States, by quarters.

## REFINED PRODUCTS

The Arab embargo enacted in October 1973 came too late to arrest a decided uptrend in oil consumption. As a result, domestic demand in 1973 was 17,254,000 bpd, a new record and 5.4% above the 16,367,000 bpd of 1972. Although crude oil production in 1973 was about 3% below the 1972 level, operable refining capacity expanded impressively from 13,641,000 bpd to 14,362,000 bpd, a net increase of 720,000 bpd, or 5.3%. About one-half of this increase in crude oil capacities occurred in refineries in Texas and Louisiana.

## GASOLINE

Domestic demand for gasoline increased 4.3% in 1973, to 6,672,606 bpd. This rate was relatively high considering the conservation measures taken near the end of the year. During the first 10 months of 1973, demand increased 5.0%, somewhat less than that of the previous year. A factor affecting demand, especially in early 1973, was the building of secondary (unreported) inventories by many retailers, marketers

and bulk consumers in anticipation of summer shortages. As a result stocks at primary (reported) storage terminals were at guarded levels as shown in table 36. In March, these stocks were equivalent to 32 days of demand, compared with 1971 when primary storage facilities held 42 days of demand in storage. Because of the shortages, refiners increased refinery yields of gasoline up to 48.4% of refinery runs in May and June. The previous 3-year average for these months was 45.5%. Ample supplies were available during the summer high-demand period prior to the Arab embargo. Since a greater proportion of automobiles in use have air-emissions-control equipment which reduces miles per gallon, the impact over the previous years' demand was less significant than that of other recent years. During December some service stations curtailed service hours and motorists formed lines at opened stations for restricted quantities of gasoline.

According to data compiled by API based on tax data reported by the States, 6,920,373 bpd of motor gasoline was consumed in the United States in 1973. This differs from demand compiled by the Bureau of Mines, which does not include changes in secondary stocks. At yearend the allocation level for each wholesale purchaser was 100% of requirements for certain priority uses such as energy production, emergency uses, agriculture, and transportation. Other businesses, such as industrial, commercial, governmental and social services agency users, were

to receive 100% of 1972 consumption. There was also a 3% set aside for redirection by Federal Energy Administration (FEA).

Aviation gasoline demand in 1973 continued to decline. But the declining demand curve is leveling off since most air lines and air cargo carriers have completed programs for converting their fleets to jet-powered craft. The 1973 demand of 45,290 bpd was only 2.3% less than that of 1972.

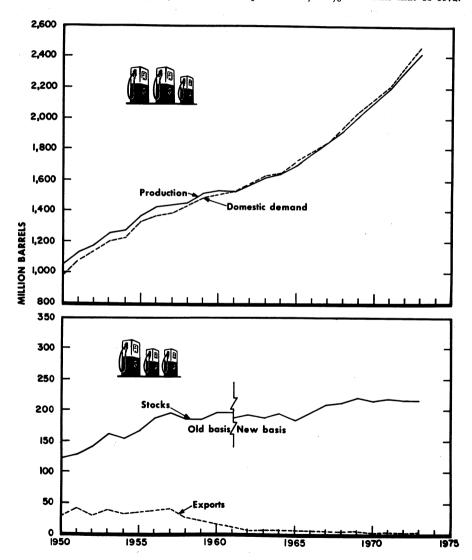



Figure 4.—Production, domestic demand, stocks, and exports of gasoline in the United States.

#### JET FUEL

By far the greatest use of kerosine is in commercial type jet fuel. This product, a kerosine with restrictions on content of aromatics and naphthenes, has a very low freezing point. The drastic cuts in commercial air lines flights, resulting from the Arab embargo on supplies of petroleum products, came too late to have any impact on the demand for commercial (kerosine) type jet fuel in 1973. Demand for this type averaged 833,247 bpd, a 3.5% increase over the volume used in 1972. The demand of 217,000 bpd, however, for naphtha-type jet fuel, used primarily by the military, was off 10.5% as a result of cutbacks in military flying.

Under the allocation program planned at yearend 1973, emergency flight operations and mercy missions were allotted 100% to 150% of 1972 volumes. The rules applied to both jet fuel and aviation gasoline users. Other users were to be curtailed as follows: Domestic air carriers (air lines), 95% of 1972 use; international air carriers, 100%; commercial and industrial users in general aircraft, 90%; military, 100% of requirements; personal pleasure and other, 70%. Bonded jet fuel users were excluded from the allocation program.

## LIQUEFIED GASES, ETHANE, and ETHYLENE

Liquefied gases are derived from two sources. Those produced at refineries are called liquefied refinery gases to distinguish them from liquefied petroleum gases obtained by processing natural gas. The liquefied petroleum gases (LPG) are all parafins (propane, butane, and isobutane). The liquefied refinery gases (LRG) also contain parafins but may also contain unsaturates, that is, the olefins (propylene, butylene, ethylene, etc.). The parafins may be used as fuel including blending with motor gasoline or as feedstock at petrochemical plants. The olefins are used primarily as petrochemical feedstocks.

Demand for ethane (including ethylene) increased a substantial 12.5% in 1973. Use of ethane as petrochemical feedstock raised demand from 290,167 bpd in 1972 to 327,241 bpd in 1973 or an increase of 12.8%.

Domestic demand for LPG and LRG, excluding that blended into other products at refineries or terminals in 1973 was 1,120,866 bpd compared with 1,133,285 bpd in 1972. Nearly 78% of liquefied gas demand

was propane. A series of events that occurred in 1972 led to considerable dislocation of the propane market in 1973. Price controls instituted in July 1972 froze the price that large companies (historic wholesale buyers) could pay for propane. Concomitantly, small companies (those with less than 30 employees) could purchase and sell propane without price constraints. As a result, the large companies found it difficult in early 1973 to bid successfully for propane. Furthermore, major natural gas consumers (industrial firms, electric powerplants, and natural gas utilities), fearing a shortage of natural gas, sought propane as a substitute or standby fuel and were active propane purchasers during the spring and summer. This represented a significant demand for propane and resulted in a major diversion of propane from established markets.

Because of the lower-than-normal midyear inventories and the prospect that commercial and consumers residential would not have adequate supplies during the 1973-74 winter, a mandatory propane allocation program was effected on October 3, 1973. This program was generally successful in that propane was available during the heating season; however, several factors had a moderating impact on demand. These included an unusually warm winter, conservation efforts, and resistance to sharply higher prices.

#### KEROSINE

Demand for kerosine continued to decline, falling 8.1% to 216,205 bpd. The principal use for kerosine was for space heating which represents 77% of domestic demand. Kerosine consumption is expected to continue the downtrend as consumers convert to more convenient forms of energy such as bottled (LPG) gas and electric power.

#### DISTILLATE FUEL OIL

Despite the warmest year in more than a decade, distillate fuel oil demand increased a moderate 5.5%. The heating degree-day average was about 9% warmer than normal. Although about 50% of the demand of 3,080,296 bpd was for heating, most of the gain over the 1972 level resulted from increased use at powerplants as a substitute for natural gas made unavailable and as an alternative for other fuels in areas where

air quality standards restrict the use of high-sulfur content fuels. In some situations distillate fuel oil was used as a blend to reduce the sulfur-content of high-sulfur residual fuel oils. Gains in demand were also significant in the transport and industrial sectors as economic activity improved.

Mild weather, during the early part of the year, eased refinery pressure to maximize distillate fuel oil during the cold months. As a result the percentage yield of distillate fuel oil from the processing of crude oil, especially in March, April, and May were at the lowest levels in more than a decade.

Although stock levels, in terms of days demand, were at alarming low levels in January and February, inventories during the remainder of the year were at or above normal levels.

In October 1973, an Office of Petroleum Allocation was established to govern mandatory allocation of middle distillates including distillate fuel oil. In November it was announced that three categories of distillate fuel oil consumers were given preference in receiving adequate supplies: Farmers-ranchers, mass transit systems, and energy fuel producers.

## RESIDUAL FUEL OIL

Residual fuel oil demand continued to be strong as a result of increasing use by electric utilities. Although some of the gain resulted from its use as a substitute fuel for curtailed supplies of natural gas, much of the increase was at new steam-powered plants and as a substitute for high-sulfur bituminous coal at certain locations. Residual fuel oil was able to fill the new market as the sulfur content continued to decline. The 1,437,250 bpd used by electric utilities accounted for 51% of the 2,794,340 bpd of residual fuel oil demand in 1973.

At refineries, the output of residual fuel oil with a sulfur content of less than 0.5% increased from 22.2% of total output in 1972 to 27.3% or 264,904 bpd. Low-sulfur (less than 0.5%) residual fuel oil imports also increased from 31.9% of total residual fuel oil imports or 555,019 bpd in 1972 to 36.6% or 669,277 bpd in 1973. Most of the increase in low-sulfur residual fuel oil came from Caribbean refineries (Venezuela, Netherlands Antilles, and Trinidad), which had recently installed desulfurization facilities, and from Italy, which refines a high

proportion of low-sulfur North African crude oil.

A large share of the increase in demand was met by drawing on stocks. Throughout the year, stocks (at primary storage facilities) were at levels below all years since 1965 except 1970. At yearend 1973, these stocks were equivalent to 18 days of December demand. Residual fuel oil allocations established at the end of the year allocated 100% of requirements for priority users such as those engaged in energy production, essential commodities, marine shipping, and heating for health services. Industries were to receive 100% of 1973 consumption. Other space-heating consumers were to receive 100% of needs, but based on reductions of inside temperatures of 6° F for residences and 10° F for others.

## ASPHALT AND ROAD OIL

Shipments of asphalt and asphaltic products in the United States in 1973 increased sharply from 31,121,000 short tons to 34,410,000 tons, or 10.6%. Shipments of paving asphalt experienced the sharpest boost increasing to 27,113,000 tons from 24,308,000 tons or 11.5%. Shipments of asphalt for roofing increased but at a slower pace; 6% in 1973 as compared with the spectacular jump of 22.6% in 1972. Production of asphalt in 1973, however, totaled 30,524,000 tons which was only 8% higher than the 28,235,000 tons produced in 1972. Hence it was necessary to make a net draw down on stocks in 1973 of 1,200,000 tons or 30.6%. Imports, likewise, decreased in 1973, from 1,684,000 tons to 1,535,000 tons or 8.9%.

Demand for road oil increased from 7,540,000 barrels in 1972 to 7,832,000 barrels in 1973, or nearly 4%, but production declined so that it was necessary to draw on stocks. These decreased by 38.8% in 1973. Trends in asphalt and road oil demand, as well as other data over a 5-year period, are available in table 48.

## OTHER PRODUCTS

Petrochemical Feedstocks.—In addition to the liquefied gases and ethane supplied from natural gas processing, petroleum refineries supplied the petrochemical industry with 132,564,000 barrels of other feedstocks in 1973. This is an increase of nearly 6.9% over the volume supplied in 1972.

Exports increased 25.4% in 1973 to 5,801,000 barrels as shown in table 49.

Special Naphthas.—Special naphthas are used primarily for paint thinners, cleaning agents, and solvents. In 1973, domestic demand was 32,230,000 barrels, slightly higher than a year earlier when volume was 31,866,000 barrels. Exports increased 9.5% to 1,652,000 barrels.

Lubricants.—Demand for lubricants in domestic markets increased to 59,037,000 barrels or 11.8% in 1973, but these gains were modified by a 14.4% drop in exports, to 12.8 million barrels in 1973 from 14.7 million in 1972. As a result, the gains in overall demand in 1973 were modified to 6%.

Waxes.—Demand for wax strengthened in 1973. Production increased about 10% to 947,500 short tons and imports of wax more than tripled to 149,400 short tons. Exports of wax were lower by 23,100 tons or 14.6% but still sizeable at 135,100 tons, so it became necessary to draw on stocks to satisfy domestic needs. Domestic demand in 1973 was 971,700 short tons or up 28.3%.

The annual survey of wax sales made by the API represents 62% of total wax sales in the United States as reported by the Bureau of Mines. A breakdown of the 1973 annual sales of wax by end use in the United States compared with 1972 and 1971, is shown below in short tons:

| 1971    | 1972                                                        | 1973                                                                                   |
|---------|-------------------------------------------------------------|----------------------------------------------------------------------------------------|
|         |                                                             |                                                                                        |
| 93,660  | 95,678                                                      | 114,655                                                                                |
|         |                                                             |                                                                                        |
| 130.193 | 122,905                                                     | 128,999                                                                                |
|         |                                                             |                                                                                        |
| 71,816  | 78,163                                                      | 70,782                                                                                 |
| 295,669 | 296,746                                                     | 314,436                                                                                |
|         |                                                             |                                                                                        |
|         |                                                             |                                                                                        |
| 85,852  | 103,601                                                     | 106,524                                                                                |
| 180,216 | 196,702                                                     | 180,271                                                                                |
| 561,737 | 597,049                                                     | 601,231                                                                                |
|         | 93,660<br>130,193<br>71,816<br>295,669<br>85,852<br>180,216 | 93,660 95,678<br>130,193 122,905<br>71,816 78,163<br>295,669 296,746<br>85,852 103,601 |

Source: American Petroleum Institute.

Petroleum Coke.—Petroleum coke production aggregated 132,290,000 barrels in 1973, a 10.5% increase over the preceding

year. About 51%, or 67,527,000 barrels was marketable coke. Exports of marketable coke increased to 35,006,000 barrels or about 12.5%. About 26% of petroleum coke exports were destined for Japan, which received some 9,197,000 barrels in 1973, an increase of 10.7% from the 8,305,000 barrels of the preceding year. Canada participated in these increased exports, receiving 771,000 barrels more than in 1972. Exports to Belgium-Luxembourg increased 1,105,000 barrels or 32.7%.

Still Gas.—Still gas is a mixture of extremely low-boiling hydrocarbons produced during the distillation of crude oil, and may be used as refinery fuel and/or as a petrochemical feedstock. During 1973, refineries used 176,758 thousand barrels of still gas as fuel a 3.4% increase from the 170,993 thousand barrels consumed in 1972. Sizeable increases in the use of still gas occurred at refineries in Illinois, Oklahoma, and in Texas during 1973.

Increased use of still gas for refinery fuel had a noticeable impact on the consumption of still gas as petrochemical feed-stock. In 1973, this usage fell to 12,428 thousand barrels or 15% below the 14,678 thousand barrels produced in 1972.

Unfinished Oils.—Unfinished oils are oils that have been partly refined and will be further processed by refiners; examples are unfinished naphtha, gas oil, virgin or straight-run naphtha, topped crude, cracking stock, etc. All of these oils will be further processed by a refinery. The rerun (net of unfinished oils) represents the receipts of domestic or foreign oil plus or minus changes in stocks.

Miscellaneous Finished Oils.—The petroleum industry produces a variety of miscellaneous products that are sold directly to consumers or in bulk to specialty companies which package and distribute them under various trade names. Included in this category would be absorption oils, medicinal oils, insecticides, petrochemicals, and solvents. The domestic demand for these products in 1973 was 19,861,000 barrels.

## TRANSPORTATION AND DISTRIBUTION

#### CRUDE OIL

A transportation system comprising pipelines, tankers, barges, tank cars, and to a lesser degree, tank trucks move crude petro-

leum to refineries for processing. Refineries received 72.9% crude oil requirements by pipeline, 25.8% by water, and 1.3% by tank cars and trucks in 1973.

The 17 States which comprise PAD district I accounted for 38.4% of the domestic demand for petroleum products. Refineries in District I, however, supplied only 16% of the demand. Foreign crude oil made up the lion's share 84%; 13% was from other PAD districts and 3% from within the district. Fifteen Midwestern States comprise PAD district II, the second largest consuming district. However, although a deficit producing and refining area, output of refineries in that district provided 78% of demand in 1973. About 27% of the crude oil processed in refineries in PAD district II was produced in that district, 45% was received from PAD district III, and 8% was from PAD district IV; 20% was imported from foreign sources. Both PAD districts III and IV produced and refined petroleum in excess of their demand requirements and thus helped meet the supply deficits of other districts.

Maps delineating PAD districts and Bureau of Mines refining districts are shown in figure 5.

Refined products produced at refineries in PAD district V in 1973 represented 93% of the domestic product demand for that district. Crude oil produced in District V supplied 57% of refinery input and foreign crude oil 41%; 2% was received from

other PAD districts.

Data collected on receipts of domestic and foreign crude petroleum at refineries in the United States show receipts from local production (intrastate), receipts from other States (interstate), and receipts of imported crude. These data, by method of transportation, indicate the final receipts by water, pipeline, tank car, and truck. Receipts of domestic crude by water usually are moved by pipeline from the point of production to the point of water shipment. These data are shown in table 14.

Total receipts of crude oil at refineries in 1973 were 4,545.8 million barrels, or 12.4 million bpd, an increase of 266.6 million barrels or 730.4 thousand bpd for the year. Receipts from domestic sources, however, decreased 109 million barrels or 298.6 thousand bpd in 1973. Overland receipts of foreign crude oil (from Canada) were 52.9 million barrels higher in 1973 and foreign receipts from overseas sources increased 322.8 million barrels or 882.2 thousand bpd.

More foreign overseas crude oil entered refineries in all PAD districts in 1973 because domestic crude oil was in short supply. Refineries processed 4,537.3 million barrels of crude oil in 1973, reported a net of 1.9 million barrels used for refinery fuel and as losses, and added 6.6 million barrels to stocks as shown in table 34

#### REFINED PRODUCTS

Domestic demand for petroleum products averaged 17,254,000 bpd in 1973, a gain of 5.4% above the 16,367,000 bpd for 1972. The demand broken down by PAD districts is as follows: District I, 6,628,000; district II, 4,649,000; district IV, 2,324,000.

PAD district I imported an average of 2,358,000 bpd of refined petroleum products in 1973, and received 2,815,000 bpd from other districts. Shipments from PAD district I to PAD district II averaged 165,000 bpd, and 17,000 bpd of petroleum products were exported. PAD district II received an average of 857,000 bpd of refined products from other districts and imported 80,000. The district shipped 63,000 bpd to PAD district I and 73,000 bpd to PAD district II. District II also exported 9,000 bpd.

PAD district III shipped an average of 2,749,000 bpd of refined products to PAD district I, 670,500 bpd to district II, 30,000 bpd to district V. PAD district III also exported 103,000 bpd. The district received 73,000 bpd of refined products from district II and imported 123,000 bpd from foreign sources.

As compared with 1972 figures, imports of refined products from foreign sources almost tripled in 1973.

PAD district IV shipped an average of 93,000 bpd of refined petroleum products to other districts and received 55,000 bpd from other districts. District IV also imported 17,000 bpd.

PAD district V received an average of 66,000 bpd of refined products from PAD district III and 61,000 bpd from district IV. They also imported 140,000 bpd. District V shipped 3,000 bpd to PAD district I and 25,000 bpd to PAD district IV. Also, 100,000 bpd of refined products were exported from district V.

## **PIPELINES**

The Bureau of Mines triennial pipeline survey covered pipeline statistics as of January 1, 1971, and the next survey will not be available until 1975. Meanwhile, Pipeline and Underground Utilities, a construc-

tion trade publication, estimates that 598 miles of crude oil lines were laid in 1973 as compared with 361 miles in 1972.

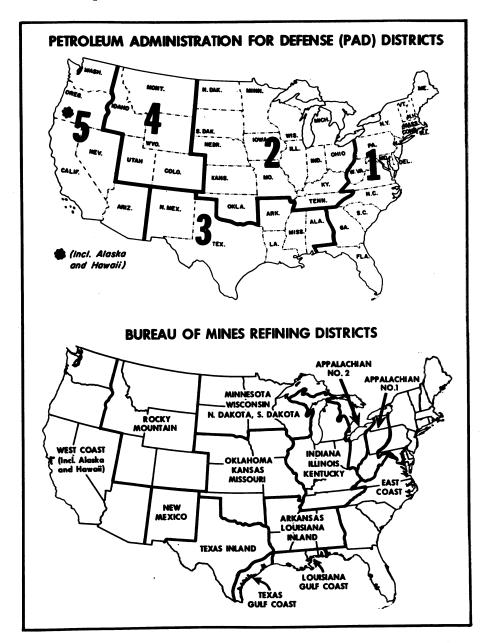



Figure 5.-Maps of Petroleum Administration for Defense (PAD) Districts, and Bureau of Mines Refining Districts.

Crude oil pipelines delivered 3,313.7 million barrels to refineries or 9,078,000 bpd in 1973, a slight increase over the 3,281.6 million barrels or 8,966,000 bpd in 1972, as indicated in table 14. Petroleum product pipelines delivered 3,204.9 million barrels or an average of 8,780,000 bpd in 1973, as compared with 2,967.9 million barrels or 8,109,000 bpd in 1972.

## RAIL, TANK TRUCK, BARGE AND TANKERS

The annual survey of the Association of Oil Pipelines estimates that the total tonnage of crude and petroleum products carried was 1.8 billion short tons in 1972. Of this total, 47.53% was transported by pipe-

lines, 23.14% by water carriers, 27.86% by motor carriers, and 1.47% by railroads. On an overall basis, volumes transported in 1972 were 7% greater than those in 1971. Petroleum products accounted for 65% of the volumes transported.

Product pipelines transport only the light products such as gasoline, light fuel oils and heating oils, liquid petroleum gas, kerosine, and jet fuel. These lines transported 1,199,710,500 short tons or 32.39% of the total. Motor carriers transported 462,500,000 or 38.55% of the petroleum products carried. In terms of billions of ton miles, the total aggregated 480.5 of which 40.5% was transported by pipelines and 52.9% by water carriers.

## **STOCKS**

Stocks of all oils have been increasing steadily after touching a low point of 866.9 million barrels in February 1973. This inventory position was the lowest since February 1968, and close to the stock levels during the period when the 1967 Arab-Israeli conflict cut off imports from the Mideast. By the end of 1973, stocks of all oils had recovered to 1,008.3 million barrels or an increase of 49.3 million barrels over the inventory position at the end of 1972. Stocks of refined products were 47.1 million barrels higher at yearend 1973, and the improvement in the stock position in distillate

accounted for 89.5% of the gains. Crude oil stocks shrunk from 279.5 million barrels in May of 1972 to a 7-year low of 235.4 million barrels in February 1973. Subsequently, there was some improvement in crude oil supplies throughout most of 1973, but a very sharp drop in crude oil imports in December caused stocks of crude to shrink to the lowest yearend levels since 1966. A drop in domestic production from 9.4 million barrels daily in 1972 to 9.2 million bpd in 1973, was also a contributing factor to the drop in stocks.

#### **PRICES**

Crude Oil.—As a result of the embargo by Arab nations of oil shipments to the United States, coupled with sharp rises in prices adopted by the Organization of Petroleum Exporting Countries (OPEC), there were large increases in crude oil and refined products prices in 1973. The uptrend continued in 1974. Six oil-producing countries in the Middle East announced in late December 1973 that they were more than doubling the price of crude oil to \$11.651 cents per barrel from \$5.11, effective the beginning of the new year. This was the second sharp increase since the price was raised from \$3.01 per barrel to \$5.11 or nearly 70% in October 1973.

On the domestic scene, the average price of crude oil at the wellhead, which was \$3.39 per barrel in 1971 held at that level through 1972. However, in March 1973, the

Cost of Living Council (CLC) granted an increase of \$0.25 per barrel lifting the price to \$3.64 per barrel. On May 15, 1973, the CLC allowed another \$0.35 increase. Under phase 4 petroleum regulations, the ceiling price for crude oil was the posted price in each U.S. oilfield plus \$0.35 per barrel. The average 1973 price was \$3.89 per barrel, according to the Bureau of Mines.

On August 17, 1973, in an effort to stimulate production of domestic crude oil, the CLC enacted under phase 4 Oil Regulations a two-tier pricing system, releasing from ceiling prices "new oil", that is, oil produced above 1972 levels, plus an adjustment for the remainder of current production. The price of new oil produced, which was not covered by the price ceiling, rose steadily to market levels. The ceiling

price for domestic crude was about \$1 per barrel below the world price at the time phase 4 rules were issued on August 17. Since then, however, world prices have increased sharply and so have prices for new oil or exempt oil, that is, oil exempt from price controls. What constitutes "exempt oil" was broadened as of November 16, 1973, when the CLC exempted prices charged for the first sale of crude petroleum and petroleum condensates, including natural gas liquids produced from any stripper well lease. A "stripper well lease" is defined as a property 5 whose average daily production of crude petroleum, condensates, etc. did not exceed 10 barrels per day during the preceding calendar month.

The impact of exemption on new oil prices was felt almost immediately. Between October 30 and November 30, the price of new or exempt oil rose from an average \$5.61 per barrel to \$7.85, a jump of 40%. Between August 19 and the end of 1973, the price of new or exempt oil has more than doubled—from \$4.05 to \$8.70 per barrel and the trend has been upward since then. The prices for old oil, likewise,

have been adjusted upward—from \$4.05 on August 19, 1973, to \$5.10 per barrel for an increase of 25.9% by the end of 1973. A comparison of 1972 prices with 1973 prices of various grades of crude oil is shown in table 28.

Refined Products.-With few exceptions, prices of most refined products in 1973 held close to the 1972 levels throughout the first 9 months. But when most of the OPEC nations raised crude oil prices 70% it was imperative for the CLC to act. In October 1973, the CLC drafted up new regulations. Price controls on refined products were eased under phase 4 to permit refiners, in part at least to pass-through increased costs on gasoline, home heating oil, and diesel fuels. Shown in the following tabulation (in dollars per 100 gallons) are some comparisons of prices in selected cities of No. 2 home heating oil between 1971 and 1973. Data for January 1974 are included to indicate the impact of the pass-through policy on retail prices.

<sup>&</sup>lt;sup>5</sup> Definitions of "stripper wells" and "property" are available in detail in Title 6 Economic Stabilization, Section 150.54 of the Code of Federal Regulations.

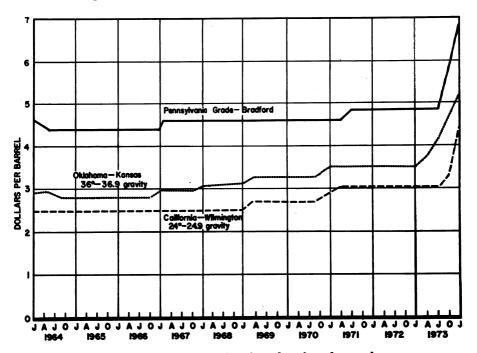



Figure 6.-Posted prices of selected grades of crude petroleum.

| Standard          | Decem-  | Decem-  | Decem-  | Janu-   |
|-------------------|---------|---------|---------|---------|
| metropolitan      | ber     | ber     | ber     | ary     |
| statistical areas | 1971    | 1972    | 1973    | 1974    |
| United States     |         |         |         |         |
| Average           | \$19.63 | \$19.72 | \$22.75 | \$32.89 |
| Baltimore         | 19.23   | 19.33   | 26.64   | 31.18   |
| Boston            | 20.47   | 20.40   | 30.44   | 32.90   |
| Chicago-NW        |         |         | 00.44   | 34.30   |
| Indiana           | 18.42   | 18.66   | 27.01   | 31.66   |
| Detroit           | 18.62   | 18.62   | 25.14   | 30.35   |
| Milwaukee         | 18.85   | 18.93   | 27.85   | 31.23   |
| Minneapolis-      | 10.00   | 10.55   | 41.00   | 31.23   |
| St. Paul          | 18.17   | 18.06   | 26.42   | 34.74   |
| New York-NE       | 10.11   | 10.00   | 20.42   | 34.74   |
| New Jersey _      | 20.32   | 20.40   | 33.41   | 90.00   |
| Philadelphia      | 18.91   | 19.23   |         | 36.90   |
| St. Louis         |         |         | 26.27   | 31.30   |
| Washington,       | 19.25   | 19.49   | 26.53   | 33.72   |
|                   |         |         |         |         |
| D.C               | 19.73   | 19.78   | 29.95   | 33.30   |
| Seattle           | 22.09   | 22.17   | 27.28   | 33.50   |

Source: Bureau of Labor Statistics.

Residual Fuel Oil Prices.—The price of Bunker "C" fuel oil at New York Harbor was depressed throughout 1972 but demand for tankers quickened and fuel oil prices stiffened. From \$3.45 a barrel at the end of 1972, prices for Bunker "C" climbed steadily reaching \$5.42 per barrel, a year to year increase of \$1.97 or nearly 57%. The long-term trend of Bunker "C" prices 1964–73 inclusive is shown in figure 7.

Prices of gasoline in 1973 did not begin to rise until after OPEC action on crude in October, but from then on the climb was rapid. The average service station price of regular grade gasoline including taxes was 38.71 cents per gallon as of September 1. By December 1, the price had risen to 42.26 cents or 9% according to Platt's Oil Price Handbook and Oilmanac 1973.

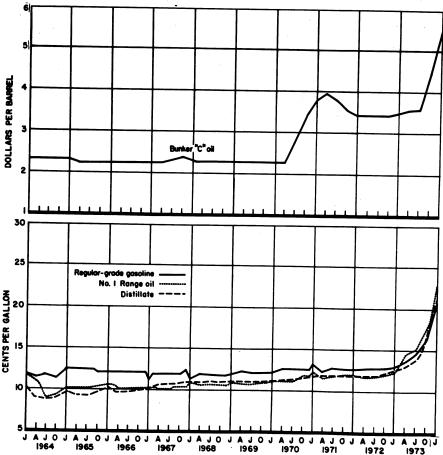



Figure 7.-Quarterly prices of Bunker "C" and No. 2 Distillate Fuel at New York Harbor; No. 1 Range oil at Chicago district, and regular grade gasoline at refineries in Oklahoma.

## **FOREIGN TRADE**

Imports of crude oil and refined products aggregated 2,263.5 million barrels or 6.2 million bpd in 1973 for an overall 30.4% increase. The largest gain was in crude oil imports—372.9 million barrels, or 1.02 million bpd for a 46% increase. Imports of refined products were about 155.3 million barrels higher or 17% above 1973.

Crude oil imports totaled nearly 1,184 million barrels or 3.24 million bpd, and about 1 million bpd or 31% came from Canada as shown in table 58. Venezuela supplied 125.7 million barrels, or nearly one-fourth of the oil imported from Western Hemisphere countries. From the East-Hemisphere, nearly 651.8 million barrels or 55% of crude oil imports were obtained. Saudi Arabia supplied 168.5 million barrels, nearly all of which was received in the 10 months through October 1973. Nigeria supplied nearly as much (163.7 million barrels) of crude imports as Saudi Arabia. Refined product imports aggregated 1,079.5 million barrels or 2.96 million bpd, of which 34.4% of all products imported was residual fuel oil from Venezuela and the Netherlands Antilles. Distillate fuel oil imports in 1973 were more than double the volume received in 1972, reflecting the cessation of mandatory import controls. Distillate fuel oil imports from Central America and the Caribbean areas were almost double the 1972 volumes and most of the increases in 1973 originated in the Netherlands Antilles and the Virgin Islands. Imports of distillate from Europe increased almost fivefold, and exceeded those from South America by about 10 million barrels. Most of these increases originated in Italy and the Netherlands. Imports of motor gasoline nearly doubled with most of the increased supply originating in Canada, the Netherlands Antilles, Venezuela and the Virgin Islands. Europe became an important supplier of gasoline in 1973, and 1,122,000 barrels were imported from Turkey in 1973. Other comparisons of 1972 and 1973 imports are available in table 58. Included in the totals for imports of refined products were 3,076,000 barrels of jet fuels, 5,161,000 barrels of distillate fuel oil, and 43,447,000 barrels of residual fuel oil, which were withdrawn from bond for use as fuel for aircraft and vessels engaged in overseas commerce. These imports were exempted from tariff duties. Residual fuel oil imported by the military for offshore use in 1973 totaled 3,350,000 barrels or 33.5% less than the volume used in 1972.

Exports of refined products and crude oil in 1973 were up 2.8 million barrels, or 3.5% as shipments of gasoline, commercial type jet fuel, distillate fuel oil, and coke more than offset a drop in exports of lique-fied petroleum gases, residual fuel oil, lubricants, and waxes. Coke accounts for 41.6% of exports from the United States and nearly one-half of this product was destined for Canada, Belgium, Italy, the Netherlands, and West Germany. Japan, however, was the largest single user of coke from the United States, accounting for more than 9 million barrels or nearly one-fourth of all the petroleum coke exported.

The tanker market in most of 1973 continued the uptrend which had begun in mid-1972. The single charter (spot) tanker market for dirty cargoes destined from Persian Gulf to U.S. Gulf climbed steadily and reached a high of 455 Worldscale or \$48.96 per long ton, in mid-October 1973, the same month the Arab Embargo began. The impact of the embargo was immediate and demand for tankers shrunk drastically. As a result, the Worldscale tanker rate plummeted to 100, or to \$10.68 per long ton in November. The rate then leveled off and by the end of 1973, Worldscale was at 110 or \$11.75 per ton. Demand for tankers has since moderated and tanker rates resumed the decline. Average tanker costs, it should be noted, move slowly since they include charters running about 3 years. Also, much of the shipping moves in company-owned vessels.

## **NATIVE ASPHALT**

Bituminous Limestone, Sandstone, and Gilsonite.—Natural rock asphalt and limestone rock asphalt were produced in Alabama, Missouri, and Texas and were used for road building material. Gilsonite was produced in Utah, and most was shipped to

a refinery in Colorado and converted into petroleum products. The total production of native asphalts and related bitumens in 1973 was 2,088,657 short tons with a value of \$8,464,000.

## **WORLD REVIEW**

The outbreak of Arab-Israeli hostilities on October 6, 1973 created repercussions in world oil supplies. Production cutbacks among Arab producers and Arab embargoes on deliveries to the United States and the Netherlands converted Arab oil into an economic and political weapon.

Many developments in 1972 and early 1973 set an uneasy stage for the yearend crisis. Nationalization of foreign oil company holdings in Algeria, Iraq, Iran, Libya, and Nigeria and a multitude of participation agreements between state-owned companies and foreign operators caused a disruption in normal trading relations and resulted in higher market prices. Revision of the February 1971 Tehran agreement, which provided increases in posted prices through 1975, was under renegotiation in early October. However, by mid-October, negotiations were abandoned and the Persian Gulf States' governments chose to fix prices unilaterally. Libya and Nigeria soon joined the Persian Gulf States in this policy. The initial increases averaged 70%; however on January 1, 1974, posted prices were further raised to double the October 16 levels. Thus, the 1973 Saudi Arabian crude posted price opened at \$2.591 per barrel, increasing to \$3.011 per barrel by October 1, and increasing to \$5.119 per barrel on October 16. The posted price for Saudi Arabian crude on January 1, 1974, was \$11.651 per barrel.

The decision for a production cutback was reached in Kuwait on October 17 by the Organization of Arab Petroleum Exporting Countries (OAPEC). Most participants agreed to cut production by 5% (about 1 million bpd) from September production levels and by a further 5% each month until an Israeli "withdrawal is completed from all Arab territories occupied since June 1967 and that legal rights of Palestinians be restored." Military activities resulted in reduced Arabian crude exports even before the OAPEC meeting cutback decision. About 1/2 million barrels per day of crude had been cut from world markets when the Syrian ports of Baniyas and Tartus were closed because of war damages. A market loss averaging nearly another 1/2 million barrels per day was realized because hostilities delayed tanker loadings at Mediterranean terminals and Saudi Arabian crude flow through TAPline was reduced to minimize loss in the event of damage.

Crude imports from Arab nations constitute as much as 85% of European demand and 78% of Japanese demand, forcing these as well as all consuming nations to launch emergency petroleum conservation measures.

Although supply shortages and skyrocketing prices had serious effect on the economies of major consuming nations, the developing nations were especially hard hit since their foreign exchange reserves could not absorb higher energy prices placing their development in jeopardy.

Production.—World crude oil production increased by 10.5% over the 1972 level reaching an average production of 56.3 million bpd including an estimated 8.4 million bpd recovered from offshore operations. The United States remained the leading producer followed by the Soviet Union, Saudi Arabia, and Iran.

In spite of production cutbacks, output from the 12 Middle Eastern nations increased from 18.1 million bpd in 1972 to 21.7 million bpd or about 38% of total world crude production in 1973. Output from Saudi Arabia alone increased from 6.0 million bpd to 7.9 million bpd.

The three largest producing nations of North America contributed about 20% of total world crude output in 1973, or about 11.5 million bpd. Production increased in Canada and Mexico, offsetting most of the production decline in the United States.

Crude Oil Movements.—Crude oil movements to the major consuming markets of Western Europe, Japan, and the United States totaled more than 22 million bpd in 1973. European crude imports nearing an average of 14 million bpd were largely supplied by Middle Eastern countries, which provided 9.2 million bpd, an increase of 8.5 million bpd over 1972 levels. Saudi Arabia alone accounted for 3.6 million bpd up from 3.1 million bpd in 1972. Imports from Africa were estimated at 3.9 million bpd. About two-thirds of all African imports originated in Libya and Nigeria.

Japanese crude imports totaled 4.9 million barrels in 1973 up from 4.0 million barrels in the previous year. More than three-quarters of crude imports were obtained from the Middle East with Iran

## 1973 - 20.56 BILLION BARRELS

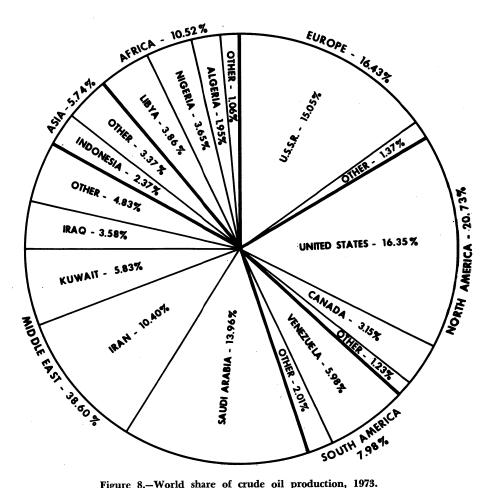



Figure 8.-World share of crude oil production, 1973.

as the major supplier accounting for 1.7 million bpd as compared to 1.6 million bpd in 1972. Crude imports from the neighboring People's Republic of China were inaugurated in 1973. Crude imports from China's Ta-ching field averaged nearly 20,000 bpd in 1973; the volume is expected to increase to 60,000 bpd or better in 1974.

The United States imported 3.2 million bpd in 1973. Canada supplied more than a million bpd, Saudi Arabia, about 462,000 bpd, and Nigeria, 448,000 bpd.

Transportation.—Excluding 37 million deadweight tons in combined carriers, the world tanker fleet at yearend 1973 totaled 220 million deadweight tons, an increase of more than 26% over 1972. About 59 million deadweight tons sail under the Liberian flag, 28 million deadweight tons sail under the United Kingdom flag, about 27 million deadweight tons sail under the Japanese flag, and about 21 million deadweight tons sail under the Norwegian flag. Tankers between 200,000 and 285,000 deadweight tons in size constitute 36% of the total tanker fleet, and tankers of 65 to 125 deadweight tons in size constitute 19% of the total tanker fleet.

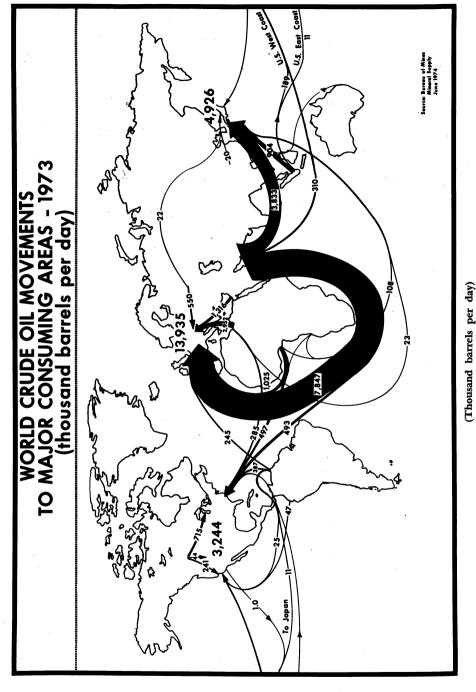



Figure 9.—World crude oil movements to major consuming areas, 1973.

Voyages from the Middle East occupied an estimated 75% of the oceangoing fleet. Voyages from the Middle East to Europe and Japan alone occupied about 60% of the total oceangoing fleet.

At yearend, 21 cryogenic ships were in service for the transport of liquid natural gas. Combined capacity totaled 867,000 cubic meters. Liquid petroleum gas vessels numbered 379 with a total carrying capacity of 2.4 million cubic meters.

Refinery Capacity.—Total crude refinery capacity at yearend was estimated at 64.8 million bpd, an increase of 4.95 million bpd over 1972 capacity levels. The Eastern Hemisphere, containing the major refining centers of Europe, the U.S.S.R., and Japan, accounted for nearly 64% of total world refining capacity or 41.4 million bpd. Refining capacity in the Western Hemisphere totaled 23.4 million bpd. Refining capacity in the United States was 14.5 million bpd followed by Canada at 1.8 million bpd.

Consumption.—World petroleum consumption reached 57.6 million bpd in 1973. Petroleum consumption in the Eastern Hemisphere was estimated at 35.2 million bpd representing an increase of about 12% over the previous year's level. Petroleum consumption in the Western Hemisphere totaled 22.4 million bpd representing an increase of nearly 8% over the 1972 level.

Although total world petroleum consumption increased by less than 12% between 1972 and 1973, several Eastern Hemisphere nations reflected higher percentage increases for the period. These included Spain at 15%, and Japan at 12%.

Algeria.—A slow down in exploration and development programs after the 1971 nationalization as well as the adoption of conservation measures at older fields resulted in a crude production below 1973 anticipated levels. By midyear the Algerian state oil company Société Nationale pour la Recherche, la Production, la Transport, la Transformation, et la Commercialisation des Hydrocarbures (SONATRACH) as well as several minor operators claimed they were over committed in crude exports. Crude exports for the year averaged 945,000 bpd, a decline from the 1972 average of 978,000 bpd. Exploration activities should be intensified as a result of several joint venture agreements signed by SONA-TRACH with Sun Oil Co. with Compagnie Française des Pétroles, with Hispánica de Petróleos, S.A., with Deutsche Erdölversorgungsgesellschaft mbH and with Société Nationale des Pétroles d'Aquitaine.

Total refining capacity is reported at 115,000 bpd; however, plans for construction of a 175,000 bpd refinery at Skikda were announced.

Austria.—The State company Österreichische Mineral-ölverwaltung, A.G. (ÖMv) reportedly discovered oil and gas deposits near Vienna and at Roseldorf. The discoveries are being studied for commercial potential.

ÖMv produced 82% of total oil output in Austria in 1973 or 40,400 barrels per day. About 175,000 bpd of Austrian and imported crude was processed at the ÖMv refinery at Schwechat. The refinery is to be expanded from present capacity of 210,000 bpd to 280,000 bpd by yearend 1974, satisfying the nation's total product requirements by 1975. A 40,000 bpd products pipeline from the Schwechat refinery to Wels is planned, with completion scheduled for 1975.

Bolivia.—During the year, the stateowned Yacimientos Petrolíferos Fiscales Bolivianos (YPFB) entered into seven operational contracts with foreign companies, mostly American. Each contractor is to finance and undertake exploration of a block of approximately 2.5 million acres. If a block is productive, one-half of the concession reverts to YPFB. The discovery of the Caigua field raised Bolivia's proven reserves to 177 million barrels by yearend 1973. Accelerated exploration launched during the year should preciably augment the nation's petroleum reserves.

In May, YPFB signed service contracts with Universal Oil Products Co., Foster Wheeler Corp., and Lybrand Ross Bros. for expansion of the capacity of the Gualberto Villarrael refinery from 10,000 to 20,000 bpd as well as the construction of a lubricant plant, and expansion of the capacity of the Santa Cruz Refinery from 3,000 to 12,000 bpd.

Expansion plans would raise Bolivian refining capacity to 35,000 bpd. During 1973, a total of 15,160 bpd of crude petroleum was processed in Bolivia's seven refineries.

China, People's Republic of.—Crude production continued to increase sharply, with the bulk of output derived from the north and northeast provinces. China's principal field is Ta-ching, located in the Heilung-

## DAILY PETROLEUM DEMAND 57.6 MILLION BARRELS

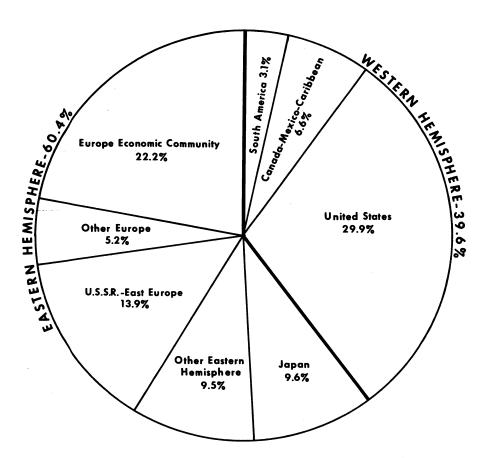



Figure 10.-Daily petroleum demand, 57.6 million barrels.

kiang Province. More than a quarter of the nation's entire output is derived from this field. Pipeline facilities connecting Ta-ching with ports along the Gulf of Liaotung were under consideration and several reports indicated that construction of at least one section had begun during the year. Petroleum storage and shipping facilities were under expansion during 1973 to accommodate increased crude exports. China's petroleum crude and product exports had been directed to North Korea and North Vietnam; however, in early 1973, crude exports to Japan were inaugurated at an average level of 20,000 bpd. By 1974, crude exports

to Japan should reach an average of 60,000 bpd or more.

Offshore drilling in the Gulf of Pohai has apparently proved successful. Chinese authorities expressed interest in laying a submarine pipeline from probable fields in the gulf to onshore port facilities.

Refining capacity has historically balanced crude production capacity; however, recent drilling and field development activity have escalated China's crude production beyond refining capacity, and increased crude exports are indicated for the immediate future.

Although primary crude refining re-

flected only limited growth in 1973, strong activity was reported in the development of the petrochemical industry. Mitsubishi Petrochemical Ltd. (Japan) has received a contract for construction of a 12,000-tonper-year ethylene plant. Asahi Chemical Industry Co., Ltd. (Japan) will construct a 50,000-ton-per-year acrylonitrile plant utilizing the Standard Oil Co. of Ohio licensed process. Ishikawajima-Harima Heavy Industries Co., Ltd. (Japan) received a contract for construction of a 180,000-ton-per-year low-density polyethylene unit, and a 80,000ton-per-year polypropylene unit is to be constructed by Mitsui & Co., C. Itoh, and Kosho Corp. (Japan). Other petrochemical plant contracts were awarded to Technip and Speichim (France), Friedrich Uhde GmbH (West Germany), and Kellogg Continental BV (Netherlands). Completion dates for all plants were scheduled for 1976-77.

Colombia.—Production of crude oil decreased by 6.7% as a result of conservation measures adopted in view of declining reserves. Reserve figures released by the oil ministry were reported at 900 million barrels in 1973. Petroleum exports were to discontinue after 1973 and by 1975-76 Colombia may reverse its role and become a net importer of petroleum.

Drilling activities continued at the Guajira Basin, the Maracaibo Basin, the Llonos Basin, and the Magdalena Basin. Oil was discovered in the Magdalena Basin at a depth of 5,814 feet. The (Tennecol) Tenneco Colombia, Inc. well tested at 675 bpd on a ½-inch choke.

Egypt, Arab Republic of.—Although crude production continued to decline, this trend should be reversed in the near future. Accelerated exploration, field development and secondary recovery operations support the forecast of production levels of 1 million barrels per day by 1980.

The Egyptian General Petroleum Co. (EGPC) issued a series of concession contracts to a number of foreign companies during 1973. Some of the larger concessions included a 18,000-square-kilometer tract in the Nile Valley and Western Desert awarded to Petróleo Brasileiro Internacional, S.A.; a 15,000-square-kilometer offshore tract in the Mediterranean east of Alexandria awarded to Exxon, Egypt, (United States); and a 14,000-square-kilometer tract in the Nile Delta awarded to Continental Oil Co. (United States). Near yearend, the Soviet

Union relinquished a 45,000-square-kilometer concession near the Siwa Oasis on the Libyan border. The concession may be reoffered in 1974.

The Gulf of Suez Petroleum Co. (GUPCO) reported a discovery 11 miles northwest of El Morgan field. The new discovery, the "July" field, tested at 5,280 bpd of 32° API crude oil through a 3/s-inch choke. Oil reserves of the 6-square-mile structure were estimated at 300 million barrels. Production at a 30,000 bpd rate is scheduled for early 1974 with expansion to 100,000 or 150,000 bpd by yearend 1974.

A second discovery was reported in 1973. Located offshore near Ras Gharib, the field's initial yields are expected at 50,000 bpd with a potential of 350,000 bpd upon full development.

During 1973, a waterflood pressure maintenance project was under development in the El Morgan field, Egypt's largest producer, with reserves estimated at 1.2 billion barrels. The project operations include the injection of 300,000 to 400,000 bpd of desalinated water from the Gulf of Suez. The cost of the El Morgan waterflood project is more than \$30 million; however, a recovery of an estimated additional 1 billion barrels will be realized as a result.

Prior to the October War, Egypt had built up to a 174,400 bpd crude distillation capacity. The Suez Oil Processing Co. began refining operations at the rate of 7,400 bpd at the newly constructed 14,600 bpd capacity Tanta petroleum refinery in the Nile Delta. The refinery is served by a 112 mile crude pipeline from Suez and a 55 mile products line connecting the refinery to the Musturud storage and distribution area near Cairo. The crude and products pipelines each have a capacity of 40,000 bpd.

During 1973 construction of a 250,000 bpd export refinery was under consideration by the Board of Foreign Investment Authority. The refinery is to be built in the Alexandria free port area at a cost of \$400 million. Saudi Arabian and other Persian Gulf crudes will supply the refinery via the proposed Suez-Mediterranean pipeline (Sumed). Refinery products will be marketed in Western Europe.

Contracts for the Sumed line were under negotiation during the year. Bechtel Corp. (United States) signed a preliminary contract for construction of the 210-mile trunk-

line. At yearend, the Gulf of Suez-Mediterranean Petroleum Pipeline Co. was formed to finance and operate the Sumed pipeline. Construction was to begin in 1974 with the first stage completed in 2 years with an annual throughput capacity of 800,000 bpd through a 42-inch-diameter pipeline. The second stage includes a parallel line to be completed within 6 months of the first stage completion, raising daily throughput capacity to 1.6 million bpd. Additional pump stations and expanded terminal facilities will be required to reach the lines maximum throughput capacity of 2.4 million bpd. During 1973, oil transit agreements were signed with 13 foreign oil companies for a combined 1.67 million bpd of oil shipments via the Sumed pipeline.

Plans to restore the Suez Canal were underway in 1973, with a government allocation of \$37.5 million for clearing mines, sunken ships, and bridging. At the time of the closure in 1967, the canal's draught was 38 feet. Deepening the canal to a depth of 70 feet was being considered.

France.—Domestic crude production averaged 0.025 million barrels per day while crude imports averaged 2.7 million barrels per day. Nearly half of total French crude imports are obtained from Saudi Arabia, Iraq, and Kuwait. In a concentrated effort to diversify crude sources, French companies have obtained a variety of concession areas throughout the globe. New concessions obtained in 1973 included areas in North Sea, off the Italian Coast, in Spain, Canada, Peru, and in Colombia. Exploration in France itself is concentrated in the Aquitaine area. Several discoveries were reported in 1973 in the Aquitaine region, in the North Sea, and in Canada.

Crude oil supplies controlled by foreign operations of French companies accounted for  $\frac{2}{3}$  of crude imports in 1973.

Refinery expansion activities at Fos, Frontigen, Feysin and Donges resulted in nearly a 6% increase in the nation's refining capacity bringing total capacity to 3.2 million bpd in 1973.

Indonesia.—Extensive exploration and development activity continued in 1973, with expenditures estimated at \$400 million. Extension and development wells drilled during the year totaled 449. Two hundred exploratory wells were completed, achieving a 1:4 success ratio with the discovery of 50 wells including 28 oil wells, 19 gas wells, and 3 oil and gas wells.

Petroleum production continued to climb, averaging better than 1.3 million bpd in 1973 as compared with 0.9 million bpd in 1970. The bulk of crude output or 0.96 million bpd is recovered by P.T. Caltex Pacific Indonesia (CPI) under a production contract with the state-owned oil company, Pertamina. The production contract calls for a 65% to 35% production ownership in favor of Pertamina.

About three-fourths of Indonesia's crude production is exported, with Japan as the major market receiving 740,000 bpd in 1973. During 1973, eight refineries were in operation with a total capacity of 424,000 bpd. By yearend, construction of a ninth refinery was underway. Constructed by Fluor Engineers & Constructors, Inc., and financed by a \$120 million loan from the U.S. Export-Import Bank, the 100,000 bpd Cilacap refinery on the southern coast of Java should be completed by 1976. The refinery will use Persian Gulf crude as feedstock to meet domestic markets for such products as asphalt and lubricants.

Domestic consumption of petroleum products was reported at 170,000 bpd in 1973. The product consumption pattern was 40% kerosine, 25% diesel fuel, 20% gasoline, and 15% other products.

Iran.—In March, Iran assumed ownership and control of all oil installations in the country. The Iranian Oil Participants, Ltd. (IOP) (the Consortium), the largest concessionaire was disbanded but participants were guaranteed supplies of oil for a 20-year period in ratio to their former ownership in IOP. IOP members formed a nonprofit service company, Oil Services Co. of Iran (OSCO), to assist the National Iranian Oil Co. (NIOC) in operations for an initial 5-year period. Production from the former consortium area averaged 5.4 million bpd representing 92% of Iran's crude output in 1973.

Iranian refining operations produced above their designed capacity in 1973. The 40,000 bpd Shiraz refinery was inaugurated in mid-November. Throughput at Shiraz totaled 2.6 million barrels by yearend. Abadan reported an annual throughput of 158.3 million barrels, the Tehran refinery throughput was 34.9 million barrels, the Kermanshah refinery throughput was 6.2 million barrels and a 12.3 million barrel throughput was reported in the topping plant. Expansion of the Tehran refinery to 125,000 bpd was underway as was con-

struction of a second Tehran refinery of 100,000 bpd capacity. Plans were announced for a 100,000 bpd refinery at Isfahan and 130,000 bpd refinery at Neka. The Abadan refinery is to be expanded from 430,000 bpd to 550,000 bpd. Thus, becoming the largest refinery in the world.

Israel.—Israel's second refinery came on stream during the year. The 70,000 bpd refinery at Ashdod brings Israeli refining capacity to well over 200,000 bpd.

Capacity of the Trans-Israeli pipeline (Tipline) was reportedly increased to 900,000 bpd, before the October outbreak of hostilities. The 42-inch line runs 160 miles between the Port of Aqaba on the Red Sea and the port of Ashkelon on the Mediterranean Sea. The eventual capacity of Tipline is projected at 1.2 million bpd.

Italy.—Domestic crude production was limited averaging 19,403 bpd in 1973. Exploration activities continued with several offshore concessions granted in the Sicilian Channel, the Tyrrhenian Sea and in the Adriatic Sea during 1973. Exploratory well completions for the year totaled 63, down from 77 completions reported in 1972.

Italian refining capacity nearing 3.9 million bpd is the largest in Western Europe; however, refineries operated at 3/3 capacity during the year. Major refining operations reported significant losses as a result of prolonged price freezes on petroleum products. British Petroleum Co. sold its 73,000 bpd Volpiano refinery, and more than 3,000 retail outlets along with related transport and distribution equipment to Oil Chemicals and Transport Finance Corp. (Italy). Shell Italiana. S.p.A. sold the 115,-000-barrel-per-day-capacity La Spezia refinery, the 100,000 bpd Taranto refinery and the 50,000 bpd Rho refinery along with 4,860 retail outlets and related transportation and distribution equipment to Azienda Generale Italiana Petroli (AGIP).

Price increases for most petroleum products were authorized on September 30. Pump prices were raised by 14 cents to \$1.09 and \$1.15 per gallon for standard and premium gasoline respectively. Much of the increase was absorbed by an increased manufacturing tax of 10 cents.

Japan.—Domestic production of crude oil has been very limited, ranging from 14,000 to 15,500 bpd in the last decade and peaking in 1970 at 15,500 bpd. Production is derived from fields in the Niigata and Yamagata areas of Honshu Island and

from fields near Shiratsukari on Hokkaido Island. A commercial field in the Sea of Japan off Niigata was confirmed and production is scheduled for 1975.

As Japan is dependent upon crude petroleum imports of nearly 5 million bpd, the cutback in receipts of Middle Eastern oil, the source of more than three-fourths of its total crude imports, created a "state of national emergency." An energy saving program went into effect on November 16, 1973, requiring a 10% across-the-board cut in oil and electricity consumption on a government administrative guidance basis. This action was followed by enactment of the Petroleum Supply Adjustment Law and the National Livelihood Stabilization Law both effective on December 22, 1973, which authorized the government to check abnormal commodity price increases and goods shortages arising from oil supply cuts.

Japanese refining capacity was reported at 4.8 million bpd at the close of 1973. Two new refineries were scheduled for operation during the year, the 100,000 bpd Nagoya refinery of Toa Oil Co., Ltd. and the 70,000 bpd Tomakomai refinery of Idemitsu Kosan Co., Ltd. Expansion activities of Nippon Petroleum Refining Co., Ltd. were scheduled for completion near yearend, raising capacity at the Muroran refinery from 10,000 to 110,000 bpd. The Sakai refinery of Kansai Oil Co., Inc., was scheduled for an expansion from 110,000 to 210,000 bpd by the close of 1973. Government authorizations were announced for a 1.4 million bpd additional refining capacity by 1976 and additional authorizations for a total of 1.1 million bpd by 1978.

Several new petroleum companies were formed during the year. On January 31, 1973, Japan Oil Development Co., Ltd., a partnership between Japan Petroleum Development Corp. and nine Japanese oil exploration companies, was formed. The new company purchased 45% of British Petroleum Corp.'s share of Abu Dhabi Marine Areas, Ltd. (ADMA), thus obtaining 30% equity in ADMA which is currently producing a total of 507 bpd from the Umm Shaif and Zakum offshore fields in Abu Dhabi.

The International Oil Co., Ltd. was established March 8, 1973, as a joint venture of 10 private companies. The company arranged for the purchase of nearly 20,000 bpd of crude oil from the Ta-ching field

in the People's Republic of China. By 1974 imports of Chinese crude are expected to be 60,000 bpd or more.

Libya.—Crude production continued to decline from the 1970 peak level of 3.31 million bpd. Daily production averaged 2.27 million bpd during the first 10 months of 1973; however, production cutbacks reduced daily output to nearly 1.77 million bpd during November and December, for an overall 1973 daily production average of 2.17 million bpd.

During 1973, Libyan Government activities focused on gaining control of major oil company operations in Libya. In August, Occidental Petroleum Corp. and Oasis Oil Co. signed an agreement accepting 51% government participation in their Libyan operations, at which time the operators were permitted to increase their production rate to 475,000 bpd and 900,000 bpd, respectively. By September the Libyan Government issued a decree unilaterally acquiring 51% participation in the remaining major oil company operations.

The posted price for 40° API gravity Libyan crude was \$3.78 per barrel in January. Increments in April, June, July, August, and on October 1 increased the price to \$4.60 per barrel, in accordance with OPEC and oil company negotiations that provided price adjustments to compensate for the dollar devaluation. By mid-October prior agreements were abandoned and Libya set posted prices unilaterally. The posted price was nearly doubled at \$8.93 per barrel on October 16, increased to \$9.06 on November 1, and reached \$15.77 by January 1, 1974.

The Libyan Government announced discovery of new oil fields at Ra's al Hilāl in Northeast Libya and near Ghadāmis near the Algerian-Tunisian border. Libyan production has declined steadily since 1970, and extensive exploration and development is necessary if Libya is to maintain her position as the leading African crude producer.

The 60,000 bpd capacity refinery at Az Zawiyah, under contract construction by SNAM Progetti S.A., was near completion by yearend. Doubling of the Az Zawiyah refining capacity was under consideration as well as the construction of a 180,000 bpd refinery at Marsá al Burayqah, a 120,000 bpd refinery at Tobruq, and a jointly owned Libyan-Tunisian refinery at Qabes,

Tunisia of 120,000- to 150,000 bpd capacity.

During the year, the Libyan General Organization for Maritime Transport signed agreements for construction of 11 tankers. Nippon Kokan Kabushiki Kaisha (Japan) received a \$45.3 million contract for construction of two 118,000-deadweight-ton tankers; the Gotaverken AB shipyard (Sweden) received a \$40.8 million contract for three 152,700-deadweight-ton tankers; and two crude tankers of 100,000 to 120,000 deadweight tons each, as well as four 30,000-deadweight-ton product carriers were to be built by Yugoslavia under a barter agreement for 40,000 bpd of Libyan crude for an unreported time period.

Nigeria.—Production continued to climb, increasing from a January 1 production level of 1.91 million bpd to a midyear production level of 2 million bpd, and finally reaching a level of 2.25 million bpd by yearend 1973. Much of the increase was attributable to expanded capacity at the Kolo Creek, Etelbou, and Diebu Creek fields operated by the nation's largest producer, Royal Dutch/Shell and British Petroleum (Shell-BP) in partnership with the Nigerian National Oil Corp. (NNOC). During the year, the Nigerian government represented by the NNOC entered into a participation agreement with Shell-BP acquiring 35% equity in exploration and producing operations. The agreement offers Shell-BP the right to buy back most of the NNOC participation crude. The government engaged in negotiations with other Western operators including Gulf Oil Corp., Mobile Oil Co., and Texaco Overseas (Nigeria) Petroleum Co./Chevron Oil Co. (Nigeria). Although indications were that even higher participation levels were under discussion, no accords were announced by yearend. Government posted prices for 34° API gravity Nigerian crude increased during 1973 from \$3.56 per barrel to a high point of \$8.40 per barrel and then jumped to \$14.69 per barrel on January 1, 1974.

Although the 1973 crude production was obtained essentially from onshore operations, at least eight good test flows were reported during the year from offshore exploratory drilling operations of Japan Petroleum Co. (Nigeria Ltd.), Occidental Petroleum Corp., Deminex and Niger Oil Resources, Texaco Overseas (Nigeria) Petroleum Co., and Chevron Oil Co. (Nigeria). These companies are operating in conces-

sion areas awarded in 1972 by an agreement which includes 51% NNOC participation in commercial finds. Promising offshore developments together with expanding onshore operations should in the very near future increase Nigerian crude output to the point of surpassing Libya as the leading African crude producer.

leading African crude producer.

The Nigerian government announced plans for construction of a second refinery.

Tentative plans call for construction of a 30,000 bpd capacity refinery at Warri. Proposed completion date is 1976.

Norway.—In spite of a 65-day shutdown because of bad weather conditions in the North Sea during 1973, the Phillips Petroleum Co. group reported production of more than 11 million barrels of crude from four wells in the Ekofisk field. A 1million-barrel-capacity concrete storage tank was towed to the production site in June 1973 and set in place in 230 feet of water. The tank should be serviceable by mid-1974 permitting crude storage when tanker loadings are prohibited by bad weather. The 34-inch-diameter crude oil pipeline between the Ekofisk field and Teesside, England, a distance of 220 miles was near completion by yearend. Throughput capacity is 1 million barrels per day. Terminal facilities at Teesside are scheduled for completion in 1975.

A 80,000 bpd refinery was under construction at Mongstad, near Bergen under contract to Foster Wheeler Corp. (United States). Completion is scheduled for early 1975.

An agreement reached during 1973 between the government and the Ekofisk producers reserves sufficient amounts of natural gas liquids, landed in Norway free of freight charges, to sustain operations of a 250,000-ton-per-year ethylene plant.

Saudi Arabia.—Saudi Arabia remained the third largest world producer of crude oil. Output for the year averaged 7.9 million bpd including a peak level of 8.4 million bpd in July and a low of 6.1 million bpd in November following the Arab production cutback policy.

The Arabian American Oil Co. (Aramco) reported discovery of a major new offshore field at Maharah. By midyear Aramco's offshore Zuluf field went into production at 80,000 bpd and the onshore Harmaliyah field went into production at 100,000 bpd with output anticipated at 150,000 in 1974. Transportation and loading facilities were

under construction. A fourth sea loading berth as well as additional storage capacity of 5.5 million barrels came into service at Ras Tanura. A total of 18 tankers can be loaded simultaneously from the port's two T-head piers and 4 sea berths. Plans were announced for construction of a 46-inch and 48-inch pipeline from Abqaiq to Ju'anura (15 miles northwest of Ras Tanura) with accompanying storage facilities and with offshore loading capacity of 140,000 barrels per hour into tankers as large as 500,000 deadweight tons.

The Saudi Arabian Government acquired 25% participation in Aramco reducing equity holdings of Standard Oil Co. of California, Texaco Inc., and Exxon Corp., to 22.5% with Mobil Oil Corp. holding 7.5%.

United Arab Emirates.—Abu Dhabi, averaging 1.3 million bpd and Dubai averaging 0.2 million bpd were the only producers of commercial crude in the United Arab Emirates. Sharjah will, however, join their ranks when the Mubarek field enters production, possibly by mid-1974. By agreement, Sharjah will share royalties with Iran on production from the Mubarek field. Sharjah's Mubarek crude will be sold to Japan Lines, Ltd.

Several offshore concession agreements were under negotiation during the year. These included concessions totaling 1,650 square miles off the Gulf of Oman in waters of Fujairah and Sharjah as well as 232 square miles of offshore Ajman on the Persian Gulf. Reserve Oil & Gas Co. and United Refining Co. (United States) were included in the negotiations.

Construction plans were affirmed for a 15,000 bpd refinery at Umm al Nar (Abu Dhabi) to be supplied via a 20,000 bpd capacity line running from Habshan (Abu Dhabi) a distance of 76 miles.

Financing for Dubai's massive dry dock project was arranged and construction of facilities for servicing two 500,000 deadweight ton tankers and a million deadweight ton tanker will soon be inaugurated.

U.S.S.R.—Crude production neared an average of 8.5 million bpd in 1973, an increase of 6.9% over the previous year's production level. Tataria, Tyumen, and Bashkiriya were the nation's major producing areas accounting for nearly one-third of total crude output in 1973. Soviet sources report five new discoveries in Tataria during 1973. Two fields in the Bash-

kiriya area the Teplykovskoye and Burayëvskaya fields entered production during the year. The Samotlor field in Tyumen produced at an average of 340,000 bpd with production averages forecasted at more than 1 million bpd in 1974, as a result of flooding projects. The oil zone is located 8,200 feet below Lake Samotlor.

Negotiations were conducted on the possible Japanese and U.S. participation in development of the Tyumen field. Preliminary discussions indicated a possible export of 800,000 bpd via a pipeline to a Pacific terminal. Subsequent discussions reduced proposed export levels to 500,000 bpd. No agreement was reached by yearend.

Crude and product exports from the U.S.S.R. averaged nearly 2.4 million bpd in 1973. East European nations received nearly 1.4 million barrels per day. To facilitate exports, a 48-inch pipeline was under construction to move crude from the western Siberian fields across the Ural Mountains to Ufa and Kuyibyshev then to Tikhoretsk and the Black Sea port of Novorossiysk.

United Kingdom.—Forty-four exploration wells were drilled in British North Sea waters in 1973, 35 in the North, 8 in the South, and 1 in the Celtic Sea.

In January, the Occidental Group, which holds a production license in the North Sea for 494 square miles, drilled the Piper discovery well in Block 15/17-1A in 475 feet of water. The discovery well was tested at a combined rate of 8,848 bpd of lowsulfur oil averaging 37° API from two zones. In March, a second Piper field well, drilled 2 miles north of the discovery well, tested at a combined rate of 32,129 bpd from the two zones. Four more appraisal wells were drilled confirming the Piper field as a major North Sea oil field. Using a recovery factor of 40%, production potential of the field is estimated at 650 million barrels. Initial production is scheduled for 1975 at 100,000 bpd, building up to 200,000 bpd by 1976. Construction of a 130 mile, 30-inch diameter submarine pipeline connecting the field to an Orkney Island terminal is scheduled for completion in mid-1974.

In early 1973, Phillips Petroleum Co. re-

ported a discovery well in Block 16/29 testing at 3,500 bpd of 36° API crude. The Maureen field lies in 300 feet of water.

By midyear the Shell/Esso group reported a discovery well in Block 211/23, and an appraisal well in Block 211/29 increased recoverable reserve estimates for the Brent field to 1,500 million barrels.

The Total group reported a discovery in Block 3/15 testing at 3,000 bpd of 42° API crude through a ½-inch choke.

Several confirmations and extensions were made on 1972 discoveries. These included the Mobil group's Beryl field in Block 9/13, the Thistle field in Block 211/18, and Shell/Esso's Brent field in 211/29.

Production from Shell/Esso's Auk field discovered in 1970 in Block 30/16 was delayed by 1 year, and production is now anticipated by 1975. Production from the Brent field is anticipated by early 1976, Beryl field is scheduled for production in late 1975, and the Thistle field should be in production by 1976.

The construction of a new refinery and several refinery expansions were reported in 1973. American Oil Co.'s 80,000 bpd Milford Haven refinery was in operation by October. Mobil Oil Co. Ltd.'s Coryton refinery and Texaco Ltd.'s Pennbrook refinery were both expanded from 140,000 bpd to 180,000 bpd.

Zaire.—The nation should enter the ranks of petroleum producers by 1975 when two offshore fields are brought into production by Gulf Oil Zaire which holds 50% equity in a group comprised of Japan Petroleum Zaire with 32.8% equity, and the Belgian firm Ste. du Littoral Zairois Soliza with 17.2% equity. Initial production is anticipated at 25,000 barrels per day.

The government in partnership with Italy's Ente Nazionale Idrocarburi operated a 16,000 bpd capacity refinery at Moanda. Crude petroleum imports from Iran, Saudi Arabia, and Nigeria totaled 14,325 bpd. Petroleum product imports were reported at 2,750 bpd. In December, the government nationalized the marketing facilities of Mobil Oil Co., Texaco, Fina, and Royal Dutch/Shell, placing marketing operations under control of the Ministry of Energy.

## **TECHNOLOGY**

Delta Exploration Co., Inc. was using a patent-pending combination barge and ship to cover both deep and shallow water exploration. The separate 76-foot recording barge is carried on the stern of the 165foot mother ship which operates well out to sea. Within 10 miles of shore, the barge can be released for operations in water as shallow as 4 feet. Seismic units on the vessel contain Gardner-Denver 2,000-psi compressors powering two 1,000-cubic-inch and two 300-cubic-inch Bolt air guns. Delta's boat and barge system was operating in South America in 1973.6

A direct-current electric-power swivel was field tested at Gulf of Mexico locations offshore from Louisiana. Industry's first electrically powered drilling swivel was subjected to a variety of field operating conditions on four recently completed holes. The Bowen Tools, Inc. and Brown Oil Tools, Inc., swivel was installed while working on an Atlantic Richfield Co. platform in Eugene Island Block 175 field.

Specific advantages of the 750-horsepower electric swivel on these wells included the following:

- 1. Safety, only the driller and one floorman are necessary to make a connection. No spinning chain is needed (the swivel is rotated to make up tool joints) and tongs are not required if the special backup powerslips designed for use with the swivel are installed.
- 2. Fewer downhole surveys are required to orient the large nozzle in the bit when jetting to establish a directional hole, since reference points to the large nozzle are made on the torque elevators and are always available above the rotary.
- 3. Weight of the power swivel plus the fact it runs on a guide track allows drilling operations to continue even in high winds, a common occurrence in many offshore areas.
- 4. Since all swivel operations can be precisely controlled, downhole tools are easier to set.7

Contractors and operators are developing and successfully testing new rigs and associated equipment that will allow drilling during the severest weather. Advances in downhole tools are helping to quickly and safely evaluate holes drilled from floating vessels. Recent developments include the following:

- 1. A procedure for well bore re-entry and drilling in water depths of more than 1,000 feet;
  - 2. A revolutionary deep water jackup;
  - 3. An ice-breaking drillship;
- 4. Two proposed platforms with ice-cutting equipment; and

5. A drillstem test tool for floating rigs.8 An oil recovery system that reportedly can recover oil spills offshore in high seas with 8-foot waves has been developed and tested by Ocean Systems, Inc. The system contains a double flotation arrangement with two weirs arranged in such a way that oil thickens in front of the primary weir, then further thickens in front of the second weir, where it enters a collection tube leading to a floating pump and collector.9

A feasibility design has been completed for an Arctic marine, crude oil transportation system consisting of a depth-controlled, submerged barge towed by a powerful, surface icebreaking tug. Continental Oil Co., with assistance from Arctic, Inc., investigated this proposal as a means for transporting crude from Alaska's North Slopes to eastern U.S. markets.

Because the cargo is carried below the ice-water surface, the system can achieve speeds through an ice field greater than a conventional ice breaker of equal power. This feature, combined with low total system costs, can give an economical edge over alternate marine systems. The system is reportedly feasible, and with a suitable development program, an operational system could be realized with existing technology.10

The increasing use of reinforced concrete for offshore construction of nearly any type from floating nuclear powerplants to permanent drilling and production platforms is evident. North Sea operators, encouraged by recent studies that indicate stable seafloor conditions in at least some areas of interest, are seriously considering concrete platforms for future installations. Recent tests on concrete installed in the ocean 67 years ago, indicate that compres-

<sup>&</sup>lt;sup>6</sup> World Oil. Piggyback Barge. V. 176, No. 6,

May 1973, p. 13.

World Oil. Drilling Experience with the Electric Power Swivel. V. 176, No. 7, June 1973,

p. 43.

S World Oil. Unique Equipment Designs Should
Cut Drilling Costs. V. 177, No. 1, July 1973,

<sup>9. 94.

9</sup> World Oil. High Sea Oil Recovery. V. 177,
No. 1, July 1973, p. 101.

10 World Oil. New Way to Move Arctic Oil.
V. 177, No. 1, July 1973, p. 100.

sive strength, in three cases, had actually increased since a similar test was made 40 years ago. Other core tests made on concrete harbors built in 1942 in Britain revealed superior concrete strength retention and no deterioration of reinforcing metal.<sup>11</sup>

The first concrete production platform has reportedly been ordered by Mobil Producing North Sea, Ltd. for use in the Mobil group's Beryl field located in the United Kingdom North Sea in 380-foot water. The \$50 million Condeep design structure is to be built by a Norwegian consortium in Stavanger, Norway for 1975 delivery.<sup>12</sup>

Onsite seismic analysis is being provided by a new Unicomp Inc. system. Integrated with a minicomputer, the Spectar 2000 unit can simultaneously process and display data from 256 sensing stations. The method is claimed to be 10 to 100 times faster than software techniques, and it indicates to crews where further exploration is warranted. The unit also stores data for processing later on a laboratory computer. Digital Resources Corp. will use the system for a massive exploration program in Bolivia.<sup>13</sup>

A new way to make holes, ranging in size from telephone conduit to subway tunnels was demonstrated recently by Los Alamos, N. Mex., Scientific Laboratory and the National Science Foundation. The technique, Subterrene, is an offspring of the atomic energy program and occurred to program managers while components for a new type of nuclear reactor were being tested under high-temperature conditions. Subterrene works by melting rock or soil with an electrically heated element. Few rocks have a melting point high enough to withstand the probe's 2,200° F temperature.

Rock quarry demonstrations at Fort Belvoir, Va., featured two small probes, one less than 2 inches, the other about 21½ inches in diameter. But, larger instruments are feasible. Subterrene's first application was an Indian ruin in the Randelier National Monument near Los Alamos. Archaeologists wanted drainage built into a ruined ceremonial chamber to halt further deterioration, but were afraid vibrations from conventional drilling would damage the site. A 3-inch hole, 8 feet deep, was melted for water drainage and it had its own highdensity glass casing created by the melted rock.<sup>14</sup>

The increasing number of directional wells being drilled has accelerated development of cost saving directional drilling equipment. The recent introduction of two new directional tools, available from Dyna-Drill Co., a division of Smith International, Inc., has added measurably to the state-ofthe-art of directional drilling.

One tool, a hydraulically actuated bent sub, has proven its ability to cut costs primarily through reducing round trips. With a simple adjustment (made downhole) to the tool, an operator may switch from straight to directional drilling.

The main advantage of the Teleorienter is its ability to transmit orientation data to the surface any time it is required without the need of wireline services. Both tools have been operational for about 1 year and case histories have indicated each to be a useful directional drilling tool.<sup>15</sup>

The immediate need for fuel desulfurization is being stimulated by tight restrictions on sulfur oxide emissions and by expanding fuel oil markets that are becoming more dependent on high-sulfur foreign crude. Hydrocarbon fuels from tar sands, oil shale, and coal, which are expected to ease our impending energy crisis, are all high in sulfur. Moreover, alternative, nonfuel markets for high-sulfur products such as asphalt are rapidly becoming saturated. As a consequence, hydrodesulfurization processes are playing increasingly important roles in refiners' efforts to produce lowsulfur fuels. Amoco Oil Co. has developed a process for the low-pressure hydrodesulfurization of heavy distillates such as vacuum gas oils or decanted oils. The process will operate at total pressures well below those conventionally used and can achieve 90% desulfurization on most feeds. For virgin feedstocks, catalyst life will approach that obtained at high pressure while even with cracked stocks such as decanted oil the catalyst will give satisfactory life. Investments can be reduced by 30% to 40% over conventional designs, leading to substantial savings in the overall cost of preparing low-sulfur blending stocks. Hydrogen consumption is also substantially less for the low-pressure design, leading to

<sup>11</sup> World Oil. Concrete Structures Emphasized. V. 177, No. 1, July 1973, p. 99. 12 World Oil. V. 177, No. 4, September 1973,

p. 13.
World Oil. V. 177, 180. 4, September 1970, p. 13.
World Oil. On-Site Seismic Analysis. V. 177, No. 2, August 1973, p. 16.
World Oil. V. 178, No. 2, February 1974,

p. 13.

<sup>15</sup> World Oil. Two New Directional Tools are
Proven Cost Cutters. V. 178, No. 2, February
1974, p. 43.

lower heats of reaction and simplified reactor design.16

The Dilchill Dewaxing Process was developed for ketone dewaxing based on direct heat exchange with cold solvent in a highly sheared environment. This process produces highly discrete and stable wax crystal agglomerates, thereby facilitating the separation of wax from oil at high yields and high throughput. The process significantly reduces the need for costly and cumbersome scraped surface exchangers, improves operation of those that are needed, and reduces overall filter area requirements. Furthermore, this process allows integration between dewaxing and refined wax manufacture, eliminating the need for a costly, separate recrystallization plant. In combination with either lube or wax hydrofining, this represents a total process package for dewaxing, wax manufacture and lube and wax finishing.17

The responsible disposal of used lubricating oils is a serious problem. Recent Impetus on waste recovery leads to renewed interest in re-refining-to convert this waste oil into useful products. Yet conventional rerefining can also lead to waste byproducts: Spent acid, spent caustic, spent clay, sulfur dioxide, and others. Laboratory data show a good quality lube base stock may be prepared from automotive crankcase drainings. The process includes distillation of the used oil to obtain a lube distillate which is then hydrofined.18

The Gasynthan Process, developed by Badische Anilin und Soda Fabrik/Lurgi, offers a proven route to synthetic natural gas (SNG). An SNG plant incorporates naphtha desulfurization, naphtha catalytic reforming with steam to methane-rich gas, methanation of rich gas hydrogen and CO2, and removal of CO2 to meet the desired gas quality.

A number of process routes are possible by combining single or two-stage gasification with one or more downstream methanation steps. However, one route best suits any particular application depending on feedstock type and availability, plant location, integration with other plant units, and other project criteria. The four basic possibilities are as follows: (1) Single-stage gasification (Standard Gasynthan) followed by one or two methanation steps, (2) twostage gasification (Advanced Gasynthan) followed by one methanation step, (3) single-stage gasification with one methanation step and recycle of low CO2-product gas (this route has a lower net stream requirement (about 0.7 lb/lb naphtha) and the highest efficiency), and (4) single-stage gasification at low temperature (low temperature Gasynthan) and low-steam-tonaphtha ratio followed by single-stage methanation.19

The Bureau of Mines continued to focus on improved technology for discovery and production of petroleum. Research was directed toward development of methods of stimulating production from oil and gas reservoirs. Laboratory studies were made to improve tertiary oil recovery by injection of fluids supplemented by micellar-polymer solutions to literally scrub the oil from the reservoir rock. Plans were initiated for a field demonstration of micellar-polymer flooding.

Field research continued to determine the potential application of gamma-ray anomalies at the surface and particularly those over known hydrocarbon deposits in petroleum-producing areas.

The Bureau of Mines SolFrac process was field tested in Labette County, Kans., utilizing a combination of chemical explosive fracturing and solvent injection for heavyoil recovery. The process recovered 40 barrels of viscous immobile oil during the first 5-month test period.

Laboratory equipment was assembled for testing oil recovery from tar sands by the reverse combustion process. Tests were made with tar sands from deposits in Utah to develop data needed for a field demonstration. In a reverse combustion test from a vertical sand pack of tar sand from the P.R. (Pear) Spring deposit, an oil recovery of 47.4 volume-percent was obtained along with a significant increase in gravity of the oil from about 8° to over 22° API.

Research on petroleum composition included a project on the identification of oil spills. A data bank showing unique properties of crude oils that are shipped by

p. 134. <sup>19</sup> Hydrocarbon Processing. Gasynthan Process for SNG. V. 52, No. 1, January 1973, pp. 93-98.

<sup>16</sup> McBride, Warren L., and James F. Mosby. Low Pressure Heavy Distillate Ultrarefining. Proc. Annual Meeting, National Petroleum Refiners Association, Apr. 1-3, 1973, Whiting, Indiana. National Petroleum Refiners Associa-

tion, 11 pp.

17 Hydrocarbon Processing. New Route to Better Wax. V. 52, No. 9, September 1973, p. 141-

 <sup>146.
 18</sup> Hydrocarbon Processing. To Hydrotreat
 Waste Lube Oil. V. 52, No. 9, September 1973,

tankers is being developed to provide information for identifying the sources of oil spills.

In research on re-refining waste lubricating oils, a solvent-extraction and distillation procedure was developed that removes contaminants from waste lubricating oils without adversely affecting the hydrocarbon composition of the oil.

The systematic scheme developed by the Bureau of Mines to separate heavy crude oil distillates into compound-type concentrates was applied to five foreign crude oils. Research continued on spectral characterization of these concentrates to provide information needed for efficient processing of these low-grade distillates into quality

Table 2.-Supply, demand, and stocks of all oils in the United States (Thousand harrels)

| (Thous                                         | and barrels | )               |                 |           |                     |
|------------------------------------------------|-------------|-----------------|-----------------|-----------|---------------------|
| Item                                           | 1969        | 1970            | 1971            | 1972      | 1973 р              |
| Domestic production:                           |             |                 |                 |           |                     |
| Crude oil                                      | 3,203,996   | 3,350,666       | 3,296,612       | 3,293,399 | 3,206,012           |
| Lease condensate                               | 167,755     | 166,784         | 157,302         | 161,969   | 154,891             |
| Natural gas plant liquids                      | 580.241     | 605,916         | 617,815         | 638,216   | 634,423             |
| Imports:                                       | ,           | 000,010         | 011,010         | 050,210   | 004,420             |
| Crude oil 1                                    | 514.114     | 483,293         | 613,417         | 811,135   | 1,183,996           |
| Unfinished oils 1                              | 38,766      | 39,261          | 45.193          | 45,705    | 50.161              |
| Plant condensate                               | ·           | 2,258           | 13,321          | 31,428    | <sup>2</sup> 37,475 |
| Refined products                               | 602,671     | 723,250         | 760,949         | 847,046   | 991,891             |
| Other hydrocarbons and hydrogen refinery input | 4,213       | 6,238           | 6,074           | 10,118    | 10,716              |
| Total new supplyUnaccounted for crude oil 3    | 5,111,756   | 5,377,666       | 5,510,683       | 5,839,016 | 6,269,565           |
| Unaccounted for crude oil 3                    | -2,561      | -7,721          | +14.823         | +10.201   | +918                |
| Processing gain                                | 122,412     | 131,052         | 139,433         | 142,161   | 165,488             |
| Total supply                                   | 5,231,607   | 5,500,997       | 5,664,939       | 5,991,378 | 6,435,971           |
| Change in stocks of all oil                    | -17,449     | +37,738         | +26,086         | -84,968   | +49,328             |
| Total disposition of primary supply            | 5.249.056   | 5,463,259       | 5,638,853       | 6,076,346 | 6,386,643           |
| Exports: 4                                     | :           | 0,100,200       | 0,000,000       | 0,010,340 | 0,500,045           |
| Crude oil                                      | 1,436       | 4 001           | 700             |           |                     |
| Renned products                                | 83,449      | 4,991<br>89,467 | 503             | 187       | 697                 |
| Crude losses                                   | 4,241       | 4,328           | 81,342<br>4,448 | 81,202    | 83,515              |
| Domestic demand for products:                  | 7,271       | 4,020           | 4,440           | 4,641     | 4,897               |
| Gasoline:                                      |             |                 |                 |           |                     |
|                                                |             |                 |                 |           |                     |
| Motor gasoline<br>Aviation gasoline            | 2,016,995   | 2,111,349       | 2,195,267       | 2,333,778 | 2,435,501           |
| T-4-1                                          |             | 19,903          | 17,892          | 16,925    | 16,531              |
| Total gasoline Jet fuel:                       | 2,042,546   | 2,131,252       | 2,213,159       | 2,350,703 | 2,452,032           |
|                                                |             |                 |                 |           | _,,                 |
| Naphtha type                                   | 108,518     | 90,927          | 94,732          | 88,495    | 79,220              |
| Kerosine type                                  | 253,213     | 262,051         | 273,991         | 293,995   | 304,135             |
| Total jet fuel                                 | 361,731     | 352,978         | 368,723         | 382,490   | 383,355             |
| Ethane (including ethylene)                    | 72,216      | 83,757          | 87,744          | 106,201   | 119,443             |
| Liquefied gases                                | 373,410     | 363,059         | 369,008         | 413,649   | 409,116             |
| Kerosine                                       | 100,369     | 95,974          | 90,917          | 85,852    | 78,915              |
| Distillate fuel oil                            | 900,262     | 927,211         | 971,316         | 1,066,110 | 1,124,308           |
| Residual Tuel Oll                              | 721,924     | 804,288         | 838,045         | 925,647   | 1,019,934           |
| Petrochemical feedstocks 5                     | 94,648      | 101,183         | 110,525         | 123,697   | 130,967             |
| Special naphthas                               | 29,598      | 31,390          | 29,762          | 31,866    | 32,230              |
| Lubricants                                     | 48,782      | 49,693          | 49,321          | 52,813    | 59,037              |
| Wax                                            | 4,588       | 4,607           | 5,248           | 5,409     | 6,941               |
| CokeAsphalt                                    | 80,830      | 77,215          | 79,897          | 88,276    | 95,126              |
| Asphalt<br>Road oil                            | 143,290     | 153,477         | 158,526         | 163,788   | 182,602             |
| Still gas for fuel                             | 8,756       | 9,641           | 8,487           | 7,538     | 7,832               |
| Miscellaneous products                         | 160,363     | 163,905         | 156,967         | 170,993   | 176,758             |
| Total domestic demond                          | 16,617      | 14,843          | 14,915          | 15,284    | 18,938              |
| Total domestic demand                          | 5,159,930   | 5,364,473       | 5,552,560       | 5,990,316 | 6,297,534           |
| Stocks of all oils:                            |             |                 |                 |           |                     |
| Crude oil and lease condensate                 | 265,227     | 276,367         | 259,648         | 246,395   | 242,478             |
| Unfinished oils                                | 97,819      | 98,989          | 100,574         | 94,761    | 99.154              |
| Natural gasoline and plant condensate 6        | 5,704       | 7,046           | 6,176           | 6,075     | 7,835               |
| Refined products                               | 611,373     | 635,459         | 677,549         | 611,748   | 658,840             |
| Total                                          | 980,123     | 1,017,861       | 1,043,947       | 958,979   | 1,008,307           |
|                                                |             |                 |                 | ,         | , , •               |

p Preliminary (except for crude oil and lease condensate production).

Reported to the Bureau of Mines. Imports of crude oil include some Athabasca hydrocarbons.

Excludes imports for substitute natural gas (SNG) plant feedstock use.

Reporsents the difference between supply and indicated demand for crude petroleum.

U. S. Department of Commerce data.

Produced at petroleum refineries. Demands for ethane and liquefied gases used for petroleum feedstocks are excluded. Demand data for these products for petrochemical feedstocks use are included under the items "Ethane" and "Liquefied gases."

See footnotes at end of table.

Table 3.-Supply, demand and stocks of all oils in the United States, by month

|                                            |                       |                  | !                |                     | -                | (200                  |                      |                    |                      |                  |                 |                    |                        |
|--------------------------------------------|-----------------------|------------------|------------------|---------------------|------------------|-----------------------|----------------------|--------------------|----------------------|------------------|-----------------|--------------------|------------------------|
|                                            | Jan.                  | Feb.             | Mar.             | Apr.                | May              | June                  | July                 | Aug.               | Sept.                | Oct.             | Nov.            | Dec.               | Total                  |
| 1972                                       |                       |                  |                  |                     |                  |                       |                      |                    |                      |                  |                 |                    |                        |
| Domestic production:                       | 077 050               | 900              | 070 070          | 000 000             | 110 700          | 010                   | 901                  | 200 000            | 9130                 | 107 000          | 020 020         | 902 200            | 000 000                |
| Lease condensate                           | 14,101                | 13,424           | 13,953           | 13,350              | 13,826           | 13,073                | 13,303               | 13,273             | 12,674               | 13,438           | 13,714          | 13,840             | 161,969                |
| 2                                          | 040,20                | 50,00            | 64,014           | 99,019              | 740,66           | 97,070                | 99,000               | 00000              | 000,20               | 04,040           | 07,170          | 000,00             | 030,410                |
| Crude petroleum 1<br>Unfinished oils 1     | 63,419                | 60,344           | 64,066           | 60,129              | 66,958<br>2,495  | 62,544<br>3 011       | 67,635               | 65,463<br>3.600    | 3.956                | 78,003<br>4,214  | 68,978<br>3.846 | 82,687             | 811,135<br>45.705      |
| Plant condensate 2                         | 1,748                 | 1,758            | 2,196            | 1,782               | 2,701            | 2,414                 | 2,770                | 3,309              | 3,039                | 2,963            | 3,365           | 3,383              | 31,428                 |
| Refined productsOther hydrocarbons and     | 74,097                | 74,217           | 79,199           | 63,616              | 63,244           | 66,035                | 62,550               | 65,748             | 63,269               | 73,636           | 72,378          | 86,057             | 847,046                |
| hydrogen refinery input                    | 578                   | 614              | 883              | 808                 | 732              | 808                   | 862                  | 1,012              | 757                  | 1,006            | 1,167           | 891                | 10,118                 |
| Total new supply                           | 483,745               | 462,520          | 497,703          | 468,339             | 488,015          | 472,486               | 485,209              | 486,986            | 479,712              | 508,576          | 485,237         | 520,488 5          | 5,839,016              |
| Unaccounted for 3                          | $\frac{-831}{11.501}$ | +853             | +963             | -1,387              | +4,381           | $\frac{-315}{10.112}$ | +1,645               | +2,852             | +793                 | -214             | +2,130          | 18.958             | +10,201                |
| Total supply                               | 494,415               | 473,201          | 510,474          | 477.929             | 503.203          | 482.283               | 498,053              | 503,664            | 492,790              | 522,179          | 499,410         |                    | 5,991,378              |
| Change in stocks,<br>all oils 4            | -30,013               | -49,831          | -21,803          | +4.334              | +37,799          | +7.199                | +31,766              | +1,909             | +20,881              | +4,434           | -36,703         | -54,940            | -84,968                |
| Total disposition of primary supply        | 524,428               | 523,032          | 532,277          | 473,595             | 465,404          | 475,084               | 466,287              | 501,755            | 471,909              | 517,745          | 536,113         | 588,717 6,         | ,076,346               |
| Exports: 5<br>Crude oil                    | 5,257                 | 4,706            | 8,927            | 187<br>7,181<br>366 | 6,173<br>386     | 6,257                 | 6,4 <u>41</u><br>399 | 7,346              | 6,8 <u>40</u><br>393 | 7,231            | 7,422           | 7,421<br>405       | 187<br>81,202<br>4,641 |
| Domestic demand for products:              |                       |                  |                  |                     |                  |                       |                      |                    |                      |                  |                 |                    |                        |
| Motor gasolineAviation gasoline            | 172,003<br>1,242      | 165,591<br>1,298 | 198,768<br>1,723 | 188,502<br>1,457    | 199,795<br>1,407 | 204,665               | 206,849<br>1,526     | $215,084 \\ 1,499$ | 193,582<br>1,351     | 196,848<br>1,677 | 194,362 $1,135$ | 197,729 2<br>1,105 | 2,333,778<br>16,925    |
| Total gasoline                             | 173,245               | 166,889          | 200,491          | 189,959             | 201,202          | 206,170               | 208,375              | 216,583            | 194,933              | 198,525          | 195,497         | 198,834 2          | 2,350,703              |
| Jet fuel:<br>Naphtha type<br>Kerosine type | 6,765                 | 7,507            | 6,581            | 7,944               | 8,229            | 7,998                 | 7,159                | 6,835              | 7,079                | 7,934            | 7,846           | 6,618              | 88,495<br>293,995      |
| Total jet fuel Ethane (including ethylene) | 31,636<br>8,387       | 33,081<br>8,200  | 31,245<br>9,019  | 29,573<br>8,111     | 30,984<br>8,473  | 34,899<br>8,377       | 30,987<br>9,196      | 29,332<br>9,246    | 31,037<br>9,060      | 36,309<br>9,787  | 31,489<br>8,889 | 31,918<br>9,456    | 382,490<br>106,201     |
| Liquefied gases:  LRG of or fuel use       | 7,501 2,988           | 7,575 2,881      | 6,680<br>3,013   | 5,935<br>2,994      | 6,197            | 6,968                 | 6,548                | 6,796<br>3,173     | 6,674<br>2,867       | 6,979            | 7,554           | 8,612              | 84,019<br>86,748       |
| chemical use                               | 35,251                | 82,199           | 25,199           | 18,898              | 12,847           | 14,873                | 15,709               | 19,889             | 18,721               | 27,578           | 33,796          | 38,982             | 292,887                |
| Total liquefied gases                      | 45,740                | 42,605           | 84,892           | 27,322              | 22,400           | 25,068                | 25,541               | 29,808             | 28,262               | 87,496           | 44,146          | 698'02             | 418,649                |

Table 3.-Supply, demand and stocks of all oils in the United States, by month-Continued

|                                                                                                   | Jan.                                                | Feb.                                             | Mar.                                              | Apr.                                               | May                                                | June                                              | July                                                | Aug.                                                | Sept.                                               | Oct.                                                | Nov.                                                | Dec.                                              | Total                                                     |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------|---------------------------------------------------|----------------------------------------------------|----------------------------------------------------|---------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------|
| Domestic demand for products—Continued Kerosine Distillate fuel oil Residual fuel oil             | 11,817                                              | 10,703                                           | 8,769                                             | 5,266                                              | 4,432                                              | 3,475                                             | 2,861                                               | 5,295                                               | 5,943                                               | 7,365                                               | 8,554                                               | 11,372                                            | 85,852                                                    |
|                                                                                                   | 115,413                                             | 120,757                                          | 107,941                                           | 83,332                                             | 69,764                                             | 65,817                                            | 54,726                                              | 63,980                                              | 66,160                                              | 85,536                                              | 101,500                                             | 131,184                                           | 1,066,110                                                 |
|                                                                                                   | 87,275                                              | 91,953                                           | 83,151                                            | 73,311                                             | 65,439                                             | 65,873                                            | 65,327                                              | 69,970                                              | 67,161                                              | 73,210                                              | 85,283                                              | 97,694                                            | 925,647                                                   |
| Petrochemical feedstocks: 8 Still gas Naphtha-400. Other                                          | 1,230                                               | 1,055                                            | 1,033                                             | 935                                                | 1,095                                              | 1,147                                             | 1,378                                               | 1,444                                               | 1,144                                               | 1,500                                               | 1,360                                               | 1,357                                             | 14,678                                                    |
|                                                                                                   | 5,148                                               | 4,562                                            | 4,393                                             | 5,012                                              | 4,798                                              | 4,874                                             | 4,803                                               | 4,894                                               | 4,419                                               | 4,782                                               | 4,777                                               | 5,613                                             | 58,075                                                    |
|                                                                                                   | 3,618                                               | 3,803                                            | 4,223                                             | 4,154                                              | 4,615                                              | 3,360                                             | 4,095                                               | 4,462                                               | 4,943                                               | 5,365                                               | 3,806                                               | 4,500                                             | 50,944                                                    |
| Total petrochemical feedstocks Special naphthas Lubricants Wax Coke Asphalt                       | 9,996<br>2,501<br>3,735<br>3,99<br>7,784<br>5,691   | 9,420<br>2,457<br>4,142<br>422<br>7,211<br>6,096 | 9,649<br>3,194<br>4,594<br>400<br>6,922           | 10,101<br>2,401<br>4,551<br>426<br>6,454<br>10,110 | 10,508<br>2,688<br>4,534<br>463<br>6,443<br>15,681 | 9,381<br>2,811<br>4,315<br>484<br>6,113<br>19,222 | 10,276<br>2,426<br>4,850<br>424<br>6,790<br>20,014  | 10,800<br>2,945<br>4,747<br>504<br>8,411<br>24,243  | 10,506<br>2,632<br>4,303<br>476<br>7,548<br>19,727  | 11,647<br>2,917<br>4,605<br>468<br>8,088<br>17,557  | 9,943<br>2,253<br>4,571<br>490<br>8,294<br>11,260   | 11,470<br>2,641<br>3,866<br>453<br>8,218<br>6,640 | 123,697<br>31,866<br>52,813<br>5,409<br>88,276<br>163,788 |
| - m A 'O                                                                                          | 167                                                 | 86                                               | 174                                               | 335                                                | 848                                                | 1,047                                             | 1,347                                               | 1,334                                               | 1,039                                               | 771                                                 | 287                                                 | 103                                               | 7,538                                                     |
|                                                                                                   | 13,814                                              | 12,700                                           | 13,514                                            | 13,375                                             | 13,977                                             | 14,381                                            | 15,171                                              | 15,589                                              | 14,642                                              | 14,573                                              | 14,308                                              | 14,949                                            | 170,993                                                   |
|                                                                                                   | 1,188                                               | 1,245                                            | 1,466                                             | 1.234                                              | 1.009                                              | 1.009                                             | 1.136                                               | 1,723                                               | 1,247                                               | 1,262                                               | 1,541                                               | 1,224                                             | 15,284                                                    |
|                                                                                                   | 518,788                                             | 517,967                                          | 522,968                                           | 465,861                                            | 458,845                                            | 468,442                                           | 459,447                                             | 494,010                                             | 464,676                                             | 510,116                                             | 528,305                                             | 580,891                                           | 5,990,316                                                 |
| Stocks all oils: Crude oil and lease condensate Unfinished oils                                   | 251,012<br>102,763<br>6,395<br>653,764<br>1,013,934 | 252,945<br>99,110<br>6,543<br>605,505<br>964,103 | 258,902<br>103,137<br>6,633<br>573,628<br>942,300 | 266,636<br>106,890<br>6,737<br>566,371             | 279,490<br>109,535<br>6,766<br>588,642<br>984,433  | 271,381<br>114,054<br>6,392<br>599,805<br>991,632 | 265,843<br>109,574<br>6,416<br>641,565<br>1,023,398 | 257,976<br>104,871<br>7,019<br>655,441<br>1,025,307 | 250,802<br>106,043<br>7,023<br>682,320<br>1,046,188 | 253,748<br>103,482<br>6,740<br>686,652<br>1,050,622 | 251,306<br>101,221<br>6,295<br>655,097<br>1,013,919 | 246,395<br>94,761<br>6,075<br>611,748<br>958,979  | 246,395<br>94,761<br>6,075<br>611,748<br>958,979          |
| 1973 P New supply: Domestic production: Crude oil Lease condensate Natural gas plant liquids      | 270,863                                             | 250,559                                          | 273,800                                           | 265,736                                            | 274,438                                            | 263,686                                           | 272,847                                             | 271,381                                             | 259,640                                             | 273,071                                             | 262,228                                             | 267,768                                           | 3,206,012                                                 |
|                                                                                                   | 13,591                                              | 12,507                                           | 13,630                                            | 13,021                                             | 12,696                                             | 12,732                                            | 12,884                                              | 12,844                                              | 12,319                                              | 12,869                                              | 12,606                                              | 13,192                                            | 154,891                                                   |
|                                                                                                   | 52,081                                              | 48,857                                           | 53,769                                            | 52,488                                             | 53,917                                             | 51,801                                            | 53,846                                              | 54,183                                              | 52,233                                              | 54,444                                              | 53,219                                              | 53,585                                            | 634,423                                                   |
| Imports:  Under petroleum  Unfinished oils  Plant condensate  Refined products                    | 84,693                                              | 80,433                                           | 98,021                                            | 91,459                                             | 99,654                                             | 96,613                                            | 108,530                                             | 111,368                                             | 104,117                                             | 115,905                                             | 103,570                                             | 89,633                                            | 1,183,996                                                 |
|                                                                                                   | 3,278                                               | 2,479                                            | 4,181                                             | 4,786                                              | 4,002                                              | 4,642                                             | 4,475                                               | 4,515                                               | 4,601                                               | 3,588                                               | 4,953                                               | 4,661                                             | 50,161                                                    |
|                                                                                                   | 3,367                                               | 3,411                                            | 3,454                                             | 3,265                                              | 3,153                                              | 2,622                                             | 3,281                                               | 3,166                                               | 2,935                                               | 2,665                                               | 3,188                                               | 2,968                                             | 2 37,475                                                  |
|                                                                                                   | 88,796                                              | 92,138                                           | 98,167                                            | 68,141                                             | 73,523                                             | 72,504                                            | 75,047                                              | 82,626                                              | 79,574                                              | 80,115                                              | 94,213                                              | 87,047                                            | 991,891                                                   |
| Other hydrocarbons and hydrogen refinery input Total new supply Crude pectoleum unaccounted for 3 | 856<br>517,525<br>+ 612                             | 942<br>491,326<br>—3,637                         | $1,000 \\ 546,022 \\ +2,352$                      | 700<br>499,596<br>+1,466                           | 989<br>522,372<br>+3,924                           | 846<br>505,446<br>+5,041                          | 978<br>531,888<br>—2,979                            | 948<br>541,031<br>+2,046                            | 905<br>516,324<br>-5,121                            | 895<br>543,552<br>—110                              | 749<br>534,721<br>-2,337                            | 908<br>519,762<br>—839                            | 10,716<br>6,269,565<br>+ 918                              |
|                                                                                                   |                                                     |                                                  |                                                   |                                                    |                                                    |                                                   |                                                     |                                                     |                                                     |                                                     |                                                     |                                                   |                                                           |

| 499,165 88,882 + 587,997  7,288  180,223  181,459                                                                             | 660,826<br>640,319<br>640,319<br>408<br>201,901<br>1,316<br>208,216<br>5,889<br>24,985 |                                     | 542,832<br>+20,399 -<br>522,433<br>7,214<br>411 | 1 1                                 | 543,505<br>+28,287<br>515,218       | 557,656<br>+10,657                  | 524,955<br>+ 18,686                 | 559,038<br>+21,799                  | 545,291<br>—14,202                   | 532,807 6<br>—14,931                 | 6,435,971<br>+49,328                      |
|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------|
|                                                                                                                               | 6,933<br>6,933<br>408<br>201,901<br>1,315<br>208,216<br>24,985                         | T                                   |                                                 | · 1 1                               |                                     | +10,657                             |                                     | +21,799                             | -14,202                              | - 1                                  | +49,328                                   |
| 6,614 7,288<br>189,647 180,228<br>1,226 1,236<br>190,872 181,459                                                              | 6,953<br>408<br>408<br>1,315<br>208,216<br>5,869<br>24,985                             |                                     | 128<br>7,214<br>411                             | 500,992                             | 515,218                             | K46 999                             |                                     |                                     |                                      |                                      |                                           |
| 6,514 7,288<br>100,847 180,223<br>1,226 1,286<br>1,226 1,286<br>190,872 181,459                                               |                                                                                        | 11 1 11 1                           | 128<br>7,214<br>411                             | ;                                   |                                     | 040,000                             | 506,269                             | 537,239                             | 559,493                              | 547,738 6                            | 6,386,643                                 |
| 189,647 180,223<br>1,226 1,236<br>1,236 1,236<br>190,872 181,459                                                              | 201,901<br>1,315<br>203,216<br>5,869<br>24,935                                         | 1 11 1                              |                                                 | 6,445                               | 232<br>7,215<br>425                 | 6,746                               | 160<br>7,114<br>407                 | 6,867                               | 6,060                                | 6,868<br>407                         | 697<br>83,515<br>4,897                    |
| 190,872 181,459 2                                                                                                             | 203,216<br>5,869<br>24,935                                                             |                                     | 214,125<br>1,572                                | 208,912<br>1,349                    | 217,717                             | 224,735<br>1,913                    | 197,417<br>1,324                    | 206,984<br>1,575                    | 204,688<br>1,361                     | 192,909 2,435,501<br>1,182 16,531    | ,435,501<br>16,531                        |
| 6 079 K 919                                                                                                                   | 5,869<br>24,935                                                                        | 7,437                               | 215,697                                         | 210,261                             | 218,919                             | 226,648                             | 198,741                             | 208,559                             | 206,049                              | 194,091 2                            | 2,452,032                                 |
| 28,337 25,215                                                                                                                 |                                                                                        |                                     | 6,818<br>27,667                                 | 6,711<br>23,490                     | 6,134                               | 7,241 25,283                        | 6,413<br>25,527                     | 7,905<br>25,145                     | 5,892<br>24,501                      | 7,416<br>24,765                      | 79,220<br>304,135                         |
| hylene) - 84,409 80,527<br>9,634 9,089                                                                                        | 30,804<br>10,414                                                                       | 30,444<br>9,796                     | 34,485<br>9,882                                 | 30,201<br>9,694                     | 32.397<br>9,633                     | 32,524<br>10,224                    | 31,940<br>9,568                     | 33,050<br>10,083                    | 30,393<br>10,789                     | 32,181<br>10,637                     | 383,355<br>119,443                        |
| LRG of for fuel use 8,161 7,773 7 LRG for chemical use _ 3,240 2,863 8,                                                       | 7,209<br>3,295                                                                         | 7,437<br>3,043                      | 7,919                                           | 6,536                               | 7,866                               | 7,210<br>3,313                      | 7,511<br>3,378                      | 7,037                               | 7,549                                | 7,446 2,848                          | 89,654<br>38,040                          |
| 40,780 32,267                                                                                                                 | 22,653                                                                                 | 18,613                              | 18,099                                          | 15,194                              | 13,314                              | 18,545                              | 18,195                              | 25,632                              | 29,519                               | 28,611                               | 281,422                                   |
| Total liquefied gases   52,181   42,903   33   42,903   43   42,903   43   43   44,903   45   45   45   45   45   45   45   4 | 83,157<br>6,222<br>102,732<br>95,209                                                   | 29,093<br>4,894<br>79,040<br>74,164 | 29,423<br>4,102<br>82,216<br>78,054             | 24,779<br>3,529<br>72,360<br>78,046 | 24,569<br>4,602<br>72,184<br>74,700 | 29,068<br>4,546<br>79,168<br>83,392 | 29,084<br>5,534<br>79,785<br>79,996 | 35,949<br>5,563<br>90,386<br>78,956 | 40,005<br>9,168<br>105,255<br>93,552 | 38,905<br>7,386<br>114,242<br>90,204 | 409,116<br>78,915<br>,124,308<br>,019,934 |
| cks: 8 1,327 840 4,447 4,964 4,515                                                                                            | 1,183<br>4,380<br>5,197                                                                | 1,019<br>4,700<br>5,553             | 1,222<br>4,286<br>4.815                         | 1,054<br>4,230<br>5,319             | 916<br>4,718<br>5.264               | 1,188<br>4,775<br>5,343             | 1,015<br>4,790<br>4,934             | 884<br>4,811<br>5,130               | 902<br>5,339<br>5,102                | 878<br>5,392<br>5,581                | 12,428<br>56,822<br>61,717                |
| etrochemical 11,245 9,802 ocks                                                                                                | 10,760<br>2,806<br>4,911                                                               | 11,272<br>2,045<br>4,353<br>463     | 10,323<br>3,129<br>5,142<br>646                 | 10,603<br>2,630<br>4,473            | 10,898<br>2,714<br>5,424<br>521     | 11,306<br>2,956<br>5,279<br>666     | 10,739<br>2,499<br>4,623<br>584     | 10,825<br>2,995<br>5,693<br>650     | 11,343<br>2,453<br>5,046<br>687      | 11,851<br>2,513<br>4,928<br>578      | 130,967<br>32,230<br>59,037<br>6,941      |
| 8,370 6,887<br>t. 5,592 5,400                                                                                                 | 7,522<br>8,084                                                                         | 7,208                               | 8,010<br>16,110                                 | 8,401<br>20,061                     | 8,285<br>28,429                     | 8,640<br>26,123                     | 21,068                              | 8,875<br>20,944                     | 7,603<br>15,140                      | 7,835 9,337                          | 95,126<br>182,602                         |
|                                                                                                                               | 14,901<br>1,458                                                                        | 242<br>14,420<br>1,438              | 14,854<br>1,865                                 | 15,665<br>1,629                     | 16,258<br>1,535                     | 1,940<br>15,911<br>1,840            | 14,487<br>1,483                     | 14,768<br>1,804                     | 13,369<br>1,732                      | 13,978<br>1,482                      | 176,758<br>18,938                         |
| Total domestic demand 578,671 530,338 532                                                                                     | 532,978                                                                                | 477,706                             | 514,680                                         | 494,131                             | 507,346                             | 539,831                             | 498,588                             | 529,947                             | 553,032                              | 540,286                              | 6,297,534                                 |

See footnotes at end of table.

Table 3.-Supply, demand and stocks of all oils in the United States, by month-Continued

(Thousand barrels)

| Total |                  | 847 676                        | 99,154                              | 7 835              | 658.840          | 1,008,307   |
|-------|------------------|--------------------------------|-------------------------------------|--------------------|------------------|-------------|
| Dec.  |                  | 849 478                        | 99,154                              |                    |                  | ,008,307 1  |
| Nov.  |                  | 866 676                        | 103,586                             |                    |                  | 1,023,238 1 |
| Oct.  |                  | 246,297                        | 102,499                             |                    |                  | 1 1,037,440 |
| Sept. |                  | 241.276                        | 101,904                             | 7.465              | 664,996          | 1,015,641   |
| Aug.  |                  | 248.314                        | 98,925                              | 7.493              | 642,223          | 996,955     |
| July  |                  | 243.673                        | 102,307                             | 7,170              | 633,148          | 986,298     |
| June  |                  | 248.857                        | 103,615                             | 7,364              | 598.175          | 958,011     |
| May   |                  | 257.867                        | 105,404                             | 7,318              | 563,110          | 933,699     |
| Apr.  |                  | 248,783                        | 104,956                             | 6,670              | 552.891          | 913,300     |
| Mar.  |                  | 244,131                        | 97,646                              | 5,956              | 539,653          | 887,386     |
| Feb.  |                  | 235,362                        | 87,583                              | 6,105              | 537,829          | 866,879     |
| Jan.  |                  | 237,469                        | 87,767                              | 6,189              | 574,286          | 905,711     |
|       | Stocks all oils: | Crude oil and lease condensate | Unfinished oilsNatural gasoline and | plant condensate 9 | Refined products | Total       |

P Preliminary (except for oil and lease condensate production).

1 U. S. Department of the Interior data for crude oil, unfinished oils, and plant condensate; U. S. Department of Commerce data for all other imports.

2 Excludes imports for substitute natural gas (SNG) plant feedstock use.

3 Excludes interior substitute natural gas (SNG) plant feedstock use.

4 Minus represents withdrawal from stock, which is added to total disposition; plus represents stocks increase, which is subtracted from total disposition.

Liquefied refinery gas.
 Tiquefied petroleum gas.
 Produced at petroleum refineries. Data for LPG for petrochemical feedstocks are included with those for "Liquefied gases."
 Includes isopentane.

## Tabe 4.-Supply, demand and stocks of all oils by PAD Districts in 1973 (Thousand barrels)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |           | P.A.D. Districts | stricts   |         |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|------------------|-----------|---------|---------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I         | п         | Ш         | ΔI               | Total     | ۸       | United States |
| Domestic production:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |           |           |                  |           |         |               |
| Crude oil and lease condensate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 39,329    | 353,520   | 2.312.976 | 245.780          | 2.951.605 | 409 298 | 3 360 903     |
| Natural gas plant liquids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8,554     | 89,956    | 505.906   | 17,101           | 621,517   | 12,906  | 684 498       |
| Receipts from other districts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,112,463 | 988,409   | 65,028    | 20,377           | 10,305    | 60,677  | 071,100       |
| Imports:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |           |           |                  |           |         |               |
| Plant condensate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.777     | 22.534    |           | 10 115           | 301 196   | 9 040   | 1 97 475      |
| Crude oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 166,071   | 000 000   | 1 1 0 1 1 | 01101            | 077,100   | 0,040   | 01410         |
| Transfer of city                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | #10,00#   | 200,000   | 140,004   | 10,132           | 888,228   | 295,768 | 1,183,996     |
| Commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission of the commission o | 20,216    | 739       | 10,681    | ;                | 37,636    | 12,525  | 50.161        |
| Renned products                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 860,546   | 29,323    | 44,715    | 6,156            | 940.740   | 51,151  | 991,891       |
| Other hydrocarbons and hydrogen input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 555       | 612       | 4,719     | 88               | 5,974     | 4,742   | 10,716        |
| Total new supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2,515,514 | 1,745,461 | 3,089,679 | 315.749          | 5.490.431 | 850.116 | 6 269 565     |
| Unaccounted for crude oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 123       | 4,766     | -7,702    | 3,038            | 225       | 693     | 918           |
| Frocessing gain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20,311    | 46,275    | 67,065    | 2,242            | 135,893   | 29,595  | 165,488       |
| Total supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,535,948 | 1,796,502 | 3,149,042 | 321.029          | 5.626.549 | 880.404 | 6.435.971     |
| Change in stocks, all oil 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +26,399   | +25,349   | + 9,639   | +3,165           | +64,552   | -15,224 | +49,328       |
| Total disposition of primary supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,509,549 | 1,771,153 | 3,139,403 | 317,864          | 5,561,997 | 895,628 | 6,386,643     |

| Exports: Crude oil Refined products Shipments to other districts Crude losses | 6,198<br>83,165<br>1,139 | 3,482<br>69,425<br>• 1,470   | 177<br>37,477<br>1,932,756<br>e 1,439 | 46<br>151,303<br>e 564 | 177<br>47,203<br>60,677<br>4,612 | 520<br>36,312<br>10,305<br>285 | 697<br>83,515<br>4,897     |
|-------------------------------------------------------------------------------|--------------------------|------------------------------|---------------------------------------|------------------------|----------------------------------|--------------------------------|----------------------------|
| Domestic demand for products: Gasoline: Motor gasoline Aviation gasoline      | 810,515<br>3.793         | 843,808                      | 352,485<br>3,959                      | 74,172                 | 2,080,980                        | 354,521<br>3,767               | 2,435,501<br>16,531        |
| Total gasoline                                                                | 814,308                  | 848,133                      | 356,444                               | 74,859                 | 2,093,744                        | 358,288                        | 2,452,032                  |
| Jet fuel:<br>Naphtha type<br>Kerosine type                                    | 22,552<br>127,404        | 13,180<br>61,632             | 16,693                                | 2,878 8,320            | 55,303<br>216,860                | 23,917<br>87,275               | 79,220<br>304,135          |
| Total jet fuel Ethane (including ethylene)                                    | 149,956                  | 74,812                       | 36,197                                | 11,198                 | 272,163                          | 111,192                        | 383,355                    |
| Liquefied gases                                                               | 65,292                   | 125,661                      | 186,841                               | 10,389                 | 388,183                          | 20,933                         | 409,116                    |
| Nerosine<br>Distillate fuel oil                                               | 32,853<br>520,668        | 23,577<br>331,903            | 19,224 $123,762$                      | 1,985                  | 77,639 $1,011,115$               | 113,193                        | 1,124,308                  |
| Residual fuel oil                                                             | 700,170                  | 86,052                       | 70,549                                | 9,457                  | 866,228                          | 153,706                        | 1,019,934                  |
| Special naphthas                                                              | 7,477                    | 9,379                        | 10,138                                | 149                    | 27,143                           | 5,087                          | 32,230                     |
| Lubricants                                                                    | 23,923                   | 14,281                       | 14,639                                | 48                     | 52,891                           | 6,146                          | 59,037                     |
| Coke                                                                          | 11.361                   | 35,852                       | 31.764                                | 3.953                  | 82.930                           | 12.196                         | 95.126                     |
| Asphalt                                                                       | 51,636                   | 64,202                       | 33,395                                | 12,265                 | 161,498                          | 21,104                         | 182,602                    |
| Still gas for fuel                                                            | 22,702                   | 46,233                       | 70,071                                | 5,471                  | 0,880                            | 32,281                         | 176,758                    |
| Miscellaneous productsTotal domestic demand                                   | 3,801                    | 3,946                        | 8,696                                 | 232                    | 16,675                           | 2,263                          | 6 297 534                  |
| Stocks of all oils:<br>Crude oil and lease condensate                         | 18,118                   | 67,425                       | 108,705                               | 18,231                 | 207,479                          | 34,999                         | 242,478                    |
| Natural gasoline and plant condensate Refined products                        | 15,712<br>14<br>195,946  | $20,126 \\ 2,278 \\ 194,658$ | 36,709<br>5,061<br>184,676            | 2,795<br>392<br>17,805 | 75,342<br>7,745<br>593,085       | 23,812<br>90<br>65,755         | 99,154<br>7,835<br>658,840 |
| Total                                                                         | 229,790                  | 284,487                      | 335,151                               | 34,223                 | 883,651                          | 124,656                        | 1,008,307                  |

Estimate.
 Excludes imports for substitute natural gas (SNG) plant feedstock use.
 Minus represents withdrawal from stocks, which is added to total disposition; plus represents stocks increase, which is subtracted from total disposition.

Table 5.-Estimates of proved crude oil reserves in the United States on December 31, by State<sup>1</sup>

(Million barrels) 1970 1971 1972 1973 1969 State Eastern States: 152 272 229 209 175 Illinois \_\_\_ 27 37 31 29 Indiana 48 Kentucky \_\_\_\_\_\_ Michigan 73 61 52 62 72 46 59 52 9 8 12 11 New York 125 128 129 127 40 55 51 47 37 Pennsylvania \_\_\_\_\_\_ West Virginia \_\_\_\_\_ 34 32 53 53 52 496 616 589 521 685 Total \_\_\_\_\_ Central and Southern States: 54 61 57 Alabama \_\_\_\_\_ 118 113 106 130 127 (2) 539 Arkansas \_\_\_\_\_ 204 208 184 Kansas \_\_\_\_\_\_ 401 566 502 453 \_\_\_\_\_\_ 5,710 5,399 5,029 577 291 360 355 342 313 Mississippi \_\_\_\_\_ 36 31 28 Nebraska 47 41 840 761 657 583 643 New Mexico \_\_\_\_\_ 235 174 166 179 192 North Dakota 1,351 1.271 1,390 1,405 1.303 Oklahoma \_\_\_\_\_\_ Texas <sup>3</sup> \_\_\_\_\_\_ 12,144 13,023 11,757 13,063 13,195 22,339 21,921 20,400 19,491 22,384 Mountain States: 305 333 326 220 Colorado ----241 219 242 182 228 276 Montana ....-166 244 264 195 1,017 997 950 917 997 Wyoming \_\_\_\_\_ 1,705 1,830 1.724 1.761 1.869 Pacific Coast States: 4 10,096 432 4 10,149 4 10,116 4 10,112 Alaska 4.243 3,984 3,706 3,554 3,488 California <sup>3</sup> 13,600 13,822 13,650 4,675 14,133 Total Other States 5 8 19 83 36,339 35,300 29,632 39,001 Total United States \_\_\_\_\_

Table 6.-Supply and disposition of crude petroleum (including lease condensate) in the United States

| (Thousa                                                                    | nd barrels)                   |                                                  |                                                                                        |                                |                               |
|----------------------------------------------------------------------------|-------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------|-------------------------------|
| Supply and disposition                                                     | 1969                          | 1970                                             | 1971                                                                                   | 1972                           | 1973 Р                        |
| Supply: Production Imports <sup>1</sup>                                    | 3,371,751<br>514,114          | 3,517,450<br>483,293                             | 3,453,914<br>613,417                                                                   | 3,455,368<br>811,135           | 3,360,903<br>1,183,996        |
| Total new supplyStock changes: 2                                           | 3,885,865                     | 4,000,743                                        | 4,067,331                                                                              | 4,266,503                      | 4,544,899                     |
| Domestic crude  Foreign crude Unaccounted for 3                            | -4,668 $-2,298$ $-2,561$      | $^{+10,380}_{0000000000000000000000000000000000$ | $     \begin{array}{r}       -23,239 \\       +6,520 \\       +14,823    \end{array} $ | $-17,064 \\ +3,811 \\ +10,201$ | $-9,964 \\ +6,047 \\ +918$    |
| Disposition by use: Runs of domestic crude Runs of foreign crude Exports 4 | 3,363,602<br>516,003<br>1,436 | 3,485,332<br>482,171<br>4,991                    | 3,481,543<br>606,266<br>503                                                            | 3,473,880<br>806,983<br>187    | 3,359,946<br>1,177,308<br>697 |
| Transfers: Distillate Residual Losses                                      | 654<br>4,334<br>4,241         | 743<br>4,317<br>4,328                            | 1,548<br>4,565<br>4,448                                                                | 944<br>3,322<br>4,641          | 760<br>6,126<br>4,897         |
| Total disposition by use                                                   | 3,890,270                     | 3,981,882                                        | 4,098,873                                                                              | 4,289,957                      | 4,549,734                     |

P Preliminary except for crude petroleum production.

From reports of Committee of Petroleum Reserves, American Petroleum Institute. Included are riom reports of committee of retroieum Reserves, American Petroleum Institute. Included are certainty to be recoverable from known reservoirs under existing economic and operating conditions.

2 Included with "Other States."

<sup>3</sup> Includes offshore reserves.

Includes offishore reserves. 4 These data include the estimate of proved reserves in the Prudhoe Bay Permo-Triassic reservoir, discovered in 1968. The estimate is based on the analysis of extensive engineering and geologic data; however, revisions may be required when actual production performance becomes available. 5 Includes Arizona, Missouri, Nevada, South Dakota, Tennessee, and Virginia.

<sup>&</sup>lt;sup>2</sup> Bureau of Mines data.

Minus represents withdrawal from stock; plus represents stock increase.

Represents the difference between supply and indicated demand for crude petroleum. 4 U.S. Department of Commerce data.

Table 7.-Supply and disposition of crude petroleum (including lease condensate) in the United States, by month

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                            |                             | /                                                         |                                                                              |                             |                           |                      |                    |                          |                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------|-----------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------|---------------------------|----------------------|--------------------|--------------------------|-------------------------------|
| Supply and disposition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Jan.                     | Feb.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mar.                          | Apr.                       | May                         | June                                                      | July                                                                         | Aug.                        | Sept.                     | Oct.                 | Nov.               | Dec.                     | Total                         |
| Supply: Production Imports 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 282,543<br>63,419        | 270,749<br>60,344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 293,311<br>64,066             | 285,389<br>60,129          | 298,043<br>66,958           | 285,646<br>62,544                                         | 294,385<br>67,635                                                            | 293,958<br>65,463           | 285,249<br>70,909         | 293,929<br>78,003    | 282,793<br>68,978  | 289,373<br>82,687        | 3,455,368<br>811,135          |
| Total new supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 345,962                  | 331,093<br>+2,899                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 357,377<br>+5,379             | 345,518<br>+4,948          | 365,001<br>+8,886           | 348,190                                                   | 362,020<br>8,055                                                             | 359,421                     | 356,158                   | 371,932<br>+1,102    | 351,771<br>+1,408  | 372,060<br>9,736         | 4,266,503                     |
| Foreign crude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 909<br>831               | + 853<br>+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | + 578<br>+ 963                | $^{+2,786}_{-1,387}$       | +3,968<br>+4,381            | -3,297<br>-315                                            | +2,517<br>+1,645                                                             | $^{-759}_{+2,852}$          | -2,926 + 793              | +1,844 $-214$        | $-3,850 \\ +2,130$ | $^{+4,825}_{-669}$       | $^{+3,811}_{+10,201}$         |
| Disposition by use: Runs of domestic crude Exports 3 Front Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Con | 288,758<br>64,277        | 268,078<br>61,254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 288,230<br>63,473             | 278,197<br>57,336<br>187   | 292,840<br>62,966           | 289,416<br>65,820                                         | 303,350<br>65,095                                                            | 303,162<br>66,215           | 289,560<br>73,804         | 291,916<br>76,083    | 282,723<br>72,815  | 297,650<br>77,845        | 3,473,880<br>806,983<br>187   |
| Distillate Residual Losses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 72<br>277<br>383         | 60<br>262<br>359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 46<br>252<br>382              | 68<br>243<br>366           | 81<br>255<br>386            | 88<br>275<br>385                                          | 91<br>268<br>399                                                             | 92<br>272<br>399            | 89<br>279<br>393          | 809<br>398           | 105<br>314<br>386  | 86<br>316<br>405         | 944<br>3,322<br>4,641         |
| Total disposition by use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 353,767                  | 330,013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 352,383                       | 336,397                    | 356,528                     | 355,984                                                   | 369,203                                                                      | 370,140                     | 364,125                   | 368,772              | 356,343            | 376,302                  | 4,289,957                     |
| 1973 р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                            |                             |                                                           |                                                                              |                             |                           |                      |                    |                          |                               |
| Supply: Production Imports 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 284,454<br>84,693        | 263,066<br>80,433                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 287,430<br>98,021             | 278,757<br>91,459          | 287,134<br>99,654           | 276,418<br>96,613                                         | 285,731<br>108,530                                                           | 284,225<br>111,368          | 271,959<br>104,117        | 285,940<br>115,905   | 274,829<br>103,570 | 280,960<br>89,633        | 3,360,903<br>1,183,996        |
| Change in stocks and of nations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 369,147                  | 343,499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 385,451                       | 370,216                    | 386,788                     | 373,031                                                   | 394,261                                                                      | 395,593                     | 376,076                   | 401,845              | 378,399            | 370,593                  | 4,544,899                     |
| Tonnestic crude  Foreign crude  Unaccounted for 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $-8,435 \\ -491 \\ +612$ | -2,058 $-49$ $-3,637$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $^{+5,849}_{+2,920}_{+2,352}$ | $^{+4,663}_{-11}_{+1,466}$ | $^{+8,460}_{+624}_{+3,924}$ | $\begin{array}{l} -6,452 \\ -2,558 \\ +5,041 \end{array}$ | $^{\mathbf{-9,188}}_{\mathbf{+4,004}}\\^{\mathbf{+4,004}}_{\mathbf{-2,979}}$ | $^{+609}_{+4,032}_{+2,046}$ | -4,009 $-3,029$ $-5,121$  | $^{+2,016}_{-3,005}$ | $^{+999}_{-2,337}$ | -2,418<br>-5,102<br>-339 | $^{-9,964}_{+6,047}$          |
| Disposition by use: Runs of domestic crude Runs of foreign crude Exports 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 292,755<br>85,148        | 260,792<br>80,452                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 283,168<br>95,053             | 274,790<br>91,449          | 281,760<br>98,942<br>128    | 286,783<br>99,086                                         | 290,839<br>104,397<br>232                                                    | 284,383<br>107,316          | 269,706<br>107,083<br>160 | 282,613<br>112,878   | 270,389<br>100,835 | 281,968<br>94,669<br>177 | 3,359,946<br>1,177,308<br>697 |
| Transfers: Distillate Residual Losses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 44<br>330<br>408         | 42<br>312<br>371                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 76<br>329<br>408              | 69<br>326<br>396           | 67<br>320<br>411            | 68<br>729<br>416                                          | 81<br>492<br>425                                                             | 64<br>813<br>422            | 69<br>568<br>407          | 76<br>722<br>425     | 46<br>690<br>401   | 58<br>495<br>407         | 760<br>6,126<br>4,897         |
| Total disposition by use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 378,685                  | 341,969                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 379,034                       | 367,030                    | 381,628                     | 387,082                                                   | 396,466                                                                      | 392,998                     | 377,993                   | 396,714              | 372,361            | 377,774                  | 4,549,734                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                               |                            | -                           |                                                           |                                                                              |                             | -                         |                      | -                  |                          |                               |

P.Preliminary except for crude petroleum production.
Reported to the Bureau of Mines. Imports of crude oil include some Athabasca hydrocarbons.
Represents the difference between supply and indicated demand for crude petroleum.
U. S. Department of Commerce.

Table 8.-Production of crude petroleum (including lease condensate) in the United States, by State and month

| State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Jan.    | Feb.     | Mar.    | Apr.               | Мау         | June         | July    | Aug.           | Sept.             | Oct.         | Nov.    | Dec.           | Total     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|---------|--------------------|-------------|--------------|---------|----------------|-------------------|--------------|---------|----------------|-----------|
| 1979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |          |         |                    |             |              |         |                |                   |              |         |                |           |
| Alabama                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 730     | 269      | 782     | 784                | 838         | 818          | 892     | 206            | 879               | 882          | 857     | 868            | 9,934     |
| Alaska                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6,423   | 5,448    | 6,261   | 6,066<br>80        | 6,228<br>86 | 6,080<br>83  | 0,2,0   | 680<br>89      | 86<br>86          | *71'0<br>179 | 64      | 80,0           | 993       |
| Arlzona                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.521   | 1.463    | 1.570   | 1.523              | 1.582       | 1,531        | 1,584   | 1,577          | 1,526             | 1,588        | 1,501   | 1,553          | 18,519    |
| California                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 29,398  | 27,759   | 29,515  | 28,592             | 29,637      | 28,471       | 29,421  | 29,479         | 28,388            | 29,315       | 28,286  | 28,761         | 847,022   |
| Colorado                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2,239   | 2,215    | 2,445   | 2,390              | 2,587       | 2,523        | 2,641   | 2,760          | 2,868             | 7,866        | 3,153   | 0,020          | 16,010    |
| Florida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 532     | 554      | 621     | 958                | 1,178       | 1,126        | 1,497   | 1,774<br>9,976 | 1,954<br>9,769    | 2,828        | 2,798   | 2,676          | 34.874    |
| Illinois                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3,198   | 2,874    | 3,071   | 2,828              | 5,044       | 4,314<br>495 | 7000    | 544            | 2,2               | 534          | 482     | 445            | 6,130     |
| Indiana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6 204   | 400      | 6.594   | 6.196              | 6.513       | 6.183        | 6.154   | 6,272          | 5,980             | 6,078        | 5,702   | 5,709          | 73,744    |
| Kontucky                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 820     | 794      | 855     | 778                | 869         | 826          | 809     | 846            | 772               | 812          | 779     | 742            | 9,702     |
| Louisiana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 76,022  | 70,297   | 76,219  | 73,515             | 77,131      | 73,381       | 75,389  | 75,435         | 73,000            | 75,331       | 72,362  | 73,745         | 891,827   |
| Michigan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,055   | 917      | 994     | 1,021              | 1,077       | 1,076        | 1,121   | 1,175          | 1,158             | 1,218        | 1,098   | 1,000<br>7,199 | 61,390    |
| Mississippi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5,017   | 4,760    | 5,195   | $5,16\overline{6}$ | 5,306       | 5,108        | 5,251   | 9,233          | 4,904<br>7        | 9,009        | 4,035   | 9,144<br>5     | 901,10    |
| Missouri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9 20 0  | 0 0      | 000     | 0000               | 900 6       | 9 210        | 9 900   | 9 855          | 2.775             | 2.891        | 2.798   | 2.896          | 33.904    |
| Montana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2,72    | 2,024    | 4,000   | 777                | 763         | 729          | 724     | 719            | 686               | 710          | 662     | 651            | 8,705     |
| Nebraska                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 48,     | 64.<br>G | 90      | 5                  | 30          | 300          |         | 2-:            | 6                 | 10           | 00      | 11             | 100       |
| Nevada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 664   | 0 068    | 9 599   | 0 344              | 9 526       | 886.8        | 9.287   | 9.286          | 8.859             | 9.179        | 8,815   | 8,910          | 110,525   |
| New Mexico                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *,00,e  | 8000     | 3,000   | 99                 | 06          | 93           | 108     | 72             | 81                | 85           | 74      | 73             | 1,018     |
| New Lork Delects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 754   | 1.654    | 1.791   | 1.693              | 1.728       | 1.698        | 1,730   | 1,722          | 1,696             | 1,737        | 1,685   | 1,736          | 20,624    |
| Ohio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 870     | 808      | 805     | 602                | 188         | 799          | 785     | 998            | 721               | 755          | 721     | 731            | 9,358     |
| Oklahoma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17,696  | 18,017   | 17,464  | 16,921             | 18,073      | 17,112       | 17,967  | 16,708         | 17,108            | 17,165       | 16,480  | 16,922         | 207,633   |
| Pennsylvania                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 289     | 266      | 262     | 260                | 304         | 289          | 283     | 302            | 279               | 325          | 294     | 788            | 6,441     |
| South Dakota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14      | 13       | 23      | 20                 | 20          | 80 5         | 17      | 017            | × •               | 707          | 17.     | 12             | 108       |
| Tennessee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17      | 15       | 17      | 16                 | 17          | 91           | 7.T     | ).T            | 100 110           | 110 010      | 100 070 | 110 295        | 1 201 685 |
| Texas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 99,641  | 98,377   | 109,422 | 108,688            | 113,071     | 108,659      | 112,117 | 201,211        | 108,444           | 9 981        | 9,969   | 9,075          | 2,001,000 |
| Utah                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,196   | 2,115    | 2,282   | 2,204              | 2,147       | 2,730        | 2,130   | 7,007          | 2,4<br>2,6<br>3,6 | 107,7        | 207,7   | 200            | 9,677     |
| West Virginia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12.22   | 19.236   | 12.899  | 11.291             | 11.769      | 11,324       | 11,542  | 11,582         | 11,323            | 11,605       | 10,523  | 11,231         | 140,011   |
| Wyoumis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 989 543 | 970 749  | 293 311 | 285.389            | 298.043     | 285.646      | 294.385 | 293,958        | 285,249           | 293,929      | 282,793 | 289,373        | 3,455,368 |
| 100a1: 1014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 299,305 | 272,404  | 302,809 | 293,068            | 298,980     | 288,117      | 293,154 | 291,730        | 274,057           | 284,032      | 274,170 | 282,088        | 3,453,914 |
| Daily average, 1972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9,114   | 9,336    | 9,462   | 9,513              | 9,614       | 9,522        | 9,496   | 9,483          | 9,508             | 9,482        | 9,426   | 9,335          | 9,441     |
| Pennsylvania grade (included in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |         |                    | ,           | 1            | ,       | ,              |                   | 100          | 010     | 700            | 10 176    |
| United States Total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,232   | 1,155    | 1,121   | 1,013              | 1,120       | 1,127        | 1,108   | 1,146          | 1,016             | 1,097        | 1,010   | 1,025          | 19,110    |
| 1973                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 060     | 071      | 1 041   | 1 094              | 1 007       | 876          | 1 039   | 954            | 974               | 978          | 696     | 1.003          | 11,677    |
| Alacka                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.033   | 6.061    | 5.386   | 5,901              | 6,195       | 5,937        | 6,248   | 6,425          | 6,018             | 6,213        | 5,844   | 6,062          | 72,323    |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 76      | 74       | 92      | 72                 | 65          | 69           | 62      | 89             | 63                | 28           | 28      | 63             | 804       |
| Arkansas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,547   | 1,427    | 1,522   | 1,508              | 1,510       | 1,462        | 1,517   | 1,547          | 1,537             | 1,531        | 1,439   | 1,469          | 18,016    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |         |                    |             |              |         |                |                   |              |         |                |           |
| California:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.518  | 10.495   | 11.565  | 11,043             | 11,292      | 10,880       | 11,142  | 11,095         | 10,659            | 10,949       | 10,630  | 10,924         | 132,192   |
| Dought same and a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon | 1       |          |         |                    |             |              |         |                |                   |              |         |                |           |

| Central Coastal East Central North                                                                                                                                                                                                                                                          | 6,609<br>10,494<br>65                                                                                                  | 6,031<br>9,494<br>57                                                                                    | 6,701<br>10,511<br>61                                                                                     | 6,471<br>10,243<br>60                                                                                                 | 6,708<br>10,626<br>62                                                                                                                    | 6,614<br>10,253<br>56                                                                                          | 6,783<br>10,482<br>54                                                                                         | 6,748 $10,532$ $59$                                                                               | 6,423<br>10,147<br>57                                                                                               | 6,685<br>10,657<br>57                                                                                      | 6,410<br>10,297<br>59                                                                                                                | 6,537<br>10,722<br>58                                                                                                       | 78,720<br>124,458<br>705                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Total California Colorado Frorida Illinois Indiana Kanasa Kentucky                                                                                                                                                                                                                          | 28,686<br>2,883<br>2,583<br>2,779<br>456<br>5,677                                                                      | 26,077<br>2,627<br>2,627<br>2,416<br>424<br>5,416<br>807                                                | 28,838<br>2,821<br>2,918<br>2,748<br>5,605<br>786                                                         | 27,817<br>2,858<br>2,713<br>2,616<br>435<br>5,669                                                                     | 28,688<br>3,027<br>2,770<br>2,747<br>460<br>5,925<br>726                                                                                 | 27,803<br>3,098<br>2,585<br>2,506<br>422<br>5,628<br>705                                                       | 28,461<br>3,507<br>2,692<br>2,511<br>467<br>5,557                                                             | 28,434<br>2,826<br>2,767<br>2,601<br>5,672                                                        | 27,286<br>3,188<br>2,719<br>2,423<br>417<br>5,212<br>659                                                            | 28,348<br>3,295<br>2,769<br>2,576<br>462<br>5,664<br>746                                                   | 27,396<br>3,202<br>2,758<br>2,442<br>5,269<br>639                                                                                    | 28,241<br>3,170<br>2,794<br>2,304<br>4,933<br>655                                                                           | 336,075<br>386,590<br>32,699<br>30,669<br>5,312<br>66,227<br>8,687                                                                 |
| Louisiana:<br>Gulf Coast                                                                                                                                                                                                                                                                    | 69,385<br>3,544                                                                                                        | 62,417<br>3,223                                                                                         | 69,230<br>3,449                                                                                           | 66,836<br>3,020                                                                                                       | 67,940<br>3,013                                                                                                                          | 65,705<br>3,069                                                                                                | 68,287                                                                                                        | 66,949                                                                                            | 60,463                                                                                                              | 66,215<br>3,465                                                                                            | 63,685                                                                                                                               | 64,648<br>3,523                                                                                                             | 791,760<br>39,764                                                                                                                  |
| Michigan Michigan Mississippi Missouri Montana Nebraska                                                                                                                                                                                                                                     | 72,929<br>1,171<br>5,024<br>5,246<br>653                                                                               | 65,640<br>1,069<br>4,314<br>5,2501<br>5,501<br>5,91                                                     | 72,679<br>1,020<br>4,848<br>5<br>2,963<br>602<br>8                                                        | 69,856<br>1,219<br>4,633<br>2,807<br>589<br>8                                                                         | 70,953<br>1,272<br>4,751<br>2,997<br>630                                                                                                 | 68,774<br>1,202<br>4,671<br>2,863<br>614<br>8                                                                  | 71,614<br>1,253<br>4,768<br>5<br>2,887<br>622<br>8                                                            | 70,393<br>1,267<br>4,787<br>5<br>2,921<br>623                                                     | 63,767<br>1,206<br>4,606<br>2,868<br>579                                                                            | 69,680<br>1,310<br>4,669<br>5<br>3,035<br>600                                                              | 67,068<br>1,245<br>4,520<br>5<br>2,911<br>575<br>8                                                                                   | 68,171<br>1,380<br>4,611<br>3,001<br>562<br>8                                                                               | 831,524<br>14,614<br>56,102<br>84,620<br>7,240                                                                                     |
| New Mexico:<br>Southeastern<br>Northwestern                                                                                                                                                                                                                                                 | 8,049                                                                                                                  | 7,387                                                                                                   | 8,191<br>597                                                                                              | 7,796                                                                                                                 | 8,052                                                                                                                                    | 7,676                                                                                                          | 7,719                                                                                                         | 7,716                                                                                             | 7,452                                                                                                               | 7,938                                                                                                      | 7,679                                                                                                                                | 7,761                                                                                                                       | 93,416<br>7,570                                                                                                                    |
| Total New Mexico New York North Dakota Ohio Oklahoma Pennsylwais South Dakota Tennessee                                                                                                                                                                                                     | 8,692<br>1,723<br>667<br>15,917<br>278<br>18                                                                           | 7,949<br>64<br>1,602<br>584<br>17,071<br>265<br>17                                                      | 8,788<br>1,684<br>16,080<br>255<br>17                                                                     | 8,421<br>84<br>1,655<br>778<br>15,292<br>238<br>17                                                                    | 8,696<br>1,783<br>828<br>16,376<br>295<br>18                                                                                             | 8,292<br>84<br>1,638<br>15,748<br>280<br>18                                                                    | 8,341<br>86<br>1,687<br>780<br>16,217<br>283<br>19                                                            | 8,326<br>1,701<br>1,701<br>15,579<br>293<br>28<br>18                                              | 8,077<br>82<br>1,690<br>16,228<br>262<br>262<br>28<br>28                                                            | 8,626<br>1,728<br>15,955<br>304<br>175                                                                     | 8,331<br>1,682<br>14,885<br>272<br>34<br>16                                                                                          | 8,447<br>1,662<br>15,856<br>260<br>31                                                                                       | 100,986<br>967<br>20,235<br>8,796<br>191,204<br>3,282<br>275<br>201                                                                |
| Texas:  District 01 District 02 District 04 District 04 District 04 District 06 District 06 District 07 District 07 District 08 District 08 District 08 District 08 District 08 District 08 District 08 District 08 District 08 District 09 District 09 District 09 District 09 District 09 | 1,898<br>6,637<br>14,996<br>5,1787<br>6,757<br>6,757<br>8,051<br>3,051<br>23,496<br>23,496<br>27,776<br>3,918<br>1,882 | 1,721<br>13,6376<br>13,6376<br>13,6387<br>6,5387<br>5,918<br>2,873<br>3,194<br>21,699<br>1,799<br>1,799 | 1,901<br>6,665<br>15,335<br>5,418<br>2,760<br>6,512<br>8,192<br>3,192<br>3,192<br>3,192<br>4,078<br>1,964 | 1,805<br>6,511<br>14,781<br>5,278<br>6,275<br>6,273<br>6,273<br>8,3020<br>3,355<br>23,385<br>27,884<br>1,860<br>1,860 | 1,831<br>(6,694<br>15,009<br>5,297<br>2,772<br>6,744<br>6,461<br>3,116<br>3,116<br>3,387<br>23,387<br>23,387<br>29,076<br>1,967<br>1,967 | 1,712<br>14,333<br>14,333<br>5,056<br>6,505<br>6,503<br>2,245<br>2,37,864<br>2,3864<br>1,865<br>1,859<br>1,859 | 1,763<br>14,883<br>14,883<br>14,883<br>5,791<br>6,623<br>3,030<br>3,030<br>23,333<br>23,333<br>1,873<br>1,873 | 1,746<br>6,580<br>14,856<br>5,019<br>2,819<br>6,761<br>6,761<br>8,338<br>29,970<br>1,847<br>1,949 | 1,676<br>6,332<br>14,349<br>4,754<br>4,754<br>6,117<br>6,117<br>2,925<br>3,208<br>22,925<br>3,208<br>1,175<br>1,775 | 1,720<br>6,501<br>14,887<br>4,887<br>6,784<br>6,784<br>6,294<br>3,037<br>3,037<br>80,581<br>1,866<br>1,866 | 1,661<br>14,204<br>4,638<br>14,204<br>4,638<br>2,690<br>6,122<br>3,201<br>2,962<br>3,201<br>2,962<br>3,690<br>1,785<br>1,78<br>1,778 | 1,714<br>6,391<br>14,594<br>4,728<br>6,725<br>6,725<br>6,297<br>8,026<br>8,297<br>8,026<br>8,036<br>8,036<br>1,821<br>1,821 | 21,143<br>77,144<br>175,844<br>60,091<br>32,765<br>79,776<br>86,236<br>89,826<br>89,826<br>88,836<br>84,960<br>22,271<br>1,294,671 |

See footnotes at end of table.

Table 8.-Production of crude petroleum (including lease condensate) in the United States, by State and month-Continued (Thousand barrels)

| Total | 32,656<br>2,385<br>141,914       | 3,360,903<br>3,455,368<br>9,208<br>12,090             | d Con- na Tax ennsyl- Jonser- Texas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------|----------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                                  |                                                       | s and sion.  on.  lahom lahom ces.  of (  on of (  in sion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Dec.  | 3,090<br>202<br>12,309           | 280,960<br>289,373<br>9,063<br>1,027                  | Resource<br>Commission<br>mission.<br>ces.<br>and Ok<br>iic Surv.<br>I Resour<br>partment<br>partment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Nov.  | 2,914<br>209<br>12,379           | 274,829<br>282,793<br>9,161<br>1,034                  | tatural ravation Communitarion Communitarion Communitarion Indianterion Indianterion Indianterion Communitarion Communitarion Communitarion Communitarion Conf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Oct.  | 3,116<br>223<br>12,778           | 285,940<br>293,929<br>9,224<br>1,122                  | sis Concerns as Concerns as Concerns as Concerns as Concerns conferred cological Sign f. Nature tion Compubic an of Environment of Environment of Environment of Environment of Environment Conserva automent Gas Concerns automent Gas Concerns automent of Conserva automent Gas Concerns automent of Conserva automent of Conserva automent of Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserva Conserv |
| Sept. | 2,732<br>169<br>12,305           | 271,959<br>285,249<br>9,065<br>970                    | Department of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of  |
| Aug.  | 2,823<br>189<br>11,961           | 284,225<br>293,958<br>9,169<br>1,058                  | Montana —Montana Department of Natural Resources and Conservation.  Nebraska —Nebraska Oil and Gas Conservation Commission.  Nevada —Newada Oil and Gas Conservation Commission.  New Mexico —New Mexico Oil Conservation Commission.  New York State Geological Survey.  North Dakota—North Dakota Geological Survey.  Ohio Department of Natural Resources.  Oklahoma —Oklahoma Corporation Commission and Oklahoma Tax —Commission.  Pennsylvania —Bureau of Topographic and Geologic Survey, Pennsylvania —Bureau of Topographic and Geologic Survey.  Tennessee — Aurision of Geology, Tennessee Department of Conservation.  Utah —Utah Oil and Gas Conservation Commission.  West Virginia —West Virginia Department of Mines.  West Virginia—West Virginia Department of Mines.  Wyoming —Wyoming Oil and Gas Conservation Commission.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| July  | 2,777<br>180<br>11,582           | 285,731<br>294,385<br>9,217<br>1,034                  | co nia cota inia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| June  | 2,705<br>190<br>11,764           | 276,418<br>285,646<br>9,214<br>1,034                  | Montana Nebraska Newadaa New Mexico New York North Dakoi Oklahoma Pennsylvani South Dakot Tenessee Texas Utah West Virgini West Virgini                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| May   | 2,723<br>207<br>12,044           | 287,134<br>298,043<br>9,262<br>1,095                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Apr.  | 2,818<br>193<br>11,379           | 278,757<br>285,389<br>9,292<br>1,002                  | Con-<br>logi-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Mar.  | 2,390<br>217<br>11,736           | 287,430<br>298,311<br>9,272                           | on. ment of ion.  U.S. Gee epartmen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Feb.  | 2,220<br>185<br>10,431           | 263,066<br>270,749<br>9,395<br>847                    | i. ceources. ceources. ia Depart ia Depart Commissi Commiss cesources. Resources tion and tion and tica and cd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Jan.  | 2,348<br>221<br>11,246           | 284,454<br>282,543<br>9,176                           | ias Board<br>efatural<br>californ<br>californ<br>servation<br>fatural R<br>Survey.<br>Natural I<br>mission.<br>Conserva<br>ion, Mic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| State | Utah<br>West Virginia<br>Wyoming | United States:  average, 1973 grade (included in      | 1973 data:  —Alabama State Oil and Gas Board. —Alasta Department of Natural Resources. —Arizona Oil & Gas Conservation Commission. —Arizona Oil and Gas Commission. —Division of Oil and Gas, California Department of Conservation. —Colorado Oil & Gas Conservation Commission. —Florida Department of Natural Resources. —Indiana Department of Natural Resources. —Indiana Department of Natural Resources. —Kansas Corporation Commission. —Kentucky Geological Survey. —Louisiana Department of Conservation and U.S. Geological Survey. —Geological Survey Division, Michigan Department of Natural Resources. —Maississippi State Oil and Gas Board. —Missouri Geological Survey and Water Resources.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       | Utah<br>West Virginia<br>Wyoming | Total U 1973 1973 1972 Daily Pennsylvania U.S. total) | Sources of 1973 data: Alabama — Alaska Ariaska — Ariaska Arizona — Arizona Arkansas — Arkans California — Divisio California — Colora Colorado — Colora Florida — Illinois — Illinois — Illinois — Illinois — Kansas Kansas — Kansas Kentucky — Kentuck Louisiana — Cal Sul Michigan — Geologi Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississippi — Mississip |

Table 9.-Percentage of total U.S. crude petroleum produced, by State

| State        | 1969   | 1970  | 1971  | 1972  | 1973  |
|--------------|--------|-------|-------|-------|-------|
| Texas        | 34.2   | 35.5  | 35.4  | 37.7  | 38.5  |
| Louisiana    | r 25.1 | 25.8  | 27.1  | 25.8  | 24.7  |
| California   | 11.1   | 10.6  | 10.4  | 10.0  | 10.0  |
| Oklahoma     | 6.7    | 6.4   | 6.2   | 6.0   | 5.7   |
| Wyoming      | 4.6    | 4.6   | 4.3   | r 4.0 | 4.2   |
| New Mexico   | 3.8    | 3.6   | 3.4   | 3.2   | 3.0   |
| Alaska       | 2.2    | 2.4   | 2.3   | 2.1   | 2.2   |
| Kansas       | 2.6    | 2.4   | 2.3   | 2.1   | 2.0   |
| Mississippi  | 1.9    | r 1.8 | 1.9   | 1.8   | 1.7   |
| Colorado     | r.9    | .7    | .8    | .9    | 1.1   |
| Montana      | 1.3    | 1.1   | 1.0   | 1.0   | 1.0   |
| Florida      |        | .1    | .2    | .5    | 1.0   |
| Utah         | `´.7   | .7    | .7    | .8    | 1.0   |
| Illinois     | 1.5    | 1.2   | 1.1   | 1.0   | .9    |
| North Dakota | 7      | .6    | .6    | .6    | .6    |
| Arkansas     | .5     | .5    | .5    | .5    | .5    |
| Michigan     | .4     | .3    | .3    | .4    | .4    |
| Alabama      | .2     | .2    | .2    | .3    | .8    |
| Ohio         | .3     | .3    | .2    | .3    | .3    |
| Other States |        | r 1.2 | r 1.1 | r 1.0 | r.g   |
| Total        | 100.0  | 100.0 |       | 100.0 | 100.0 |
|              |        |       |       |       |       |

Table 10.-Production and reserves of crude petroleum in leading fields in the United States

|                                  | Q1-4       | Produ  | ction  | Total<br>since | Estimated |
|----------------------------------|------------|--------|--------|----------------|-----------|
| Field <sup>1</sup>               | State      | 1972   | 1973   | discovery 2    | reserves  |
| Wasson                           | Texas      | 62,764 | 83,726 | 616,311        | 716,237   |
| East Texas                       | do         | 77,702 | 75,436 | 4,169,403      | 1,830,597 |
| Kelly-Snyder                     | do         |        | 70,944 | 540,039        | 568,073   |
| Wilmington                       | California |        | 67,066 | 1,549,496      | 763,317   |
| Slaughter                        | Texas      | 39,933 | 45,486 | 548,432        | 241,568   |
| Hawkins                          | do         |        | 39,513 | 496,067        | 328,933   |
| McArthur River                   | Alaska     | 40,825 | 39,171 | 214,485        | 175,939   |
| Midway Sunset                    | California | 34,546 | 34,699 | 1,192,592      | 413,111   |
| Sho-Vel-Tum                      | Oklahoma   |        | 33,320 | 968,206        | 181,794   |
| Bay Marchand Block 2             | Louisiana  |        | 32,561 | 396,912        | 253,098   |
| Jay                              | Florida    |        | 27,977 | 42,217         | 270,783   |
| Kern River                       | California |        | 27,973 | 607,784        | 469,288   |
| Tom O'Connor                     | Texas      | 29,635 | 27,895 | 470,743        | 229,257   |
| Caillou Island                   | Louisiana  |        | 25,613 | 498,875        | 201,125   |
| West Delta Block 30              | do         | 25,144 | 24,626 | 289,876        | 160,124   |
| Hastings, East and West          | Texas      | 21,760 | 22,546 | 475,079        | 199,921   |
| Conroe                           | do         | 17,278 | 21,846 | 518,922        | 156,078   |
| Webster                          | do         |        | 20,894 | 388,196        | 186,804   |
| Grand Isle Block 43              | Louisiana  |        | 20,732 | 142,670        | 227,402   |
| Huntington Beach                 | California | 21,595 | 20,389 | 904,585        | 131,792   |
| Spraberry Trend                  | Texas      | 20,617 | 20,383 | 361,443        | 148,557   |
| Rangely                          | Colorado   |        | 19,378 | 491,337        | 108,663   |
| Goldsmith All                    | Texas      | 19,015 | 19,298 | 561,227        | 113,773   |
| Grand Isle Block 16              | Louisiana  |        | 18,936 | 197,896        | 152,104   |
| Yates                            | Texas      |        | 18,195 | 587,252        | 1,012,748 |
| West Ranch                       | do         |        | (3)    | (3)            | (3)       |
| Fairway                          | do         |        | 17,175 | 109,962        | 89,975    |
| Dos Cuadras                      | California |        | 16,745 | 87,498         | 88,237    |
| South Pass Block 24              | Louisiana  |        | 16,740 | 356,253        | 133,747   |
| Van and Van Shallow              | Texas      |        | 16,658 | 403,120        | 146,880   |
| Cowden South (Foster, Johnson)   | do         |        | 16,075 | 282,899        | 117,101   |
| Thompson (all fields)            | do         |        | 15,858 | 353,752        | 146,248   |
| Seminole All                     | do         |        | 15,475 | 199,245        | 115,755   |
|                                  | Wyoming    |        | 15,203 | 529,603        | 65,397    |
| Salt Creek<br>Main Pass Block 41 | Louisiana  |        | 14,808 | 134,123        | 145,877   |
| South Pass Block 27              | do         |        | 13,366 | 247,358        | 137,642   |
| Cowden North                     | Texas      |        | 13,091 | 261,866        | 63,134    |
| Greater Altamont                 | Utah       |        | 13,069 | 24,367         | 250,333   |
| San Ardo                         | California |        | 12,609 | 261,332        | 86,636    |
| Panhandle                        | Texas      |        | 12,579 | 1,271,238      | 143,762   |

See footnotes at end of table.

r Revised.
1 Less than 0.05 percent.

Table 10.-Production and reserves of crude petroleum in leading fields in the United States-Continued

| Field <sup>1</sup>       | State -           | Produ           | ction  | Total                           | Estimated       |
|--------------------------|-------------------|-----------------|--------|---------------------------------|-----------------|
|                          | Diate             | 1972            | 1973   | since<br>discovery <sup>2</sup> | reserves        |
| Cogdell Area             | Texas             | 14,054          | 12,255 | 177,681                         | 142,319         |
| South Pass Block 65      | Louisiana         | 11.931          | 12,088 | 36,088                          | 153.912         |
| Salt Creek               | Texas             | 13,054          | 12,014 | 113,570                         | 116,430         |
| Sooner Trend             | Oklahoma          | 14,390          | 11,480 | 189,604                         | 60,396          |
| Oregon Basin             | Wyoming           | 12,200          | 11,392 | 228,995                         | 61,005          |
| Ship Shoal Block 208     | Louisiana         | 14,420          | 11,262 | 81,947                          | 143,053         |
| Levelland                | Texas             | 10,041          | 11,201 | 220,117                         | 104.883         |
| Ventura                  | California        | 10,369          | 11.022 | 782,054                         | 69.946          |
| Anahuac                  | Texas             | 11,255          | 10,969 | 234,810                         | 115,190         |
| Main Pass Block 69       | Louisiana         | 11,566          | 10,924 | 183,037                         | 76,963          |
| McElroy                  | Texas             | 10.289          | 10,772 | 296,698                         | 62,302          |
| Garden Island Bay        | Louisiana         | 12,993          | 10,384 | 166,426                         | 89,911          |
| W. Cote Blanche Bay      | do                | 13,908          | 10,288 | 139,436                         | 110,564         |
| Middle Ground Shoal      | Alaska            | 9,639           | 10,259 | 78,682                          | 106,033         |
| Swanson River            | do                | 8,874           | 10,059 | 144,551                         | 60,938          |
| Golden Trend             | Oklahoma          | 11.955          | 9.875  | 393.876                         | 106,124         |
| Eugene Island Block 175  | Louisiana         | 6.954           | 9.873  | 29,241                          | 80,759          |
| Empire Abo               | New Mexico        | 8,735           | 9.797  | 98.904                          |                 |
| Elk Basin                | Montana, Wyoming  | 12.500          | 9.559  | 461.354                         | 71,096 $78,646$ |
| Weeks Island             | Louisiana         | 11.053          | 9,486  | 139,729                         |                 |
| Timbalier Bay            | do                | $\binom{3}{3}$  | 9,456  |                                 | 96,271          |
| West Delta Block 73      | do                | 16,250          | 9,450  | 226,634                         | 200,111         |
| Dune                     | Texas             | 11.332          | 9,348  | 120,565                         | 154,435         |
| South Pass Block 62      | Louisiana         |                 |        | 119,028                         | 80,972          |
| Belridge South           | California        | 10,248<br>8,705 | 8,666  | 41,956                          | 148,044         |
| West Bay                 | Louisiana         |                 | 8,558  | 186,258                         | 73,526          |
| Lafitte                  | do                | 9,040           | 8,363  | 169,864                         | 70,136          |
| West Delta Block 58      | do                | 9,333           | 8,211  | 206,805                         | 51,190          |
| Black Bay West           | do                | 8,674           | 8,176  | 28,056                          | 121,944         |
| Bell Creek               | Montone           | 9,113           | 8,036  | 84,470                          | 65,530          |
| Baxterville              | Montana           | 5,880           | 7,967  | 58,912                          | 51,088          |
| Hilight                  | Mississippi       | 9,630           | 7,902  | 160,160                         | 74,840          |
| Trading Bay              | Wyoming<br>Alaska | 7,800           | 7,896  | 42,090                          | 92,910          |
| Greater Aneth            |                   | 8,690           | 7,830  | 48,902                          | 25,505          |
| Means All                | Utah              | 7,470           | 7,814  | 251,515                         | 63,485          |
| Diamond M                | Texas             | 7,889           | 7,677  | 139,605                         | 70,395          |
| Word Ester North         | do                | 7,769           | 7,547  | 190,164                         | 84,836          |
| Ward-Estes North         | do                | 8,747           | 7,520  | 304,004                         | 70,995          |
| Tijerina-Canales-Blucher | do                | 6,623           | 7,094  | 96,661                          | 68,339          |
| Coalinga                 | California        | 7,702           | 7,062  | 626.495                         | 72,370          |

Fields under 7 million barrels not shown for current year.
 Includes revisions, if any.
 Not reported.

Source: Oil and Gas Journal. All figures are preliminary.

Table 11.-Well completions in the United States, by quarter 1

|                  | 1st     | 2nd     | 3rd     | 4th     | Tota   | al           |
|------------------|---------|---------|---------|---------|--------|--------------|
|                  | quarter | quarter | quarter | quarter | Number | Per-<br>cent |
| 1972:            |         |         |         |         |        |              |
| Oil              | 2,981   | 2,884   | 2,813   | 2.637   | 11,306 | 41.4         |
| Gas <sup>2</sup> | 1,021   | 1,081   | 1,212   | 1,614   | 4.928  | 18.1         |
| Dry              | 2,690   | 2,497   | 2,703   | 3,184   | 11,057 | 40.5         |
| Total            | 6,692   | 6,462   | 6,728   | 7,435   | 27,291 | 100.0        |
| 1973:            |         |         |         |         |        |              |
| Oil              | 2,474   | 2,219   | 2,497   | 2,701   | 9.902  | 37.2         |
| Gas <sup>2</sup> | 1,392   | 1.330   | 1,658   | 1,993   | 6.385  | 24.0         |
| Dry              | 2,561   | 2,222   | 2,518   | 3,028   | 10,305 | 38.8         |
| Total            | 6,427   | 5,771   | 6,673   | 7,722   | 26,592 | 100.0        |

<sup>1</sup> Excludes service wells.
 <sup>2</sup> Includes condensate wells.
 Note: Data by quarters do not agree with annual totals because of revision during the year.

Source: American Petroleum Institute.

Table 12.-Well completions in the United States, by State and district 1

|                            |                   | 19               | 972              |                |                  | 19               | 73                |              |
|----------------------------|-------------------|------------------|------------------|----------------|------------------|------------------|-------------------|--------------|
| State and district         | Oil               | Gas 2            | Dry              | Total          | Oil              | Gas 2            | Dry               | Total        |
| Alabama                    | 13                | 9                | 93               | 115            | 18               | 10               | 74                | 102          |
| Alaska                     | 12                | 2                | 12               | 26             | 20               | 3                | 11                | 34           |
| Arizona                    | _5                | 1                | 16               | 22             |                  | 1                | 7                 | 285<br>285   |
| Arkansas                   | 96                | 39               | 209              | 344            | 91<br>879        | 40<br>65         | 154<br>263        | 1,207        |
| California                 | $1,045 \\ 300$    | 62<br>124        | 288<br>581       | 1,395<br>1,005 | 228              | 148              | 464               | 840          |
| Colorado                   | 65                | 124              | 44               | 109            | 24               |                  | 43                | 67           |
| FloridaGeorgia             |                   |                  | 2                | 2              |                  |                  | 3                 | 3            |
| Idaho                      |                   |                  |                  |                |                  |                  | 6                 | 6            |
| Illinois                   | 255               | 18               | 329              | 602            | 240              | 13               | 303               | 556          |
| Indiana                    | 92                | 5                | 172              | 269            | 67               | 8                | 164               | 239<br>2,058 |
| Kansas                     | 880               | 368              | 1,150            | 2,398          | 592<br>158       | 384<br>157       | $1,077 \\ 316$    | 631          |
| Kentucky                   | 230               | 166              | 360              | 756            | 190              | 191              | 910               | 001          |
| Louisiana:                 |                   |                  |                  |                |                  |                  |                   |              |
| North                      | 291               | 451              | 374              | 1,116          | 234              | 269              | 318               | 821          |
| South                      | 375               | 234              | 535              | 1,144          | 337              | 284              | 564               | 1,185<br>898 |
| Offshore                   | 253               | 133              | 419              | 805            | 287              | 231              | 380               |              |
| Total Louisiana            | 919               | 818              | 1,328            | 3,065          | 858              | 784              | 1,262             | 2,904        |
| Michigan                   | 87                | 34               | 188              | 309            | 73               | 41               | $\frac{164}{252}$ | 278<br>350   |
| Mississippi                | 87                | 13               | 317              | 417<br>3       | 70               | 28               | 252               | 990          |
| Missouri                   | 83                | $1\overline{25}$ | 3<br>545         | 753            | 46               | $1\overline{23}$ | 473               | 642          |
| Montana                    | 48                | 2                | 242              | 292            | 33               |                  | 130               | 168          |
| Nebraska                   |                   |                  | 2                | 2              |                  |                  |                   |              |
|                            |                   |                  |                  |                |                  |                  |                   |              |
| New Mexico:                | 64                | 173              | 106              | 343            | 57               | 372              | 76                | 505          |
| West                       | 438               | 65               | 188              | 691            | 223              | 126              | 196               | 545          |
| East                       |                   | 238              | 294              | 1,034          | 280              | 498              | 272               | 1.050        |
| Total New Mexico           | 502<br>96         | 230              | 12               | 130            | 97               | 27               | 24                | 148          |
| New YorkNorth Dakota       | 23                | 22               | 76               | 99             | 40               |                  | 82                | 122          |
| Ohio                       | 426               | $7\overline{21}$ | 184              | 1,331          | 393              | 940              | 171               | 1,504        |
| Oklahoma                   | 1,025             | 341              | 934              | 2,300          | 898              | 539              | 844               | 2,281        |
| Oregon                     |                   |                  | ==               | .==            | -25              | 40.4             | 3                 | 1 00         |
| Pennsylvania               | 534               | 297              | 70               | 901            | 525              | 484              | 90<br>17          | 1,099<br>22  |
| South Dakota               | 4                 | - <u>-</u>       | $\frac{32}{71}$  | 36<br>94       | 5<br>24          | 10               | 64                | 98           |
| Tennessee                  | 14                | 9                |                  | 34             |                  |                  |                   |              |
| Texas:                     |                   |                  |                  |                |                  |                  | 070               | 210          |
| District 01                | 438               | 29               | 189              | 656            | 179              | 58<br>176        | 278<br>224        | 518<br>479   |
| District 02                | 95                | 111              | 245<br>386       | 451<br>815     | $\frac{79}{292}$ | 138              | 402               | 833          |
| District 03                | $\frac{289}{147}$ | 140<br>200       | 292              | 639            | 146              | 272              | 320               | 738          |
| District 04                | 17                | 14               | 69               | 100            | 3                | 12               | 63                | 78           |
| District 05<br>District 06 | 101               | 45               | 120              | 266            | 116              | 54               | 117               | 28'          |
| District 07B               | 388               | 54               | 480              | 922            | 323              | 96               | 447               | 860          |
| District 07C               | 330               | 102              | 195              | 627            | 357              | 265              | 234               | 850          |
| District 08                | 940               | 100              | 195              | 1,235          | 977              | 98               | 189               | 1,26<br>84   |
| District 08A               | 474               | 3                | 158              | 635            | 667              | 24<br>80         | 156<br>357        | 87           |
| District 09                | 620               | 19<br>114        | 329<br>63        | 968<br>299     | 433<br>107       | 182              | 105               | 39           |
| District 10                | 122<br>2          | 114              | 39               | 299<br>53      | 7                | 20               | 45                | 7            |
| Offshore                   |                   |                  |                  | 7,666          | 3,686            | 1.475            | 2,937             | 8.09         |
| Total Texas                | 3,963             | 943<br>13        | $2,760 \\ 74$    | 160            | 104              | 25               | 2,931             | 19           |
| Utah                       | 73                | 18               | 14               | 18             | 104              | 7                | 2                 |              |
| Virginia                   | 84                | 488              | $1\overline{02}$ | 674            | 72               | 514              | 115               | 70           |
| West Virginia              | 345               | 52               | 567              | 964            | 381              | 61               | 443               | 88           |
|                            | 11,306            | 4.928            | 11,057           | 27.291         | 9,902            | 6,385            | 10,305            | 26,59        |
| Total United States        | 11,500            | 4,020            | 21,001           |                | -,               | -,               |                   |              |

 <sup>&</sup>lt;sup>1</sup> Excludes service wells.
 <sup>2</sup> Includes condensate wells.

Table 13.-Refinery receipts of domestic

(Thousand

|                                         | Total                    | Intra-             |                                  |                             | TD 4               | D distr                | t.a. TT                      | In     | terstate               |
|-----------------------------------------|--------------------------|--------------------|----------------------------------|-----------------------------|--------------------|------------------------|------------------------------|--------|------------------------|
| Location of refineries                  | receipts<br>of           | state              | PAD                              | -                           | PP                 | D distr                | 1ct 11                       |        |                        |
| receiving crude<br>oil                  | domestic<br>crude<br>oil | receipts           | district I<br>total <sup>1</sup> | , Ill.,<br>Ind.,<br>Mich.   | Kans.              | Ky.,<br>Ohio,<br>Tenn. | Nebr.,<br>N. Dak.<br>S. Dak. |        | Total                  |
| District I:                             |                          |                    |                                  |                             |                    |                        |                              |        |                        |
| Delaware, Maryland<br>Florida, Georgia, | 5,357                    |                    | 4,551                            |                             |                    |                        |                              |        |                        |
| Virginia                                | 1,411                    |                    |                                  |                             |                    |                        |                              |        |                        |
| New Jersey<br>New York                  | 28,472<br>577            |                    |                                  | $5\overline{7}\overline{7}$ |                    |                        |                              |        | 577                    |
| Pennsylvania:                           |                          |                    |                                  | 911                         |                    |                        |                              |        | 577                    |
| East                                    | 31,050                   | 0.075              | 4,419                            |                             | 272                | - 0                    |                              | ==     |                        |
| West Virginia                           | 14,184<br>4,992          | 3,843<br>1,528     | 1,759                            | 719                         | 640                | 5,256                  |                              | 1,621  | 8,236                  |
| West Virginia<br>Total                  | 86.043                   | 5,371              | 10,729                           | 1,296                       | 640                | 3,464<br>8,720         |                              | 1,621  | $\frac{3,464}{12,277}$ |
|                                         | 00,040                   | 0,011              | 10,120                           | 1,200                       | 010                | 0,120                  |                              | 1,021  | 12,211                 |
| District II:                            | 313,207                  | 16.834             |                                  |                             | 1.993              |                        | 2,068                        | 24,896 | 28,957                 |
| Indiana                                 | 144.264                  | 3,137              |                                  | 1,350                       | 4,064              | 250                    | 4,296                        | 8,739  | 18,699                 |
| Kansas                                  | 127,577                  | 62,669             |                                  |                             |                    |                        | 592                          | 21,642 | 22,234                 |
| Kentucky,                               |                          | •                  |                                  |                             |                    |                        |                              |        | •                      |
| Tennessee                               | 54,311                   | 3,247              | 12                               | 10,355                      |                    | 12                     |                              |        | 10,367                 |
| Michigan<br>Minnesota,                  | 25,598                   | 11,624             |                                  | 23                          |                    |                        |                              |        | 23                     |
| Wisconsin                               | 6,093                    |                    |                                  |                             |                    |                        | 4,894                        |        | 4,894                  |
| Missouri. Nebraska_                     | 35,685                   | 17                 |                                  |                             | 383                |                        | 4,004                        | 3.578  | 3,961                  |
| North Dakota                            | 15,173                   | 13,989             |                                  |                             |                    |                        |                              |        | ´                      |
| Ohio: East                              | 10,178                   | 590                |                                  | 1,242                       |                    |                        |                              |        | 1,242                  |
| West<br>Oklahoma                        | 117,873 $163,134$        | 119.842            |                                  | 9,165                       | $3.3\overline{66}$ |                        |                              | 2,806  | $\frac{11,971}{3,366}$ |
|                                         |                          |                    |                                  |                             |                    |                        | 11.050                       | C1 CC1 |                        |
| Total                                   | 1,013,093                | 231,949            | 12                               | 22,135                      | 9,806              | 262                    | 11,850                       | 61,661 | 105,714                |
| District III:                           | 44 004                   | 4 000              | 4.000                            |                             |                    |                        |                              |        |                        |
| Alabama                                 | 11,281                   | 1,238              | 4,333                            |                             |                    |                        |                              |        |                        |
| Arkansas<br>Louisiana                   | 17,804<br>516,533        | 13,380 $409,747$   | $6.4\overline{48}$               |                             |                    |                        |                              | 2,412  | $2.4\overline{12}$     |
| Mississippi                             | 93,203                   | 14.357             | 0,110                            |                             |                    |                        |                              | 2,412  | 2,412                  |
| New Mexico                              | 16,999                   | 16,819             |                                  |                             |                    |                        |                              |        |                        |
| Texas                                   | 1,045,438                | 863,495            | 12,240                           |                             | 438                |                        |                              | 4,234  | 4,672                  |
| Total                                   | 1,701,258                | 1,319,036          | 23,021                           |                             | 438                |                        |                              | 6,646  | 7,084                  |
| District IV:                            |                          |                    |                                  |                             |                    |                        |                              |        |                        |
| Colorado                                | 14,185                   | 3,091              |                                  |                             |                    |                        |                              |        |                        |
| Montana                                 | 30,341                   | 10,534             |                                  |                             |                    |                        | ==                           |        |                        |
| Utah                                    | 42,231<br>48,694         | 15,979<br>46,947   |                                  |                             |                    |                        | 23                           |        | 23                     |
| Wyoming                                 |                          |                    |                                  |                             |                    |                        | 23                           |        | 23                     |
| Total                                   | 135,451                  | 76,551             |                                  |                             |                    |                        | 20                           |        |                        |
| District V:                             | 900 750                  | 340,567            |                                  |                             |                    |                        |                              |        |                        |
| California<br>Other States              | $398,759 \\ 27,126$      | 17,956             |                                  |                             |                    |                        |                              |        |                        |
| Total                                   | 425,885                  | 358,523            | <del></del>                      |                             |                    |                        |                              |        |                        |
|                                         |                          |                    |                                  |                             | 10.004             | 0.000                  | 11.050                       | CO 000 |                        |
| Total United States Daily average       | 3,361,730<br>9,210       | 1,991,430<br>5,456 | 33,762<br>92                     | 23,431<br>64                | 10,884<br>30       | 8,982<br>25            | 11,873<br>33                 | 192    | 125,098<br>344         |

Includes receipts from: Florida, 31,991; New York, 843; West Virginia, 928.
 Includes receipts from: Alaska, 50,307; Arizona, 65; California, 4,506; Nevada, 14.

crude oil in 1973, by State and district barrels)

|                         | om<br>PAD           | district           | III               |                   |                       | PAD di            | strict I      | V                     |                       |                                             |                                   |
|-------------------------|---------------------|--------------------|-------------------|-------------------|-----------------------|-------------------|---------------|-----------------------|-----------------------|---------------------------------------------|-----------------------------------|
| Ala.,<br>Ark.,<br>Miss. | La.                 | N. Mex.            | Tex.              | Total             | Colo.                 | Mont.             | Utah          | Wyo.                  | Total                 | PAD<br>district<br>V,<br>total <sup>2</sup> | Total<br>inter<br>state<br>receip |
|                         | 806                 |                    |                   | 806               |                       |                   |               |                       |                       |                                             | 5,8                               |
| 1,327                   |                     |                    | 84                | 1.411             |                       |                   |               |                       |                       |                                             | 1,4                               |
| 4,048                   | $11,07\overline{1}$ |                    | 13,353            | 28,472            |                       |                   |               |                       |                       |                                             | 28,                               |
|                         |                     |                    |                   |                   |                       |                   |               |                       |                       |                                             | ŧ                                 |
| E 470                   | 2,125               |                    | 19,036            | 26,631            |                       |                   |               |                       |                       |                                             | 31,                               |
| 5,470                   | 2,120               |                    | 10,000            | 20,001            |                       | 346               |               |                       | 346                   |                                             | 10,                               |
|                         |                     |                    |                   |                   |                       |                   |               |                       |                       |                                             | 3,                                |
| 10,845                  | 14,002              |                    | 32,473            | 57,320            |                       | 346               |               |                       | 346                   |                                             | 80,                               |
|                         |                     |                    |                   |                   | 0.005                 | 0.000             | 102           | 9,812                 | 15,815                |                                             | 296,                              |
| 10,058                  | 87,172              |                    | 105,791<br>58,395 | 83.018            | $\frac{2,805}{2,218}$ | $3,096 \\ 13,720$ | 102           | 23,472                | 39,410                |                                             | 141,                              |
|                         | 14,008              | $10,615 \\ 25$     | 15,646            | 15,671            | 5,358                 | 1,638             | 472           | 19,535                | 27,003                |                                             | 64,                               |
| 000                     | 05 650              |                    | 3,835             | 39,788            |                       |                   |               | 897                   | 897                   |                                             | 51,                               |
| 303                     | 35,650<br>5,557     |                    | 74                | 5,631             |                       |                   |               | 8,320                 | 8,320                 |                                             | 13,                               |
|                         |                     |                    |                   |                   |                       | 1,199             |               |                       | 1,199                 |                                             | 6,                                |
|                         |                     | $4,3\overline{31}$ | 25,223            | 29,554            |                       | 1,100             |               | 2,153                 | 2,153                 |                                             | 35,                               |
|                         |                     | 4,001              | 20,220            |                   | 119                   | 1,065             |               |                       | 1,184                 |                                             | 1,                                |
|                         | 4,733               |                    | 2,276             | 7,009             |                       | 80                |               | $\frac{1,257}{2,809}$ | $\frac{1,337}{2,809}$ |                                             | 9,<br>117.                        |
| 3,925                   | 36,830              | $1,441 \\ 1,377$   | 60,897<br>38,516  | 103,093<br>39,893 |                       |                   | 33            | 2,005                 | 33                    |                                             | 43,                               |
| 14 996                  | 183,950             |                    |                   | 575,258           | 10,500                | 20,798            | 607           | 68,255                | 100,160               |                                             | 781,                              |
| 14,200                  | 100,000             | 00,000             | 010,000           |                   |                       |                   |               |                       |                       |                                             |                                   |
| 5,710                   |                     |                    |                   | 5,710             |                       |                   |               |                       |                       |                                             | 10                                |
| 5,110                   | 1,323               |                    | 3,101             | 4,424             |                       |                   |               |                       |                       |                                             | 106                               |
| 16,233                  | ·                   |                    | 81,693            | 97,926            |                       |                   |               |                       |                       |                                             | 78                                |
|                         | 78,620              |                    | 226               | 78,846            | 35                    |                   | 145           |                       | 180                   |                                             |                                   |
| 6 247                   | 139,780             | 14,913             |                   | 160,940           | 875                   |                   | 3,216         |                       | 4,091                 |                                             | 181                               |
|                         | 219,723             | 14,913             | 85,020            | 347,846           | 910                   |                   | 3,361         |                       | 4,271                 |                                             | 382                               |
|                         |                     |                    |                   |                   |                       |                   |               | 0 7/-                 |                       |                                             | 11                                |
|                         |                     |                    |                   |                   |                       | 793               | 1,753         | 8,548<br>19,807       | $11,094 \\ 19,807$    |                                             | 19                                |
|                         |                     | īī                 |                   | <u>ī</u> ī        | 18,631                |                   |               | 7,574                 | 26,205                | $\overline{13}$                             | 26                                |
|                         |                     |                    |                   |                   | 866                   | $6\overline{54}$  | 227           |                       | 1,747                 |                                             | 1                                 |
|                         |                     | 11                 |                   | 11                | 19,497                | 1,447             | 1,980         | 35,929                | 58,853                | 13                                          | 58                                |
|                         |                     |                    |                   |                   |                       |                   |               |                       | 10.000                | 40.000                                      | 58                                |
|                         |                     | 1,688              |                   | 1,688             | 24                    |                   | 10,242        |                       | 10,266<br>529         | 46,238<br>8,641                             | 95<br>9                           |
|                         |                     | 1 000              | =                 | 1 600             | 24                    |                   | 529<br>10,771 |                       | 10,795                | 54,879                                      | 67                                |
|                         |                     |                    |                   |                   |                       | 22,591            |               | 104,184               |                       | 54.892                                      | 1,370                             |
| 53,321                  | 417,675             | 82,981<br>227      | 428,146<br>1.173  | 982,123<br>2,690  | 30,931<br>85          | 22,591<br>62      | 16,719        | 285                   | 478                   | 150                                         | 3                                 |

Table 14.-Producing oil wells in the United States and average production per well per day, by State

| -                                             |                                                               |                                                                        | oil wells                                                     |                                                           |
|-----------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------|
| _                                             | 1                                                             | 972                                                                    | 197                                                           | '3                                                        |
| State                                         | Approximate<br>number of<br>oil wells<br>producing<br>Dec. 31 | Average<br>production<br>per well<br>per day<br>(barrels) <sup>1</sup> | Approximate<br>number of<br>oil wells<br>producing<br>Dec. 31 | Average<br>production<br>per well<br>per day<br>(barrels) |
| Alabama                                       | 544                                                           | 49.3                                                                   | 586                                                           | 56.6                                                      |
| Alaska                                        | 193                                                           | 1,088.3                                                                | 192                                                           | 1,029.3                                                   |
| Arizona                                       | 28                                                            | 93.6                                                                   | 28                                                            | 78.7                                                      |
| Arkansas                                      | 7,157                                                         | 7.1                                                                    | 7,232                                                         | 6.9                                                       |
| California:                                   |                                                               |                                                                        |                                                               |                                                           |
| South                                         | 9,740                                                         | 38.3                                                                   | 8,812                                                         | 39.0                                                      |
| Central Coastal<br>East Central               | 5,386                                                         | 39.3                                                                   | 5,762                                                         | 38.7                                                      |
| North                                         | 24,069<br>59                                                  | $14.5 \\ 31.2$                                                         | 23,991                                                        | 14.2                                                      |
| Total California                              |                                                               |                                                                        | 61                                                            | 32.2                                                      |
| Colorado                                      | 39,254<br>1,897                                               | 24.0<br>47.5                                                           | 38,626                                                        | 23.6                                                      |
| Florida                                       | 142                                                           | 419.7                                                                  | $2,004 \\ 147$                                                | 51.4<br>619.9                                             |
| Illinois                                      | 24,716                                                        | 3.8                                                                    | 24.309                                                        | 3.4                                                       |
| Indiana                                       | <sup>2</sup> 4,379                                            | 4.2                                                                    | <sup>2</sup> 4,323                                            | 3.3                                                       |
| KansasKentucky                                | 41,055                                                        | 4.8                                                                    | 41,520                                                        | 4.4                                                       |
|                                               | 14,616                                                        | 1.8                                                                    | 14,416                                                        | 1.6                                                       |
| Louisiana:                                    |                                                               |                                                                        |                                                               |                                                           |
| Gulf Coast<br>Northern                        | <sup>2</sup> 13,624                                           | 167.7                                                                  | <sup>2</sup> 13,086                                           | 162.4                                                     |
| Total Louisiana                               | 2 14,138                                                      | 9.0                                                                    | <sup>2</sup> 14,783                                           | 7.5                                                       |
| Michigan                                      | <sup>2</sup> 27,762<br>3,685                                  | 89.3                                                                   | <sup>2</sup> 27,869                                           | 81.9                                                      |
| Mississippi                                   | 3,195                                                         | 9.2<br>53.0                                                            | $3,733 \\ 2,901$                                              | 10.8                                                      |
| Montana                                       | 3,544                                                         | 27.7                                                                   | 2,901<br>3,471                                                | $50.4 \\ 27.0$                                            |
| Nebraska                                      | 1,143                                                         | 20.4                                                                   | 1,107                                                         | 17.6                                                      |
| New Mexico:                                   |                                                               |                                                                        |                                                               |                                                           |
| Southwestern                                  | 15,703                                                        | 17.7                                                                   | 15,503                                                        | 16.4                                                      |
| Northwestern                                  | 1,584                                                         | 15.1                                                                   | 1,596                                                         | 13.0                                                      |
| Total New Mexico                              | 17,287                                                        | 17.5                                                                   | 17,099                                                        | 16.1                                                      |
| New York                                      | 5,427                                                         | .5                                                                     | 5,200                                                         | .5                                                        |
| North Dakota                                  | 1,401                                                         | 39.3                                                                   | 1,404                                                         | 39.5                                                      |
| Oklahoma                                      | 15,222<br>73,745                                              | 1.7<br>7.6                                                             | 15,236                                                        | 1.6                                                       |
| Pennsylvania                                  | 32,596                                                        | .3                                                                     | 72,880<br>31,539                                              | $\substack{7.1\\.3}$                                      |
| South Dakota                                  | 29                                                            | 19.3                                                                   | 27                                                            | 26.9                                                      |
| Texas:                                        |                                                               |                                                                        |                                                               |                                                           |
| District 01                                   | 10,333                                                        | 6.4                                                                    | 9,851                                                         | 5.7                                                       |
| District 02                                   | 4,926                                                         | 44.4                                                                   | 4.589                                                         | 44.6                                                      |
| District 03                                   | 10,650                                                        | 45.0                                                                   | 9,610                                                         | 47.6                                                      |
| District 04<br>District 05                    | 7,427                                                         | 23.7                                                                   | 6,680                                                         | 23.3                                                      |
| District 05<br>District 06, except East Texas | 2,682<br>5,210                                                | 31.9                                                                   | 2,400                                                         | 35.3                                                      |
| East Texas                                    | 13,960                                                        | 43.1<br>13.8                                                           | 4,974<br>13,500                                               | $\frac{42.9}{15.1}$                                       |
| District 07B                                  | 11,140                                                        | 9.1                                                                    | 10,203                                                        | 9.3                                                       |
| District 07C                                  | 7,491                                                         | 15.3                                                                   | 7,366                                                         | 14.7                                                      |
| District 08                                   | 36,126                                                        | 21.9                                                                   | 35,489                                                        | 21.5                                                      |
| District 08A<br>District 09                   | 17,423                                                        | 49.4                                                                   | 17,126                                                        | 55.0                                                      |
| District 10                                   | 27,522<br>12,343                                              | 4.8<br>5.3                                                             | 25,514                                                        | 4.7                                                       |
| Total Texas                                   | 167,233                                                       | 20.9                                                                   | 11,788                                                        | 5.1                                                       |
| Jtah                                          | 890                                                           | 20.9<br>82.5                                                           | 159,090<br>989                                                | 21.7<br>95.2                                              |
| Vest Virginia                                 | <sup>2</sup> 12,136                                           | .6                                                                     | <sup>2</sup> 13,600                                           | 95.2<br>.5                                                |
| Wyoming                                       | 2 8,950                                                       | 42.7                                                                   | <sup>2</sup> 7,642                                            | 46.9                                                      |
| Other States:                                 |                                                               |                                                                        |                                                               |                                                           |
| Missouri                                      | 137                                                           | 1.2                                                                    | 135                                                           | 1.2                                                       |
| Nevada                                        | 6                                                             | 45.5                                                                   | 6                                                             | 43.8                                                      |
| Tennessee                                     | 73                                                            | 7.2                                                                    | 67                                                            | 7.9                                                       |
| Virginia                                      | 1                                                             | (3)                                                                    |                                                               |                                                           |
| 'l'otal                                       | 217                                                           | 4.4                                                                    | 208                                                           | 4.0                                                       |
| Total                                         | 211                                                           | 4.4                                                                    | 208                                                           | 4.6                                                       |

<sup>&</sup>lt;sup>1</sup> Based on the average number of wells during the year.
<sup>2</sup> Estimated by Bureau of Mines; all other numbers of producing oil wells furnished by State agencies.

3 Less than 500 barrels.

Table 15.-Crude runs to stills and refinery receipts of crude oil in 1973, by origin of the crude and method of transportation (Thousand barrels)

|                                                           |                      |               |                    | OTT T                         | apaild parter     | Refinery r                                   | eceints of               | Refinery receipts of domestic crude- | crude-                     |                          |                     |                          |
|-----------------------------------------------------------|----------------------|---------------|--------------------|-------------------------------|-------------------|----------------------------------------------|--------------------------|--------------------------------------|----------------------------|--------------------------|---------------------|--------------------------|
|                                                           | ,                    |               | By State           |                               | By re             | receiving State and method of transportation | te and me                | thod of tr                           | ansportatio                | u                        | Refinery receipts   | receipts                 |
| District and State                                        | Crude                | Refinery      | of origin          | Change -<br>in                |                   | Interstate                                   |                          |                                      | Intrastate                 |                          | of foreign          | crude                    |
| District and State                                        | stills               | and<br>losses | domestic<br>crude  | refinery                      | Pipe-<br>lines    | Tank<br>cars and<br>trucks                   | Tankers<br>and<br>barges | Pipe-<br>lines                       | Tank<br>cars and<br>trucks | Tankers<br>and<br>barges | Pipe-<br>lines      | Tankers<br>and<br>barges |
| District I: Delaware, Maryland Florida, Georgia, Virginia | 46,830 21,084        | -13           | 31,991             | -111 + 193                    | 11                | 11                                           | 11                       | 11                                   | 706                        | 5,357                    | 11                  | 41,361                   |
|                                                           | 217,863              | ŀ             | 843                | +2,024                        | !                 | 1                                            | ;                        | 577                                  | 1                          | 28,472                   | $36.1\overline{03}$ | 191,415                  |
| Pennsylvania: East                                        | 198,429              | 353           | 2 !                | +1,748                        |                   | l 1                                          |                          | : !!                                 | 1 1                        | 31,050                   |                     | 169,480                  |
| West Virginia                                             | 22,133<br>5,007      | 12            | 3,843<br>2,456     | -115<br>-15                   | 3,297<br>1,484    | 546<br>44                                    | 11                       | 6,517<br>2,623                       | 2,137<br>626               | 1,687<br>215             | 7,846               | 1 1                      |
| Total                                                     | 1 548,027            | 367           | 39,133             | +3,723                        | 4,781             | 290                                          | 1                        | 9,717                                | 3,469                      | 67,486                   | 43,949              | 422,125                  |
| District II:                                              | 376,358              | 83            | 37,874             | +537                          | 16,720            | 114                                          | ;                        | 296,373                              | ļ:                         | 13                       | 63,771              | 1                        |
| Indiana                                                   | 179,439              | 30            | 3,137              | $^{+148}$                     | 3,094             | 88<br>88<br>88<br>88                         | i                        | 139,959                              | 108                        | 1,125                    | 35,353<br>8.955     | : !                      |
| Kentucky, Tennessee                                       | 63,929               | 28            | 38,83              | 139                           | 2,596             | 651                                          | 1 1                      | 40,812                               | 42                         | 10,198                   | 9,815               | 1                        |
| Minnesota, Wisconsin                                      | 70,537               | i             | 14,010             | +154                          | 0,400             | 601,4                                        | !!                       | 6,093                                | 1 1                        | ! :                      | 64,598              | 1 1                      |
| Missouri, Nebraska                                        | 36,889               | 1             | 6,016<br>19,863    | +1                            | 17<br>13.872      | 117                                          | 1 1                      | 35,561 $1.173$                       | 107<br>11                  | ; ;                      | 1,205<br>2,707      | ; ;                      |
| Ohio: East                                                | 19,938               | <b>!</b> !'   | 290                | 18                            | 280               | 1                                            | 1                        | 9,588                                | 1                          | :                        | 9,668               | !                        |
| WestOklahoma                                              | 2 162,677<br>163,214 | 30<br>148     | 8,391<br>189,770   | + 1 <sub>6</sub>              | 116,233           | 3,609                                        | 1 1                      | 43,292                               |                            |                          | 44,910<br>175       | 1 1                      |
| Total                                                     | 1,271,998            | 453           | 357,047            | +1,208                        | 224,347           | 7,602                                        | 1                        | 769,498                              | 323                        | 11,323                   | 260,566             | 1                        |
| District III:                                             | 11,519               | 114           | 12,159             | -80                           | 142               | 31                                           | 1,065                    | 4,143                                | 86                         | 5,807                    | 1                   | 272                      |
| Arkansas<br>Lonisiana                                     | 17,807               | 259           | 15,014<br>827,422  | <br> <br> <br> <br> <br> <br> | 12,772<br>325,449 | 608<br>4.440                                 | 79,858                   | 4,318<br>89,630                      | 106<br>644                 | 16,512                   | 1 1                 | 16,510                   |
| Mississippi                                               | 93,452               | 3 15          | 55,123             | -249                          | 12,534            | 1,823                                        | 1                        | 78,846                               | 10                         | , <b>!</b>               | !                   | 1                        |
| New MexicoTexas                                           | 16,932 $1,171,326$   | 18<br>222     | 99,800 $1,291,641$ | $^{+49}_{+2,762}$             | 14,141<br>832,966 | 2,678<br>9,508                               | $21,0\overline{21}$      | 87,799                               | 111                        | 94,083                   | : :                 | 128,872                  |
| Total                                                     | 1,844,698            | 452           | 2,301,159          | +1,762                        | 1,198,004         | 19,088                                       | 101,944                  | 264,736                              | 1,134                      | 116,352                  | :                   | 145,654                  |
| District IV:                                              | 14,177               | 293           | 34,022             | -259                          | 1,807             | 1,284                                        | 1                        | 9,150                                | 1,944                      | 1                        | 26                  |                          |
| Montana                                                   | 43,465<br>42,330     | 38 88         | 33,125<br>32,698   | -130<br>-14                   | 7,901             | 8,078                                        |                          | 24,937                               | 1,315                      |                          | 123                 | 1 1                      |
| Wyoming                                                   | 51,549               | 1 250         | 151,131            | 8-1-1                         | 46,117            | 10 956                                       | -                        | 1,323                                | 3 693                      |                          | 16,009              |                          |
|                                                           | 101,041              | 000           | 200,010            |                               | 00000             | 20060                                        | :                        |                                      | 2006                       |                          |                     |                          |
| District V:<br>California<br>Other States 4               | 575,677<br>145,333   | 184<br>101    | 345,073<br>68,342  | -796 + 1,154                  | 286,626<br>17,539 | 7,023                                        | 46,918                   | 8,943                                | 3,232<br>529               | 46,017<br>8,641          | 88,216              | 176,306<br>31,246        |
| Total                                                     | 721,010              | 285           | 413,415            | +358                          | 304,165           | 7,440                                        | 46,918                   | 8,943                                | 3,761                      | 54,658                   | 88,216              | 207,552                  |
| Total United States                                       | 4,537,254            | 1,907         | 3,361,730<br>9,210 | +6,640<br>+18                 | 1,796,892         | 45,676<br>125                                | 148,862 1<br>408         | 1,108,101<br>3,036                   | 12,380<br>34               | 249,819<br>684           | 5 408,740<br>1,120  | 775,331<br>2,124         |
|                                                           |                      | 1             |                    |                               |                   |                                              |                          |                                      |                            |                          |                     |                          |

Includes 808,981,000 barrels in Delaware River Valley.

Includes some Athabasca hydrocarbons.

Includes 28 by trucks.

A lasaka, Arizona, Hawaii, Nevada, Oregon, and Washington.

Excludes crude oil imported for direct fuel use by pipeline.

| month ,             |   |
|---------------------|---|
| <u>á</u>            | • |
| s in 1973,          |   |
| ᆵ                   |   |
| States              |   |
| n the United States |   |
| the                 |   |
| 멾.                  |   |
| by pipelines        |   |
| þ                   |   |
|                     |   |
| petroleum products  |   |
| ĕ                   |   |
| -Transportation     |   |
| 9                   |   |
| ple                 |   |
| _                   |   |

|                                                                     |                                     |                                     | '                                   |                                     | (Tho                                | (Thousand ba                        | barrels)                            |                                     |                                     |                                     | î                                   |                                     | 1                                       |                                         |
|---------------------------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-----------------------------------------|-----------------------------------------|
| Item                                                                | Jan.                                | Feb.                                | Mar.                                | Apr.                                | May                                 | June                                | July                                | Aug.                                | Sept.                               | Oct.                                | Nov.                                | Dec.                                | Total                                   | 1972<br>total                           |
| Turned into lines: Gasoline: • Motor                                | 135,811                             | 130,722                             | 141,670                             | 142,561                             | 152,075                             | 147,579                             | 159,720                             | 156,929                             | 147,681                             | 149,388                             | 146,749                             | 144,421                             | 1,755,306                               | 1,632,196                               |
| Total gasoline                                                      | 136,049                             | 130,892                             | 142,066                             | 142,878                             | 152,482                             | 147,985                             | 160,017                             | 157,408                             | 148,003                             | 149,778                             | 147,069                             | 144,695                             |                                         | 1,636,213                               |
| Jet fuel:<br>Naphtha type<br>Kerosine type                          | 1,218<br>21,256                     | 1,211<br>19,549                     | 1,679<br>21,380                     | 1,410<br>21,265                     | 1,407<br>18,459                     | 1,348                               | 1,433                               | 929                                 | 1,149                               | 1,120                               | 1,194                               | 1,014                               | 15,112<br>234,509                       | 18,404                                  |
| Total jet fuel Kerosine Distillate fuel oil Natural gas liquids     | 22,474<br>5,908<br>74,302<br>38,646 | 20,760<br>5,913<br>62,951<br>34,541 | 23,059<br>4,551<br>62,483<br>35,440 | 22,675<br>3,200<br>51,336<br>34,482 | 19,866<br>2,619<br>50,728<br>34,670 | 19,082<br>1,996<br>52,682<br>33,630 | 21,325<br>2,737<br>58,026<br>37,930 | 19,386<br>2,511<br>56,205<br>39,882 | 20,016<br>3,074<br>57,903<br>36.676 | 21,800<br>4,764<br>64,249<br>36,899 | 21,326<br>4,735<br>65,593<br>37,002 | 17,852<br>4,875<br>70,561           | 249,621<br>46,883<br>727,019            | 228,476<br>47,499<br>656,798            |
| Delivered from lines: Gasoline: Motor                               | 136,061                             | 129,154<br>205                      | 141,643                             | 141,168                             | 152,613                             | 146,930                             | 158,964                             | 160,029                             | 145,505                             | 151,322                             | 148,165                             | 11                                  | 13                                      | 1,634,925                               |
| Total gasoline                                                      | 136,295                             | 129,359                             | 141,942                             | 141,516                             | 152,924                             | 147,321                             | 159,293                             | 160,490                             | 145,804                             | 151,639                             | 148,555                             | 145,442                             | 1,760,580                               | 1,638,756                               |
| Jet fuel:<br>Naphtha type<br>Kerosine type                          | 1,385<br>21,025                     | 1,115<br>19,502                     | 1,574 20,998                        | 1,573<br>20,882                     | 1,425<br>18,829                     | 1,450                               | 1,332                               | 1,090                               | 1,092                               | 1,200                               | 1,068                               | 1,033                               | 15,337<br>231,698                       | 18,263                                  |
| Total jet fuel Kerosine Distillate fuel oil Natural gas liquids     | 22,410<br>6,195<br>76,293<br>40,793 | 20,617<br>5,964<br>65,460<br>34,092 | 22,572<br>4,551<br>63,483<br>35,211 | 22,455<br>2,803<br>51,694<br>34,600 | 20,254<br>2,344<br>51,151<br>34,878 | 19,070<br>2,000<br>47,870<br>32,746 | 20,557<br>2,279<br>56,238<br>36,027 | 19,738<br>2,576<br>54,352<br>38,859 | 19,905<br>2,527<br>55,057<br>34.660 | 20,843<br>4,333<br>61,162<br>35,427 | 20,364<br>4,851<br>66,621<br>36,384 | 18,250<br>4,663<br>71,616<br>37,551 | 247,035<br>45,086<br>720,997<br>431,228 | 226,317<br>46,132<br>659,409<br>897,326 |
| Shortage or overage: 1 Gasoline: MotorAviation                      | (348)                               | (81)                                | (460)<br>25                         | (140)                               | (437)                               | 241                                 | (258)                               | (509)                               | (35)                                | (396)                               | (325)                               | 162                                 | (2,586)                                 | (2,192)                                 |
| Total gasoline                                                      | (347)                               | (67)                                | (435)                               | (139)                               | (428)                               |                                     | (255)                               | (477)                               | (27)                                | (377)                               | (328)                               | 187                                 | (2,425)                                 | (2,021)                                 |
| Jet fuel:<br>Naphtha type<br>Kerosine type                          | (5)<br>333                          | 3<br>189                            | 26<br>57                            | (20)<br>305                         | (41)<br>59                          | (19)                                | (28)<br>163                         | 26<br>223                           | (70)<br>181                         | 315                                 | 33<br>291                           | 307                                 | (100)                                   | (10)                                    |
| Total jet fuel Kerosine Distillate fuel oil Natural gas liquids     | 328<br>123<br>(259)<br>205          | 192<br>186<br>(339)<br>204          | 83<br>282<br>135<br>195             | 285<br>262<br>184<br>(1)            | 18<br>167<br>(285)<br>12            | 227<br>46<br>369<br>(46)            | 135<br>94<br>180<br>(7)             | 249<br>76<br>21<br>126              | 111<br>105<br>28<br>106             | 308<br>90<br>(202)                  | 324<br>85<br>(240)<br>(22)          | 309<br>92<br>(439)<br>629           | 2,569<br>1,608<br>(847)<br>1,402        | 1,776<br>1,539<br>(352)<br>580          |
| Stocks in lines and working tanks at end of month: Gasoline:  Motor | 43,894                              | 45,543<br>147                       | 46,030<br>219                       | 47,563                              | 47,462                              | 47,870                              | 48,884                              | 46,293                              | 48,504                              | 46,966                              | 45,875<br>215                       | 44,967                              | 44,967                                  | 43,796                                  |
| Total gasoline                                                      | 44,090                              | 45,690                              | 46,249                              | 47,750                              | 47,736                              | 48,132                              | 49,111                              | 46,506                              | 48,732                              | 47,248                              | 46,090                              | 45,156                              | 45,156                                  | 43,989                                  |
| Jet fuel:<br>Naphtha type<br>Kerosine type                          | 539<br>5,003                        | 632                                 | 711 5,186                           | 568<br>5,264                        | 591<br>4,835                        | 508                                 | 637 5,207                           | 450                                 | 577                                 | 5,388                               | 597                                 | 5,247                               | 576<br>5,247                            | 701 5,105                               |
| Kerosine                                                            | 5,542<br>2,038<br>23,813<br>13,843  | 5,493<br>1,801<br>21,643<br>14,088  | 5,897<br>1,519<br>20,508<br>14,122  | 5,832<br>1,654<br>19,966<br>14,005  | 5,426<br>1,762<br>19,828<br>13,785  | 5,211<br>1,712<br>24,271<br>14,715  | 5,844<br>2,076<br>25,879<br>16,625  | 5,243<br>1,935<br>27,711<br>17,522  | 5,243<br>2,377<br>30,529<br>19,432  | 5,892<br>2,718<br>33,818<br>20,903  | 6,530<br>2,517<br>33,030<br>21.543  | 5,823<br>2,637<br>32,414<br>21,565  | 5,823<br>2,637<br>32,414<br>21,565      | 5,806<br>2,448<br>25,545<br>16,195      |
| 100                                                                 | denote shortage                     | age.                                |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                     |                                         | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |

| onth                         |            |  |
|------------------------------|------------|--|
| by m                         |            |  |
| s in 1973, by month          |            |  |
| ij.                          |            |  |
| States                       |            |  |
| ts in the United States in I |            |  |
| the                          |            |  |
| ij.                          |            |  |
| en PAD districts in th       |            |  |
| PAD                          | _          |  |
| between                      | nd barrels |  |
| pipeline                     | (Thousa    |  |
| by ]                         |            |  |
| products                     |            |  |
| petroleum                    |            |  |
| of po                        |            |  |
| -Transportation              |            |  |
| Fable 17.—                   |            |  |

| Item                                                                  | Jan.                     | Feb.                                            | Mar.                     | Apr.                            | May                           | June                          | July                                           | Aug.                            | Sept.                           | Oct.                                      | Nov.                              | Dec.                              | Total                                 | 1972<br>total                         |
|-----------------------------------------------------------------------|--------------------------|-------------------------------------------------|--------------------------|---------------------------------|-------------------------------|-------------------------------|------------------------------------------------|---------------------------------|---------------------------------|-------------------------------------------|-----------------------------------|-----------------------------------|---------------------------------------|---------------------------------------|
| From District I to District II:<br>Gasoline:<br>Motor<br>Aviation     | 3,360                    | 3,353                                           | 3,695                    | 3,683                           | 3,686                         | 3,891<br>6                    | 3,702                                          | 4,471                           | 3,614                           | 4,300                                     | 3,921<br>6                        | 3,709                             | 45,385                                | 39,187<br>52                          |
|                                                                       | 3,366                    | 3,353                                           | 3,704                    | 3,683                           | 3,693                         | 3,897                         | 3,702                                          | 4,477                           | 3,621                           | 4,306                                     | 3,927                             | 3,709                             | 45,438                                | 39,239                                |
| Jet fuel:<br>Naphtha type<br>Kerosine type                            | 40                       | 104                                             | 81<br>216                | 79<br>105                       | 78<br>86                      | 87<br>79                      | 29<br>91                                       | 25<br>131                       | 115                             | 229                                       | 37<br>216                         | 35<br>177                         | 595<br>2,017                          | 601<br>1,510                          |
| Kerosine Distillate fuel oil                                          | 336<br>62<br>1,014       | 380<br>13<br>825                                | 297<br>38<br>1,013       | 184<br>24<br>872                | 164<br>17<br>926              | 166<br>17<br>887              | 120<br>8<br>1,025                              | 156<br>20<br>796                | $\frac{115}{32}$                | $^{229}_{50}$                             | 253<br>72<br>1,266                | 212<br>50<br>991                  | 2,612<br>403<br>11,662                | 2,111<br>546<br>9,831                 |
| Gasoline (motor)                                                      | 269                      | 772                                             | 825                      | 940                             | 837                           | 802                           | 759                                            | 799                             | 876                             | 1,009                                     | 879                               | 871                               | 10,066                                | 11,276                                |
| Jet fuel:<br>Naphtha type<br>Kerosine type                            | ; ;                      | 11                                              | 1:                       | ; ;                             | 11                            | 1 1                           | 11                                             | 1 1                             | 11                              | 1 1                                       | 57                                | 11                                | 57                                    | 111 .                                 |
| Kerosine                                                              | $\frac{22}{148}$ $137$   | $\begin{array}{c} -1 \\ 127 \\ 722 \end{array}$ | $\frac{-1}{100}$         | <br>61<br>1,089                 | <br>62<br>1,059               | <br>63<br>997                 | 38<br>1,046                                    | <br>65<br>1,083                 | <br>55<br>1,034                 | $\frac{-7}{7}$ 101 1,056                  | 57<br>16<br>81<br>949             | <br>69<br>1,117                   | 57<br>49<br>980<br>11,910             | 187<br>795<br>9,946                   |
| From District II to District III:<br>Gasoline (motor)                 | 1,636                    | 1,645                                           | 1,842                    | 1,460                           | 1,419                         | 1,484                         | 1,499                                          | 1,651                           | 1,414                           | 1,540                                     | 1,446                             | 1,555                             | 18,591                                | 19,000                                |
| Jet fuel:<br>Naphtha type<br>Kerosine type                            | 40                       | 14                                              |                          |                                 | 11                            | 1 1                           | :-                                             | 11                              | ; ;                             | 1 1                                       | <b>!</b> =                        | ;=                                | 41                                    | 518                                   |
| Total jet fuel Distillate fuel oil Natural gas liquids                | 41<br>430<br>192         | 1<br>346<br>161                                 | 1<br>316<br>227          | 470<br>248                      | 451<br>249                    | 384<br>270                    | $\begin{array}{c} 1 \\ 400 \\ 329 \end{array}$ | 323<br>286                      | 425<br>322                      | $\begin{array}{c} 1\\320\\346\end{array}$ | 1<br>426<br>307                   | 452<br>330                        | 4,743<br>3,267                        | 522<br>4,592<br>2,640                 |
| From District II to District IV: Gasoline (motor) Distillate fuel oil | !                        | 1 1                                             |                          | : :                             | : 1                           | 1 1                           | 1 1                                            | 1 1                             | ; ;                             | : :                                       | 314<br>65                         | 360<br>27                         | 674<br>92                             | 1 1                                   |
| From District III to District I:<br>Gasoline<br>Motor<br>Aviation     | 23,632                   | 21,183                                          | 26,052                   | 26,410                          | 28,141                        | 26,400                        | 32,892<br>30                                   | 33,308<br>42                    | 27,730<br>15                    | 30,205<br>15                              | 26,636                            | 27,027<br>8                       | 329,616<br>219                        | 306,852<br>307                        |
| -                                                                     | 23,647                   | 21,210                                          | 26,068                   | 26,410                          | 28,159                        | 26,424                        | 32,922                                         | 33,350                          | 27,745                          | 30,220                                    | 26,645                            | 27,035                            | 329,835                               | 307,159                               |
| Jet fuel:<br>Naphtha type<br>Kerosine type                            | 30<br>5,089              | 55 5,344                                        | 26<br>5,304              | 105                             | 4,100                         | 76<br>8,629                   | 50<br>8,862                                    | 62<br>8,907                     | 57<br>3,307                     | 62<br>5,023                               | 5,347                             | 116<br>4,836                      | 747<br>54,757                         | 1,067<br>48,265                       |
| Total jet fuel  Kerosine Distillate fuel oil                          | 5,119<br>2,092<br>19,519 | 5,399<br>1,620<br>16,525<br>2,386               | 5,330<br>1,200<br>16,512 | 5,114<br>684<br>13,961<br>1.069 | 4,150<br>277<br>13,148<br>917 | 8,705<br>306<br>11,850<br>903 | 8,912<br>413<br>14,173<br>1,396                | 3,969<br>683<br>14,047<br>1,620 | 8,364<br>590<br>12,781<br>1,200 | 5,085<br>1,206<br>18,959<br>1,337         | 5,405<br>1,041<br>16,265<br>1,471 | 4,952<br>1,022<br>17,591<br>1,875 | 55,504<br>11,134<br>180,331<br>18,112 | 49,832<br>12,959<br>179,498<br>16,603 |
| garnhir gag rannari                                                   | 100                      | 2001                                            |                          |                                 |                               |                               |                                                |                                 |                                 |                                           |                                   |                                   |                                       |                                       |

Table 17.-Transportation of petroleum products by pipeline between PAD districts in the United States in 1973, by month-Continued (Thousand barrels)

|                                                                    |                                               |                             |                              |                             | (Thousan                    | Thousand barrels)            |                            |                              |                              |                              |                              |                              |                                    |                    |
|--------------------------------------------------------------------|-----------------------------------------------|-----------------------------|------------------------------|-----------------------------|-----------------------------|------------------------------|----------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------------|--------------------|
| Item                                                               | Jan.                                          | Feb.                        | Mar.                         | Apr.                        | May                         | June                         | July                       | Aug.                         | Sept.                        | Oct.                         | Nov.                         | Dec.                         | Total                              | 1972<br>total      |
| From District III to District II: Gasoline: Motor Aviation         | 3,866                                         | 4,108                       | 4,727                        | 4,946                       | 4,505                       | 4,289                        | 5,986                      | 5,283<br>123                 | 6,792                        | 7,057                        | 6,249                        | 5,852<br>105                 | 63,660                             | 57,389             |
| Total gasoline                                                     | 3,911                                         | 4,195                       | 4,862                        | 5,003                       | 4,651                       | 4,418                        | 6,097                      | 5,406                        | 6,842                        | 7,172                        | 6,343                        | 5,957                        | 64,857                             | 58,588             |
| Jet fuel:<br>Naphtha type<br>Kerosine type                         | 379                                           | 205                         | 435                          | 484                         | 193                         | 409                          | 1 546                      | 644                          | 389                          | 250                          | 174                          | 503                          | 3,611                              |                    |
| Total jet fuel  Kerosine  Distillate fuel oil  Natural gas liquids | 379<br>124<br>1,984<br>5,986                  | 205<br>84<br>1,608<br>6,180 | 435<br>219<br>1,309<br>6,124 | 484<br>49<br>1,212<br>5,153 | 194<br>95<br>1,084<br>4,754 | 409<br>147<br>2,867<br>4,635 | 547<br>6<br>2,390<br>4,789 | 644<br>105<br>3,574<br>5,627 | 389<br>262<br>3,573<br>6,494 | 250<br>534<br>3,744<br>6,976 | 175<br>525<br>4,496<br>7,274 | 503<br>355<br>3,097<br>7,706 | 4,614<br>2,505<br>30,938<br>71,698 | 133                |
| From District III to District IV: Gasoline: Motor Aviation         | 362                                           | 329                         | 346                          | 429                         | 420                         | 340<br>25                    | 395<br>24                  | 401                          | 362                          | 402<br>24                    | 416                          | 297<br>15                    | 4,499                              | 4,144              |
| Total gasoline el (kerosine type).                                 | 380<br>338                                    | 350<br>322                  | 366<br>322                   | 450<br>312                  | 442<br>361                  | 365<br>389                   | 419                        | 431                          | 382<br>324                   | 426<br>358                   | 436<br>319                   | 312<br>345                   | 4,759                              | 4,370<br>3,985     |
| Kerosine Distillate fuel oil Natural gas liquids                   | $\begin{array}{c} 1 \\ 73 \\ 211 \end{array}$ | 41<br>153                   | 46<br>112                    | 53<br>135                   | 95<br>1                     | 50<br>46                     | 49<br>39                   | 49:<br>58                    | -44<br>51                    | 67<br>73                     | 84<br>131                    | 68<br>155                    | 688<br>1,259                       | 20<br>552<br>1,159 |
| n District III to District V:<br>Gasoline (motor)                  | 1,170                                         | 1,065                       | 1,064                        | 961                         | 792                         | 1,004                        | 904                        | 863                          | 962                          | 982                          | 939                          | 1,164                        | 11,873                             | 11,543             |
| Jet fuel:<br>Naphtha type<br>Kerosine type                         | 69                                            | 40                          | 100                          | 80                          | 38<br>57                    | 63                           | 1001                       | 22<br>124                    | 105                          | 47<br>133                    | 37<br>75                     | 37<br>85                     | 652                                | 1,177              |
| Total jet fuel Distillate fuel oil                                 | 147<br>353                                    | 112<br>321                  | 169<br>339                   | 161<br>371                  | 95<br>356                   | 140<br>388                   | 177<br>419                 | 146<br>522                   | 147<br>394                   | 180<br>364                   | 112<br>383                   | 122<br>322                   | 1,708<br>4,532                     | 3,115<br>3,850     |
| net IV to District II:<br>ne (motor)<br>el (naphtha type)_         | 340<br>40                                     | 318<br>27                   | 386<br>40                    | 336<br>30                   | 407<br>15                   | 425<br>33                    | 433<br>29                  | 525                          | 352<br>32                    | 296<br>16                    | 304                          | 430<br>16                    | 4,552                              | 4,679              |
| Kerosine<br>Distillate fuel oil                                    | 8<br>279                                      | 3<br>253                    | 285<br>285                   | 272                         | 337                         | 4<br>299                     | 7<br>295                   | 245                          | 214                          | 243                          | 9<br>262                     | 320                          | 59<br>3,304                        | 3,390              |
| From District IV to District III:  Natural gas liquids             | 1                                             | 266                         | 280                          | 311                         | 350                         | 342                          | 346                        | 331                          | 316                          | 306                          | 293                          | 285                          | 3,426                              | 3,096              |
| Gasoline (motor)                                                   | 646                                           | 734                         | 156                          | 599                         | 909                         | 603                          | 523                        | 602                          | 675                          | 562                          | 797                          | 595                          | 7,805                              | 9,250              |
| Jet fuel:<br>Naphtha type<br>Kerosine type                         | 36                                            | 12                          | 58<br>71                     | 17 82                       | 40                          | 470                          | 51<br>33                   | 8 2 2                        | 17 33                        | 31                           | 87.                          | 69<br>10                     | 351<br>477                         | 880                |
| Total jet fuel                                                     | 66<br>285                                     | 24<br>234                   | 129<br>147                   | 99                          | 82<br>267                   | 292                          | 384                        | 75<br>293                    | 50<br>245                    | 86<br>417                    | 45<br>425                    | 440                          | 828<br>3,672                       | 1,325<br>4,270     |
|                                                                    |                                               |                             |                              |                             |                             |                              |                            |                              |                              |                              |                              |                              |                                    |                    |

Table 18.—Pipeline tariff rates for crude petroleum and products, January 1
(Cents per barrel)

| Origin               | Destination       | 1973          | 1974          |
|----------------------|-------------------|---------------|---------------|
| Crude oil:           |                   |               |               |
| West Texas           | Houston, Tex      | \$0.15-\$0.18 | \$0.16-\$0.18 |
| Do                   | East Chicago, Ind | .28           | .29           |
| Do                   | Wood River, Ill   | .28           | .29           |
| Oklahoma             | Chicago, Ill      | .22           | .23           |
| Do                   | Wood River, Ill   | .19           | .19           |
| Eastern Wyoming      | Chicago, Ill      | .35           | .35           |
| Do                   | Wood River, Ill   | .32           | .32           |
| Refined products:    |                   |               |               |
| Houston, Tex         | Atlanta, Ga       | .36           | .38           |
| Do                   | New York, N. Y    | .32           | .35           |
| Tulsa, Okla          | Minneapolis, Minn | .74           | .74           |
| Salt Lake City, Utah | Spokane, Wash     | .54           | .54           |
| Philadelphia, Pa     | Rochester, N. Y   | .24           | .25           |

Source: Interstate Commerce Commission.

Table 19.—Receipts of domestic and foreign crude petroleum at refineries in the United States

(Million barrels)

| Method of transportation      | 1969    | 1970    | 1971    | 1972    | 1973 Р  |
|-------------------------------|---------|---------|---------|---------|---------|
| By water:                     |         |         |         |         |         |
| Intrastate                    | 138.0   | 148.2   | 160.9   | 155.4   | 148.9   |
| Interstate                    | 408.8   | 461.8   | 430.0   | 298.5   | 249.8   |
| Foreign                       | 314.7   | 244.0   | 352.6   | 490.5   | 775.3   |
| Total by water                | 861.5   | 854.0   | 943.5   | 944.4   | 1,174.0 |
| By pipeline:                  |         |         |         |         |         |
| Intrastate                    | 1.715.1 | 1.730.5 | 1,702.2 | 1,832.0 | 1.796.9 |
| Interstate                    | 1,054.9 | 1.109.4 | 1.132.3 | 1,131.8 | 1,108.1 |
| Foreign                       | 199.2   | 236.8   | 260.4   | 317.8   | 408.7   |
| Total by pipeline             | 2,969.2 | 3,076.7 | 3,094.9 | 3,281.6 | 3,313.7 |
| By tank cars and trucks:      |         |         |         |         |         |
| Intrastate                    | 41.8    | 37.1    | 37.0    | 47.5    | 45.7    |
| Interstate                    | 6.0     | 5.5     | 5.4     | 5.7     | 12.4    |
| Foreign                       |         |         |         |         |         |
| Total by tank cars and trucks | 47.8    | 42.6    | 42.4    | 53.2    | 58.1    |
| Grand total                   | 3,878.5 | 3,973.3 | 4,080.8 | 4,279.2 | 4,545.8 |
|                               |         |         |         |         |         |

<sup>&</sup>lt;sup>p</sup> Preliminary.

Table 20.-Interdistrict movements by tanker and barge of crude oil and petroleum products in 1973, by month (Thousand barrels)

|                                                                |                                  |                                  |                                 |                               |                                             |                               | (22)                          |                               |                                 |                                 |                               |                                 |                                      |                                       |
|----------------------------------------------------------------|----------------------------------|----------------------------------|---------------------------------|-------------------------------|---------------------------------------------|-------------------------------|-------------------------------|-------------------------------|---------------------------------|---------------------------------|-------------------------------|---------------------------------|--------------------------------------|---------------------------------------|
| Item                                                           | Jan.                             | Feb.                             | Mar.                            | Apr.                          | May                                         | June                          | July                          | Aug.                          | Sept.                           | Oct.                            | Nov.                          | Dec.                            | Total                                | 1972<br>total                         |
| Gulf Coast to East Coast, total: 1<br>Crude oil                | 7,491<br>2,050                   | 5,085<br>818                     | 5,044<br>1,093                  | 6,986<br>1,491                | 5,014<br>1,546                              | 5,485<br>862                  | 2,824                         | 3,470<br>1,405                | 3,590<br>755                    | 3,278<br>1,160                  | 4,192<br>1,507                | 4,155<br>1,291                  | 56,614<br>14,797                     | 106,894<br>25,263                     |
| Gasoline:<br>Motor Aviation                                    | 20,436                           | 17,523                           | 17,306                          | 15,337                        | 18,372                                      | 17,030                        | 19,066                        | 16,397<br>383                 | 16,403<br>237                   | 15,634<br>226                   | 13,566<br>185                 | 17,188<br>275                   | 204,258<br>3,216                     | 220,966<br>4,047                      |
| Total gasoline Special naphthas Kerosine Distillate fuel oil   | 20,666<br>534<br>2,152<br>14,083 | 17,731<br>598<br>2,115<br>11.153 | 17,553<br>490<br>1,785<br>8.800 | 15,604<br>593<br>568<br>5,962 | 18,871<br>727<br>819<br>5,908               | 17,279<br>546<br>816<br>6,827 | 19,276<br>621<br>939<br>6,222 | 16,780<br>655<br>876<br>8,328 | 16,640<br>663<br>1,591<br>7,038 | 15,860<br>685<br>1,372<br>7,774 | 13,751<br>451<br>717<br>6,119 | 17,463<br>629<br>1,328<br>9,078 | 207,474<br>7,192<br>15,078<br>97,292 | 225,013<br>6,830<br>19,982<br>131,099 |
| Residual fuel oil  Jet fuel:  Naphtha type                     | 1,078                            | 2,468                            | 1,243                           | 1,046                         | 1,931                                       | 948                           | 766                           | 963<br>558<br>2.489           | 1,089                           | 251                             | 1,370<br>396<br>2,827         | 2,024<br>1,226<br>2,508         | 15,951<br>9,480<br>31,554            | 30,389<br>12,523<br>32,790            |
| Total jet fuel                                                 | 4,111                            | 3,880                            | 3,965                           | 2,957                         | 3,420<br>1,126                              | 3,174                         | 3,238                         | 3,047                         | 3,073                           | 3,212<br>955                    | 3,223                         | 3,734<br>1,198                  | 41,034                               | 45,313                                |
| Wax Asphalt and road oil                                       | 311                              | 243                              | 33<br>645                       | 43<br>358                     | $\begin{array}{c} 21 \\ 680 \\ \end{array}$ | 559                           | 127<br>536                    | 41<br>657                     | 541                             | 394<br>394                      | 489                           | 32<br>276                       | 5,689                                | 5,562<br>5,562<br>6,562               |
| Liquefied gases Petrochemical feedstocks Other products        | 231<br>203<br>97                 | 215<br>206<br>87                 | 151<br>524<br>106               | 56<br>291<br>127              | $\frac{70}{186}$                            | $\frac{70}{214}$              | 200<br>96                     | 84<br>177                     | 95<br>241<br>116                | 193<br>308<br>202               | 815<br>211                    | 131<br>463<br>121               | 1,504<br>1,654                       | 1,000<br>2,731<br>1,420               |
| Total                                                          | 54,106                           | 45,539                           | 42,580                          | 36,975                        | 40,496                                      | 37,480                        | 36,781                        | 37,554                        | 36,480                          | 36,878                          | 33,428                        | 41,923                          | 480,220                              | 614,521                               |
| Gulf Coast to PAD District II:<br>Crude oil<br>Unfinished oils | 899<br>9                         | 825<br>9                         | 833                             | 876                           | 932                                         | 814                           | 1,070                         | 924                           | 069                             | 950                             | 463<br>102                    | 974                             | 10,250                               | 18,422<br>85                          |
| Gasoline:<br>Motor                                             | 2,735                            | 2,516                            | 2,343                           | 2,553                         | 2,867                                       | 2,504                         | 3,062                         | 2,624                         | 2,513<br>47                     | 2,536<br>51                     | 2,624<br>134                  | 3,121<br>63                     | 31,998<br>732                        | 39,037<br>609                         |
| Total gasoline Special naphthas                                | 2,836                            | 2,526                            | 2,377                           | 2,611                         | 2,939<br>256                                | 2,587                         | 3,091<br>297                  | 2,674                         | 2,560<br>197                    | 2,587<br>296<br>97              | 2,758<br>263                  | 3,184<br>365                    | 32,730<br>3,187                      | 39,646<br>3,014<br>1,643              |
| Kerosine<br>Distillate fuel oil<br>Residual fuel oil           | 119<br>854<br>800                | 1,330<br>1,330<br>538            | 833<br>782                      | 1,050                         | 833<br>538                                  | 1,485<br>837                  | 655<br>745                    | 1,009                         | 847<br>621                      | 1,081                           | 628<br>976                    | 1,092                           | 11,095<br>8,652                      | 10,952                                |
| Jet fuel:<br>Naphtha type<br>Kerosine type                     | 254                              | 405                              | 308                             | 252                           | 168                                         | 180                           | 132                           | 173                           | 14<br>145                       | 183                             | 227                           | 184                             | 14<br>2,612                          | 100                                   |
| Total jet fuel                                                 | 254                              | 405                              | 309                             | 252                           | 168                                         | 180                           | 132                           | 173                           | 159                             | 183                             | 227                           | 184                             | 2,626                                | 4,910                                 |

| •                                                                                           |        |                           |                 |                |          |                   |           |              |                  |                                   |                          |                |       |                                               |                   |                 |                |       |
|---------------------------------------------------------------------------------------------|--------|---------------------------|-----------------|----------------|----------|-------------------|-----------|--------------|------------------|-----------------------------------|--------------------------|----------------|-------|-----------------------------------------------|-------------------|-----------------|----------------|-------|
| 3,182<br>2,165<br>793<br>1,908<br>832                                                       | 94,959 | 999                       | 152             | 1,273          | 92       | 8 1               |           | 134          | :                | $\frac{134}{1,586}$               | 25                       | 7              | 4,033 | :                                             | 160               | 693             | 85             | 935   |
| 3,692<br>3,523<br>654<br>1,872<br>993                                                       | 80,350 |                           | 372             | 675            | 36       | 1,898             | ,         | 110          | Ten              | 801<br>1,491                      | 4                        | 105            | 690'9 | 4                                             | ;                 | 069             | 242            | 986   |
| 259<br>348<br>112<br>184<br>47                                                              | 7,783  |                           | ; ;             | !              | 15       | 43<br>315         | ,         | 110          | 100              | 801<br>199                        | ľ                        | <b>∞</b>       | 1,366 | :                                             | 1                 | 29              | 11             | 40    |
| 287<br>330<br>195<br>333<br>58                                                              | 6,641  |                           | 1 1             | !              | ŀ        | 322               |           | 1            | -                | 98                                | ;                        | 1              | 408   |                                               | ;                 | 111             | 1              | 111   |
| 377<br>654<br>12<br>173<br>81                                                               | 7,162  |                           | ! !             | 291            | 100      | 354               |           | ;            | :                | 113                               | ;                        | 1              | 1,037 | ;                                             | ;                 | 107             | 4              | 111   |
| 263<br>414<br>15<br>28<br>118                                                               | 5,934  |                           | 1 1             | 1              | 100      | 403               |           | 1            | -                | 64                                | ł                        | 1              | 832   | 2                                             | ł                 | 47              | 30             | 40    |
| 513<br>538<br>101<br>164<br>66                                                              | 6,840  |                           | 259             | ;              | ;        | 318               |           | !            | :                | 125                               | ;                        | -              | 702   |                                               | !                 | 113             | 17             | 130   |
| 303<br>177<br>44<br>178                                                                     | 6,800  |                           |                 | 44             | 1        | : :               |           | ;            | -                | $1\overline{52}$                  | <u></u>                  | 9              | 202   | 67                                            | ;                 | ro              | 14             | 21    |
| 404<br>241<br>101<br>136<br>66                                                              | 7,179  |                           | 1 1             | 320            | ļ        | 186               |           | !            | -                | 234                               | l                        | 31             | 771   |                                               | ;                 | 46              | 37             | 83    |
| $\begin{array}{c} 199 \\ 276 \\ 15 \\ 120 \\ 106 \end{array}$                               | 6,389  |                           | 1 1             | ł              | i        | 1 1               |           | 1            | ;                | 39                                | ;                        | 1              | 39    | ;                                             | ;                 | 64              | 42             | 106   |
| 286<br>273<br>36<br>190<br>25                                                               | 6,210  |                           | 1               | 1              | !        | : :               |           | 1            | -                | 188                               | !                        |                | 88    |                                               | i                 | 35              | 14             | 49    |
| 282<br>165<br>145<br>53                                                                     | 6,192  |                           | ; ;             | 20             | ;        | : :               |           | :            | :                | 163                               | 13                       | 36             | 219   | :                                             | !                 | 28              | 30             | 89    |
| 298<br>44<br>18<br>133<br>165                                                               | 6,714  |                           | 113             | 13             | 34       | 1 1               |           | .1           | 1                | 73                                | 13                       | 16             | 236   | 1                                             | ;                 | 21              | 1              | 21    |
| 221<br>63<br>5<br>88<br>88<br>131                                                           | 6,506  |                           | ; ;             | ;              | 21       | 1 1               |           | !            | ;                | 155                               | 4                        | 8              | 169   | :                                             | 1                 | 84              | 43             | 127   |
| Lubricating oil Asphalt and road oil Liquefed gases Petrochemical feedstocks Other products | Total  | Gulf Coast to West Coast: | Unfinished oils | Motor gasoline | Kerosine | Residual fuel oil | Jet fuel: | Naphtha type | TACTURITIES LYDE | Total jet fuel<br>Lubricating oil | Petrochemical feedstocks | Other products | Total | West Coast to East Coast:<br>Special naphthas | Residual fuel oil | Lubricating oil | Other products | Total |

<sup>1</sup> Breakdown by region in table 21.

Table 21.-Tanker and barge movements of crude oil and petroleum products from the Gulf Coast to the East Coast, by region in 1973, by month

11,045 9,403 864 261 1,176 722 800,357 106,058 25,222 69,318 1,006 70,324 4,440 7,515 48,317 15,010 1,490 9,555 39,956 447 3,630 52,949 9,135 2,010 4,308 6,318 497 8 1972 otal 55,909 14,55559,791 4,349 5,814 27,526 7,771 1,173 8,915 10,088 10,015 429 803 2,177 1,005 35,652 567 2,824 38,600 4,261 90,446 Total 1,080 6,658152 758 974 974 32 392 99 16,789 2,346 34 336 3,236 490 7,203 4,103 4,383 444 461 2,614 1,086 283 405 73 13 Dec. 5,716 4,141 2,506 48 174 2,218 108 953 953 771 25 26 26 161 15,065 83 82 E 244 244 301 540 046 Nov. 2,453 55 270 2,628 478  $3,278 \\ 1,160$ 887 887 827 16 27 226 123 123 16,342 769 769 10 6 5,204 433 804 2,738 619 6,697 Oct. 3,557 162 713 875 761 70 70 186 69 14,980 534 42 50 10 6.648 427 683 585 530 2,795 83 181 2,784 214 Sept. 15,080 147 789 936 902 41 34 143 2,815 22 192 2,811 182 737 22 22 6.783 3,451 1,405424 424 278 2,281 329 Aug.  $\frac{139}{451}$   $\frac{590}{15}$  $2,763 \\ 819$ 6,530 13 504 504 79 68 68 68 49 14,827 367 367 301 389 389 2,745 22 2,767 72 152 1,781 292 July (Thousand barrels) 136 430 566 840 28 68 68 68 82 82 15,063 2,911 25 72 2,617 213 873 10 10 6.529 5,425 862 ,625 317 290 290 ,337 485 June 5,055 400 165 634 696 135 740 875 65 9 4,883 1,546 290 441 731 827 21 21 116 118 2,972 96 351 2,251 939 7,566 15,331 May 6,913 1,491254 291 545 6,482  $\frac{198}{448}$ 646 800 43 187 93 16,431 385 220 220 020 086 645 2,943 36 166 2,763 24 Apr. 16,194 708 708 891 891 190 25 9,616 5,004 1,093923 831 831 286 286 4,105 51 207 3,943 268 123 612 735 71 229  $\frac{4,948}{818}$ 18,674 360 360 416 91 5 212 112 122 123 124 9,107 347 347 616 1,244 1,025 Feb. 147 24,956 4,767 28 404 6,842 5 64 279 343 12,424 7,443 1,9836,726 238 864 4,842 635 ,172 877  $^{20}$ 24 Jan. Naphtha type Asphalt and road oil --Aspnait and road oil --Petrochemical feedstocks Distillate fuel oil -----Residual fuel oil -----Total jet fuel Petrochemical feedstocks Special naphthas Kerosine type -----Aviation ----jet fuel oil Total gasoline Other products ----Total gasoline Naphtha type Kerosine type Special naphthas To Central Atlantic: 1 Distillate fuel oil Residual fuel oil Other products Crude oil \_\_\_\_\_ Unfinished oils Motor ---Aviation Total To New England: Lubricating Total ----Lubricating Kerosine Distillate Kerosine Gasoline: Jet fuel: Jet fuel:

| 836                                                | 112,136<br>2,597            | 114,733<br>1,943<br>8,837<br>29,833<br>6,244 | 9,023<br>18,927<br>27,950<br>1,833<br>5,301<br>1,665<br>1,068<br>1,068<br>696<br>696                                                                                     |
|----------------------------------------------------|-----------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 705<br>242                                         | 110,205<br>1,826            | 112,031<br>2,276<br>6,440<br>31,166<br>3,919 | 7,227<br>15,981<br>23,208<br>1,895<br>1,895<br>1,895<br>1,896<br>1,304<br>7,39<br>687                                                                                    |
| 52                                                 | 10,654                      | 10,734<br>151<br>531<br>3,228<br>448         | 791<br>1,345<br>2,136<br>151<br>151<br>131<br>71<br>22<br>17<br>22<br>17,931                                                                                             |
| 51<br>174                                          | 6,931                       | 6,996<br>159<br>242<br>2,361<br>216          | 383<br>1,254<br>1,637<br>220<br>220<br>464<br>53<br>36<br>38<br>38                                                                                                       |
| 1 1                                                | 8,111                       | 8,203<br>197<br>2,408<br>409                 | 251<br>1,305<br>1,556<br>100<br>367<br>153<br>72<br>72<br>72<br>76                                                                                                       |
| 33                                                 | 8,251                       | 8,362<br>153<br>727<br>2,669<br>345          | 461<br>1,203<br>1,664<br>175<br>541<br>95<br>50<br>37<br>14,852                                                                                                          |
| 19                                                 | 8,831                       | 9,109<br>209<br>406<br>3,236<br>452          | 411<br>963<br>1,374<br>147<br>657<br>60<br>32<br>32<br>15,691                                                                                                            |
| 61                                                 | 9,791<br>98                 | 9,889<br>182<br>486<br>2,547<br>85           | 636<br>1,508<br>2,144<br>190<br>48<br>468<br>79<br>59<br>59<br>41                                                                                                        |
| 09 !                                               | 9,602                       | 9,743<br>204<br>454<br>2,873<br>35           | 799<br>936<br>1,735<br>114<br>491<br>70<br>66<br>43<br>15,888                                                                                                            |
| 131                                                | 10,559                      | 10,844<br>231<br>3023<br>296                 | 692<br>1,122<br>1,814<br>234<br>234<br>70<br>20<br>68<br>17,699                                                                                                          |
| 73                                                 | 8,554                       | 8,739<br>172<br>182<br>2,113<br>324          | 594<br>1,172<br>1,766<br>146<br>358<br>56<br>99<br>99<br>84                                                                                                              |
| 40                                                 | 9,143                       | 9,369<br>116<br>747<br>2,126<br>689          | 1,031<br>1,491<br>2,522<br>186<br>645<br>151<br>105<br>74                                                                                                                |
| 137                                                | 10,742                      | 10,870<br>234<br>1,180<br>2,183<br>182       | 715<br>1,549<br>2,264<br>126<br>248<br>215<br>79<br>45<br>17,758                                                                                                         |
| 48<br>67                                           | 9,036                       | 9,173<br>268<br>884<br>2,399<br>438          | 463<br>2,183<br>2,596<br>106<br>96<br>311<br>231<br>231<br>77                                                                                                            |
| To Lower Atlantic:<br>Crude oil<br>Unfinished oils | Gasoline:<br>Motor Aviation | Total gasoline                               | Jet fuel:  Naphtha type  Kerosine type  Total jet fuel —  Total jet fuel —  Wax  Asphalt and road oil —  Liquefied gass  Petrochemical feedstocks  Other products  Total |

<sup>1</sup> Includes data formerly shown as barge movements to District I.

Table 22.-Stocks of crude petroleum, natural gas liquids, and refined products in the United States at yearend (Thousand barrels)

|                                                                 | 1969    | 1970      | 1971      | 1972    | 1973      |
|-----------------------------------------------------------------|---------|-----------|-----------|---------|-----------|
| Grude petroleum: At refineries Pipeline and tank farm Producers | 76,088  | 80,407    | 73,115    | 70,327  | 76,971    |
|                                                                 | 172,252 | 181,580   | 172,309   | 162,476 | 152,533   |
|                                                                 | 16,887  | 14.380    | 14,224    | 13,592  | 12.974    |
| 5-                                                              | 265,227 | 276,367   | 259,648   | 246,395 | 242,478   |
|                                                                 | 97,819  | 98,989    | 100,574   | 94,761  | 99,154    |
| Natural gasoline, plant condensate,                             | 5,704   | 7,046     | 6,176     | 6,075   | 7,835     |
| and isopentane                                                  | 611,373 | 635,459   | 677,549   | 611,748 | 658,840   |
| Grand total                                                     | 980,123 | 1,017,861 | 1,043,947 | 958,979 | 1,008,307 |

Table 23.-Stocks of crude petroleum in the United States in 1973, by State or origin and month

| State of origin                                   | Jan. 1  | Jan. 31 | Feb. 28 | Mar. 31 | Apr. 30 | May 31  | June 30 | July 31 | Aug. 31          | Sept. 30 | Oct. 31 | Nov. 30 | Dec. 31 |
|---------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|------------------|----------|---------|---------|---------|
| Alabama                                           | 769     | 101     | 200     | 977     | 000     | 907     | 200     | 100     | ,                | :        | :       |         |         |
| Alaska                                            | n 25    | 7.00    | 200     | 443     | 990     | 455     | 202     | 282     | 187              | 450      | 225     | 411     | 228     |
| Arizona                                           | 1)7'0   | 9,014   | 3,640   | 3,810   | 3,944   | 2,633   | 3,897   | 2,785   | 2,776            | 3,287    | 3,683   | 4,167   | 3,564   |
| Arbancos                                          | 46      | 0.00    | 28      | 282     | 48      | 67      | 6/      | 82      | 94               | 81       | 72      | 79      | 48      |
| O. 1:6                                            | 003     | 830     | 27.     | 781     | 196     | 572     | 820     | 852     | 216              | 545      | 490     | 576     | 494     |
| California                                        | 25,380  | 24,295  | 24,855  | 24,812  | 24,552  | 24,388  | 24,229  | 22,389  | 21,266           | 20.069   | 20.511  | 18.283  | 18.809  |
| Colorado                                          | 2,910   | 3,148   | 3,126   | 2,721   | 2,726   | 2,852   | 2,896   | 2,865   | 3,147            | 2,958    | 2,975   | 2,859   | 9,939   |
| Florida                                           | 029     | 1,234   | 1,286   | 1,065   | 1,146   | 1,382   | 1.408   | 1.469   | 983              | 1.248    | 1,363   | 1,000   | 9.94E   |
| Illinois                                          | 2,904   | 3,345   | 3,251   | 3.044   | 3.327   | 3.374   | 3.245   | 3,051   | 2.846            | 9.945    | 3,00    | 3,008   | 9,018   |
| Indiana                                           | 272     | 257     | 175     | 195     | 250     | 510     | 584     | 385     | 452              | 874      | 489     | 499     | 2,00    |
| Kansas                                            | 5,604   | 5,233   | 6,581   | 5,958   | 6.145   | 7.218   | 6.917   | 7.781   | 6.896            | 6 743    | 986 9   | 6 261   | 6 161   |
| Kentucky                                          | 753     | 453     | 452     | 347     | 373     | 374     | 452     | 386     | 310              | 477      | 6,00    | 7,00    | 470     |
| Louisiana                                         | 30,431  | 28,481  | 27,417  | 29,265  | 30,667  | 31,836  | 30,528  | 30,136  | 31.097           | 29.735   | 28.926  | 29.796  | 28 055  |
| Michigan                                          | 505     | 629     | 619     | 492     | 670     | 711     | 629     | 607     | 694              | 7.14     | 849     | 1 088   | 1 033   |
| Mississippi                                       | 3,823   | 4,674   | 4,490   | 4,240   | 4,289   | 3,972   | 3,550   | 3,260   | 4.049            | 3.573    | 3.444   | 3,50    | 253     |
| Missouri                                          | 1       | !       | 1       | !       | !       | ;       | 1       | !       |                  | 1        |         |         | 1       |
| Montana                                           | 3,364   | 3,529   | 3,426   | 3,272   | 3,556   | 3,613   | 3,245   | 3,262   | 3,280            | 3,055    | 3.124   | 3.234   | 2.889   |
| Nebraska                                          | 534     | 741     | 750     | 673     | 657     | 469     | 579     | 551     | 716              | 462      | 562     | 486     | 395     |
| Nevada                                            | -       | -       | -       | -       | 7       | -       | -       | -       | -                | -        | -       |         | 2       |
| New Mexico                                        | 6,042   | 5,877   | 6,241   | 6,709   | 7,560   | 7.347   | 6,561   | 7.098   | 6.736            | 7.262    | 7.461   | 7 655   | 7 109   |
| New York                                          | 30      | 30      | 30      | 30      | 30      | 30      | 30      | 30      | 30               | 30       | 30      | 80      | 201.    |
| North Dakota                                      | 1,469   | 1,480   | 1,671   | 1,626   | 1,912   | 1,707   | 1,611   | 1.516   | 1.495            | 1.616    | 1.605   | 1 494   | 1 417   |
| Ohio                                              | 821     | 903     | 899     | 939     | 950     | 903     | 793     | 795     | 824              | 879      | 947     | 934     | 666     |
| Oklahoma                                          | 13,144  | 11,772  | 12,099  | 11,416  | 11,186  | 12,233  | 11,627  | 11.273  | 11,706           | 11.773   | 12.897  | 13.165  | 12.254  |
| Pennsylvania                                      | 299     | 716     | 652     | 909     | 579     | 299     | 544     | 662     | 625              | 558      | 554     | 591     | 573     |
| Texas                                             | 93,120  | 87,617  | 86,109  | 90,105  | 90,379  | 95,535  | 93,107  | 88,035  | 91,101           | 89.950   | 89.810  | 91.069  | 666 66  |
| Utah                                              | 2,377   | 2,782   | 2,505   | 3,101   | 2,840   | 3,126   | 2,762   | 2,635   | 2,647            | 2.886    | 2.878   | 2.854   | 3.195   |
| West virginia                                     | 602     | 263     | 540     | 585     | 909     | 269     | 603     | 609     | 266              | 209      | 524     | 556     | 531     |
| J. John M. J. J. J. J. J. J. J. J. J. J. J. J. J. | 14,024  | 14,410  | 14,033  | 15,784  | 17,462  | 18,741  | 18,093  | 17,064  | 15,176           | 14,287   | 14,617  | 14,592  | 13,889  |
| Total domestic crude                              | 217,028 | 208,593 | 206,535 | 212,384 | 217,047 | 225,507 | 219,055 | 209,867 | 210,476          | 206,467  | 208,483 | 209,482 | 207,064 |
| Foreign crude:                                    |         |         | ;       |         |         |         |         |         |                  |          |         |         |         |
| District V                                        | 18,654  | 7.931   | 7.687   | 18,928  | 10.074  | 21,638  | 20,710  | 22,973  | 24,965<br>19,873 | 23,417   | 25,777  | 27,334  | 24,194  |
| Total foreign crude                               | 29,367  | 28,876  | 28.827  | 31.747  | 31.736  | 32.360  | 29.802  | 33,806  | 37 838           | 84 800   | 87.814  | 40 516  | 95 414  |
| II                                                | 10000   |         |         |         |         |         |         |         |                  | 200120   | 2.10(10 | 20,010  | 272,00  |
| Pennsylvania grade (included in                   | 246,395 | 237,469 | 235,362 | 244,131 | 248,783 | 257,867 | 248,857 | 243,673 | 248,314          | 241,276  | 246,297 | 249,998 | 242,478 |
| "Total domestic crude")                           | 1,707   | 1,810   | 1,739   | 1,783   | 1,793   | 1,796   | 1,687   | 1,856   | 1,754            | 1,647    | 1,698   | 1,843   | 1,767   |
|                                                   |         |         |         |         |         |         |         |         |                  |          |         |         |         |

Table 24.-Stocks of crude petroleum in the United States in 1973, by State and month

| State                                  | Jan. 1  | Jan. 31        | Feb. 28 | Mar. 31 | Apr. 30    | May 31  | June 30 | July 31 | Aug. 31 | Sept. 30 | Oct. 31 | Nov. 30 | Dec. 31 |
|----------------------------------------|---------|----------------|---------|---------|------------|---------|---------|---------|---------|----------|---------|---------|---------|
| Alabama                                | 854     | 682            | 879     | 266     | 1,042      | 888     | 536     | 639     | 563     | 536      | 549     | 587     | 906     |
| Amisons                                | 1,020   | 1,432          | 802     | 4T).    | 1,198      | 9/6     | 027     | 769     | 705     | 912      | 898     | 862     | 434     |
| Arkansas                               | 666     | 1.355          | 1.086   | 1.309   | 1.317      | 1.034   | 1.343   | 1.372   | 1.295   | 1.057    | 1.014   | 1.116   | 1.038   |
| California, Nevada, Oregon, Washington | 40,133  | 35,596         | 35,047  | 40,384  | 37,427     | 36,938  | 36,490  | 35,100  | 36,052  | 33,945   | 35,615  | 34,642  | 32,645  |
| Colorado South Carolina                | 1,863   | 1,843          | 1,812   | 1,825   | 1,723      | 1,853   | 1,861   | 1,852   | 1,838   | 1,610    | 1,831   | 1,892   | 1,861   |
| Virginia                               | 1.377   | 1,320          | 825     | 1,082   | 1,304      | 1,240   | 1,536   | 1,431   | 1.062   | 1.599    | 1.631   | 1.318   | 1.617   |
| Hawaji                                 | 717     | 892            | 1,015   | 1,215   | 714        | 818     | 783     | 666     | 1,094   | 629      | 644     | 1,028   | 1,468   |
| Illinois                               | 16,084  | 15,346         | 14,501  | 16,223  | 16,675     | 17,596  | 16,963  | 16,007  | 15,732  | 17,216   | 16,273  | 15,617  | 14,734  |
| Indiana                                | 3,427   | 3,494          | 3,623   | 3,358   | 3,489      | 3,673   | 3,559   | 3,264   | 3,242   | 3,225    | 3,103   | 3,165   | 3,361   |
| Iowa, Missouri                         | 6,188   | 6,406          | 6,110   | 6,172   | 6,378      | 6,670   | 6,151   | 6,369   | 5,904   | 5,940    | 6,592   | 6,077   | 6,041   |
| Kentucky Tennessee                     | 9,220   | 2,012<br>4 499 | 4 175   | 4 056   | 3 910      | 3,664   | 3 569   | 3 206   | 2 808   | 20802    | 11,203  | 10,209  | 9,800   |
| Louisiana                              | 18,893  | 21.592         | 17.944  | 18.809  | 18.941     | 20.521  | 18.966  | 19.461  | 20.714  | 20.450   | 20,129  | 21.536  | 18,702  |
| Maryland                               | 262     | 206            | 237     | 228     | 249        | 400     | 421     | 354     | 304     | 311      | 257     | 300     | 277     |
| Massachusetts, Delaware, Rhode Island  | 610     | 1,457          | 798     | 1,088   | 611        | 515     | 541     | 836     | 1,557   | 1,217    | 989     | 754     | 484     |
| Michigan                               | 2,734   | 3,506          | 2,486   | 1,868   | 1,998      | 1,866   | 1,710   | 1,690   | 1,859   | 2,026    | 2,404   | 2,189   | 2,325   |
| Minnesota, Wisconsin                   | 2,127   | 2,311          | 2,543   | 2,869   | 2,806      | 2,233   | 1,871   | 2,078   | 1,752   | 1,984    | 2,394   | 2,572   | 1,978   |
| 'n.                                    | 5,708   | 6,176          | 5,552   | 5,244   | 5,387      | 4,899   | 4,839   | 4,680   | 4,998   | 5,042    | 4,716   | 4,749   | 4,898   |
| Montana                                | 3,032   | 3,042          | 2,659   | 2,325   | 2,781      | 2,693   | 2,485   | 2,811   | 2,499   | 2,446    | 2,471   | 2,647   | 2,624   |
| Nebraska                               | 1,434   | 1,494          | 1,528   | 1,700   | 1,641      | 1,651   | 1,474   | 1,477   | 1,575   | 1,433    | 1,524   | 1,520   | 1,570   |
|                                        | 4,503   | 5,269          | 5,119   | 4,943   | 960'9      | 6,062   | 6,369   | 4,941   | 5,357   | 5,011    | 5,127   | 5,679   | 6,527   |
| New Mexico                             | 3,636   | 3,674          | 3,453   | 3,636   | 3,683      | 3,629   | 3,841   | 3,667   | 3,729   | 3,838    | 3,844   | 4,038   | 3,773   |
| New York                               | 386     | 477            | 900     | 374     | 361        | 455     | 471     | 405     | 439     | 329      | 471     | 419     | 385     |
| North Dakota                           | 1,288   | 1,294          | 1,493   | 1,322   | 1,648      | 1,478   | 1,373   | 1,317   | 1,331   | 1,445    | 1,392   | 1,262   | 1,172   |
| Ollio                                  | 1,001   | 0,004          | 1,104   | 4,000   | #07.0<br>1 | 1,14    | 10,094  | 0,000   | 0,040   | 0,700    | 0,0     | 0,700   | 0,0,0   |
| Description                            | 14,904  | 16,737         | 7 400   | 2,400   | 14,962     | 15,642  | 15,006  | 10,155  | 7 540   | 10,001   | 17,791  | 18,6/1  | 10,925  |
| Tennsylvania                           | 70,04   | 4,014          | 74.460  | 26,097  | 104.1      | 01,000  | 70,400  | 70,100  | 10,040  | 9,900    | 0,100   | 0,410   | 0,019   |
| TTtol                                  | 10,001  | 1 104          | 1 1 61  | 1,00    | 1 969      | 1 900   | 1 971   | 1 905   | 13,101  | 1,030    | 1,741   | 10,104  | 1,000   |
| Wront Windings                         | 1,114   | 1,134          | 1,101   | 1,007   | 1,004      | 1,400   | 1,41    | 1,601   | 1,100   | 1,000    | 1,1,1   | 1,100   | 1,190   |
| West virginia                          | 7,787   | 7,479          | 7,552   | 8,121   | 9,445      | 10,393  | 10,277  | 8,736   | 8,196   | 7.462    | 7.205   | 7.272   | 7.616   |
| Total                                  | 246,395 | 237,469        | 235,362 | 244,131 | 248,783    | 257,867 | 248,857 | 243,673 | 248,314 | 241,276  | 246,297 | 249,998 | 242,478 |
|                                        |         |                |         |         |            |         |         |         |         |          |         |         |         |

Table 25.-Stocks of crude petroleum in the United States in 1973, by classification and State and month

| Dec. 31                  | 134<br>109<br>87                                | 20,099<br>274                                      | 1,237<br>1,468<br>4,087                           | 1,600<br>1,247<br>5,546<br>277                                    | 484<br>1,180<br>1,99                                                            | 811<br>682<br>16<br>6,527   | 207<br>355<br>192                    | 1,303                   | 10,314<br>493<br>118<br>727  | 76,971              |
|--------------------------|-------------------------------------------------|----------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------|--------------------------------------|-------------------------|------------------------------|---------------------|
| Nov. 30                  | 185<br>102<br>89                                | $\begin{array}{c} 23,016 \\ 282 \end{array}$       | 836<br>1,028<br>4,386                             | 1,141<br>1,436<br>7,722<br>300                                    | 754<br>831<br>1,345<br>839                                                      | 303<br>710<br>24<br>5,679   | 201<br>389<br>259                    | 1,705                   | 17,708<br>488<br>1113<br>850 | 84,021              |
| Oct. 31                  | $\begin{array}{c} 221 \\ 82 \\ 105 \end{array}$ | $20,981 \\ 286$                                    | 1,359<br>644<br>4,626                             | 1,125<br>1,295<br>7,086<br>257                                    | 989<br>880<br>1,362<br>899                                                      | 314<br>689<br>16<br>5,127   | 180<br>441<br>353                    | 1,694                   | 14,676<br>489<br>126<br>694  | 78,193              |
| Sept. 30                 | 220<br>104<br>89                                | $20,294 \\ 163$                                    | 1,282<br>659<br>4,298                             | 1,188<br>2,066<br>1,024<br>7,330                                  | 1,217<br>775<br>1,301                                                           | 310<br>601<br>18<br>5,011   | 195<br>299<br>386                    | 1,432<br>5,106          | 16,743<br>535<br>151<br>680  | 76,748              |
| Aug. 31                  | 185<br>67<br>98                                 | 22,102 $333$                                       | 857<br>1,094<br>4,038                             | 1,139<br>1,802<br>1,045<br>7,361                                  | 1,557<br>699<br>1,021                                                           | 315<br>776<br>19<br>5,357   | 155<br>409<br>314                    | 1,356                   | 17,350<br>501<br>124<br>639  | 80,638              |
| July 31                  | 186<br>87<br>108                                | $\frac{19,735}{301}$                               | 958<br>999<br>4,332                               | 1,717<br>1,767<br>948<br>6,584<br>354                             | 836<br>482<br>1,216<br>849                                                      | 324<br>1,067<br>14<br>4,941 | 161<br>375<br>306                    | 1,252                   | 17,886<br>575<br>114<br>726  | 76,551              |
| June 30                  | 172<br>177<br>123                               | 19,041 $256$                                       | 1,091<br>783<br>4,281                             | 1,231<br>1,673<br>1,162<br>6,472<br>421                           | 541<br>590<br>1,070                                                             | 305<br>711<br>20<br>6,369   | 199<br>441<br>373                    | 1,377                   | 15,591<br>506<br>121<br>685  | 74,223              |
| May 31                   | $\frac{295}{105}$                               | 20,153<br>305                                      | 1,025<br>818<br>4,291                             | 1,225<br>1,892<br>1,358<br>6,832<br>400                           | 515<br>562<br>1,272                                                             | 323<br>801<br>23<br>6,062   | 230<br>461                           | 1,316<br>6,270          | 16,955<br>450<br>128<br>719  | 78,474              |
| Apr. 30                  | 312<br>176<br>126                               | $20,235 \\ 210$                                    | 1,056<br>714<br>4,418                             | 1,183<br>1,469<br>1,229<br>5,976<br>249                           | 611<br>749<br>1,484<br>886                                                      | 330<br>880<br>19<br>6,096   | 234<br>584<br>584                    | 1,425<br>6,705          | 15,770<br>570<br>158<br>667  | 77,047              |
| Mar. 31                  | 177<br>85<br>132                                | 23,362<br>495                                      | 951<br>1,215<br>3,436                             | 1,235<br>1,328<br>1,373<br>6,025<br>228                           | 1,088<br>760<br>1,475<br>826                                                    | 315<br>631<br>20<br>4.943   | 160<br>344<br>276                    | 1,536                   | 15,709<br>475<br>178<br>549  | 76,440              |
| Feb. 28                  | 183<br>103<br>105                               | 17,509 $490$                                       | 661<br>1,015<br>3,818                             | 1,320<br>1,255<br>1,352<br>5,657                                  | 798<br>799<br>1,334<br>622                                                      | 307<br>683<br>15<br>5.119   | 168<br>470<br>243                    | 1,554<br>1,354<br>6,604 | 14,561<br>481<br>138<br>593  | 69,558              |
| Jan. 31                  | 146<br>147<br>117                               | 17,932 $524$                                       | 920<br>892<br>3,468                               | 1,076<br>1,227<br>1,500<br>5,143                                  | 1,457<br>776<br>1,244<br>807                                                    | 306<br>763<br>16<br>5.269   | 185<br>447<br>192                    | 1,646<br>1,058<br>6,151 | 14,024<br>512<br>146<br>717  | 69,014              |
| Jan. 1                   | 214<br>126<br>122                               | 20,475<br>533                                      | 1,044 $717$ $3,550$                               | 1,151<br>1,397<br>1,108<br>6,231<br>262                           | $\begin{array}{c} 610 \\ 731 \\ 1,026 \\ 848 \end{array}$                       | 298<br>812<br>28<br>4.503   | 356<br>234<br>234                    | 1,793<br>1,356<br>5,721 | 13,552<br>507<br>133<br>735  | 70,327              |
| Classification and State | 1 1 1 1                                         | California, Arizona, Nevada,<br>Oregon, Washington | Florida, Georgia, South Carolina, Virginia Hawaii | Indiana<br>Kansas<br>Kentucky, Tennessee<br>Louisiana<br>Maryland | Massachusetts, Delaware, Rhode Island Michigan Minnesota, Wisconsin Mississippi | 1115                        | New York<br>New York<br>North Dakota | Ohio                    | Texas Utah West Virginia     | Total at refineries |

| 716                                      | 270    | 886      | 11,689              | 1,374    | 339 | 10,391   | 2,029   | 5,729          | 7,970  | 2,648               | 10,597    | 1,357    | 262                  | 4,092       | 1,629   | 1,456    | 2,716      | 919          | 3,721 | 14,746   | 818          | 58,476 | 517  | 226           | 6,423   | 152,533 | 12,974       | 242,478<br>246,395 |  |
|------------------------------------------|--------|----------|---------------------|----------|-----|----------|---------|----------------|--------|---------------------|-----------|----------|----------------------|-------------|---------|----------|------------|--------------|-------|----------|--------------|--------|------|---------------|---------|---------|--------------|--------------------|--|
| 349                                      | 684    | 962      | 10,523              | 1,409    | 432 | 10,978   | 1,985   | 5,774          | 8,161  | 2,751               | 11,349    | 1,264    | 1,227                | 3,703       | 1,633   | 1,398    | 2,978      | 942          | 4,263 | 16,095   | 816          | 56,522 | 542  | 281           | 5,956   | 152,980 | 12,997       | 249,998<br>251,306 |  |
| 274                                      | 714    | 844      | 13,624              | 1,345    | 231 | 11,388   | 1,974   | 6,278          | 8,941  | 2,682               | 10,886    | 1,430    | 1,032                | 3,610       | 1,478   | 1,410    | 2,738      | 977          | 4,728 | 15,149   | 669          | 56,016 | 564  | 290           | 6,025   | 155,327 | 12,777       | 246,297<br>253,748 |  |
| 260                                      | 736    | 892      | 12,637              | 1,238    | 275 | 12,655   | 2,004   | 5,630          | 8,597  | 2,712               | 10,972    | 1,149    | 683                  | 3,855       | 1,534   | 1,317    | 2,710      | 983          | 3,682 | 13,660   | 673          | 55,730 | 381  | 285           | 6,282   | 151,532 | 12,996       | 241,276<br>250,802 |  |
| 325                                      | 571    | 1,121    | 13,112              | 1,309    | 167 | 11,439   | 2,010   | 5,589          | 9,107  | 2,712               | 11,242    | 1,069    | 731                  | 3,824       | 1,417   | 1,458    | 2,633      | 941          | 3,814 | 13,935   | 862          | 57,831 | 484  | 274           | 7,045   | 155,022 | 12,654       | 248,314<br>257,976 |  |
| 398                                      | 498    | 1,188    | 14,397              | 1,355    | 431 | 11,416   | 2,019   | 6,045          | 9,708  | 2,307               | 10,736    | 1,117    | 862                  | 3,616       | 1,429   | 1,365    | 2,567      | 940          | 3,600 | 12,922   | 771          | 56,088 | 604  | 322           | 7,498   | 154,199 | 12,923       | 243,673<br>265,843 |  |
| 310                                      | 494    | 1,137    | 16,516              | 1,409    | 409 | 12,423   | 2,295   | 5,846          | 9,291  | 2,349               | 10,302    | 1,029    | 801                  | 3,685       | 1,460   | 1,356    | 2,701      | 926          | 4,568 | 12,665   | 802          | 58,861 | 633  | 277           | 9,075   | 161,623 | 13,011       | 248,857<br>271,381 |  |
| 536                                      | 808    | 844      | 15,935              | 1,301    | 181 | 13,047   | 2,408   | 6,347          | 9,351  | 2,255               | 11,456    | 1,213    | 961                  | 3,845       | 1,573   | 1,530    | 2,447      | 941          | 4,963 | 13,573   | 645          | 900'09 | 719  | 261           | 9,157   | 166,303 | 13,090       | 257,867<br>279,490 |  |
| 675                                      | 955    | 1,108    | 16,241              | 1,259    | 203 | 11,990   | 2,272   | 6,048          | 8,457  | 2,630               | 10,746    | 1,158    | 1,322                | 4,184       | 1,569   | 1,524    | 2,488      | 980          | 3,964 | 12,590   | 209          | 56,167 | 299  | 271           | 8,261   | 158,336 | 13,400       | 248,783<br>266,636 |  |
| 536                                      | 569    | 1.094    | 15,914              | 1,126    | 80  | 12,527   | 2,089   | 5,857          | 8,532  | 2,632               | 10,633    | 1,012    | 1,394                | 4,084       | 1,375   | 1,582    | 2,500      | 955          | 2,961 | 11,919   | 637          | 56,292 | 644  | 245           | 7,067   | 154,256 | 13,435       | 244,131<br>258,902 |  |
| 637                                      | 641    | 868      | 16,321              | 1.123    | 115 | 10,426   | 2,269   | 5,803          | 8,481  | 2,772               | 10,126    | 1,591    | 1,209                | 4,603       | 1,654   | 1,415    | 2,316      | 1,182        | 3,525 | 12,062   | 681          | 55,186 | 280  | 265           | 6,454   | 152,335 | 13,469       | 235,362<br>252,945 |  |
| 476                                      | 1,230  | 1,140    | 16,564              | 1,114    | 346 | 11,620   | 2,384   | 6,100          | 7,535  | 2,871               | 14,350    | 2,634    | 1.067                | 5,052       | 1,968   | 1,380    | 2,432      | 1,032        | 3,613 | 11,672   | 734          | 50,621 | 564  | 272           | 6,271   | 155.042 | 13,413       | 237,469<br>251,012 |  |
| 546                                      | 839    | 779      | 18,433              | 1,130    | 293 | 12,269   | 2,242   | 5,890          | 7,575  | 3,030               | 10,522    | 1,907    | 1,101                | 4,549       | 1,899   | 1,308    | 2,494      | 990          | 3,943 | 12,643   | 695          | 59,992 | 546  | 329           | 6,532   | 162,476 | 13,592       | 246,395<br>259,648 |  |
| ipeline and tank-farm stocks:<br>Alabama | Alaska | Arkansas | California. Arizona | Colorado |     | Illinois | Indiana | Iowa. Missouri | Kansas | Kentucky. Tennessee | Louisiana | Michigan | Minnesota. Wisconsin | Mississippi | Montana | Nebraska | New Mexico | North Dakota | Ohio  | Oklahoma | Pennsylvania | Texas  | Utah | West Virginia | Wyoming | Total   | Lease stocks | Total stocks 1973  |  |

Table 26.-Value of crude petroleum at wells in the United States, by State

|                     | 197                                              | 2                                 | 19                                               | 73                                |
|---------------------|--------------------------------------------------|-----------------------------------|--------------------------------------------------|-----------------------------------|
| State               | Total value<br>at wells<br>(thousand<br>dollars) | Average<br>value<br>per<br>barrel | Total value<br>at wells<br>(thousand<br>dollars) | Average<br>value<br>per<br>barrel |
| Alabama             | 30,466                                           | \$3,07                            | 41,772                                           | \$3.58                            |
| Alaska              | 235,444                                          | 3.23                              | 261,877                                          | 3.62                              |
| Arizona             | 3,226                                            | 3.25                              | 3,103                                            | 3.86                              |
| Arkansas            | 58,335                                           | 3.15                              | 70,618                                           | 3.92                              |
| California          | 940,430                                          | 2.71                              | 1,045,193                                        | 3.11                              |
| Colorado            | 109,171                                          | 3.41                              | 155,507                                          | 4.25                              |
| Florida             | 53,732                                           | 3.18                              | 150,070                                          | 4.59                              |
| Ilinois             | 121,013                                          | 3.47                              | 132,490                                          | 4.32                              |
| Indiana             | 20,964                                           | 3.42                              | 20,823                                           | 3.92                              |
| Kansas              | 259,578                                          | 3.52                              | 281,465                                          | 4.25                              |
| Kentucky            | 32,599                                           | 3.36                              | 34,515                                           | 3.97                              |
| Louisiana:          |                                                  |                                   |                                                  |                                   |
| Gulf Coast          | 3.044,933                                        | 3.59                              | 3,170,847                                        | 4.00                              |
| Northern            | 156,726                                          | 3.54                              | 156,855                                          | 3.94                              |
|                     | 3,201,659                                        | 3,59                              | 3,327,702                                        | 4.00                              |
| Total Louisiana     |                                                  | 3.20                              | 59,413                                           | 4.07                              |
| Michigan            | 41,556                                           | 3.15                              | 213,747                                          | 3.81                              |
| Mississippi         | 192,465                                          | 3.07                              | 115.423                                          | 3.33                              |
| Montana             | 103,924                                          | 3.38                              | 28,035                                           | 3.87                              |
| Nebraska            | 29,423                                           | 0.00                              | 20,000                                           |                                   |
| New Mexico:         | 040 506                                          | 3.43                              | 383,740                                          | 4.11                              |
| Southeastern        | 349,586                                          | 3.16                              | 30.301                                           | 4.00                              |
| Northwestern        | 27,192                                           |                                   |                                                  | 4.10                              |
| Total New Mexico    | 376,778                                          | 3.41                              | 414,041                                          | 5.60                              |
| New York            | 4,897                                            | 4.81                              | 5,412                                            | 3.90                              |
| North Dakota        | 67,647                                           | 3.28                              | 78,916                                           | 5.08                              |
| Ohio                | 35,179                                           | 3.76                              | 44,690                                           | 3.78                              |
| Oklahoma            | 709,033                                          | 3.41                              | 723,273                                          | 5.62                              |
| Pennsylvania        | 16,414                                           | 4.77                              | 18,440<br>988                                    | 3.59                              |
| South Dakota        | 574                                              | 2.62                              | 900                                              | 5.05                              |
| Texas:              |                                                  |                                   | 4 0 44 007                                       | 411                               |
| Gulf Coast          | 971,022                                          | 3.73                              | 1,041,037                                        | 4.11<br>3.98                      |
| East Texas Field    | 254,051                                          | 3.52                              | 300,775                                          |                                   |
| West Texas          | 2,203,363                                        | 3.41                              | 2,639,280                                        | 3.95<br>3.94                      |
| Panhandle           | 83,773                                           | 3.43                              | 87,859                                           | 3.94<br>3.94                      |
| Rest of State       | 1,023,868                                        | 3.43                              | 1,088,672                                        |                                   |
| Total Texas         | 4.536,077                                        | 3.48                              | 5,157,623                                        | 3.98                              |
| Utah                | 80,773                                           | 3.04                              | 117,743                                          | 3.61                              |
| West Virginia       | 12,047                                           | 4.50                              | 11,965                                           | 5.02                              |
| Wyoming             | 432,071                                          | 3.09                              | 541,820                                          | 3.82                              |
| Other States 1      | 1,035                                            | 2.89                              | 1,241                                            | 3.48                              |
| Total United States | 11,706,510                                       | 3.39                              | 13,057,905                                       | 3.89                              |
| Total United States | 11,100,010                                       | 0.00                              | ,                                                |                                   |

<sup>&</sup>lt;sup>1</sup> Missouri, Nevada, Tennessee, and Virginia (for 1972 only).

Table 27.—Posted price per barrel of petroleum at wells in the United States in 1972 and in 1973, by grade

(Dollars)

| G I                              | 1972<br>price |        | Da      | te of pric | 19<br>e change |       | ice per b | arrel        |         |
|----------------------------------|---------------|--------|---------|------------|----------------|-------|-----------|--------------|---------|
| Grade                            | per<br>barrel | Jan. 1 | Mar. 15 | Mar. 31    | Apr. 15        | May 1 | June 9    | Aug. 20      | Dec. 19 |
| Pennsylvania grade: Bradford and |               |        |         |            |                |       |           |              |         |
| Allegheny districts<br>Southwest | 4.88          | 5.18   |         |            |                |       |           | 5.83         | 6.83    |
| Pennsylvania                     | 4.17          | 4.77   |         |            |                |       |           | 5.12         | 6.12    |
| Corning grade                    | 3.42          | 3.52   |         |            |                |       |           | 4.17         | 5.17    |
| Western Kentucky                 | 3.60          | 3.60   |         | 3.85       |                |       |           | 4.20         | 5.20    |
| Indiana-Illinois                 | 3.60          | 3.60   |         | 3.85       |                |       |           | 4.20         | 5.20    |
| Coldwater, Michigan              | 3.35          | 3.37   |         | 3.64       |                |       |           | 3.98         | 5.00    |
| Oklahoma-Kansas:                 | 0.00          | 0.0.   |         |            |                |       |           |              |         |
| 34°-34.9° API                    | 3.42          | 3.42   | 3.73    |            |                |       |           | 4.11         | 5.11    |
| 36°-36.9° API                    | 3.50          | 3.50   | 3.77    |            |                |       |           | 4.15         | 5.15    |
| Texas, Panhandle (Carson,        | 5.50          | 5.50   | 0.11    |            |                |       |           |              |         |
| Gray, Hutchinson and             |               |        |         |            |                |       |           |              |         |
|                                  |               |        |         |            |                |       |           |              |         |
| Wheeler Counties)                | 3.41          | 3.41   | 3.75    |            |                |       |           | 4.10         | 5.10    |
| 35°-35.9° API                    | 3.41          | 0.41   | 0.10    |            |                |       |           | 2.10         | 0.10    |
| West Texas 30°-30.9°             | 0.00          | 3.36   |         |            | 3.61           |       |           | 4.11         | 5.11    |
| API (sweet)                      | 3.36          | 0.00   |         |            | 5.01           |       |           | 4.11         | 0.11    |
| Lea County, New Mexico,          |               | 0.05   |         | 0.50       |                |       |           | 4.00         | 5.00    |
| 30°-30.9° API (sour)             | 3.25          | 3.25   | ,       | 3.50       |                |       |           | 4.00         | 9.00    |
| South Texas, Mirando,            |               |        |         |            |                | 0.05  |           | 4.30         | 5.30    |
| 24°-24.9° API                    | 3.65          | 3.65   |         |            | 2 2 2          | 3.95  |           | 4.20         | 5.20    |
| East Texas                       | 3.60          | 3.60   |         |            | 3.85           | 2 25  |           |              | 5.30    |
| Conroe, Texas                    | 3.70          | 3.70   |         |            |                | 3.95  |           | 4.30         | 9.50    |
| Texas:                           |               |        |         |            |                |       |           | 4.05         | - 0-    |
| 30°-30.9° API                    | 3.45          | 3.45   |         |            |                | 3.70  |           | 4.05         | 5.05    |
| 20°-20.9° API                    | 3.35          | 3.35   |         |            |                | 3.60  |           | 3.95         | 4.95    |
| Louisiana, 30°-30.9° API _       | 3.55          | 3.55   |         |            | 3.80           |       |           | 4.15         | 5.15    |
| Caddo-Pine Island,               |               |        |         |            |                |       |           |              |         |
| Louisiana, 36°-36.9° API         | 3.44          | 3.44   |         | 3.69       |                |       |           | 4.04         | 5.04    |
| Magnolia Smackover               |               |        |         |            |                |       |           |              |         |
| Limestone, Arkansas,             |               |        |         |            |                |       |           |              |         |
| 31°-31.9° API                    | 3.07          | 3.07   |         | 3.49       |                |       | 3.84      |              | 4.84    |
| Elk Basin, Wyoming               |               |        |         |            |                |       |           |              |         |
| (including Montana)              |               |        |         |            |                |       |           |              |         |
| 30°-30.9° API                    | 3.16          | 3.16   |         | 3.46       |                |       |           | 3.8 <b>6</b> | 4.86    |
| California:                      | 0.10          | 0.10   |         | 3          |                |       |           |              |         |
| Coalinga, 32°-32.9° API          | 3.41          | 3.41   |         |            |                |       |           | 3.76         | 4.76    |
|                                  | 0.41          | 0.41   |         |            |                |       |           |              |         |
| Kettleman Hills,                 | 3.66          | 3.66   |         |            |                |       | _         | 4.01         | 5.01    |
| 37°-37.9° API                    | 5.00          | 0.00   |         |            |                |       |           |              |         |
| Midway Sunset,                   | 0.00          | 2.68   |         |            |                |       |           | 3.03         | 4.03    |
| 19°-19.9° API                    | 2.68          | 2.08   |         |            |                |       |           | 0.00         |         |
| Wilmington,                      | 0.00          | 0.00   |         |            |                |       |           | 3,38         | 4.38    |
| 24°-24.9° API                    | 3.03          | 3.03   |         |            |                |       |           | 0.00         | 2.00    |

Source: Platt's Oil Price Handbook.

Table 28.-Wholesale price index, crude petroleum

(1967=100) <sup>1</sup>

| Month                                                                                 | 1969                                                                                          | 1970                                                                                            | 1971                                                                                            | 1972                                                                                   | 1973                                                                                   |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| January February March April May June July August September October November December | 99.7<br>99.9<br>103.7<br>104.8<br>104.7<br>104.5<br>104.5<br>104.5<br>104.5<br>104.5<br>104.5 | 106.0<br>106.0<br>106.0<br>106.0<br>106.0<br>106.0<br>104.8<br>104.8<br>104.8<br>104.8<br>113.2 | 113.2<br>113.2<br>113.2<br>113.2<br>113.2<br>113.2<br>113.2<br>113.2<br>113.2<br>113.2<br>113.2 | 113.2<br>113.2<br>113.2<br>113.2<br>113.2<br>113.2<br>113.2<br>114.7<br>114.7<br>114.7 | 114.7<br>114.7<br>114.9<br>117.1<br>122.0<br>125.8<br>125.8<br>133.3<br>139.3<br>146.0 |
| Average                                                                               | 103.7                                                                                         | 106.1                                                                                           | 113.2                                                                                           | 113.8                                                                                  | 126.0                                                                                  |

<sup>&</sup>lt;sup>1</sup> Reference base prior to 1970 (1957-59=100).

Source: Bureau of Labor Statistics, U.S. Department of Labor.

Table 29.-Average monthly price of petroleum products in the United States, 1972-73

| Monthly average and grade                                                                                                                                        | Year J                                                           | Janu-<br>ary                                      | Febru-<br>ary                                        | March April                                       | April                                                     | May                                                             | June                                         | July                                                            | Au-<br>gust                                                     | Sep-<br>tem-<br>ber                                  | Octo-<br>ber                                 | No-<br>vem-<br>ber                                              | De- A<br>cem-<br>ber                         | Average<br>for<br>year                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------|----------------------------------------------|----------------------------------------------|
| ts per gallon):                                                                                                                                                  | {1972<br>{1973                                                   | 12.73<br>12.96                                    | 12.63<br>13.18                                       | 12.67<br>13.38                                    | 12.88<br>13.71                                            | 12.88<br>13.88                                                  | 12.88<br>14.75                               | 12.88<br>14.75                                                  | 12.88<br>14.75                                                  | 12.88<br>15.25                                       | 12.88<br>16.50                               | 12.88<br>18.34                                                  | 12.88<br>20.43                               | 12.83<br>15.16                               |
| Tank wagon prices to dealers at 56 cities on first of month                                                                                                      | $\begin{cases} 1972 \\ 1973 \\ 1972 \\ 1972 \\ 1973 \end{cases}$ | 18.04<br>18.46<br>36.53<br>37.16                  | 17.92<br>18.09<br>37.05<br>36.74                     | 16.96<br>18.75<br>34.79<br>37.87                  | $17.21 \\ 19.02 \\ 35.34 \\ 38.25$                        | $\begin{array}{c} 16.52 \\ 19.21 \\ 34.41 \\ 38.42 \end{array}$ | 17.15<br>19.22<br>35.20<br>38.71             | $\begin{array}{c} 17.71 \\ 19.22 \\ 35.82 \\ 38.76 \end{array}$ | $\begin{array}{c} 17.31 \\ 19.11 \\ 35.29 \\ 38.78 \end{array}$ | 18.92<br>19.13<br>37.95<br>38.71                     | 18.47<br>20.17<br>37.29<br>39.66             | $\begin{array}{c} 18.13 \\ 20.90 \\ 36.87 \\ 40.53 \end{array}$ | 18.30<br>22.53<br>37.02<br>42.26             | 17.72<br>19.48<br>36.13<br>38.82             |
| lon) :<br>cago district                                                                                                                                          | 1972<br>11973<br>11972<br>11973                                  | 12.00<br>12.27<br>10.25<br>10.53                  | 11.84<br>12.98<br>10.25<br>11.34                     | 11.70<br>13.49<br>10.25<br>11.38                  | 11.70<br>14.60<br>10.25<br>11.78                          | 11.70<br>15.13<br>10.25<br>12.38                                | 11.74<br>15.53<br>10.25<br>12.69             | 11.75<br>15.00<br>10.25<br>12.75                                | 11.75<br>15.01<br>10.25<br>12.75                                | 11.75<br>16.88<br>10.25<br>13.19                     | 12.08<br>17.88<br>10.26<br>14.19             | 12.13<br>20.16<br>10.50<br>15.49                                | 12.13<br>22.77<br>10.50<br>18.40             | 11.86<br>15.98<br>10.29<br>13.07             |
| Kerosine (or No. 1 fuel oil) at New York Harbor  Kerosine (or No. 1 fuel oil) at Tampa                                                                           | (1973<br>(1972<br>(1973                                          | 13.09<br>12.50<br>12.69                           | 13.75<br>12.50<br>13.25                              | 13.75<br>12.50<br>13.25                           | 13.75<br>12.50<br>13.25                                   | 13.75<br>12.50<br>13.25                                         | 13.75<br>12.50<br>13.25                      | 13.75<br>12.50<br>13.25                                         | 13.75<br>12.50<br>13.25                                         | 13.75<br>12.50<br>13.25                              | 14.65<br>12.50<br>13.25                      | 16.23<br>12.50<br>15.82                                         | 17.30<br>12.50<br>17.29                      | 14.27<br>12.50<br>13.75                      |
| Distillate and diesel ruel on (cents per ganout):  No. 2 fuel oil at refineries, Oklahoma  No. 2 fuel oil at New York Harbor  Diesel oil, shore plants, New York | (1972)<br>1972<br>1972<br>11973<br>11972                         | 9.50<br>9.95<br>11.85<br>12.09                    | 9.50<br>10.48<br>11.85<br>12.75<br>12.15             | 9.50<br>10.50<br>11.85<br>12.75<br>12.15          | 9.50<br>10.90<br>11.85<br>13.00<br>12.15                  | 9.50<br>11.50<br>11.85<br>13.38<br>12.15                        | 9.50<br>11.81<br>11.85<br>14.07<br>12.15     | 9.50<br>11.88<br>11.85<br>14.28<br>12.15                        | 9.50<br>11.88<br>11.85<br>14.38<br>12.15                        | 9.50<br>12.31<br>11.85<br>15.13<br>12.15             | 9.50<br>13.31<br>11.85<br>16.93<br>12.44     | 9.75<br>14.50<br>11.85<br>18.62<br>12.45                        | 9.75<br>17.40<br>11.85<br>22.70<br>12.45     | 9.54<br>12.20<br>11.85<br>15.01<br>12.22     |
| Light diesel oil for ships (dollars per barrel):  New York                                                                                                       | (1972)<br>(1973)<br>(1972)<br>(1973)                             | 5.08<br>5.32<br>5.10<br>5.04                      | 5.16<br>5.32<br>5.04<br>5.04                         | 5.17<br>5.32<br>5.04<br>5.04                      | 5.17<br>5.50<br>4.89<br>5.34                              | 5.17<br>5.67<br>4.89<br>5.67                                    | 5.17<br>5.76<br>4.89<br>5.76<br>6.06         | 5.17<br>6.26<br>4.89<br>6.26<br>6.06                            | 5.17<br>6.47<br>6.47<br>6.47<br>6.06                            | 5.17<br>6.90<br>4.89<br>6.90                         | 5.17<br>7.47<br>7.47<br>7.47<br>6.06         | 5.32<br>9.87<br>5.04<br>10.16                                   | 5.32<br>10.67<br>5.04<br>10.88<br>6.06       | 6.18<br>6.70<br>6.67<br>6.67                 |
| San Francisco Marine Diesel                                                                                                                                      | (1973<br>(1972<br>(1973                                          | $\begin{pmatrix} 1 \\ 6.16 \\ 6.27 \end{pmatrix}$ | $\begin{pmatrix} 1 \\ 6.27 \\ 6.27 \end{pmatrix}$    | $\begin{pmatrix} 1 \\ 6.27 \\ 6.27 \end{pmatrix}$ | $\begin{pmatrix} 1 \\ 6.27 \\ 6.27 \\ 6.27 \end{pmatrix}$ | $\begin{pmatrix} 1 \\ 6.27 \\ 6.27 \\ 6.27 \end{pmatrix}$       | $^{(1)}_{6.27}$                              | (1)<br>6.27<br>7.28                                             | $^{(1)}_{6.27}$                                                 | (1)<br>6.27<br>7.68                                  | $^{(1)}_{6.27}$ $^{8.12}$                    | $^{(1)}_{6.27}$                                                 | $^{(1)}_{6.27}_{10.13}$                      | (¹)<br>6.26<br>7.35                          |
| No. 6 fuel at refineries, Oklahoma                                                                                                                               | $\begin{cases} 1972 \\ 1973 \\ 1972 \\ 1972 \\ 1973 \end{cases}$ | 2.60<br>2.60<br>4.35<br>4.35                      | 2.60<br>2.60<br>4.34<br>4.35                         | 2.60<br>2.60<br>4.05<br>4.45                      | 2.60<br>2.72<br>4.05<br>4.64                              | 2.60<br>2.73<br>4.05<br>4.64                                    | 2.60<br>2.73<br>4.05<br>4.64                 | 2.60<br>2.73<br>4.05<br>4.64                                    | 2.60<br>2.73<br>4.05                                            | 2.60<br>2.73<br>4.05                                 | 2.60<br>3.13<br>4.05                         | 2.60<br>3.34<br>4.05<br>(2)                                     | 2.60<br>4.28<br>4.10<br>( <sup>2</sup> )     | 2.60<br>2.91<br>4.10<br>4.53                 |
| New York                                                                                                                                                         | 1972<br>1973<br>1972<br>1973<br>1973<br>1972<br>1972             | 3.41<br>3.48<br>3.48<br>3.50<br>3.55<br>3.55      | 3.45<br>3.45<br>3.48<br>3.48<br>3.64<br>3.69<br>3.69 | 3.45<br>3.48<br>3.45<br>3.64<br>3.69<br>3.69      | 3.45<br>3.55<br>3.55<br>3.69<br>3.69<br>3.69              | 3.45<br>3.45<br>3.45<br>3.60<br>3.64<br>3.69<br>3.89            | 3.60<br>3.60<br>3.60<br>3.60<br>3.69<br>3.69 | 3.45<br>3.60<br>3.45<br>3.60<br>3.64<br>3.64<br>4.27            | 3.45<br>3.45<br>3.46<br>3.60<br>3.64<br>4.60                    | 3.45<br>3.60<br>3.45<br>3.60<br>3.64<br>3.69<br>5.06 | 3.45<br>3.45<br>3.45<br>3.69<br>3.69<br>5.40 | 3.45<br>3.45<br>3.64<br>3.69<br>3.69<br>6.72                    | 3.45<br>3.45<br>3.45<br>6.10<br>3.69<br>7.21 | 3.45<br>3.45<br>3.45<br>3.68<br>3.68<br>4.65 |

| Lubricating oil (cents per gallon): East Coast:                          |                                                                                                             |                |                  |                       |                       |               |               |               |                  |                  |                |                |                |                  |  |
|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------|------------------|-----------------------|-----------------------|---------------|---------------|---------------|------------------|------------------|----------------|----------------|----------------|------------------|--|
| 200 viscosity at 100, 0-10 pour test, 95 V.I                             | $\begin{cases} 1972 \\ 1973 \end{cases}$                                                                    | 23.50 $27.25$  | 23.50 $27.25$    | 23.50 $27.25$         | 23.50 $27.25$         | 23.50 $27.25$ | 23.50 $27.25$ | 23.50 $27.25$ | 23.50 $27.94$    | 23.50 $28.50$    | 23.50          | 24.24          | 24.69<br>33.00 | 23.66            |  |
| 500 viscosity at 100, 0-10 pour test, 95 V.I                             | $\begin{cases} 1972 \\ 1973 \end{cases}$                                                                    | 25.50<br>25.75 | 25.50 $25.75$    | 25.50<br>25.75        | 25.50 $25.75$         | 25.50 $25.75$ | 25.50 $25.75$ | 25.50 $26.25$ | 25.50<br>26.31   | 25.50<br>26.50   | 25.50<br>29.00 | 26.23<br>29.73 | 26.69<br>31.00 | 25.66<br>26.94   |  |
| . 21/2-31/2                                                              | $\begin{cases} 1972 \\ 1973 \end{cases}$                                                                    | 20.00 $19.75$  | $20.00 \\ 19.75$ | $\frac{20.00}{19.75}$ | $\frac{20.00}{19.75}$ | 20.00 $19.75$ | 20.00 $19.75$ | 20.00 $19.75$ | $20.00 \\ 20.52$ | $20.00 \\ 22.52$ | 20.0024.06     | 20.0025.00     | 20.00<br>25.00 | $20.00 \\ 21.28$ |  |
| Liquefied petroleum gas (propane) (cents per gallon):  New York Harbor 3 | 1972                                                                                                        | 8.50           | 8.50             | 8.50                  | 8.50                  | 8.50          | 8.50          | 8.50          | 8.50             | 8.95             | 9.18           | 9.18           | 9.18           | 8.71             |  |
| Oklahoma                                                                 | 1972                                                                                                        | 5.25           | 5.25             | 5.25                  | 5.25<br>6.93          | 5.25          | 5.25          | 5.25          | 5.25             | 5.60             | 13.83          | 5.67           | 13.86          | 5.38             |  |
| Baton Rouge                                                              | $^{\textcolor{red}{\textcolor{red}{\backslash}}1972}}_{\textcolor{blue}{\textcolor{blue}{\backslash}}1973}$ | 5.73<br>6.21   | 5.73<br>6.40     | 5.73<br>6.91          | 5.73                  | 5.73<br>8.49  | 5.73<br>9.16  | 5.73<br>9.25  | 5.73<br>9.25     | 6.12             | 6.21           | 6.21           | 6.21           | 5.88<br>9.13     |  |

<sup>1</sup> Eliminated. <sup>2</sup> Partial average. <sup>3</sup> Philadelphia combined with New York Harbor in 1972.

Table 30.-Salient statistics of the major refined petroleum products in the United States

| Product                               | 1970                 | 1971                                       | 1972                 | 1973 P            |
|---------------------------------------|----------------------|--------------------------------------------|----------------------|-------------------|
| opentane:                             |                      |                                            |                      |                   |
| Production                            | 3,865                | 5,565                                      | 7,251                | 5,828             |
| Stocks at plants                      | 9 000                | 31                                         | 99                   | 32                |
| Used at refineriesatural gasoline:    | 3,868                | 5,541                                      | 7,183                | 5,895             |
| Production                            | 161,274              | 159,732                                    | 156,450              | 155,880           |
| Stocks end of year:                   |                      |                                            |                      |                   |
| At plants                             | 4,316                | 3,647                                      | 3,285                | 5,043             |
| At refineries                         | 1,765                | 1,485                                      | 1,418                | 1,085             |
| Total stocks                          | 6,081                | 5,132                                      | 4,703                | 6,128             |
| Used at refineries                    | 160,108              | 160,681                                    | 156,879              | 154,455           |
| Production                            | 31,972               | 25,754                                     | 22,022               | 19,838            |
| Stocks end of year:                   |                      |                                            |                      |                   |
| At plants                             | 507                  | 594                                        | 763                  | 739               |
| At refineries                         | 451                  | 419                                        | 510                  | 936               |
| Total stocks                          | 958                  | 1,013                                      | 1,273                | 1,675             |
| Used at refineries                    | $2,258 \\ 34,051$    | 13,321<br>39,020                           | 31,428<br>53,190     | 37,475<br>56,911  |
|                                       | 01,001               | 00,020                                     | 00,100               | 00,011            |
| ished gasoline: Production:           |                      |                                            |                      |                   |
| At refineries                         | 2,099,911            | 2,197,550                                  | 2,315,768            | 2,398,831         |
| At gas processing plants              | 5,347                | 5,023                                      | 4,182                | 3,029             |
| Total gasoline production             | 2,105,258            | 2,202,573                                  | 2,319,950            | 2,401,860         |
| Stocks end of year:                   |                      |                                            |                      |                   |
| At refineries                         | 214,150              | 223,544                                    | 217,025              | 213,334           |
| At plants                             | 198                  | 227                                        | 124                  | 88                |
| Total stocks                          | 214,348              | 223,771                                    | 217,149              | 213,417           |
| Imports                               | 24,320               | 21,658                                     | 24,787               | 48,106<br>1.666   |
| Exports  Domestic demand              | $1,370 \\ 2,131,252$ | 1,649<br>2,213,159                         | 656<br>2,350,703     | 2,452,032         |
|                                       | 2,101,202            | 2,210,100                                  | 2,000,100            | 2,102,002         |
| Motor gasoline: Production:           |                      |                                            |                      |                   |
| At refineries                         | 2,080,199            | 2,179,093                                  | 2,298,775            | 2,382,418         |
| At gas processing plants              | 5,347                | 5,023                                      | 4,182                | 3,029             |
| Total motor gasoline production       | 2,085,546            | 2,184,116                                  | 2,302,957            | 2,385,447         |
| Stocks end of year:                   |                      |                                            |                      |                   |
| At refineries                         | 209,057              | 219,125                                    | 212,770              | 209,395           |
| At plants                             | 198                  | 227                                        | 124                  | 88                |
| Total motor gasoline stocks           | 209,255              | 219,352<br>21,658                          | 212,894              | 209,478<br>48,106 |
| Imports<br>Exports                    | $24,320 \\ 461$      | 410                                        | $24,787 \\ 424$      | 1,468             |
| Domestic demand                       | 2,111,349            | 2,195,267                                  | 2,333,778            | 2,435,501         |
| Aviation gasoline:                    | 10.510               | 10 455                                     | 10,000               | 10 416            |
| Production<br>Stocks end of year      | $19,712 \\ 5,093$    | 18,457 $4,419$                             | $16,993 \\ 4,255$    | 16,413<br>3,939   |
| Exports                               | 909                  | 1,239                                      | 232                  | 198               |
| Domestic demand                       | 19,903               | 17,892                                     | 16,925               | 16,53             |
| fuel:                                 | 001 010              | 004.074                                    | 010.000              | 010 60            |
| ProductionStocks end of year          | $301,913 \\ 27,610$  | $304,674 \\ 27,737$                        | $310,029 \\ 25,493$  | 313,689<br>28,54  |
| Imports                               | 52,696               | 65,712                                     | 71,174               | 74,28             |
| Exports                               | 2,094                | 1,536                                      | 957                  | 1,56              |
| Domestic demand                       | 352,978              | 368,723                                    | 382,490              | 383,35            |
| Naphtha type:                         |                      |                                            |                      |                   |
| Production:                           | 04.000               | 07.015                                     | 50 FCF               | 65.00             |
| At refineriesAt gas processing plants | $84,060 \\ 21$       | $\begin{array}{c} 85,317 \\ 9 \end{array}$ | 76,565               | 65,99             |
| Total production                      | 84,081               | 85,326                                     | 76,565               | 65,99             |
|                                       | 01,001               | 00,020                                     | .,,,,,               |                   |
| Stocks end of year: At refineries     | 6,618                | 6,988                                      | 6,147                | 5,59              |
| At plants                             | 3                    | 2                                          | 0,141                | 0,00              |
| Total stocks                          | 6,621                | 6,990                                      | 6,147                | 5,59              |
| Imports                               | 7,005                | 11,092                                     | 11,998               | 13,31             |
| Exports                               | 2,094                | 1,317                                      | 911                  | 70.22             |
| Domestic demandKerosine type:         | 90,927               | 94,732                                     | 88,495               | 79,22             |
| Production                            | 217,832              | 219,348                                    | 233,464              | 247,69            |
| Stocks end of year                    | 20,989               | 20,747                                     | 19,346               | 22,94             |
| Imports                               | 45,691               | 54,620                                     | 59,176               | 60,97             |
| Exports                               | 262,051              | $219 \\ 273,991$                           | $\frac{46}{293,995}$ | 923<br>304,13     |
| Domestic demand                       |                      |                                            |                      |                   |

Table 30.—Salient statistics of the major refined petroleum products in the United States—Continued

| (Thousand b                                       | arrels)          |                  |                  |                  |
|---------------------------------------------------|------------------|------------------|------------------|------------------|
| Product                                           | 1970             | 1971             | 1972             | 1973 Þ           |
| Ethane (including ethylene):                      |                  |                  |                  |                  |
| Production: At gas processing plants              | 73,434           | 80,524           | 100,691          | 108,220          |
| At refineries                                     | 9,460            | 9,266            | 9,197            | 9,194            |
| Total production                                  | 82,894           | 89,790           | 109,888          | 117,414          |
| Stocks end of year:                               |                  |                  |                  |                  |
| At plantsAt refineries                            | 1,319            | 3,365            | 7,052            | 5,023            |
| Total stocks                                      | 1,319            | 3,365            | 1 7,052          | 1 5,023          |
| Domestic demand:                                  |                  |                  |                  |                  |
| Plant ethane                                      | 74,297           | 78,478           | 97,004           | 110,249          |
| Refinery ethane and/or ethylene                   | 9,460            | 9,266            | 9,197            | 9,194            |
| Total domestic demand                             | 83,757           | 87,744           | 106,201          | 119,443          |
| Liquefied gases: Production:                      |                  |                  |                  |                  |
| At gas processing plants (LPG)                    | 326,177          | 337,110          | 344,045          | 338,813          |
|                                                   |                  |                  |                  |                  |
| At refineries (LRG): For fuel use                 | 80,870           | 88,648           | 84,514           | 89,570           |
| For chemical use                                  | 35,657           | 32,304           | 36,668           | 38,062           |
| Total production at refineries                    | 116,527          | 120,952          | 121,182          | 127,632          |
| Total production                                  | 442,704          | 458,062          | 465,227          | 466,445          |
| Stocks end of year:                               |                  |                  |                  |                  |
| LPG stocks: At plants                             | 59,276           | 80,294           | 67,807           | 83,086           |
| At refineries                                     | 794              | 3,693            | 3,077            | 2,813            |
| Total LPG stocks                                  | 60,070           | 83,987           | 70,884           | 85,899           |
| LRG stocks:                                       | F 400            | C 000            | 7 407            | 7,403            |
| For fuel use<br>For chemical use                  | $5,433 \\ 221$   | 6,992<br>369     | 7,487 $294$      | 316              |
| Total LRG stocks                                  | 5,654            | 7,361            | 7,781            | 7,719            |
| Total stocks                                      | 65,724           | 91,348           | 1 78,665         | 1 93,618         |
| ImportsExports                                    | 18,921<br>9,955  | 25,655<br>9,390  | 32,401<br>11,469 | 47,801<br>9,956  |
| LPG used at refineries                            | 80,307           | 79,695           | 85,193           | 80,221           |
| Domestic demand:                                  |                  |                  |                  |                  |
| LPG for fuel and chemical use<br>LRG for fuel use | 251,051          | 249,767          | 292,887          | 281,422          |
| LRG for fuel useLRG for chemical use              | 80,219<br>31,789 | 87,089<br>32,152 | 84,019<br>36,743 | 89,654<br>38,040 |
| Total domestic demand                             | 363,059          | 369,008          | 413,649          | 409,116          |
| Propane (including propylene):                    |                  |                  |                  |                  |
| Production:                                       |                  |                  |                  |                  |
| At gas processing plants                          | 202,494          | 212,143          | 218,039          | 212,886          |
| At refineries:                                    | CD 400           | 71.004           | CO 000           | #9 E91           |
| For fuel use<br>For chemical use                  | 63,409<br>20,090 | 71,934<br>21,512 | 69,038<br>25,024 | 73,531<br>25,329 |
| Total production at refineries                    | 83,499           | 93,446           | 94,062           | 98,860           |
| Total production                                  | 285,993          | 305,589          | 312,101          | 311,746          |
| Stocks end of year:                               |                  |                  |                  |                  |
| Plant propane stocks:                             |                  |                  |                  |                  |
| At plants                                         | 38,791<br>84     | 56,779<br>769    | 48,219<br>190    | 59,704<br>357    |
| At refineries                                     | 38,875           | 57,548           | 48,409           | 60,061           |
| Refinery propane and/or propylene stocks:         | 00,010           | 01,010           | 10,100           |                  |
| For fuel use                                      | 4,301            | 5,050            | 4,959            | 4,399            |
| For chemical use                                  | 146              | 263              | 193              | 187              |
| Total refinery propane and/or propylene stocks    | 4,447            | 5,313            | 5,152            | 4,586            |
| Total stocks                                      | 43,322           | 62,861           | 53,561           | 64,647           |
| Imports<br>Exports                                | 9,467<br>2,165   | 11,060<br>4,665  | 15,851<br>6,502  | 25,614<br>5,501  |
| Plant propane used at refineries                  | 1,530            | 3,273            | 3,934            | 2,755            |
| Domestic demand: Plant propane                    | 200,770          | 197,138          | 232,593          | 218,592          |
| riant propane                                     | 200,110          | 101,100          | 202,000          | 210,002          |

Table 30.—Salient statistics of the major refined petroleum products in the United States—Continued

| Product                                                                                                                        | 1970             | 1971             | 1972             | 1973 р            |
|--------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|-------------------|
| Liquefied gases—Continued Propane (including propylene)—Continued Domestic demand—Continued Refinery propane and/or propylene: |                  |                  |                  |                   |
| For chemical use                                                                                                               | 62,191<br>20,159 | 71,185<br>21,395 | 69,129<br>25,094 | 74,091            |
| Total refinery propane and/or<br>propylene domestic demand                                                                     | 82,350           | 92,580           | 94,223           | 25,335            |
| Total domestic demand                                                                                                          | 283,120          | 289,718          | 326,816          | 99,426<br>318,018 |
| Butane (including butylene):                                                                                                   |                  |                  | 020,010          |                   |
| Production: At gas processing plants                                                                                           | 87,253           | 88,544           | 88,924           | 88,766            |
| At refineries: For fuel use                                                                                                    | 13,514           | 13,765           | 12,940           | 13,036            |
| For chemical use                                                                                                               | 8,693<br>22,207  | 5,886            | 5,673            | 6,666             |
| <del></del>                                                                                                                    |                  | 19,651           | 18,613           | 19,702            |
| Total production                                                                                                               | 109,460          | 108,195          | 107,537          | 108,468           |
| Stocks end of year: Plant butane stocks: At plants                                                                             | 14,397           | 13,571           | 10,389           | 15,289            |
| At refineries                                                                                                                  | 414              | 1,614            | 1,425            | 1,369             |
| Total plant butane stocks                                                                                                      | 14,811           | 15,185           | 11,814           | 16,658            |
| Refinery butane and/or butylene stocks : For fuel use For chemical use                                                         | 912<br>35        | 1,448<br>11      | 2,161<br>15      | 2,471<br>16       |
| Total refinery butane and/or butylene stocks                                                                                   | 947              | 1,459            | 2,176            | 2,487             |
| Total stocks                                                                                                                   | 15,758           | 16,644           | 13,990           | 19,145            |
| Imports<br>Exports                                                                                                             | 9,454 $1.655$    | 14,049<br>4,725  | 16,550<br>4,967  | 22,187<br>4,455   |
| Plant butane used at refineries                                                                                                | 43,758           | 46,061           | 44,512           | 39,327            |
| Domestic demand: Plant butane                                                                                                  | 50,083           | 51,433           | 59,366           | 62,327            |
| Refinery butane and/or butylene: For fuel use                                                                                  |                  |                  |                  |                   |
| For the use                                                                                                                    | 14,050<br>8,694  | 13,229<br>5,910  | 12,227<br>5,669  | 12,726<br>6,665   |
| Total refinery butane and/<br>or butylene                                                                                      | 22,744           | 19,139           | 17,896           | 19,391            |
| Total domestic demand                                                                                                          | 72,827           | 70,572           | 77,262           | 81,718            |
| Butane-propane mixture: Production:                                                                                            |                  |                  |                  |                   |
| At gas processing plants                                                                                                       | 5,677            | 4,173            | 3,535            | 3,509             |
| At refineries:  For fuel use  For chemical use                                                                                 | 3,947            | 2,949            | 2,536            | 3,003             |
| For chemical use                                                                                                               | 5,353            | 3,029            | 3,892            | 3,491             |
| Total production at refineries _                                                                                               | 9,300            | 5,978            | 6,428            | 6,494             |
| Total production                                                                                                               | 14,977           | 10,151           | 9,963            | 10,003            |
| Stocks end of year: Plant butane-propane mixture: At plants                                                                    | 733              | 815              | 944              | 826               |
| At refineries                                                                                                                  | 35               | 38               | 31               | 128               |
| Total plant butane-propane mixture stocks                                                                                      | 768              | 853              | 975              | 954               |
| Refinery butane-propane mixture: For fuel use For chemical use                                                                 | 220              | 494              | 367<br>2         | 533               |
| Total refinery butane-propane mixture stocks                                                                                   | 220              | 497              | 369              | 536               |
| Total stocks                                                                                                                   | 988              | 1,350            | 1,344            | 1.490             |
| Exports                                                                                                                        | 6,135            | 1,350            | 1,044            | 1,430             |
| Plant butane-propane mixture used at refineries                                                                                | 2,822            | 2,896            | 2,485            | 3,027             |
| Domestic demand: Plant butane-propane mixture                                                                                  | 198              | 1,192            | 928              | 503               |
| See feetnetes at and of table                                                                                                  |                  |                  |                  |                   |

Table 30.—Salient statistics of the major refined petroleum products in the United States—Continued

| Product                                                    | 1970              | 1971              | 1972                       | 1973 р                     |
|------------------------------------------------------------|-------------------|-------------------|----------------------------|----------------------------|
| Liquefied gases—Continued Butane-propane mixture—Continued |                   |                   |                            |                            |
| Domestic demand—Continued                                  |                   |                   |                            |                            |
| Refinery butane-propane mixture:                           |                   |                   |                            |                            |
| For fuel useFor chemical use                               | 3,978<br>1,438    | $2,675 \\ 3,026$  | 2,663<br>3,893             | 2,837<br>3,490             |
| Total refinery butane-                                     | 1,400             | 3,020             | 0,000                      | 0,430                      |
| propane mixture                                            | 5,416             | 5,701             | 6,556                      | 6,327                      |
| Total domestic demand                                      | 5,614             | 6,893             | 7,484                      | 6,830                      |
|                                                            | 0,014             | 0,000             | 1,302                      | 0,000                      |
| Isobutane: Production:                                     |                   |                   |                            |                            |
| At gas processing plants                                   | 30,753            | 32,250            | 33,547                     | 33,652                     |
| At refineries                                              | 1,521             | 1,877             | 2,079                      | 2,576                      |
| Total production                                           | 32,274            | 34,127            | 35,626                     | 36,228                     |
| Stocks end of year:                                        |                   |                   |                            |                            |
| Plant isobutane:                                           | F 955             | 0.100             | 0.055                      | 7,267                      |
| At plants<br>At refineries                                 | 5,355<br>261      | $9,129 \\ 1,272$  | 8,255 $1,431$              | 959                        |
| Total plant isobutane stocks _                             | 5,616             | 10,401            | 9,686                      | 8,226                      |
| Refinery isobutane                                         | 40                | 92                | 84                         | 110                        |
| Total stocks                                               | 5,656             | 10,493            | 9,770                      | 8,336                      |
| Plant isobutane used at refineries                         | 32,197            | 27,465            | 34,262                     | 35,112                     |
| Domestic demand: Refinery isobutane for chemical use       | 1,498             | 1,825             | 2,087                      | 2,550                      |
|                                                            | 1,490             | 1,020             | 2,001                      | 2,000                      |
| Kerosine (including range oil): Production:                |                   |                   |                            |                            |
| At refineries                                              | 94,635            | 86,256            | 79,027                     | 79,422                     |
| At gas processing plants                                   | 1,077             | 1,243             | 1,063                      | 704                        |
| Total production                                           | 95,712            | 87,499            | 80,090                     | 80,126                     |
| Stocks end of year:                                        |                   |                   |                            |                            |
| At refineries                                              | 27,564            | 24,237            | 19,068                     | 20,985                     |
| At plants                                                  | 284               | 201               | 43                         | 37                         |
| Total stocks                                               | 27,848            | 24,438            | 19,111                     | 21,022                     |
| Imports                                                    | $1,451 \\ 121$    | 189<br>181        | 526<br>91                  | 785<br>85                  |
| Exports<br>Domestic demand                                 | 95,974            | 90,917            | 85,852                     | 78,915                     |
| Distillate fuel oil:                                       |                   |                   |                            |                            |
| Production:                                                |                   |                   |                            |                            |
| At refineries                                              | 895,656           | 910,727           | 962,405                    | 1,029,343                  |
| At gas processing plants                                   | 1,441             | 1,370             | 1,220                      | 835                        |
| Total production                                           | 897,097           | 912,097           | 963,625                    | 1,030,178<br>760           |
| Crude used directly as distillate                          | 743               | 1,548             | 944                        | 100                        |
| Stocks end of year:                                        | 407.040           | 100 504           | 0.154.004                  | 9 100 401                  |
| At refineries                                              | 195,213<br>58     | 190,584 $38$      | <sup>2</sup> 154,284<br>35 | <sup>2</sup> 196,421<br>40 |
| At plants                                                  | 195,271           | 190,622           | 154,319                    | 196,461                    |
| Imports                                                    | 53,826            | 55,783            | 66,449                     | 138,752                    |
| Exports                                                    | 898               | 2,761             | 1,211                      | 3,240                      |
| Domestic demand                                            | 927,211           | 971,316           | 1,066,110                  | 1,124,308                  |
| Residual fuel oil: Production                              | 257,510           | 274,684           | 292,519                    | 354,597                    |
| Crude used directly as residual                            | 4,317             | 4,565             | 3,322                      | 6,126                      |
| Stocks end of year                                         | 53,994            | 59,681            | 55,216                     | 53,480                     |
| Imports                                                    | 557,845           | 577,700           | 4 637,401<br>12,060        | 4 666,706<br>9,231         |
| Exports<br>Domestic demand                                 | 19,785<br>804,288 | 13,217<br>838,045 | 925,647                    | 1,019,934                  |
| Petrochemical feedstocks (excluding LRG):3                 | 001,200           |                   |                            |                            |
| Production                                                 | 100,381           | 110,948           | 124,026                    | 132,564                    |
| Stocks end of year                                         | 3,619<br>5 252    | 3,886<br>5,109    | $2,766 \\ 3,178$           | 2,387<br>3,825             |
| Imports: Naphtha-400°<br>Exports: Other                    | 5,352<br>3,776    | 5,265             | 4,627                      | 5,801                      |
| <del></del>                                                | 0,110             | 3,23              |                            |                            |
| Domestic demand:                                           | 12,564            | 16,158            | 14,678                     | 12,428                     |
| Still gas<br>Naphtha-400°                                  | 57,279            | 56,821            | 58,075                     | 56,822                     |
|                                                            |                   |                   | EV 011                     | 61,717                     |
| Naphtha-400°<br>Other                                      | 31,340<br>101,183 | 37,546<br>110,525 | 50,944<br>123,697          | 130,967                    |

Table 30.-Salient statistics of the major refined petroleum products in the United States-Continued

| (Thousand                                 | barrels)         | _                  |                  |                  |
|-------------------------------------------|------------------|--------------------|------------------|------------------|
| Product                                   | 1970             | 1971               | 1972             | 1973 р           |
| Special naphthas:                         |                  |                    |                  |                  |
| Production:                               |                  |                    |                  |                  |
| At refineriesAt gas processing plants     | 30,196           | 28,255             | 32,096           | 32,873           |
|                                           | 384              | 329                | 264              | 210              |
| Total production                          | 30,580           | 28,584             | 32,360           | 33,083           |
| Stocks end of year:                       |                  |                    |                  |                  |
| At refineries                             | 6,184            | 5,373              | 5,224            | 4,514            |
| At plants                                 | 9                | 11                 | 8                | 7,017            |
| Total stocks                              | 6,193            | 5,384              | 5,232            | 4,521            |
| ImportsExports                            | 2,297            | 1,824              | 863              | 88               |
| Domestic demand                           | 1,586            | 1,455              | 1,509            | 1,652            |
| Lubricants:                               | 31,390           | 29,762             | 31,866           | 32,230           |
| Production                                | 66,183           | 65,473             | 65,349           | 68,742           |
| Stocks end of year                        | 14,712           | 15,049             | 13,271           | 12,186           |
| Imports                                   | 224              | 10                 | 669              | 2,032            |
| Exports:                                  |                  |                    |                  |                  |
| Grease                                    | 293              | 235                | 227              | 051              |
| Oil                                       | 15,797           | 15,590             | 14,756           | 251<br>12,571    |
| Total exports                             | 16,090           | 15,825             | 14,983           | 12,822           |
| Domestic demand                           | 49,693           | 49,321             | 52,813           | 12,822<br>59,037 |
| wax (1 parrel=280 lbs.):                  | ,                | 10,021             | 02,010           | 00,001           |
| Production                                | 6,294            | 6,939              | 6,148            | 6,768            |
| Stocks end of year                        | 993              | 1,117              | 1,061            | 990              |
| ImportsExports                            | 117              | 93                 | 335              | 1,067            |
| Domestic demand                           | 1,808<br>4.607   | 1,660<br>5,248     | 1,130            | 965              |
|                                           | 4,001            | 5,248              | 5,409            | 6,941            |
| Coke (5 barrels=1 short ton): Production: |                  |                    |                  |                  |
| Marketable coke                           | FO 105           | 40.010             |                  |                  |
| Catalyst coke                             | 59,107<br>48,764 | 62,313<br>46,801   | 66,814           | 67,527           |
| Total production                          | 107,871          |                    | 52,951           | 64,763           |
| Stocks end of year                        | 5,297            | $109,114 \\ 7,445$ | 119,765          | 132,290          |
| Exports                                   | 30,557           | 27,069             | 7,816 $31,118$   | 9,974<br>35,006  |
| Domestic demand                           | 77,215           | 79,897             | 88,276           | 95,126           |
| Asphalt (5.5 barrels=1 short ton):        | •                | ,                  | 00,210           | 00,120           |
| Production                                | 146,658          | 157,039            | 155,294          | 167,884          |
| Stocks end of year<br>Imports             | 15,779           | 21,202             | 21,638           | 15,024           |
| Exports                                   | 6,201<br>356     | 7,216              | 9,263            | 8,444            |
| Domestic demand                           | 153,477          | $306 \\ 158,526$   | $333 \\ 163,788$ | 340<br>182,602   |
| Road oil:                                 | 100,411          | 100,020            | 100,100          | 102,002          |
| Production                                | 9,393            | 8,755              | 7,943            | 7,326            |
| Stocks end of year                        | 632              | 900                | 1,305            | 799              |
| Domestic demandStill gas for fuel:        | 9,641            | 8,487              | 7,538            | 7,832            |
| Production                                | 163,905          | 150 000            | 150 000          |                  |
|                                           | 100,900          | 156,967            | 170,993          | 176,758          |
| Miscellaneous products:                   |                  |                    |                  |                  |
| Production: At refineries                 | 44.740           |                    |                  |                  |
| At refineries<br>At gas processing plants | 14,746<br>924    | 14,271             | 15,364           | 18,795           |
|                                           |                  | 1,156              | 1,028            | 1,066            |
| Total production                          | 15,670           | 15,427             | 16,392           | 19,861           |
| Stocks end of year:                       |                  |                    |                  |                  |
| At refineries                             | 2,105            | 1,593              | 1,632            | 1,378            |
| At plants                                 | 15               | 11                 | 22               | 16               |
| Total stocks                              | 2,120            | 1,604              | 1,654            | 1,394            |
| Exports                                   | 1,071            | 1,028              | 1,058            | 1,183            |
| Domestic demandUnfinished oils (net):     | 14,843           | 14,915             | 15,284           | 18,938           |
| Input (+) Output (-)                      | +38.091          | +43,608            | ⊥ <b>51</b> 510  | 1 45 700         |
| Stocks end of year                        | 98,989           | 100,574            | +51,518 94,761   | +45,768 99,154   |
| Imports                                   | 39,261           | 45,193             | 45,705           | 50,161           |
| - 70 11 .                                 |                  | 10,100             | 30,100           | 00,101           |

P Preliminary.

1 Includes underground stocks at plants and refineries, in thousands of barrels. At plants: Ethane, 1972, 6,143; 1973, 3,921; propane, 1972, 33,340; 1973, 52,090; butane, 1972, 7,917; 1973, 12,243; butane-propane mixture, 1972, 324; 1973 192; and isobutane, 1972, 7,407; 1973, 6,341. At refineries (includes LRG): Propane, 1972, 4,427; 1973, 4,074; butane, 1972, 3,176; 1973, 2,725; butane-propane mixture, 1972, 260; 1973, 444; and isobutane, 1972, 1,236; 1973, 765.

2 Includes No. 4 fuel oil, in thousands of barrels: 1972, 3,723; 1973, 3,449. Data for previous

<sup>3</sup> Produced at petroleum refineries. Data for LRG petrochemical feedstocks are included with those for "Liquefied gases."

<sup>4</sup> Includes foreign crude oil to be burned as fuel, in thousands of barrels. 1972, 10,419,000;

Note: "Stocks at refineries" include stocks at refineries and bulk terminals operated by refining and refined products pipeline companies, including pipeline fill. "Stocks at plants" include stocks at plants and terminals operated by natural gas processing companies and natural gas liquids stocks at terminals of pipeline companies, including pipeline fill.

Table 31.—Stocks of refined petroleum products (including unfinished oils) in the United States at end of mogth (Thousand barrels)

|                                                   | January          | February         | March            | April            | May              | June             | July             | August          | September        | October            | November         | December         |
|---------------------------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|-----------------|------------------|--------------------|------------------|------------------|
| 1972                                              |                  |                  |                  |                  |                  |                  |                  |                 |                  |                    |                  |                  |
| Gasoline:<br>Motor<br>Aviation                    | 239,912<br>4,679 | 250,236<br>4,573 | 237,177<br>4,036 | 225,552<br>3,994 | 215,089<br>4,080 | 200,353<br>3,930 | 200,975<br>3,696 | 192,967 $3,784$ | 199,927<br>3,769 | $207,915 \\ 3,825$ | 209,032<br>4,134 | 212,894<br>4,255 |
| Total gasoline                                    | 244,591          | 254,809          | 241,213          | 229,546          | 219,169          | 204,283          | 204,671          | 196,751         | 203,696          | 211,740            | 213,166          | 217,149          |
| Jet fuel:<br>Naphtha type<br>Kerosine type        | 6,658            | 6,339            | 6,966            | 6,471            | 6,093            | 5,889            | 5,844<br>23,585  | 6,517           | 6,149            | 5,933<br>22,700    | 5,647<br>21,003  | 6,147            |
| Total jet fuel                                    | 25,857           | 25,230           | 27,147           | 27,568           | 28,885           | 28,356           | 29,429           | 31,649          | 30,597           | 28,633             | 26,650           | 25,493           |
| Ethane (including ethylene)                       | 3,265            | 3,677            | 4,112            | 4,589            | 5,127            | 5,423            | 5,690            | 5,888           | 6,086            | 6,170              | 6,719            | 7,052            |
| Kerosine                                          | 21,339           | 17.408           | 15.693           | 16,363           | 17,132           | 18,640           | 21,481           | 22,060          | 22,917           | 21,956             | 21,351           | 19,111           |
| Distillate fuel oil                               | 160,073          | 122,194          | 101,765          | 98,324           | 112,926          | 128,779          | 155,593          | 174,702         | 190,289          | 195,570            | 182,619          | 154,319          |
| Residual Iuel oil                                 | 3.236            | 3.115            | 2.801            | 49,425<br>3,094  | 53,035<br>2,852  | 2.831            | 2.727            | 2.824           | 2.749            | 2.355              | 2.721            | 2.766            |
| Special naphthas                                  | 5,594            | 5,575            | 4,903            | 5,231            | 5,087            | 4,585            | 4,842            | 4,958           | 5,025            | 4,818              | 5,132            | 5,232            |
| Lubricants                                        | 15,325           | 15,136           | 14,429           | 13,722           | 13,729           | 13,895           | 13,426           | 13,283          | 13,278           | 13,249             | 12,856           | 13,271           |
| Wax<br>Coke                                       | 8,049            | 1,097<br>8,798   | 8,006            | 7,747            | 7.686            | 7.944            | 8.304            | 8.067           | 7,742            | 7.848              | 7.423            | 7.816            |
| Asphalt                                           | 24,072           | 26,557           | 29,245           | 31,037           | 30,979           | 28,590           | 26,365           | 20,727          | 18,828           | 17,208             | 18,447           | 21,638           |
| Road oil                                          | 1,021            | 1,291            | 1,752            | 2,030            | 1,950            | 2,042            | 1,846            | 1,663           | 1,460            | 1,284              | 1,270            | 1,305            |
| Unfinished oils                                   | 102,763          | 99,110           | 103,137          | 106,890          | 109,535          | 114,054          | 109,574          | 104,871         | 106,043          | 103,482            | 101,221          | 94,761           |
| Total 1972                                        | 756,527          | 704,615          | 676,765          | 673,261          | 698,177          | 713,859          | 751,139          | 760,312         | 788,363          | 790,134            | 756,318          | 706,509          |
| 1978                                              |                  |                  |                  |                  |                  |                  |                  |                 |                  |                    |                  |                  |
| Gasoline:<br>Motor                                | 221,954          | 216,484          | 207,732          | 204,877          | 202,201          | 208,466          | 211,572          | 205,189         | 210,359          | 214,610            | 207,418          | 209,478          |
| Aviation                                          | 4,024            | 000              | 6,649            | 9,909            | 9,109            | 9,009            | 015 000          | 000 000         | 9,029            | 0,000              | 9,302            | 0,000            |
| Total gasoline                                    | 225,978          | 220,035          | 211,081          | 208,186          | 200,310          | 211,555          | 519,009          | 208,606         | 213,388          | 218,208            | 211,400          | 218,417          |
| Jet fuel:<br>Naphtha type<br>Kerosine type        | 5,953<br>18,861  | 5,486<br>19,951  | 5,899<br>21,686  | 5,209<br>22,672  | 5,055<br>20,770  | 4,603<br>20,844  | 4,280<br>21,381  | 4,268<br>20,583 | 4,652<br>20,497  | 4,242<br>21,335    | 4,939<br>23,600  | 5,599<br>22,945  |
| Total jet fuel                                    | 24,814           | 25,437           | 27,585           | 27,881           | 25,825           | 25,447           | 25,661           | 24,851          | 25,149           | 25,577             | 28,539           | 28,544           |
| Ethane (including ethylene)<br>Liquefied gases 1  | 7,139            | 7,126            | 7,173            | 63.572           | 73.062           | 83.315           | 6,734<br>94.296  | 100.476         | 105,067          | 6,139              | 98.834           | 5,023<br>93,618  |
| Kerosine                                          | 16,038           | 14,612           | 16,404           | 18,088           | 19,148           | 20,160           | 20,477           | 21,590          | 22,105           | 23,549             | 21,203           | 21,022           |
| Distillate fuel oil                               | 130,993          | 113,310          | 111,299          | 114,723          | 119,131          | 137,869          | 160,901          | 177,304         | 190,209          | 203,000            | 200,218          | 196,461          |
| Petrochemical feedstocks                          | 2,618            | 2,848            | 3,057            | 3,029            | 2,737            | 2,859            | 2,638            | 2,360           | 2,256            | 2,620              | 2,442            | 2,387            |
| Special naphthas                                  | 5,038            | 4,576            | 4,491            | 4,860            | 4,316            | 4,242            | 4,520            | 4,328           | 4,450            | 4,337              | 4,383            | 4,521            |
| Wax                                               | 1,058            | 19,941           | 947              | 1,006            | 917              | 920              | 941              | 922             | 874              | 913                | 926              | 980              |
| Coke                                              | 8,599            | 8,976            | 9,739            | 9,475            | 9,609            | 9,824            | 10,287           | 10,435          | 10,136           | 9,783              | 10,087           | 9,974            |
| Asphalt                                           | 24,34b           | 26,995<br>1 496  | 1,781            | 31,002<br>2,094  | 2.014            | 1.814            | 1.535            | 1.112           | 1.035            | 12,409<br>866      | 723              | 15,024<br>799    |
| Miscellaneous                                     | 1,636            | 1,700            | 1,523            | 1,621            | 1,701            | 1,526            | 1,707            | 1,758           | 1,838            | 1,716              | 1,352            | 1,394            |
| Ununished ons                                     | 662.053          | 624.838          | 637.075          | 657.847          | 668,514          | 701,790          | 735,455          | 741,148         | 766,900          | 783,379            | 765,171          | 757,994          |
| 2000                                              | ol foodsto       | 100              |                  |                  |                  |                  |                  |                 |                  |                    |                  |                  |
| - Includes Lind used for petrochemical feedstocks | menaar rec       | ins.             |                  |                  |                  |                  |                  |                 |                  |                    |                  |                  |

Table 32.—Input and output of petroleum products at refineries in the United States (Thousand barrels)

|                                                 | 1969                 | 1970                        | 1971               | 1972               | 1973 р           |
|-------------------------------------------------|----------------------|-----------------------------|--------------------|--------------------|------------------|
| INPUT                                           |                      |                             |                    |                    |                  |
| Crude petroleum: Domestic                       | 0.000.000            | 3,485,332                   | 3,481,543          | 3.473.880          | 3.359.946        |
| Foreign <sup>1</sup>                            | 3,363,602<br>516,003 | 3,485,332<br>482,171        | 606,266            | 806.983            | 1,177,308        |
| Total crude petroleum                           | 3,879,605            | 3,967,503                   | 4.087.809          | 4,280,863          | 4,537,254        |
| Unfinished oils rerun (net)                     | 34,346               | 38,091                      | 43.608             | 51.518             | 45.768           |
| Total crude and unfinished                      | 01,010               |                             |                    |                    |                  |
| oils rerun                                      | 3,913,951            | 4,005,594                   | 4,131,417          | 4,332,381          | 4,583,022        |
| Natural gas liquids:                            |                      |                             |                    |                    |                  |
| Liquefied petroleum gases                       | 72,764               | 80.307                      | 79,695             | 85,193             | 80,221           |
| Natural gasoline                                | 157,492              | 163,976                     | 166,222            | 164,062            | 160,350          |
| Plant condensate                                | 34,332               | 34,051                      | 39,020             | 53,190             | 56,911           |
| Total natural gas liquids                       | 264,588              | 278,334                     | 284,937            | 302,445            | 297,482          |
| Other hydrocarbons and hydrogen 2               | 4,213                | 6,238                       | 6,074              | 10,118             | 10,716           |
| OUTPUT                                          |                      |                             |                    |                    |                  |
| Gasoline:                                       |                      |                             |                    |                    |                  |
| Motor gasoline 3                                | 1,995,947            | 2,080,199                   | 2,179,093          | 2,298,775          | 2,382,418        |
| Aviation gasoline                               | 26,460               | 19,712                      | 18,457             | 16,993             | 16,413           |
| Total gasoline 3                                | 2,022,407            | 2,099,911                   | 2,197,550          | 2,315,768          | 2,398,831        |
| Jet fuel:                                       |                      |                             |                    |                    |                  |
| Naphtha type 3                                  | 104,748              | 84,060                      | 85,317             | 76,565             | 65,997           |
| Kerosine type                                   | 216,952              | 217,832                     | 219,348            | 233,464            | 247,692          |
| Total jet fuel 3<br>Ethane (including ethylene) | 321,700<br>9,159     | 301,892                     | 304,665            | $310,029 \\ 9.197$ | 313,689<br>9,194 |
|                                                 | 9,159                | 9,460                       | 9,266              | 9,191              | 5,134            |
| Liquefied refinery gas:                         | == 0=0               | 00.000                      | 00.010             | 04 514             | 00 550           |
| For fuel use<br>For chemical use                | 75,659<br>38,703     | 80,870<br>35,657            | $88,648 \\ 32,304$ | 84,514<br>36,668   | 89,570<br>38,062 |
|                                                 |                      | 116.527                     | 120.952            | 121.182            | 127,632          |
| Total liquefied refinery gasKerosine 3          | 114,362<br>101.738   | 94,635                      | 86,256             | 79,027             | 79.422           |
| Distillate fuel oil 3                           | 846,863              | 895,656                     | 910,727            | 962,405            | 1,029,348        |
| Residual fuel oil                               | 265,906              | 257,510                     | 274,684            | 292,519            | 354,597          |
| Petrochemical feedstocks:                       |                      |                             |                    |                    |                  |
| Still gas                                       | 9.985                | 12.564                      | 16.158             | 14,678             | 12,428           |
| Naphtha-400°                                    | 57,389               | 54,154                      | 54,096             | 57,027             | 57,155           |
| Other                                           | 30,982               | 33,663                      | 40,694             | 52,321             | 62,981           |
| Total petrochemical feedstocks                  | 98,356               | 100,381                     | 110,948            | 124,026            | 132,564          |
| Special naphthas 3                              | 28,397               | 30,196                      | 28,255             | 32,096             | 32,873           |
| Lubricants                                      | 65,080               | 66,183                      | 65,473             | 65,349             | 68,742<br>6,768  |
| Wax <sup>4</sup><br>Coke <sup>4</sup>           | 6,049<br>102,868     | $\substack{6,294\\107.871}$ | 6,939<br>109.114   | 6,148 $119.765$    | 132,290          |
| Asphalt 4                                       | 135,691              | 146,658                     | 157,039            | 155,294            | 167,884          |
| Road oil                                        | 9,086                | 9,393                       | 8,755              | 7,943              | 7,326            |
| Still gas for fuel                              | 160,363              | 163,905                     | 156,967            | 170,993            | 176,758          |
| Miscellaneous 3                                 | 17,139               | 14,746                      | 14,271             | 15,364             | 18,795           |
| Processing gain (-) or loss (+) -               | -122,412             | -131,052                    | -139,433           | -142,161           | 165,488          |

<sup>&</sup>lt;sup>p</sup> Preliminary.

P Preliminary.
 Includes some Athabasca hydrocarbons.
 "Other hydrocarbons and hydrogen" is defined as including all hydrogen, process natural gas, tar sand bitumen, gilsonite, shale oil, and other naturally occurring hydrocarbon mixtures consumed as raw materials in the production of finished products.
 Production at gas-processing plants shown as direct transfers and omitted from the input and output at refineries.
 Conversion factors: 280 pounds of wax to the barrel; 5.0 barrels of coke to the short ton; 5.5 barrels of asphalt to the short ton.

Table 33.-Input and output at refineries in the United States, by month

|                                                                 |                          | •                        | •                        | (Thou                    | (Thousand barrels)       | rels)                    |                          |                          |                          |                          |                          |                          |                             |
|-----------------------------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-----------------------------|
| Item                                                            | Jan.                     | Feb.                     | Mar.                     | Apr.                     | May                      | June                     | July                     | Aug.                     | Sept.                    | Oct.                     | Nov.                     | Dec.                     | Total                       |
| INPUT 1972<br>Grude petroleum :<br>Domestic                     | 288,758                  | 268,078                  | 288,230                  | 278,197                  | 292,840                  | 289,416                  | 303,350                  | 303,162                  | 289,560                  | 291,916                  | 282,723                  | 297,650                  | 3,473,880                   |
| Foreign                                                         | 64,277                   | 61,254                   | 63,473                   | 57,336                   | 62,966                   | 65,820                   | 65,095                   | 66,215                   | 73,804                   | 76,083                   |                          | 77,845                   | 1 806,983                   |
| Total crude petroleum                                           | 353,035 + 3,331          | 329,332 + 7,842          | 351,703 - 793            | 335,533 $-211$           | 355,806 $-150$           | 355,236 $-1,508$         | 368,445 + 7,819          | 369,377 + 8,303          | 363,364 + 2,784          | 367,999 + 6,775          | 355,538 + 6,107          | $^{375,495}_{+11,219}$   | $\frac{4,280,863}{+51,518}$ |
| Total crude and unfinished oils rerun                           | 356,366                  | 337,174                  | 350,910                  | 335,322                  | 355,656                  | 353,728                  | 376,264                  | 377,680                  | 366,148                  | 374,774                  | 361,645                  | 386,714                  | 4,322,381                   |
| Natural gas liquids: Liquefied petroleum gases Natural gasoline | 9,243<br>13,082<br>3,478 | 8,450<br>12,382<br>3,573 | 7,196<br>13,735<br>4,210 | 6,062<br>13,654<br>3,535 | 5,853<br>14,167<br>4,493 | 5,298<br>14,221<br>4,337 | 5,734<br>14,211<br>4,677 | 5,554<br>14,157<br>4 810 | 6,046<br>14,242<br>4 750 | 7,858<br>14,295<br>4 795 | 9,187<br>13,125<br>5,197 | 8,712<br>12,791<br>5,335 | 85,193<br>164,062<br>53,190 |
| Total natural gas liquids                                       | 25,803<br>578            | 24,405<br>614            | 25,141<br>883            | 23,251                   | 24,513<br>732            | 23,856                   | 24,622<br>862            | 24,521<br>1,012          | 25,038<br>757            | • •                      | 27,509                   | 26,838<br>891            | 302,445<br>10,118           |
| OUTPUT 1972                                                     |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                             |
| Motor gasoline 2                                                | 190,678                  | 173,682                  | 183,297                  | 174,997                  | 186,714                  | 187,331                  | 1,311                    | 1,606                    | 198,159                  | 1,746                    | 193,095                  | 199,149                  | 2,298,775                   |
| Total gasoline 2                                                | 192,228                  | 174,883                  | 184,514                  | 176,439                  | 188,214                  | 188,694                  | 200,278                  | 200,821                  | 199,517                  | 204,237                  | 194,554                  | 200,389                  | 2,315,768                   |
| Jet fuel:<br>Naphtha type<br>Kerosine type                      | 5,696<br>18,618          | 6,596<br>19,498          | 6,921<br>21,178          | 7,020                    | 6,873<br>20,638          | 6,825<br>18,940          | 6,416<br>20,660          | 6,793<br>19,162          | 5,833<br>18,478          | 6,077                    | 5,742<br>18,247          | 5,773<br>19,363          | 76,565<br>233,464           |
| Total jet fuel 2Ethane (including ethylene)                     | 24,314<br>820            | 26,094<br>824            | 28,099<br>821            | 26,295<br>786            | 27,511<br>737            | 25,765<br>715            | 27,076<br>783            | 25,955<br>757            | 24,311<br>723            | 25,484<br>811            | 23,989<br>718            | $25,136 \\ 702$          | $310,029 \\ 9,197$          |
| Liquefled gases: LRG for fuel useLRG for chemical use           | 6,735                    | 6,730                    | 7,372                    | 7,045                    | 7,182                    | 6,930<br>3,191           | 7,469                    | 7,462<br>3,209           | 7,157 2,888              | 6,913                    | 6,640<br>2,719           | 6,879<br>3,263           | 84,514<br>36,668            |
| Total liquefied gases                                           | 9,690                    | 9,576                    | 10,329                   | 10,048                   | 10,555                   | 10,121                   | 10,761                   | 10,671                   | 10,045                   | 9,885                    | 9,359                    | 10,142                   | 121,182                     |
| Distillate fuel oil Residual fuel oil                           | 28,646                   | 76,928<br>27,929         | 79,480<br>25,662         | 22,169                   | 20,591<br>20,591         | 78,692<br>19,820         | 78,394<br>20,863         | 80,051<br>20,882         | 78,712<br>21,295         | 84,369<br>23,092         | 81,584<br>26,711         | 91,085<br>34,859         | 962,405<br>292,519          |
| Petrochemical feedstocks: Still gas                             | 1,230<br>4,646<br>3.920  | 1,055<br>4,390<br>4,057  | 1,033<br>4,380<br>3,907  | 935<br>5,005<br>4,742    | 1,095<br>4,723<br>4,164  | 1,147<br>4,866<br>3,567  | 1,378<br>4,685<br>4,253  | 1,444<br>5,041<br>4,499  | 1,144<br>4,303<br>4,751  | 1,500<br>4,575<br>4,972  | 1,360<br>4,957<br>4,729  | 1,357<br>5,456<br>4,760  | 14,678<br>57,027<br>52,321  |
| Total petrochemical feedstocks<br>Special naphthas 2            | 9,796 2,502              | 9,502 2,466              | 9,320 2,663              | 10,682<br>2,753          | 9,982<br>2,674           | 9,580                    | 10,316<br>2,864          | 10,984 2,997             | 10,198<br>2,791          | 11,047 2,546             | 11,046 2,636             | 11,573<br>2,821          | 124,026<br>32,096           |
| Lubricants: Bright stock Neutral Other grades                   | 614<br>2,402<br>2.451    | 584<br>2,159<br>2,184    | 559<br>2,381<br>2.456    | 463<br>2,452<br>2.280    | 542<br>2,611<br>2.543    | 511<br>2,643<br>2,440    | 554<br>2,378<br>2,466    | 530<br>2,729<br>2,526    | 492<br>2,329<br>2,516    | 563<br>2,433<br>2,631    | 572<br>2,381<br>2,438    | 556<br>2,365<br>2,615    | 6,540<br>29,263<br>29,546   |
| Total lubricants                                                | 5,467                    | 4,927                    | 5,396                    | 5,195                    | 5,696                    | 5,594                    | 5,398                    | 5,785                    | 5,337                    | 5,627                    | 5,391                    | 5,536                    | 65,349                      |
|                                                                 |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                          |                             |

Table 33.-Input and output at refineries in the United States, by month-Continued

| Item                                                            | Jan                       | Feb.              | Mar.              | Apr.              | May               | June               | July               | Aug.                  | Sept.              | Oct.                     | Nov.                     | Dec.                     | Total                       |
|-----------------------------------------------------------------|---------------------------|-------------------|-------------------|-------------------|-------------------|--------------------|--------------------|-----------------------|--------------------|--------------------------|--------------------------|--------------------------|-----------------------------|
| OUTPUT 1972—Continued                                           |                           |                   |                   |                   |                   |                    |                    |                       |                    |                          |                          |                          |                             |
| Microcrystalline Crystalline-fully refined Crystalline-other    | 65<br>250<br>197          | 101<br>265<br>128 | 101<br>335<br>135 | 69<br>232<br>170  | 68<br>260<br>220  | 80<br>241<br>173   | 253<br>183         | 79<br>278<br>170      | 244<br>188         | 74<br>273<br>162         | 78<br>260<br>166         | 77<br>276<br>134         | 955<br>3,167<br>2,026       |
| Total wax 3                                                     | 512                       | 494               | 571               | 471               | 548               | 494                | 517                | 527                   | 514                | 609                      | 504                      | 1                        | 6,148                       |
| Asphalt 3                                                       | 9,492<br>8,150            | 9,414<br>8,125    | 9,562             | 8,850             | 9,065<br>14,926   | 9,104              | 17,051             | 17,492                | 16,632             | 15,094                   | 11,392                   |                          | 155,294                     |
| Road oil                                                        | 288                       | 356               | 635               | 613               | 768               | 1,139              | 1,151              | 1,151                 | 836                | 595                      | 273                      |                          | 7,943                       |
| Miscellancous products 2                                        | 1,227                     | 1,145             | 1,256             | 1,159             | 1,221             | 1,133              | 1,332              | 1,424                 | 1,469              | 1,288                    | 1,388                    | 1                        | 15,364                      |
| T 1973 P                                                        |                           |                   |                   |                   |                   |                    |                    |                       |                    |                          |                          | 11                       |                             |
| Crude petroleum:<br>Domestic                                    | 292,755<br>85.148         | 260,792<br>80,452 | 283,168<br>95,053 | 274,790<br>91,449 | 281,760<br>98,942 | 286,783<br>99,086  | 290,839<br>104,397 | 284,383<br>107,316    | 269,706<br>107,083 | 282,613<br>112,878       | 270,389<br>100,835       | 281,968<br>94,669        | 3,359,946<br>11,177,308     |
| Total crude petroleum Unfinished oils rerun (net)               | $\frac{877,908}{+10,272}$ | 341,244<br>+2,663 | 378,221<br>-5,882 | 366,239           | 380,702<br>+3,554 | 385,869<br>+ 6,431 | 395,236<br>+5,783  | $^{891,699}_{+7,897}$ | 376,789<br>+1,622  | 395,491<br>+2,993        | 371,224<br>+3,866        | 376,637<br>+9,093        | 4,537,254<br>+45,768        |
| Total crude and unfinished oils rerun                           | 388,175                   | 343,907           | 372,339           | 363,715           | 384,256           | 392,300            | 401,019            | 399,596               | 378,411            | 398,484                  | 375,090                  | 885,730                  | 4,583,022                   |
| Natural gas liquida: Liquefied petroleum gases Natural gasoline | 8,666                     | 6,982             | 6,377<br>12,935   | 5,238<br>11,906   | 5,285<br>12,888   | 5,494<br>12,899    | 5,934<br>15,297    | 6,617                 | 6,254<br>14,305    | 7,483<br>13,940<br>4,460 | 7,853<br>13,863<br>4 574 | 8,038<br>13,392<br>4 666 | 80,221<br>160,350<br>56,911 |
| Total natural gas liquids                                       | 26,011<br>856             | 23,395<br>942     | 24,495<br>1,000   | 21,981<br>700     | 22,722            | 22,699<br>846      | 26,318<br>978      | 26,600<br>948         | 24,992<br>905      | 25,883<br>895            | 26,290                   | 26,096<br>908            | 297,482                     |
| OUTPUT 1973 P                                                   |                           |                   |                   |                   |                   |                    |                    |                       |                    |                          |                          |                          |                             |
| Gasoline:<br>Motor gasoline 2Aviation gasoline                  | 196,571<br>1,001          | 171,940<br>775    | 190,648 $1,180$   | 191,315<br>1,241  | 208,147<br>1,378  | 209,792<br>1,335   | 216,572<br>1,562   | $213,277 \\ 1,942$    | 198,580<br>1,444   | 205,249<br>1,654         | 191,259<br>1,753         | 189,068<br>1,148         | 2,382,418<br>16,413         |
| Total gasoline 2                                                | 197,572                   | 172,715           | 191,828           | 192,556           | 209,525           | 211,127            | 218,134            | 215,219               | 200,024            | 206,903                  | 193,012                  | 190,216                  | 2,398,831                   |
| Jet fuel:<br>Naphtha type 2<br>Kerosine type                    | 5,281<br>21,506           | 4,589             | 6,057             | 5,955             | 6,005             | 5,344<br>19,731    | 4,833              | 5,371<br>20,802       | 5,578<br>19,841    | 5,278<br>21,851          | 4,905                    | 6,801<br>18,929          | 65,997<br>247,692           |
| Total jet fuel 2Ethane (including ethylene)                     | 26,787<br>722             | 25,156<br>659     | 28,426<br>736     | 26,613<br>687     | 26,036<br>892     | 25,075<br>849      | 25,572<br>842      | 26,173<br>898         | 25,419<br>717      | 27,129<br>713            | 25,573<br>759            | 25,730<br>720            | 313,689<br>9,194            |
| Liquefied gases: LRG for fuel useLRG for chemical use           | 7,191                     | 6,574             | 7,606             | 7,488             | 8,753             | 7,745              | 8,467              | 7,929                 | 6,952              | 7,683                    | 6,303                    | 6,879                    | 89,570<br>38,062            |
| Total liquefied gases                                           | 10,466                    | 9,400             | 10,988            | 10,503            | 12,147            | 10,795             | 11,869             | 11,193                | 10,373             | 10,968                   | 9,176                    | 9,754                    | 127,632                     |

| Kerosine 2 Distillate fuel oil 2 Residual fuel oil                                                       | 9,446                                                       | 9,290                                                       | 7,931                                             | 6,507                                      | 5,093                                                        | 4,486                                               | 4,874                                         | 5,392                                                         | 5,849                                                | 6,963                                                         | 6,553                                               | 7,038                                                 | 79,422                                                    |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------|--------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------|
|                                                                                                          | 93,862                                                      | 82,242                                                      | 82,679                                            | 75,306                                     | 78,860                                                       | 84,759                                              | 85,299                                        | 86,840                                                        | 84,379                                               | 90,230                                                        | 87,672                                              | 97,215                                                | 1,029,343                                                 |
|                                                                                                          | 34,472                                                      | 29,053                                                      | 29,592                                            | 26,315                                     | 29,392                                                       | 27,448                                              | 27,352                                        | 26,368                                                        | 26,338                                               | 30,517                                                        | 31,840                                              | 35,910                                                | 354,597                                                   |
| Petrochemical feedstocks: Still gas Naphtha-400° Other                                                   | 1,327                                                       | 840                                                         | 1,183                                             | 1,019                                      | 1,222                                                        | 1,054                                               | 916                                           | 1,188                                                         | 1,015                                                | 884                                                           | 902                                                 | 878                                                   | 12,428                                                    |
|                                                                                                          | 4,780                                                       | 4,751                                                       | 4,509                                             | 4,815                                      | 3,943                                                        | 4,329                                               | 4,655                                         | 4,648                                                         | 4,816                                                | 5,106                                                         | 5,066                                               | 5,737                                                 | 57,155                                                    |
|                                                                                                          | 4,821                                                       | 4,495                                                       | 5,270                                             | 5,337                                      | 5,040                                                        | 5,572                                               | 5,468                                         | 5,351                                                         | 4,998                                                | 5,620                                                         | 5,548                                               | 5,461                                                 | 62,981                                                    |
| Total petrochemical feedstocks<br>Special naphthas 2                                                     | 10,928<br>2,742                                             | 10,086 2,320                                                | 10,962 2,802                                      | 11,171 2,499                               | 10,205 2,697                                                 | 10,955<br>2,673                                     | 11,039<br>3,126                               | 11,187 2,867                                                  | 10,829<br>2,720                                      | 11,610<br>2,977                                               | 11,516<br>2,628                                     | 12,076<br>2,822                                       | 132,564<br>32,873                                         |
| Lubricants: Bright stock Neutral Other grades Total lubricants                                           | 572                                                         | 520                                                         | 703                                               | 652                                        | 609                                                          | 558                                                 | 705                                           | 571                                                           | 546                                                  | 669                                                           | 606                                                 | 770                                                   | 7,481                                                     |
|                                                                                                          | 2,772                                                       | 2,349                                                       | 2,611                                             | 2,376                                      | 2,380                                                        | 2,375                                               | 2,338                                         | 2,495                                                         | 2,348                                                | 2,621                                                         | 2,624                                               | 2,675                                                 | 29,964                                                    |
|                                                                                                          | 2,396                                                       | 2,546                                                       | 2,555                                             | 2,457                                      | 2,783                                                        | 2,477                                               | 2,749                                         | 2,534                                                         | 2,566                                                | 2,881                                                         | 2,792                                               | 2,561                                                 | 31,297                                                    |
|                                                                                                          | 5,740                                                       | 5,415                                                       | 5,869                                             | 5,485                                      | 5,772                                                        | 5,410                                               | 5,792                                         | 5,600                                                         | 5,460                                                | 6,171                                                         | 6,022                                               | 6,006                                                 | 68,742                                                    |
| Wax: Microcrystalline Crystalline-tully refined Crystalline-coher                                        | 78                                                          | 66                                                          | 81                                                | 83                                         | 87                                                           | 115                                                 | 100                                           | 105                                                           | 97                                                   | 112                                                           | 106                                                 | 103                                                   | 1,133                                                     |
|                                                                                                          | 280                                                         | 189                                                         | 231                                               | 254                                        | 298                                                          | 250                                                 | 231                                           | 282                                                           | 279                                                  | 294                                                           | 327                                                 | 288                                                   | 3,203                                                     |
|                                                                                                          | 178                                                         | 159                                                         | 222                                               | 176                                        | 188                                                          | 174                                                 | 231                                           | 187                                                           | 182                                                  | 240                                                           | 250                                                 | 245                                                   | 2,432                                                     |
| Coke 3 Asphalt 3 Road oil 5 Mille gas for fuel 5 Miscellameus products 2 Processing gain (-) or loss (+) | 536<br>11,412<br>7,919<br>7,919<br>15,018<br>1,416<br>1,416 | 414<br>10,061<br>8,336<br>192<br>13,129<br>1,252<br>-11,476 | 534<br>11,135<br>10,109<br>476<br>14,901<br>1,318 | 513<br>10,875<br>12,082<br>14,420<br>1,514 | 573<br>11,146<br>14,702<br>662<br>14,854<br>1,947<br>-16,536 | 539<br>11,574<br>16,799<br>1,046<br>15,665<br>14,62 | 11,755<br>17,689<br>17,689<br>16,258<br>1,749 | 574<br>11,546<br>18,925<br>1,117<br>1,911<br>1,913<br>-14,579 | 10,335<br>10,335<br>18,104<br>890<br>14,487<br>1,578 | 646<br>11,077<br>17,823<br>17,823<br>14,768<br>1,685<br>1,685 | 683<br>10,497<br>14,029<br>13,369<br>1,402<br>1,402 | 636<br>10,877<br>11,367<br>13,978<br>1,559<br>-13,384 | 6,768<br>132,290<br>167,884<br>7,326<br>176,758<br>18,795 |

P Preliminary.

1 Includes some Athabasca hydrocarbons.
2 Procludes some Athabasca hydrocarbons.
3 Procludes to as processing plants shown as direct transfers and omitted from the input and output at refineries.
3 Conversion factors: 280 pounds of wax to the barrel; 5.0 barrels of coke to the short ton; 5.5 barrels of asphalt to the short ton.

Table 34.—Input and output at refineries

(Thousand

|                                                 | PA                  | D district                | I                |                           | PAD                    | district I               | I                        |                  |
|-------------------------------------------------|---------------------|---------------------------|------------------|---------------------------|------------------------|--------------------------|--------------------------|------------------|
| Item                                            | East<br>Coast       | Appa-<br>lachian<br>No. 1 | Total            | Appa-<br>lachian<br>No. 2 | Ind.,<br>Ill.,<br>etc. | Minn.,<br>Wisc.,<br>etc. | Okla.,<br>Kans.,<br>etc. | Total            |
| INPUT 1972                                      |                     |                           |                  |                           |                        |                          |                          |                  |
| Crude petroleum:                                | 108,520             | 18,588                    | 127,108          | 17,216                    | 677.852                | 22,508                   | 325,439                  | 1,043,015        |
| Domestic<br>Foreign                             |                     | 40,100                    | 355,366          |                           | 1 100,952              | 60,824                   | 4,565                    | 168,733          |
| Total crude petroleum                           | 423,786             | 58,688                    | 482,474          | 19,608                    | 778,804                | 83,332                   | 330,004                  | 1,211,748        |
| Unfinished oils rerun (net)_                    | +57,479             | +182                      | +57,661          | +30                       | +40                    | -36                      | +1,228                   | +1,262           |
| Total crude and un-<br>finished oils rerun      | 481,265             | 58,870                    | 540,135          | 19,638                    | 778,844                | 83,296                   | 331,232                  | 1,213,010        |
| Natural gas liquids:<br>Liquefied petroleum     |                     |                           |                  |                           |                        |                          |                          |                  |
| gases                                           |                     | 90                        | 341              |                           | 11,750                 | 3,415                    | 11,107                   | 26,272           |
| Natural gasoline<br>Plant condensate            | 889<br>487          | 9<br>960                  | 898<br>1,447     | 475                       | 7,162 $13,497$         | 1,603<br>6,618           | 11,417                   | 20,182           |
| Total natural gas                               | 401                 | 300                       | 1,441            | #10                       | 10,431                 | 0,010                    |                          | 20,590           |
| liquidsOther hydrocarbons                       | 1,627               | 1,059                     | 2,686            | 475                       | 32,409<br>264          | 11,636                   | 22,524<br>275            | 67,044<br>539    |
| OUTPUT 1972                                     |                     |                           |                  |                           |                        |                          |                          |                  |
| Gasoline:                                       |                     |                           |                  |                           |                        |                          |                          |                  |
| Motor gasoline 2                                |                     | 25,127                    | 260,703          | 10,060                    | 438,817                | 48,550                   | 199,940                  | 697,367          |
| Aviation gasoline                               |                     |                           | 355              |                           | 1,670                  |                          | 539                      | 2,209            |
| Total gasoline 2                                | 235,931             | 25,127                    | 261,058          | 10,060                    | 440,487                | 48,550                   | 200,479                  | 699,576          |
| Jet fuel:                                       | 1 151               | 250                       | 0.101            |                           |                        |                          |                          | 47.004           |
| Naphtha type 2<br>Kerosine type                 | 1,454 $10,545$      | 650<br>678                | 2,104 $11,223$   |                           | 7,552 $35,421$         | 1,446<br>1,397           | 6,686<br>10,404          | 15,684<br>47,222 |
| Total jet fuel 2                                | 11,999              | 1,328                     | 13,327           |                           | 42,973                 | 2,843                    | 17,090                   | 62,906           |
| Ethane (including ethylene)                     |                     |                           | ,                |                           |                        |                          | 590                      | 590              |
| Liquefied gases:                                |                     |                           |                  |                           |                        |                          |                          |                  |
| LRG for fuel use                                | 10,991              | 1,432                     | 12,423           | 324                       | 14,400                 | 1,284                    | 7,109                    | 23,117           |
| LRG for chemical use                            | 5,497<br>16,488     | 1 490                     | 5,497<br>17,920  | 324                       | 2,634<br>17,034        | 1,506                    | 1,170<br>8,279           | 4,026<br>27,143  |
| Total liquefied gases_<br>Kerosine <sup>2</sup> | 6,190               | $1,432 \\ 1,614$          | 7,804            | 781                       | 15,041                 | 1,339                    | 2,932                    | 20,093           |
| Distillate fuel oil 2                           | 118,572             | 13,916                    | 132,488          | 5,038                     | 168,356                | 22,781                   | 79,897                   | 276,072          |
| Residual fuel oil                               | 30,873              | 6,709                     | 37,582           | 1,730                     | 50,219                 | 7,016                    | 6,883                    | 65,848           |
| Petrochemical feedstocks:                       |                     |                           |                  |                           |                        |                          |                          |                  |
| Still gas<br>Naphtha-400°                       | 945<br>5,392        | 74                        | 1,019<br>5,392   |                           | 2,610<br>4,241         |                          | $2,070 \\ 2,147$         | 4,680<br>6,388   |
| Other                                           | 66                  | 665                       | 731              |                           | 2,293                  |                          | 451                      | 2,744            |
| Total petrochemical                             | -                   |                           |                  |                           |                        |                          |                          |                  |
| feedstocks<br>Special naphthas 2                | 6,403               | 739                       | 7,142            |                           | 9,144                  |                          | 4,668                    | 13,812           |
| Special naphthas 2                              | 200                 | 339                       | 539              | 282                       | 3,755                  |                          | 1,330                    | 5,367            |
| Lubricants:                                     | 050                 | 1 201                     | 1 057            |                           | 400                    |                          | CT 4                     | 1 150            |
| Bright stock<br>Neutral                         | 356<br>2,903        | $1,301 \\ 2,439$          | $1,657 \\ 5,342$ | 12                        | 498<br>3,260           |                          | 654<br>3,180             | 1,152<br>6,452   |
| Other grades                                    | 3,606               | 389                       | 3,995            |                           | 1,498                  |                          | 1,418                    | 2,916            |
| Total lubricants                                | 6,865               | 4,129                     | 10,994           | 12                        | 5,256                  |                          | 5,252                    | 10,520           |
| Wax:                                            |                     |                           |                  |                           |                        |                          |                          |                  |
| Microcrystalline                                | 171                 | 237                       | 408              |                           | 9                      |                          | 265                      | 274              |
| Crystalline-fully refined<br>Crystalline-other  | 828<br>261          | 148<br>421                | 976<br>682       |                           | 205<br>192             |                          | 246<br>104               | 451<br>296       |
| Total way 3                                     | 1,260               | 806                       | 2,066            |                           | 406                    |                          | 615                      | 1,021            |
| Total wax 3<br>Coke 3Asphalt 3                  | 13,187              | 236                       | 13,423           | 129                       | 20,229                 | 3,405                    | 10,404                   | 34,167           |
| Asphalt 3                                       | 28,087              | 1,620                     | 29,707           | 1,447                     | 31,487                 | 6,340                    | 14,578                   | 53,852           |
| Road oil<br>Still gas for fuel                  | $\frac{49}{19.403}$ | $619 \\ 2.127$            | 668<br>21,530    | 697                       | 2,735<br>31,335        | 207                      | 938<br>10,609            | 3,880<br>44,064  |
| Miscellaneous products 2                        | 2,192               | 171                       | 21,530           | 41                        | 1,444                  | $1,423 \\ 133$           | 1,312                    | 2,930            |
| Processing gain (-)<br>or loss (+)              |                     |                           | •                |                           | -                      |                          | _,                       | -                |
|                                                 |                     | <b>— 983</b> -            |                  |                           | -28,384                |                          | -11.825                  | -41,248          |

in the United States by district

barrels)

|                                   |                                       | PAD dist                              | rict III                      |                                  |                                       | PAD<br>district<br>IV             | PAD<br>district<br>V                 | United                                  |
|-----------------------------------|---------------------------------------|---------------------------------------|-------------------------------|----------------------------------|---------------------------------------|-----------------------------------|--------------------------------------|-----------------------------------------|
| Tex.<br>Inland                    | Tex.<br>Gulf                          | La.<br>Gulf                           | Ark., La.,<br>Inland<br>etc.  | N.<br>Mex.                       | Total                                 | Other<br>Rocky<br>Mt.             | West<br>Coast                        | States                                  |
| 151,737                           | 937,758<br>23,465                     | 581,455<br>4,194                      | 48,072                        | 16,261                           | 1,735,283<br>27,659                   | 131,990<br>13,425                 | 436,484<br>241,800                   | 3,473,880<br>1 806,983                  |
| 151,737<br>-72                    | 961,223<br>-23,761                    | 585,649<br>+2,639                     | 48,072<br>+738                | 16,261<br>—9                     | 1,762,942<br>-20,465                  | 145,415<br>—940                   | $678,284 \\ +14,000$                 | 4,280,863<br>+51,518                    |
| 151,665                           | 937,462                               | 588,288                               | 48,810                        | 16,252                           | 1,742,477                             | 144,475                           | 692,284                              | 4,332,381                               |
| 8,764<br>16,396                   | 18,418<br>89,005                      | 19,037<br>24,203                      | 1,168<br>1,034                | 672<br>555                       | 48,059<br>131,193                     | 3,272<br>1,603                    | 7,249<br>10,186                      | 85,193<br>164,062                       |
| 24                                | 12,121                                | 2,026                                 | 2,076                         |                                  | 16,247                                | 11,376                            | 3,530                                | 53,190                                  |
| 25,184<br>233                     | 119,544<br>192                        | 45,266<br>2,898                       | 4,278<br>53                   | 1,227                            | 195,499<br>3,376                      | 16,251<br>131                     | 20,965<br>6,072                      | 302,445<br>10,118                       |
| 101,350<br>2,053                  | 500,833<br>5,279                      | 308,750<br>2,648                      | 20,370                        | 9,041                            | 940,344<br>9,980                      | 80,432<br>453                     | 319,929<br>3,996                     | 2,298,775<br>16,993                     |
| 103,403                           | 506,112                               | 311,398                               | 20,370                        | 9,041                            | 950,324                               | 80,885                            | 323,925                              | 2,315,768                               |
| 5,084<br>9,040                    | 12,487<br>53,702                      | 7,692<br>47,540                       | 1,553<br>8                    | 2,073<br>50                      | 28,889<br>110,340                     | 4,079<br>4,513                    | 25,809<br>60,166                     | 76,565<br>233,464                       |
| 14,124<br>104                     | 66,189<br>4,802                       | 55,232<br>3,147                       | 1,561                         | 2,123                            | 139,229<br>8,053                      | 8,592<br>3                        | 85,975<br>551                        | 310,029<br>9,197                        |
| 3,317<br>261                      | 17,195<br>13,750                      | 13,175<br>8,236                       | 549<br>399                    | 455<br>4                         | 34,691<br>22,650                      | 2,193<br>55                       | 12,090<br>4,440                      | 84,514<br>36,668                        |
| 3,578<br>1,296<br>28,535<br>3,608 | 30,945<br>28,865<br>233,079<br>37,682 | 21,411<br>16,754<br>147,767<br>18,695 | 948<br>744<br>11,498<br>4,428 | 459<br>103<br>3,299<br>634       | 57,341<br>47,762<br>424,178<br>65,047 | 2,248<br>1,844<br>38,024<br>9,152 | 16,530<br>1,524<br>91,643<br>114,890 | 121,182<br>79,027<br>962,405<br>292,519 |
| 274<br>1,461<br>3,469             | 7,647<br>38,732<br>20,063             | 79<br>337<br>21,882                   | 5<br>225                      | 12                               | 8,017<br>40,530<br>45,639             | 226<br>79                         | 736<br>4,717<br>3,128                | 14,678<br>57,027<br>52,321              |
| 5,204<br>1,219                    | 66,442<br>18,014                      | 22,298<br>307                         | 230<br>1,269                  | 12<br>                           | 94,186<br>20,809                      | 305<br>205                        | 8,581<br>5,176                       | 124,026<br>32,096                       |
| <br>98                            | 1,512<br>8,440<br>18,024              | 751<br>5,645<br>1,298                 | 887<br>1,169                  | <br>                             | 2,263<br>14,972<br>20,589             | 57<br>195<br>143                  | 1,411<br>2,302<br>1,903              | 6,540<br>29,263<br>29,546               |
| 98                                | 27,976                                | 7,694                                 | 2,056                         |                                  | 37,824                                | 395                               | 5,616                                | 65,349                                  |
| 69                                | 141<br>611<br>834                     | 53<br>509<br>64                       | <br>                          |                                  | 263<br>1,120<br>898                   | 10<br>63<br>27                    | 557<br>123                           | 955<br>3,167<br>2,026                   |
| 69<br>2,811<br>7,107              | 1,586<br>21,687<br>8,533              | 626<br>14,342<br>15,660               | 958<br>8,156                  | 176<br>1,019                     | 2,281<br>39,974<br>40,475<br>102      | 100<br>3,559<br>10,364<br>1,144   | 680<br>28,642<br>20,896<br>2,149     | 6,148<br>119,765<br>155,294<br>7,943    |
| 69<br>5,581<br>2,249<br>—1,973    | 33<br>37,219<br>4,216<br>—36,182      | $22,4\overline{26}$ $1,248$ $-22,553$ | 1,482<br>92<br>651            | $5\overline{48} + \overline{65}$ | 67,256<br>7,805<br>—61,294            | 5,424<br>77<br>—1,464             | 32,719<br>2,189<br>22,365            | 170,993<br>15,364<br>— 142,161          |

Table 34.-Input and output at refineries

(Thousand

| Item                                                                                                                             | No. 1<br>166 19,505<br>0 44,316<br>166 63,821<br>199 +282<br>5 64,103 | 86,611<br>461,416<br>548,027<br>+ 39,491<br>587,518 | 19,938<br>+99          | Ind.,<br>Ill.,<br>etc.<br>654,928<br>172,328<br>827,256<br>+1,813 | Minn.,<br>Wisc.,<br>etc.<br>21,291<br>67,168<br>88,459<br>-63 | Okla.,<br>Kans.,<br>etc.<br>326,055<br>10,290<br>336,345 | Total<br>1,012,587<br>259,411 |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------|------------------------|-------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|-------------------------------|
| Crude petroleum:   Domestic                                                                                                      | 0 44,316<br>6 63,821<br>9 +282<br>5 64,103                            | 461,416<br>548,027<br>+39,491                       | 9,625<br>19,938<br>+99 | 172,328<br>827,256                                                | 67,168<br>88,459                                              | 10,290<br>336,345                                        |                               |
| Domestic                                                                                                                         | 0 44,316<br>6 63,821<br>9 +282<br>5 64,103                            | 461,416<br>548,027<br>+39,491                       | 9,625<br>19,938<br>+99 | 172,328<br>827,256                                                | 67,168<br>88,459                                              | 10,290<br>336,345                                        |                               |
| Unfinished oils rerun (net) - +39,20 Total crude and unfinished oils rerun 523,41 Natural gas liquids: Liquefied petroleum gases | $\frac{9}{5}$ $\frac{+282}{64,103}$                                   | +39,491                                             | <b>+99</b>             |                                                                   |                                                               |                                                          |                               |
| Total crude and unfinished oils rerun 523,41  Natural gas liquids: Liquefied petroleum gases                                     | 5 64,103                                                              |                                                     |                        |                                                                   |                                                               | -1.646                                                   | $1,271,998 \\ +203$           |
| Liquefied petroleum                                                                                                              | 0 105                                                                 |                                                     | 20,037                 | 829,069                                                           | 88,396                                                        | 334,699                                                  | 1,272,201                     |
| gases 14                                                                                                                         | 0 105                                                                 |                                                     |                        |                                                                   |                                                               |                                                          |                               |
| Natural gasoline 14                                                                                                              |                                                                       | 275                                                 |                        | 11,948                                                            | 2,973                                                         | 11,784                                                   | 26,705                        |
|                                                                                                                                  |                                                                       | 153<br>2,126                                        | 826                    | 4,854                                                             | $\frac{2,717}{7,437}$                                         | 11,944<br>30                                             | 19,515<br>24,455              |
| Plant condensate 20 Total natural gas                                                                                            | 6 1,920                                                               | 2,126                                               | 820                    | 16,162                                                            | 1,401                                                         |                                                          | 24,455                        |
| liquids 50                                                                                                                       | 2,053                                                                 | 2,554                                               | 826                    | 32,964                                                            | 13,127                                                        | 23,758                                                   | 70,675                        |
| Other hydrocarbons 55                                                                                                            |                                                                       | 555                                                 |                        | 273                                                               |                                                               | 339                                                      | 612                           |
| OUTPUT 1973 P                                                                                                                    |                                                                       |                                                     |                        |                                                                   |                                                               |                                                          |                               |
| Gasoline:                                                                                                                        | 4 97 915                                                              | 272,509                                             | 10.054                 | 465,627                                                           | 51,806                                                        | 197.844                                                  | 726,131                       |
| Motor gasoline 2 245,19 Aviation gasoline 2                                                                                      |                                                                       | 423                                                 | 10,854                 | 1,595                                                             | 91,000                                                        | 520                                                      | 2,115                         |
| Total gasoline 2 245,61                                                                                                          | 7 27,315                                                              | 272,932                                             | 10,854                 | 467,222                                                           | 51,806                                                        | 198,364                                                  | 728,246                       |
| Jet fuel:                                                                                                                        |                                                                       |                                                     |                        |                                                                   |                                                               |                                                          |                               |
| Naphtha type 2 1,90                                                                                                              |                                                                       | 2,726                                               |                        | 5,738                                                             | 981                                                           | 5,218                                                    | 11,937                        |
| Kerosine type 11,22 Total jet fuel 2 13.18                                                                                       |                                                                       | 11,918<br>14,644                                    |                        | 38,671<br>44,409                                                  | 1,490<br>2,471                                                | 10,627<br>15,845                                         | 50,788<br>62,725              |
|                                                                                                                                  | 8                                                                     | 58                                                  |                        |                                                                   | 2,411                                                         | 520                                                      | 520                           |
| Liquefied gases:                                                                                                                 |                                                                       |                                                     |                        |                                                                   |                                                               |                                                          |                               |
| For fuel use 12,95                                                                                                               |                                                                       | 14,364                                              | 367                    | 16,638                                                            | 1,301                                                         | 7,017                                                    | 25,323                        |
| For chemical use 6,39                                                                                                            |                                                                       | 6,394<br>20,758                                     | 367                    | 2,571<br>19,209                                                   | 1,522                                                         | 1,456<br>8,473                                           | 4,248<br>29,571               |
| Total liquefied gases_ 19,34 Kerosine 2 5,07                                                                                     | 6 1,412<br>9 1,930                                                    | 7,009                                               | 814                    | 15,743                                                            | 1,242                                                         | 2,088                                                    | 19.887                        |
| Distillate fuel oil 2 130,86                                                                                                     | 8 16,135                                                              | 147,003                                             | 4,674                  | 182,761                                                           | 24,612                                                        | 85,749                                                   | 297,796                       |
| Residual fuel oil 45,23                                                                                                          | 8 7,020                                                               | 52,258                                              | 1,758                  | 53,612                                                            | 8,026                                                         | 7,724                                                    | 71,120                        |
| Petrochemical feedstocks:                                                                                                        |                                                                       |                                                     |                        |                                                                   |                                                               |                                                          |                               |
| Still gas 91<br>Naphtha-400° 4,93                                                                                                |                                                                       | 942<br>4,932                                        |                        | 2,128                                                             |                                                               | 543<br>2,200                                             | 2,671<br>6,573                |
|                                                                                                                                  | 738                                                                   | 768                                                 |                        | $\frac{4,373}{2,304}$                                             |                                                               | 553                                                      | 2,857                         |
| Total petrochemical                                                                                                              |                                                                       |                                                     |                        |                                                                   |                                                               |                                                          |                               |
| feedstocks 5,88 Special naphthas 2 12                                                                                            |                                                                       | 6,642                                               | 077                    | 8,805                                                             |                                                               | 3,296                                                    | 12,101<br>6,106               |
|                                                                                                                                  | 268                                                                   | 391                                                 | 257                    | 4,563                                                             |                                                               | 1,286                                                    | 0,100                         |
| Lubricants: Bright stock 59                                                                                                      | 9 1.396                                                               | 1,995                                               |                        | 438                                                               |                                                               | 1,126                                                    | 1,564                         |
| Neutral 3,30                                                                                                                     |                                                                       | 6.029                                               |                        | 3,258                                                             |                                                               | 2,705                                                    | 5,963                         |
| Other grades 3,71                                                                                                                | 1 346                                                                 | 4,057                                               |                        | 1,684                                                             |                                                               | 1,514                                                    | 3,198                         |
| Total lubricants 7,61                                                                                                            | 2 4,469                                                               | 12,081                                              |                        | 5,380                                                             |                                                               | 5,345                                                    | 10,725                        |
| Wax:                                                                                                                             |                                                                       |                                                     |                        |                                                                   |                                                               | 000                                                      | 00.4                          |
| Microcrystalline 8 Crystalline-fully refined 40                                                                                  | 39 282<br>36 134                                                      | 371<br>540                                          |                        | 1<br>315                                                          |                                                               | 293<br>257                                               | 294<br>572                    |
| Crystalline-other 2                                                                                                              | 4 498                                                                 | 522                                                 |                        | 249                                                               |                                                               | 79                                                       | 328                           |
| Total wax 3 51                                                                                                                   |                                                                       | 1,433                                               |                        | 565                                                               |                                                               | 629                                                      | 1,194                         |
| Coke 3 13,20                                                                                                                     |                                                                       | 13,627                                              | 289                    | 23,731                                                            | 3,618                                                         | 11,235<br>14,972                                         | 38,873<br>57,637              |
| Asphalt <sup>3</sup> 34,33<br>Road oil                                                                                           | 39 2,077<br>706                                                       | 36,416<br>706                                       | 1,688                  | 33,460<br>2,828                                                   | 7,517                                                         | 1,276                                                    | 4,104                         |
| Road oil 20,61 Still gas for fuel 20,61 Miscellaneous products 2 2,10                                                            | 18 2,084                                                              | 22,702                                              | 669                    | 31,770                                                            | 1,476                                                         | 12,318                                                   | 46,233                        |
| Miscellaneous products 2 2,10                                                                                                    | 6 172                                                                 | 2,278                                               | 53                     | 1,571                                                             | 10                                                            | 1,291                                                    | 2,925                         |
| Processing gain (-)<br>or loss (+)19,26                                                                                          | 8 -1,043                                                              | -20,311                                             | -560                   | -33,323                                                           | -777                                                          | -11,615                                                  | <b>-46,275</b>                |

P Preliminary.

<sup>1</sup> Includes some Athabasca hydrocarbons.

<sup>2</sup> Production at gas processing plants shown as direct transfers and omitted from the input and output at refineries.

<sup>3</sup> Conversion factors: 280 pounds of wax to the barrel; 5.0 barrels of coke to the short ton; 5.5 barrels of asphalt to the short ton.

in the United States by district-Continued

barrels)

|                |                    | PAD dist           | rict III                     |                   |                      | PAD<br>district<br>IV | PAD<br>district<br>V | United          |
|----------------|--------------------|--------------------|------------------------------|-------------------|----------------------|-----------------------|----------------------|-----------------|
| Tex.<br>Inland | Tex.<br>Gulf       | La.<br>Gulf        | Ark., La.,<br>Inland<br>etc. | N.<br>Mex.        | Total                | Other<br>Rocky<br>Mt. | West<br>Coast        | States          |
| 155 000        | 997 991            | F00 966            | 40.022                       | 16 020            | 1 600 401            | 135,410               | 425,937              | 3,359,94        |
| 155,889        | 887,281<br>128,156 | 590,266<br>16,869  | 49,033<br>272                | 16,932            | 1,699,401<br>145,297 | 16,111                | 425,937<br>295,073   | 1,177,30        |
| 155,889        | 1,015,437          | 607,135            | 49,305                       | 16,932            | 1,844,698            | 151,521               | 721,010              | 4,537,2         |
| <b>— 725</b>   | -22,501            | +15,044            | +624                         | +32               | -7,526               | +88                   | +13,512              | +45,70          |
| 155,164        | 992,936            | 622,179            | 49,929                       | 16,964            | 1,837,172            | 151,609               | 734,522              | 4,583,0         |
| 7,052          | 13,954             | 19,864             | 1,093                        | 615               | 42,578               | 3,443                 | 7,220                | 80,2            |
| 15,993         | 88,679             | 24,164             | 869                          | 760               | 130,465              | 1,673                 | 8,544<br>3,562       | 160,3<br>56,9   |
| 18             | 11,893             | 1,618              | 3,031                        | 83                | 16,643               | 10,125                | 3,302                | 50,5            |
| 23,063         | 114,526            | 45,646             | 4,993                        | 1,458             | 189,686              | 15,241                | 19,326               | 297,48          |
| 161            | 144                | 4,261              | 153                          |                   | 4,719                | 88                    | 4,742                | 10,7            |
|                |                    |                    | 22.422                       | 0.450             | 000 005              | 00.046                | 001 505              | 0 900 4         |
| 97,473 $2,272$ | 513,108<br>4,813   | $328,709 \\ 2,597$ | 20,628                       | 9,479             | 969,397<br>9,682     | $82,846 \\ 443$       | 331,535<br>3,750     | 2,382,4<br>16,4 |
| 99,745         | 517,921            | 331,306            | 20,628                       | 9,479             | 979,079              | 83,289                | 335,285              | 2,398,8         |
| 5.579          | 10,775             | 7,677              | 1,610                        | 2,052             | 27,693               | 3,493                 | 20,148               | 65,9            |
| 8,004          | 56,473             | 49,630             | 1,010                        | 65                | 114,173              | 4,611                 | 66,202               | 247,6           |
| 13,583         | 67,248             | 57,307             | 1,611                        | 2,117             | 141,866<br>8,108     | 8,104                 | 86,350<br>508        | 313,6<br>9,1    |
| 108            | 5,040              | 2,960              |                              |                   | 8,108                |                       | 900                  | 3,1             |
| 3,171          | 17,077             | 14,199             | 696                          | 364               | 35,507               | 2,174                 | 12,202               | 89,5            |
| 228            | 15,723             | 6,935              | 328                          | 5                 | 23,219               | 2,236                 | 4,139<br>16,341      | 38,0<br>127,6   |
| 3,399<br>1,130 | 32,800<br>26,883   | $21,134 \\ 20,074$ | $1,024 \\ 785$               | 369<br>131        | 58,726<br>49,003     | 2,230                 | 1,319                | 79.4            |
| 31,189         | 244,178            | 149,311            | 11,700                       | 3,601             | 439,979              | 41,966                | 102,599              | 1,029,3         |
| 5,695          | 53,075             | 23,755             | 4,764                        | 1,166             | 88,455               | 9,864                 | 132,900              | 354,5           |
| 432            | 7,341              |                    |                              |                   | 7,773                | 161                   | 881                  | 12,4<br>57,1    |
| 1,768          | 38,041             | 489                |                              |                   | 40,298               | ==                    | 5,352                | 57,1            |
| 3,578          | 26,135             | 26,236             | 241                          |                   | 56,190               | 34                    | 3,132                | 62,9            |
| 5,778          | 71,517             | 26,725             | 241                          |                   | 104,261              | 195                   | 9,365                | 132,5           |
| 1,425          | 17,716             | 266                | 1,603                        |                   | 21,010               | 125                   | 5,241                | 32,8            |
|                | 1,932              | 662                |                              |                   | 2,594                | 44                    | 1,284                | 7,4             |
|                | 8,577              | 6,039              | 851                          |                   | 15,467               | 176                   | 2,329<br>1,837       | 29,9<br>31,2    |
| 108            | 19,612<br>30,121   | 1,185<br>7,886     | 1,133                        |                   | 22,038<br>40,099     | 167<br>387            | 5,450                | 68,7            |
| 100            | 00,121             | 1,000              | 1,001                        |                   | 10,000               |                       |                      |                 |
| 79             | 145                | 42                 | 194                          |                   | 460<br>1,349         | 8<br>56               | 686                  | 1,1<br>3,2      |
|                | 605<br>1,127       | 744<br>146         |                              |                   | 1,349<br>1,273       | 34                    | 275                  | 2,4             |
| 79             | 1,877              | 932                | 194                          |                   | 3,082                | 98                    | 961                  | 6,7             |
| 3,313          | 23,718             | 14,578             | 640<br>8,896                 | 187<br>810        | 42,436<br>41,433     | 3,983<br>10,385       | 33,371<br>22,013     | 132,2<br>167,8  |
| 7,570<br>64    | 9,426              | 14,731             |                              |                   | 41,433<br>64         | 770                   | 1,682                | 7,3             |
| 5,837          | 39,747             | 22,586             | 1,373                        | 528               | 70,071               | 5,471                 | 32,281               | 176,7           |
| 2,030          | 5,507              | 3,187              | 246                          | $+\bar{3}\bar{4}$ | 10,970               | $103 \\ -2,242$       | 2,519 $-29,595$      | 18,7<br>—165,4  |
| -2,665         | -39,168            | -24,652            | -614                         | <b>⊤34</b>        | -67,065              | 4,44                  | - 20,000             |                 |

Table 35.—Percentage yields of refined petroleum products from crude oil in the United States <sup>1</sup>

| Finished products           | 1969  | 1970  | 1971        | 1972  | 1973  |
|-----------------------------|-------|-------|-------------|-------|-------|
| Gasoline                    | 44.8  | 45.3  | 46.2        | 46.2  | 45.6  |
| Jet fuel                    | 8.2   | 7.5   | 7.4         | 7.2   | 6.8   |
| Ethane (including ethylene) | .2    | .2    | .2          | .2    | .2    |
| Liquefied gases             | 2.9   | 3.0   | 2.9         | 2.8   | 2.8   |
| Kerosine                    | 2.6   | 2.3   | 2.1         | 1.8   | 1.7   |
| Distillate fuel oil         | 21.7  | 22.4  | 22.0        | 22.2  | 22.5  |
| Residual fuel oil           | 6.8   | 6.4   | 6.6         | 6.8   | 7.7   |
| Petrochemical feedstocks    | 2.5   | 2.5   | 2.7         | 2.9   | 2.9   |
| Special naphthas            | 7     | .8    | -:7         | 7     | 7     |
| Lubricants                  | 1.7   | 1.6   | 1.6         | 1.5   | 1.5   |
| Wax                         | .2    | .2    | .2          | .1    | .2    |
| Coke                        | 2.6   | 2.7   | 2.6         | 2.8   | 2.9   |
| Asphalt                     | 3.5   | 3.6   | 3.8         | 3.6   | 3.6   |
| Road oil                    | .2    | .3    | .2          | .2    | .2    |
| Still gas                   | 4.1   | 4.1   | 3.8         | 3.9   | 3.9   |
| Miscellaneous               | .4    | .3    | .4          | .4    | .4    |
| Shortage                    | -3.1  | -3.2  | $-3.4^{-3}$ | -3.3  | -3.6  |
|                             |       |       |             |       |       |
| Total                       | 100.0 | 100.0 | 100.0       | 100.0 | 100.0 |

P Preliminary.

Other unfinished oils added to crude in computing yields.

Table 36.-Production (refinery output) and consumption of gasoline (excluding naphtha) in the United States, by State

|                      |                  | 1971                          | 1                          | 972                           | 19                   | 73 P               |
|----------------------|------------------|-------------------------------|----------------------------|-------------------------------|----------------------|--------------------|
| State                | Produc-<br>tion  | Consump-<br>tion <sup>1</sup> | Produc-<br>tion            | Consump-<br>tion <sup>1</sup> | Produc-<br>tion      | Consump-<br>tion 1 |
| Alabama              | 640              | 40,336                        | 896                        | 43,134                        | 1,184                | 45,260             |
| Alaska               | (2)              | 2,559                         | (2)                        | 2,920                         | (2)                  | 3,232              |
| Arizona              |                  | 24,008                        |                            | 26,323                        | 32                   | 28,853             |
| Arkansas             | 13,580           | 24,565                        | 7,594                      | 26,773                        | 7,332                | 27,997             |
| California           | 2 282,262        | 227,060                       | <sup>2</sup> 263,533       | 241,154                       | <sup>2</sup> 271,374 | 248,217            |
| Colorado             | 8,018            | 28,385                        | 7,766                      | 30,964                        | 7,128                | 32,449             |
| Connecticut          | ´                | 30,238                        |                            | 31,810                        | ·                    | 32,365             |
| Delaware             | (3)              | r 6,690                       | (3)                        | 6,970                         | (3)                  | 7,347              |
| District of Columbia |                  | 5,811                         |                            | 5,792                         |                      | 6,175              |
| Florida              |                  | 84,671                        |                            | 94,194                        |                      | 104,265            |
| Georgia              |                  | 59,182                        |                            | 64,012                        |                      | 67,589             |
| Hawaii               | (2)              | 5,908                         | <b>(2)</b>                 | 6,344                         | (2)                  | 6,589              |
| Idaho                | ` '              | 10,282                        | .,                         | 11,027                        |                      | 11,469             |
| Illinois             | 168.937          | 109,818                       | 176.948                    | 115,526                       | 221,182              | 120,557            |
| Indiana              | 93,782           | 62,267                        | 99,981                     | 65,881                        | 91,899               | 68,273             |
| Iowa                 | ,                | 38,523                        | ,                          | 39,853                        | ,                    | 43,357             |
| Kansas               | 4 99,525         | 32,453                        | 101.947                    | 34,539                        | 4 104,207            | 34,125             |
| Kentucky             | 5 30,420         | 36,693                        | 30,675                     | 38,893                        | 5 29,493             | 40,623             |
| Louisiana            | 236,883          | 37.204                        | 273,332                    | 40,572                        | 294,307              | 42,117             |
| Maine                | 200,000          | 11,801                        |                            | 12,507                        | 201,000              | 12,946             |
| Maryland             |                  | 39,874                        |                            | 42,523                        |                      | 44.104             |
| Massachusetts        |                  | 51,611                        |                            | 54.531                        |                      | 56,262             |
| Michigan             | 27.399           | 102,688                       | $27.0\overline{47}$        | 109,170                       | 20,509               | 113,999            |
| Minnesota            | 29,552           | 47,808                        | 33,772                     | 50,236                        | 36,768               | 51,320             |
| Mississippi          | 39,479           | r 26.381                      | 49.946                     | 28,686                        | 49,111               | 29,530             |
| Missouri             | (4)              | 60,653                        | (4)                        | 63,522                        | (4)                  | 65,293             |
| Montana              | 23,922           | 10,598                        | 27,053                     | 10,899                        | 27,313               | 11,305             |
| Nebraska             | (4) 20,022       | r 21,116                      | (4)                        | 21,838                        | (4)                  | 22,303             |
| Nevada               | ` '              | 8.141                         | (-)                        | 8,909                         | ( )                  | 9,471              |
| New Hampshire        |                  | 8,844                         |                            | 9,365                         |                      | 9,646              |
| New Jersey           | 88,276           | 69,758                        | 92,896                     | 75,928                        | 100,588              | 77,782             |
| New Mexico           | 8,594            | 14,866                        | 9.041                      | 15,729                        | 9,479                | 16.721             |
| New York             | 15,281           | r 156,770                     | 16,950                     | 144,194                       | 17,534               | 150.080            |
| North Carolina       | (6)              | 60,702                        | (6)                        | 65,892                        | (6)                  | 68,429             |
| North Dakota         | 7 14.691         | 9,311                         | 714778                     | 10,231                        | 7 15,038             | 10.404             |
|                      | 104,267          | 112,344                       | (6)<br>7 14,778<br>115,896 | 118,624                       | 114,993              | 124,301            |
| Ohio                 | 97,043           | 38,232                        | 98,532                     | 39,684                        | 94,157               | 41,176             |
| Oklahoma             | 91,045           |                               | 30,004                     | 28,541                        | 34,131               | 29,695             |
| Oregon               | 2 1 41 0 40      | 26,722                        | $3141,0\overline{53}$      | 114,549                       | 3 144,102            | 116,064            |
| Pennsylvania         | 3 141,943        | 107,120                       | 41,000                     |                               |                      | 9,984              |
| Rhode Island         |                  | 9,512                         |                            | 9,843                         |                      | 35,200             |
| South Carolina       |                  | 31,511                        |                            | 33,624                        |                      | 11.402             |
| South Dakota         |                  | 10,594                        | (E)                        | 11,203                        | /E)                  | 54,675             |
| Tennessee            | (5)              | 46,378                        | ( <sup>5</sup> )           | 50,714                        | ( <sup>5</sup> )     | 179,763            |
| Texas                | 598,415          | 159,997                       | 609,515                    | 168,923                       | 617,666              | 16,827             |
| Utah                 | <b>22,67</b> 8   | 15,391                        | 21,454                     | 16,405                        | 22,335               |                    |
| Vermont              | 4 4 4 5 5        | 5,413                         | 0 10 1ES                   | 5,798                         | 8 10 700             | 5,872              |
| Virginia             | 6 8,898          | 53,992                        | 6 10,159                   | 57,365                        | 6 10,708             | 60,667             |
| Washington           | 19,632           | 37,671                        | 60,392                     | 39,243                        | 63,879               | 41,236             |
| West Virginia        | ( <del>6</del> ) | r 17,135                      | (6)                        | 17,543                        | (6)                  | 18,586             |
| Wisconsin            | (7)              | 48,113                        | (7)                        | 51,310                        | (1)                  | 52,790             |
| Wyoming              | 23,433           | 6,322                         | 24,612                     | 6,879                         | 26,513               | 7,244              |
| Total                | 2,197,550        | r 2,294,022                   | 2,315,768                  | 2,421,089                     | 2,398,831            | 2,525,936          |
|                      |                  |                               |                            |                               |                      |                    |

P Preliminary. r Revised.

1 American Petroleum Institute.
2 Alaska and Hawaii included with California.
3 Delaware included with Pennsylvania.
4 Nebraska and Missouri included with Kansas.
5 Tennessee included with Kentucky.
6 North Carolina and West Virginia included with Virginia.
7 Wisconsin included with North Dakota.

Table 37.-Salient statistics of motor gasoline in the United States, by month and district

|      | Do-<br>mestic<br>demand                 | 189 647              | 180,223           | 196.243 | 214,125        | 217,717 | 224,735 | 197,417   | 206,984    | 102 900        | 2.435.501 | 1,100,001             | 810,515                                     |                   | 843,808                                         |              | 352.485 |                                 | 74,172            | 2,435,501 |  |
|------|-----------------------------------------|----------------------|-------------------|---------|----------------|---------|---------|-----------|------------|----------------|-----------|-----------------------|---------------------------------------------|-------------------|-------------------------------------------------|--------------|---------|---------------------------------|-------------------|-----------|--|
|      | Total<br>stocks<br>(end of<br>period) 1 | 221.954              | 216,484           | 204,877 | 202,201        | 211.572 | 205,189 | 210,359   | 214,610    | 207,418        | 209.478   |                       | 53,666                                      | 3,173             | 7,893                                           | 8,612        | 12,847  | 11,797                          | 7,625             | 209,478   |  |
| e e  | Ex-<br>ports                            | 88                   | 142               | 130     | 151            | 32      | œ       | 27        | 252        | 146            | 1.468     |                       | 3                                           |                   | <b>~</b>                                        | <i></i>      | 1.292   |                                 | 141               | 1,468     |  |
| 1973 | Im-<br>ports                            | 1.841                | 2,667             | 1,902   | 3,146          | 4.110   | 4,871   | 3;816     | 6,020      | 6,492<br>5,834 | 48,106    |                       | 42,603                                      | į                 | 854                                             |              | 3,510   |                                 | 568               | 48,106    |  |
|      | Production at gas process-ing plants    | 327                  | 288               | 301     | 307            | 211     | 212     | 218       | 218        | 202<br>213     | 3,029     |                       | ~~                                          | 1                 | \_<br>                                          | 681          | 1,513   | 929                             | Î !               | 3,029     |  |
|      | Production at refineries                | 196.571              | 171,940           | 191,315 | 208,147        | 216,572 | 213,277 | 198,580   | 205,249    | 189,068        | 2,382,418 |                       | 245,194<br>27,315                           | 10,854            | 51,806                                          | 97,473       | 328,709 | 20,628                          | 82,846<br>331,535 | 2,382,418 |  |
|      | Do-<br>mestic<br>demand                 | 172,003              | 165,591           | 188,502 | 199,795        | 206,849 | 215,084 | 193,582   | 196,848    | 194,362        | 2,333,778 |                       | 790,864                                     | 807.406           |                                                 |              | 323,151 |                                 | 68,576            | 2,333,778 |  |
|      | Total<br>stocks<br>(end of<br>period) 1 | 239,912              | 250,236           | 225,552 | 215,089        | 200,975 | 192,967 | 199,927   | 207,915    | 212,894        | 212,894   |                       | $\begin{cases} 50,587 \\ 5,155 \end{cases}$ | 36,835            | 17,572                                          | 9,356        | 15,035  | 8,227                           | 5,737             | 212,894   |  |
| 83   | Ex-<br>ports                            | 45                   | 14<br>02          | 88      | 13             | 27      | 17      | 30        | 8).T       | 19             | 424       |                       | 9                                           | c                 | o<br>o                                          |              | 264     |                                 | 151               | 424       |  |
| 1972 | Im-<br>ports                            | 1,574                | 1,903             | 1,569   | 2,287<br>2,244 | 2,136   | 2,512   | 2,084     | 2,190      | 2,127          | 24,787    |                       | 24,609                                      | \$                | 6                                               |              | ł       |                                 | 135               | 24,787    |  |
|      | Production at gas processing plants     | 356                  | 344<br>356        | 330     | 344<br>364     | 395     | 366     | 329       | 828<br>997 | 334<br>334     | 4,182     |                       | ĨĨ                                          | ر_<br>ا :         | 1                                               | 727          | 1,638   | 1,612                           | 111               | 4,182     |  |
|      | Production at refineries                | 190,678              | 173,682           | 174,997 | 186,714        | 204,967 | 204,215 | 198,159   | 102,491    | 199,149        | 2,298,775 |                       | 235,576<br>25,127                           | 10,060 $438,817$  | 48,550                                          | 101,350      | 308,750 | 20,370 $9.041$                  | 80,432            | 2,298,775 |  |
|      |                                         | By month:<br>January | February<br>March | April   | June           | July    | August  | September | November   | December       | Total     | Dr. moffming dietnict | East Coast                                  | Appalachian No. 2 | Minnesota, Wisconsin, etc Oklahoma, Kansas, etc | Texas Inland | Joast   | Arkansas, Louisiana Inland, etc | Rocky Mountain    | Total     |  |

P Preliminary.

Includes stocks of gasoline at refineries, bulk terminals and pipelines, and gas processing plants.

Table 38.—Salient statistics of aviation gasoline in the United States, by month and refining district

|                             |                 | 19'          | 72                                |                              |                 | 19           | 973 ₽                        |                              |
|-----------------------------|-----------------|--------------|-----------------------------------|------------------------------|-----------------|--------------|------------------------------|------------------------------|
| -                           | Produc-<br>tion | Ex-<br>ports | Stocks<br>(end of<br>period)      | Domes-<br>tic<br>de-<br>mand | Produc-<br>tion | Ex-<br>ports | Stocks<br>(end of<br>period) | Domes-<br>tic<br>de-<br>mand |
| By month:                   |                 |              |                                   |                              |                 |              |                              |                              |
| January                     | 1,550           | 48           | 4,679                             | 1,242                        | 1,001           | 7            | 4,024                        | 1,225                        |
| February                    | 1.201           | 9            | 4.573                             | 1.298                        | 775             | 12           | 3,551                        | 1.236                        |
| March                       | 1,217           | 31           | 4,036                             | 1,723                        | 1.180           | 67           | 3,349                        | 1,315                        |
| April                       | 1,442           | 27           | 3,994                             | 1,457                        | 1,241           | 4            | 3,309                        | 1,277                        |
| May                         | 1.500           | 7            | 4,080                             | 1,407                        | 1.378           | 6            | 3.109                        | 1.572                        |
| June                        | 1,363           | 8            | 3,930                             | 1,505                        | 1,335           | Ğ.           | 3,089                        | 1,349                        |
| July                        | 1.311           | 19           | 3,696                             | 1,526                        | 1.562           | 1Ž           | 3.437                        | 1.202                        |
| August                      | 1,606           | 19           | 3,784                             | 1,499                        | 1.942           | 49           | 3,417                        | 1,913                        |
| September                   | 1.358           | 22           | 3,769                             | 1,351                        | 1.444           | -8           | 3,529                        | 1,324                        |
| October                     | 1,746           | 13           | 3,825                             | 1,677                        | 1.654           | 10           | 3,598                        | 1,575                        |
| November                    | 1.459           | 15           | 4,134                             | 1,135                        | 1,753           | -8           | 3,982                        | 1,361                        |
| December                    | 1,240           | 14           | 4,255                             | 1,105                        | 1.148           | ğ            | 3,939                        | 1,182                        |
| Total                       | 16,993          | 232          | 4.255                             | 16.925                       | 16.413          | 198          | 3.939                        | 16,531                       |
| <b>D</b> 6                  |                 |              |                                   |                              |                 |              |                              |                              |
| By refining district:       | 0553            |              | ( )                               |                              | (100)           |              | c= .=>                       |                              |
| East Coast                  | 355 }           | 47           | <b>{ 566 }</b>                    | 4.666                        | <b>{423</b> }   | 28           | <b>{545}</b>                 | 3,793                        |
| Appalachian No. 1           | ز               |              | { 46 ∫                            | 2,000                        | , l Į           |              | 525                          | 0,                           |
| Appalachian No. 2           | )               |              | $\begin{pmatrix} 1 \end{pmatrix}$ |                              | [ ]             |              | [ 1]                         |                              |
| Ill <u>i</u> nois, Indiana, |                 |              |                                   |                              | 1               |              | 1                            |                              |
| Kentucky, etc               | ا 1,670         | 17           | ر 811 (                           | 3,871                        | J 1,595 L       | 12           | J 615 €                      | 4.325                        |
| Minnesota, Wisconsin,       | (               |              | 1 [                               |                              | ) (             | 14           | ) . f                        | 7,020                        |
| North Dakota                |                 |              | 127                               |                              |                 |              | 99                           |                              |
| Oklahoma, Kansas, etc.      | 539∫            |              | [ 220 ]                           |                              | <u> 520</u> ∫   |              | رِ 204 J                     |                              |
| Texas Inland                | 2,053)          |              | (333 )                            |                              | (2,272)         |              | (291)                        |                              |
| Texas Gulf Coast            | 5,279           |              | 843                               |                              | 4,813           |              | 713                          |                              |
| Louisiana Gulf Coast        | 2,648 💄         | 77           | <b>₹ 429</b> ∫                    | 3,672                        | <b>J 2,597</b>  | 42           | վ 646 Լ                      | 3,959                        |
| Arkansas, Louisiana         | (               |              | _ ] [                             |                              |                 | 72           | ) [                          | 0,000                        |
| Inland, etc                 | !               |              | 5                                 |                              |                 |              | 2                            |                              |
| New Mexico                  | ر               |              | ( <u>2</u> )                      |                              | ()              |              | (16J                         |                              |
| Rocky Mountain              | 453             | 1            | 56                                | 688                          | 443             |              | 54                           | 687                          |
| West Coast                  | 3,996           | 90           | 816                               | 4,028                        | 3,750           | 116          | 701                          | 3,767                        |
| Total                       | 16,993          | 232          | 4,255                             | 16,925                       | 16,413          | 198          | 3,939                        | 16,531                       |

P Preliminary.

## Table 39.—Shipments of aviation fuels

| Product and use                    |                     | Shipment     | s to PAD       | districts   |                     | U.S   |
|------------------------------------|---------------------|--------------|----------------|-------------|---------------------|-------|
|                                    | I                   | II           | III            | IV          | v                   | tota  |
| 1972                               |                     |              |                |             |                     |       |
| viation gasoline:                  |                     |              |                |             |                     |       |
| For commercial use:                |                     |              |                |             |                     | _     |
| Airlines                           | 385                 | 225          | 149            | 28          | 138                 | 9     |
| Factory<br>General aviation        | 46                  | 39           | 15             | 1           | 51                  | 1     |
| _                                  | 2,412               | 2,839        | 1,598          | 457         | 2,324               | 9,6   |
| Total For military use             | 2,843<br>2,207      | 3,103<br>794 | 1,762<br>1,002 | 486<br>190  | 2,513               | 10,7  |
|                                    | 2,201               | 194          | 1,002          | 190         | 1,733               | 5,9   |
| et fuel: For commercial use:       |                     |              |                |             |                     |       |
| Kerosine type:                     |                     |              |                |             |                     |       |
| Airlines                           | 92,851              | 55,057       | 18,916         | 6,934       | 73,185              | 246,9 |
| Factory                            | 626                 | 554          | 290            | 0,504       | 645                 | 240,9 |
| General aviation                   | 6,877               | 2,768        | 1,675          | 388         | 1,052               | 12,7  |
| Total                              | 100.354             | 58,379       | 20,881         | 7,322       | 74,882              | 261.8 |
| Naphtha type:                      | 100,001             | 00,010       | 20,001         | 1,022       | 14,002              | 201,0 |
| Airlines                           | 1.154               | 7            |                |             | 3,308               | 4.4   |
| Factory                            | 1,015               | 166          | $\bar{20}$     |             | 20                  | 1.2   |
| General aviation                   | 493                 | 115          | 22             | 2           | 257                 | 7,5   |
| Total                              | 2,662               | 288          | 42             | 2           | 3,585               | 6,5   |
| Total for commercial use           | 103,016             | 58,667       | 20,923         | 7.324       | 78,467              | 268,3 |
| For military use:                  |                     | 00,001       | 20,020         | 1,021       | 10,401              | 200,0 |
| JP-4                               | <sup>1</sup> 16,935 | 16,786       | 11,183         | 2,650       | <sup>1</sup> 25,153 | 72,   |
| JP-5                               | 9,197               | 249          | 1,485          | 2,000       | 9,816               | 20,   |
| Other                              | 888                 | 12           | 848            | 315         | 568                 | 2,0   |
| Total 1                            | 27,020              | 17.047       | 13,516         | 2.965       | 35.537              | 96.0  |
| For non-aviation use p             | 6,891               | 1.464        | 2              | 2,305<br>55 | 409                 | 8.8   |
|                                    |                     |              | <del></del>    |             |                     |       |
| .viation gasoline:                 |                     |              |                |             |                     |       |
| For commercial use:                |                     |              |                |             |                     |       |
| Airlines                           | 575                 | 487          | 308            | 16          | 136                 | 1.5   |
| Factory                            | 45                  | 70           | 33             | 6           | 70                  | 2,0   |
| General aviation                   | 2.362               | 2,603        | 1.803          | 639         | 2,355               | 9,7   |
| Total                              | 2,982               | 3,160        | 2,144          | 661         | 2,561               | 11.8  |
| For military use                   | 1,264               | 975          | 1,131          | 63          | 1,502               | 4,9   |
| <u>=</u>                           |                     |              | 1,101          |             | 1,002               |       |
| et fuel:                           |                     |              |                |             |                     |       |
| For commercial use: Kerosine type: |                     |              |                |             |                     |       |
| Airlines                           | 102,027             | 57,068       | 20,317         | 7.626       | 72,874              | 259.9 |
| Factory                            | 858                 | 1,276        | 292            | 1,020       | 562                 | 2.9   |
| General aviation                   | 3,411               | 2,532        | 1,277          | 423         | 899                 | 8.    |
| Total 2                            | 106,295             | 60,876       | 21.886         | 8,049       | 74,335              | 271.4 |
| Naphtha type:                      |                     |              | 21,000         |             | 11,000              | 212,  |
| Airlines                           | 2,503               | 4            | 661            |             | 4,254               |       |
| Factory                            | 2,505               | 142          | 15             |             | 100                 | 7,4   |
| General aviation                   | 67                  | 184          | 94             |             | 59                  | 7     |
| Total                              | 2.794               | 330          |                |             |                     |       |
|                                    |                     |              | 770            |             | 4,413               | 8,8   |
| Total for commercial use 2         | 109,090             | 61,206       | 22,656         | 8,049       | 78,748              | 279,  |
| For military use:                  | 04045-              |              |                |             |                     |       |
| JP-4                               | <sup>2</sup> 13,137 | 12,939       | 13,184         | 3,162       | <sup>2</sup> 18,168 | 60,   |
| JP-5                               | <sup>2</sup> 10,783 | 117          | 653            |             | 2 13,411            | 24,9  |
| Other                              | 192                 | 11           | 3              |             | 271                 |       |
| Total                              | 24,112              | 13,067       | 13,840         | 3,162       | 31,850              | 86,   |
| For non-aviation use p             | 4,630               | 1,266        | 150            |             | 303                 | 6,3   |

P Preliminary.

1 Excludes direct imports by the military into PAD district I, 6,939,000 barrels; PAD district V, 2,129,000 barrels.

2 Excludes direct imports by the military of naphtha-type jet into: PAD district I, 8,993,000 barrels; PAD district V, 1,946,000 barrels. Also excludes direct imports by the military of kerosine-type jet into: PAD I, 376,000 barrels; PAD V, 140,000 barrels.

Table 40.-Salient statistics of kerosine in the United States, by month and district

(Thousand barrels unless otherwise stated)

|                                                               |                         |                       |                                     | 1972         |              |                                       |                         |                          |                |                                     | ч 8261       |                |                                       |                         |
|---------------------------------------------------------------|-------------------------|-----------------------|-------------------------------------|--------------|--------------|---------------------------------------|-------------------------|--------------------------|----------------|-------------------------------------|--------------|----------------|---------------------------------------|-------------------------|
|                                                               | Production at refineres | Yield<br>(per-        | Production at gas processing plants | Im-<br>ports | Ex-<br>ports | Total<br>stocks<br>(end of<br>period) | Domes-<br>tic<br>demand | Production at refineries | Yield<br>(per- | Production at gas processing plants | Im-<br>ports | Ex-<br>ports   | Total<br>stocks<br>(end of<br>period) | Domes-<br>tic<br>demand |
| By month:                                                     | 069 0                   | -                     | 5                                   | -            | ۰            | 04 090                                | 11 01                   | 977                      |                | 8                                   | ,            | ٠              | 000                                   | 9                       |
| February                                                      | 6,658                   | 7<br>7<br>7<br>7<br>7 | 88                                  | 24           | ၀ က          | 17,408                                | 10,703                  | 9,446                    | , 7<br>, 7     | 25                                  | 0 4          | <b>3</b> 00    | 16,035                                | 12,555                  |
| March<br>April                                                | 6,966                   | 2.0                   | 96                                  | !-           | ∞ 4          | 15,693<br>16,363                      | 8,769                   | 7.931                    | 1.8            | 78                                  | 12           | 7              | 16,404<br>18,088                      | 6,222                   |
| May                                                           | 5,098                   | 1.4                   | 106                                 | -            | 4            | 17,132                                | 4,432                   | 5,093                    | 1.3            | 12                                  | 9            | ļ ∞            | 19,148                                | 4,102                   |
| July                                                          | 5.571                   | 4.1.                  | 109                                 | 14           | 116          | 18,640 $21,481$                       | 3,475<br>2,861          | 4,486                    | 1:1            | 47<br>49                            | <b>∞</b>     | 14             | 20,160                                | 3,529<br>4,602          |
| August                                                        | 6,757                   | 1.5                   | 97                                  | 128          | <b>.</b>     | 22,060                                | 5,295                   | 5,392                    | 1:3            | 51                                  | 224          | · 00 1         | 21,590                                | 4,546                   |
| September                                                     | 6,648                   | × :                   | 25                                  | × ×          | 40           | 22,917                                | 5,943                   | 5,849                    | 9.5            | 5                                   | 156          | <b>-</b> t     | 22,105                                | 5,534                   |
| November                                                      | 7,772                   | 2.1                   | 12                                  | 116          | 0 00         | 21,351                                | 8,554                   | 6,553                    |                | 48                                  | 245          | . <del>7</del> | 23,549<br>21,203                      | 9,563                   |
| December                                                      | 8,879                   | 2.3                   | 74                                  | 186          | 7            | 19,111                                | 11,372                  | 7,038                    | 1.8            | 46                                  | 124          | က              | 21,022                                | 7,386                   |
| Total                                                         | 79.027                  | 1.8                   | 1.063                               | F26          | 91           | 19,111                                | 85,852                  | 79,422                   | 1.7            | 704                                 | 785          | 82             | 21,022                                | 78,915                  |
| Bast Coast                                                    | 6,190                   | 1.3                   | 7                                   | 524          |              | 7,231)                                | 43,759                  | 5,079                    | 1.0            | Ĩ                                   | 785          | ₹              | 7,877                                 | 32,853                  |
| Appalachian No. 2                                             | 781                     | . <del>4</del>        | ÎΊ                                  |              | ب            | 529                                   |                         | 7,300<br>814             | 4.1            | <del>]</del>                        |              | ب              | 371                                   |                         |
| Indiana, Illinois, Kentucky, etc<br>Minnesota, Wisconsin, etc | 15,041                  | 1:9                   |                                     | 61           | 1            | 3,885                                 | 25,002                  | 15,743                   | 1.9            |                                     | 1            | ~ <u>_</u>     | 4,201                                 | 23,577                  |
| Texas Inland                                                  | 1,296                   |                       | 368                                 |              | ·            | 195                                   |                         | 1,130                    | 0              | 356                                 |              |                | 285                                   |                         |
| Louisiana Gulf Coast                                          | 16,754                  | 1.25                  | 227                                 | ł            | 89           | 1,505                                 | 13,434                  | 20,074                   | . es -         | 138                                 |              | €29            | 2,558                                 | 19,224                  |
| ] [                                                           | 103                     | 9.                    | 42                                  |              |              | 28                                    |                         | 131                      | . ∞            | 46                                  |              |                | 20                                    |                         |
| Rocky Mountain                                                | 1,844                   | <br>6. 6.             |                                     | 1 1          | 13           | 297<br>371                            | 2,062<br>1,595          | 2,204<br>1,319           | 4.ci           | 1 1                                 | 1 1          | 16             | 477                                   | 1,985                   |
| Total                                                         | 79,027                  | 1.8                   | 1,063                               | 526          | 91           | 19,111                                | 85,852                  | 79,422                   | 1.7            | 704                                 | 785          | 82             | 21,022                                | 78,915                  |
|                                                               |                         |                       |                                     |              |              |                                       |                         |                          |                |                                     |              |                |                                       |                         |

P Preliminary.

Table 41.-Salient statistics of distillate fuel oil in the United States, by month and refining district (Thousand barrels unless otherwise stated)

|        | Domes-<br>tic<br>demand                                   | 128,150<br>118,790<br>102,732<br>79,040  | 72,360<br>72,184<br>79,168<br>90,386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 114,242<br>1124,308             | 520,668                                                                               | 331,903                                                                                         | 34,782<br>113,193<br>124,308                                                                                                               |
|--------|-----------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
|        | Total<br>stocks,<br>end of<br>period                      | 130,993<br>113,310<br>111,299<br>114,723 | 137,869<br>160,901<br>177,304<br>190,209<br>203,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200,218<br>196,461<br>196,461 1 | 75,359}<br>4,1195<br>2,751                                                            | $\begin{vmatrix} 32,281 \\ 8,675 \\ 17,477 \\ 3,401 \\ 19,299 \end{vmatrix}$                    | i —                                                                                                                                        |
|        | Ex-<br>ports                                              | 333<br>67<br>198                         | 106<br>106<br>123<br>123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 309 2<br>3,240 2                | 207                                                                                   | 6                                                                                               | $ \begin{array}{c} 2,143 \\ \\ 8\overline{8}\overline{1} \\ 3,240 \\ \underline{2} \end{array} $                                           |
| 1978 P | Im-<br>ports                                              | 11,154<br>18,817<br>17,953<br>7,211      | 6,461<br>9,880<br>8,876<br>8,945<br>13,531                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13,464<br>13,464<br>138,752     | 121,598                                                                               | 1,302                                                                                           | 12,161<br>89<br>3,602<br>138,752                                                                                                           |
| =      | Crude<br>used<br>di-<br>rectly<br>as<br>distil-<br>late 1 | 44<br>42<br>76<br>69                     | 68<br>68<br>76<br>69<br>76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 760                             | 1                                                                                     | 283                                                                                             | 191<br>69<br>217<br>760                                                                                                                    |
|        | Production at gas processing ing                          | 97<br>78<br>85<br>76                     | 62 52 55 55 55 55 55 55 55 55 55 55 55 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 835<br>835                      | 777                                                                                   | 1   862                                                                                         | 143                                                                                                                                        |
|        | Yield<br>(per-<br>cent)                                   | 24.2<br>23.9<br>22.2<br>20.7             | 22.3<br>22.3<br>22.3<br>22.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25.2<br>22.5                    | 25.0<br>25.2<br>23.3                                                                  | 22.0<br>27.9<br>25.6<br>24.5                                                                    | 24.0<br>21.2<br>27.7<br>14.0<br>22.5                                                                                                       |
|        | Produc-<br>tion at<br>refin-<br>eries                     | 93,862<br>82,242<br>82,679<br>75,306     | 84,759<br>86,840<br>84,379<br>90,230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 97,215<br>97,215<br>1,029,343   | 130,868<br>16,135<br>4,674                                                            | 182,761<br>24,612<br>85,749<br>31,189<br>244,178                                                | 149,311<br>11,700<br>3,601<br>41,966<br>102,599<br>1,029,343                                                                               |
|        | Domes-<br>tic<br>demand                                   | 115,413<br>120,757<br>107,941<br>83,332  | 65,817<br>65,817<br>63,980<br>66,160<br>85,536                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,066,110                       | 511,291                                                                               | 323,243                                                                                         | 30,445<br>99,484<br>1,066,110                                                                                                              |
|        | Total<br>stocks,<br>end of<br>period                      | 160,073<br>122,194<br>101,765<br>98,324  | 128,779<br>155,593<br>174,702<br>190,289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 154,319                         | { 61,513}<br>{ 3,297}<br>2,921                                                        | $\begin{pmatrix} 22,096\\6,388\\11,034\\2,347\\19,105\\19,105\\ \end{pmatrix}$                  | $211 \left\{ \begin{array}{c} 6,376 \\ 3,275 \\ 281 \\ 281 \\ \hline 2,558 \\ \hline 878 & 13,128 \\ 1,211 & 2154,319 \end{array} \right.$ |
|        | Ex-<br>ports                                              | 96<br>138<br>92<br>237                   | 105<br>116<br>120<br>120<br>120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 232 2                           | 95                                                                                    | 27                                                                                              | 211 \\ 878 1,211 2                                                                                                                         |
| 1972   | Im-<br>ports                                              | 6,106<br>5,930<br>7,971<br>5,662         | 2,86,2<br>2,86,2<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,96,3<br>3,6,3<br>3,6,3<br>3,6,3<br>3,6,3<br>3,6,3<br>3,6,3<br>3 | 0,820<br>11,849<br>66,449       | 64,302                                                                                | 473                                                                                             | 1,191<br>483<br>66,449                                                                                                                     |
|        | Crude used di-<br>rectly as distil-late 1                 | 72<br>60<br>46<br>68                     | 888<br>888<br>888<br>888<br>888<br>888<br>888<br>888<br>888<br>88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 944                             | 1                                                                                     | 329                                                                                             | 191<br>69<br>355<br>944                                                                                                                    |
|        | Production at gas processing plants                       | 108<br>98<br>107<br>107                  | 101<br>104<br>99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,220                           | 1111                                                                                  | 1 :   [1] 8 :                                                                                   | 585<br><br>1,220                                                                                                                           |
|        | Yield<br>(per-<br>cent)                                   | 22.1<br>22.8<br>22.6<br>22.6             | 22022<br>2022<br>2022<br>2022<br>2022<br>2022<br>2022<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23.6                            | 24.6<br>23.6<br>25.7                                                                  | 21.6<br>27.4<br>24.1<br>18.8<br>24.9                                                            | 28.5<br>20.3<br>26.3<br>13.2<br>22.2                                                                                                       |
|        | Production at<br>refin-<br>eries                          | 78,674<br>76,928<br>79,480<br>74,291     | 78,692<br>78,394<br>80,051<br>78,712<br>84,369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 91,085                          | 118,572<br>13,916<br>5,038                                                            | 168,356<br>22,781<br>79,897<br>28,535<br>233,079                                                | 11,498<br>3,299<br>38,024<br>91,643                                                                                                        |
|        |                                                           | By month: January Rebruary March April   | Juny July August September October                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DecemberTotal                   | By refining district: East Coast Appalachian No. 1 Appalachian No. 2 Indiana Illinois | Kentucky, etc. Minnesota, Wisconsin, etc. Oklahoma, Kansas, etc. Texas Inland. Texas Gulf Coast | Louisiana Guir Coast Arkansas, Louisiana Inland, etc New Mexico Rocky Mountain West Coast Total                                            |

Preliminary.
 Figures represent crude oil used as fuel on pipelines which is considered part of the demand for distillate.
 Includes No. 4 fuel oil in thousands of barrels: PAD district I, 1972, 2,966; 1973, 3,068; PAD district II, 1972, 886; 1973, 129; PAD district III, 1972, 166; 1973, 67.

Table 42.—Salient statistics of residual fuel oil in the United States, by month and refining district

(Thousand barrels unless otherwise stated)

|                                                                                                           |                                                     |                         |                                              | 1972             |              |                              |                    |                           |                         | 1                                            | 1973 р           |              |                                |                    |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------|----------------------------------------------|------------------|--------------|------------------------------|--------------------|---------------------------|-------------------------|----------------------------------------------|------------------|--------------|--------------------------------|--------------------|
| ٠                                                                                                         | Produc-<br>tion                                     | Yield<br>(per-<br>cent) | Crude<br>used di-<br>rectly as<br>residual 1 | Im-<br>ports     | Ex-<br>ports | Stocks<br>(end of<br>period) | Domestic<br>demand | Produc-<br>tion           | Yield<br>(per-<br>cent) | Crude<br>used di-<br>rectly as<br>residual 1 | Im-<br>ports     | Ex-<br>ports | Stocks<br>(end of<br>period)   | Domestic<br>demand |
| By month:<br>January                                                                                      | 28,646                                              | 8.0                     | 277                                          | 58,658           | 547          | 59,440                       | 87,275             | 34,472                    | 80.0<br>0.7             | 330                                          | 61,290           | 1,031        | 49,154                         | 101,123            |
| February March                                                                                            | 25,662                                              | × 7. ×                  | 525<br>525<br>526<br>527<br>527              | 59,718           | 1,806        | 51,566                       | 83,151             | 29,592                    | . 00 t                  | 329                                          | 67,742           | 801          | 44,711                         | 95,209             |
| April<br>May                                                                                              | 20,591                                              |                         | 255                                          | 48,770           | 1,507<br>567 | 53,035                       | 65,439             | 29,392                    | 9.5                     | 320                                          | 51,657           | 1,152        | 49,207                         | 78,054             |
| July                                                                                                      | 20,863                                              |                         | 268                                          | 49,416           | 1,099        | 60,230                       | 65,327             | 27,352                    | . 8.                    | 492                                          | 49,515           | 1,107        | 53,363                         | 74,700             |
| August September                                                                                          | 20,882                                              | بر<br>بن<br>بن          | 272<br>279                                   | 51,244<br>48,736 | 1,259<br>856 | 61,399 $63,692$              | 69,970<br>67,161   | 26,368                    | 9.0                     | 200                                          | 55,248           | 912<br>653   | 53,586<br>55,091               | 79,996             |
| October November                                                                                          | - 23,092<br>- 26,711                                | 6.2<br>4.4              | 309<br>314                                   | 51,303<br>53,075 | 1,428<br>873 | 63,758<br>57,702             | 73,210<br>85,283   | 30,517<br>31,840          | 2.2                     | 690                                          | 48,235<br>58,248 | 645<br>205   | 54,964                         | 78,956<br>93,552   |
| December Total Total                                                                                      | 2292,519                                            | 9.9<br>8.9              |                                              | 3637,401         | 12,060       | 55,216                       |                    | 2354,597                  | 7.7                     |                                              | 3666,706         | 9,231        | 53,480                         | 1,019,934          |
| By refining district: East CoastAppalachian No. 1                                                         | 30,873                                              | 6.4<br>11.4             | 4(                                           | 4616,990         | 1,502 { 2    | 23,622)                      | 686,554            | 7 45,238<br>7,020         | 8.73                    | - 26                                         | 5633,168         | 87 }         | 24,782)<br>6365                | 700,170            |
| Appalachian No. 2<br>Indiana, Illinois, Kentucky, etc<br>Minnesota, Wisconsin, etc                        | 50,219<br>- 7,016                                   | × 4 4 4                 | 578                                          | 45,458           | 511<         | 1,002                        | 80,084             | 53,612<br>8,026           | 0.00                    | 873                                          | 56,107           | 179 <        | 1,162                          | 86,052             |
| Oktanoma, Azansas, etc Texas Inland Texas Gulf Coast Louisiana Gulf Coast Arkansas, Louisiana Inland, etc | 3,608<br>- 3,608<br>- 37,682<br>- 18,695<br>- 4,428 | 4000                    | 1,781                                        | 6,212            | 4,667        | 3,893<br>1,646<br>205        | 31,757             | 53,075<br>23,755<br>4,764 |                         | 1,784                                        | 10,102           | 2,289        | 3,912<br>3,912<br>2,471<br>237 | 70,549             |
| Rocky Mountain West Coast                                                                                 | - 9,152<br>- 114,890                                | 6.3<br>16.6             | 252<br>711                                   | 8,741            | 5,380        | 386<br>16,401                | 9,622<br>117,630   | 9,854<br>132,900          | 6.5                     | 252<br>3,512 <sup>t</sup>                    | 1<br>517,328     |              | 881<br>11,822                  |                    |
| Total                                                                                                     | 2292,519                                            | 6.8                     | 8,322 3                                      | 3637,401         | 12,060       | 55,216                       | 925,647            | 2354,597                  | 7.7                     | 6,126 3                                      | 3666,706         | 9,231        | 53,480                         | 1,019,934          |
|                                                                                                           |                                                     |                         |                                              |                  |              |                              |                    |                           |                         |                                              |                  |              |                                |                    |

Preliminary.

Represents crude oil used on leases and for general industrial purposes.

2 Sulfur content in thousands of barrels. 0.60%, 1972; 64,855; 1973: 96,690, 0.51-1.00%, 1972; 70,824; 1978: 82,600, 1.01-2.00%, 1972: 92,652; 1973: 102,832, over 2.00%, 1972: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 1973: 19

Table 43.-Salient statistics of jet fuel in the United States, by month and refining district

|                                 |                 | Production            |                  | ,               | Imports               |               | P         | Exports                    | Total             | stocks, e                                           | Total stocks, end of period          |                 | Domestic demand       | pur              |
|---------------------------------|-----------------|-----------------------|------------------|-----------------|-----------------------|---------------|-----------|----------------------------|-------------------|-----------------------------------------------------|--------------------------------------|-----------------|-----------------------|------------------|
|                                 | Naphtha<br>type | Kero-<br>sine<br>type | Total            | Naphtha<br>type | Kero-<br>sine<br>type | Total Naphtha | 1         | Kero-<br>sine Total type 1 | Naphth<br>type 1  | tha Kero-                                           | Total                                | Naphtha<br>type | Kero-<br>sine<br>type | Total            |
| 1972                            |                 |                       |                  |                 |                       |               |           |                            |                   |                                                     |                                      |                 |                       |                  |
| By month:                       | 5.696           | 18.618                | 24,314           | 836             | 4,705                 | 5,541         | 66        | 1                          | 96,6              |                                                     |                                      |                 | 24,871                | 31,636           |
| February                        | 6,596           | 19,498                | 26,094           | 610             | 5,778                 | 6,388         | 23        | ۰۰ <u>۶</u>                |                   |                                                     |                                      |                 | 25,574                | 33,081           |
| П                               | 6,921           | 21,178                | 28,099           | 391             | 2.970                 | 9,167         | 104<br>15 | i<br>-                     |                   |                                                     |                                      |                 | 21,629                | 29,573           |
| April                           | 6.873           | 20,638                | 27.511           | 1,123           | 3,812                 | 4,935         | 145       |                            |                   |                                                     |                                      |                 | 22,755                | 30,984           |
| June                            | 6,825           | 18,940                | 25,765           | 1,121           | 7,636                 | 8,757         | 152       |                            |                   |                                                     |                                      |                 | 20,307                | 30,987           |
| July                            | 6,416           | 20,660                | 27,076<br>25,955 | 822             | 4,286<br>8,286        | 5,111         | 127       | 1 1                        |                   |                                                     |                                      |                 | 22,497                | 29,332           |
| August                          | 5,233           | 18,478                | 24.311           | 894             | 4,796                 | 6,690         | 16        |                            |                   |                                                     |                                      |                 | 23,958                | 31,037           |
| October                         | 6,077           | 19,407                | 25,484           | 1,657           | 7,220                 | 8,877         | 16        | 1                          |                   |                                                     |                                      |                 | 28,375                | 36,309           |
| November                        | 5,742           | 18,247                | 23,989           | 1,835           | 3,699<br>4,316        | 5,534         | 187       | 36                         | 17 5,0<br>223 6.1 | $5.647 	ext{ } 21,003 	ext{ } 6.147 	ext{ } 19.346$ | 25,650<br>16 25,493                  | 6,618           | 25,300                | 31,918           |
| Total                           | 76,565          | 233,464               | 310,029          | 11,998          | 59,176                | 71,174        | 911       |                            |                   | 1 1                                                 | 6 25,493                             | 88,495          | 293,995               | 382,490          |
| By refining district:           |                 |                       |                  |                 |                       |               |           |                            |                   | 1                                                   |                                      |                 |                       |                  |
| East Coast Appalachian No. 1    | 1,454<br>650    | 10,545<br>678         | 11,999           | 8,336           | 30,294                | 38,630        | l         | ;                          | -<br>             |                                                     | 4,020<br>66 811<br>811<br>811<br>811 | 23,375          | 121,449               | 144,824          |
| Appalachian No. 2               | 7.552           | $35.4\overline{21}$   | 42,973           |                 |                       |               |           |                            |                   | 659 3,238                                           | - ~                                  |                 | 000                   | e de             |
| Minnesota, Wisconsin, North     |                 |                       |                  | !               | 2,789                 | 2,789         | ŀ         | 1                          | ·<br>—            |                                                     |                                      | ر 16,510<br>آ   | 60,838                | 77,843           |
| Dakota, South Dakota            | 1,446           | 10.404                | 17,090           |                 |                       |               |           |                            |                   |                                                     |                                      |                 |                       |                  |
|                                 | 5,084           | 9,040                 | 14,124           |                 |                       |               |           |                            |                   | 114 1,234 $125 2.215$                               | 34 1,548<br>13 3.138                 |                 |                       |                  |
| Texas Gulf Coast                | 7,692           | 47,540                | 55,232           | -1<br>          | 4,451                 | 4,451         | -         | 10                         | 11                |                                                     | _                                    | 7 15,063        | 18,383                | 33,446           |
| Arkansas, Louisiana Inland, etc | 1,553           | ∞ 5                   | 1,561            |                 |                       |               |           |                            |                   |                                                     |                                      |                 |                       |                  |
| Rocky Mountain                  | 4,079           | 4,513                 | 8,592            | 3.662           | 21.642                | 25,304        | 910       | 36                         | 946 1,            | 284 338<br>1,578 4,858                              | 38 622<br>58 6,436                   | 2,476           | 7,329<br>85,996       | 9,805<br>117,067 |
| Total                           | 76.565          | 233,464               | 310,029          | 11,998          | 59,176                | 71,174        | 911       | 46 9                       | 957 6,            | 6,147 19,346                                        | 46 25,493                            | 88,495          | 293,995               | 382,490          |
| 18001                           |                 |                       |                  |                 |                       |               |           |                            |                   |                                                     |                                      |                 |                       |                  |

|        | 34,409               | 30,92    | 30,444 | 34,485 | 30,201 | 32,397 | 32,524 | 31,940    | 33,060  | 30,393<br>32,181 | 383,355    |                       | 149,956           |                                                       | 74,812                                              |                                 |              | 36,197               |                                 | 11,198         | 11,192     | 383,355   |
|--------|----------------------|----------|--------|--------|--------|--------|--------|-----------|---------|------------------|------------|-----------------------|-------------------|-------------------------------------------------------|-----------------------------------------------------|---------------------------------|--------------|----------------------|---------------------------------|----------------|------------|-----------|
|        |                      |          |        |        |        |        |        |           |         | 24,501<br>24,765 | 304,135 38 |                       | 127,404 14        |                                                       | 61,632                                              |                                 |              | 19,504               |                                 | 8,320          | •          | 304,135 3 |
|        |                      |          |        |        |        |        |        |           |         | 5,892 2,7,416 2, | 79,220 30  | 1                     | 22,552 12         |                                                       | 13,180 6                                            |                                 |              | 16,693               |                                 | 2,878          |            | 79,220 30 |
|        |                      |          |        |        |        |        |        |           |         |                  |            |                       |                   |                                                       |                                                     | 20.0                            | 3 1          | ı                    |                                 |                |            |           |
|        |                      |          |        |        |        |        |        |           |         | 28,539           | 28,544     | 5.21                  | 18.5              | 4,202                                                 | 82                                                  | 1,96.                           | 4.17         | 1,91                 | 610<br>296                      | 9              | 6,72       | 28,544    |
|        | 18,861               | 21,686   | 22,672 | 20,770 | 20,844 | 21,381 | 20,583 | 20,497    | 21,335  | 23,600<br>22,945 | 22,945     | 5.027                 | 208               | 3,840                                                 | 705                                                 | 1,275                           | 3.245        | 1,348                | 438                             |                | 5,121      | 22,945    |
|        | 5,953                | 2,400    | 5,209  | 5,055  | 4,603  | 4,280  | 4,268  | 4,652     | 4,242   | 4,939<br>5,599   | 5,599      | 188                   | 102               | 362                                                   | 153                                                 | 069                             | 932          | 569                  | 172<br>218                      | 230            | 1,608      | 5,599     |
|        | 214                  | 198      | 226    | 134    | 139    | 108    | 32     | 28        | 101     | 103<br>50        | 1,568      | ٠                     | ₹                 |                                                       | 1                                                   |                                 |              | 7                    |                                 | 1              | 1,563      | 1,568     |
|        | 34                   | 56       | 172    | 112    | 128    | 105    | 35     | 28        | 100     | 95<br>42         | 928        |                       | N                 |                                                       | !                                                   |                                 |              | ŀ                    |                                 | !              | 926        | 928       |
|        | 180                  | 169      | 54     | 55     | Ξ      | ಣ      | ł      | }         | _       | 122              | 640        | ļ '                   | N                 |                                                       | 1                                                   |                                 |              | -                    |                                 | ŀ              | 637        | 640       |
|        | 7,157                | 4.724    | 4,353  | 6,527  | 4.887  | 7,147  | 5,573  | 6,877     | 6,450   | 7,885<br>6.506   | 74,285     |                       | 42,522            |                                                       | 2,450                                               |                                 |              | 5,902                |                                 | ţ              | 23,411     | 74,285    |
|        | 6,380                | 4,330    | 3,507  | 5,846  | 3.961  | 6,166  | 3,715  | 5,658     | 4,232   | 6,190            | 60,970     |                       | 32,522            | į                                                     | 2,450                                               |                                 |              | 5,902                |                                 | 1              | 20,096     | 60,970    |
|        | 777                  | 394      | 846    | 681    | 926    | 981    | 1,858  | 1,219     | 2,218   | 1,695            | 13,315     |                       | 10,000            |                                                       | !                                                   |                                 |              | 1                    |                                 | ł              | 3,315      | 13,315    |
|        | 26,787               | 28,156   | 26,613 | 26,036 | 25,075 | 25,572 | 26,173 | 25,419    | 27.129  | 25,573<br>25,730 | 313,689    | 13 130)               | 1,514             | $44,4\overline{09}$                                   | 2.471                                               | 15,845                          | 67.248       | 57,307               | 1,611                           | 8,104          | 86,350     | 313,689   |
|        | 21,506               | 20,02    | 20,658 | 20,031 | 19,731 | 20,739 | 20,802 | 19,841    | 21.851  | 20,668           | 247,692    | 11 998                | 695               | 38,671                                                | 1.490                                               | 10,627                          | 56,473       | 49,630               | - 4                             | 4.611          | 66,202     | 247,692   |
|        | 5,281                | 6,089    | 5.955  | 6,005  | 5.344  | 4,833  | 5,371  | 5,578     | 5.278   | 4,905<br>6,801   | 65,997     | 1 007                 | 819               | 5,738                                                 | 981                                                 | 5,218                           | 10,775       | 7,677                | 1,610                           | 3,493          | 20,148     | 65,997    |
| 1973 р | By month:<br>January | February | Annil  | May    | Imp    | July   | August | September | October | November         | Total      | By refining district: | Appalachian No. 1 | Appalachian No. 2<br>Indiana, Illinois, Kentucky, etc | Minnesots, Wisconsin, North<br>Dakots, South Dakots | Oklahoma, Kansas, Missouri, etc | Texas Inland | Louisiana Gulf Coast | Arkansas, Louisiana Inland, etc | Rocky Mountain | West Coast | Total     |

p Preliminary. Includes naphtha type jet fuel stored at natural gas processing plants: Arkansas, Louisiana Inland, etc., 1972, 2; 1973, none.

Table 44.—Salient statistics of lubricants in the United States, by month and refining district (Thousand barrels unless otherwise stated)

|                                    |                 |         | Production      | u      | Yield      | Im-                     | Ex-                     |                 | Stocks, end of period | l of period     |                | Domestic       |
|------------------------------------|-----------------|---------|-----------------|--------|------------|-------------------------|-------------------------|-----------------|-----------------------|-----------------|----------------|----------------|
|                                    | Bright<br>stock | Neutral | Other<br>grades | Total  | (percent)  | ports<br>(all<br>types) | ports<br>(all<br>types) | Bright<br>stock | Neutral               | Other<br>grades | Total          | (all<br>types) |
| 1972                               |                 |         |                 |        |            |                         |                         |                 |                       |                 |                |                |
| By month:                          |                 |         |                 |        |            |                         |                         |                 |                       |                 |                | 1              |
| January                            | 614             | 2,402   | 2,451           | 5,467  | 1.5        | -                       | 1,457                   | 1,423           | 5,011                 | 8,891           | 15,325         | 3,735          |
| February                           | 584             | 2,159   | 2,184           | 4,927  | 1.5        | -                       | 975                     | 1,462           | 4,877                 | 8,797           | 15,136         | 4,142          |
| March                              | 559             | 2,381   | 2,456           | 5,396  | ic.        | ! '                     | 1,509                   | 1,315           | 4,506                 | 8,608           | 14,429         | 4,594          |
| April                              | 463             | 2,452   | 2,280           | 5,195  | 1.6        | 01                      | 1,353                   | 1,273           | 4,446                 | 8,003           | 13,722         | 4,551          |
| May                                | 542             | 2,611   | 2,543           | 5,696  | 9.1        | <b>-</b>                | 1,156                   | 1,216           | 4,592                 | 7,921           | 13,729         | 4,534          |
| June                               | 511             | 2,643   | 2,440           | 5,594  | 1.6        | -                       | 1,114                   | 1,157           | 4,520                 | 8,218           | 13,895         | 4,810          |
| July                               | 554             | 2,378   | 2,466           | 5,398  | 1.4        | 112                     | 1,129                   | 1,092           | 4,379                 | 7,955           | 13,426         | 4,850          |
| August                             | 530             | 2,729   | 2,526           | 5,785  | 1.5        | 63                      | 1,244                   | 1,054           | 4,351                 | 7,878           | 13,283         | 4,747          |
| September                          | 492             | 2,329   | 2,516           | 5,337  | 1.5        | 78                      | 1,117                   | 1,044           | 4,351                 | 7,883           | 13,278         | 4,303          |
| October                            | 563             | 2,433   | 2,631           | 5,627  | 1.5        | 122                     | 1,173                   | 1,031           | 4,147                 | 8,071           | 13,249         | 4,605          |
| November                           | 572             | 2,381   | 2,438           | 5,391  | 1.5        | 170                     | 1.383                   | 1.088           | 3,772                 | 7,996           | 12,856         | 4,571          |
| December                           | 556             | 2,365   | 2,615           | 5,536  | 1.4        | 118                     | 1,373                   | 1,099           | 3,857                 | 8,315           | 13,271         | 3,866          |
| Total                              | 6,540           | 29,263  | 29,546          | 65,349 | 1.5        | 699                     | 14,983                  | 1,099           | 3,857                 | 8,315           | 13,271         | 52,813         |
| By refining district:              |                 |         |                 |        |            |                         |                         |                 |                       |                 |                |                |
| East Coast                         | 356             | 2.903   | 3.606           | 6.865  | 1.4)       | Ş                       | 2                       | 33              | 426                   | 2,382           | 2,847          | 90 951         |
| Appalachian No. 1                  | 1,301           | 2,439   | 389             | 4,129  | 7.0 }      | 700                     | 204.0                   | <b>502</b>      | 273                   | 568             | 1,046          | 100            |
| Appalachian No. 2                  | ;               | 12      | 1               | 12     | \<br> <br> |                         |                         | -<br>-          | 11                    | 294             | 294            |                |
| Indiana, Illinois. Kentucky, etc - | 498             | 3,260   | 1,498           | 5,256  | _^.·       | 10                      | 457                     | 103             | 283                   | 47.7.           | 1,464<br>7,854 | 13,426         |
| Minnesota, Wisconsin, etc          | 170             | 100     | 1 710           | 100    | 12         | ,                       | į                       | 191             | 100                   | 40.0            | 724            |                |
| Uklanoma, Kansas, etc              | *00             | 001,0   | 080             | 207,0  | ;-         |                         |                         | 1               |                       | 37              | 37             |                |
| Toyog Culf Coost                   | 1.512           | 8.440   | 18.024          | 27.976 | 3.0        |                         |                         | 249             | 1,054                 | 2,499           | 3,802          |                |
| Louisiana Gulf Coast               | 751             | 5,645   | 1,298           | 7,694  | 1.3 ✓      | 1                       | 9,716                   | <b>₹</b>        | 286                   | 277             | 912            | 11,585         |
| Arkansas. Louisiana Inland. etc.   | 1               | 887     | 1,169           | 2,056  | 4.2        |                         |                         |                 | 63                    | 271             | 334            |                |
| - 1                                | 1               | 1       | ;               | :      | 7          |                         |                         | ا<br>ر          | 1                     | <b>5</b> 3      | 6              |                |
| Rocky Mountain                     | 57              | 195     | 143             | 395    | હ          | ľ                       | ည                       | 11              | 74                    | 12              | 6              | 871            |
| West Coast                         | 1,411           | 2,302   | 1,903           | 5,616  | œ.         | 3                       | 1,353                   | 262             | 390                   | 1,019           | 1,671          | 2,980          |
| Total                              | 6,540           | 29,263  | 29,546          | 65,349 | 1.5        | 699                     | 14,983                  | 1,099           | 3,857                 | 8,315           | 13,271         | 62,813         |

|        | 4, 600<br>4, 4, 4, 500<br>4, 911<br>1, 800<br>1, 800<br>1, 800<br>1, 900<br>1, | 28,923<br>14,281<br>14,639<br>6,146<br>69,087                                                                                                                                                                                                                                              |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | 13,397<br>18,341<br>18,279<br>12,940<br>12,770<br>12,209<br>11,805<br>11,623<br>11,623<br>11,623<br>12,186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,526<br>1,048<br>1,435<br>1,435<br>665<br>28<br>3,871<br>1,106<br>1,106<br>1,095<br>1,095                                                                                                                                                                                                 |
|        | 8,108<br>8,015<br>8,015<br>7,738<br>7,738<br>7,610<br>7,611<br>7,111<br>7,009<br>7,009<br>7,009<br>6,902                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,808<br>487<br>487<br>787<br>34<br>136<br>2,521<br>22,521<br>22,521<br>174<br>4<br>80<br>80<br>6,902                                                                                                                                                                                      |
|        | 4,179<br>4,262<br>4,267<br>4,277<br>4,242<br>4,242<br>4,101<br>8,380<br>3,731<br>8,659<br>8,659<br>4,084<br>4,084<br>4,186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 648<br>291<br>579<br>357<br>1,084<br>821<br>46<br>74<br>74<br>74<br>74<br>74<br>74<br>74                                                                                                                                                                                                   |
|        | 1,110<br>1,064<br>1,064<br>1,164<br>1,168<br>1,068<br>1,068<br>1,063<br>935<br>946<br>1,098<br>1,098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 276<br>69<br>69<br>1,098                                                                                                                                                                                                                                                                   |
|        | 1,215<br>1,076<br>1,176<br>1,196<br>1,196<br>1,196<br>1,050<br>982<br>967<br>773<br>876<br>1,068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3,489<br>476<br>7,728<br>11,128<br>12,822                                                                                                                                                                                                                                                  |
|        | 210<br>160<br>230<br>230<br>230<br>36<br>36<br>111<br>121<br>121<br>121<br>170<br>113<br>333<br>333<br>2,032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,980                                                                                                                                                                                                                                                                                      |
|        | 11111111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5                                                                                                                                                                                                                                       |
|        | 5,740<br>5,740<br>5,869<br>5,748<br>5,772<br>5,732<br>6,171<br>6,171<br>6,008<br>6,008<br>6,008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7,612<br>4,469<br>5,880<br>5,845<br>108<br>30,121<br>7,886<br>1,984<br>1,984<br>5,450<br>68,742                                                                                                                                                                                            |
|        | 2, 2, 2, 2, 2, 2, 2, 2, 3, 9, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,711<br>3,46<br>1,684<br>1,514<br>1,514<br>1,186<br>1,188<br>1,183<br>1,187<br>1,887                                                                                                                                                                                                      |
|        | 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8,302<br>2,727<br>3,258<br>2,705<br>2,705<br>6,039<br>851<br>176<br>2,329<br>2,329                                                                                                                                                                                                         |
|        | 572<br>520<br>520<br>652<br>662<br>609<br>571<br>571<br>546<br>669<br>669<br>606<br>77481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 699<br>1,396<br>438<br>1,126<br>1,932<br>662<br>67<br>44<br>1,284<br>7,481                                                                                                                                                                                                                 |
| 1973 р | By month:  March April April April Asyl June July August September October November Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | By refining district:  Bat Cosat Appslachian No. 2 Indiana, Illinois, Kentucky, etc. Minnesota, Wisconsin, etc. Oklaboma, Kansas, etc. Texas Inland Texas Gulf Cosat Louisiana Gulf Cosat Louisiana Gulf Cosat Arkansas, Louisiana Inland, etc. New Mexico Rocky Mourtain West Cosat Total |

P Preliminary.

Table 45.-Salient statistics of liquefied gases (excluding ethane) in the United States, by month and refining district

(Thousand barrels unless otherwise stated)

|      | Domes-<br>tic<br>demand                                      | 52,181<br>42,908<br>33,157<br>29,093           | 24,779<br>24,569<br>29,068       | 35,949<br>40,005<br>38,905                   | 409,116 | 65,292                                                             | 125,661        | 186,841                                                                                            | 10,889<br>20,933                                                   | 409,116 |
|------|--------------------------------------------------------------|------------------------------------------------|----------------------------------|----------------------------------------------|---------|--------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------|
|      | Total<br>stocks,<br>end of<br>period                         | 62,083<br>52,756<br>56,584<br>63,572           | 83,315<br>94,296<br>100,476      | 105,116<br>106,116<br>98,834<br>93,618       | 93,618  | 5,590                                                              | 32,976         | 52,905                                                                                             | 664<br>1,483                                                       | 93,618  |
|      | LPG<br>used at<br>refin-<br>eries                            | 8,666<br>6,982<br>5,238                        | 5,494<br>5,934<br>6,617          | 7,483<br>7,853<br>8,038                      | 80,221  | $\left\{\begin{array}{cc} 148\\ 127 \end{array}\right\}$           | 11,948         | 2,973<br>11,784<br>7,052<br>13,954<br>19,864                                                       | 1,093<br>615<br>3,443<br>7,220                                     | 80,221  |
| 3 p  | Ex-<br>ports                                                 | 893<br>1,139<br>1,109<br>797                   | 705<br>788<br>820                | 758<br>683<br>721                            | 9,956   | 37                                                                 | 324            | 7,868                                                                                              | 1,726                                                              | 9,956   |
| 1973 | Im-<br>ports                                                 | 6,315<br>5,317<br>4,558<br>2,689               | 2,272<br>3,683<br>3,843<br>1,063 | 4,610<br>5,098<br>3,943                      | 47,801  | 8,549                                                              | 18,417         | 9,116                                                                                              | 5,496<br>6,223                                                     | 47,801  |
|      | Production at gas proceessing                                | 28,377<br>26,980<br>28,925<br>28,924           | 28,163<br>27,720<br>27,649       | 28,661<br>27,985<br>28,751                   | 338,813 | 5,756                                                              | 54,787         | 261,535                                                                                            | 11,406<br>5,329                                                    | 338,813 |
|      | Yield<br>· (per-<br>cent)                                    | 8 1 6 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8        | 80 00 00 t                       |                                              | 8.7     | 3.7                                                                | 2.3            | 7:22:8:<br>2:23:25:4-                                                                              | 2:3<br>2:3<br>3:3<br>3:3                                           | 2.8     |
|      | Refinery<br>produc-<br>tion                                  | 10,466<br>9,400<br>10,988<br>10,503            | 10,795<br>11,869<br>11,193       | 10,968<br>10,968<br>9,176<br>9,754           | 127,632 | 19,346<br>1,412<br>367                                             | 19,209         | 1,522<br>8,473<br>3,399<br>32,800<br>21,134                                                        | 1,024<br>369<br>2,236<br>16,341                                    | 127,632 |
|      | Domes-Refinery Yield<br>tic produc- (per<br>demand tion cent | 45,740<br>42,605<br>34,892<br>27,322           | 25,068<br>25,541<br>29,308       | 25,262<br>37,496<br>44,146<br>50,869         | 413,649 | 57,076                                                             | 25,716 126,872 | 192,529                                                                                            | 15,012<br>22,160                                                   | 413,649 |
|      | Total<br>stocks,<br>end of<br>period                         | 79,161<br>68,206<br>68,575<br>75,362<br>87,601 | 95,787<br>104,150<br>109,003     | 119,295<br>109,323<br>96,448<br>78,665       | 78,665  | 4,831                                                              | , 25,716       | 46,850                                                                                             | 386<br>882                                                         | 78,665  |
|      | LPG<br>used at<br>refin-<br>eries                            | 9,243<br>8,450<br>7,196<br>6,062               | 5,298<br>5,734<br>5,554          | 9,048<br>7,858<br>9,187<br>8,712             | 85,193  | 90}                                                                | 11,750         | 3,415<br>11,107<br>8,764<br>18,418<br>19,037                                                       | 1,168<br>672<br>3,272<br>7,249                                     | 85,193  |
|      | Ex-<br>ports                                                 | 891<br>878<br>1,106<br>779<br>836              | 848<br>1,012                     | 1,083<br>1,065<br>1,223                      | 11,469  | 368                                                                | 96             | 6886                                                                                               | 1,495                                                              | 11,469  |
| 1972 | Im-<br>ports                                                 | 4,331<br>3,520<br>3,556<br>1,778               | 1,610                            | 3,294<br>3,283<br>3,776                      | 32,401  | 5,336                                                              | 14,441         | 787                                                                                                | 5,405<br>6,432                                                     | 32,401  |
|      | Production at gas proc-essing plants                         | 29,666<br>27,882<br>29,678<br>29,124<br>28,917 | 27,628<br>28,127<br>28,276       | 29,316<br>28,881<br>29,103                   | 344,045 | 4,786                                                              | 56,319         | 265,505                                                                                            | 11,584<br>5,851                                                    | 344,045 |
|      | Yield<br>(per-<br>cent)                                      | 22222<br>20087<br>00087                        | 9,9,9,9<br>9,9,9,9               | - 9 9 9<br>i di di di                        | 2.8     | 3.4<br>2.4<br>1.6                                                  | 2.2            | 2.2.2.8.8.<br>2.2.4.8.8.8.                                                                         | 1.9<br>1.6<br>4.8                                                  | 1 1     |
|      | Refinery<br>produc-<br>tion                                  | 9,690<br>9,576<br>10,329<br>10,048             | 10,121                           | 10,045<br>9,885<br>9,359<br>10,142           | 121,182 | 16,488<br>1,432<br>324                                             | 17,034         | 1,506<br>8,279<br>3,578<br>30,945<br>21,411                                                        | 948<br>459<br>2,248                                                | 121,182 |
|      |                                                              | By month: January February March April         | June<br>July<br>August           | September<br>October<br>November<br>December | Total   | By refining district: East CoastAppalachian No. 1Appalachian No. 2 | etc            | Minnesota, Wisconsin, etc Oklahoma, Kansas, etc Texas Inland Texas Gulf Coast Louisiana Gulf Coast | Arkansas, Louisiana<br>Inland, etc<br>New Mexico<br>Rocky Mountain | Total   |

P Preliminary.

Table 46.-Salient statistics of ethane (including ethylene) in the United States, by month and refining district

|                               | Pı                             | Production       |                | Total                        |                    | Pı                             | Production               |                | Total                        |                    |
|-------------------------------|--------------------------------|------------------|----------------|------------------------------|--------------------|--------------------------------|--------------------------|----------------|------------------------------|--------------------|
|                               | At gas<br>processing<br>plants | At<br>refineries | Total          | stocks<br>(end of<br>period) | Domestic<br>demand | At gas<br>processing<br>plants | $\mathbf{At}$ refineries | Total          | stocks<br>(end of<br>period) | Domestic<br>demand |
| month:                        |                                |                  |                |                              |                    |                                |                          |                |                              |                    |
| January                       | 7,467                          | 820              | 8,287          | 3,265                        | 8,387              | 8,999                          | 722                      | 9,721          | 7,139                        | 9,634              |
| February                      | 7,788                          | 824              | 8,612          | 3,677                        | 8,200              | 8,417                          | 900                      | 10,461         | 7,120                        | 9,009              |
| March                         | 3,055                          | 120              | 9,404<br>0,404 | 4,112                        | 9,013              | 9,120                          | 687                      | 70*07          | 6,1,1                        | 90.40              |
| April                         | 2,007                          | 787              | 9,000          | 5,103                        | 8.473              | 9,000                          | 892                      | 686.6          | 6.976                        | 9.882              |
| Tune                          | 1,00                           | 715              | 8,673          | 5.423                        | 8.377              | 8.602                          | 849                      | 9,451          | 6.733                        | 9,694              |
|                               | 8,680                          | 783              | 9.463          | 5,690                        | 9,196              | 8.792                          | 842                      | 9,634          | 6.734                        | 9,633              |
| Angust.                       | 8,687                          | 757              | 9,444          | 5,888                        | 9,246              | 8,966                          | 868                      | 9,864          | 6,374                        | 10,224             |
| Sentember                     | 8,535                          | 723              | 9,258          | 6,086                        | 9,060              | 8,670                          | 717                      | 9,387          | 6,193                        | 9,568              |
| October                       | 9,060                          | 811              | 9,871          | 6,170                        | 9,787              | 9,816                          | 718                      | 10,029         | 6,139                        | 10,083             |
|                               | 8,720                          | 718              | 9,438          | 6,719                        | 8,889              | 9,272                          | 759                      | 10,031         | 5,381                        | 10,789             |
| December                      | 9,087                          | 702              | 9,789          | 7,052                        | 9,456              | 9,559                          | 120                      | 10,279         | 5,023                        | 10,637             |
| Total                         | 100,691                        | 9,197            | 109,888        | 7,052                        | 106,201            | 108,220                        | 9,194                    | 117,414        | 5,023                        | 119,443            |
| By refining district:         |                                |                  |                |                              |                    |                                |                          |                |                              |                    |
| East Coast                    | ij                             | ŀ                |                |                              | 1.712              | ];<br>→                        | 28                       | 289            | ł                            | 1.779              |
| Appalachian No. 1             | 1,712                          | 1                | 1,712)         | ŀ                            | 1                  | (1,721                         | 1                        | 1,721)         |                              | •                  |
| Appalachian No. 2             | 18                             | 1                | 100            |                              |                    | 17                             | !                        | 127 6          |                              |                    |
| 3                             | 7,232                          | 1                | ₹ 282,1        | 986                          | 11,308             | 10401                          | 1                        | <b>√ 104',</b> | 1,225                        | 13,399             |
| Minnesota, Wisconsin, etc     | 6                              | 10               | 1 107          |                              |                    | F 667                          | 162                      | 6 187          |                              |                    |
| noma, hansas, etc             | 0,001                          | 104              | 40,364)        |                              |                    | (40.158                        | 108                      | 40,266)        |                              |                    |
| Toves Cult Coest              | 16.520                         | 4.802            | 21,322         |                              |                    | 16.475                         | 5.040                    | 21,515         |                              |                    |
| Louisiana Gulf Coast          | 27,538                         | 3,147            | 30,685 ₹       | 6.064                        | 92.588             | < 31,191<br><                  | 2,960                    | 34,151 ≻       | 3,795                        | 103,713            |
| Arkansas Lonisians Inland etc | 817                            |                  | 817            |                              |                    | 1,229                          |                          | 1,229          |                              |                    |
|                               | 3.035                          |                  | 3.035          |                              |                    | 4,283                          | 1                        | 4,283          |                              |                    |
| Rocky Mountain                | 40                             | 60               | 43             | 67                           | 42                 | 45                             | ;                        | 45             | 80                           | 44                 |
| West Coast                    | : }                            | 551              | 551            | ł                            | 551                | 1                              | 208                      | 208            |                              | 208                |
| Total                         | 100.691                        | 9.197            | 109.888        | 7.052                        | 106,201            | 108.220                        | 9.194                    | 117,414        | 5,023                        | 119,443            |

P Preliminary.

Table 47.—Salient statistics on petrochemical feedstocks in the United States, by month and refining district Thousand barrels)

9,996 9,420 9,649 10,101 10,508 10,276 10,276 10,800 10,506 11,647 9,943 91,673 333 6,537 Domestic demand 15,991 123,697 (all types) 2,23,236 3,115 3,115 3,115 3,094 2,852 2,727 2,727 2,727 2,721 2,721 2,721 159 250 213 437 2.766 Stocks, end of period 13 152 152 74 249 526 4837 1.784 784 Naphtha 400° 1,360 1,200 1,199 1,138 1,130 1,035 1,190 1,120 982 982 Exports (other) 580 384 374 309 309 297 418 99 99 1134 8224  $^{13}_{2,180}$ 4,627 1,677 1.627 Imports 130 138 389 21 210 2210 274 301 332 340 87 3,178 Total 9,796 9,502 9,320 10,682 9,982 10,580 11,0984 11,047 11,046 4,668 5,204 124.026 124,026 Other 52,321 52.321Production Naphtha 400° 4,241 2,147 1,461 38,732 57,027 57.027 2,070 274 7,647 79  $2,6\overline{10}$ 14.678 14.678 Still East Coast
Appalachian No. 1
Appalachian No. 1
Indiana, Illinois, Kentucky, etc.
Minnesota, Wisconsin, etc.
Oklahoma, Kansas, etc.
Texas Inland
Texas Gulf Coast New Mexico Rocky Mountain West Coast October \_\_\_\_\_ Arkansas, Louisiana Inland, etc. June ...... April -----Louisiana Gulf Coast 1972 refining district: September November December Pebruary March -. anuary Total August month: May By 1 By

|       | 11,245               | 10,760 | 10,323 | 10,603        | 10,898       | 11,306  | 10,739 | 10,825    | 11,343   | 100 001  | 130,907 | 9.626              |                   | 13,847                                             |                           |                       | 100 178          | 21,001               |                                   | 216        | 7,100      | 130,967 |
|-------|----------------------|--------|--------|---------------|--------------|---------|--------|-----------|----------|----------|---------|--------------------|-------------------|----------------------------------------------------|---------------------------|-----------------------|------------------|----------------------|-----------------------------------|------------|------------|---------|
|       | 2,618<br>2,848       | 3,057  | 9,049  | 2,859         | 2,638        | 2,360   | 2,256  | 2,620     | 2,442    | 100'5    | 2,387   | Ĩ                  | [Z]               | 303                                                | 171                       | 183                   | 1,145            | 4                    | <u>.</u>                          | ;          | 311        | 2,387   |
|       | 1,654                | 1,804  | 1,000  | 1.782         | 1,684        | 1,509   | 1,348  | 1,561     | 1,524    | T,010    | 1,375   | 13                 | 12                | 116                                                | 106                       | 182                   | 453<br>957       | 4                    | ۱ ;                               | ;          | 245        | 1,375   |
|       | 964<br>1,065         | 1,253  | 1,530  | 1.077         | 954          | 851     | 806    | 1,059     | 918      | 1,012    | 1,012   | -                  | <u> </u>          | 187                                                | 651                       | 1                     | 692              | <b>-</b>             |                                   | ;          | 99         | 1,012   |
|       | 149<br>634           | 184    | 201    | 0 00          | 576          | 288     | 365    | 752       | 630      | 460      | 5,801   | 609                |                   | 64                                                 |                           |                       | 6                | 70,72                |                                   | 18         | 2,356      | 5,801   |
|       | 318<br>580           | 191    | 324    | 358           | 214          | 429     | 171    | 331       | 279      | 414      | 3,825   | 970                | 600               | 1                                                  |                           |                       | 901              | 3,400                |                                   | 1          | ł          | 3,825   |
|       | 10,928               | 10,962 | 11,171 | 10,205        | 11,039       | 11,187  | 10,829 | 11,610    | 11,516   | 12.076   | 132,564 | 5,881              | 761 (             | 8,805                                              | 3 296                     | 5,778                 | 71,517           | 26,725               | 147                               | 195        | 9,365      | 132,564 |
|       | 4,821                | 5,270  | 5,337  | 5,040<br>7,79 | 5.468        | 5,351   | 4 998  | 5,620     | 5,548    | 5,461    | 62,981  | 30                 | 738               | 2,304                                              | 1 60                      | 3,578                 | 26,135           | 26,236               | 741                               | 34         | 3,132      | 62,981  |
|       | 4,780                | 4,509  | 4,815  | 3,943         | 4,040        | 4 648   | 4,816  | 5.106     | 5,066    | 5,737    | 57,155  | 4.932              |                   | 4,373                                              | 0000                      | 1.768                 | 38,041           | 489                  | !                                 | :          | 5,352      | 67,155  |
|       | 1,327                | 1,183  | 1,019  | 1,222         | 1,004<br>916 | 1 1 2 2 | 1,100  | 884       | 905      | 878      | 12,428  | 919                | 23                | 2,128                                              | 107                       | 432                   | 7,341            | ;                    | !                                 | 191        | 881        | 12,428  |
| 1973₽ | By month:<br>January | March  | April  | May           | June         | July    | August | September | November | December | Total   | refining district: | Appalachian No. 1 | Appalachian No. 2Indiana. Illinois. Kentucky, etc. | Minnesota, Wisconsin, etc | Oklahoma, Kansas, etc | Texas Gulf Coast | Louisiana Gulf Coast | Arkansas, Louisiana Inland, etc - | New Mexico | West Coast | Total   |

p Preliminary. 1 Produced at petroleum refineries (excluding ethane and liquefied gases).

Table 48.-Statistical summary of petroleum asphalt and road oil (Thousand short tons) 1

|                               | 1969   | 1970   | 1971   | 1972   | 1973 P |
|-------------------------------|--------|--------|--------|--------|--------|
| Petroleum asphalt:            |        |        |        |        |        |
| Production                    | 24.671 | 26,665 | 28,553 | 28,235 | 30,524 |
| Imports (including natural)   | 866    | 1,127  | 1,312  | 1.684  | 1.535  |
| Exports                       | 84     | 65     | 55     | 61     | 62     |
| Stocks (end of period)        | 3.046  | 2.869  | 3,855  | 3.934  | 2.731  |
| Apparent domestic consumption | 26,053 | 27,905 | 28,823 | 29,779 | 33,200 |
| Petroleum asphalt shipments:  |        |        |        |        |        |
| Paving                        | 21.333 | 23,594 | 23,821 | 24.308 | 27,113 |
| Roofing                       | 4,080  | 4,248  | 4,362  | 5.347  | 5.677  |
| All other                     | 2,743  | 1.870  | 1.840  | 1.466  | 1,620  |
| Total                         | 28,156 |        |        |        |        |
| Road oil:                     | 28,190 | 29,712 | 30,023 | 31,121 | 34,410 |
| Production                    | 1.652  | 1.708  | 1 500  | 4 444  |        |
| Stocks (end of period)        | 1,652  | 1,708  | 1,592  | 1,444  | 1,332  |
| Apparent domestic consumption |        |        | 164    | 237    | 145    |
| Pond oil shipments            | 1,592  | 1,753  | 1,543  | 1,371  | 1,424  |
| Road oil shipments            | 1,116  | 1,753  | 1,543  | 1,371  | 1,424  |

 $<sup>^{\</sup>rm p}$  Preliminary.  $^{\rm 1}$  Converted from barrels to short tons (5.5 barrels=1 short tons).

Table 49.-Salient statistics of petroleum asphalt in the United States, by month and refining district

(Thousand short tons) 1

|                                                                                                    |                                           |                                                                                                    | 1972             |                                  |                                           |                                                  |                                        | 1973 р       |                                          |                                           |
|----------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------|------------------|----------------------------------|-------------------------------------------|--------------------------------------------------|----------------------------------------|--------------|------------------------------------------|-------------------------------------------|
|                                                                                                    | Produc-<br>tion                           | Imports<br>(includ-<br>ing<br>natural)                                                             | Exports          | Stocks<br>(end of<br>period)     | Domestic<br>demand                        | Produc-<br>tion                                  | Imports<br>(includ-<br>ing<br>natural) | Exports      | Stocks<br>(end of<br>period)             | Domestic<br>demand                        |
| By month: January February March                                                                   | 1,482<br>1,477<br>1,810                   | 88<br>24<br>24<br>25<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26 | ကက္မ             | 4,877<br>5,828<br>5,317          | 1,035<br>1,108<br>1,372                   | 1,440<br>1,516<br>1,838                          | 72<br>78<br>78<br>78                   | <b>∞</b> ∞44 | 4,426<br>4,908<br>5,414                  | 1,017<br>1,086<br>1,406                   |
| April<br>May<br>June<br>July                                                                       | 2,708<br>2,714<br>3,1008                  | 131<br>158<br>138                                                                                  | ა <b>ი</b> თ. 4. | 5,632<br>5,198<br>4,794          | 2,851<br>3,495<br>3,639                   | 2,137<br>2,673<br>3,054<br>3,216                 | 124<br>68<br>238                       | சுரு ரூ      | 6,499<br>4,969<br>4,158                  | 2,929<br>3,647<br>6,260                   |
| August<br>September<br>October<br>November<br>December                                             | 3,180<br>3,024<br>2,744<br>2,071<br>1,657 | 210<br>224<br>158<br>205<br>135                                                                    | ∞r.va.4          | 3,768<br>3,423<br>3,354<br>3,954 | 4,408<br>3,587<br>3,192<br>2,047<br>1.207 | 3,441<br>3,291<br>2,551<br>2.067                 | 203<br>207<br>133<br>132<br>176        | တ တ လ လ တ တ  | 3,047<br>2,709<br>2,192<br>2,132<br>7,31 | 4,750<br>3,830<br>3,808<br>2,753<br>1,698 |
| Total                                                                                              | 28,235                                    | 1,684                                                                                              | 61               | 3,934                            | 29,779                                    | 30,524                                           | 1,535                                  | 62           | 2,731                                    | 33,200                                    |
| By refining district East Coast Appaledhan No. 1 Appaledhan No. 2 Illinois, Indians, Kentucky, etc | 5,107<br>295<br>295<br>26,726<br>1,1153   | 1,605                                                                                              | <b>5</b> ∞       | 866<br>711<br>896<br>897<br>201  | 7,996                                     | (6,243)<br>378<br>307<br>6,084<br>1,367<br>9,739 | 1,471                                  |              | \{721\\ 48\\ 415\\ 108\\ 253\\           | 9,388                                     |
| Texas Inland Texas Gulf Coast Louisiana Gulf Coast Arkansas, Louisiana Inland, etc                 | 1,292<br>1,551<br>1,484,1                 | 69                                                                                                 | 7                | 110<br>129<br>156<br>156         | 5,959                                     | 1,376<br>1,714<br>1,618                          | 90                                     | œ            | 133                                      | 6,072                                     |
| New Mexico<br>Rocky Mountain<br>West Coast                                                         | 1,884<br>3,799                            | 11                                                                                                 | 3<br>34          | 357                              | 2,086<br>3,511                            | 1,888                                            | 1 1                                    | 39           | 231<br>386                               | 2,230<br>3,837                            |
| Total                                                                                              | 28,235                                    | 1,684                                                                                              | 61               | 3,934                            | 29,779                                    | 30,524                                           | 1,535                                  | 62           | 2,731                                    | 33,200                                    |
|                                                                                                    |                                           |                                                                                                    |                  |                                  |                                           |                                                  |                                        |              |                                          |                                           |

Preliminary.
¹ Converted from barrels to short tons (5.5 barrels=1 short tons).

Table 50.-Salient statistics of road oil in the United States, by month and refining district (Short tons) 1

|                                  |                 | 1972                         |                         |                 | 1973 Р                       |                         |
|----------------------------------|-----------------|------------------------------|-------------------------|-----------------|------------------------------|-------------------------|
|                                  | Produc-<br>tion | Stocks<br>(end of<br>period) | Do-<br>mestic<br>demand | Produc-<br>tion | Stocks<br>(end of<br>period) | Do-<br>mestic<br>demand |
| By month:                        |                 |                              |                         |                 |                              |                         |
| January                          | 52,364          | 185,636                      | 30,364                  | 34,909          | 253.818                      | 18.364                  |
| February                         | 64,727          | 234,727                      | 15,636                  | 34,909          | 272,000                      | 16,727                  |
| March                            | 115,455         | 318,545                      | 31,636                  | 86,546          | 323,818                      | 34,727                  |
| April                            | 111.454         | 369,091                      | 60,909                  | 100,909         | 380,727                      | 44.000                  |
| May                              | 139,636         | 354,545                      | 154,182                 | 120,364         | 366,182                      | 134,909                 |
| June                             | 207,091         | 371,273                      | 190,364                 | 190,182         | 329,818                      | 226,546                 |
| July                             | 209,273         | 335,636                      | 244,909                 | 181,636         | 279,091                      | 232,364                 |
| August                           | 209,273         | 302,364                      | 242,545                 | 203,091         | 202,182                      | 280,000                 |
| September                        | 152,000         | 265,455                      | 188,909                 | 161,818         | 188,182                      | 175,818                 |
| October                          | 108,182         | 233,454                      | 140,182                 | 123,273         | 157,455                      | 154,000                 |
| November                         | 49,636          | 230,909                      | 52,182                  | 55,454          | 131,455                      | 81,454                  |
| December                         | 25,091          | 237,273                      | 18,727                  | 38,909          | 145,273                      | 25,091                  |
| Total                            | 1,444,182       | 237,273                      | 1,370,545               | 1,332,000       | 145,273                      | 1,424,000               |
| By refining district:            |                 |                              |                         |                 |                              |                         |
| East Coast                       | 8,909           | ,                            | )                       | c               | ,                            |                         |
| Appalachian No. 1                | 112,545         | 3.091                        | 122,363                 | 128.364         | 11,637                       | 119,818                 |
| Appalachian No. 2                | 112,040         | 0,031                        | {                       | (120,004        | 11,007                       |                         |
| Indiana, Illinois, Kentucky, etc | 497.273         | 62,182                       | ŀ                       | 514,182         | 23,273                       |                         |
| Minnesota, Wisconsin.            | 401,210         | 02,102                       | 700.182                 | J 514,102       | 20,210                       | × 787,636               |
| North Dakota                     | 37,636          | 727                          | 100,102                 | )               |                              | 101,000                 |
| Oklahoma, Kansas, etc            | 170.546         | 11.636                       | İ                       | 232,000         | 9.818                        |                         |
| Texas Inland                     | 12,546          | ,                            | í                       | 11,636          | -,)                          |                         |
| Texas Gulf Coast                 | 6,000           |                              | 1                       | 11,000          |                              |                         |
| Louisiana Gulf Coast             | 0,000           |                              | 20.182                  | <b>∤</b>        | (                            | - 11,637                |
| Arkansas, Louisiana Inland, etc  |                 |                              | 0,-0_                   |                 |                              | ,001                    |
| New Mexico                       |                 |                              |                         | (               | )                            |                         |
| Rocky Mountain                   | 208.000         | 13.455                       | 249,636                 | 140,000         | 3,818                        | 354,000                 |
| West Coast                       | 390,727         | 146,182                      | 278,182                 | 305,818         | 96,727                       | 150,909                 |
| Total                            |                 | 237,273                      | 1,370,545               | 1,332,000       | 145,273                      | 1,424,000               |

 $<sup>^{\</sup>rm p}$  Preliminary.  $^{\rm 1}$  Converted from barrels to short tons (5.5 barrels=1 short ton).

Table 51.-Salient statistics of special naphthas in the United States, by month and refining district (Thousand barrels unless otherwise stated)

|        | Domestic<br>demand                                | 25,493<br>25,697<br>25,697<br>25,129<br>25,129<br>25,139<br>25,139<br>25,139<br>25,139                   | 10,138<br>149<br>5,087<br>149<br>5,087<br>32,230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | Total<br>stocks Do<br>(end of de<br>period) 1     | 5,038<br>4,576<br>4,576<br>4,860<br>4,860<br>4,860<br>4,828<br>4,828<br>4,828<br>4,838<br>4,621<br>4,621 | $\left\{\begin{array}{c} 873\\ 73\\ 73\\ 73\\ 79\\ 70\\ 110\\ 110\\ 110\\ 110\\ 110\\ 110\\ 157\\ 167\\ 167\\ 167\\ 167\\ 167\\ 167\\ 167\\ 16$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        | Ex-<br>ports                                      | 169<br>108<br>134<br>131<br>111<br>111<br>126<br>160<br>160<br>119<br>149<br>149<br>149                  | 400<br>1118<br>1,050<br>1,652                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1079 p | Im-<br>ports                                      | 6488766877 irvs 88                                                                                       | 88   2   80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -      | Produc-<br>tion<br>at gas<br>proc-<br>essing      | 19<br>20<br>20<br>20<br>20<br>10<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11 | 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        | Yield<br>(per-                                    |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        | Production at refineries                          | 2,742<br>2,822<br>2,822<br>2,499<br>2,697<br>2,126<br>2,977<br>2,628<br>3,873<br>8,873<br>8,22<br>8,873  | 123<br>268<br>267<br>4,563<br>1,456<br>1,425<br>17,716<br>1,603<br>1,603<br>1,603<br>1,603<br>1,603<br>1,603<br>1,603<br>82,873                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        | Domestic<br>demand                                | 2,501<br>2,457<br>2,457<br>2,401<br>2,688<br>2,688<br>2,942<br>2,942<br>2,917<br>2,253<br>2,253<br>3,866 | 8,297 < 10,404 < 273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        | Total<br>stocks  <br>(end of<br>period) 1         | 5,594<br>6,594<br>6,518<br>6,231<br>6,231<br>6,231<br>6,385<br>6,385<br>6,385<br>6,382<br>6,382<br>6,232 | 1,169<br>1,169<br>23<br>23<br>761<br>115<br>2,022<br>55<br>65<br>65<br>65<br>65<br>65<br>65<br>65<br>65<br>65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | Ex-<br>ports                                      | 119<br>72<br>72<br>172<br>98<br>166<br>99<br>227<br>118<br>111<br>115<br>115<br>122<br>1,509             | 291<br>162<br>909<br>112<br>136<br>1,509                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | 1972<br>Im-<br>ports                              | 304<br>244<br>244<br>252<br>256<br>256<br>19<br>19<br>863                                                | 508<br>49<br>250<br>56<br>56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        | Production<br>at gas<br>proc-<br>essing<br>plants | 22 22 22 24 25 25 25 25 25 25 25 25 25 25 25 25 25                                                       | 111 112 111 12 111 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        | Yield<br>(per-                                    |                                                                                                          | 164 7 148 6 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        | Production at refineries                          | 22,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,                                                                  | 200<br>339<br>282<br>282<br>3,755<br>1,330<br>1,219<br>1,219<br>1,269<br>1,269<br>5,176<br>5,176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | 1                                                 | By month: January February March April May Juny Juny September October November Toteal                   | By refining district:  East Coast Appalachian No. 1 Appalachian No. 1 Indiana, Illinois, Kentucky, eff. Oklahoma, Kansas, etc. Texas Inlinad Texas Gulf Coast Louisiana Gulf Coast Louisiana Arkanasa, Louisiana Arkanasa, Louisiana Inland, etc. New Mexico New Mexico Rocky Mountain Texas Coast Texas Coultinana Arkanasa, Louisiana Arkanasa, Louisiana Arkanasa, Louisiana Arkanasa, Louisiana Arkanasa, Louisiana Arkanasa, Louisiana Arkanasa, Louisiana Arkanasa, Louisiana Arkanasa, Louisiana Arkanasa, Louisiana Arkanasa, Louisiana Arkanasa, Louisiana Arkanasa, Louisiana Arkanasa, Louisiana Arkanasa, Louisiana Arkanasa, Louisiana Arkanasa, Louisiana Arkanasa, Louisiana Arkanasa, Louisiana Arkanasa, Louisiana Arkanasa, Louisiana Arkanasa, Louisiana Arkanasa, Louisiana Arkanasa, Louisiana Arkanasa, Louisiana Arkanasa, Louisiana Arkanasa, Louisiana Arkanasa, Louisiana Arkanasa, Louisiana |

P Preliminary. Includes inventories at natural gas processing plants: Arkansas, Louisiana Inland, etc., 1972, 8; 1973, 7.

Table 52.-Salient statistics of wax in the United States, by types, month, and refining district 1 (Thousand barrels)

|                                  | Prod                       | Production                             |                            |        |                         |                                | 40.                        | Stocks and of named                    | of nowing                  |        |                                      |
|----------------------------------|----------------------------|----------------------------------------|----------------------------|--------|-------------------------|--------------------------------|----------------------------|----------------------------------------|----------------------------|--------|--------------------------------------|
|                                  | Micro-<br>crystal-<br>line | Crystal-<br>line,<br>fully-<br>refined | Crystal-<br>line,<br>other | Total  | ports<br>(all<br>types) | Ex-<br>ports<br>(all<br>types) | Micro-<br>crystal-<br>line | Crystal-<br>line,<br>fully-<br>refined | Crystal-<br>line,<br>other | Total  | Domestic<br>demand<br>(all<br>types) |
| By month:                        |                            |                                        |                            |        |                         |                                |                            |                                        |                            |        |                                      |
| 5                                | 20                         | 0 10                                   | t                          | ,      | ,                       | 1                              |                            |                                        |                            |        |                                      |
| ٠,                               | 200                        | 200                                    | 18.                        | 512    | 13                      | 122                            | 227                        | 422                                    | 472                        | 1,121  | 399                                  |
| Mossh                            | 101                        | 265                                    | 128                        | 494    | 67                      | 86                             | 241                        | 480                                    | 376                        | 1,097  | 422                                  |
| arcn                             | 101                        | 335                                    | 135                        | 571    | က                       | 165                            | 243                        | 515                                    | 348                        | 1,106  | 400                                  |
| April                            | 69                         | 232                                    | 170                        | 471    | 4                       | 88                             | 220                        | 485                                    | 365                        | 1,067  | 496                                  |
| May                              | 89                         | 260                                    | 220                        | 548    | 2                       | 130                            | 190                        | 459                                    | 9.75<br>7.75               | 1,00   | 469                                  |
| June                             | 80                         | 241                                    | 173                        | 494    | 100                     | 67                             | 200                        | 405                                    | 24.0                       | 1,044  | 707                                  |
| July                             | 81                         | 253                                    | 183                        | 512    | 7.<br>0.00              | 5                              | 907                        | 460                                    | 100                        | 200    | 404                                  |
| ıgust                            | 62                         | 8228                                   | 170                        | 597    | 06                      | 88                             | * 60                       | 7067                                   | 000                        | 1,001  | 424                                  |
| September                        | 8                          | 244                                    | 88                         | 7.7    | 0 4                     | 000                            | 197                        | 400                                    | 900                        | 200    | 504                                  |
| October                          | 3.5                        | 646                                    | 169                        | # 00 # | 000                     | 0 H                            | 707                        | 482                                    | 37.5                       | 1,014  | 476                                  |
| November                         | - 6                        | 096                                    | 166                        | 200    | 000                     | 90                             | 707                        | 449                                    | 38.                        | 1,038  | 468                                  |
| December                         | 0 12                       | 926                                    | 100                        | 404    | 0 0                     | 4.0                            | 000                        | 7447                                   | 386                        | 1,036  | 490                                  |
|                                  | -                          | Ì                                      | *01                        | 104    | ae                      | 99                             | 201                        | 469                                    | 391                        | 1,061  | 453                                  |
| Tano.I.                          | 955                        | 3,167                                  | 2,026                      | 6,148  | 335                     | 1,130                          | 201                        | 469                                    | 391                        | 1,061  | 5,409                                |
| By refining district:            |                            |                                        |                            |        |                         |                                |                            |                                        |                            |        |                                      |
| East Coast                       | 171                        | 858                                    | 1961                       | 1 260) |                         |                                | 66)                        | 117                                    | b                          | 118    |                                      |
| Appalachian No. 1                | 237                        | 148                                    | 421                        | 806    | 305                     | 479                            | 68                         | 18                                     | 9 2                        | 1406   | 2,923                                |
| palachian No. 2                  | ; ;                        |                                        | i<br>i                     | ·      |                         |                                | <b>3</b>                   | 9                                      | 5                          | (077   |                                      |
| Indiana, Illinois, Kentucky, etc | 6                          | 205                                    | 192                        | 408    | 1                       |                                | 10                         | 15                                     | 101                        | 16     |                                      |
| n. etc                           | ,                          | )                                      | l<br>S                     | · ·    | ıo.                     | 35                             | <b>1</b>                   | 7                                      | 710                        | ∧ or   | 696                                  |
| Oklahoma, Kansas, etc            | 265                        | 246                                    | 104                        | 1212   |                         |                                | 18                         | 12                                     | ļ¢                         | 12     |                                      |
| Texas Inland                     | 69                         | )<br> <br>                             |                            | 69     |                         |                                | 26                         | 9                                      | 7                          | +6     |                                      |
| Texas Gulf Coast                 | 141                        | 611                                    | 834                        | 1 586  |                         |                                | 26                         | 167                                    | 121                        | 010    |                                      |
| Louisiana Gulf Coast             | 1 20                       | 503                                    | 64                         | 7 969  | 9.6                     | A<br>S                         | 146                        | 76                                     | 100                        | 917    | 9                                    |
| Arkansas. Louisiana Inland. etc. | 3                          | 9                                      | ;                          | 2      | 1                       | 999                            | 3                          | 101                                    | 7                          | 007    | 00)                                  |
|                                  | į                          | ;                                      | !                          | -      |                         |                                | !                          | ļ                                      | ;                          | !      |                                      |
| Rocky Mountain                   | 10                         | . 89                                   | 22                         | ]6     |                         |                                | 1                          | -66                                    | 15                         | 14     | 9                                    |
| West Coast                       | ; ;                        | 557                                    | 123                        | 680    | ; ;                     | 88                             | ۱ ۱                        | 22                                     | 12                         | 36     | 609                                  |
| Total                            | 955                        | 3.167 2.                               | 2.026                      | 6.148  | 335                     | 1.130                          | 201                        | 469                                    | 891                        | 1 061  | 400                                  |
|                                  |                            |                                        |                            |        |                         |                                |                            |                                        |                            | -,,,,, | 27.60                                |

|        | 813       | 707   | 4 4       | 160   | 403   | 646   | 253 | 521  | 999  | 584    | 650       | 289                  | 578      | 6,941    |       | ,                     | 2,836      |                   |                   | 1,110                            |                           |                       |              | 1,879                   |     |                                | 73         | 986            | 6.941      |       |
|--------|-----------|-------|-----------|-------|-------|-------|-----|------|------|--------|-----------|----------------------|----------|----------|-------|-----------------------|------------|-------------------|-------------------|----------------------------------|---------------------------|-----------------------|--------------|-------------------------|-----|--------------------------------|------------|----------------|------------|-------|
|        | 9 0 10    | 1,000 | 808       | 94.   | 1,006 | 917   | 920 | 941  | 922  | 874    | 913       | 926                  | 066      | 990      |       | (09                   | 144        | (                 | 147               | 1                                | 81                        | 14                    | 267          | 169 人                   | -   | -                              | 55         | 22             | 066        |       |
|        | 200       | 160   | 403       | 431   | 474   | 397   | 393 | 448  | 453  | 399    | 447       | 436                  | 478      | 478      |       | 9                     | 4 12<br>4  | •                 | 125               |                                  | œ                         | !                     | 213          | 21                      | :   | 1                              | 24         | 23             | 478        | 2     |
|        | 7         | 4.0   | 405       | 362   | 375   | 373   | 377 | 353  | 345  | 351    | 341       | 373                  | 402      | 402      |       | 76                    | 4 rg       | 3                 | 22                | 1 1                              | 42                        | ;                     | 33           | 138                     | !   | ļ                              | 29         | 29             | 409        | 10    |
|        | 9         | 183   | 175       | 154   | 157   | 147   | 150 | 140  | 124  | 124    | 125       | 117                  | 110      | 110      |       | ٥                     | ~~<br>2 2  | 3                 | !                 | :<br>~                           | 31                        | 14                    | 15           | $\stackrel{<}{\sim} 10$ | -   |                                | 2          | ۱ ¦            | 110        | 110   |
|        | į         | 121   | 9         | 88    | 85    | 87    | 73  | 85   | 120  | 108    | 49        | 6                    | 70       | 965      |       |                       | 219        |                   |                   | 33                               |                           |                       |              | 636                     |     |                                |            | 71             | 200        | 200   |
|        |           | 100   | 61        | 103   | 94    | 71    | 06  | 62   | 194  | 9      | 38        | 108                  | 92       | 1.067    |       |                       | 883        |                   |                   | 36                               |                           |                       |              | 132                     | !   |                                |            | 191            | 100        | T,067 |
|        | 4         | 536   | 414       | 534   | 513   | 573   | 539 | 562  | 174  | 9 20   | 979       | 889                  | 636      | 6 768    | 20.16 | 3                     | 519        | 914)              | 1 2               | 3                                | 669                       | 62                    | 1 877        | 7 386                   | 194 |                                | ìœ         | 961            |            | 6,768 |
|        |           | 178   | 159       | 222   | 176   | 188   | 174 | 931  | 101  | 601    | 707       | 0 40<br>0 70<br>0 70 | 245      | 9 439    | 2,20  | ,                     | 77         | 498               | 1070              | 647                              | 102                       | 2                     | 1 197        | 146                     | 2   | 1                              | 16         | 974            | 017        | 2,432 |
|        |           | 280   | 189       | 231   | 254   | 298   | 250 | 207  | 1000 | 100    | 200       | 234<br>904           | 786      | 2 903    | 0,400 | :                     | 406        | 134               | 17                | 810                              | 1 6                       | 707                   | 100          | 777                     |     | ;                              | 15         | 909            | 000        | 3,203 |
|        |           | 48    | 99        | 81    | 8     | 22    |     | 1001 | 2 5  | 35     |           | 717                  | 103      | 1 199    | 1,100 |                       | 68         | 282               | [ <del>,</del>    | 7                                | 100                       | 230                   | 2 7          | 64                      | 70  | #6T                            | 19         | ×              | 1          | 1,133 |
| 1973 в | By month: | Þ     | Delineary | Mosch | A     | April | May | June | July | August | September | October              | November | December | Total | By refining district: | East Coast | Appalachian No. 1 | Appalachian No. 2 | Indiana, Illinois, Kentucky, etc | Minnesota, Wisconsin, etc | Oklahoma, Kansas, etc | Texas Inland | Texas Gulf Coast        | -   | Arkansas, Louisana Inland, etc | New Mexico | Rocky Mountain | West Coast | Total |

PPreliminary. 1 Conversion factor: 280 pounds to the barrel.

Table 53.-Salient statistics of petroleum coke in the United States, by month and refining district 1

(Thousand barrels unless otherwise stated)

|        | ٩          | mestic<br>demand   | ;         | 870<br>207       | 522    | 208    | 010          | 286      | 640    | 490       | 875     | 835         | 5,126   |                       | 1,361             |                   | 35,852                     |                       |              | 31,764               |                                 | 5            | 3,908<br>12,196          | 95,126  |
|--------|------------|--------------------|-----------|------------------|--------|--------|--------------|----------|--------|-----------|---------|-------------|---------|-----------------------|-------------------|-------------------|----------------------------|-----------------------|--------------|----------------------|---------------------------------|--------------|--------------------------|---------|
|        |            |                    | '         |                  | , [-   |        | <b>o</b> o o | <b>.</b> | 000    | <u>_</u>  | 20 1    | - [-        | 6,      | ,                     |                   | · · ·             | ٠                          |                       | _            | ت                    | _                               | ص            | 12,0                     | 95      |
|        | Stock      | (end of<br>period) |           | 8,599            | 9,739  | 9,475  | 9,609        | 10,024   | 10,435 | 10,136    | 9,783   | 9.974       | 9,974   | 0000                  | 2,720             | ` \\\             | 7,000                      | 283                   | 908          |                      | 49                              | ة:<br>ر      | 2,529                    | 9,974   |
|        | Ş          | ports              |           | 2,259            | 2,850  | 3,931  | 3,002        | 3,950    | 2,758  | 3,144     | 2,555   | 3,155       | 35,006  |                       | 283               |                   | 2.176                      | i                     |              | 10,979               |                                 | •            | 21,261                   | 35,006  |
| 1973 р | Yield      | (per-              | ,         | 9 io             | 3.0    | 3.0    | 6.6          | 6        | 2.9    | 2.7       | %<br>%  | v vi<br>v v | 2.9     | 3                     | 9.                | 4.0               | 7 O                        | 3.4                   | 2,5          | 2.3<br>2.3           | 1.3                             | 1.5          | 2. <del>4.</del><br>0.70 | 2.9     |
|        | -          | Total              | ;         | 11,412           | 11,135 | 10,875 | 11,146       | 11,514   | 11,546 | 10,335    | 11,077  | 10,497      | 132,290 | 1000                  | 16,205            | 289               | 3.618                      | 11,235                | 3,313        | 14,578               | 640                             | 187          | 33,371                   | 132,290 |
|        | 14         | Cata-<br>lyst      | 3         | 9,660            | 5,385  | 5,263  | 5,763        | 5,736    | 5,739  | 5,394     | 2,582   | 5,143       | 64,763  | 000                   | 422               | 289               | 1.654                      | 5,018                 | 2,853        | 5,750                | 202                             | 187          | 9,686                    | 64,763  |
|        | 4          | Market-<br>able    | 1         | 5,73             | 5,750  | 5,612  | 5,383        | 6,109    | 5,807  | 4,941     | 5,795   | 5,400       | 67,527  | 000                   | 900'e}~           | 10                | 1.964                      | 6,217                 | 460<br>955   | 8,828                | 438                             | 15           | 1,316<br>23,685          | 67,527  |
| ,      | Do-        | mestic<br>demand   | i         | 7.211            | 6,922  | 6,454  | 6,443        | 6.790    | 8,411  | 7,548     | 8,088   | 8,234       | 88,276  |                       | 13,113            |                   | 31,220 <                   |                       |              | 30,408               |                                 | ، 53         | 9,974                    | 88,276  |
|        | Stocks     | (end of<br>period) | 0,00      | 8,049<br>7.08    | 8,006  | 7,747  | 7,686        | 8.304    | 8,067  | 7,742     | 7,848   | 7,816       | 7,816   | (970)                 | 1,042<br>         | ١٤                | 620                        | (177)                 | 208          | 112                  | 438                             |              | 2,615                    | 7,816   |
|        | Ę          | ports              | ,         | 1,104            | 3,432  | 2,655  | 2,683        | 2,271    | 3,022  | 3,335     | 2,900   | 2,659       | 31,118  |                       | 395               |                   | 2,319                      |                       |              | 9,612                |                                 |              | $18,79\overline{2}$      | 31,118  |
| 1972   | Yield      | (per-              | 0         | , c,             | 2.7    | 5.6    | 2.6<br>6.6   | 2.5      | 3.0    | 6,0       |         | 2.9         | 2.8     | 60                    | 4.<br>• 4.        | <u>.</u> ;        | 4:1<br>7:1<br>7:1          | 3.1                   | × 6          | 2.4                  | 2.0                             | 1:1          | 4.1<br>4.1               | 2.8     |
|        | a          | Total              | 007.0     | 9,492            | 9,562  | 8,850  | 9,065        | 9.421    | 11,196 | 10,558    | 11,094  | 11,270      | 119,765 | 19 107                | 236               | 129               | 3.405                      | 10,404                | 2,811        | 14,342               | 958                             | 176          | 28,642                   | 119,765 |
|        | Production | Cata-<br>lyst      | 96, ,     | 3,136            | 4,035  | 3,669  | 3,642        | 4.035    | 5,338  | 4,919     | 5,162   | 5,461       | 52,951  | 0 1 00                | 0,132<br>236      | 129               | 1,269                      | 3,246                 | 13,501       | 5,394                | 348                             | 176          | 5,426                    | 52,951  |
|        |            | Market-<br>able    | 2         | 5,417            | 5,527  | 5,181  | 5,423        | 5.386    | 5,858  | 5,639     | 5,932   | 5,875       | 66,814  | 7 002                 | 4,990             | 900               | 2,136                      | 7,158                 | 879<br>186   | 8,948                | 610                             | 1020         | 23,216                   | 66,814  |
|        |            |                    | By month: | January February | March  | April  | May          | July     | August | September | October | December    | Total   | By refining district: | Appalachian No. 1 | Appalachian No. 2 | Minnesota, Wisconsin. etc. | Oklahoma, Kansas, etc | Texas Inland | Louisiana Gulf Coast | Arkansas, Louisiana Inland, etc | Dodge Mexico | West Coast               | Total   |

Preliminary.

Conversion factor: 5.0 barrels to the short ton.

Table 54.—Production of miscellaneous finished oils at refineries and natural gas processing plants in the United States in 1973, by district and class

(Thousand barrels)

| District                           | Absorp-<br>tion | Petro-<br>latum | Specialty<br>oils <sup>1</sup> | Petro-<br>chemicals | Other<br>products | Total  |
|------------------------------------|-----------------|-----------------|--------------------------------|---------------------|-------------------|--------|
| East Coast                         |                 |                 | 1.197                          | 891                 | 18                | 2,106  |
| Appalachian No. 1                  | 9               | 104             | 39                             | 17                  | 3                 | 172    |
| Appalachian No. 2                  |                 |                 | 35                             |                     | 18                | 53     |
| Indiana, Illinois, Kentucky, etc - | 91              | 13              | 680                            | 573                 | 216               | 1.573  |
| Minnesota, Wisconsin, North        |                 |                 |                                |                     |                   | •      |
| Dakota, South Dakota               |                 |                 |                                | 10                  |                   | 10     |
| Oklahoma, Kansas, etc              | 126             | 151             | 833                            |                     | 304               | 1,414  |
| Texas Inland                       | 172             |                 | 922                            | 952                 | 156               | 2,202  |
| Texas Gulf                         | 54              | 342             | 1,586                          | 3,362               | 217               | 5,561  |
| Louisiana Gulf                     | 642             | 126             | 417                            | 2,090               | 554               | 3,829  |
| Arkansas, Louisiana Inland         | 71              |                 | 159                            | 87                  |                   | 317    |
| Rocky Mountain, New Mexico -       | 2               | 30              |                                | 39                  | 34                | 105    |
| West Coast                         | $1\overline{2}$ | 43              | 1,188                          | 884                 | 392               | 2,519  |
| Total:                             |                 |                 |                                |                     |                   |        |
| 1973                               | 1,179           | 809             | 7.056                          | 8,905               | 1.912             | 19,861 |
| 1972                               | 1,151           | 764             | 6,337                          | 6,719               | 1,421             | 16,392 |
|                                    | -               |                 |                                | •                   | -                 |        |

<sup>&</sup>lt;sup>1</sup> Specialty oils include: Hydraulic, 207; insulating, 393; medicinal, 286, rust preventatives, 17; sand-frac, 922; spray oils, 290; and other, 4,941.

Table 55.—Petroleum oils, crude and refined, exported from the United States, including shipments, to territories and possessions, by month 1

(Thousand barrels)

| Year and class               | Jan.       | Feb.       | Mar.      | Apr.        | May        | June        | ,Tuly            | Aug.        | Sept.          | Oct.       | Nov.       | Dec.       | Total          |
|------------------------------|------------|------------|-----------|-------------|------------|-------------|------------------|-------------|----------------|------------|------------|------------|----------------|
| 1972                         |            | 1          | ;         | 187         | !          | ;           | 1                | 1           | 1              | !          | ;          | 1          | 187            |
| D.fard anodusts              |            |            |           |             |            |             |                  |             |                |            |            |            |                |
| Gasoline: 2  Motor           | 45         | 14         | 20        | 28          | 13         | 10          | 27<br>19         | 17          | 30<br>22<br>23 | 178<br>13  | 23<br>15   | 19<br>14   | 424<br>232     |
| Total gasoline               | 93         | 23         | 51        | 55          | 20         | 18          | 46               | 36          | 52             | 161        | 38         | 33         | 929            |
| Jet fuel:<br>Naphtha type    | 66         | 18         | 104       | 15          | 145        | 152         | 127              | 15          | 16             | 16         | 17         | 187<br>36  | 911            |
| Total jet fuel               | 66         | 28         | 104       | 15          | 145        | 152         | 127              | 15          | 16             | 16         | 17         | 223        | 957            |
| Liquefied gases: Butane      | 393        | 390        | 534       | 376<br>403  | 394<br>442 | 378<br>429  | 413              | 414         | 415<br>526     | 399<br>684 | 432<br>633 | 429<br>794 | 4,967<br>6,502 |
| Total liquefied gases        | 891        | 878        | 1,106     | 611         | 836        | 807         | 848              | 1,012       | 941            | 1,083      | 1,065      | 1,223      | 11,469         |
| Kerosine Distillate fuel oil | 8 96       | 3<br>138   | ∞ 83<br>8 | 237         | 4 82       | 105         | 64               | 500         | 116            | 213        | 46         | 232        | 1,211          |
| Residual fuel oil            | 547<br>580 | 548<br>384 | 1,806     | 1,507       | 567<br>297 | 603<br>430  | 1,099            | 1,259       | 88<br>88<br>88 | 1,428      | 824        | 390<br>390 | 4,627          |
| Special naphthas             | 119        | 12,        | 172       | 98          | 156        | 98          | 1 199            | 1 244       | 117            | 115        | 1 383      | 122        | 1,509          |
| Lubricants                   | 1,457      | 9/6        | 165       | 1,555<br>58 | 130        | 1,114<br>67 | 67,1             | 1,2,1<br>90 | 63             | 55         | 94         | 89         | 1,130          |
| Coke                         | 1,104      | 1,454      | 3,432     | 2,655       | 2,683      | 2,733       | 2,271            | 3,022       | 3,335          | 2,900      | 2,870      | 2,659      | 31,118         |
| Asphalt                      | 27         | 27         | 31        | 19<br>62    | 102<br>102 | 91          | 7.<br>7.0<br>7.0 | 94<br>96    | 86             | 97         | 82         | 66         | 1,058          |
| Total refined                | 5,257      | 4,706      | 8,927     | 7,181       | 6,173      | 6,257       | 6,441            | 7,346       | 6,840          | 7,231      | 7,422      | 7,421      | 81,202         |
| Total crude and refined      | 5,257      | 4,706      | 8,927     | 7,368       | 6,173      | 6,257       | 6,441            | 7,346       | 6,840          | 7,231      | 7,422      | 7,421      | 81,389         |
|                              |            |            |           |             |            |             |                  |             |                |            |            |            |                |

| 12 67 4 6                               |
|-----------------------------------------|
| 39 154 89 134 157                       |
| 194 160 64                              |
| 34 21 29 172 112                        |
| 214 205 198 226 134                     |
| 411 490 336                             |
| 619 461                                 |
| 1,139 1,109                             |
| 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |
| 801 1.233                               |
| 634 184 251                             |
| 108 134 111                             |
| 1,075 1,250 1,175                       |
| 98 88 09                                |
| 2,797 2,850 3,931 3,002                 |
| 16 23 34                                |
| 77 128 76                               |
| 6,514 7,288 6,933 8,251 7,214 6,445     |
| 6,514 7,288 6,933 8,251 7,342           |

Preliminary.
1 Compiled from records of U. S. Department of Commerce.
2 Includes benzol, natural gasoline, and antiknock compounds.

Table 56.—Crude oil and petroleum products exported from the United States, by country of destination (Thousand barrels)

|                   | Total                                       | 9,599<br>15,061<br>24,660        | 789<br>134<br>247<br>247<br>255<br>1,269<br>1 1,269<br>1 145<br>1 838                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7 441<br>7 3,144<br>249<br>7 98<br>7 98<br>7 138                                 | 4,581<br>1,703<br>1,703<br>1,703<br>1,703<br>1,703<br>1,703<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572<br>1,572 |
|-------------------|---------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | Miscellan-<br>lan-<br>eous<br>prod-<br>ucts | 154<br>18<br>172                 | (1)<br>(2)<br>(3)<br>(4)<br>(3)<br>(4)<br>(5)<br>(1)<br>(7)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 177<br>177<br>177<br>20<br>20<br>1232                                            | (f)<br>112221 045244461170 2<br>7 402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   | Petro-<br>chemi-<br>cal<br>feed-<br>stocks  | 579<br>36<br>615                 | (4) 1<br>(7) 1<br>(7) 2<br>(7) 2<br>(7) 2<br>(8) 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 325<br>1<br>1<br>1<br>1<br>1<br>844                                              | 22<br>688<br>688<br>688<br>278<br>612<br>461<br>461<br>7 648<br>32<br>32<br>32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                   | Coke                                        | 3,370<br>1,720<br>5,090          | (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 378<br>378<br><br>68<br>                                                         | 3,375<br>726<br>726<br>246<br>1,290<br>2,301<br>815<br>815<br>684<br>r 533<br>7 1884<br>121<br>121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                   | Wax                                         | 120<br>148<br>268                | (1) -2 1 2 25 25 25 50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4<br>8<br>10<br>10<br>12<br>12<br>17<br>17                                       | 23<br>40<br>40<br>40<br>11<br>14<br>14<br>14<br>14<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                   | Lique-<br>fied<br>petro-<br>leum<br>gases   | 117<br>10,330<br>10,447          | (1) (26 (1) (26 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (1) (27 (27 (2) (27 (2) (27 (2) (27 (2) (27 (2) (27 (2) (27 (2 | 11 1 1 1 22 25 T                                                                 | (j. (j. (j. 28)<br>32 (j. (j. (j. 28)<br>32 (j. (j. (j. (j. 28)<br>32 (j. (j. (j. (j. (j. (j. (j. (j. (j. (j.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                   | As-<br>phalt                                | 79<br>176<br>255                 | (1) 2<br>(1) 2<br>(1) 2<br>1 1<br>1 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (1) 2 -1 2 (1) 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                             | (1) (1) 11118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                   | Lubri-<br>cating<br>oil                     | 1,457<br>247<br>1,704            | (1) 24 (1) 112 90 49 497 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 410<br>1,903<br>211<br>26<br>88<br>96<br>105<br>2,839                            | 959<br>22<br>22<br>108<br>25<br>12<br>377<br>680<br>104<br>1,051<br>441<br>441<br>441<br>2 96<br>892                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Darrels)          | Residual<br>ual                             | 3,186<br>1,818<br>5,004          | 707<br>134<br>125<br>(1)<br>542<br>196<br>196<br>1,705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (1)<br>188<br>8<br>(1)<br>1<br>1<br>200                                          | 135<br>238<br>27<br>202<br>122<br>993<br>436<br>436<br>1,511<br>(1)<br>1,511<br>(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Inousand parreis) | Distil-<br>late<br>oil                      | 84<br>45<br>129                  | 16<br>161<br>161<br>161<br>r 111<br>r 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | r 9                                                                              | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   | Kero-<br>sine                               | 9   9                            | (i) (j) (j) (k) (k) (k) (k) (k) (k) (k) (k) (k) (k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (1) (1) (2) (2) (3) (4) (4) (5) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7       | (f)<br>14 2 1 1 1 2 3 1 1 1 1 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                   | Jet<br>fuel                                 | 58<br>199<br>257                 | 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1111111                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   | Spe-<br>cial<br>naph-<br>thas               | 321<br>62<br>383                 | (1) 3<br>(2) 2<br>1 1<br>6 6 2<br>20 r 1<br>39 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                          | 42<br>178<br>78<br>161<br>161<br>1<br>1<br>1<br>59<br>69<br>69<br>456                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   | Gaso-<br>line                               | 68<br>262<br>330                 | (1) (2) (1) (2) (3) (4) (4) (5) (6) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (1) x 30 (1) (1) 2 (1) 2 x 32                                                    | (t) 11<br>(t) 3<br>(t) -1<br>1 1<br>(t) -1<br>2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   | Crude<br>oil                                | : 1                              | 1::::::::::::::::::::::::::::::::::::::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ::::::::                                                                         | 11111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   |                                             | 1972 North America: Mexico Total | Central America and Caribbean: Battish West Indies Jamaica Netherlands Antilles Panama Puerto Rico Trinidad Virgin Islands Others Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | South America: Argentina Brazil Brazil Chile Ecuador Peru Venezuela Others Total | Belgium Belgium Denmark France Greece Ireland Italy Netherlands Notway Spain Spain Virted Kingdom West Germany Yugoslavia Others                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| 173<br>98<br>196<br>575<br>1,168                                  | 151<br>360<br>52<br>864<br>117<br>1,744                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,474<br>1,474<br>11,662<br>291<br>11,962<br>291<br>149<br>1,465<br>1,465<br>1,465<br>1,465<br>1,465<br>1,465<br>1,465<br>1,465<br>1,465<br>1,465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14<br>11<br>21<br>14<br>17                                        | (1)<br>2<br>111<br>28<br>28<br>13<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50<br>11<br>11<br>11<br>11<br>11<br>12<br>14<br>14<br>14<br>16<br>10<br>10<br>10<br>10<br>10<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 11 2 3 3 3 3 1 1 1 1 3 1 3 1 1 1 1 1 1 1                          | (1)<br>1<br>121<br>121<br>15<br>16<br>188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (1) 608<br>(2) 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 166<br>(1)<br>56<br>(1)<br><br>(221                               | 264<br><br>38<br>(1)<br>302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8, 305<br>62<br>62<br>62<br>(1)<br>193<br>(1)<br>68<br>68<br>68<br>68<br>68<br>68<br>75<br>68<br>75<br>68<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| £ ££                                                              | (1)<br>(1)<br>(1) 35<br>(1) 12<br>47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22<br>6<br>6<br>6<br>6<br>7<br>7<br>7<br>7<br>9<br>9<br>9<br>9<br>111<br>125<br>125<br>125<br>137<br>137<br>137<br>137<br>137<br>137<br>137<br>137<br>137<br>137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ££££   £                                                          | 61   50   70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (1) 888<br>888<br>888<br>(1) 3<br>(1) 4<br>4<br>4<br>897                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (1) 1 1 2 4 4                                                     | (t) 8<br>(t) 8<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (1) (2) (3) (4) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6<br>190<br>190<br>528<br>528<br>889                              | 151<br>92<br>36<br>36<br>117<br>117<br>753                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 217<br>10<br>10<br>146<br>1,246<br>1,246<br>130<br>285<br>303<br>66<br>401<br>64<br>134<br>138<br>138<br>138<br>138<br>138<br>138<br>138<br>138<br>138<br>138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| £ £ £                                                             | 380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (1) 29<br>(2) 374<br>(3) 44<br>(1)<br>(1)<br>(1)<br>(1)<br>85<br>86<br>757<br>757<br>757<br>757<br>757<br>757<br>757<br>757<br>757<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                   | 111 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 112<br>1208<br>208<br>112<br>112<br>113<br>113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (i) (g) (g) (g) (g) (g) (g) (g) (g) (g) (g                        | (1) (2) (1) (2) (4) (4) (5) (4) (5) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100   144   144   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164   164    |
| 111111                                                            | 111 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (1) (2) (1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4        | (1) 1<br>(2) 1<br>58<br>11<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (1) 12 12 12 12 12 12 12 12 12 12 12 12 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ££££££                                                            | $ \begin{array}{c cccc} (1) & & & \\ & & & \\ \hline & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$ | (1) 82<br>(2) 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 111111                                                            | 111 1111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Middle East: Bahrain Iran Israel Saudi Arabia Turkey Others Total | Africa: Egyyt, Arab Republic of Ghans Niseria South Africa, Republic of Tunisia Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Asia and Oceania:  Australia French Pacific Islands India India Indonesia Indonesia Indonesia Indonesia Indonesia Indonesia Indonesia Indiapsi Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand Indiand |

See footnotes at end of table.

Table 56.—Crude oil and petroleum products exported from the United States, by country of destination—Continued (Thousand barrels)

|                    | Total                                      | 11,427<br>15,984<br>27,411         | 125<br>1 198<br>1,101<br>1,101<br>648<br>1,080<br>1,080<br>1,080<br>398<br>398                                                                        | 2,957<br>2,957<br>2,78<br>388<br>388<br>131<br>4,294                   | 5,590<br>1,990<br>1,909<br>1,909<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013<br>1,013  |
|--------------------|--------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | Miscellan-<br>eous<br>prod-<br>ucts        | 182<br>21<br>203                   | (f) 1<br>1 2<br>1 1<br>1 1<br>1 16<br>1 16                                                                                                            | 158<br>158<br>8<br>6<br>6<br>6<br>13<br>13<br>222                      | (1) 22 24 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                    | Petro-<br>chemi-<br>cal<br>feed-<br>stocks | 664<br>30<br>694                   | (1) 1<br>20<br>20<br>1<br>1<br>1<br>1<br>87                                                                                                           | 17<br>226<br>(1)<br>3<br>2<br>2<br>1<br>1<br>5<br>4<br>226             | 17<br>674<br>674<br>(1)<br>846<br>887<br>887<br>113<br>700<br>9<br>9<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                    | Coke                                       | 4,141<br>1,990<br>6,131            | 32<br>32<br>31<br>33<br>31<br>1<br>1                                                                                                                  | 395                                                                    | 4,480<br>1,060<br>1,266<br>2,797<br>2,797<br>994<br>667<br>667<br>667<br>667<br>667<br>7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                    | Wax                                        | 116<br>75<br>191                   | (1)<br>(1)<br>(1)<br>(1)<br>(2)<br>(1)<br>(3)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1                                    | (1)<br>4 4 77 88 88 88 88 88 88 88 88 88 88 88 88                      | (1) 34<br>(2) 38<br>(3) 38<br>(4) 12<br>(4) 6<br>(5) 6<br>(7) 6<br>(8) 7<br>(8) 8<br>(8) 8<br>(8) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9) 8<br>(9 |
|                    | Lique-<br>fied<br>petro-<br>leum<br>gases  | 363<br>9,128<br>9,491              | (1) (2) (2) (3) (4) (4) (4) (5) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7                                                                            | 333 3                                                                  | ££ ££ £2 £3 1 1 2 1 1 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                    | As-<br>phalt                               | 67<br>207<br>274                   | 100102                                                                                                                                                | (f) (f) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                          | E EE EE 12 2 17 17 17 17 17 17 17 17 17 17 17 17 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                    | Lubri-<br>cating<br>oil                    | 1,549<br>184<br>1,733              | 38<br>2<br>183<br>32<br>58<br>58<br>38<br>34<br>34<br>25<br>20<br>255<br>1,016                                                                        | 39<br>1,943<br>262<br>25<br>91<br>47<br>102<br>2,609                   | 896<br>60<br>777<br>119<br>188<br>838<br>838<br>102<br>102<br>102<br>301<br>2,980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| barrels)           | Residual                                   | 3,390<br>2,356<br>5,746            | 67<br><br>837<br>486<br>122<br>1<br>1<br>1                                                                                                            | 59<br>2<br>163<br>2<br>2<br>2<br>2<br>227                              | (1) 162<br>(2) 162<br>461<br>1 1 103<br>(3) 162<br>(1) 162<br>(1) 162<br>(1) 163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (Thousand barrels) | Distil-<br>late                            | 22<br>801<br>823                   | (1) 196 (2) (1) 50 (1) 50 (1) 256                                                                                                                     | (1) 184                                                                | (1)<br>154<br>11<br>1 1<br>1,139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| _                  | Kero-<br>sine                              | 4 (1)                              | £ (2)                                                                                                                                                 | (1) (1) (2) (2) (3) (4) (5) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7 | (f) (f) (g) (h) (h) (h) (h) (h) (h) (h) (h) (h) (h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    | Jet<br>fuel                                | 642<br>171<br>813                  | . T                                                                                                                                                   | :::::::                                                                | (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                    | Special<br>naph-<br>thas                   | 255<br>89<br>344                   | (1) 2<br>2 2<br>13 87<br>10 10<br>166                                                                                                                 | 123<br>2<br>3<br>3<br>3<br>4<br>4                                      | (1) 44<br>444<br>(1) 1<br>(2) 805<br>(1) 20<br>(1) 2                                                                                                                                                 |
|                    | Gaso-<br>line                              | 32<br>932<br>964                   | 6                                                                                                                                                     | 166<br>(1)<br>(2)<br>(1)<br>(1)<br>(1)<br>(287                         | (1) (2) (2) (3) (4) (4) (5) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    | Crude                                      | 1 1                                | 1111111111                                                                                                                                            | .                                                                      | ### ### ### #### #####################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                    |                                            | 1973 P<br>North America:<br>Canada | Central America and Carlibean: Bahamas British West Indies Jamaska Amiles Netherlands Amilles Panama Puerto Rico Trinidad Virgin Islands Others Total | South America: Argentina Brazil Chile Ecuador Peru Peru Others Total   | Burope:  Begium  Belgium  Belgium  Bergium  Bergium  Bergium  France  Greece  Ireland  Italy  Norway  Norway  Spain  Sweden  United Kingdom  West Germany  Yugoslavia  Others                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| 269<br>172<br>171<br>130<br>262<br>262<br>957                         | 106<br>352<br>56<br>771<br>99<br>177<br>1,561                                          | 1,805<br>211<br>474<br>474<br>474<br>80<br>800<br>800<br>800<br>142<br>1,587<br>1,587<br>1,587<br>84,212                                                                 |
|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>8<br>1<br>1<br>1<br>1<br>27                                      | (1)<br>10<br>38<br>19<br>70                                                            | (4) (7) 4 179 27 27 27 27 27 20 38 39 36 30 36 30 30 30 30 30 30 30 30 30 30 30 30 30                                                                                    |
| (1)<br>2 4 4 8 8 1 8 9 2 9 2 9 2 9 9 2 9 9 9 9 9 9 9 9 9 9            | 1<br>1<br>263<br>-8<br>277                                                             | (1)<br>(1)<br>13<br>13<br>41<br>41<br>41<br>7<br>7<br>(1)<br>682<br>682<br>682                                                                                           |
| 254                                                                   | (1)<br>42<br>42<br><br>333                                                             | 9,197<br>110<br>239<br>11<br>27<br>27<br>27<br>11<br>11<br>11<br>35,006                                                                                                  |
| £ £££                                                                 | (1) 1<br>29 24 4                                                                       | (t) 4<br>(7) 4<br>10<br>10<br>109                                                                                                                                        |
| -                                                                     | -                                                                                      | (1)<br>(1)<br>401<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                              |
| £.£.£.                                                                | (t) (t) 6 12 12 12                                                                     | (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)                                                                                                                                  |
| 3<br>46<br>57<br>123<br>134<br>61<br>424                              | 105<br>51<br>40<br>215<br>99<br>136<br>646                                             | 188<br>463<br>463<br>65<br>1,306<br>160<br>20<br>367<br>217<br>217<br>217<br>217<br>217<br>3,514<br>3,514                                                                |
| (1) 1<br>21 21 24                                                     | 123                                                                                    | 20<br>20<br>398<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>498<br>498<br>498                                                                                           |
| :::=::=                                                               | :::=::                                                                                 | 459<br>86<br>86<br>86<br>1<br>1<br>700<br>700<br>886<br>886<br>886<br>886<br>886<br>886                                                                                  |
| ! <del></del>                                                         | (1) 2 4                                                                                | (1) 1188 1188 1188 1188 1188 1188 1188 1                                                                                                                                 |
| 11111                                                                 | 111 111                                                                                | 110<br>110<br>110<br>11568                                                                                                                                               |
| (1)<br>2<br>1<br>1<br>2<br>7                                          | (1) 2 1 1 49 (1) 3 55                                                                  | (1) 11622<br>(27 27 27 29 29 29 268 268 268 268 268 268 268 268 268 268                                                                                                  |
| (1) 2<br>(1) -1<br>(1) 3                                              | 1 2 1 4                                                                                | (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)                                                                                                                                  |
| 11:11:                                                                | 111 111                                                                                | 1 11 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                  |
| Middle East: Bahrain Iran Iran Israe Saudi Arabia Turkey Othere Total | Africa: Egypt, Arab Republic of Ghana Nigeria Suduh Africa, Republic of Tunisia Others | Asis and Oceania: Australia French Pacific Islands Indonesia Japan Malaysia New Zealand Philippins South Vietnam Taiwan Taiwan U.S. Pacific Islands Others Total exports |

r Revised. Preliminary.
Less than ½ unit.
2 Data reported by shippers to the Bureau of Mines.

Table 57.-Crude, refined products, plant condensate and unfinished oils imported into the United States, by month 1 (Thousand barrels)

|                                       |              |         |              | renout)         | THOUSEHU DELLEIS | (g        |              |         |              |           |           |           |                  |
|---------------------------------------|--------------|---------|--------------|-----------------|------------------|-----------|--------------|---------|--------------|-----------|-----------|-----------|------------------|
| Year and class                        | Jan.         | Feb.    | Mar.         | Apr.            | May              | June      | July         | Aug.    | Sept.        | Oct.      | Nov.      | Dec.      | Total            |
| 1972<br>Crude petroleum               | 63,419       | 60,344  | 64,066       | 60,129          | 66,958           | 62,544    | 67,635       | 65,463  | 70,909       | 78,003    | 68,978    | 82,687    | 811,135          |
| Fetroleum products:<br>Motor gasoline | 1,574        | 1,903   | 2,076        | 1,569           | 2,287            | 2,244     | 2,136        | 2,512   | 2,084        | 2,195     | 2,080     | 2,127     | 24,787           |
| Jet fuel:<br>Naphtha type             | 836<br>4,705 | 610     | 391<br>4,776 | 444<br>3,270    | 1,123<br>3,812   | 1,121     | 825<br>4,286 | 730     | 894<br>4,796 | 1,657     | 1,835     | 1,532     | 11,998<br>59,176 |
| Total jet fuel                        | 5,541        | 6,388   | 5,167        | 3,714           | 4,935            | 8,757     | 5,111        | 5,612   | 6,690        | 8,877     | 5,534     | 5,848     | 71,174           |
| Liquefied gases Butane                | 1,814        | 1,485   | 1,997        | 958             | 1,095            | 1,000     | 1,067        | 1,029   | 1,146        | 1,603     | 1,564     | 1,792     | 16,550           |
| Propane                               | 2,517        | 2,035   | 1,559        | 820             | 191              | 610       | 531          | 751     | 878          | 1,691     | 1,719     | 1,984     | 15,851           |
| Total liquefied gases                 | 4,331        | 3,520   | 3,556        | 1,778           | 1,856            | 1,610     | 1,598        | 1,780   | 2,019        | 3,294     | 3,283     | 3,776     | 32,401<br>596    |
| Distillate fuel oil                   | 6,106        | 5,930   | 7,971        | 5,662           | 4,086            | 2,883     | 3,018        | 2,862   | 2,963        | 6,299     | 6,820     | 11,849    | 66,449           |
| Residual fuel oil                     | 58,658       | 55,761  | 59,718       | 50,265          | 48,770           | 49,455    | 49,416       | 51,244  | 48,736       | 51,303    | 53,075    | 61,000    | 637,401          |
| Special naphthas                      | 304          | 24      | 200          | 25              | 7                | 4         | 24           | 160     | 910          | 256       | ₹         | 19        | 863              |
| Lubricants                            | - °          | 6       | ļ es         | 61 <del>4</del> | 6                | <b></b> ≪ | 112          | 898     | 78<br>46     | 122<br>38 | 170<br>78 | 118<br>59 | 9869<br>385      |
| A subolt                              | 438          | 483     | 312          | 548             | 721              | 898       | 762          | 1,157   | 1,233        | 867       | 1,131     | 743       | 9,263            |
| Plant condensate                      | 1,748        | 1,758   | 2,196        | 1,782           | 2,701            | 2,414     | 2,770        | 3,309   | 3,039        | 2,963     | 3,365     | 3,383     | 31,428           |
| Unfinished oils                       | 5,520        | 4,189   | 3,234        | 3,542           | 2,495            | 3,011     | 3,339        | 3,600   | 3,956        | 4,214     | 3,846     | 4,759     | 45,705           |
| Total petroleum products              | 84,365       | 80,164  | 84,629       | 68,940          | 68,440           | 71,460    | 68,659       | 72,657  | 70,264       | 80,813    | 79,589    | 94,199    | 924,179          |
| Total crude and products              | 147,784      | 140,508 | 148,695      | 129,069         | 135,398          | 134,004   | 136,294      | 138,120 | 141,173      | 158,816   | 148,567   | 176,886   | 1,735,314        |
| 1                                     |              |         |              |                 |                  |           |              |         |              |           |           |           |                  |

| 1973 р                                |         |         |              | ,            | 9       | 9            | 0       | 9       |         | 1              | 00             | 669 00         | 1 109 006        |
|---------------------------------------|---------|---------|--------------|--------------|---------|--------------|---------|---------|---------|----------------|----------------|----------------|------------------|
| Crude petroleum                       | 84,693  | 80,433  | 98,021       | 91,459       | 99,654  | 96,613       | 108,530 | 111,368 | 104,117 | 119,905        | 0.0,501        | 89,055         | 1,186,990        |
| Fetroleum products:<br>Motor gasoline | 1,841   | 2,667   | 2,193        | 1,902        | 3,146   | 5,214        | 4.110   | 4,871   | 3,816   | 6,020          | 6,492          | 5,834          | 48,106           |
| Jet fuel:                             |         |         |              |              |         |              |         |         |         |                |                |                |                  |
| Naphtha type                          | 777     | 440     | 394<br>4 330 | 846<br>3 507 | 681     | 926<br>3.961 | 981     | 1,858   | 1,219   | 2,218<br>4,232 | 1,695<br>6.190 | 1,280<br>5,226 | 13,315<br>60.970 |
| Total jet fuel                        | 7,157   | 6,199   | 4,724        | 4,353        | 6,527   | 4,887        | 7,147   | 5,573   | 6,877   | 6,450          | 7,885          | 6,506          | 74,285           |
| Lionefled gases:                      |         |         |              |              |         |              |         |         |         |                |                |                |                  |
| Butane                                | 2,281   | 1,926   | 1,799        | 1,216        | 1,915   | 1,117        | 1,603   | 2,289   | 1,693   | 2,103          | 2,307          | 1,938          | 22,187           |
| Propane                               | 4,034   | 3,391   | 2,759        | 1,473        | 1,596   | 1,156        | 1,080   | 1,554   | 1,268   | 2,507          | 2,791          | 2,005          | 25,614           |
| Total liquefied gases                 | 6,315   | 5,317   | 4,558        | 2,689        | 3,511   | 2,273        | 2,683   | 3,843   | 2,961   | 4,610          | 2,098          | 3,943          | 47,801           |
| Kerosine                              | 9       | 4       | 12           | ţ            | 9       | œ            | 1       | 224     | 156     | 1              | 245            | 124            | 785              |
| Distillate fuel oil                   | 11.154  | 18,817  | 17,953       | 7,211        | 7,666   | 6,461        | 9,880   | 8,876   | 8,945   | 13,531         | 14,794         | 13,464         | 138,752          |
| Residual fuel oil                     | 61,290  | 58,025  | 67,742       | 51,089       | 51,657  | 52,716       | 49,515  | 57,346  | 55,248  | 48,235         | 58,248         | 55,595         | 902,999          |
| Petrochemical feedstocks              | 318     | 580     | 191          | 324          | 216     | 358          | 214     | 429     | 171     | 331            | 279            | 414            | 3,825            |
| Special nanhthas                      | 7       | 4       | 33           | ro           | 9       | 9            | 6       | ro      | ro      | !              | 20             | က              | 88               |
| Lubricants                            | 210     | 160     | 230          | 205          | 35      | 119          | 121     | 217     | 170     | 113            | 333            | 119            | 2,032            |
| Wax                                   | 100     | 61      | 103          | 94           | 71      | 90           | 62      | 124     | 98      | 92             | 108            | 92             | 1,067            |
| Agnhalt                               | 398     | 304     | 428          | 269          | 682     | 372          | 1,306   | 1,118   | 1,139   | 733            | 726            | 696            | 8,444            |
| Plant condensate                      | 3,367   | 3,411   | 3,454        | 3,265        | 3,153   | 2,622        | 3,281   | 3,166   | 2,935   | 2,665          | 3,188          | 2,968          | 37,475           |
| Unfinished oils                       | 3,278   | 2,479   | 4,181        | 4,786        | 4,002   | 4,642        | 4.475   | 4,515   | 4,601   | 3,588          | 4,953          | 4,661          | 50,161           |
| Total petroleum products              | 95,441  | 98,028  | 105,802      | 76,192       | 80,678  | 79,768       | 82,803  | 90,307  | 87,110  | 898,388        | 102,354        | 94,676         | 1,079,527        |
| Total crude and products              | 180,134 | 178,461 | 203,823      | 167,651      | 180,332 | 176,381      | 191,333 | 201,675 | 191,227 | 202,273        | 205,924        | 184,309        | 2,263,523        |
|                                       |         |         |              |              |         |              |         |         |         |                |                |                |                  |

Preliminary.

Imports for onshore use of military jet fuel, distillate and residual fuel oils, and receipts from Puerto Rico, the Virgin Islands, and Guam included in these days for based on figures reported to the Department of the Interior. All other import figures are compiled from Department of Commerce data.

Table 58.-Crude oil and petroleum products imported into the United States, by country and receiving district (Thousand barrels)

2,557 37,228 82,540 120,940 Total 413,294 365,687 Petro-chemical feed stocks 1 : 5 293 | | | | | | | | | | | | | 672 2018 264 1 13 17 Lubri-cants 353 1 1 2 111 Plant Unfin-conden- Asphalt ished sate oils <sup>1</sup> 93 5,925 434 2,984 451 5,425 235 13,823 6.018 8,615 24,031 141 8,631 1 80 3,647 5,163 1 | | | | | | | | | | | | 31,282 27,853 31,282 27,853 1111 126 1,605 Kero-sine type 1,605 36,023  $9.3\overline{21}$ 2,121 9,321 Jet fuel Naphtha ł  $1,4\overline{12}$ 1,412 1 | | 9 714 115,550 314  $58,0\overline{10} \\ 91,424$ 30,477 Residual 320,904 17,898 - 210,48053,265 19,462 215,851 Distil-late fuel oil 2 2,258 2,258 8,010 123 123 1 1 6 Special naphtha 286 1 1 1 82  $3,00\overline{6}$ 513 628 63 20,023 23,720 111 1 | 188 88 196 8,626 312,440  $93.3\bar{00}$ Crude oil 1 323 Mexico Bahamas \_\_\_\_\_El Salvador \_\_\_\_\_\_ Netherlands Antilles Puerto Rico Virgin Islands Total -----Colombia Venezuela -----Total -----Country and PAD district Netherlands Leeward and Windward Greece -----France Romania -----Central America and Caribbean: U.S.S.R United Kingdom North America: South America: Argentina Europe: Belgium Frinidad Ecuador **Jenmark** Total

| 51,89<br>1,31      | 1,263<br>69,400 | 407   | 88 884   | 5,785 | 3.091    | 109        | 240  | 44,857 | 91,831<br>2,708 | 182,976 | 8  | 9   | 304<br>60.187 | 2,131          | 607 | 829<br>163 | 68 209 | 1,601 | 2,999 | 1,735,314 | 1,146,755<br>211,136<br>46,353<br>80,749<br>800,821 |
|--------------------|-----------------|-------|----------|-------|----------|------------|------|--------|-----------------|---------|----|-----|---------------|----------------|-----|------------|--------|-------|-------|-----------|-----------------------------------------------------|
| 234                |                 | 1 1   |          | 1 15  | 191      | <b>;</b> ; | i    | 11     | 1 :             | 191     |    | 1   | 1 1           | !              | ! ! | 1 1        | 1      | :     |       | 3,178     | 8,178                                               |
| 111                |                 | 11    | :        |       | 1 1      | !!         | 1    |        | 1 1             | :       | 81 | 1   | 1 1           | 15             | 1   | ! !        | 17     | 1     |       | 335       | 1   25,55                                           |
| 111                |                 | 1 :   | <b>:</b> |       |          | 1          | !    | 1 1    | 1 1             | 1       | ŀ  | ;   | 1 1           | 1              | 1   | ! :        | :      | 1     |       | 699       | 8   1 %                                             |
| 1,492              | 1,381           | 1 1 2 |          | 1 1   | 1 1      | !          | 1    | 1 1    | 1 1             | 1       | !  | ŧ   |               | 300<br>300     | 475 |            | 354    | 18    | 202   | 45,705    | 30,715<br>1,548<br>18,442                           |
| 1111               | 111             | 1 1   |          | 1     | ! !      | !          | 1 1  | !!     | : :             | 1       | :  | !   | 1 1           | 1 1            | 1   |            |        | 1     |       | 9,263     | 8,828<br>55<br>380                                  |
| 1111               | 111             |       |          |       | ! !      | ł          |      |        | : :             | 1       | :  | 1   | : :           | 1 1            | 1   |            |        |       |       | 31,428    | 798<br>16,478<br>11,162<br>2,990                    |
| 1                  | 25<br>210       | : 1   |          | 1     | 1 1      | 1          | 1 1  | 120    | 1 :             | 120     | :  | ;   |               | 189            | 1   | 1 1        | 1 89   |       | :  1  | 32,401    | 5,336<br>14,441<br>787<br>5,405<br>6,432            |
| 2,708<br>1,415     | 190             | 407   | :        | 1     | 1 1      | !          |      | 1      | 1 1             | 1       |    | ;   |               | 2,033<br>1,470 | 044 | 2          | 4.281  | 1,012 | 1,012 | 59,176    | 30,294<br>2,789<br>4,451<br>21,642                  |
|                    |                 | 1 1 8 |          | ł     | 1 1      | 1          | 1 1  | 1      |                 | 1       |    | 10  | 607           | 422            | 132 | 163        | 1.025  | 1001  | 1,094 | 11,998    | 8,336                                               |
| 1,154<br>407<br>72 | 3,720           | 1 1 8 | 2,081    | !     | 1 1      | 109        | 360  | 4,668  | 65              | 10,405  | '  | e i | 554           | 204<br>204     | 10  | 1          | 835    | 262   | 311   | 637,401   | 616,990<br>5,458<br>6,212<br>8,741                  |
| 46<br>143<br>931   | 111             | 1 1 5 | Ш,       | !     | !!       | ;          | : :  | 18     | 22              | 82      | ;  | ŀ   |               | : :            | ł   | 1 1        | : :    | 15    | 22    |           | 64,302 6<br>473<br>1,191<br>488                     |
|                    |                 | -     | ╢ '      | •     |          |            |      |        |                 | -       |    |     |               |                |     |            |        | H     |       | 66,449    | 1,                                                  |
| 1111               | :::             | -     |          |       |          |            |      |        | .               |         | ŀ  | ;   | ; ;           | 1 1            | :   | 1 1        | :  :   |       |       | 526 66,4  | 524 64,<br>2 1,<br>1,                               |
|                    |                 |       | 1        | 1     | ;        | !          | ! :  | 1      |                 | 1       | :  |     |               |                |     |            | : : :  |       | ! !   | 526       | 1                                                   |
| ::::               | 111             |       | :        | :     | ;<br>  ; | :<br>:     | <br> | !      | : :             | 1       |    | !   | ! !           | 1 1            | 1   | <b>!</b> ! |        |       |       | 863 526   | 524                                                 |
| ::::               | 111             |       |          |       | ;<br>  ; | :<br>:     | !!   | !      | : :             | 1       | ;  | -   | ! !           | 1 1            | :   | <br>   {   | :  ;   | :     |       | 526       | 24,609 508 524<br>43 25<br>250<br>135               |

See footnotes at end of table.

Table 58.-Crude oil and petroleum products imported into the United States, by country and receiving district-Continued

17,687 1,855 410,507 437,762 2,494 36,234 91,455 120,173 62,328 42 484,766 Total Petro-chemical feed stocks 111 163 163  $639 \\ 976 \\ 341$ 111 Wax 691 1 691 1 5 1 38 32 Lubri-cants | | | 1,972 1 1  $13,9\overline{53}$ 912 186 334 2,870 879 281 Plant Unfin-conden- Asphalt ished sate oils 1 1,183 4,0485,376 2,573 9,296 21,330  $\frac{31}{60}$ 14,044 5,231 5,160 2,677 2,677 111 909 1 | 10 2 37,460 111 1 1 111 1 31,653 37,460 12,622Lique-fied gases 31,653 335 12,760 2,937 9,3729.372  $^{973}_{1,511}$ Kero-sine type 2,937 17,854 1,138 214 7,996 34,321 Jet fuel (Thousand barrels) Naphtha type 632 60 1 2,937 2,937 1 1 30 7,003 398 1,450 218,233  $33,278 \\ 822$ 34,100 484 153,703 79  $\frac{49,183}{78,791}$ 10 328,787 223,469 Residual Distil-late fuel oil 2 405 21,265 39,515 748 53 139 22,664 791 8,526 4,791 23,741 68,012 24,096 2,238 2,091 147Kerosine 325 1 111 52 173 22 | 25 1 12 Special naphtha 111 11111 88 1 88 1111 1 2,70618,816 1,175 5,169 283 4,432  $^{160}_{2,000}$ Gaso-line 31,493  $\frac{78,990}{1,529}$  $125,7\overline{42}$ 144,640 365,370 489 21,739 365,859 Crude oil 1 Netherlands Antilles ---Puerto Rico /enezuela \_\_\_\_\_/ Sweden .....U.S.S.R U.S.S.R United Kingdom ..... Virgin Islands ..... Argentina -----Bolivia -----Country and PAD district Leeward and Windward France ----reece -----Spain -----Spain Netherlands -----Romania ------Central America and West Germany North America: El Salvador South America: Colombia Europe: Belgium Denmark Middle East: Trinidad Ecuador Norway Panama Total eru ---Total Mexico Total **3razil** Iraq

| 309<br>16,978<br>84<br>2,663<br>177,896<br>25,773<br>6,773<br>311,255 | 48,966<br>17,893<br>162<br>162,296<br>648<br>59,998<br>167,480<br>6,541<br>807,136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3<br>77,594<br>8,7171<br>8,7171<br>1,728<br>1,33<br>1,272<br>1,272<br>92,856                                                                   | 629<br>882<br>1,511<br>2,263,523 | 1,354,613<br>312,964<br>201,050<br>32,403<br>362,493                                              |
|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------|
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 160                                                                                                                                          | 3,825 2,                         | 359 1,<br>8,466                                                                                   |
| 11:11:11                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 138<br>422<br>136<br>136<br>118<br>118<br>118<br>118                                                                                           | 1,067                            | 883<br>36<br>182<br>16                                                                            |
| 1111111                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 111-11111                                                                                                                                      | 2,032                            | 1,980                                                                                             |
| 3,881<br><br>3,881<br><br>5,365                                       | 11111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 220<br>220<br>183<br>746<br>                                                                                                                   | 126<br>96<br>222<br>50,161       | 26,216<br>739<br>10,681<br>12,625                                                                 |
| 1111111                                                               | 1:11:11:11:11:11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111111111111                                                                                                                                   | 8,444                            | 8,093<br>76<br>275                                                                                |
| 111111111                                                             | : :::::::::::::::::::::::::::::::::::::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                | 37,475                           | 1,777<br>22,584<br>10,115<br>3,049                                                                |
| 595<br>756                                                            | 55<br>11<br>12<br>55<br>44<br>55<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 131 131 131 131 131 131 131                                                                                                                    | 38<br><br>38<br>47,801 3         | 8,549<br>18,417<br>9,116<br>5,496<br>6,223                                                        |
| 454<br>676<br>8,614                                                   | 1::::::::::::::::::::::::::::::::::::::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,841<br>2,699<br>1,7<br>1,7<br>1,11<br>1,11<br>1,86<br>8,800                                                                                  | 176<br>2<br>178<br>60,970        | 32,522<br>2,450<br>5,902<br>20,096                                                                |
| 1,271                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 69<br>364<br>1,196                                                                                                                             | 63<br>154<br>217<br>13,315       | 10,000<br><br>3,315                                                                               |
| 2,572                                                                 | 4,329<br>140<br>140<br>648<br>648<br>3,793<br>3,793                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4,332<br>995<br>11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1                                                                                         | 384<br>384<br>666,706            | 633,168<br>6,107<br>10,102<br>17,328                                                              |
| 1,171<br>52<br>356<br><br>2,379                                       | 896<br>896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 123<br>362<br>362<br><br>442<br><br>150<br>1,077                                                                                               | 226<br>246<br>472<br>138,752 6   | 121,598 (<br>1,302<br>12,161<br>89<br>3,602                                                       |
| 1111111                                                               | :::::::::::::::::::::::::::::::::::::::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1:11:11:11:11                                                                                                                                  |                                  | 785 1                                                                                             |
| 1111111                                                               | :::::::::::::::::::::::::::::::::::::::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 111111111111                                                                                                                                   | 1 : 1 8                          | 908   7                                                                                           |
| 273<br>273<br>156<br>171                                              | 162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   162   1 | 279<br>279<br>156<br>1,122<br>1,122                                                                                                            | <br><br>48,106                   | 42,603<br>854<br>3,510<br>568<br>571                                                              |
| 309<br>15,208<br>2,663<br>168,525<br>25,764<br>292,988                | 43,619<br>17,758<br>17,758<br>5,296<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 73,056<br>234<br>234<br>                                                                                                                       | <br><br>1,183,996                | 466,074<br>260,368<br>145,654<br>16,182<br>295,768                                                |
| atit and and and and and and and and and and                          | lgeria ngola anary Islands anary Islands bad gypt, Arab Republic enya liberia liberia liberia udan unisia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Asia:  Burma  China, People's Republic  China, People's Republic  Tapan  Malaysia  Pakistan  Pakistan  Pakistan  Tainan  Tainan  Turkey  Total |                                  | Imports by PAD district: District I District II District III District III District IV District IV |

P Preliminary.

Imports of crude oil and unfinished oils reported to the Bureau of Mines, imports for onshore military jet fuel, distillate and residual fuel oil, and receipts

Imports of crude oil substitute and Guam are based on data reported to the U.S. Department of the Interior.

Includes quantities imported duty-free for supply of vessels and aircraft engaged in foreign trade.

Excludes imports for substitute natural gas (SNG) plant feedstock use.

Table 59.-Crude petroleum: World production, by country (Thousand 42-gallon barrels)

| Country                                        | 1971               | 1972                | 1973 Р              |
|------------------------------------------------|--------------------|---------------------|---------------------|
| North America:<br>Canada                       |                    |                     |                     |
| Cuba e                                         | 491,846            | 560,693             | 648,348             |
| Mexico 1                                       | 785<br>177,274     | 775                 | 77!                 |
| Trinidad and Tobago                            | 47,148             | 185,011<br>51,719   | 191,489<br>60,666   |
| United States 1South America:                  | 3,453,914          | 3,455,368           | 3,360,90            |
| Argentina                                      |                    |                     | 0,000,00            |
| Barbados                                       | 154,514            | 158,464             | 153,539             |
| Bolivia                                        | 19<br>13,206       | 31                  | 10                  |
| Brazil                                         | 63,513             | 15,967<br>61,088    | 17,26               |
| Chile                                          | 12,883             | 12,527              | 62,12:<br>11,42:    |
| Colombia                                       | 78,101             | 71,674              | 66,84               |
| Ecuador<br>Peru                                | 1,354              | 28,579              | 76,22               |
| Venezuela                                      | 22,588             | 23,635              | 25,76               |
| Europe:                                        | 1,295,406          | 1,178,487           | 1,228,59            |
| Albania                                        | 8,674              | 10,508              | 14,34               |
| Austria                                        | 17,549             | 17,284              | 17,98               |
| Bulgaria                                       | 2,336              | 1,825               | 1,460               |
| Czechoslovakia<br>Denmark                      | 1,356              | 1,322               | 1,22                |
| France                                         | 10 051             | 622                 | 1,46                |
| Germany, East                                  | 13,651<br>1,502    | 10,811              | 9,15                |
| Germany, West                                  | 53,597             | 2,300<br>51,271     | 2,50<br>47,94       |
| Hungary                                        | 14,879             | 15,084              | 15,17               |
| Italy                                          | 8,952              | 7,850               | 7,08                |
| Netherlands<br>Norway                          | 11,727             | 10,885              | 10,16               |
| Poland                                         | 2,081              | 12,126              | 11,16               |
| Romania                                        | 3,116 $102,479$    | 2,574<br>105,296    | 2,90                |
| Spain                                          | 874                | 1,020               | 106,578<br>5,939    |
| U.S.S.R                                        | 2,778,300          | 2,895,900           | 3,094,35            |
| United Kingdom -                               | 1,499              | 2,628               | 3,29                |
| YugoslaviaAfrica :                             | 21,932             | 23,709              | 24,680              |
| Algeria                                        | 279,627            | 004.050             | 400 ===             |
| Angola                                         | 33,922             | 384,858<br>51,405   | 400,518<br>58,910   |
| Congo (Brazzaville)                            | 130                | 2,522               | 12,718              |
| Egypt, Arab Republic of                        | 106,993            | 84,693              | 60,48               |
| Gabon Libya                                    | 41,911             | 45,671              | 54,828              |
| Libya<br>Morocco                               | 1,007,687          | 819,619             | 793,839             |
| Nigeria                                        | 172<br>558,375     | 216<br>665,282      | 320                 |
| Tunisia                                        | 31,542             | 31,607              | 749,820<br>29,828   |
| ASIA:                                          | 01,012             | 51,001              | 23,020              |
| Bahrain                                        | 27,346             | 25,508              | 24,948              |
| BruneiBurma                                    | 47,482             | 67,008              | 78,678              |
| China, People's Republic of e                  | 6,652              | 7,466               | 7,514               |
| India                                          | 186,150            | 216,080<br>56,965   | 365,000             |
| Indonesia                                      | 52,091<br>325,673  | 395,581             | 55,388<br>487,969   |
| Iran                                           | 1,661,901          | 1,838,825           | 2,139,229           |
| Iraq<br>Israel * 2                             | 624,312            | 529,419             | 736,607             |
| Israel <sup>e 2</sup><br>Japan                 | 44,618             | 43.920              | 32,19               |
| Kuwait 3                                       | 5,529<br>1,167,329 | 5,242               | 5,142               |
| Malaysia                                       | 25,071             | 1,201,346<br>33,867 | 1,198,033<br>33,054 |
| Oman                                           | 107,430            | 103.131             | 106,926             |
| Pakistan                                       | 3,000              | 3,294               | 2,871               |
| Qatar                                          | 156,882            | 176,545             | 208,152             |
| Saudi Arabia <sup>3</sup> Syrian Arab Republic | 1,741,149          | 2,202,049           | 2,870,026           |
| Taiwan                                         | 36,462<br>803      | 45,209<br>910       | 38,170              |
| Thailand e                                     | 95                 | 47                  | 1,058<br>48         |
| Turkey                                         | 25,031             | 24,416              | 24,27               |
| United Arab Emirates:                          | •                  | •                   | •                   |
| Abu Dhabi                                      | 341,007            | 384,190             | 479,192             |
| DubaiOceania :                                 | 45,648             | 55,942              | 80,207              |
| Australia                                      | 112,914            | 110 216             | 140 077             |
| New Zealand 1                                  | 804                | 119,516<br>1,119    | 142,277<br>1,290    |
| Total                                          | 17,662,793         | 18,600,501          |                     |
|                                                | 11,002,133         | 10,000,001          | 20,560,852          |
|                                                |                    |                     |                     |

e Estimate. P Preliminary.

1 Includes field condensate.

2 Estimates of Israeli production from Sinai peninsula oilfields included with Israel rather than with Arab Republic of Egypt.

3 Data for both Kuwait and Saudi Arabia include those countries' share of production from the Kuwait-Saudi Arabia Partitioned Zone.

# Phosphate Rock

By W. F. Stowasser <sup>1</sup>

World demand for phosphate rock exceeded production for the third consecutive year. Deliveries exceeded production by at least 2%, further reducing world stocks. Estimated world production in 1973 of approximately 108 million short tons, an increase of about 9% over the 1972 production level, was the highest recorded to date.

The average unit value of domestic phosphate rock increased from \$5.09 per ton, f.o.b. plant in 1972, to \$5.66 per ton in 1973. The increase in price reflects higher selling prices obtained for phosphate rock from new contracts written in 1972 and 1973. With higher prices posted to become effective after the first of the year, the upward trend of phosphate rock prices is expected to continue into 1974.

The Cost of Living Council removed price controls on domestic fertilizers and phosphate rock used to produce fertilizer and animal feed supplements in October 1973. It was anticipated that domestic prices of phosphate rock and fertilizers would increase and approach the substantially higher world prices when the price controls were lifted. With higher domestic prices, producers agreed to divert exports of phosphate rock and fertilizers into the domestic market to the degree needed to furnish adequate domestic supplies for the record-high acreage that will be planted in 1974.

Construction underway and plans to build significant additional plant capacity for wet-process phosphoric acid will, if projected estimates are correct, raise the 1973 effective capacity of 6.2 million tons of  $P_2O_5$  to about 10.0 million tons of effective capacity by 1980. The growth of this segment of the industry will provide added pressure to increase domestic supplies of phosphate rock. With restrictions on production of phosphate rock expected to continue from factions opposed to strip min-

ing and with limitations on the availability of domestic high-grade reserves for new mines, a gradual reduction in phosphate rock exports appears necessary to furnish sufficient raw materials for future domestic production of phosphate intermediates and fertilizers.

The phosphate rock industry's production capability was affected by shortages of electric power, from unscheduled repair and maintenance, particularly in older plants attempting to produce at consistently high rates, and in several instances, from depletion of high-grade ores. Because of these factors, a sharp downward revision of the capacity of Florida's phosphate rock industry was necessary.

Legislation and Government Programs. The phosphate rock and fertilizer industries were regulated by a series of economic controls that started with a price freeze in August of 1971, continued with Phase 2 from November 1971 to January 1973, Phase 3 from January 1973 to June 1973, and Phase 4 from June 1973 to October 25, 1973. During Phases 2 and 3, domestic phosphate rock prices were not to increase to permit higher average profit levels than were recorded for the years 1968, 1969, and 1970. Unfortunately, the industry during the reference years was characterized by a surplus in production capacity, and the return on equity relative to net sales was negative. Although demand for phosphate rock increased during the late 1960's, the industry was able to supply the demand without increasing production capacity. The crossover occurred in 1971 and thereafter, when the demand both in the United States and the rest of the world exceeded available supply. With prices regulated in the United States, increasing amounts of phosphate rock and phosphatic fertilizers were diverted into

<sup>&</sup>lt;sup>1</sup> Physical scientist, Division of Nonmetallic Minerals—Mineral Supply.

Table 1.—Salient phosphate rock statistics

(Thousand short tons and thousand dollars)

|                                       | 1969    | 1970    | 1971     | 1972     | 1973      |
|---------------------------------------|---------|---------|----------|----------|-----------|
| United States:                        |         |         |          |          |           |
| Mine production                       | 121,712 | 125.514 | 127,752  | 126.651  | 139,713   |
| Marketable production                 | 37,725  | 38,739  | 38,886   | 40.831   | 42,137    |
| Value                                 | 208,689 | 203.218 | 203,828  | 207,910  | 238,667   |
| Average per ton                       | 5.53    | 5.25    | 5.24     | 5.09     | 5.66      |
| Sold or used by producers             | 36,730  | 38.765  | 40,291   | 43,755   | 45.043    |
| Value                                 | 204,409 | 203,810 | 211.986  | 223,005  | 254.846   |
| Average per ton                       | 5.57    | 5.26    | 5.26     | 5.10     | 5.66      |
| Exports 1                             | 11,336  | 11,738  | 12.587   | 14.275   | 13.875    |
| P <sub>2</sub> O <sub>5</sub> content | 3,685   | 3,796   | 4,126    | 4,673    | 4.502     |
| Value                                 | 62,288  | 59,980  | 64.841   | 75.376   | 82,983    |
| _ Average per ton                     | 5.49    | 5.11    | 5.15     | 5.28     | 5.98      |
| Imports for consumption               | 140     | 136     | 84       | 55       | 65        |
| Value                                 | 3,554   | 3,790   | 2.478    | 1,416    | 1,288     |
| Average per ton                       | 25.42   | 27.87   | 29.50    | 25.75    | 19.82     |
| Consumption, apparent 2               | 25.534  | 27,163  | 27,788   | 29.535   | 31,233    |
| World: Production                     | 88,930  | 93,635  | r 92,508 | r 98,981 | e 108,060 |

the strong export market where prices were not controlled. Domestic demand was further strengthened when the U.S. Department of Agriculture released millions of additional acres in 1973 for cultivation. A further release of acreage was authorized for 1974 to stimulate an increase in agricultural exports and to bolster the U.S. balance of trade position. Without price relief prior to October 1973, the phosphate rock industry could not economically justify the investment necessary for new mines and plant expansions.

The pressures on the fertilizer industry increased in 1973 and on October 25, 1973, the Cost of Living Council exempted from Phase 4 controls the sale of fertilizers and nutrient materials used in the production of fertilizers. The Council also established a group composed of both industry and Government representatives to work toward increasing the supply of fertilizer to U.S. farmers by reducing exports. A system was implemented to monitor exports of fertilizer materials shipped under 1973 and 1974 contracts.2

The Environmental Protection Agency proposed effluent limitations published guidelines, and new source performance standards for the fertilizer industry.3 They require achievement by not later than July 1, 1977, of effluent limitations for point sources, other than publicly-owned treatment works, by the application of the best practicable control technology currently available as defined by the Administrator pursuant to Section 304 (b) of the Federal

Water Pollution Control Act Public Law 92-500. Sec. 301 (b) also requires achievement by not later than July 1, 1983, of effluent limitations for point sources, other than publicly-owned treatment works, by requiring the application of the best available technology economically achievable to result in reasonable further progress toward the national goal of eliminating the discharge of all pollutants as determined in accordance with regulations issued by the Administrator pursuant to Sec. 304 (b). The phosphate subcategory includes the manufacture of: Sulfuric acid by sulfur burning; wet-process phosphoric acid; norsuperphosphate; triple superphosphate; and ammonium phosphate. The manufacture of phosphoric acid includes phosphate rock grinding, acid attack of phosphate rock, phosphoric acid concentration, and phosphoric acid clarification.

The program to study dewatering of Florida phosphate slimes, sponsored by the U.S. Bureau of Mines and the industrysupported Florida Phosphate Council, was continued during 1973. The 1973 program is described in the technology section of this chapter.

Failure to issue mining permits in Hillsborough and Manatee Counties in Florida held up the development of two proposed mines in 1973. Brewster Phosphates was

From table 5. <sup>2</sup> Measured by sold or used plus imports minus exports.

<sup>&</sup>lt;sup>2</sup> Cost of Living Council, Office of Public Affairs. Press Release, Oct. 25, 1973.

<sup>3</sup> Federal Register. Fertilizer Manufacturing Point Source Category: Proposed Effluent Limitations Guidelines. V. 38, No. 235, Part II, Dec. 7, 1973, pp. 33852-33860.

asked to resubmit mining plans and land reclamation programs in Hillsborough County. Beker Industries Corp.'s lease application in Manatee County was deferred after a 6-month moratorium was placed on the issuance of mining permits.

## DOMESTIC PRODUCTION

Domestic production of marketable phosphate rock was 42,137,000 tons, an increase over that of 1972 of 1,306,000 tons or 3.2%. The value of the marketable rock was \$238,667,000, an increase of 14.8% over that of 1972. The average grade of phosphate ore mined in the United States was 13.6% P<sub>2</sub>O<sub>5</sub>, and the average grade of marketable rock was 31.1% P2O5. The average weight recovery of concentrate and rock marketable as mined was 30.2%, and the P<sub>2</sub>O<sub>5</sub> recovery averaged 68.9%. Of the total marketable production in the United States, Florida and North Carolina produced 34,427,000 tons (81.7%), the Western States produced 5,198,000 tons (12.3%), and Tennessee produced 2,512,000 tons (6.0%)

Florida and North Carolina.-Production of marketable phosphate rock was 34,427,000 tons, an increase over that of 1972 of 306,000 tons or 0.9%. The value of marketable rock was \$191,654,000, an increase of \$17,744,000 over that of 1972 or 10.2%.

The average grade of phosphate ore mined was 12.8% P2O5, and the average grade of marketable rock was 31.9% P<sub>2</sub>O<sub>5</sub>. The average weight recovery of concentrate and rock marketable as mined was 27%, and the average P<sub>o</sub>O<sub>5</sub> recovery was 67.3%. The production capacity of Florida and North Carolina phosphate mines was limited in 1973 to less than 34.5 million tons of marketable rock. This capacity is less than various estimates made in prior years when the pressures to produce were much less, and power interruptions, limited time and capital to accomplish repair and maintenance, and lower grade ores were not factors influencing plant operations and production.

Agrico Chemical Co., Borden, Inc., Brewster Phosphates, Gardinier, Inc., W. R. Grace & Co., International Minerals & Chemical Corp., Mobil Oil Corp., Poseidon Mines, Inc., P.S.A. Enterprises, Occidental Petroleum Corp., U.S.S. Agri-Chemicals, Inc., and Swift Chemical Co. produced marketable rock from Florida land-pebble phosphate fields. Howard Phosphate Co., Kellogg Co., Loncala Phosphate Co., and Manko, Inc. mined 22,000 tons of soft rock in Florida.

Texasgulf, Inc. mined and processed phosphate rock from deposits along the Pamlico River in North Carolina.

Agrico Chemical Co., a subsidiary of the Williams Co. of Tulsa, Okla., awarded contracts for a 400,000-ton-per-year P2O5 phosphoric acid plant and a 100-ton-per-hour single train diammonium phosphate granulation plant at Fausta, La, and an 80-tonper-hour granular triple superphosphate plant in South Pierce, Fla.4 A contract was also awarded to construct two 1,800-tonper-day capacity sulfuric acid plants at South Pierce, Fla.<sup>5</sup> Contracts were awarded for plants to produce 1,000 tons per day of ammonia and 1,800 tons per day of urea ammonium nitrate solution at Verdigris, Okla.6 A contract was awarded for a 1,000ton-per-day urea plant at Blytheville, Ark.7 Plans were advanced to open the Fort Green mine and construct a new plant to produce 3.5 million tons per year of marketable phosphate rock in Florida.

Industries Corp., Greenwich. Conn., signed options to purchase from PPG Industries, Inc., Pittsburgh, Pa. 8,000 acres of phosphate reserves in eastern Manatee County, Fla. Beker plans to mine and ship about 3 million tons annually of marketable phosphate rock to their fertilizer operations in Illinois and Louisiana.8 The company purchased a 100,000-ton-peryear ammonia plant in Iowa and will move the plant to Conda, Idaho. A 180,000-ton-per-year ammonia plant was purchased in Canada and will be relocated near Sarnia, Ontario, Canada. Another 200,000-ton-per-year ammonia plant was purchased in Illinois and will be moved to a Southwest U.S. location. With these ac-

<sup>&</sup>lt;sup>4</sup> Chemical Engineering. V. 80, No. 15, June 25, 1973, p. 124.

<sup>5</sup> Fertilizer International. No. 52, October 1973,

p. 8.

6 Chemical Age International. V. 107, No. 2836, Nov. 23, 1973, p. 20.

7 Chemical Marketing Reporter. V. 204, No. 15, Oct. 15, 1973, p. 4.

8 Chemical Week. V. 113, No. 16, Oct. 17, 1072 pp. 24-25.

quisitions, Beker Industries will have a total capacity of 480,000 tons of anhydrous ammonia per year.

Conserve, Inc., started operating a modernized plant at Nichols, Fla., and this plant has the distinction of producing the first commercial monoammonium phosphate in the United States.9

CF Industries Inc. completed and dedicated a new phosphate terminal on Tampa Bay to ship about 500,000 tons of phosphatic fertilizers annually by water to farm cooperatives in the Midwest and Canada. 10 A new 800-ton-per-day P2O5 wet-process phosphoric acid plant will be constructed in Plant City, Fla. The facility is expected to be completed in 1974.

The Cities Service Co. sold its Tampa Agricultural Chemical Operations to Société des Participation Gardinier of France. The new name will be Gardinier, Inc.—U.S. Phosphoric Products.11

W. R. Grace & Co. announced plans to construct a 350,000-ton-per-year urea plant at Memphis, Tenn. The ammonia-producing capacity at this location was increased from 275,000 to 340,000 tons per year.12 In addition, the agricultural chemical operations at Bartow, Fla., will be expanded with a 250,000-ton-per-year phosphoric acid plant and a 700,000-ton-per-year sulfuric acid plant.13 Grace has ordered a 60-cubic yard dragline that will be used to mine rock from the Hooker's Prairie property in Polk County in 1977.

International Minerals & Chemical Corp. started construction of their 600,000-tonper-year, P<sub>2</sub>O<sub>5</sub>-equivalent fertilizer plant near Bartow, Fla. They also acquired mining rights to 20 million tons of phosphate reserves in Florida.14 The new washing plant at the Phosphoria mine is scheduled to start producing in 1974. The deslimed ore will be pumped 6 miles to the Noralyn recovery plant.

Occidental Petroleum Corp. purchased 24,000 acres of phosphate reserves from Owens-Illinois Inc. and Monsanto Co. The reserves, estimated by Occidental to be capable of supplying 23 million tons of marketable rock, are located near Occidental's Suwanee River phosphate mine and chemical complex.<sup>15</sup> A 45-cubic yard dragline was assembled at the Suwanee River Phosphate Division to increase production of phosphate rock. Expansion of the washing plant will increase capacity to about 3.5

million tons per year of marketable rock. An increase of 350,000 tons per year of P<sub>2</sub>O<sub>5</sub> phosphoric acid capacity was announced for the Suwanee River complex. In addition, the diammonium phosphate capacity will be increased by 350,000 tons per year and a new but unspecified amount of sulfuric acid capacity will be added, all scheduled for operation in 1975. If the Occidental Petroleum Corp.'s trade agreement with the U.S.S.R. develops in 1978, an additional annual 3.5 million tons of marketable phosphate rock will be required to produce 1.1 million tons per year of superphosphoric acid.

A new sales office of the Phosphate Rock Export Assn. was opened in Paris, France at 42, Avenue Montaigne. 16

The construction of a new phosphoric acid plant and sulfuric acid plant at Texasgulf, Inc.'s Lee Creek mine in North Carolina to increase the P<sub>2</sub>O<sub>5</sub> capacity from 340,000 to 510,000 tons per year was completed. Work was started on the fourth phosphoric acid and sulfuric acid train to raise the plant capacity to 680,000 tons per year of P<sub>2</sub>O<sub>5</sub>. Mining and milling facilities will also be expanded to furnish phosphate rock for the acid plant and for merchant sales. A new terminal at Morehead City, N.C., will store 200,000 tons of phosphoric acid. On nearby Radio Island, a liquid sulfur terminal with a throughput of 600,000 tons per year was under construction.17

Western States.-Production of marketable phosphate rock was 5,198,000 tons, an increase of 643,000 tons over that of 1972, or 14.1%. This was the first full year of for Agricultural Products production Corp., and their contribution was a significant factor in the overall increase. The value of the marketable rock increased to \$34,214,000 or 47% above that of 1972. The average grade of mined phosphate rock was 21.8% P2O5, and the average grade of marketable rock was 28.4% P2O5.

Chemical and Engineering News. June 11, 1973, pp. 21–22.
 The Tampa Tribune. Feb. 23, 1973.
 Phos Pholks. V. 9, No. 1, February 1973.
 Chemical Age International. V. 107, No. 2819, July 7, 1973, p. 6.
 Engineering and Mining Journal. V. 147, No. 6, June 1973, p. 267.
 Industrial Minerals. No. 69, June 1973, p. 41.

<sup>41.

15</sup> The Tampa Tribune, Aug. 1, 1973.

16 Industrial Minerals. No. 64, January 1973, p. 47.

Texasgulf, Inc. 3rd Quarter Report. Oct. 5, 1973 4 pp.

The average grade of mine production used directly in electric furnaces was 26.4% P2O5, and the average beneficiated rock grade from washers and mills was 32.2% P<sub>2</sub>O<sub>5</sub>. It is of interest to note that of the total marketable production in the Western States, 34% was beneficiated and 66% was used directly. The weight recovery of the combined concentrates and rock used as mined was 62.9%, and the average  $P_2O_5$  recovery was 82%.

Agricultural Products Corp., Monsanto Co., J. R. Simplot Co., and Stauffer Chemical Co. mined and processed phosphate rock in Idaho. In Montana, Cominco American, Inc., recovered phosphate rock from the underground Brock mine near Garrison. Stauffer Chemical Co. mined phosphate rock in Wyoming and in two areas in Utah. The Meramec Mining Co., Sullivan, Mo., again recovered apatite concentrate from Pea Ridge iron ore mine tailings.

Cominco American, Inc.'s Brock mine is projected to operate for at least another 10 years with a sustained production rate of 250,000 tons per year.18 A new mine and adit about 3 miles south of the Brock adit called Warm Spring, will assure production at current levels and minimize operating problems at the Brock mine.

Agricultural Products, Inc.'s planned expansion program to double production capacity of diammonium phosphate at Conda, Idaho, was completed in 1973.

Stauffer Chemical Co. announced an ex-

pansion of its Vernal, Utah operation from 300,000 to 400,000 tons per year of phosphate rock. The grinding and railcar loading facilities at Phoston, Utah, will be enlarged to handle the additional tonnage from the Vernal mine.

Tennessee.—Production of marketable phosphate rock was 2,512,000 tons, an increase of 358,000 tons or 16.6% greater than that of 1972. The value of the marketable rock also increased 19.3% over that of 1972.

The average grade of the mined ore was 21.5% P<sub>2</sub>O<sub>5</sub>, the average weight recovery of concentrates was 60.3%, and recovery of  $P_2O_5$  averaged 73%.

Hooker Chemical Corp., Monsanto Co., Stauffer Chemical Co., and the Tennessee Valley Authority (TVA) mined phosphate rock in Tennessee and reduced the rock in electric furnaces to elemental phosphorus.

Stauffer Chemical Co. plans to double the capacity to produce benzene phosphorus dichloride and benzene phosphorus thio-dichloride at its Mt. Pleasant, Tenn., organic chemicals plant.

TVA will implement a plan to eliminate phosphate mining; production of phosphorus, phosphoric acid, and nitric acid; and the operation of one rather than two granulation plants between 1973 and 1975.19

Table 2.-Production of phosphate rock in the United States, by State (Thousand short tons and thousand dollars)

|           | Mine pr | oduction                                 |         | oduction<br>irectly                      |        | sher<br>1ction                           | Marke  | table prod                               | uction  |
|-----------|---------|------------------------------------------|---------|------------------------------------------|--------|------------------------------------------|--------|------------------------------------------|---------|
| •         | Rock    | P <sub>2</sub> O <sub>5</sub><br>content | Rock    | P <sub>2</sub> O <sub>5</sub><br>content | Rock   | P <sub>2</sub> O <sub>5</sub><br>content | Rock   | P <sub>2</sub> O <sub>5</sub><br>content | Value   |
| 1972:     |         |                                          |         |                                          |        |                                          |        |                                          |         |
| Florida 1 | 117,263 | 16,289                                   | 20<br>W | 4                                        | 34,101 | 10,980                                   | 34,121 | 10,984                                   | 173,910 |
| Tennessee | 3,824   | 817                                      | w       | $\mathbf{w}$                             | · w    | w                                        | 2,154  | 563                                      | 10,732  |
| Western   | ·       |                                          |         |                                          |        |                                          |        |                                          |         |
| States 2  | 5,565   | 1,450                                    | 3,199   | 860                                      | 1,356  | 432                                      | 4,555  | 1,292                                    | 23,268  |
| Total 3   | 126,651 | 18,557                                   | 3,219   | 864                                      | 35,457 | 11,412                                   | 40,831 | 12,839                                   | 207,910 |
| 1973:     |         |                                          |         |                                          |        |                                          |        |                                          |         |
| Florida 1 | 127.283 | 16.319                                   | 22      | 4                                        | 34,405 | 10,972                                   | 34,427 | 10.977                                   | 191,654 |
| Tennessee | 4.168   | 894                                      | w       | w                                        | W      | w                                        | 2,512  | 653                                      | 12,799  |
| Western   | -,      |                                          |         |                                          |        |                                          | •      |                                          |         |
| States 2  | 8,263   | 1,800                                    | 3,412   | 901                                      | 1,786  | 576                                      | 5,198  | 1,477                                    | 34,214  |
| Total 3   | 139,713 | 19,013                                   | 3,434   | 905                                      | 36,191 | 11,548                                   | 42,137 | 13,106                                   | 238,667 |

W Withheld to avoid disclosing individual company confidential data.

<sup>&</sup>lt;sup>18</sup> Engineering and Mining Journal. Brock Feeds Phosphates to Fertilizer Plants. V. 174, No. 9, September 1973, pp. 146–147. <sup>19</sup> Chemical Marketing Reporter. V. 203, No. 15, Apr. 9, 1973, pp. 4 and 39.

Includes North Carolina.
Includes Idaho, Missouri (1973), Montana, Utah, and Wyoming.
Data may not add to totals shown because of independent rounding.

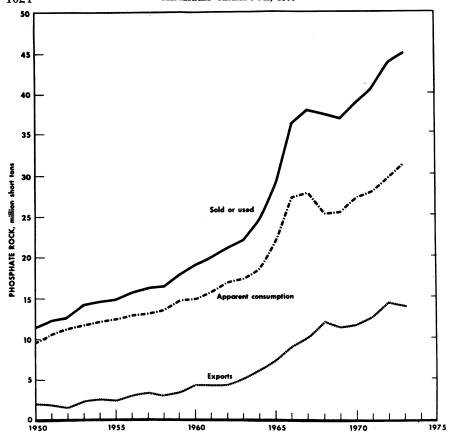



Figure 1.-Phosphate rock (sold or used), apparent consumption, and exports.

#### CONSUMPTION AND USES

Apparent consumption of marketable phosphate rock increased 5.7% above that reported in 1972. According to producers' reports, the quantity of marketable rock sold or used was 45,043,000 tons. This was an increase of 2.9% over the quantity sold or used in 1972. The domestic market consumed 69% of this total and 31% was exported.

The consumption pattern in the United States was 25,124,000 tons (80.6%) for fertilizer, 5,762,000 tons (18.5%) for elemental phosphorus production, and 282,000 tons (0.9%) was used to produce defluorinated rock and for other purposes.

The percent distribution by grade of marketable rock consumed in the United States is compared with the percent distribution in 1972 in the following tabulation:

| Grade, percent<br>BPL <sup>1</sup> | 1972 percent<br>distribution | 1973 percent<br>distribution |
|------------------------------------|------------------------------|------------------------------|
| Less than 60                       |                              | 8.7                          |
| 60-66                              |                              | 11.9                         |
| 66-70                              |                              | 40.9                         |
| 70-72                              | 10.3                         | 12.3                         |
| 72-74                              | 22.1                         | 16.7                         |
| Over 74                            | 11.3                         | 9.5                          |

 $^1\,1.0\%$  BPL (bone phosphate of lime or trical cium phosphate) = 0.458%  $P_2O_6.$ 

Florida and North Carolina.—The quantity of phosphate rock sold or used decreased slightly, from 36,934,000 tons in 1972 to 36,916,000 tons in 1973. Of this total sold or used in 1973, 63% was consumed in the domestic fertilizer market and the balance, 37%, exported with a minor quantity used domestically in other applications. The consumption pattern of the overall domestic fraction was 23,421,000

tons (98.6%) for fertilizer, with the balance converted into elemental phosphorus, defluorinated rock, and other minor applications.

The percent distribution by grade of marketable rock sold or used from Florida and North Carolina is compared in the following tabulation for 1972 and 1973:

| Grade, percent<br>BPL | 1972 percent<br>distribution | 1973 percent<br>distribution |
|-----------------------|------------------------------|------------------------------|
| Less than 60          | 0.1                          | 0.3                          |
| 60-66                 |                              | 9.7                          |
| 66-70                 | 44.8                         | 45.9                         |
| 70-72                 | 11.2                         | 14.1                         |
| 72-74                 | 25.5                         | 18.5                         |
| Over 74               | 13.3                         | 11.5                         |

Western States.—The quantity of marketable rock sold or used increased 19.2% compared with the quantity sold or used in 1972. Of the total sold or used in the domestic and export markets, about 45% was used for agricultural purposes. The consumption pattern in the domestic market was 35.5% used in fertilizer production and 64.5% was used in electric furnaces. The distribution by grade was 37.7% less than 60% bone phosphate of lime (BPL), 60.5% less than 66% BPL, and the balance was distributed in higher grades.

Tennessee.—The quantity of marketable rock sold or used increased from 2,240,000 tons in 1972 to 2,665,000 tons in 1973, a 19.0% improvement. All of this rock was consumed in domestic electric furnaces to produce elemental phosphorus and industrial chemicals. Most of the elemental phosphorus was burned to produce furnace phosphoric acid which was used to produce sodium tripolyphosphate and dicalcium phosphate. A small amount of elemental phosphorus was used to produce anhydrous derivatives.

Table 3.-Phosphate rock sold or used by producers in the United States, by grade and State in 1973

(Thousand short tons and thousand dollars)

| Grade—BPL 1 content                                      | Rock                                                       | P <sub>2</sub> O <sub>5</sub> content           | Value                                                 | Rock                                                | P <sub>2</sub> O <sub>5</sub><br>content         | Value                                                     |
|----------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------|
| (percent) —                                              | Florida a                                                  | nd North (                                      | Carolina                                              |                                                     | Tennessee                                        |                                                           |
| Below 60. 60-66. 66-70. 70-72. 72-74. Plus 74.  Total 2. | 99<br>3,566<br>16,955<br>5,222<br>6,813<br>4,262<br>36,916 | 25<br>1,009<br>5,262<br>1,695<br>2,264<br>1,465 | 494<br>16,307<br>89,045<br>29,897<br>38,238<br>31,501 | W<br>W<br>W<br>W<br>2,665                           | ₩<br>₩<br>₩<br>₩<br>699                          | W<br>W<br>W<br>W<br>13,812                                |
| <del>-</del>                                             | W                                                          | estern State                                    | es                                                    | Tota                                                | l United Sta                                     | ates                                                      |
| Below 60                                                 | W<br>W<br>330<br>W<br>30                                   | W<br>W<br>W<br>106<br>W<br>10                   | W<br>W<br>W<br>2,624<br>W<br>W                        | 3,926<br>5,336<br>18,414<br>5,552<br>7,522<br>4,293 | 972<br>1,507<br>5,717<br>1,801<br>2,500<br>1,476 | 17,011<br>26,473<br>100,165<br>32,522<br>46,958<br>31,718 |
| Total 2                                                  | 5,462                                                      | 1,552                                           | 35,551                                                | 45,043                                              | 13,972                                           | 254,846                                                   |

W Withheld to avoid disclosing individual company confidential data. 
<sup>1</sup> Bone phosphate of lime Ca<sub>2</sub> (PO<sub>4</sub>)<sub>2</sub>.

<sup>2</sup> Data may not add to totals shown because of independent rounding.

Table 4.-Phosphate rock sold or used by producers, by use and State

(Thousand short tons)

| Use -                                  | Flori       | da 1                                     | Tenn               | essee                                    | Western    | n States                                 | Tot<br>United    | tal <sup>2</sup><br>States               |
|----------------------------------------|-------------|------------------------------------------|--------------------|------------------------------------------|------------|------------------------------------------|------------------|------------------------------------------|
|                                        | Rock        | P <sub>2</sub> O <sub>5</sub><br>content | Rock               | P <sub>2</sub> O <sub>5</sub><br>content | Rock       | P <sub>2</sub> O <sub>5</sub><br>content | Rock             | P <sub>2</sub> O <sub>5</sub><br>content |
| 1972                                   |             |                                          |                    |                                          |            |                                          |                  |                                          |
| Domestic: Agricultural Industrial      | 23,174<br>W | 7,356<br>W                               | $2,2\overline{40}$ | 58 <b>7</b>                              | 1,130<br>W | 361<br>W                                 | 24,304<br>5,176  | 7,716<br>1,364                           |
| Total<br>Exports                       | 23,174<br>W | 7,356<br>W                               | 2,240              | 587<br>                                  | 1,130<br>W | 361<br>W                                 | 29,480<br>14,275 | 9,080<br>4,673                           |
| Total                                  | 36,934      | 11,868                                   | 2,240              | 587                                      | 4,581      | 1,299                                    | 43,755           | 13,753                                   |
| 1973 Domestic: Agricultural Industrial | 23,701<br>W | 7,421<br>W                               | 15<br>2,649        | 5<br>694                                 | 1,688<br>W | 544<br>W                                 | 25,404<br>5,764  | 7,969<br>1,501                           |
| Total <sup>2</sup> Exports             | 23,701<br>W | 7,421<br>W                               | 2,665              | 699                                      | 1,688<br>W | 544<br>W                                 | 31,168<br>13,875 | 9,470<br>4,502                           |
| Total                                  | 36,916      | 11,720                                   | 2,665              | 699                                      | 5,462      | 1,552                                    | 45,043           | 13,972                                   |

W Withheld to avoid disclosing individual company confidential data; included in "Total United States." <sup>1</sup> Includes North Carolina.
<sup>2</sup> Data may not add to totals shown because of independent rounding.

Table 5.-Phosphate rock sold or used by producers in the United States, by use (Thousand short tons)

| Use -                | 19       | 72                                       | 19     | 73                                       |
|----------------------|----------|------------------------------------------|--------|------------------------------------------|
| Use _                | Rock     | P <sub>2</sub> O <sub>5</sub><br>content | Rock   | P <sub>2</sub> O <sub>5</sub><br>content |
| Domestic:            |          |                                          |        |                                          |
| Fertilizers          | r 24,018 | 7,620                                    | 25,124 | 7,876                                    |
| Elemental phosphorus | 5,173    | 1,363                                    | 5,762  | 1,500                                    |
| Defluorinated rock   | 289      | 97                                       | 282    | 94                                       |
| Total                | 29,480   | 9.080                                    | 31,168 | 9,470                                    |
| Exports              | 14,275   | 4,673                                    | 13,875 | 4,502                                    |
| Grand total          | 43,755   | 13,753                                   | 45,043 | 13,972                                   |

r Revised.

Table 6.-Florida phosphate rock sold or used by producers, by type

(Thousand short tons and thousand dollars)

|      |                            | Land                                         | pebble 1           |                                        |                            | Soft                          | rock                            |                    |                            | То                                                     | tal <sup>2</sup>              |                                        |
|------|----------------------------|----------------------------------------------|--------------------|----------------------------------------|----------------------------|-------------------------------|---------------------------------|--------------------|----------------------------|--------------------------------------------------------|-------------------------------|----------------------------------------|
| Year | Rock                       | P <sub>2</sub> O <sub>5</sub>                | Va                 | lue                                    | Rock                       | P <sub>2</sub> O <sub>5</sub> | Value                           |                    |                            | D.O.                                                   | Va                            | lue                                    |
|      | HOCK                       | content                                      | Total              | Average<br>per ton                     | Rock                       |                               | Total                           | Average<br>per ton | Rock                       | P <sub>2</sub> O <sub>5</sub><br>content               | Total                         | Average<br>per ton                     |
| 1972 | 31,111<br>33,176<br>36,913 | 9,307<br>9,981<br>10,621<br>11,863<br>11,716 | 173,950<br>188,205 | \$5.38<br>5.07<br>5.24<br>5.10<br>5.57 | 30<br>24<br>20<br>21<br>22 | 6<br>5<br>4<br>4<br>4         | 221<br>168<br>141<br>121<br>154 | 7.19<br>5.87       | 31,134<br>33,195<br>36,934 | 9,313 1<br>9,986 1<br>10,625 1<br>11,868 1<br>11,720 2 | 157,820<br>174,091<br>188,326 | \$5.38<br>5.07<br>5.24<br>5.10<br>5.57 |

Includes North Carolina.
 Data may not add to totals shown because of independent rounding.

Table 7.—Tennessee phosphate rock sold or used by producers

(Thousand short tons and thousand dollars)

|        |                                           | <b>D</b> 0                            | Value                                          |                                        |  |  |
|--------|-------------------------------------------|---------------------------------------|------------------------------------------------|----------------------------------------|--|--|
| Year   | Rock                                      | P <sub>2</sub> O <sub>5</sub> content | Total                                          | Average<br>per ton                     |  |  |
| 1969 1 | 3,193<br>3,184<br>2,596<br>2,240<br>2,665 | 851<br>864<br>687<br>587<br>699       | 18,192<br>15,606<br>12,281<br>11,188<br>13,812 | \$5.70<br>4.90<br>4.73<br>4.99<br>5.18 |  |  |

<sup>&</sup>lt;sup>1</sup> Includes Alabama.

#### **STOCKS**

Although the phosphate rock mining companies in Tennessee and the Western States do not inventory stocks of marketable rock on an annual basis, the companies in Florida and North Carolina maintain substantial stocks of marketable rock to insure an uninterruptable feed for the fertilizer plants. It is recognized that stocks are accumulated in the Western States during the mild months of the year, when weather conditions permit mining and transportation to consuming electric fur-

nace and fertilizer plants. These stocks are depleted during the winter months. Stocks are not maintained in Tennessee.

In Florida and North Carolina, yearend stocks of marketable phosphate rock declined from 10,501,000 tons in 1972 to 8,482,000 tons in 1973, a decrease of 19.2%. The decline in yearend stocks from 1971 to 1972 was 12%. The significant decline in stocks during 1973 further emphasized the difficulty that the industry experienced in attempting to satisfy demand.

#### **PRICES**

The December 10, 1973, issue of the Chemical Marketing Reporter listed prices for various grades of Florida land-pebble phosphate rock. They have not changed since 1971 and are published only as an indication of price levels in 1973. Actual prices negotiated for Florida and North Carolina phosphate rock are not published. The price of phosphate rock produced in Tennessee and the Western States also is not published. Most of this rock is consumed by the producing companies, converted into intermediates or end products, and then marketed.

The average 1973 unit value 20 of marketable rock reported by producers was \$5.66 per short ton f.o.b. plant, an increase from the \$5.09 per ton value reported in 1972.

The average unit value reported for marketable rock sold or used in the domestic market from Florida and North Carolina increased from \$5.10 per ton in 1972 to \$5.57 per ton in 1973. In the Western States, the unit value of marketable rock sold or used increased from \$5.13 per

ton in 1972 to \$6.51 per ton in 1973. The unit value of marketable rock sold or used in Tennessee increased slightly from \$4.99 per ton in 1972 to \$5.18 per ton in 1973.

The average unit value of marketable phosphate rock exported from the United States increased from \$5.28 per ton in 1972 to \$5.98 per ton in 1973. The unit value of marketable rock exported from Florida and North Carolina increased from \$5.10 per ton in 1972 to \$5.77 per ton in 1973. The unit value of phosphate rock exported from the Western States increased from \$8.76 per ton in 1972 to \$9.93 per ton in 1973. Tennessee rock was not exported.

The Phosphate Rock Export Association, Tampa, Fla., publishes export prices. After one price increase on July 1, 1972, the Association issued a new export price schedule on October 1, 1973, that was to be effective on January 1, 1974. This price schedule was superseded on November 16,

<sup>&</sup>lt;sup>20</sup> Value, if sold, net selling price f.o.b. plant, or if used, estimated value from comparable selling prices or developed price, that is, cost plus overhead and profit.

1973, when a new price schedule was published to take effect on January 1, 1974. The trends in published export prices are shown in the following tabulation with prices converted to a short ton f.o.b. plant basis:

| BPL base   | Effective date                         |                                                             |                                                               |  |  |  |
|------------|----------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------|--|--|--|
| DI Li base | July 1,<br>1972 <sup>1</sup>           | January 1,<br>1974 <sup>2</sup>                             | January 1,<br>1974 <sup>3</sup>                               |  |  |  |
| 66         | \$6.24<br>7.42<br>7.67<br>8.45<br>9.44 | \$9.40<br>9.94<br>10.92<br>11.72<br>12.35<br>13.69<br>15.29 | \$14.40<br>16.19<br>17.98<br>19.76<br>21.10<br>22.89<br>25.12 |  |  |  |

The Office Cherifien des Phosphates raised the prices of all grades of Moroccan phosphate rock in October 1973. The new prices were to become effective January 1, 1974. The announced prices, converted to U.S. dollars per short ton, are as follows:

| Grade, BPL base                 | f.o.b. vessel<br>Casablanca        |
|---------------------------------|------------------------------------|
| 70<br>72<br>75<br>77 (calcined) | \$34.82<br>37.01<br>38.83<br>43.59 |
| 80                              | 46.08                              |

The stability of these new price levels is not clear at this time, however, it appears that the world demand for phosphate rock is sufficiently strong to support these prices.

The Cost of Living Council removed price controls on phosphate rock in October 1973. Domestic prices of phosphate rock published by several producers after price controls were lifted showed that new contracts for phosphate rock in the domestic market will have prices similar to export prices.

Table 8.-Phosphate rock, Florida landpebble, run of mine washed, dried, unground, bulk carlots, f.o.b. mine

(Per short ton)

| Grade, percent BPL | Price range  |
|--------------------|--------------|
| 66-68              | \$ 6.50-     |
| 68-70              | 5.84-\$ 7.50 |
| 70-72              | 6.50- 10.65  |
| 74-75              | 7.55- 9.20   |
| 76-77              | 10.20-       |

Source: Chemical Marketing Reporter. Apr. 16, 1973, p. 13.

### **FOREIGN TRADE**

Industry reported that 13,875,000 tons of marketable phosphate rock was exported in 1973, 400,000 tons less than that exported in 1972. Although most of the phosphate rock was exported from Florida, Florida exports declined from 1972 levels by 3% in 1973. Exports from the Western States to Canada were essentially unchanged in 1973 from those reported in 1972.

The average calculated unit value of exported phosphate rock increased from \$5.28 per ton in 1972 to \$5.98 per ton in 1973.

Analysis of import data showed that 65,025 tons of phosphate rock was imported in 1973 compared with 54,738 tons in 1972, an increase of 18.8%. Imports of 1,456 tons and 37,143 tons of low-fluorine phosphate rock were received from Mexico and the Netherlands Antilles, respectively. Shipments of 12,727 tons and 13,699 tons were also received from Spanish Sahara and Morocco, respectively. The value of total imports was \$1,288,000, and the average unit value was \$19.82 per ton.

Issued April 1, 1972.
 Issued October 1, 1973; canceled on November 16, 773.
 Superseded by schedule issued on November 16, 1973. 1973. Superseded by schedule 16, 1973. <sup>3</sup> Issued November 16, 1973.

## PHOSPHATE ROCK

Table 9.-U.S. exports of phosphate rock, by country (Thousand short tons and thousand dollars)

| TO                          | 19'              | 72                | 1973     |         |
|-----------------------------|------------------|-------------------|----------|---------|
| Destination                 | Quantity         | Value             | Quantity | Value   |
| Florida phosphate rock:     |                  |                   |          |         |
| Austria                     | 147              | <b>93</b> 8       | 148      | 1,295   |
| Belgium-Luxembourg          | 732              | 4,544             | 958      | 6,254   |
| Brazil                      | 791              | 5,867             | 639      | 5,288   |
| Canada                      | 2,205            | 16,492            | 2.737    | 20,075  |
| Chile                       | 55               | 483               | 78       | 664     |
| China, People's Republic of |                  |                   | 41       | 451     |
| Colombia                    | $\bar{3}\bar{1}$ | 229               | 111      | 857     |
| Ecuador                     |                  | 59                | 8        | 78      |
| El Salvador                 | 12               | 78                | 5        | 52      |
| France                      | 497              | 3,904             | 487      | 3,769   |
| Germany, West               |                  | 8.965             | 1.241    | 7,868   |
|                             | 454              | 2,994             | 252      | 1.768   |
| India                       | 415              | 2,965             | 331      | 2,703   |
| Iran                        |                  |                   |          |         |
| Įtaly                       |                  | 5,962             | 601      | 4,049   |
| Japan                       |                  | 20,449            | 2,165    | 21,777  |
| Korea, Republic of          |                  | 3,974             | 622      | 4,456   |
| Mexico                      | 785              | 5,058             | 1,071    | 8,150   |
| Netherlands                 | 715              | 4,248             | 599      | 3,557   |
| Peru                        |                  | 70                | 13       | 120     |
| Philippines                 | 126              | 945               | 173      | 1,308   |
| Poland                      |                  |                   | 125      | 919     |
| Romania                     | 421              | 2,770             | 147      | 1,249   |
| Spain                       | r 311            | r 2,149           | 163      | 1.194   |
| Sweden                      | 86               | 563               | 93       | 678     |
| Taiwan                      | 82               | 760               | 93       | 1.130   |
| United Kingdom              |                  | 353               | 151      | 1.112   |
| Uruguay                     | 40               | 484               | 24       | 272     |
| Other                       | 34               | 257               | 1        | 18      |
| Total                       | 13,122           | 95,560            | 13,077   | 101,111 |
| Other phosphate rock: 1     |                  |                   |          |         |
| Brazil                      | . 3              | 22                | 1        | 80      |
| Canada                      | . 741            | 10,001            | 742      | 10,578  |
| Costa Rica                  | . (2)            | 5                 | 6        | 65      |
| El Salvador                 | ` `              |                   | 10       | 109     |
| Germany, West               |                  | 30                | 1        | 28      |
| Japan                       | _                | •                 | 9        | 109     |
| Mexico                      | $\bar{76}$       | $7\bar{5}\bar{3}$ | (2)      | - 3     |
|                             | (2)              | .00               | ( ) 8    | 68      |
| Netherlands                 | 42               | 289               | 73       | 584     |
| Norway<br>Peru              | . 44             | 203               | 5        | 508     |
|                             | - <u>ī</u>       | 68                | (2)      | 14      |
| Venezuela                   |                  |                   | (-)      | 1-7     |
| Vietnam, South              |                  | 625<br>78         | (2)      | 58      |
| Other                       |                  |                   |          |         |
| Total                       | 870              | 11,878            | 855      | 12,184  |
| Grand total                 | 13,992           | 107,438           | 13,932   | 113,295 |

 $<sup>^{\</sup>rm r}$  Revised.  $^{\rm l}$  Includes colloidal and sintered matrix, Tennessee, Idaho, Montana and soft phosphate rock.  $^{\rm l}$  Less than  $\frac{1}{2}$  unit.

Table 10.—U.S. exports of superphosphates, by country (Thousand short tons and thousand dollars)

| Destination        | 197        | 72               | 1973             |        |
|--------------------|------------|------------------|------------------|--------|
| Destination        | Quantity   | Value            | Quantity         | Value  |
| Algeria            | 14         | 911              | 34               | 2,904  |
| Argentina          | 17         | 1.010            | 21               | 1.508  |
| Australia          | 2          | 255              | Ĩ                | 49     |
| Bangladesh         | 39         | 3,050            | 41               | 3,258  |
| Brazil             | 489        | 25,441           | $3\overline{41}$ | 24,996 |
| Canada             | 83         | 4,416            | 42               | 2,827  |
| Chile              | 68         | 3,405            | 44               | 3,419  |
| Colombia           | 18         | 855              | 40               | 3.016  |
| Costa Rica         | 13         | 702              | ž                | 684    |
| Dominican Republic | 13         | 716              | 14               | 1.055  |
| Ecuador            | 3          | 208              | 10               | 642    |
| Egypt              | •          | 200              | 9                | 756    |
| France             | -2         | 355              | 70               | 3,768  |
| Germany, West      | ĭ          | 63               | iŏ               | 698    |
| Guatemala          | î          | 50               | 3                | 98     |
| Guyana             | Ē          | 205              | 3                | 137    |
| Hong Kong          | ĭ          | 80               | ĭ                | 69     |
| Indonesia          | 83         | 5.174            | 22               | 1.765  |
| Italy              | 37         | 2,008            | 19               | 1,219  |
| Jamaica            | 4          | 207              | 4                | 192    |
| Japan              | 18         | 974              | 25               | 1.768  |
| Korea, Republic of | 10         | 314              | 82<br>82         | 7,508  |
| Mexico             | $\bar{6}$  | $\bar{7}\bar{6}$ | 1                | 96     |
| Netherlands        | 16         | 840              | 2                | 137    |
| Nicaragua          |            | 29               | (1)              | 12     |
| Peru               | (1)<br>(1) | 38               | (-) 4            | 402    |
| Singapore          | 20         |                  | 101              | 6.929  |
| Sri Lanka (Ceylon) | 20         | 1,051            | 6                | 428    |
| Venezuela          |            | 80               | 5                | 329    |
| Other              | 6          | 266              | 3                | 358    |
| v ·····            | . 0        | 200              | 3                | 300    |
| Total              | 967        | 52.465           | 967              | 70.990 |

<sup>1</sup> Less than ½ unit.

Table 11.—U.S. exports of ammonium phosphates, by country (Thousand short tons and thousand dollars)

| Destination                 | 19              | 972                 | 19'      | 73                    |
|-----------------------------|-----------------|---------------------|----------|-----------------------|
| Destination                 | Quantity        | Value               | Quantity | Value                 |
| Afars and Issas             | 12              | 1.202               |          |                       |
| Afghanistan                 |                 | -,                  | 12       | 1.326                 |
| Algeria                     |                 |                     | 45       | 3,881                 |
| Argentina                   | 42              | $3.0\overline{71}$  | 41       | 3,992                 |
| Belgium-Luxembourg          | 23              | 1.512               | 16       | 1,321                 |
| Bolivia                     | 1               | 79                  | Š        | 599                   |
| Brazil                      | 512             | 34.235              | 442      | 38,616                |
| Canada                      | 57              | 3.250               | 45       | 3,208                 |
| Chile                       | 2               | 139                 | 120      | 9.883                 |
| China, People's Republic of | _               | 100                 | 48       | 4.736                 |
| Colombia                    | $\overline{43}$ | $3.0\overline{44}$  | 39       | 3.359                 |
| Costa Rica                  | 29              | 2,078               | 30       | 2,986                 |
| Dominican Republic          | 20              | 1,525               | 23       | $\frac{2,960}{2.057}$ |
| Ecuador                     | 13              | 923                 | 25<br>14 | 1,451                 |
| El Salvador                 |                 |                     |          |                       |
| Ethionia                    | 34              | 2,313               | 36       | 3,066                 |
| Ethiopia                    | 11              | 815                 | 27       | 2,722                 |
| France                      | 78              | 4,843               | 120      | 9,104                 |
| Greece                      | 12              | 950                 | .==      |                       |
| India                       | <b>29</b> 8     | 19,566              | 399      | 30,384                |
| Indonesia                   | . = =           |                     | 11       | 701                   |
| Italy                       | 271             | 18,029              | 98       | 7,793                 |
| Japan                       | 26              | 1,556               | 107      | 9,228                 |
| Lebanon                     | 52              | 4,339               | 68       | 6,140                 |
| Netherlands                 | 27              | 1,970               |          |                       |
| New Zealand                 | 9               | 641                 | 33       | 2,687                 |
| Nicaragua                   | 2               | 180                 | 24       | 2.181                 |
| Norway                      |                 |                     | 19       | 573                   |
| Pakistan                    | 84              | 7.690               | 232      | 21,627                |
| Peru                        | 2               | 163                 | 9        | 667                   |
| Philippines                 |                 |                     | 11       | 860                   |
| Singapore                   | 16              | $1.3\bar{8}\bar{1}$ | 2        | 243                   |
| Switzerland                 |                 | 2,002               | 12       | 793                   |
| Thailand                    | -3              | 145                 | 43       | 3,535                 |
| Uruguay                     | š               | 221                 | 13       | 1,274                 |
| Venezuela                   | · ·             | 221                 | 6        | 537                   |
| Vietnam, South              | $\tilde{27}$    | $2.7\overline{17}$  | 18       | 1.906                 |
| Yugoslavia                  | 89              | 6,457               | 55       | 4.574                 |
| Other                       | 18              | 1.015               | 12       | 1.054                 |
| VMV4                        | 10              | - 1,015             | 12       | 1,004                 |
| Total                       | 1,816           | r 126,049           | 2,235    | 189,064               |

r Revised.

Table 12.-U.S. exports of mixed chemical fertilizers, by country

(Thousand short tons and thousand dollars)

| Dorthorton         | 197      | 1972   |          | 1973   |  |
|--------------------|----------|--------|----------|--------|--|
| Destination        | Quantity | Value  | Quantity | Value  |  |
| Argentina          | 1        | 56     | (1)      |        |  |
| Belgium-Luxembourg | 45       | 1,211  | 7        | 247    |  |
| Brazil             | 11       | 1,173  | 2        | 1,086  |  |
| Canada             | 61       | 4,601  | 72       | 5,630  |  |
| Colombia           | 7        | 537    | 29       | 2,139  |  |
| El Salvador        | 7        | 415    | 9        | 587    |  |
| France             | 5        | 270    | (1)      | 22     |  |
| Germany, West      | 3        | 805    | ``4      | 1,070  |  |
| Greece             | (1)      | 73     | 1        | 248    |  |
| Guatemala          | `´ 1     | 197    | 3        | 307    |  |
| India              | 17       | 2,136  |          |        |  |
| Italy              | 8        | 401    | 20       | 1,088  |  |
| Japan              | (1)      | 60     | (1)      | 407    |  |
| New Zealand        | `´ 18    | 966    | `` 12    | 729    |  |
| Panama             | 1        | 110    | 3        | 327    |  |
| Sweden             | 13       | 781    | 23       | 814    |  |
| Phailand           | 1        | 85     | 13       | 1,288  |  |
| United Kingdom     | (1)      | 29     | 22       | 838    |  |
| Vietnam, South     | `157     | 12,498 | 130      | 14,714 |  |
| Other              | 11       | 1,315  | 25       | 2,541  |  |
| Total              | 367      | 27,719 | 375      | 34,084 |  |

<sup>1</sup> Less than ½ unit.

Table 13.—U.S. exports of elemental phosphorus, by country

(Thousand short tons and thousand dollars)

| Destination    | Quantity | Value  |
|----------------|----------|--------|
| Argentina      | 2        | 1,095  |
| Australia      | ī        | 1.478  |
| Germany, West  | (1)      | 206    |
| Japan          | · · · 1  | 404    |
| Mexico         | 21       | 8,427  |
| United Kingdom | (1)      | 445    |
| Other          | 2        | 201    |
| Total          | 27       | 12,256 |

<sup>&</sup>lt;sup>1</sup> Less than ½ unit.

Table 14.-U.S. imports for consumption of phosphate rock and phosphatic fertilizers

(Thousand short tons and thousand dollars)

| 73. 422                                                                                           | 1972     |        | ` 1973          |                            |
|---------------------------------------------------------------------------------------------------|----------|--------|-----------------|----------------------------|
| Fertilizer -                                                                                      | Quantity | Value  | Quantity        | Value                      |
| Phosphates, crude and apatite                                                                     | 1 55     | 11,416 | <sup>1</sup> 65 | 1 1,288<br>3,042<br>27,290 |
| Phosphatic fertilizers and fertilizer materials                                                   | 70       | 3,184  | 68              | 3,042                      |
| Ammonium phosphates, used as fertilizersBone ash, bone dust, bone meal and bones ground, crude or | 501      | 31,070 | 393             | 27,290                     |
| steamed                                                                                           | 6        | 484    | 13              | 1,374                      |
| Dicalcium phosphate                                                                               | 20       | 976    | 3               | 175                        |

<sup>1</sup> Adjusted by the Bureau of Mines.

## **WORLD REVIEW**

The majority of world phosphate rock production, with the exception of that from the United States, is from Government-owned operations in more than 30 countries.

Angola.—The Companhia de Fosfatos de Angola, which has been seeking financial support for exploitation of phosphate deposits in Cabinda, has reportedly ceased operations. Recent assays have indicated

that the phosphate deposits in the company's concession area are not of commercial value. Since this contradicts previous assay reports, the company is in need of additional financial backing for further exploration, but this has not been secured.21

Australia.—Potential importers of phosphate rock from the projected Broken Hill South, Ltd. operation are showing interest in the company's progress. Although trials at the Lady Annie pilot plant started in April of this year, it will take several years or longer to develop sufficient production to satisfy the demand from Australia and the Oceania area and also reach levels to permit exporting significant quantities. The question of transport to the Gulf of Carpentaria has to be resolved. A pipeline to move phosphate rock slurry, coupled with a drying plant at the port, has been proposed. The cost of transporting in a pipeline, drying, and port costs will have a strong influence on the f.o.b. vessel price, but in light of the worldwide short supply condition, this is an opportune time to consider this development.22

China, The People's Republic of .-- According to a study made by the British Sulphur Corp., Ltd., production of phosphate rock will increase from an equivalent 1,290 thousand tons of P2O5 in 1973 to an equivalent 2,629 thousand tons of P2O5 in 1980.23

Egypt, Arab Republic of .- The Abu Tartur phosphate deposits in the Western Desert were estimated to contain reserves of the order of 600 million tons. Mr. Rushdi Saeed, Chairman of the Egyptian Geological Survey and Mining Authority, confirmed the reserves to be 1,000 million tons. If plans materialize in 1979, 10 million tons of concentrates ranging from 72 to 74 BPL will be shipped from this deposit.24

India.—The State Government of Rajasthan purchased all outstanding shares in Bikaner Gypsums, Ltd. and it is now a wholly-owned Government company. In 1969, the company was appointed by the Government as the principal mining contractor for phosphate rock deposits in Rajasthan and a production goal of 4,000 tons per day was established for 1974. The Government action was probably taken because of the company's failure to increase its output.

A feasibility report prepared by Parsons

Jurden Corp. for the World Bank indicates the phosphate rock deposits discovered near Udaipur are very substantial. A production rate of 1.5 million tons per year of plus 30% P<sub>2</sub>O<sub>5</sub> product was recommended.25

Israel.—The Arad phosphoric acid plant constructed by the Israeli Government and the Madera Corp. of the United States was shutdown because of fundamental construction problems. The Israeli Government now controls the plant and will determine its future. The original design capacity in 1971 was 183,000 tons per year of P<sub>2</sub>O<sub>5</sub>. Only 13,000 tons per year has been produced to date.26

Jordan.-Because the Lebanon-Syria border was closed early in the year, phosphate rock exports from Jordan were reduced and were estimated to be about 1.3 million tons. Jordan Phosphate Mines Co., Ltd. operates open pit mines at Ruseifa and El Hasa. At El Hasa, an expansion program will raise the country's output to 2 million tons annually.27

Morocco.—Preliminary indications that Morocco produced 18.2 million short tons of phosphate rock and the amount sold or used exceeded 18.8 million short tons. The 1973-77 expansion plan has not been detailed; however, production goals of 26 million annual tons by 1977 and 30 million annual tons in 1980 has been suggested. New open pit mines are planned at Benguerir and Sidi Haggaj. The Office Cherifien des Phosphates hopes to double underground production at Youssoufia to 6 million tons per year. Ore mined from a depth of 166 feet will be calcined to improve the grade from 68% to 75% BPL. A pilot calcination plant is under construction. The Khouribga complex produces about 80% of Morocco's phosphate rock from open pit mines at Sidi Daoui and Merra el-Arech. Layer 2 ore at Sidi Daoui is beneficiated to 72% BPL in a 3-4 million ton-per-year washing plant. Layer 2 at

<sup>&</sup>lt;sup>21</sup> U.S. Consulate, Luanda, Angola. State Department Airgram A-41, June 7, 1973, 10 pp.

<sup>22</sup>Fertilizer International. No. 49, July 1973, p.

<sup>2. 22</sup> Chemical Age International. V. 107, No. 2824, Aug. 31, 1973, p. 14. 24 Engineering and Mining Journal. V. 174, No. 5, May 1973, p. 17. 25 Mining Journal. V. 280, No. 7191, June 15, 1973, p. 500. 26 Industrial Minerals. January 1973, p. 41. No. 64

No. 64.

27 Bureau of Mines. Mineral Trade Notes. V.
70, No. 12, December 1973, p. 29.

Merra el-Arech will be processed through a new pilot calcination plant and dry enrichment plant to 78% and 72% BPL products. Future additions to these treatment facilities is contingent on the profitability of these pilot projects.28

New Zealand.—Because the high-grade deposits of phosphate rock in the Pacific Islands are likely to be exhausted by 1982, a major search for phosphate rock is underway in New Zealand. Warrants for prospecting near Waibouaiti and Palmerston in North Otago have been granted to Australasian Mining and Oil Investments, Ltd. They have also applied for warrants to prospect at Waihao Downs, near South Canterbury.29

Spanish Sahara.—Some shipments were made from the Fosfatos de Bu-Craa S.A. mine in 1973 but they were substantially less than the projected 3.3 million short tons. Startup problems with the ore preparation plant and a new desalinization plant were the principal reasons. Although construction has started on an expansion to increase production to 6.6 million, it is

Table 15.-Phosphate rock: World production by country

(Thousand short tons)

| Country 1                       | 1971             | 1972               | 1973 Þ  |
|---------------------------------|------------------|--------------------|---------|
| North America:                  |                  |                    |         |
| United States                   | <b>3</b> 8,886   | 40,831             | 42,137  |
| Mexico                          | 64               | 69                 | 77      |
| Netherlands Antilles            | <sup>2</sup> 172 | 123                | 102     |
| South America:                  |                  |                    |         |
| Argentina (guano)               | 1                | • 1                | • 1     |
| Brazil                          | 220              | 260                | 276     |
| Chile (guano)                   | 14               | 17                 | e 18    |
| Colombia                        | 11               | 7                  | 11      |
| Peru (guano)                    | 25               | e 25               | • 25    |
| Venezuela                       | 28               | 33                 | 38      |
| Europe:                         |                  |                    |         |
| France (phosphatic chalk)       | 21               | 20                 | 39      |
| Germany, West                   | 66               | 83                 | 103     |
| U.S.S.R.º                       | r 20,950         | r 21,750           | 23.400  |
| V.S.S.R.°                       | - 20,500         | - 21,.00           | 20,100  |
| Algeria                         | 546              | 580                | 710     |
| Algena                          | 786              | 620                | 606     |
| Egypt, Arab Republic of         | 13.237           | 16,503             | 18.259  |
| Morocco                         | 116              | 10,303             | 16,26   |
| Rhodesia, Southern              | 110              | 121                | 100     |
| Senegal:                        | 162              | 183                | e 218   |
| Aluminum phosphate              |                  | 1.378              | • 1.648 |
| Calcium phosphate               | 1,541            |                    | ~ I,046 |
| Seychelles Islands (guano) e    | 8                | 1 000              | 1.505   |
| South Africa, Republic of *     | 1,359            | 1,380              | 768     |
| Spanish Sahara                  | 4 05-            | 165                |         |
| Togo                            | 1,891            | 2,126              | 2,527   |
| Tunisia                         | 3,485            | 3,734              | 3,828   |
| Uganda (apatite)                | 18               | 17                 | 17      |
| Asia:                           |                  |                    |         |
| China, People's Republic of •   | 2,400            | 2,900              | 3,300   |
| Christmas İsland (İndian Ocean) | 1,092            | 1,269              | 1,695   |
| India:                          |                  |                    |         |
| Apatite                         | 12               | 13                 | 11      |
| Phosphate rock                  | 256              | 239                | 149     |
| Israel                          | 843              | 962                | 698     |
| Jordan                          | 627              | 765                | 1,219   |
| Korea, North (apatite) •        | 300              | 330                | 400     |
| Philippines:                    | 000              |                    |         |
| Guano                           | 1                | 2                  | • 2     |
| Phosphate rock                  | - 5              | 3                  | • 8     |
| Syrian Arab Republic            | ž                | 124                | 165     |
| Vietnam, North                  | 610              | r 310              | 550     |
| Vietnam, North •Oceania:        | 010              | 010                |         |
|                                 | r 7              | 1                  | 6       |
| Australia                       | 2.058            | $1.47\overline{4}$ | 2.561   |
| Nauru Island                    | 683              | 555                | 820     |
| Ocean Island                    | 000              | 000                | 020     |
| m-4-1                           | r 92,508         | 98.981             | 108.060 |
| Total                           | - 32,000         | 50,501             | 100,000 |

<sup>&</sup>lt;sup>28</sup> Bureau of Mines. Mineral Trade Notes. V. 70, No. 10, October 1973, pp. 23–29.
<sup>29</sup> Feed and Farm Supplies. V. 69, No. 6, June 1972. p. 22.

Estimate. P Preliminary. Revised.
 In addition to the countries listed, Belgium, Indonesia, and Tanzania produce phosphate rock, and South West Africa produces guano, but information is inadequate to make reliable estimates.

Revised from crude phosphate basis reported in previous editions to marketable phosphate basis as reported by International Superphosphate Manufacturers Association.

not certain that this production level can be attained by 1975.

Togo.—To meet the expected increase in world phosphate demand in the next few years, Cie. Togolaise des Mines du Bénin (CTMB) will increase production to 2.4 million tons per year and will open a new mine at Kpogame in 1973. The Togolese Government increased its share in CTMB from 20% to 35%. W. R. Grace & Co.'s share declined to 28%, and the French interests declined to 37%. The Government plans to acquire a majority interest by 1987.30

U.S.S.R.—Although a comprehensive understanding of new phosphate rock activity in the U.S.S.R. is not readily available, two developments appear noteworthy. On the Kola Peninsula in the North, commercial exploitation of the Koashvinsky deposit has started. Reserves of 500 million tons were reported. About 90% of the phosphate fertilizers produced in the U.S.S.R. use apatite from the Khibiny Mountains on the Kola Peninsula. The incremental produc-

tion expected from this new deposit was not reported.31

Chilisaisk in West Kazakhstan is scheduled to become the third largest mining area in the U.S.S.R. after the Kola area and Karatau in Kazakhstan. Production from Chilisaisk in 1973 was 300,000 tons and in 1975, production will increase to 1,100,000 tons.32

A review of available data on the Soviet phosphate rock industry indicates that figures published by the Bureau of Mines in recent years should be revised downward. Corrected figures for 1971 and 1972 have been incorporated in the world production table; corresponding estimates for 1964 to 1970 are as follows, in thousand short tons: 1964—11,750; 1965—14,850; 1966— 15,000; 1967—15,150; 1968—16,550; 1969— 18,000; 1970-19,600.

30 Industrial Minerals. No. 72, September 1973, p. 34.
31 Chemistry and Industry. V. 15, No. 18, Sept. 15, 1973, p. 861.
32 European Chemical News. V. 23, No. 581, Apr. 27, 1973, p. 14.

### **TECHNOLOGY**

As part of a continuing research proto expand its nitrophosphate technology, the Norwegian company Norsk Hydro A/S has developed a method of phosphoric manufacturing acid mother liquor obtained after crystallization of calcium nitrate from the solution formed when phosphate rock is acidulated with nitric acid.33

Uranium Recovery Corp. has announced the construction of a uranium separation plant that will go onstream in 1975. It will be located in Polk County, close to a number of phosphate mining and chemical plants. Uranium recovery systems will be located at several phosphoric acid plants in the area. Details of the process have not been disclosed but it is known that an organic solvent will be used to extract the uranium values which will then be transported to the central processing plant for refining. Research work on the recovery of uranium from wet process phosphoric acid manufactured from Florida rock was carried out at the Oak Ridge National Laboratory, Oak Ridge, Tenn. A solvent di (two-ethylhexyl) -phosphoric acid and trictylphosphine in a high-boiling aliphatic diluent is used to extract uranium values

from the phosphoric acid. The solution is then contacted with phosphoric acid containing ferrous ions to reduce the uranium to the trivalent state in which it is less soluble in the organic solvent and therefore returns to the aqueous phase. The phosphoric acid used in this stage is part of the raffinate from the extraction stage. The tetravalent uranium is then oxidized back to the hexavalent state by bubbling in air or by addition of sodium chlorate, and is then extracted a second time with the same organic solvent. It is finally recovered from the organic solution, with an overall yield of about 95%, by stripping with an aqueous ammonia carbonate solution. Ammonium uranyl tricarbonate is precipitated and after filtration is calcined.34

The Albany Metallurgy Research Center, U.S. Bureau of Mines, Albany, Oreg., continued work on a project to demonstrate the feasibility and costs of manufacturing


<sup>33</sup> The British Sulphur Corp., Ltd. Phosphoric Acid Manufacture. No. 64, March/April 1973, p.

<sup>43.

34</sup> The British Sulphur Corp., Ltd. Phosphate Rock Processing. No. 66, July/August 1973, p.

phosphoric acid by acidulating Florida phosphate matrix with sulfuric acid. The research has demonstrated that phosphoric acid can be produced from several different Florida phosphate matrix samples. The principal benefits noted were high P<sub>2</sub>O<sub>5</sub> recoveries and a sandy compact solid waste that will permit immediate land reclamation by backfilling mined-out land. Designs for a 100-pound-per-day pilot plant are being prepared.

The Tuscaloosa Metallurgy Research Laboratory, U.S. Bureau of Mines, Tuscaloosa, Ala., has, during 1973, continued the program sponsored by the U.S. Bureau of Mines and The Florida Phosphate Council to develop processes to effect rapid dewatering of phosphate slimes. Programs to characterize Florida phosphate slimes, to study electrophoretic mobilities and ion exchange properties, to develop tests to predetermine the settling rates of slimes, to study the flocculation and agglomeration responses of slimes, to evaluate the settling and dewatering characteristics of sand-slime mixtures, and to study the gelation tendencies of phosphate slimes will continue through 1974.



# Platinum-Group Metals

By W. C. Butterman 1

World production of the platinum-group metals continued its upward trend in 1973, increasing 21% over production in 1972. Republic of South Africa producers, in possession of long-term contracts with United States and Japanese automobile manufacturers, provided most of the increase. Demand, especially from United States and Japanese consumers, remained strong in 1973, and although supplies of most of the metals were adequate, prices rose significantly, partly because of inflationary pressures, devaluation of the U.S. dollar, and the very strong advance in the price of gold. The dealers' prices for rhodium and iridium, which became scarce during the year, increased sharply.

In the United States, significant excesses of platinum, palladium, and iridium were created in Government inventories when stockpile objectives were cut sharply in April; however, none of this metal became available to consumers during the year. Refinery production of primary platinum group metals rose 29% in 1973, and production of secondary metals rose 4%. Imports were up 27%, and exports increased 16%. Sales to industry were 17% higher than in 1972, and industry stocks increased 11%.

Legislation and Government Programs.—In April the Office of Preparedness set new, sharply reduced, stockpile objectives. As a result, about 265,000 troy ounces of platinum, 926,000 troy ounces of palladium, and 15,000 troy ounces of iridium in inventory became excess to requirements. By yearend, however, congressional authorization for disposal of the excess metal had not been forthcoming. Thus, inventories of the three metals remained unchanged in 1973, except for the disposal of 174 ounces of nonstockpile-grade iridium.

On April 12, the Environmental Protection Agency (EPA) delayed application of the 1975 automobile emission standards for 1 year; instead for 1975, EPA set somewhat relaxed interim standards for California and even less stringent standards for the rest of the Nation. At midyear, EPA, having concluded that the danger from nitrogen oxide emissions had been overstated at the time the Clean Air Act of 1970 was written, recommended to Congress that the law be liberalized with respect to these emissions.

Table 1.-Salient platinum-group metals statistics

(Troy ounces)

|                                    | 1969        | 1970                 | 1971        | 1972        | 1973        |
|------------------------------------|-------------|----------------------|-------------|-------------|-------------|
| United States:                     |             |                      |             |             | 10.000      |
| Mine production 1                  | 21,586      | 17,316               | 18,029      | 17,112      | 19,980      |
| Value                              | \$2,094,607 | \$1,429,521          | \$1,359,675 | \$1,267,298 | \$2,103,704 |
| Refinery production:               |             |                      |             |             |             |
| New metal                          | 17.875      | 19.822               | 21,184      | 15,380      | 19,916      |
| Secondary metal                    | 371.659     | 350.176              | 278.175     | 255,641     | 265,901     |
| Exports (except manufactures)      | 501.064     | 413,766              | 404,610     | r 538.994   | 627,526     |
| Imports for consumption            | 1,225,851   | 1,410,786            | 1,302,740   | 1,836,349   | 2,340,491   |
| Stocks Dec. 31: Refiner, importer, | r 1,068,108 | <sup>r</sup> 710,024 | r 796,791   | r 930,853   | 1,033,124   |
| Consumption                        | r 1.361.180 | r 1,331,152          | r 1.261.312 | r 1,562,245 | 1,831,294   |
| World: Production                  | 3,431,155   | 4,238,956            | 4,084,110   | r 4,268,590 | 5,173,558   |

r Revised. ¹ From crude platinum placers and byproduct platinum-group metals recovered largely from domestic copper ores.

<sup>&</sup>lt;sup>1</sup> Physical scientist, Division of Nonferrous Metals—Mineral Supply.

| Table 2.—Government | inventory | of | platinum-group | metals, | December | 31, | 1973 |
|---------------------|-----------|----|----------------|---------|----------|-----|------|
|                     |           | T) | 'roy ounces)   |         |          |     |      |

|                        | Iridium             | Palladium            | Platinum  |
|------------------------|---------------------|----------------------|-----------|
| National stockpile     | <sup>1</sup> 17,002 | <sup>2</sup> 507,314 | 3 402,646 |
| Supplemental stockpile |                     | 747,680              | 49,999    |
| TotalObjective         | 17,002              | 1,254,994            | 452,645   |
|                        | 1,800               | 328,500              | 187,500   |

<sup>&</sup>lt;sup>1</sup> Includes 12 troy ounces nonstockpile-grade material.

#### DOMESTIC PRODUCTION

Domestic mine production of platinumgroup metals increased 17% in quantity and 66% in value in 1973. Most of the palladium was recovered as a byproduct of copper refining, and most of the platinum and other metals of the group came from one placer deposit. This deposit, at Goodnews Bay, on the southwest coast of Alaska, is the only deposit in the United States mined primarily for platinum metals.

Refinery production of primary platinum-

group metals rose 29% in 1973. Total secondary production rose 4%, owing mainly to a 25% rise in secondary platinum produced. Toll refining increased 4%. Scrap material accounted for 89% of the total material toll-refined; the balance consisted of crude platinum, nickel-copper sulfide matte, and anode slimes derived from the electrolytic refining of sulfide matte. These materials came from Colombia, Canada, Norway, and the Republic of South Africa.

Table 3.-New platinum-group metals recovered by refiners in the United States, by source 1 (Troy ounces)

| Year and source | Plati-<br>num | Palla-<br>dium | Irid-<br>ium | Os-<br>mium | Rho-<br>dium | Ruthe-<br>nium | Total  |
|-----------------|---------------|----------------|--------------|-------------|--------------|----------------|--------|
| 1969            | 8,702         | 8,387          | 570          | 135         | 70           | 11             | 17,875 |
| 1970            | 8,036         | 10,322         | 1,261        | 129         | 64           | 10             | 19,822 |
| 1971            | 10,198        | 10,237         | 498          | 154         | 83           | 14             | 21,184 |
| 1972            | 3,708         | 10,836         | 594          | 173         | 62           | 7              | 15,380 |
| 1973            | 5,560         | 13,121         | 957          | 176         | 88           | 14             | 19,916 |

<sup>&</sup>lt;sup>1</sup> Excludes toll-refined metals; includes palladium refined from foreign crude platinum; 1969—163 ounces; 1970-24 ounces; 1971-73-none.

Table 4.-Secondary platinum-group metals recovered in the United States 1 (Troy ounces)

| ar | Plati-<br>num | Palla-<br>dium | Irid-<br>ium | Os-<br>mium | Rho-<br>dium | Ruthe-<br>nium | Total   |
|----|---------------|----------------|--------------|-------------|--------------|----------------|---------|
|    | 126,822       | 227,763        | 2.250        | 208         | 11.743       | 2.873          | 371,659 |
|    | 118,298       | 208,555        | 1.927        | 121         | 13,394       | 7.881          | 350,176 |
|    | 103,429       | 161,099        | 2,186        | 352         | 8,837        | 2.272          | 278,175 |
|    | 75,942        | 162,718        | 4,393        | 149         | 11,390       | 1.049          | 255,641 |
|    | 94,884        | 150,019        | 6,785        | 20          | 11,561       | 2,632          | 265,901 |

<sup>&</sup>lt;sup>1</sup> Excludes toll-refined metals.

Yea

----

1969 ----

1970 \_\_\_\_

1971

1972

1973

<sup>&</sup>lt;sup>2</sup> Includes 2,204 troy ounces nonstockpile-grade material.

<sup>&</sup>lt;sup>3</sup> Includes 2,566 troy ounces nonstockpile-grade material.

| Year and source     | Plati-<br>num | Palla-<br>dium | Irid-<br>ium | Os-<br>mium | Rho-<br>dium | Ruthe-<br>nium | Total     |
|---------------------|---------------|----------------|--------------|-------------|--------------|----------------|-----------|
| 1969                | 1,209,202     | 945.106        | 9,186        | 2,197       | 73,139       | 8,609          | 2,247,439 |
| 1970                | 1.074.655     | 569,711        | 5,659        | 958         | 56,746       | 9,060          | 1,716,789 |
| 1971                | 777,562       | 593,842        | 12,063       | 4.169       | 51,291       | 9,225          | 1,448,152 |
| 1972                | 837,716       | 455,000        | 9,468        | 1,631       | 47,419       | 5,635          | 1,356,869 |
| 1973:               |               |                |              |             |              |                |           |
| From virgin         |               |                |              |             |              |                |           |
| material            | 32,883        | 115,766        | 1,158        | 102         | 10,542       | 1,239          | 161,690   |
| From scrap material | 754,407       | 462,381        | 5,833        | 13,546      | 35,035       | 11,068         | 1,246,270 |
| Total               | 787,290       | 542,147        | 6,991        | 13,648      | 45,577       | 12,307         | 1,407,960 |

Table 5.—Platinum-group metals toll-refined in the United States
(Troy ounces)

#### **CONSUMPTION AND USES**

Sales of the platinum-group metals to consuming industries rose 17% in 1973 to about 1.8 million troy ounces. Sales of four of the metals increased: Platinum 21%, palladium 16%, rhodium 55%, and ruthenium 4%. Sales of iridium and osmium declined 19% and 32%, respectively.

Platinum sales were 658,000 ounces, of which 36% went to the chemical industry, 19% to the petroleum refining industry, 18% to the electrical industry, and 11% to the glass/ceramics industry. The largest increases in sales went to the petroleum, glass, and electrical industries, with more modest gains in the chemical and jewelry industries and the miscellaneous uses category. Only the dental/medical industries used less platinum than in 1972.

Sales of palladium were just over 1 million ounces in 1973. Of this, 52% was used in the electrical industry, 26% in the chemical industry, and 13% in the dental and medical industry. The electrical industry alone consumed 99,000 ounces more in 1973 than in 1972. Dental and medical, jewelry, and miscellaneous uses each consumed substantially more than in 1972, but the chemical, petroleum, and glass industries consumed less than in 1972.

Iridium sales were 31,000 ounces, of which 35% went to the chemical industry, and 44% to the petroleum industry. Sales in each of the seven end-use categories were lower than in 1972.

Sales of osmium declined in 1973 to about 1,600 ounces all of which went to the chemical and dental and medical industries (62% and 38%, respectively).

Rhodium sales were nearly 72,000 ounces, of which 33% went to the chemical industry, 23% to the glass industry, 16% to

the electrical industry, and 17% to the jewelry industry. Sales to all industries increased substantially compared with those in 1972.

Sales of ruthenium increased 4% to about 57,000 ounces. About 68% went to the chemical industry and 18% to the electrical industry.

The platinum-group metals are useful because of their extraordinary catalytic properties, resistance to chemical corrosion over a wide temperature range, and unique combination of physicochemical and electrical properties. The pattern of industrial applications in 1973 was similar to patterns in recent years. The patterns for the major metals, platinum and palladium, are shown in figure 1.

Early in the year, the Federal Bureau of Mines issued IC 8565, Demand for Platinum To Reduce Pollution From Automobile Exhausts, which dealt with platinum to be used for catalytic oxidation of hydrocarbons and carbon monoxide in automobile emissions.2 This report estimated that about 1.4 million ounces of platinum would be needed to equip 1975 model automobiles sold in the United States. After EPA set relaxed interim standards, it became apparent that actual requirements would be lower. For a time after this decision, it was felt that a large percentage of 1975 cars would not need catalytic devices. By yearend, however, the major automobile manufacturers had determined that in order to meet even these relaxed standards, it would be necessary to equip most 1975 model cars with oxidative catalytic exhaust converters. Each

<sup>&</sup>lt;sup>2</sup> Kusler, D. J. Demand for Platinum To Reduce Pollution From Automobile Exhausts. BuMines IC 8565, 1973, 32 pp.

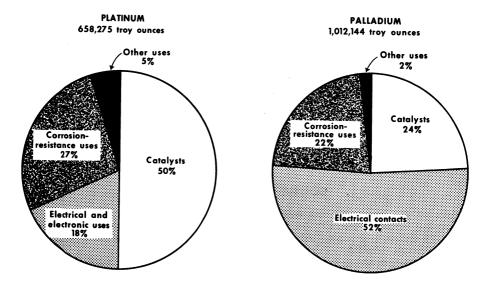



Figure 1.-Uses of platinum and palladium in 1973.

converter would contain, as the active material, between 0.05 and 0.10 troy ounce of a platinum-palladium mixture, the composition of which was expected to range in percent, from 70 platinum- 30 palladium to 80 platinum- 20 palladium.

In other areas of platinum-group metals usage, there were a number of developments in 1973. A special high-purity grade of platinum suitable for use in the production of optical glass fibers became available during the year. The maximum allowed content of metallic impurities in this grade

is 10 parts per million.3 The use of rhodium plated surfaces on electrical components, such as contacts, slip rings, and commutators increased.4 Dispersion-strengthened platinum, platinum-rhodium, and iridium-rhodium, were developed for use in resistance thermometers, thermocouples, sensor shields, and jet thrusters used for spacecraft attitude control.5 The use of platinum catalysts to reduce nitrogen oxides in the tail gas from nitric acid plants continued to grow.6

#### **STOCKS**

Stocks of platinum-group metals held by refiners, importers, and dealers increased 11% to just over 1 million troy ounces at yearend. Palladium stocks increased 22%, platinum stocks rose 5%, and rhodium stocks fell 10%. In addition to these stocks, there were Government stockpile inventories of platinum, palladium, and iridium, and stocks of platinum and palladium held by the New York Mercantile Exchange.

Producers' prices for the platinum-group metals, which were under Government controls much of the year, increased 10% to 50% in February, underwent a short-lived 5% fluctuation in June, and then advanced again in late September (palladium, in mid-August) 5% to 14%. After price controls were removed from most nonferrous metals in December, rhodium and iridium prices increased another 14% to 15%. Ruthenium remained unchanged after the February increase to \$60 per troy ounce, and osmium stayed at \$200 per ounce throughout the year.

The dealers' price for iridium jumped from \$250 to \$450 per troy ounce in July because that metal became scarce, and ended the year at \$525 per troy ounce. The

<sup>&</sup>lt;sup>3</sup> Heywood, A. E. Production of Optical Glass Fibres. Platinum Metal Rev., v. 17, No. 3, July

<sup>1973,</sup> pp. 88-89.

<sup>4</sup> Materials Engineering. Chemically Inert Precious Metals Good for Tough Thermal Uses. V. 78, No. 5, October 1973, pp. 22-25.

<sup>5</sup> American Metal Market. Develop High Heat Material for Spacement Lt. Theorems V. 20

Material for Spacecraft Jet Thrusters. V. 80, No. 53, Mar. 16, 1973, p. 9. 
Searles, R. A. Pollution From Nitric Acid Plants. Platinum Metal Rev., v. 17, No. 2, April

<sup>1973,</sup> pp. 57-63.

dealers' price for rhodium advanced sharply in September, from \$225 to \$375 per troy ounce, and ended the year at \$425 per troy ounce. Average prices for the year, calculated using the low ends of the ranges of weekly averages published by Metals Week, follow:

|           | Producer<br>(per troy<br>ounce) | Dealer<br>(per troy<br>ounce) |
|-----------|---------------------------------|-------------------------------|
| Platinum  | \$150.04                        | \$154.85                      |
| Palladium | 77.68                           | 75.45                         |
| Rhodium   | 222.21                          | 268.11                        |
| Iridium   | 223.07                          | 357.78                        |
| Osmium    | 200.00                          | 144.23                        |
| Ruthenium | 58.85                           | 114.90                        |

Table 6.-Platinum-group metals sold to consuming industries in the United States (Troy ounces)

|                        | •             |                |              |             |              |                |             |
|------------------------|---------------|----------------|--------------|-------------|--------------|----------------|-------------|
| Year and industry      | Plati-<br>num | Palla-<br>dium | Irid-<br>ium | Os-<br>mium | Rho-<br>dium | Ruthe-<br>nium | Total       |
| 1969                   | r 519,414     | 758,738        | 14,218       | 1.472       | 50,144       | 17.194         | r 1,361,180 |
| 1970                   | r 509.011     | 739,343        | 10,905       | 1,707       | 48,897       | 21,289         | r 1,331,152 |
| 1971                   | r 426,684     | 760,106        | 15,512       | 2,126       | 34,366       | 22,518         | r 1,261,312 |
| 1972:                  |               |                |              |             |              |                |             |
| Chemical               | 225,895       | 292,710        | 12,429       | 1,997       | 15,358       | 40,984         | 589,373     |
| Petroleum              | r 98.847      | 14,499         | 16,725       |             | 149          |                | r 130,220   |
| Glass                  | 26,970        | 2,250          | 58           |             | 13,923       |                | 43,201      |
| Electrical             | 92,381        | 425,081        | 4,042        |             | 7,867        | 6,542          | 535,918     |
| Dental and medical     | 30,462        | 94,274         | 376          | 374         | 48           | 441            | 125,97      |
| Jewelry and decorative | 20,655        | 19,375         | 1,565        | (¹)         | 6,593        | 1,810          | r 49,998    |
| Miscellaneous          | 50,089        | 27,835         | 2,559        | т 26        | 2,157        | 4,899          | r 87,56     |
| Total                  | r 545,299     | 876,024        | 37,754       | 2,397       | 46,095       | 54,676         | r 1,562,24  |
| 1973:                  |               |                |              |             |              |                |             |
| Chemical               | 238,974       | 259,959        | 10,635       | 1,003       | 23,772       | 38,713         | 573,056     |
| Petroleum              | 123,649       | 3,761          | 13,385       |             | 3,057        | 92             | 143,944     |
| Glass                  | 72,543        | 1,439          | 51           |             | 16,689       | 82             | 90,80       |
| Electrical             | 117,094       | 523,716        | 3,516        |             | 11,387       | 10,332         | 666,04      |
| Dental and medical     | 27,887        | 135,060        | 145          | 626         | 297          | 164            | 164,179     |
| Jewelry and decorative | 22,433        | 23,052         | 1.191        |             | 12,326       | 2,317          | 61,31       |
| Miscellaneous          | 55,695        | 65,157         | 1,753        |             | 3,987        | 5,355          | 131,94      |
| Total                  |               | 1,012,144      | 30,676       | 1,629       | 71,515       | 57,055         | 1,831,294   |
|                        |               |                |              |             |              |                |             |

F Revised.

Table 7.-Refiner, importer, and dealer stocks of platinum-group metals in the United States, December 31

| (Troy | ounces) |
|-------|---------|
|-------|---------|

| Year              | Plati-<br>num | Pal!a-<br>dium | Irid-<br>ium | Os-<br>mium | Rho-<br>dium | Ruthe-<br>nium | Total       |
|-------------------|---------------|----------------|--------------|-------------|--------------|----------------|-------------|
| 1969              | r 361,305     | 608,716        | 14,505       | 2,873       | 55,833       | 24,876         | r 1,068,108 |
| 1970              | r 291,544     | 332,726        | 13,366       | 1,868       | 47,767       | 22,753         | r 710,024   |
| 1971              | r 385,828     | 316,126        | 16,434       | 604         | 51,529       | 26,270         | r 796,791   |
| 1972              | r 426,611     | 405,793        | 14,987       | 82          | 56,967       | 26,413         | r 930,853   |
| 1973 <sup>1</sup> | 446,522       | 493,078        | 14,813       | 327         | 51,504       | 26,880         | 1,033,124   |

r Revised.

<sup>&</sup>lt;sup>1</sup> Revised to none.

<sup>1</sup> Stocks of platinum and palladium in the Mercantile Exchange depositories as of December 28, 1973, were 115,200 troy ounces, and palladium 11,500 troy ounces.

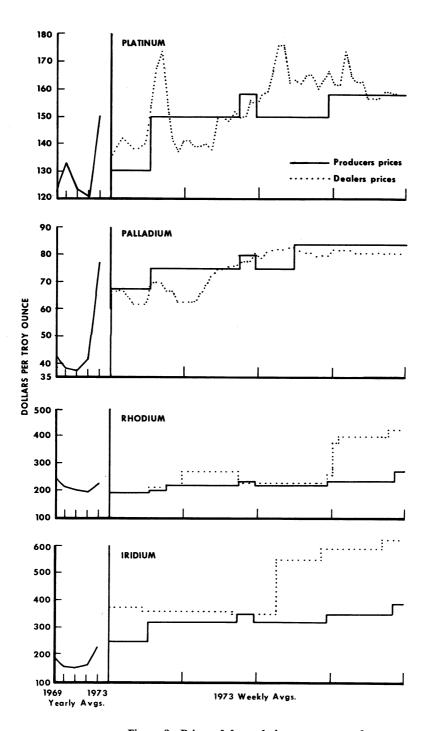



Figure 2.-Prices of four platinum-group metals.

#### **FOREIGN TRADE**

Exports of platinum-group metals in 1973 amounted to 628,000 ounces, of which about 439,000 ounces, or 70%, was platinum. Exports of platinum alone increased only 5%, whereas exports of the other metals of the group increased 54%; the increase in total group exports was 16%. As a result of rising prices, value of exports rose 50%, to nearly \$78 million. Nearly 80% of the quantity exported went to just three countries: Japan (50%), West Germany (17%), and Belgium-Luxembourg (11%). Seventynine percent of the quantity exported to

Japan, and 60% of the exports to West Germany, consisted of platinum.

Imports of the platinum-group metals increased 27% in 1973 to 2.3 million ounces valued at \$249 million. Platinum comprised 32% of the imports, and palladium 49%. The amounts of platinum, palladium, and rhodium imported were higher than in 1972 by 10%, 28%, and 83%, respectively. The chief sources of platinum-group imports and of the three major metals of the group are shown in table 11.

Table 8.-U.S. imports for consumption of platinum-group metals

|      | Year | Quantity<br>(troy ounces) | Value<br>(thousands) |
|------|------|---------------------------|----------------------|
| 1971 |      | 1,302,740                 | \$93,674             |
| 1972 |      | 1,836,349                 | 144.092              |
| 1973 |      | 2,340,491                 | 248,832              |

Table 9.-U.S. exports of platinum-group metals, by country

|                            |                                                   |                                   |                                                                   | 1                            | - I                                                      | Jane                                                  | (man)                  | Courses )                                            |                                                            |                                                                      |                                                                  |                             |
|----------------------------|---------------------------------------------------|-----------------------------------|-------------------------------------------------------------------|------------------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------|------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------|
| Year and<br>destination    | Platinum and platinum-group ores and concentrates | m and<br>1-group<br>and<br>trates | Platinum and platinum-group metals, waste and scrap and sweepings | n and -group waste p and ngs | Platinum,<br>unworked or<br>partly worked,<br>not rolled | Platinum,<br>nworked or<br>rtly worked,<br>not rolled | Plat<br>unwo<br>partiy | Platinum,<br>unworked or<br>partly worked,<br>rolled | Platinum-gr<br>metals unwor<br>or partly wor<br>not rolled | Platinum-group<br>metals unworked<br>or partly worked,<br>not rolled | Platinum-group<br>metals unworked<br>or partly worked,<br>rolled | -group<br>worked<br>worked, |
| ı                          | Quantity<br>(troy<br>ounces)                      | Value<br>(thou-sands)             | Quantity<br>(troy<br>ounces)                                      | Value<br>(thou-              | Quantity<br>(troy<br>ounces)                             | Value<br>(thou-sands)                                 | Quantity<br>(troy      | / Value<br>(thou-                                    | Quantity<br>(troy                                          | Value<br>(thou-                                                      | Quantity<br>(troy                                                | Value<br>(thou-             |
| 1972:                      |                                                   |                                   |                                                                   |                              | (3)                                                      | Capana                                                | Carross                | (entree                                              | onness)                                                    | on irec                                                              | ounces)                                                          | sering)                     |
| Argentina                  | 1                                                 | :                                 | ;                                                                 | :                            | 18                                                       | ij                                                    | ;                      | 1                                                    | 126                                                        | \$19                                                                 | 1                                                                | 1                           |
| Belgium-Luxembourg         | 2,100                                             | \$77                              | 41,133                                                            | \$1.936                      | 630<br>324                                               | \$7\$<br>52                                           | 1                      | :                                                    | r 2,320                                                    | r 130                                                                | 40                                                               | \$2                         |
| Brazil                     | 99                                                | 13                                | 10                                                                | 11                           | 4,496                                                    | 23                                                    | ¦ ;                    | 11                                                   | 634                                                        | 29                                                                   | 93                                                               | 7                           |
| France                     | : :                                               | : :                               | 3,100                                                             | 20                           | 1,212                                                    | 178<br>943                                            | 272                    | \$57                                                 | 4,541                                                      | 199                                                                  | 944                                                              | 48                          |
| Germany, West              | 28,451                                            | 313                               | 29,635                                                            | $1,5\overline{13}$           | 37,294                                                   | 5,215                                                 | 2,100                  | 256                                                  | 22,614                                                     | 1,642                                                                | 591<br>591                                                       | 22<br>23<br>26              |
| Italy                      | 1                                                 | !                                 | !                                                                 | !                            | 80 T                                                     | ဖစ                                                    | 1,003                  | 107                                                  | 176                                                        | 70 6                                                                 | 50.00                                                            | - 5                         |
| Japan                      | <b>;</b> ;                                        | ; ;                               | 1 1                                                               | ! ;                          | 195,159                                                  | 26,928                                                | $12.7\bar{72}$         | 1.662                                                | 42.757                                                     | 3.025                                                                | 3,772                                                            | 190                         |
| Mexico<br>Netherlands      | :                                                 | !                                 | 1                                                                 | :                            | 752                                                      | 168                                                   | 17                     | ,<br>,                                               | 2,156                                                      | 100                                                                  | 27                                                               | 100                         |
| South Africa,              | ;                                                 | :                                 | :                                                                 | :                            | 1,900                                                    | <b>7</b> 67                                           | :                      | :                                                    | 999,                                                       | 1.1.9                                                                | 367                                                              | N                           |
| Republic of Switzerland    | 15                                                | ļ                                 | 1,093                                                             | 111                          | 13                                                       | 60 5                                                  | ;                      | ;                                                    | 16                                                         | 13                                                                   | !                                                                | ;                           |
| United Kingdom             | 1,049                                             | 71,                               | 27,042                                                            | 2,190                        | 18,461                                                   | 2,058                                                 | ¦ eo                   | ۱¬                                                   | 492<br>3,627                                               | 51<br>178                                                            | 1,923                                                            | 52                          |
| Other                      | :                                                 | -                                 | 1                                                                 | !                            | 138                                                      | 22                                                    | 2                      | 1                                                    | 4,337                                                      | 162                                                                  | 82                                                               | 9                           |
| Total                      | 31,682                                            | 482                               | 102,003                                                           | 2,800                        | 267,075                                                  | 35,888                                                | 16,277                 | 2,088                                                | r 112,279                                                  | r 7,106                                                              | 9,678                                                            | 412                         |
| 1973:<br>Australia         |                                                   |                                   |                                                                   |                              | 600                                                      | 977                                                   |                        |                                                      | 300                                                        |                                                                      |                                                                  |                             |
| Belgium-Luxembourg         | 1 1                                               | 1-1                               | 69,381                                                            | 5,297                        | 110                                                      | 443<br>31                                             | ; ;                    | : :                                                  | 6,025<br>103                                               | 500<br>17                                                            | : :                                                              | 1 1                         |
| Ganada                     | 360                                               | 14                                | 195                                                               | 14                           | 4,342                                                    | 595                                                   | 10                     | 12                                                   | 711                                                        | 32                                                                   | 644                                                              | 1201                        |
| China, People's            | <b>!</b>                                          | :                                 |                                                                   | •                            | 1,000                                                    | 740                                                   | 000                    | 108                                                  | 1,02,01                                                    | 1,016                                                                | 1,130                                                            | 10                          |
| Republic of Colombia       | !                                                 | 1                                 | :                                                                 | ;                            | 17,792                                                   | 2,951                                                 | 15                     | !`                                                   | 331                                                        | 19                                                                   | :                                                                | ;                           |
|                            | 118                                               | 1.0                               | l !                                                               | 1 1                          | 3,771                                                    | 564                                                   | 17                     | <b>*</b> ⊢                                           | 1,151                                                      | 106<br>83                                                            | 1 00                                                             | 11                          |
| Germany, West<br>Hong Kong | 2,996                                             | 267                               | 15,416                                                            | 1,127                        | 43,833                                                   | 7,048                                                 | 17                     | ÷                                                    | 38,373                                                     | 3,055                                                                | 3,245                                                            | 588                         |
| India                      | :                                                 | :                                 | 1                                                                 | : :                          | : :                                                      | 1                                                     | 3 !                    | ; ;                                                  | 1,290                                                      | 79                                                                   | 7<br>7<br>7<br>8                                                 | <b>:</b> -                  |
| Italy                      | ; ;                                               | ; ;                               | ; ;                                                               | ;                            | !°                                                       | -6                                                    | !                      | ;                                                    | 304                                                        | 12                                                                   | 3,674                                                            | 111                         |
| Japan                      | :                                                 | l ;                               | 323                                                               | 52                           | 218,895                                                  | 34,170                                                | 25,336                 | 3,954                                                | 50,900                                                     | 5,721                                                                | 15,486                                                           | 1,346                       |
| Mexico                     | ! !                                               | :                                 | !                                                                 | 1                            | 242                                                      | 13                                                    | 197                    | ļ                                                    | 911                                                        | 225                                                                  | 11                                                               | ۱ <b>٬</b>                  |
| Netherlands                | : :                                               | : :                               | 20                                                                | 19                           | 5,967                                                    | 936                                                   | ₽ ¦                    |                                                      | 10,495                                                     | 1,452                                                                | 3,157                                                            | 227                         |
| Republic of                | ŀ                                                 | ;                                 | 2,227                                                             | 72                           | 4                                                        | 1                                                     | 37                     | 2                                                    | ;                                                          |                                                                      |                                                                  |                             |
| Spain                      | 821                                               | 204                               | 16                                                                | ľ                            | 11                                                       | 10                                                    | 19                     | 11                                                   | 1,125                                                      | 87                                                                   | ; ;                                                              | : :                         |
| United Kingdom             | 455                                               | 629                               | 18.469                                                            | 2.487                        | 1,355                                                    | 193<br>67                                             | 216                    | -<br>10                                              | 2,416                                                      | 162                                                                  | 3,713                                                            | 295                         |
| Other                      |                                                   | :                                 | 3                                                                 | (1)                          | 340                                                      | 46                                                    | 59                     | 12                                                   | 7,344                                                      | 386<br>386                                                           | 152                                                              | 12.6                        |
| Total                      | 4,837                                             | 584                               | 106,026                                                           | 690'6                        | 301,612                                                  | 47,446                                                | 26,977                 | 4,280                                                | 156,249                                                    | 13,834                                                               | 31,825                                                           | 2,412                       |
| Less than ½ unit.          |                                                   |                                   |                                                                   |                              |                                                          |                                                       |                        |                                                      |                                                            |                                                                      |                                                                  |                             |

Table 10.-U.S. imports for consumption of platinum-group metals, by country

|                           |                               |                           |                              |                       | ņ                            | Unwrought             |                              |                       |                              |                       |                              |                       |
|---------------------------|-------------------------------|---------------------------|------------------------------|-----------------------|------------------------------|-----------------------|------------------------------|-----------------------|------------------------------|-----------------------|------------------------------|-----------------------|
| Year and country          | Grains and nuggets (platinum) | and<br>m)                 | Sponge<br>(platinum)         | e Œ                   | Sweepings<br>waste and scrap | gs<br>scrap           | Iridium                      |                       | Palladium                    | Ħ                     | Rhodium                      | g                     |
|                           | Quantity<br>(troy<br>ounces)  | Value<br>(thou-<br>sands) | Quantity<br>(troy<br>ounces) | Value<br>(thou-sands) |
| 1972                      | 58,284                        | \$7,254                   | 350,143                      | \$42,622              | 75,210                       | \$7,600               | 24,827                       | \$4,038               | 289,055                      | \$12,929              | 47,378                       | \$8,735               |
| 1973:<br>Australia        |                               |                           |                              |                       | 706 7                        | 623                   |                              |                       |                              |                       |                              |                       |
| Belgium-Luxembourg        |                               |                           |                              |                       | 21,807                       | 3,313                 | 1 1                          | 1                     |                              |                       |                              | 1 1                   |
| Brazil<br>Canada          | -                             | Ιε                        | 1                            | 1                     | 2,706                        | 433                   | 25                           | ۱۳                    | 3.503                        | 267                   | }                            | 1                     |
| Chile                     | ' !!                          | 19                        | 1 1                          | 1 1                   | 1,761                        | 211                   | 1 1                          | ٠ :                   | 1                            | ;                     |                              | 1                     |
| Colombia                  | 16,642                        | 2,048                     | 3,254                        | 380                   | 3,714                        | 630                   | )<br>                        | 1                     | ;                            | 1                     | ;                            | 1                     |
| El Salvador               | 1                             | 1 1                       | 1 1                          | ; ;                   | 371                          | 797<br>797            | 1 1                          | 1 1                   | 1 1                          | 1 1                   | 1 1                          | ! !                   |
| Finland                   | }                             | 1                         | !                            | 1                     | 1,261                        | 92                    | !                            | 1                     | 1                            | 1                     | !                            | 1                     |
| France Germany, West      | ; ;                           |                           | 408<br>5,150                 | 120<br>681            | 1 1                          | ; ;                   | 98                           | 188                   | 2,382                        | 197                   | 60                           | ¦=                    |
| Ireland<br>Japan          | ; ;                           | ; ;                       | 24.952                       | 3.597                 | 32<br>32<br>32<br>32         | ∞ 4                   | ; ;                          |                       | 1,600                        | 132                   | 1 1                          | 11                    |
|                           | 1                             | 1                         | 112                          | 14                    | 12,710                       | 598<br>329            | l                            | 1                     | 42.366                       | 3.399                 | 113                          | 12<br>21              |
| New Zealand               | 1 28                          | 134                       |                              |                       | 61                           | 9                     |                              | <b>!</b>              | 5,650                        | 188                   |                              | 111                   |
| Panama                    | 1                             |                           | 1                            |                       | 168                          | œ                     | 1                            | 1                     | 1                            | 1                     | 1                            | . !                   |
| Republic of               | 400                           | 09                        | 88,794                       | 13,166                | 5,977                        | 727                   | 1,860                        | 544                   | 135,365                      | 9,607                 | 2,045                        | 408                   |
| Switzerland               | 292                           | - <del>4</del>            | 1 1                          |                       | 4,253                        | 391                   | 1 1                          | 1 1                   | 11,424                       | 752                   | 1 1                          | 1 1                   |
| U.S.S.R<br>United Kingdom | 490<br>468                    | 75<br>35                  | 2,486<br>374,115             | 416<br>54,734         | 917                          | 130                   | 17,730                       | 4,233                 | 54,275<br>239,500            | 3,732<br>18,138       | 14,151<br>56,444             | 3,048 $12,097$        |
| UruguayVenezuela          | 1 1                           | 1 1                       | 1 1                          |                       | 500                          | 9                     | 1 1                          | 1 1                   | 1 1                          | 1 1                   | 1 1                          | 1 1                   |
| Total                     | 19,146                        | 2,396                     | 499,271                      | 73,108                | 84,534                       | 10,229                | 19,701                       | 4,816                 | 496,065                      | 36,613                | 72,856                       | 15,587                |

See footnotes at end of table.

Table 10.-U.S. imports for consumption of platinum-group metals, by country-Continued

|                              |                              | Unwrought       | ght                             |                           |                              |                       |                              |                       | Semima                       | Semimanufactured          | - Po                            |                           |                              |                       |
|------------------------------|------------------------------|-----------------|---------------------------------|---------------------------|------------------------------|-----------------------|------------------------------|-----------------------|------------------------------|---------------------------|---------------------------------|---------------------------|------------------------------|-----------------------|
|                              | Ruthenium                    | u.              | Other platinum-<br>group metals | atinum-<br>netals         | Platinum                     | un                    | Palladium                    | lium                  | Rhodium                      | H                         | Other platinum-<br>group metals | tinum-<br>etals           | Total                        | - 1                   |
| Year and country             | Quantity<br>(troy<br>ounces) | Value<br>(thou- | Quantity<br>(troy<br>ounces)    | Value<br>(thou-<br>sands) | Quantity<br>(troy<br>ounces) | Value<br>(thou-sands) | Quantity<br>(troy<br>ounces) | Value<br>(thou-sands) | Quantity<br>(troy<br>ounces) | Value<br>(thou-<br>sands) | Quantity<br>(troy<br>ounces)    | Value<br>(thou-<br>sands) | Quantity<br>(troy<br>ounces) | Value<br>(thou-sands) |
| 1972                         | 61,191                       | \$2,602         | 103,419                         | \$12,134                  | 207,960                      | \$22,869              | 613,174                      | \$22,488              | 3,426                        | \$543                     | 2,282                           | \$278                     | 1,836,349                    | \$144,092             |
| 1973:                        |                              |                 |                                 |                           |                              |                       |                              |                       |                              |                           |                                 |                           | 7 007                        | 693                   |
| Australia                    | !                            | 1               | 1                               | 1                         | 1                            | 1                     | !                            | ł                     | !                            | {                         | 1                               | 1                         | 21.807                       | 3,313                 |
| Belgium-Luxembourg -         | !                            | !               | 1                               | 1                         | 1                            | !                     | ŀ                            | ł                     | !                            | 1                         | 1                               | 1                         | 2.706                        | 433                   |
| Brazil                       | 8,200                        | 349             | 221                             | 19                        | 274                          | 42                    | 1,589                        | 11                    | ! !                          |                           |                                 | 1 1                       | 33,281                       | 3,132                 |
| Chile                        | 1                            | !               | 1                               | !                         | 100                          | 16                    | !                            | ŀ                     | !                            | 1                         | ł                               | }                         | 1017                         | 8 530                 |
| Colombia                     | !                            | ;               | !                               | 1                         | 3,600                        | 4.(2                  | 1                            | 1                     | <b>¦</b>                     | !                         | 1                               | 1                         | 989                          | 296                   |
| Costa Rica                   | !                            | 1               | }                               | !                         | 1                            | 1                     | 1                            | ţ                     | 1                            | !                         | !                               | }                         | 371                          | 26                    |
| El Salvador                  | 1                            | !               | 1                               | ;                         | 1                            | 1                     | 1                            | l                     | 1                            | !                         | !                               | 1                         | 1 261                        | 6                     |
| Finland                      | !                            | 1               | i                               | !                         | 1                            | 1 6                   | !                            | !                     | ı                            | !                         | !                               | }                         | 953                          | 192                   |
| France                       | !                            | !               | }                               | !                         | 040                          | 7                     | 966 6                        | 186                   | !                            | 1                         | !                               | 1                         | 10.957                       | 1.147                 |
| Germany, West                | !                            | !               | !                               | !                         | 1                            | 1                     | 9,000                        | 9                     | i                            | ļ                         | !                               | }                         | 93                           | 6                     |
| Ireland                      | ;                            | } }             | 109.231                         | 16.564                    | 24.754                       | 3,533                 | 3,896                        | 295                   |                              |                           |                                 | 1 1                       | 164,468                      | 24,125                |
| Mexico                       | ; ;                          | i               | . !                             |                           |                              | 1                     | 1                            | 1                     | 1                            | 1;                        | 1                               | !                         | 12,935                       | 624                   |
| Netherlands                  | 1                            | !               | 4,501                           | 449                       | 302                          | 40                    | 1                            | !                     | 162                          | 34                        | !                               | ì                         | 49,649                       | 2).2,4                |
| New Zealand                  | 1                            | ¦;              | 10                              | 10                        | 100                          | 10                    | 100                          | 16                    | !                            | !                         | !                               | }                         | 28 987                       | 9.059                 |
| Norway                       | 1,525                        | 9.              | 22,578                          | 107                       | 0,354                        | 000                   | 1,000                        | 2                     | !                            | 1                         | 1                               | ì                         | 168                          | oc                    |
| Panama                       | !                            | ł               | !                               | 1                         | ŀ                            | }                     | 1                            | !                     | 1                            | 1                         | <b>¦</b>                        | ŀ                         | 2                            |                       |
| South Africa,<br>Republic of | 4.282                        | 227             | 4,338                           | 424                       | 100                          | 13                    | 2,250                        | 176                   | !                            | 1                         | 1                               | ł                         | 245,411                      | 25,352                |
| Sweden                       |                              | ł               | -                               | !                         | ŀ                            | 1                     | 19                           | 11                    | 1                            | !                         | !                               | 1                         | 4,253                        | 991                   |
| Switzerland                  | !                            | 1               | 1,620                           | 360                       | 10,787                       | 1,677                 | 5,026                        | 377                   | 100                          | 100                       | !                               | !                         | 29,149                       | 75 956                |
| U.S.S.R                      | F2 911                       | 9 799           | 92,429<br>8,666                 | 14,077                    | 88,781<br>25,185             | 3,716                 | 26,381                       | 2.084                 | 20,130                       | 1,161                     | 3,806                           | 621                       | 806,423                      | 99,800                |
| Taxanan                      | 111600                       | 1               |                                 |                           |                              | . !                   | 1                            |                       | 1                            | 1                         | !                               | ;                         | 200                          | 09                    |
| Vanoznolo                    | 1                            | 1               |                                 |                           | !                            | 1                     | ;                            | !                     | 1                            | !                         | !                               | 1                         | 47                           | q                     |
| Total                        | 67,218                       | 3,375           | 243,                            | 33,877                    | 155,715                      | 22,949                | 658,240                      | 43,500                | 20,355                       | 1,761                     | 3,806                           | 621                       | 2,340,491                    | 248,832               |
|                              |                              |                 |                                 |                           |                              |                       |                              |                       |                              |                           |                                 |                           |                              |                       |

<sup>1</sup> Less than ½ unit.

In addition, platinum content from materials n.e.s.: 1972, 45,229 troy ounces (\$3,222,233); and platinum content from metal ores, 10,606

Note: In addition, platinum content from materials n.e.s.: 12,488 troy ounces (\$1,190,125); and platinum content from precious metal ores, 149,654 troy ounces (\$19,477,220).

#### WORLD REVIEW

World production of the platinum-group metals increased 21% in 1973 to 5.2 million troy ounces, as demand increased, especially in the United States and Japan. Most of the increment came from Republic of South Africa producers, who were gearing up for anticipated high demand in the United States for platinum and palladium in automobile emissions control catalysts, beginning in 1974. As in the past, virtually all (99%) of the platinum-group metals were mined in just three countries, the U.S.S.R., the Republic of South Africa, and Canada.

In the United States, which imports about 99% of its requirements for primary platinum-group metals, mine production rose 17% to 19,980 troy ounces. Platinum metals were produced in Japan as byproducts of copper refining, and small amounts

of platinoid concentrates were produced in the Philippines as byproducts of nickelcobalt mining. Placer mining continued in Colombia at the same pace that it has for many years, yielding about 26,000 ounces of platinoids, which were refined in the United States.

Canada.—Canadian production of platinum-group concentrates and refined metals fell 29% in 1973, to 288,000 troy ounces in spite of a 4% rise in nickel production. In Canada, the platinum-group metals are produced as byproducts of nickel-copper mining by two companies, The International Nickel Co. Ltd. (INCO), and Falconbridge Nickel Mines, Ltd. The mines are in Sudbury, Ontario, and Thompson, Manitoba. INCO's platinoid-bearing concentrates are refined to metal in the United

Table 11.—Imports of platinum-group metals, by source
(Percent of total imports)

| Source                   | Platinum-group | Platinum | Palladium | Rhodium |
|--------------------------|----------------|----------|-----------|---------|
| U.S.S.R                  | 38             | 11       | 58        | 37      |
| United Kingdom           | 34             | 53       | 23        | 61      |
| Republic of South Africa | 10             | 13       | 12        | 2       |
| Japan                    | 7              | 7        | (1)       | (1)     |
| Other                    | 11             | 16       | 7         | (2)     |
| Total                    | 100            | 100      | 100       | 100     |

<sup>&</sup>lt;sup>1</sup> Included with "Other."

Table 12.—Platinum-group metals: World production, by country <sup>1</sup>
(Troy ounces)

| Country                                                                           | 1971      | 1972        | 1973 р    |
|-----------------------------------------------------------------------------------|-----------|-------------|-----------|
|                                                                                   |           |             |           |
| Australia:                                                                        |           |             | e 1.500   |
| Palladium, metal content, from nickel orePlatinum, metal content, from nickel ore |           |             | • 450     |
| Canada: Platinum and other platinum-group metals                                  | 475,169   | 406.048     | 288,000   |
| Colombia: Placer platinum                                                         | 25,610    | 24,111      | 26,358    |
| Ethiopia: Placer platinum                                                         | 217       | 248         | 235       |
| Finland: Platinum-group metals recovered from domestic                            |           |             |           |
| copper ores by copper refinery e                                                  | 600       | 650         | 725       |
| Japan:                                                                            |           |             |           |
| Palladium from refineries                                                         | 5,375     | 5,659       | 10,014    |
| Platinum from refineries                                                          | 3,451     | 4,240       | 6,827     |
| Philippines:                                                                      | •,        | •           |           |
| Palladium metal                                                                   | 1,756     | 4,810       | 4,205     |
| Platinum metal                                                                    | 703       | 2,712       | 2,464     |
| South Africa, Republic of:                                                        |           | -,          | •         |
| Platinum-group metals from platinum ores e                                        | 1,250,000 | r 1.450,000 | 2,360,000 |
| Osmiridium from gold ores (sales) e                                               | 3,200     | 3,000       | 2,800     |
| U.S.S.R.: Placer platinum and platinum-group metals recov-                        | -,        | -,          | •         |
| ered from platinum-nickel-copper ores e                                           | 2,300,000 | 2,350,000   | 2,450,000 |
| United States: Crude placer platinum and byproduct metals                         |           |             |           |
| recovered largely from domestic gold and copper refining                          | 18,029    | 17,112      | 19,980    |
| Total                                                                             | 4.084.110 | r 4,268,590 | 5,173,558 |

e Estimate. Preliminary. Prevised.

<sup>&</sup>lt;sup>2</sup> Less than ½ unit.

<sup>1</sup> Excludes refined platinum production from Norway, which is derived from imported raw materials, chiefly (if not wholly) of Canadian origin, in order to avoid double counting.

Kingdom, whereas Falconbridge's concentrates are refined in the United States after intermediate processing in Norway.

South Africa, Republic of.—South Africa was the world's largest producer of platinum (1.5 million ounces), and the second largest producer, after the U.S.S.R., of the total platinum-group metals (2.4 million ounces) in 1973. The platinum-group metals were the principal products at five operating mines, all of which were on the Merensky Reef member of the Bushveld Igneous Complex. The Reef, which is in the Transvaal, is a remarkably uniform and extensive orebody in which recoverable values are about 0.2 troy ounce of platinoids per ton of ore. The metals are present in the proportions of platinum 62%, palladium 25%, and the other four metals 13%. (Much of the data available from the Republic of South Africa are in terms of platinum alone. Such data have been converted to platinum-group metals data in this report by applying the 62% factor to all mines.) In addition, a small amount of osmiridium was produced as a byproduct of gold mining. South African reserves of platinum-group metals were estimated at greater than 325 million troy ounces,7 and resources at between 650 and 1,220 million troy ounces.8

Rustenburg Platinum Mines, Ltd., the oldest and largest producer, continued its expansion program, aimed at a capacity of 2.5 million ounces by 1976. By yearend 1973, its production rate was estimated to have reached about 1.6 million troy ounces of platinum-group metals per year. Rustenburg's 3-year contract with Ford Motor Co. for 500,000 ounces of platinum per year, was stretched to 5 years, covering 1975 to 1979, and palladium was substituted for one-fourth of the platinum. Development of the Amandelbult mine continued some 20 miles northeast of the Union mine; it was expected to be operational in 1976. Work also continued on a fivefold expansion of the refinery at Wadeville (jointly owned with Johnson, Matthey & Co.). In the past, virtually all of the refining of Rustenburg concentrates and mattes has been done by Johnson, Matthey & Co. in the United Kingdom.

After signing a 10-year contract with General Motors Corp. in late 1972 to supply 300,000 ounces of platinum and 120,000 ounces of palladium per year, Impala Platinum, Ltd., the second largest producer, announced early in 1973 its intention of expanding production from 560,000 ounces of metals per year to 1.2 million ounces, and later in the year increased the target to 1.5 million ounces to be available by the end of 1974. Impala is a vertically integrated company with its own refinery at Springs, near Johannesburg, and with its own sales organization.

Western Platinum Ltd. completed its second full year of operation, producing on the order of 80,000 ounces of platinumgroup metals. Concentrates were smelted to a copper-nickel matte, which was sent to Falconbridge Nickel Mines' electrolytic refinery in Kristiansand, Norway, for processing. The anode slimes from Norway were sent to PGP Industries in California for final refining and distribution. Lonrho, Ltd. (which with Falconbridge and Superior Oil Co., owns Western Platinum), was building a refinery of 150,000-ounce capacity at Brakpan, Transvaal, intended to toll-refine Western's output starting in April 1974.

Atok Platinum Mines, Pty., Ltd., continued its comparatively small-scale operation, producing about 18,000 ounces of platinum-group metals. Concentrates were smelted to matte at Western's smelter and sent to Falconbridge's refinery in Norway. Expansion of capacity to 40,000 ounces of platinum-group metals per year was in progress.

U.S.S.R.—The U.S.S.R. was the world's largest producer of the platinum-group metals in 1973. Nearly 2.5 million troy ounces was mined from placer deposits in the central Urals, and from lode deposits (as a byproduct of nickel and copper mining) in the Norilsk-Talnakh area, of northwestern Siberia, and in the Petsamo district of the Kola Peninsula. Production from placer deposits has been declining for decades, and probably contributed no more than 10% of the national production in 1973. Platinum and palladium comprised about 90% of the output of the refined metals, and the platinum/palladium ratio was estimated to lie between 2 and 3.5 to 1. Expansion of the mining-smelting com-

<sup>&</sup>lt;sup>7</sup> Watson, D. A. B. A New Mining Area for Rustenburg. Platinum Metals Rev., v. 15, No. 1, January 1971, pp. 26-28.

<sup>8</sup> Clark, A. L., N. J. Page, G. A. Desborough, and R. L. Parker. Platinum-Group Metals, Chapter in United States Mineral Resources. U.S. Geol. Survey Prof. Paper 820, pp. 537-545.

Newman, S. C. Platinum. S. Africa Inst. of Min. and Met. Trans., 1973, pp. A52-A68.

plex near Talnakh continued in 1973. The Oktyabr'skiy mine was being readied for production in 1974, and development of the Taimyr mine was begun.9 Work continued on what was reported to be the world's largest nickel smelter.10 These developments imply a major expansion in platinum-group metals production by the end of the decade.

#### **TECHNOLOGY**

In February the National Academy of Sciences issued a report on its study, undertaken at the behest of Congress, on the technological feasibility of meeting the motor vehicle emissions requirements of the Clean Air Act of 1970. The report indicated that the requirements could be met, at least for the 1975 model year, but catalystexpressed reservations about equipped engines vis à vis other types, as the stratified charge engine, on the grounds of cost, fuel economy, maintainability, and durability.11 However, the durability of automotive catalysts appeared to be sufficient to satisfy EPA requirements.12 The National Materials Advisory Board reported on the search for substitutes for platinum in automobile emission control devices and in petroleum refining.18 They concluded, with respect to automotive emissions that, ". . . at present, no base metal catalyst appears promising for use in the oxidizing reactor." They found also that, "... no complete substitutes for platinum in catalytic reforming are currently available and the likelihood of developing sufficiently active and selective catalysts to replace it in existing reforming reactors is extremely remote."

The Second International Symposium on Platinum Coordination Complexes in Cancer Chemotherapy was held in Oxford, England, in April. Clinical trials of the first described cancer inhibitory compound, cisdichlorodiammine platinum II, were reviewed, and discussions were held on the chemistry and biological effects of platinum compounds.14 The relationships between certain structural features of platinum complexes and antitumor activity were explored in a paper published earlier in the year.15

Interest in ruthenium-molybdenum and ruthenium-tungsten alloys, which in the early 1960's had been studied for possible use in nuclear reactors, was revived when it was found that the temperature coefficients of resistivity of thin films of the alloys could be varied from negative to positive by controlling the temperature of the substrate during deposition. This property suggested use as temperature-compensating components of integrated circuits. The hardness, high melting points, and good resistance to corrosion of these alloys suggested possible uses in electrical contacts operating under severe conditions.

A new family of platinum alloys containing rhodium, tungsten, hafnium, and titanium was developed for the encapsulation of plutonium oxide heat sources used in the thermoelectric power generators of space vehicles.16

Considerable experimental work continued on the development of dispersion strengthened (DS) platinum and platinum alloys. The disperse phase, usually with thoria or alumina present in amounts of about 0.5 to 2 volume-percent, hardens the metal and stabilizes its grain structure. The DS metals exhibit superior strength and durability under stress at high temperatures, but at the same time, retain, nearly unchanged, the room-temperature mechanical working properties and electrical properties of the pure metal or alloy. Some possible applications are high-temperature thermocouples and other temperature sensors, spark plugs, high-temperature conductors, and equipment for containing and handling molten glass.17

<sup>&</sup>lt;sup>9</sup> Shabad, T. Soviet Starts Work in Arctic Mine To Produce Platinum-Group Metals. New York Times, v. 123, No. 42,450, Apr. 15, 1974.

p. 47.

10 Metals Sourcebook. V. 1, No. 22, Nov. 19,

p. 47.

10 Metals Sourcebook. V. 1, No. 22, Nov. 19, 1973, p. 2.

11 National Academy of Sciences. Report by the Committee on Motor Vehicle Emissions. Feb. 12, 1973, 139 pp.

12 Aykan, K., W. A. Manion, J. M. Mooney and R. D. Hoyer. Durability of Monolithic Auto Exhaust Oxidation Catalysts in the Absence of Poisons. SAE, Paper 730592, 1973, 8 pp.

13 National Materials Advisory Board. Substitute Catalysts for Platinum in Automobile Emission Control Devices and Petroleum Refining. NMAB 297, 1973, 94 pp.

14 Connors, T. A. Platinum Coordination Complexes in Cancer Chemotherapy. Platinum Metal Rev., v. 17, No. 1, April 1973, pp. 2-13.

15 Cleare, M. J., and J. D. Hoeschele. Anti-Tumor Platinum Compounds. Platinum Metal Rev., v. 17, No. 1, April 1973, pp. 2-13.

16 Materials Engineering. Chemically Inert Precious Metals Good for Tough Thermal Uses. V. 78, No. 5, October 1973, pp. 22-25.

17 Work cited in footnote 16.

### **Potash**

#### By William F. Keyes 1

After a moderate increase in 1972, domestic production of potash declined in 1973. A strong demand during most of the year, particularly in the last 6 months, resulted in a 755,000 ton increase in apparent consumption of K2O. Exports rose moderately. There was a strong increase in imports, and producers' stocks declined to less than half the level of the previous year. The portion of domestic apparent consumption supplied by imports continued to mount and in 1973 equaled 65%. One mine in the United States ceased operations at midyear, and other mines reported production gains, some of them significantly greater than those in 1972. As the year ended, prorationing and pricing regulations in the Province of Saskatchewan, Canada, were overtaken by a rising demand for potash, and quotas were increased significantly. However, transportation presented a problem, and at yearend, potash was in short or tight supply in many areas of the United States.

Table 1.-Salient statistics on potassium salts (Thousand short tons and thousand dollars)

| Item                          | 1969   | 1970   | 1971    | 1972    | 1973    |
|-------------------------------|--------|--------|---------|---------|---------|
| United States                 |        |        |         |         |         |
| Production                    | 4,918  | 4,853  | 4,543   | 4,738   | 4,684   |
| Approximate K <sub>2</sub> O  |        |        |         |         |         |
| equivalent                    | 2,804  | 2,729  | 2,587   | 2,659   | 2,603   |
| Value                         | 73.572 | 98,123 | 100,527 | 106,680 | 112,613 |
| Sales by producers            | 5,340  | 4,703  | 4.578   | 4,653   | 5,174   |
| Approximate K <sub>2</sub> O  | -,     | -•     | •       | •       |         |
| equivalent                    | 3,069  | 2,669  | 2,592   | 2,618   | 2,865   |
| Value at plant                | 78,062 | 92,373 | 102,099 | 104,680 | 123,738 |
| Average value per ton         | 14.62  | 19.64  | 22.30   | 22.50   | 23.92   |
| Exports 1                     | 1,233  | 966    | 1,033   | 1.353   | 1,579   |
| Approximate K <sub>2</sub> O  | 1,200  | 200    | 1,000   | 1,000   | 2,010   |
| equivalent                    | 700    | 544    | 564     | 764     | 889     |
|                               | 33,061 | 28,473 | 35,323  | 45.858  | 57,997  |
| Value                         |        |        | 4,672   | 4.979   | 6,064   |
| Imports for consumption 1     | 3,926  | 4,403  | 4,672   | 4,979   | 0,004   |
| Approximate K <sub>2</sub> O  | 0.000  |        | 0.700   | 0.001   | 0 504   |
| equivalent                    | 2,332  | 2,605  | 2,766   | 2,961   | 3,594   |
| Value                         | 60,703 | 94,734 | 111,844 | 119,666 | 146,436 |
| Apparent consumption 2        | 8,033  | 8,140  | 8,217   | 8,279   | 9,659   |
| Approximate K <sub>2</sub> O  |        |        |         |         |         |
| equivalent                    | 4,701  | 4,730  | 4,794   | 4,815   | 5,570   |
| World Production, Marketable: |        |        |         |         |         |
| Approximate K2O equivalent    | 19,198 | 20,013 | 21,945  | 22,497  | 24,212  |

Excludes potassium chemicals and mixed fertilizers.
 Measured by sales plus imports minus exports.

#### DOMESTIC PRODUCTION

Domestic production of marketable potassium salts decreased 2.1% in 1973, compared with that in 1972, in terms of K2O equivalent. Nevertheless, the value of production increased to a total of \$112.6 million. Table 2 provides details of production and sales by product.

During 1973, one company, Teledyne Potash (formerly U.S. Potash and Chemical

Co.), ceased operations. Six producers were, therefore, left in operation in New Mexico: AMAX Chemical Corp., Duval Corp., International Minerals & Chemical Corp., Kerr-McGee Corp., National Potash Co., and Potash Co. of America, a division of Ideal Basic Industries, Inc. In Utah three compa-

<sup>&</sup>lt;sup>1</sup> Physical scientist, Division of Nonmetallic Minerals—Mineral Supply.

nies produced potash: Texas Gulf Inc., which produced potash by solution mining a bedded deposit; Great Salt Lake Minerals and Chemicals Corp., which treated brines from the Great Salt Lake; and Kaiser Aluminum & Chemical Corp., which treated natural brines near Wendover.

Searles Lakes Chemical Corp., a subsidiary of Occidental Petroleum Corp., continued to develop plans for producing potash and other minerals from Searles Lake brines at Trona, Calif. The mining plan was awaiting approval by the U.S. Geological Survey which is required for operations on U.S. Government lands. Output of 100,000 short tons of sodium borate, 150,000 short tons of sodium carbonate, and 115,000 short tons of potassium sulfate annually is envisioned.

Eighty-three percent of the domestic potash was produced in New Mexico. New

Mexico's share declined 3% because of the closing of Teledyne Potash and because of production increases in Utah and California. The average K<sub>2</sub>O content of crude salts produced at New Mexico mines declined again, to 16.1%. Total plant capacity of potash producers in the United States was about 3.5 million tons of K2O equivalent prior to the closing of the Teledyne mine.

In 1973 imports of potash were equal to 65% of domestic consumption. This percentage had been increasing for a decade and, given the existence of the huge Canadian industry, it appeared that the trend would not be reversed. These increasing imports, coupled with the lower grade of domestic ore now being mined and the closing of one mine, all indicate continuing relative decline in the domestic potashproducing industry unless potash prices rise more rapidly than the general price level.

Table 2.-Marketable potassium salts produced and sold or used in the United States, in 1973, by product

(Thousand short tons and thousand dollars)

|                 |                                                      |              | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------|------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | Production                                           |              | \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sold or used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Gross<br>weight | K <sub>2</sub> O<br>equivalent                       | Value 1      | Gross<br>weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | K <sub>2</sub> O<br>equivalent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                 |                                                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                 |                                                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                 |                                                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                 |                                                      | 18,935       | 1,059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 645                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21,490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |                                                      | 10,022       | 571                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12,989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | 207                                                  | 7,802        | 461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | 118                                                  | 9,636        | 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11,372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 401             | 149                                                  | 8,311        | 566                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11,558                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2,339           | 1,309                                                | 54,705       | 2,926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 67,990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |                                                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                 |                                                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                 |                                                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 933             | 569                                                  | 20 595       | 896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 546                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19,718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |                                                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8,967                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                 |                                                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9,405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                 |                                                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9,628                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                 |                                                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8,029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                 |                                                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2,040           | 1,294                                                | 57,908       | 2,248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 55,747                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4,684           | 2,603                                                | 112,613      | 5,174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,865                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 123,738                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | 927 442 341 228 401 2,339  933 394 384 222 411 2,345 | Gross weight | Gross weight         K2O equivalent         Value 1           927         565         18,935           442         270         10,022           341         207         7,802           228         118         9,636           401         149         8,311           2,339         1,309         54,705           933         569         20,595           394         241         9,489           384         233         9,364           411         135         8,947           2,345         1,294         57,908 | Gross weight         K20 equivalent         Value 1         Gross weight           927         565         18,935         1,059           442         270         10,022         571           341         207         7,802         461           228         118         9,636         270           401         149         8,311         566           2,339         1,309         54,705         2,926           933         569         20,595         896           394         241         9,439         375           384         233         9,364         385           222         115         9,563         224           411         135         8,947         369           2,345         1,294         57,908         2,248 | Gross weight         K₂O equivalent         Value¹         Gross weight         K₂O equivalent           927         565         18,935         1,059         645           442         270         10,022         571         349           341         207         7,802         461         281           228         118         9,636         270         139           401         149         8,311         566         206           2,339         1,309         54,705         2,926         1,620           933         569         20,595         896         546           394         241         9,439         375         230           384         233         9,364         385         234           222         115         9,563         224         115           411         135         8,947         369         120           2,345         1,294         57,908         2,248         1,245 |

<sup>&</sup>lt;sup>1</sup> Derived from reported value of "Sold or used." <sup>2</sup> Figures for chemical and soluble muriates and manure salts are included with potassium-magnesium sulfate. Data may not add to totals shown because of independent rounding.

POTASH 1053

Table 3.-Crude potassium salts produced, and marketable salts produced and sold or used in New Mexico

(Thousand short tons and thousand dollars)

|                    | Crud            | le salts¹                      |                 | Mark                           | etable po | tassium         | salts                          |         |
|--------------------|-----------------|--------------------------------|-----------------|--------------------------------|-----------|-----------------|--------------------------------|---------|
| -                  | Mine 1          | production                     |                 | Production                     |           |                 | Sold or used                   | ì       |
| Period             | Gross<br>weight | K <sub>2</sub> 0<br>equivalent | Gross<br>weight | K <sub>2</sub> O<br>equivalent | Value 2   | Gross<br>weight | K <sub>2</sub> O<br>equivalent | Value   |
| 1972:              |                 |                                |                 |                                |           |                 |                                |         |
| January-June       | 8,718           | 1,460                          | 2,128           | 1,187                          | 47,018    | 2,336           | 1,294                          | 51,400  |
| July-December      | 8,567           | 1,411                          | 1,994           | 1,108                          | 44,097    | 1,753           | 991                            | 38,461  |
| Total <sup>3</sup> | 17,285          | 2,871                          | 4,122           | 2,296                          | 91,115    | 4,089           | 2,285                          | 89,861  |
| 1973:              |                 |                                | /               |                                |           |                 |                                |         |
| January-June       | 8,671           | 1,411                          | 1,998           | 1,112                          | 45,075    | 2,498           | 1,372                          | 56,291  |
| July-December      | 8,421           | 1,335                          | 1,940           | 1,055                          | 46,920    | 1,916           | 1,049                          | 46,747  |
| Total 3            | 17,092          | 2,746                          | 3,938           | 2,168                          | 91,996    | 4,414           | 2,422                          | 103,038 |

 $<sup>^1</sup>$  Sylvite and langbeinite.  $^2$  Derived from reported value of "Sold or used."  $^3$  Data may not add to totals shown because of independent rounding.

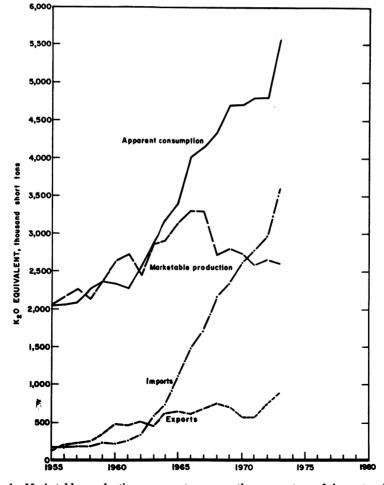



Figure 1.-Marketable production, apparent consumption, exports, and imports of potassium salts measured in K2O equivalent.

#### **CONSUMPTION AND USES**

Apparent consumption of potash in the United States increased to 5.57 million short tons of K<sub>2</sub>O in 1973, as measured by sales reported by domestic producers plus imports less exports; this was an increase of 16% over the 1972 level.

The Potash Institute of North America reported (table 4) U.S. sales of domestic and Canadian potash of 5.65 million short tons, in terms of  $K_2O$  equivalent, of which 307,000 tons, or 5.4%, was sold as chemical potash. In addition, offshore imports of fertilizer  $K_2O$  into the United States were reported as 87,573 tons of  $K_2O$ . Some 42% of agricultural potash was consumed in the north central States of Illinois, Indiana, Iowa, Ohio, and Minnesota.

Table 4.—Sales of potash salts in 1973, by State of destination

(Short tons K2O equivalent)

| Destination   | Agricul-<br>tural<br>potash | Chemical<br>potash | Destination    | Agricul-<br>tural<br>potash | Chemical<br>potash   |
|---------------|-----------------------------|--------------------|----------------|-----------------------------|----------------------|
| Alabama       | 124,735                     | 46,976             | Nebraska       | 55,245                      | 400                  |
| Arizona       | 982                         | 88                 | Nevada         | 41                          | 288                  |
| Arkansas      | 73,791                      | 1,183              | New Hampshire  | 457                         |                      |
| California    | 68.181                      | 6,365              | New Jersey     | 17,430                      | 1,863                |
| Colorado      | 11.216                      | 435                | New Mexico     | 2,324                       | 10                   |
| Connecticut   | 5.279                       | 439                | New York       | 69,442                      | 90,083               |
| Delaware      | 21,541                      | 23,422             | North Carolina | 139,494                     | 1,530                |
| Florida       | 261,208                     | 1.337              | North Dakota   | 21,435                      | 26                   |
| Georgia       | 281,749                     | 3,558              | Ohio           | 362,304                     | 10,134               |
| Hawaii        | 25,973                      | -,                 | Oklahoma       | 29,061                      | 501                  |
| Idaho         | 15.012                      |                    | Oregon         | 19.150                      | 1.187                |
| Illinois      | 654,506                     | 50,449             | Pennsylvania   | 67,840                      | 4,966                |
| Indiana       | 461,192                     | 7.767              | Rhode Island   | 1,978                       | 630                  |
| Iowa          | 405,689                     | 864                | South Carolina | 101.684                     | 989                  |
| Kansas        | 45,508                      | 1.865              | South Dakota   | 14.262                      |                      |
| Kentucky      | 119,801                     | 17,883             | Tennessee      | 123,436                     | 274                  |
| Louisiana     | 65,637                      | 1,111              | Texas          | 311,887                     | 13,133               |
| Maine         | 13.635                      | 196                | Utah           | 615                         | 141                  |
| Maryland      | 57,948                      | 1,532              | Vermont        | 7.164                       |                      |
| Massachusetts | 4.749                       | 890                | Virginia       | 97.364                      | 512                  |
| Michigan      | 146,086                     | 1.153              | Washington     | 32.574                      | 3.275                |
| Minnesota     | 347,830                     | 444                | West Virginia  | 4.130                       | 811                  |
| Mississippi   | 163,660                     | 1.762              | Wisconsin      | 254.581                     | 1,556                |
| Missouri      | 225,954                     | 4.585              | Wyoming        | 2,375                       | 699                  |
|               |                             |                    |                |                             |                      |
| Montana       | 5,597                       | 137                | Total          | <sup>1</sup> 5,343,732      | <sup>2</sup> 307,449 |

¹ Distribution of K<sub>2</sub>O—1,377,983 tons as standard muriate, 1,960,166 tons as coarse muriate, 1,385,907 tons as granular muriate, 376,890 tons as soluble muriate, and 242,786 tons as sulfates. ² Distribution of K<sub>2</sub>O—204,774 tons as muriate, 98,000 tons as soluble muriate, and 4,675 tons as

Source: Potash Institute of North America, Atlanta, Ga.

#### **STOCKS**

Domestic yearend stocks of marketable potassium salts decreased 56% to 206,000 short tons. This was the lowest level of producers' stocks since the early 1950's when the industry was expanding to its present size.

Table 5.—Yearend stocks of marketable potassium salts in the United States (Thousand short tons)

|      |    |                     | Stocks          | s, Dec. 31          |
|------|----|---------------------|-----------------|---------------------|
| Ye   | ar | Number of producers | Gross<br>weight | K2O equiv-<br>alent |
| 1969 |    | 12                  | 723             | 392                 |
| 1970 |    | 13                  | 875             | 454                 |
| 1971 |    | 11                  | 796             | 428                 |
| 1972 |    | 11                  | r 878           | r 468               |
| 1973 |    | 11                  | 388             | 206                 |

r Revised.

POTASH 1055

#### **PRICES**

Bulk prices for potash remained relatively steady under Cost of Living Council guidelines until October 25, when fertilizer materials, including potash, were exempted from phase 4 controls. The Council explained its action by pointing out that fertilizer producers had insufficient cost justification to implement price increases under Economic Stabilization Program regulations, and consequently the gap between domestic and world prices was so large that needed domestic supplies were shipped abroad. Potash prices rose thereafter but at a rate slower than that of other fertilizer materials and slower than raw materials in general.

The Saskatchewan Government continued to maintain a floor price of 33.75 cents per unit of K<sub>2</sub>O for all sales of potash. As market demand increased, and as permitted production under the prorationing scheme was also increased, prices rose on the world

market, and the floor price became inoperative.

Table 6.—Bulk prices for potash in 1973 1 (U.S. cents per unit K2O)

|                        | Jan.<br>1 | Feb.  | Мау<br>15 | Aug.<br>1 | Dec.<br>31 |
|------------------------|-----------|-------|-----------|-----------|------------|
| Muriate, 60%           |           |       |           |           |            |
| K <sub>2</sub> O mini- |           |       |           |           |            |
| mum:                   |           |       | ~-        |           | 4.4        |
| Standard _             | 33.75     | 35    | 35        | 35        | 44         |
| Soluble                |           |       |           |           |            |
| 62%/63%                |           |       | 00        | 37        | 47         |
| K2O                    | 36        | 39    | 39        | 42        | 47         |
| Coarse                 | 39        | 42    | 42        | 42<br>43  | 49         |
| Granular               | 40        | 43    | 43        | 43        | 49         |
| Sulfate of             |           |       |           |           |            |
| potash, 50%            |           |       |           |           |            |
| K <sub>2</sub> O mini- |           |       |           |           |            |
| mum:                   |           |       |           | ~=        | 00         |
| Regular _              | 80        | 80    | 80        | 85        | 90         |
| Granular _             | 40        | 43    | 43        | 43        | 49         |
| Mine run salts,        |           |       |           |           |            |
| minimum                |           |       |           | 15.05     | 17 65      |
| 20% K <sub>2</sub> O   | 17.65     | 17.65 | 17.65     | 17.65     | 17.65      |

<sup>&</sup>lt;sup>1</sup> Carlots, f.o.b. cars, Carlsbad, N. Mex. Source: Potash Co. of America, Division of Ideal Basic Industries, Inc.

#### FOREIGN TRADE

Both exports and imports of potash materials increased considerably in 1973 compared with 1972. The relatively small exports and imports of potash materials for chemical purposes showed large percentage increases. Total exports in terms of K<sub>2</sub>O

content were up 16% and total imports rose 21%. Latin America as a whole took the largest share of U.S. exports. Canada, as usual, was the major supplier, contributing almost 96% of U.S. imports.

Table 7.-U.S. exports of potash materials, by use

|      | Value<br>(thou-                         | sands)           | \$44,935<br>12,825<br>237                                                                                                              | 57,997    | 1,221                                                    | 9,416                      | 10,660 | 68 657      |
|------|-----------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------------------------|----------------------------|--------|-------------|
|      |                                         | Percent of       | 85.8<br>12.3                                                                                                                           | 98.2      | Т.                                                       | 11                         | 1.8    | 1000        |
| 1973 | Approximate equivalent as potash (K2O)  | Short            | 776,164<br>111,100<br>1,472                                                                                                            | 888,736   | 6,065                                                    | 9,808                      | 15,888 | 904 694     |
|      | Quantity<br>(short tons)                |                  | 1,293,607<br>277,750<br>7,359                                                                                                          | 1,578,716 | 7,581                                                    | 31,624                     | 39,229 | 1 617 945   |
|      | Value<br>(thou-                         | sands)           | \$36,109<br>9,223<br>526                                                                                                               | 45,858    | 066                                                      | 5,893                      | 068'9  | 59 748      |
|      | mate<br>lent<br>ash                     | Percent of total | 87.5<br>10.3                                                                                                                           | 98.3      | 7.                                                       | 1.0                        | 1.7    | 100.0       |
| 1972 | Approximate equivalent as potash (K2O)  | Short<br>tons    | 680,386<br>80,306<br>3,746                                                                                                             | 764,438   | 5,626                                                    | 7,560                      | 13,198 | 777.636     |
|      | Quantity<br>(short tons)                |                  | 1,133,977<br>200,764<br>18,730                                                                                                         | 1,353,471 | 7,033<br>14                                              | 24,388                     | 31,435 | 1,384,906   |
|      | Approximate equivalent as potash (K2O), | percent          | 60<br>40<br>20                                                                                                                         |           | 80<br>83                                                 | 31                         | -      | ;           |
|      | A<br>Materials                          |                  | Used chiefly as fertilizers: Potassium chloride all grades Potassic chemical fertilizer n.e.c Natural potassic salt fertilizers, crude | ! '       | Osed chiefly in chemical industries: Potassium hydroxide | Fotassium compounds, n.e.c | Total  | Grand total |

Table 8.-U.S. exports of potash materials, by country

(Short tons and thousand dollars)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                                             |                                          | Fertilizer                                           | izer                                           |                                    |                                                       |                                             |                                                       |                                               |                                         | Ċ                                          | Chemical                                      |                                                                                        |                                                        |                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------|------------------------------------------|------------------------------------------------------|------------------------------------------------|------------------------------------|-------------------------------------------------------|---------------------------------------------|-------------------------------------------------------|-----------------------------------------------|-----------------------------------------|--------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------|
| <br>:<br>:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6                                               | :                                           | Chemical<br>fertilizer                   | nical<br>lizer                                       |                                                | Total                              | Ę                                                     |                                             | Hydroxide                                             | xide                                          | Other                                   | ier                                        |                                               | Total                                                                                  | al                                                     |                                         |
| Destination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 8                                             | Chloride<br>quantity                        | n.e.c.<br>quantity                       | .c.<br>ıtity                                         | Quantity                                       | Value                              | Quantity                                              | Value                                       | quantity                                              | ity                                           | quantity                                |                                            | Quantity                                      | Value                                                                                  | Quantity                                               | Value                                   |
| I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1972                                            | 1973                                        | 1972                                     | 1973                                                 | 1972                                           | 72                                 | 1973                                                  |                                             | 1972                                                  | 1973                                          | 1972                                    | 1973                                       | 1972                                          |                                                                                        | 1973                                                   |                                         |
| Algeria<br>Argentina<br>Australia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7,979<br>6,876<br>76,912                        | $\frac{5,909}{85,315}$                      | 6,0 <u>67</u><br>7,449                   | 8,672<br>9,162                                       | 7,979 $12,943$ $189,860$                       | \$425<br>426<br>1 2,637            | 14,581<br>94,477                                      | \$565<br>3,091                              | 1 160                                                 | 1 18                                          | 18<br>270<br>476                        | $1,\!2\overline{90}\\640$                  | 18<br>270<br>535                              | \$8<br>92<br>191                                                                       | $\begin{array}{c} 1,2\overline{90} \\ 688 \end{array}$ | \$1 <u>76</u><br>399                    |
| Luxembourg_<br>Luxembourg_<br>Brazil<br>Canada<br>Colombia<br>Costa Rica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 894,159<br>59,320<br>20,156<br>31,079<br>51,970 | 407,021<br>1,506<br>441<br>91,266<br>48,258 | 440<br>4,187<br>54,576<br>7,060<br>2,810 | 525<br>10,750<br>79,392<br>1,708<br>9,259            | 440<br>1114,063<br>20,156<br>139,517<br>54,780 | 113,092<br>14,191<br>599<br>11,346 | 525<br>417,771<br>80,898<br>2,149<br>91,405<br>52,512 | 14,834<br>3,8384,<br>3,240                  | 24<br>337<br>112<br>4                                 | 30<br>1,046<br>3,171<br>13                    | 45<br>880<br>6,166<br>51<br>6,917       | 499<br>8,542<br>6,599<br>63                | 69<br>1,417<br>10,496<br>7,029                | 33<br>419<br>2,353<br>13<br>278<br>11                                                  | 529<br>9,588<br>9,770<br>78<br>76                      | 624<br>997<br>2,216<br>20<br>36<br>36   |
| Republic Republic Ecuador Finland France Germany, West Guatemala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11,896<br>8,472<br>23,821<br>2,763<br>159       | 30,566<br>9,883<br>10,521<br>2,654<br>40    | 366<br>125<br>10                         | 2,399                                                | 12,262<br>3,472<br>23,821<br>2,878<br>169      | 420<br>107<br>843<br>84<br>7       | 32,965<br>9,883<br>10,521<br>2,654<br>418             | 1,328<br>361<br>808<br><br>89               | 94 111 134                                            | 4<br><br>113<br>119                           | 950<br>111<br>2,892<br>452              | 2,045<br>30                                | 959<br>22<br>22<br><br>12,394 s               | 88<br>21<br>1,051<br>22<br>22<br>23                                                    | 2,158<br>49                                            | 1,00,1                                  |
| India Ireland Ireland Ireland Ireland Israel Italy Jamaica Japan Marico Metherlands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands Irelands | 13,607<br>115,901<br>74,898                     | 24,651<br><br>14,762<br>100,727<br>72,033   | 50,844<br>23,814                         | <br><br>19<br>80,650<br>23,560                       | 13,607<br>1170,053<br>98,712                   | 362<br>1 6,365<br>3,105            | 24,551<br><br>14,781<br>187,439<br>1 96,718           | 844<br>844<br><br>528<br>18,861<br>12,7211, | 284<br>284<br>28<br>018<br>33                         | 226<br>226<br>20<br>20<br>16<br>34<br>34      | 114<br>5<br>12<br>12<br>267<br>1,614    | 49<br>43<br>43<br>12<br>30<br>2,820<br>242 | 114<br>235<br>235<br>24<br>40<br>2,632<br>134 | 35<br>39<br>15<br>15<br>579<br>62                                                      | 49<br>11<br>269<br>32<br>46<br>3,243<br>4,259<br>276   | 204,1<br>1130,1<br>111                  |
| Netherlands Antilles New Zesland Pakistan Peru Philippines Singapore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 101,788<br>4,789<br>28,844<br>6,076             | 243,624<br>8,099<br>18,491<br>1,488         | 1,102<br>142<br>10,839                   | 3,301                                                | 101,783<br>5,841<br>127,333<br>16,915          | 3,021<br>247<br>1 822<br>747       | 243,624<br>8,099<br>18,491<br>4,788                   | 7,739<br>346<br>603<br>173                  | 69<br>1 1 2 2 1 1 3 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 341<br>38<br>10<br>14                         | 388<br>83<br>77<br>121                  | (3)<br>135<br>25<br>120<br>230<br>20       | 69<br>388<br>111<br>111<br>12                 | 10<br>20<br>21<br>21<br>21                                                             | 341<br>173<br>25<br>130<br>2 249<br>20                 | 2000                                    |
| South Africa, Republic of Sweden U.S.S.R United Kingdom Venezuela                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18,990<br>50,714<br><br>4,888                   | 9,869<br>65,306<br>8,5306<br>16,809         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  | 4, 6, 829<br>1, 100, 100, 100, 100, 100, 100, 100, 1 | 18,990<br>50,714<br>50,714<br>12,947           | 1,629<br>1,672<br><br>134<br>134   | 45<br>9,869<br>70,135<br>                             | 2,395<br>2,395<br>1,795<br>1,796            | 33                                                    | 510<br>510<br>142<br>142<br>142<br>142<br>142 | 75<br>274<br>1,103<br>667<br>347<br>150 | 28888888888888888888888888888888888888     | 149<br>277<br>1,103<br>667<br>667<br>150      | 25<br>25<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18<br>18 | 665<br>562<br>590<br>1,100<br>1,88<br>1,88             | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |
| Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20,078                                          | 12                                          | 200,764                                  | 3 8                                                  | 11,858,471                                     | 1 45,858                           | 1 1,578,716                                           | 1 57,9977,088                               | 1                                                     |                                               | 24,388                                  | 31,624 # 81,485                            | 1                                             | 1                                                                                      | 1                                                      | 2 10,660                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | farmed of me                                    |                                             | 11. A. wille.                            |                                                      | _1079 Canada 167 tons (\$5.593)                | 87 tons                            |                                                       | Rahamas 71                                  | tons                                                  | (88.125).                                     |                                         | mbia 1                                     | Colombia 1.878 tons                           | I                                                                                      | (\$45,750), Brazil 4,960                               | 1 4,960                                 |

\*Includes crude natural potassic sait fertilizer—1972: Canada 167 tons (\$5,593), Bahamas 71 tons (\$8,125), Colombia 1,878 tons (\$45,750), Brazil 4,960 tons (\$167,500), Philippines 8,347 tons (\$50,205), Japan 8,308 tons (\$16,515), Australia 5,499 tons (\$17,864). 1973: Bahamas 97 tons (\$3,237), Japan 6,602 tons (\$201,486), Nicaragua 89 tons (\$1,320), Mexico 1,120 tons (\$2,130), Venezuela 41 tons (\$1,800).

\*\*Includes potassium peroxide—1972: West Germany 2 tons (\$1,770), Italy 12 tons (\$5,128), 1973; Japan 18 tons (\$17,966), Mexico 1 ton (\$680), Philippines 5 tons (\$4,288).

\*\*Includes than 1/2 unit.

Table 9.-U.S. imports for consumption of potash materials, by use

|      | Value                                               | tnousands)        | \$137,691                                       | 2,737<br>2,636<br>271     | 146.436   | 175                                              | 748<br>296<br>995                       | 360<br>360<br>441                                                 | 97<br>266<br>7,972  | 11,364 |       |
|------|-----------------------------------------------------|-------------------|-------------------------------------------------|---------------------------|-----------|--------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------|---------------------|--------|-------|
|      |                                                     | Percent of total  | 98.3 \$1                                        | eiœi¦                     | 99.8      |                                                  |                                         | ٠ <u>.                                    </u>                    |                     | 2.     |       |
| 1973 | Approximate equivalent as potash (K2O)              | Perce             | 36                                              |                           | 6         |                                                  |                                         | ٠                                                                 |                     |        |       |
| 19   | App<br>eq                                           | Short             | 3,539,393<br>19,278                             | 7,459<br>27,262<br>525    | 3,593,917 | 458                                              | 278<br>1,066<br>842                     | 186<br>512<br>297<br>402                                          | 352<br>106<br>3,337 | 7,836  |       |
|      | Quantity                                            | (81102 - 210118)  | 5,898,988<br>48,195                             | 53,280<br>54,524<br>8,757 | 6,063,744 | 966                                              | 1,113<br>1,747<br>1,062                 | 732<br>732<br>708<br>913                                          | 704<br>482<br>9,736 | 18,700 |       |
|      | Value (thousands)                                   |                   | \$113,611<br>1,673                              | 1,447<br>2,798<br>137     | 119,666   | ( 128                                            | 731<br>213<br>360                       | 364<br>364<br>728<br>716                                          | 300<br>229<br>5,290 | 8,882  |       |
|      | Approximate equivalent as potash (K <sub>2</sub> O) | Percent of total  | 98.2                                            | 77                        | 99.7      |                                                  |                                         | ထံ                                                                |                     | 8.     |       |
| 1972 | Appro<br>equiv<br>as p<br>(K                        | Short             | 2,915,244<br>8,354                              | 3,895<br>32,806<br>335    | 2,960,634 | 489                                              | 2<br>293<br>926<br>1,250                | 156<br>578<br>5432<br>6432                                        | 108                 | 7,781  | 2000  |
|      | Quantity (short tons)                               |                   | 4,858,740<br>20,885                             | 27,823<br>65,615<br>5,587 | 4,978,650 | 1,063                                            | 11<br>1,173<br>1,518<br>1,562           | 432<br>825<br>1,028<br>999                                        | 492<br>6,442        | 17,765 | 2000  |
|      | Approximate<br>equivalent<br>as potash              | (K2O),<br>percent | 60<br>40                                        | 14<br>50<br>6             | 9         | 46                                               | 25<br>25<br>80<br>80                    | 86 5 4 4 7<br>0 6 4 4 7                                           | 31<br>31            |        |       |
|      | Materials                                           |                   | Used chieffy as fertilizers: Muriate (chloride) | mixtures, crude           | Total     | Used chiefly in chemical industries: Bicarbonate | Argols Cram of tartar Carbonate Caustic | Chlorate and perchlorate Cyanide Ferricyanide Ferrocyanide Nittan | Rochelle salts      | Total  | 1 200 |

Table 10.-U.S. imports for consumption of potash materials, by country (Short tons)

|                             | Bitar-                         |                             |                         |         |                               | Potas-                   | Potas-                                  | Potas-<br>sium                         | Potas-          | :        | Total               | =                     |
|-----------------------------|--------------------------------|-----------------------------|-------------------------|---------|-------------------------------|--------------------------|-----------------------------------------|----------------------------------------|-----------------|----------|---------------------|-----------------------|
| Year and<br>country         | trate<br>cream<br>of<br>tartar | Caustic<br>(hydrox-<br>ide) | and<br>perchlo-<br>rate | Cyanide | Cyanide Muriate<br>(chloride) | sium<br>nitrate<br>crude | sodium<br>nitrate<br>mixtures,<br>crude | nitrate<br>(salt-<br>peter)<br>refined | sium<br>sulfate | All      | Quant               | Value<br>(thou-sands) |
| 1979 .                      |                                |                             |                         |         |                               |                          |                                         |                                        |                 |          |                     |                       |
| Belgium-Luxembourg          | 1                              | 1                           | ;                       | :       | 14                            | 1                        | ij                                      | 1                                      | 086             | 428      | 522                 | \$284                 |
| Canada                      | 1                              | ;                           | !                       | 9       | 4,635,679                     | 2<br>507<br>705          | 168<br>10 913                           | 1                                      | 00              | eto,o    | 4,041,303<br>21,421 | 927                   |
| Congo (Brazzaville)         |                                |                             | ; ;                     | ; ;     | 33.856                        | 070,0                    |                                         | 1 ;                                    |                 | 1 1      | 33,856              | 1,047                 |
| Finland                     | 1'                             | 11                          | 1                       | 1       | !                             | 16                       | ;                                       | !                                      | 99 911          | 904      | 904                 | 1 204                 |
| France Germany West         | 9                              | 860                         | ł                       | 443     | 122                           | <b>3</b> 1               | ! !                                     | 416                                    | 42,239          | 4,190    | 47,700              | 4,080                 |
| Israel                      | <b>!</b>                       | 3                           | <b>¦</b> ¦              | : 1     | 176,280                       | 17,112                   | 10,01                                   | 1,563                                  | . !             | ¦8       | 205,026             | 7,979                 |
| Janan                       | 752                            | 18                          | ŀ                       | 191     | 1                             | 15                       | !                                       | EST :                                  | 1 1             | 1.754    | 2,631               | 2.801                 |
| Netherlands                 | 1 1                            | 3 !                         |                         | 1       |                               | 1                        | <b>!</b> ;                              | l                                      | 1               | 1,676    | 1,676               | 569                   |
| Norway                      | i;                             | 1                           | 1                       | : 1     | 1                             | !                        | 6,671                                   | !                                      | !               | 108      | 6,671               | 285<br>440            |
| Sweden                      | 410                            | 163                         | 986                     | !       | ŀ                             | !                        | !                                       | 1                                      | 1               | 33       | 790                 | 251                   |
| United Kingdom              | ! !                            | <b>"</b>                    | 3 1                     | 215     | Œ                             | ! !                      |                                         | <b>;</b> ;                             | ! !             | 361      | 576                 | 307                   |
| Zaire<br>Other              | ł                              | ŀ                           | 186                     | ŀ       | 5,274<br>602                  | 1                        | 1                                       | 124                                    | 122             | 69       | 5,274<br>904        | 151                   |
| Total                       | 1,173                          | 1,562                       | 432                     | 825     | 4,858,740                     | 20,885                   | 27,823                                  | 2,220                                  | 65,615          | 17,140   | 4,996,415           | 128,548               |
| 1973:<br>Belgium-Luxembourg |                                |                             |                         | 60      |                               | 1                        | 1                                       | 1                                      | ŀ               | 652      | 655                 | 404                   |
| Brazil                      | 1 1                            | : :                         | : :                     | •       | 11.629                        |                          |                                         | : <b>:</b>                             | 1               | ;        | 11,629              | 288                   |
| Canada                      | 4                              | 1 1                         |                         | 4       | 5,808,606                     | 268                      | 329                                     | 1                                      | ł               | 9,168    | 5,818,679           | 136,033               |
| Congo (Brazzavilla)         | ŀ                              | 1                           | 1                       | ŀ       | 6 007                         | 1                        | 31,534                                  | 1                                      | :               | 1        | 6.007               | 1,447                 |
| Finland                     |                                |                             |                         | : :     | ; 1                           |                          |                                         |                                        |                 | 1,824    | 1,824               | 226                   |
| France                      | ł                              | 20                          | 1                       | ;       | 3,000                         | 5,032                    | 1                                       | 18                                     | 20,660          | 1,336    | 30,079              | 1,862                 |
| Israel                      | 1                              | 202                         | 1                       | 400     | 44.380                        | 14.914                   | 10.415                                  | 665                                    | *00,66          | *,<br>14 | 70.388              | 4.030                 |
| Italy                       | 729                            | 1 1                         |                         | 1       |                               |                          | 1                                       | 1                                      | <b>!</b>        | 6        | 823                 | 543                   |
| Japan<br>Notherlands        | 1                              | 204                         | ļ°                      | 125     | 1 900                         | 1                        | ł                                       | 1                                      | ł               | 2,183    | 2,512               | 4,116                 |
| Netherlands                 | !                              | !                           | •                       | ł       | 2                             | !                        | <b>!</b>                                | :                                      | ł               | 6        | 2 .                 |                       |
| Antilles                    | 1                              | 1                           | 1                       | ;       | !                             | 9,421                    | 100                                     | 1                                      | !               | 1        | 9,421               | 322                   |
| Spain                       | 340                            | ŀ                           | 1661                    | ſ       | 17 968                        | ŀ                        | 700,11                                  | 1                                      | 1               | 362      | 18.869              | 1.082                 |
| Sweden                      | }                              | 469                         | 262                     | 1 1     | 3                             | 1 1                      | 1 1                                     | l i                                    |                 | (E       | 731                 | 250                   |
| Trinidad and                | 1                              | 1                           | 1                       | ł       |                               | ;                        |                                         |                                        |                 |          |                     | 1                     |
| Tobago Tingdom              |                                | 46                          |                         | 184     | ł                             | 18,260                   | 1                                       | :                                      | ļ               | 19       | 18,260              | 767                   |
| Other                       | 410                            | 202                         | 231                     | 5 1     |                               | 1 1                      | 1 I                                     | 1 1                                    | : :             |          | 189                 | 146                   |
| Total                       | 1,118                          | 1,052                       | 517                     | 732     | 5,898,988                     | 48,195                   | 53,280                                  | 704                                    | 54,524          | 23,339   | 6,082,444           | 157,800               |
|                             |                                |                             |                         |         |                               |                          |                                         |                                        |                 |          |                     |                       |

1 Less than 1/2 unit.

#### WORLD REVIEW

World production increased strongly in 1973, as new mines were opened in Australia and the United Kingdom. Several older European mines were closed.

Australia.-Texada Mines Pty. Ltd. was to begin production of langbeinite from evaporite deposits at Lake McLeod, north of Perth, Western Australia, in the third quarter. A plant was planned with an initial capacity of about 80,000 tons per year, but it was decided to increase this to 200,000 tons, with a possible expansion to 300,000 tons. The bulk of production will be exported, making Australia the world's largest exporter of this product.2

Brazil.-Petroquisa and the Lume group announced that they would invest about \$120 million over a period of 6 years to produce potash at Carmópolis, in the State of Sergipe, northeastern Brazil. A minority shareholder will be the National Economic Development Bank (BNDE).3 A local company, Kalium Mineraçãoes, has reportedly received permission to exploit the potash deposit.4

Canada.—A study of the Canadian potash industry was issued to serve as background material for an analysis of the transportation of Canadian potash.5 After an outline of the development and growth of the industry, the basis for prorationing production to market demand was discussed. Prorationing instituted by the Government of Saskatchewan is policed by the producers themselves. All producers operate at a similar capacity level, set to total 95% of the estimated market; the basic industry allowance in the 1973 fertilizer year was 47.7% of capacity, and the total average was about 52%. Excess markets are shared among producers. Exceptions that increased the average above the basic allotment included a special arrangement by one producer to sell 300,000 to 400,000 tons per year to a U.S. firm, a share of which was given to other producers until June 1973, and the building up of stocks by several producers. The minimum price of Can \$20.25 per short ton of 60% K2O product (equivalent to 33.75 cents per unit) may not absorb freight demurrage or storage charges, except storage at Vancouver, which is considered an extension of mine stockpiles.

Prorationing quotas for the fertilizer year 1974, issued late in 1973, allowed the industry to produce 5.6 million tons of K<sub>2</sub>O,

including 40,000 tons to rebuild inventory, or a rate of about 68% of nominal capacity. This was expected to bring Canadian production in line with its share of world capacity.

France.—Completion of a program of production rationalization in the Alsace potash mines was scheduled to reduce the number of mines to three: Théodore, Amélie, and Marie-Louise, with eventual capacities of 1,760, 1,870, and 2,650 (3,200 by 1974) short tons per day of K2O in product. Rationalization and modernization were first envisioned in the late 1960's as necessary to meet Canadian expansion into world markets. Total annual capacity of 2.05 to 2.1 million short tons of K2O will be maintained.6

The Anna mine was closed in August, after 51 years of operation. The average grade of ore extracted during the last year was 14% K<sub>2</sub>O.7

Germany, West.-The Buggingen mine of Kali und Salz AG ceased operations on April 30.8 The mine in Baden Württemburg was the last remaining in the south German extension of the Alsace deposits; it had a capacity of 495,000 to 550,000 short tons per year.

Italy.-After the Sicilian potash industry was unified late in 1972,9 two producers, both controlled by the Italian and Sicilian Governments, were in operation. One, SALSI (Societá Salisera Siciliana), produced potassium sulfate from kainite ore, with its principal mine at Palo (San Cataldo), and its refinery at Campofranco; the other, ISPEA (Industria Sali Potassici e Affini, S.p.A.), produced potassium chloride from carnallite, with its principal mine and refinery at Pasquasia. SALSI plans to expand production at Racalmuto, and ISPEA

<sup>&</sup>lt;sup>2</sup> Phosphorus and Potassium. Langbeinite From Western Australia. No. 65, May-June 1973, pp.

<sup>41-42.

&</sup>lt;sup>3</sup> American Consulate General, Saō Paulo, Brazil. State Department Airgram A-76, November 1973, p. 8.

<sup>4</sup> Industrial Minerals. No. 70, July 1973, p. 39.

<sup>5</sup> Litvack, B. M. The Canadian Potash Industry. Canadian Transport Commission Report 62, September 1973, 65 pp.

<sup>6</sup> Phosphorus and Potassium. The French Potash Industry. No. 65, May-June 1973, pp. 36-40.

Potash Industry. No. 30, 36-40.

<sup>1</sup>Phosphorus and Potassium. No. 67, September-October 1973, p. 14.

<sup>8</sup>Chemical Age International. German Potash Plant to Close in April. V. 106, No. 2800, Mar. 16, 1973, p. 21.

<sup>9</sup>Phosphorus and Potassium. The Italian Potash Industry. No. 63, January-February 1973, pp. 36-40.

POTASH 1061

was slated to start potassium sulfate production at Pasquasia in 1973.

Libya.—The Industrial Research Centre of the Libyan Arab Republic issued a tender for technical and marketing know-how to assist with the exploitation of the Marada salt occurrence in central Libya, 120 miles by road south of the Gulf of Sirte. The area is a salt marsh, with a crust varying between 14 and 22 inches in thickness; the brines that form it contain up to 2% potassium. The deposits were worked in 1939-40 by an Italian consortium, when about 23,000 short tons containing 40% to 42% K2O was produced by fractional recrystallization.10

U.S.S.R.-A summary of potash reserves in the U.S.S.R., based on a review of recent Soviet literature, was published.11 Total reserves of all degrees of confidence were given as 28,410 million short tons containing 16% to 40% K2O. This includes 17,500 million tons of carnallite and sylvite with 13% to 20% K<sub>2</sub>O in the Upper Kama basin in the northern Urals; 5,070 million tons of sylvinite containing 16% to 20% K2O in Starobinsk, Belorussia; and 3,200 million tons, largely of hartsalz, containing 16% K<sub>2</sub>O in L'vov Oblast, Western Ukraine. Other reserves in the Karlyukskove deposit in the Turkmen SSR were reported as 2,200 million tons and in the Tuva-Gatanskove deposit, 440 million tons. The Petryakovskoye deposit in Belorussia was under exploration in 1972.

United Kingdom.-Commercial production from Britain's first potash mine began in the second half of 1973.12 Maximum output at the rate of 1 million tons of K2O was expected to be reached during 1974 from the Boulby, Yorkshire, mine of Cleveland Potash Co., Ltd.

Table 11.-Marketable potash: World production by country

| (Thousand | short | tons, | $K_2O$ | equiva | lent) |  |
|-----------|-------|-------|--------|--------|-------|--|
|-----------|-------|-------|--------|--------|-------|--|

| Country                        | 1971     | 1972   | 1973 P  |
|--------------------------------|----------|--------|---------|
| Canada                         | 4.000    | 3.852  | 4,432   |
| Chile                          | 34       | 26     | e 28    |
| China, People's Republic of e1 | 230      | 310    | 330     |
| Congo (Brazzaville)            | r 288    | 317    | e 350   |
| France                         | 2.204    | 1.940  | 2,494   |
| Germany, East                  | 2.674    | 2,709  | e 2,910 |
| Germany, West                  | P 3.103  | 3,136  | e 3,300 |
| Israel                         | r 624    | 618    | e 600   |
| [taly                          | 236      | 238    | e 225   |
| Spain                          | 666      | 703    | e 640   |
| U.S.S.R                        | 5.299    | 5.989  | e 6.300 |
| United States                  | 2,587    | 2,659  | 2,603   |
| Total                          | r 21,945 | 22,497 | 24,212  |

#### **TECHNOLOGY**

A \$1 million project to produce alumina and potash from alunite was dedicated at Golden, Colo., by a group composed of Earth Sciences, Inc., Golden, Colo.; National Steel Corp., Pittsburgh, Pa.; and Southwire Co., Carrollton, Ga. The Alunite Metallurgical Center is part of a program to test the process on a pilot-plant scale. If successful, the project could lead to the production of 500,000 tons of alumina, 250,000 tons of potash, and 450,000 tons of sulfuric acid yearly from the joint venture's property near Cedar City, Utah.13

The Federal Bureau of Mines continued its investigations of methods to concentrate potash minerals. Tests were made on a flotation process for economically

recovering potash from high-clay ores, in a mobile field testing unit at the Duval Corp. mine in New Mexico. Methods were studied at the Tuscaloosa Metallurgy Research Laboratory, Tuscaloosa, Ala., to improve brine recovery from slimes generated in processing potash ore. During the year research was started at the Salt Lake

Estimate. P Preliminary. Prevised.
 Data for year ending June 30 of that stated.

Source: British Sulphur Corp. Ltd. Statistical Supplement No. 8, November-December 1973. London, 1973, pp. 18-19.

<sup>10</sup> Phosphorus and Potassium. Libya—Assistance Required To Develop Potash Resources. No. 63, January-February 1973, p. 41.

11 Strishkov, V. V. Soviet Union. Min. Ann. Rev., (suppl. to Min. J., London), July 20, 1973, p. 435.

12 Engineering and Mining Journal. Britain's First Major Potash Mine Comes On Stream. V. 174, No. 11. November 1973, pp. 139-140.

13 Chemical Marketing Reporter. "Alumina-ex-Alunite Project Gets Under Way." V. 204, No. 25. Dec. 17, 1973, pp. 5, 13.

City Metallurgy Research Center, Salt Lake City, Utah, to prepare chemical plant feed enriched in potassium sulfate from crude salt from Great Salt Lake brine. Bench-scale flotation tests demonstrated the possibility of concentrating the salts from 5% or 6% potassium to 12% or 14% potassium at recoveries ranging from 75% to 90%. Also at Tuscaloosa, the Bureau demonstrated that concentrates containing 59.9% K2O can be made from New Mexico high-clay sylvinite ores by heavy-liquid separation at recoveries of over 75%14

The Office of Coal Research of the Department of the Interior, and the National Aeronautics and Space Administration sponsored research by the General Electric Co. into the use of potassium topping cycles for stationary powerplants. Efficiency of central station powerplants would be increased by boiling potassium instead of water. Maximum steam temperature is limited at present to about 1,000° F.; potassium could permit temperatures as high as 1,700° F., at substantially lower pressures than steam.15

It was also reported that an attractive gasification system for magnetohydrodynamic (MHD) power generation consists of a bed of molten potassium carbonate. Some potassium carbonate is carried over to the combustor, where it reduces the need to add potassium carbonate seed.16

The Federal Bureau of Mines determined that mixed seedling of 15 mole-percent

cesium carbonate and 85 mole-percent potassium carbonate was preferable to either pure cesium or potassium carbonates in open cycle MHD power generation.17

In a trial of Lurgi gasification of American coal, in Westfield, Scotland, it was intended to test sulfur purification of the synthesis gas with the Benfield process, using hot potassium carbonate, replacing the Lurgi Rectisol process.18 The Benfield process is based on the HPC (hot potassium carbonate) process developed by the Federal Bureau of Mines in the 1950's.

Drilling fluids inhibited with potassium chloride were found effective in stabilizing sensitive shales in oil well drilling. Two cations, potassium and ammonium, were found far superior to others as such inhibiting agents, but potassium was preferred for field use because it was less expensive and more temperature stable.10

<sup>&</sup>lt;sup>14</sup> Liles, K. J., J. W. Brown, and G. V. Sullivan. Continuous Heavy Liquid Concentration of High-Clay Potash Ores. BuMines RI 7724, 1973,

High-Clay Potash Ores. BuMines RI 7724, 1973, 14 pp. 15 Office of Coal Research (U.S. Department of the Interior). Annual Report, 1973-74. Coal Technology: Key to Clean Energy. 1974., p. 56. 16 Page 62 of work cited in footnote 15. 17 Bergman, P.D., and D. Bienstock. Mixed Potassium-Cesium Seeding in Open-Cycle MHD Power Generation. 13th Symp. Eng. Aspects of Magnetohydrodynamics, Stanford Univ., Palo Alto, Calif., Mar. 26-28, 1973, pp. V.5.1-V.5.6. 18 Levene, H. D. Gasification or Liquefaction: Where We Stand. Coal Min. and Processing, V. 11. No. 1, January 1974, pp. 43-48. 19 O'Brien, D. E. and M. E. Chenevert. Stabilizing Sensitive Shales With Inhibited, Potassium-Based Drilling Fluids. J. Petrol. Technol., v. 25, September 1973, pp. 1089-1100.

# Pumice and Volcanic Cinder

By Arthur C. Meisinger <sup>1</sup>

U.S. production of pumiceous materials in 1973 declined 1% in quantity but increased 34% in value compared with that of 1972. The record value of nearly \$8.8 million for pumice, pumicite, and volcanic cinder sold or used by producers in 1973 was due, in large part, to the continued increase in costs for milling. Increased consumption of pumice and volcanic cinder as landscaping material emerged in 1973, and

exceeded 150,000 tons, although comprising only 4% of the total use pattern. A record quantity of nearly 3,100 tons of pumice was exported to meet the growing demand in Europe, particularly in West Germany; however, pumice imports declined significantly (48%) in 1973 from that of 1972, primarily because of major price increases for foreign grades.

#### DOMESTIC PRODUCTION

Domestic production of pumiceous materials was 3,772,000 tons in 1973, down 1% from the 3.813,000 tons in 1972. However, the value increased 34% from \$6,539,000 in 1972 to \$8,770,000 in 1973. The increase in total value of pumiceous materials was attributed to increased pumice and pumicite production (824,000 tons and \$3.6 million) in 1973, which was the highest reported since 1964 when nearly 1.2 million tons of pumice valued at \$4.1 million was produced. Although the quantity of volcanic cinder, ash, and scoria was down about 75,000 tons from that of 1972, the value increased 11% in 1973. Volcanic cinder, ash, and scoria comprised 78% of the U.S. output of pumiceous materials.

Domestic output in 1973 came from 88 firms, individuals, and governmental agencies producing from 158 operations in 13 States. Compared with 1972, output of

pumiceous materials in 1973 came from 13 less producers and 62 fewer operations. The principal producing States, in order of output as in 1972, were Oregon, Arizona, and California, and their combined output accounted for 70% of the national total. Other States with significant output of pumiceous materials were Hawaii, Nevada, and New Mexico. Of the six leading States, only Arizona and Hawaii showed a decrease in production from that of 1972. California led all the producing States with 56 active operations, followed by Oregon with 31, and Arizona with 28. Volcanic cinder was produced in 11 of the 13 States, and in American Samoa from deposits operated by the Samoan Government.

Table 1.—Pumice, pumicite, and volcanic cinder sold or used in the United States <sup>1</sup>
(Thousand short tons and thousand dollars)

|                                      | Pumice and                      | pumicite                                  | Volcanic                                  | cinder                                    | Tota                                      | al                                        |
|--------------------------------------|---------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| Year -                               | Quantity                        | Value                                     | Quantity                                  | Value                                     | Quantity                                  | Value                                     |
| 1969<br>1970<br>1971<br>1972<br>1973 | 598<br>490<br>540<br>790<br>824 | 1,349<br>1,233<br>1,396<br>1,878<br>3,612 | 3,011<br>2,546<br>2,851<br>3,023<br>2,948 | 3,701<br>3,438<br>3,818<br>4,661<br>5,158 | 3,609<br>3,036<br>3,391<br>3,813<br>3,772 | 5,050<br>4,671<br>5,214<br>6,539<br>8,770 |

<sup>&</sup>lt;sup>1</sup> Values f.o.b. mine, (1969-71); value f.o.b. mine or mill, 1972 and 1973.

<sup>&</sup>lt;sup>1</sup> Industry economist, Division of Nonmetallic Minerals—Mineral Supply.

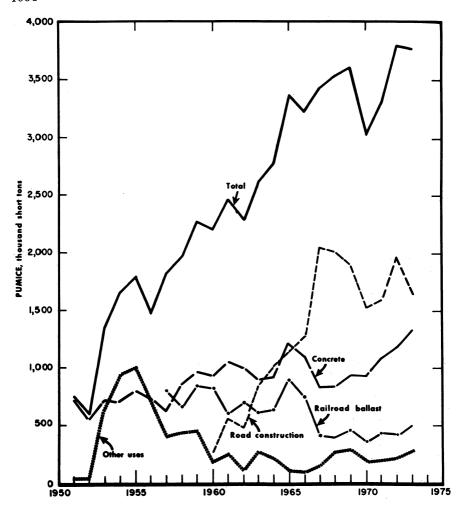



Figure 1.—Pumice and volcanic cinder sold or used by producers in the United States by use.

Table 2.-Pumice, pumicite and volcanic cinder sold or used by producers in the United States, by State

(Thousand short tons and thousand dollars)

|                                                                                           | 197                                                          | 2                                                                   | 1973                                                    |                                                              |
|-------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------|
| State -                                                                                   | Quantity                                                     | Value                                                               | Quantity                                                | Value                                                        |
| Arizona California Colorado Hawaii Idaho New Mexico Oregon Utah Washington Other States 1 | 915<br>731<br>59<br>379<br>W<br>311<br>923<br>14<br>W<br>482 | 722<br>1,507<br>W<br>762<br>W<br>809<br>1,512<br>r 29<br>W<br>1,199 | 853<br>768<br>W<br>354<br>80<br>339<br>1,006<br>42<br>1 | 715<br>3,237<br>W<br>611<br>110<br>1,001<br>1,902<br>57<br>1 |
| Total <sup>2</sup> American Samoa                                                         | 3,813<br>6                                                   | 6,539<br>27                                                         | 3,772<br>37                                             | 8,770<br>214                                                 |

W Withheld to avoid disclosing individual company confidential data; included with "Other r Revised.

# CONSUMPTION AND USES

Road construction (including ice control and road maintenance) and concrete admixtures and aggregates were again the major end uses of pumiceous materials, and accounted for 44% and 35%, respectively, of U.S. consumption in 1973. Of the remaining 21%, railroad ballast comprised 13%, landscaping 4%, and abrasive materials and other uses, 4%.

Compared with consumption in 1972, use in landscaping increased 33%; use in railroad ballast, 20%; use in concrete admixtures and aggregates, 10%; and other uses, 29%. Use in road construction declined 16% from that of 1972, and use in abrasives declined 5% in 1973. The completion of a number of highway contracts in the western United States at the beginning of 1973 was reflected in a decrease in the use of volcanic cinder for road construction.

Table 3.-Pumice, pumicite, and volcanic cinder sold or used by producers in the United States, by use

(Thousand short tons and thousand dollars)

|                                                                                                                                                                       | 197                       | 2                          | 197                       | 3                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------|---------------------------|----------------------------|
| Use                                                                                                                                                                   | Quantity                  | Value                      | Quantity                  | Value                      |
| Abrasive—(cleaning and scouring compounds) Concrete admixture and concrete aggregate Landscaping Railroad ballast Road construction (includes ice control and mainte- | 21<br>1,197<br>115<br>421 | 207<br>2,406<br>584<br>391 | 20<br>1,320<br>153<br>504 | 541<br>2,948<br>770<br>529 |
| nance)                                                                                                                                                                | 1,963<br>- 97             | 2,310<br>r 641             | 1,651<br>125              | 2,104<br>1,878             |
| Total 2                                                                                                                                                               | 3,813                     | 6,539                      | 3,772                     | 8,770                      |

<sup>&</sup>lt;sup>1</sup> Includes miscellaneous abrasive uses (1972), absorbents, heat-or-cold insulating medium, roofing, and miscellaneous use

<sup>2</sup> Data may not add to totals shown because of independent rounding.

#### **PRICES**

The average value for crude pumice, pumicite, and volcanic cinder sold and used decreased slightly from \$0.98 per ton in 1972 to \$0.95 per ton in 1973. Average value for prepared material, however, showed a significant increase—from \$2.42 per ton in 1972 to \$3.60 per ton. The weighted average value of pumice, pumi-

<sup>&</sup>lt;sup>1</sup> Colorado (value 1972), Idaho (1972), Kansas, Nebraska (1972), Nevada, North Dakota (1972), Oklahoma, Texas (1972), Washington (1972), and Wyoming.

<sup>2</sup> Data may not add to totals shown because of independent rounding.

cite, and volcanic cinder was \$2.33 per ton compared with \$1.71 per ton in 1972. The continued increased costs in milling was primarily responsible for the rise in weighted average value of pumiceous materials.

The average 1973 price per ton for pumice and volcanic cinder (scoria) used in cleaning and scouring compounds was \$27.05, substantially above the 1972 price; for concrete admixtures and aggregates, \$2.23, a \$0.22 increase; for railroad ballast \$1.05, a \$0.12 increase; for road construction, \$1.27, a \$0.09 increase; and for other uses, \$15.02, an \$8.41 increase. Pumice and volcanic cinder used for landscaping decreased \$0.05 in price per ton in 1973 from \$5.08 in 1972 to \$5.03.

Prices quoted at yearend in the American Paint Journal remained unchanged from 1972, and were as follows for pumice stone per pound, bagged, f.o.b. New York or Chicago: Powdered, \$0.0445 to \$0.08, and lump, \$0.0665 to \$0.09.

Price quotations for pumice in Chemical Marketing Reporter were changed on May 21, 1973, and at yearend were as follows: Domestic grades, bagged in ton lots, fine, \$0.0765 to \$0.1140 per pound; medium, \$0.1160 per pound; coarse, \$0.094 per pound; imported (Italian) silk-screened, bagged in ton lots, fine, \$138 per ton; medium, \$150 per ton; and coarse, \$140 per ton. Price of imported small and large lump size was reported as \$275 per ton.

#### **FOREIGN TRADE**

A record quantity of 3,095 tons of pumice was exported in 1973. Since 1965, when export data were first available, the previous record was only 624 tons of pumice in 1968. Pumice was exported to 16 countries in 1973—4 more countries than in 1972—West Germany received 79% (2,457 tons) of the total pumice exported.

Pumice imported for consumption declined in 1973, due primarily to increased shipping rates, higher prices of foreign pumice, and a fuel shortage that reduced cargo shipments at yearend. Compared with 1972, imports of pumice declined 48% in quantity and 24% in value. As in previous years, Italy and Greece supplied nearly all of the imported pumice. Total value of all import classes was \$1.1 million in 1973 compared with \$1.5 million in 1979.

Imported pumice used in the manufacture of concrete masonry products declined 48% from that of 1972, and imports classed as crude or unmanufactured declined 45%. However, imports classed as

wholly or partly manufactured increased 10% from 2,489 tons in 1972 to 2,740 tons in 1973.

Pumice stone, TSUS No. 519.05, for use in concrete products continued to be admitted into the United States duty free. Duties for other products at yearend were as follows: TSUS No. 519.11, crude or crushed pumice, valued not over \$15 per ton, 0.02 cent per pound; TSUS No. 519.14, crude or crushed pumice, valued over \$15 per ton, 0.04 cent per pound; TSUS No. 519.31, grains or ground, pulverized or refined, 0.17 per pound; and TSUS Nos. 519.93 and 523.61, millstones, abrasive wheels, and abrasive articles n.s.p.f. and articles, n.s.p.f., 7% ad valorem.

Table 4.-U.S. exports of pumice

| Year | Quantity (short tons) | Value<br>(thousands) |
|------|-----------------------|----------------------|
| 1970 | 304                   | \$70                 |
| 1971 | 357                   | 51                   |
| 1972 | 256                   | 34                   |
| 1973 | 3,095                 | 765                  |

Table 5.-U.S. imports for consumption of pumice, by class and country

| _                | Crude or unmanufactured     |                           | Wholly or partly manufactured |                           | Used in the manu-<br>facture of concrete<br>masonry products |                           | Manu-<br>factured<br>n.s.p.f. |  |
|------------------|-----------------------------|---------------------------|-------------------------------|---------------------------|--------------------------------------------------------------|---------------------------|-------------------------------|--|
| Country          | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands) | Quantity<br>(short<br>tons)   | Value<br>(thou-<br>sands) | Quantity<br>(short<br>tons)                                  | Value<br>(thou-<br>sands) | Value<br>(thou-<br>sands)     |  |
| 1972:     Greece | 9,094                       | \$149<br>                 | 2,489<br>(1)                  | \$149<br>1<br>            | 257,759<br>329,510                                           | \$544<br>657              | \$19<br>5                     |  |
| Total            | 9,094                       | 149                       | 2,489                         | 150                       | 587,269                                                      | 1,201                     | 24                            |  |
| 1973:     Greece | 5,0 <u>2</u> 6              | 95<br>                    | 2,740<br>(1)                  | 215<br>1                  | 193,922<br>108,738                                           | 501<br>321<br>            | - <b>4</b><br>15              |  |
| Total            | 5,026                       | 95                        | 2,740                         | 216                       | 302,660                                                      | 822                       | 19                            |  |

Table 6.-Pumice and related volcanic materials: World production, by country (Thousand short tons)

| Country 1                                  | 1971     | 1972      | 1973 »      |
|--------------------------------------------|----------|-----------|-------------|
| Argentina 2                                | 21       | e 20      | e 20        |
| Austria: Pozzolan                          | 36       | 31        | 27          |
| Cape Verde Islands: Pozzolan               | 10       | e 11      | e 11        |
| Chile: Pozzolan                            | 161      | 175       | 157         |
| Dominica e                                 | r 33     | r 33      | 33          |
| Egypt, Arab Republic of                    | (3)      | (3)       | (3)         |
| France:                                    | ( )      | ( )       | ` '         |
|                                            | 1        | e 1       | • 1         |
| PumicePozzolan and lapilli                 | r 844    | 691       | • 717       |
| Pozzolan and laplill                       | 5.534    | 5,534     | 4,199       |
| Germany, West (marketable)                 | 0,004    | 3,001     | 7,100       |
| Greece:                                    | 462      | 589       | < 590       |
| Pumice                                     | 675      | 724       | • 728       |
| Pozzolan                                   | 50       | 50        | - 128<br>50 |
| Guadeloupe: Tuff (pozzolanic) e            |          |           | 33<br>33    |
| Guatemala: Volcanic ash (for cement) e     | 50       | r 29      | 33<br>21    |
| Iceland                                    | 26       | 4 19      | 21          |
| Italy:                                     |          |           |             |
| Pumice and pumiceous lapilli               | r 926    | r • 1,000 | • 1,000     |
| Pozzolan                                   | 3,924    | re 4,400  | · 4,000     |
| Martinique: Pumice e                       | 20       | 20        | 20          |
| New Zealand                                | 14       | 143       | • 143       |
| Spain 5                                    | 172      | r e 176   | • 176       |
| United States (sold or used by producers): |          |           |             |
| Pumice and pumicite                        | 540      | 790       | 824         |
| Volcanic cinder 6                          | 2,861    | 3,029     | 2,948       |
| A OIGNING CHINGS                           | _,002    | -,0-0     |             |
| Total                                      | r 16,360 | 17,465    | 15,698      |

Less than ½ unit.
 Canada, Hong Kong, Estonia, West Germany, Japan.
 Canada, the People's Republic of China, France, West Germany, Japan, the U.S.S.R., and the United Kingdom.

<sup>&</sup>lt;sup>e</sup> Estimate. Preliminary. <sup>r</sup> Revised.

Pumice is also produced in Iran, Japan, Mexico, Turkey and the U.S.S.R. (sizable), but data on quantities Pumice is also produced in Iran, Japan, Mexico, Turkey and the U.S.S.K. (Sizzbie are not available.
 Unspecified volcanic materials produced mainly for use in construction products.
 Less than ½ unit.
 Exports.
 Includes Canary Islands.
 Includes American Samoa.

# Rare-Earth Minerals and Metals

### By James H. Jolly 1

Total world production of rare-earth oxide (REO) contained in concentrates increased about 25% in 1973 despite decreased output by the two leading monazite producing countries, Australia and India. The major factor in the increase was a 64% jump in bastnaesite production at Mountain Pass, Calif., by the Molybdenum Corp. of America (Molycorp). In 1973, Molycorp produced an estimated 60% of the total world REO output. Foreign mine production of rare-earth minerals decreased slightly from last year's level due to power and water shortages and, in part, to decreasing monazite grade at some mines. Monazite was in short supply during the year and prices increased about 15%. Worldwide, the production and consumption of rare-earth compounds and metals increased.

The domestic rare-earth industry was highlighted in 1973 by record production of rare-earth concentrates, increased mine and mill capacity, increased shipments and exports of rare-earth materials, and promising technological developments. The consumption pattern of rare earths changed from that of the previous year. Petroleum catalyst usage was the major consumer of rare earths in 1973, replacing metallurgical applications by a wide margin. Metallurgical uses declined about 20% mainly because rare-earth silicide demand was markedly lower.

U.S. exports of rare-earth products

exceeded 8,000 tons contained REO, double the 1972 content. The major importing countries were Japan, West Germany, France, Austria, Canada, and the United Kingdom.

Domestic imports of monazite increased and receipts of yttrium-rich uranium residues from Canada were resumed. Demand for ytruim oxide for use in color television phosphors balanced chronic oversupply conditions for the first time since 1968. U.S. chemical processing capacity decreased during the year because two major rarearth processors, Lindsay Rare Earths Div. of Kerr-McGee Corp. and Michigan Chemical Co., ceased operations and were dismantling facilities.

Legislation and Government Programs.—At the end of 1973, the General Services Administration (GSA) held a total of 11,677 short tons (dry) of REO equivalent in the national (9,574 tons) and supplemental (2,103 tons) stockpiles. Disposals for the year amounted to 140 tons of contained REO in rare-earth chloride. The  $Y_2O_3$  stockpile remained unchanged at 237 pounds. The rare-earth elements were removed from the list of strategic and critical materials in March 1971 and were authorized for orderly disposal to industry.

During 1973, the Office of Minerals Exploration (OME), U.S. Geological Survey, continued financial assistance of 50% of approved costs for exploration for rare-earth and yttrium resources.

#### DOMESTIC PRODUCTION

Concentrate.—REO production as measured by output of bastnaesite and monazite was at an alltime high in 1973 and about 60% higher than that of 1972. More than 90% of production was in the form of bastnaesite; the remainder was in the form of monazite.

The Mountain Pass, Calif., operation of Molycorp produced 19,341 tons of REO in flotation concentrate from 305,073 tons of bastnaesite ore mined and milled. A 50% expansion of mill and flotation facilities to

<sup>&</sup>lt;sup>1</sup> Physical scientist, Division of Nonferrous Metals-Mineral Supply.

30,000 tons REO annually, announced in January, was completed in the fourth quarter.<sup>2</sup>

Molycorp extended its option with Republic Steel Corp. for exclusive purchase rights to heavy rare-earth and yttrium concentrates which may be recovered from the apatite in tailings at Republic's iron ore property at Mineville, N.Y. A low-cost, acid-heap-leaching method to extract yttrium from these tailings was under investigation by the Bureau of Mines.

Humphreys Mining Co. continued to recover byproduct monazite from a beach sand deposit controlled by E. I. du Pont de Nemours & Co., near Folkston, Ga. Ore reserves at the deposit are expected to be exhausted by mid-1974. However, the company planned to continue operations by developing another beach sand deposit located a few miles south, in Florida. The heavy mineral concentrate from the new deposit will be processed at the existing Folkston plant.

Titanium Enterprises, jointly owned by American Cyanamid Co. and Union Camp Corp., was the only other domestic producer of monazite in 1973. The company, which began operations in October 1972, produced monazite as a byproduct in mining Pleistocene beach sands for titanium minerals and zircon near Green Cove Springs, Fla. In the latter part of the year, production decreased due, in part, to energy shortages.

Compounds and Metals.—With the closing of the Lindsay Rare Earths Div. of Kerr-McGee Corp. (Lindsay), West Chicago, Ill., only two volume rare-earth processors, Molycorp and the Davison Chemical Div. of W. R. Grace & Co. (Davison), Chattanooga, Tenn., were operating at the end of 1973. Lindsay, a pioneer in the rare-earth industry, ceased all operations during the year and was dismantling facilities and selling off stocks. The plant, which had an annual capacity of several million pounds, processed monazite into a wide range of rare-earth chemicals and polishing compounds. Michigan Chemical Corp., St. Louis, Mich., specialty producers of yttrium and heavy rare-earth compounds, also ceased rare-earth production in 1973. The company was dismantling all of its ion-exchange facilities and was also selling off rare-earth stocks.

Molycorp, with processing plants at

Mountain Pass, Calif., Louviers, Colo., Washington, Pa., and York, Pa., increased production of rare-earth compounds 56% (in terms of REO) over that of 1972. Molycorp resumed importation of yttrium-rich uranium residues from Denison Mines, Ltd., Canada, in 1973 for processing at the Louviers plant after a 3-year suspension of imports because of oversupply conditions. The plant had produced yttrium oxide in the interim from stockpiled residues.

High-purity rare-earth oxides and compounds were produced by Molycorp; Lindsay; Davison; Michigan Chemical Corp.; Research Chemicals Div., Nucor Corp., Phoenix, Ariz.; Atomergic Chemetals Co., Div. of Gallard-Schlesinger Chemical Manufacturing Corp., Carle Place, N.Y.; and by Transelco Inc., Penn Yan, N.Y. Lindsay, Molycorp, Michigan Chemical, Research Chemicals, and Atomergic produced yttrium oxide and/or metal during the year.

Mischmetal production by the two primary domestic producers-Ronson Metals Corp., Newark, N.J., and Reaction Metals Inc., Newcastle, Pa., a subsidiary of Rare Earth Industries-increased 17% but shipments decreased more than 30% indicating less metallurgical consumption. Rare Earth Metals Co. of America, a joint venture of Aluminum Co. of America (51%) and Molycorp (49%), continued pilot plant testing of a Bureau of Mines-developed electrolytic reduction process to produce mischmetal and rare-earth metals at Molycorp's Washington, Pa., facility. A plant with an annual capacity of 250 tons of metal was planned for 1975.

Rare-earth ferrosilicon alloys consumed primarily by the iron and steel industry in the United States and Canada were produced by four companies: Foote Mineral Co., Ohio Ferro-Alloys Corp., American Metallurgical Products Co., Inc., and Union Carbide Corp. Production and shipments were sharply lower in 1973.

Crucible Magnetics Div. of Colt Industries, Inc., Elizabethtown, Ky., became the fifth domestic producer of rare earth-cobalt magnets in December.<sup>3</sup> Other producers were Raytheon Co., Waltham, Mass.; Spectra-Flux Corp., Watsonville, Calif.; Elec-

<sup>&</sup>lt;sup>2</sup> American Metal Market. Molycorp Expanding Calif. Rare-Earth Unit. V. 80, No. 16, January 1973, p. 15.

<sup>1973,</sup> p. 15.

<sup>3</sup> American Metal Market. Small, Powerful Magnet Available in 3 Strengths. V. 80, No. 238, Dec. 10, 1973, p. 25.

tron-Energy Corp., Landisville, Pa.; and Hitachi Magnetics Corp., Edmore, Mich. Hitachi acquired the magnetic materials facilities of General Electric Co. in March and began commercial production at midyear.4

#### CONSUMPTION AND USES

Domestic rare-earth processors consumed an estimated 19,700 tons of REO contained in raw materials during 1973. Bastnaesite consumption increased 45% while monazite consumption decreased by almost 27%. Consumption of monazite by W. R. Grace at Chattanooga, Tenn., declined slightly, whereas bastnaesite consumption, although considerably less than that of monazite, almost tripled.

Shipments of rare-earth and yttrium products from principal processing plants to domestic consumers totaled about 13,400 tons REO, valued at about \$23 million. This quantity includes intracompany shipments but does not include products derived from reprocessed shipments at secondary plants. The following estimated quantitative percentage distribution rare-earth product usage during 1973 was based on information supplied by primary processors and certain consumers: Petroleum cracking catalysts, 43%; metallurgical, including nodular iron and steel, other alloys, magnets, and lighter flints, 35%; ceramics and glass, 17%; electrical and arc light carbons, 4%; and miscellaneous, including research and development, 1%. Shipments of high purity rare-earth and yttrium oxides and metals, although representing less than 1% of the total weight of shipments, accounted for about 30% of the

The manufacture of rare-earth zeolites for use in petroleum cracking catalysts replaced metallurgical uses as the major consumer of rare earths in 1973. Metallurgical consumption declined mainly because defor rare earths used production of pipeline steel was significantly lower, owing to continuing delays in construction of the Alaskan pipeline. Most other metallurgical applications, however, continued to increase. Stimulated by the automobile industry's need to reduce the weight of automobiles, the consumption of rare earths in the production of highstrength, low-alloy (HSLA) sheet steels doubled in 1973. Rare earths, in the form of mischmetal or silicide, added to such steels, increase impact and yield strength

and improve weldability and formability by beneficially influencing the number, size, shape, and composition of retained inclusions. With proper design, the use of HSLA steels can reduce the weight of some automobile components by as much as 30%.5 A large increase in metallurgical consumption of rare earths was expected in 1974 owing to large-scale production of HSLA steel for Arctic pipeline construction. Rare-earth treated HSLA steel alloys possess the rigid physical properties required for this pipe to withstand the internal pressures and extreme temperature variations of Arctic regions.

Rare earths were widely used in the production of ductile cast iron because they counteract a number of deleterious elements that interfere with the activity of magnesium in producing nodular graphite. The ductile iron industry continued to grow at a rate of about 15% in 1973, mainly because of strong demand for ductile cast iron pipe for water transmission systems and for quality castings required by the automotive and farm equipment industries.

The production of lighter and striker flints continued to be a major consumer of mischmetal. Other rare-earth alloys and metals were used in the production of high-temperature alloys and superalloys, and nuclear reactor control rods.

Besides the well-known use of cerium oxide for polishing plate glass, eyeglasses, television tubes, and camera lenses, a major and increasing use, worldwide, of cerium oxide was as a decolorizing agent in refining clear glass. Other rare-earth oxides-praseodymium, erbium, holmium, and neodymium—exhibit strong absorption of light and were used as colorants in glass. Lanthanum oxide increases the refractive quality of camera lenses. The Japanese consumed more than 110 tons of La203 for this purpose in 1973.

Yttrium oxide and europium oxide were

<sup>&</sup>lt;sup>4</sup> American Metal Market. Hitachi Magnetics Starts Samarium Cobalt Production. V. 80, No. 122, June 22, 1973, p. 7. <sup>5</sup> Metal Progress. Automakers Turn Weight Watchers, Eye HSLA Grades. V. 103, No. 1, January 1973, pp. 32–33.

important phosphor materials in color television tubes. Crystals of yttrium (or gadolinium) -aluminum (or iron) garnet were used as microwave filters and control devices. The garnets, when doped with small quantities of neodymium or erbium, were used as lasers. Some crystals were grown solely for use as gem stones.

Rare-earth oxides and fluorides added to carbon arc electrodes emit a brilliant white light that is necessary for searchlights and for color motion picture photography and projection. This use continues to grow slowly.

High-energy permanent magnets composed of rare earth-cobalt alloys consumed an estimated 3,000 pounds of rare earths, mostly samarium and mischmetal, in 1973. These magnets, which are two to three times more powerful than previous compositions, were used mainly in electric wrist watches and traveling wave tubes. The high strength of these magnets made it possible to eliminate the bearings in aircraft engine tachometers permitting a 30% saving in weight and improving reliability and service life.6

## **STOCKS**

Bastnaesite concentrate stocks held by the principal producer and five other chemical processors at yearend declined 52%; monazite concentrate held by the two producers and three processing companies declined almost 47%. Mischmetal stocks held by two principal producers increased 42% during the year and stocks of high-purity metals held by three firms were 37% higher than at the first of the

#### **PRICES**

Prices for domestic monazite remained stable during the year, whereas prices of foreign-produced monazite rose 5% to 20% because of continued strong demand and reduced production. The average c.i.f. price per metric ton of Australian monazite (minimum 60% REO plus Th02), quoted in Metal Bulletin (London), increased from \$187 to \$206 at mid-year to \$200 to \$215. The declared value of imported monazite concentrate from Malaysia averaged \$123 per short ton in 1973, 23% higher than the previous year. Malaysian xenotime concentrate with a minimum of 25% yttrium oxide content, as quoted in Industrial Minerals (London), remained unchanged at \$3 to \$5 per pound.

Unleached, leached, and calcined bastnaesite containing 55% to 60%, 68% to 72%, and 85% to 90% REO remained at 30, 35, and 40 cents per pound REO, respectively, f.o.b. Mountain Pass or Nipton, Calif., in 100-pound paper bags or 55-gallon steel drums in truckload or carload

Rare-earth oxide compound prices, in a downtrend since 1965, firmed in 1973; price increases were expected in many

Table 1.-Prices of high-purity oxides, salts, and metals in 1973 1

(Dollars per pound)

| Element      | Oxides 2 | Salts 3  | Metals 4 |
|--------------|----------|----------|----------|
| Cerium       | 5.00     | 14.00    | 50.00    |
| Dysprosium   | 40.00    | 30.00    | 130.00   |
| Erbium       | 45.00    | 30.00    | 160.00   |
| Europium     | 450.00   | 250.00   | 3,000.00 |
| Gadolinium   | 45.00    | 28.00    | 220.00   |
| Holmium      | 120.00   | 90.00    | 300.00   |
| Lanthanum    | 4.75     | 14.00    | 50.00    |
| Lutetium     | 2,000.00 | 1,200.00 | 6,000.00 |
| Neodymium    | 12.00    | 14.00    | 110.00   |
| Praseodymium | 32.00    | 18.00    | 170.00   |
| Samarium     | 30.00    | 18.00    | 155.00   |
| Terbium      | 275.00   | 200.00   | 725.00   |
| Thulium      | 1,000.00 | 600.00   | 2.600.00 |
| Ytterbium    | 85.00    | 75.00    | 240.00   |
| Yttrium      | 30.00    | 16.00    | 150.00   |

<sup>&</sup>lt;sup>1</sup> Research Chemicals, Nucor Corp., f.o.b. Phoenix, Ariz. Other producers may have different prices on some items.

Minimum 99.9% purity, more than 1 pound.
 Minimum 99.9% purity, includes chlorides, nitrates, sulfates, oxalates, and acetates.
 Minimum 1 pound, ingot form.

items in the coming year, owing to price hikes in concentrates and higher processing costs. Quoted prices per pound f.o.b. plant, for certain rare-earth compounds were as follows: mixed rare-earth oxides, 97% REO, \$1.40 under 500 pounds decreasing

<sup>&</sup>lt;sup>6</sup> Chemical and Engineering News. V. 51, No. 31, July 30, 1973, p. 11.

to \$1.10 for lots over 5 tons; chlorides, \$0.29; carbonates, \$0.83; fluorides, 84% REO, \$0.90; and hydrates, \$1.30.

Prices for optical-grade ceric oxide in lot sizes of 50 pounds or more delivered in bags or drums, remained at \$2 per pound. Quotations on cerium hydrate, 92% CeO<sub>2</sub> of total REO, increased 5 cents per pound to \$1.50 whereas 95% to 98% CeO<sub>2</sub>, cerium hydrate, decreased 3 cents per pound to \$1.55.

Quoted prices on 1-pound ingots in 50-

to 100-pound lots of 97% didymium and cerium-free mischmetal remained at \$15 and \$5, respectively, f.o.b. plant. Mischmetal 99.8%, was quoted at \$3.10 per pound, same basis. Ferrosilicon, containing 30% rare-earth metal, was quoted at \$1.45 to \$1.50 per pound (contained rare-earth metal). Rare earths for magnet use, 99% purity in 10- to 100-pound amounts, as quoted per pound in American Metal Market were as follows: cerium, \$19; lanthanum, \$28; praseodymium, \$62.50; and samarium, \$78.

#### FOREIGN TRADE

According to the sole domestic producer, Molycorp, exports of bastnaesite concentrate were 4,854 tons contained REO, a 94% increase over those of 1972.

Exports of ferrocerium and other pyrophoric alloys to Sweden, Canada, the Netherlands, Australia, and 18 other countries decreased 46%, totaling 109,766 pounds valued at \$285,763. The average unit value of \$2.60 per pound was 42 cents less than that of 1972.

Exports of compounds and mixtures of rare-earth metals, including yttrium and scandium, increased from 1,514,605 pounds valued at \$3,143,895 in 1972 to 4,047,741 pounds valued at \$4,592,374 in 1973. The large quantitative increase was due to shipments of 2,462,597 pounds of rare-earth compounds, valued at \$654,567, to Austria.

Imports of monazite concentrate increased substantially from those of the previous year. Shipments from Malaysia more than doubled and imports from Thailand resumed for the first time since 1970.

Cerium oxide imports, predominately from West Germany and Austria, totaled 11,716 pounds, valued at \$22,826. Imports of cerium chloride, only from Austria, were one-third of the total imports in 1972

amounting to 1,080 pounds, valued at \$1,772. Other cerium compounds, n.s.p.f., from France and Austria totaled 16,575 pounds, valued at \$34,503, a 161% increase in quantity but only a small increase in unit value.

Imports of rare-earth metals increased sharply in 1973 due to a more than four-fold increase in shipments from the U.S.S.R. (table 2). Imports of ferrocerium and other pyrophoric alloys increased to 38,206 pounds, valued at \$126,631, compared with 1972 receipts of 27,870 pounds, valued at \$94,347. France supplied 51% of total shipments, valued at \$50,614, followed by Japan with 44%, valued at \$66,144. Other suppliers were the United Kingdom, Austria, Spain, and Singapore. No mischmetal was imported during 1973.

The tariffs on rare-earth metals and compounds were the same as in 1972. The tariff was 15% ad valorem on cerium oxide and chloride, \$0.50 per pound on rare-earth alloys and mischmetal, \$0.50 per pound plus 6% ad valorem on ferrocerium and other pyrophoric alloys, and 5% ad valorem on rare-earth metals and yttrium. Rare-earth ores and concentrates remained duty free.

Table 2. U.S. imports for consumption of rare-earth metals (Including scandium and yttrium)

|                | 197                  | 1       | 197                  | 2       | 1973                 |         |
|----------------|----------------------|---------|----------------------|---------|----------------------|---------|
| Country        | Quantity<br>(pounds) | Value   | Quantity<br>(pounds) | Value   | Quantity<br>(pounds) | Value   |
| Germany, West  | 153                  | \$4,197 |                      |         | 531                  | \$4,322 |
| Japan          | 25                   | 4,169   | 2,465                | \$5,585 |                      |         |
| Norway         |                      |         | 22                   | 535     |                      |         |
| U.S.S.R.       | 395                  | 8,689   | 2,650                | 51,870  | 11,446               | 200,349 |
| United Kingdom | 15                   | 4,553   | 23                   | 7,957   | 7                    | 5,655   |
| Total          | 588                  | 21,608  | 5,160                | 65,947  | 11,984               | 210,326 |

Table 3.-U.S. imports for consumption of monazite by country

(Short tons and thousand dollars)

| Country                | 19            | 69        | 19                                        | 70                                       | 19                  | 71        | 19            | 72       | 19                                  | 73                     |
|------------------------|---------------|-----------|-------------------------------------------|------------------------------------------|---------------------|-----------|---------------|----------|-------------------------------------|------------------------|
|                        | Quan-<br>tity | Value     | Quan-<br>tity                             | Value                                    | Quan-<br>tity       | Value     | Quan-<br>tity | Value    | Quan-<br>tity                       | Value                  |
| Australia<br>Hong Kong | 2,478<br>167  | 300<br>20 | 1,977                                     | 251                                      | 1,802               | 219       |               |          |                                     |                        |
| Malaysia<br>Thailand   | 1,561         | 174       | $\substack{\textbf{1,307}\\\textbf{164}}$ | $\begin{array}{c} 157 \\ 19 \end{array}$ | $1,5\bar{7}\bar{1}$ | 165       | 894           | 89       | $\substack{1,9\bar{9}\bar{1}\\110}$ | $2\overline{44} \\ 10$ |
| Total<br>REO content • |               | 494<br>XX | 3,448<br>r1,896                           | 427<br>XX                                | 3,373<br>1,855      | 384<br>XX | 894<br>492    | 89<br>XX | 2,101<br>1,156                      | 254<br>XX              |

r Revised. XX Not applicable.

#### **WORLD REVIEW**

Australia.-Production of monazite decreased 12.6% in 1973 from 1972 because of reduced production and leaner monazite contents of the ore. According to the Rutile and Zircon Development Assoc., Ltd., monazite production by members in short tons by State was as follows:

| _                                                  | 1972                  | 1973                 | $^{\%}_{\texttt{Change}}$                               |
|----------------------------------------------------|-----------------------|----------------------|---------------------------------------------------------|
| New South Wales<br>Queensland<br>Western Australia | 1,604<br>121<br>3,056 | 1,076<br>64<br>3,087 | $ \begin{array}{r} -32.9 \\ -47.1 \\ +1.0 \end{array} $ |
| Total                                              | 4,781                 | 4,227                | -11.6                                                   |

Western Titanium, Ltd., a subsidiary of Consolidated Gold Fields Australia, Ltd., reported slightly increased production of monazite, 1,817 tons, and a 60% production increase in xenotime for the year ending June 30, 1973. Ore reserves in the Capel area were re-assessed at 7.8 million tons of

Table 4.-Monazite concentrate: World production by country (Short tons)

| Country 1      | 1971               | 1972   | 1973 p |
|----------------|--------------------|--------|--------|
| Australia      | r 4,829            | 5.537  | 4,842  |
| Brazil         | 1,502              | 2,453  | 1,606  |
| India          | <sup>2</sup> 4,664 | 4,504  | 3.858  |
| Malaysia 3     | 1,622              | 1,927  | 2,200  |
| Mauritania 🚛 🚃 | 110                | 110    | 110    |
| Nigeria        | 102                | 11     | 6      |
| Sri Lanka      | 7                  | e 10   | e 10   |
| Thailand       | 123                | 188    | e 220  |
| United States  | w                  | w      | w      |
| Zaire          | r 198              | 251    | 252    |
| Total          | r 13,157           | 14,991 | 13,104 |

Estimate. P Preliminary. Revised.
W Withheld to avoid disclosing individual company r Revised. confidential data.

<sup>2</sup> Year beginning April 1 of that stated.

heavy minerals made up of 6.4 million tons of proved ore and 1.4 tons of probable ore.7

Allied Eneabba Pty. Ltd., owned by Allied Minerals N.L. (75%) and DuPont (Australia) Ltd. (25%), planned to construct a 450,000-ton-per-year plant near Eneabba, Western Australia, to process heavy mineral sands for titanium minerals, zircon, and monazite. Full-scale production was scheduled in 1975.8

Canada.—Denison Mines, Ltd. resumed recovery of yttrium from uranium waste liquors for the first time since mid-1970. Shipments of yttrium-rich residues were being shipped to Molycorp for processing under a contract that runs to March 1976.

India.--Monazite production by the sole producer, Indian Rare Earths, Ltd. (IRE). decreased 1,388 tons to 3,276 tons in fiscal year 1973 (year ending Mar. 31, 1973). The decreased production was attributed to leaner monazite content in the raw sand and to power shortages at the Manavalakurichi plant. The Alwaye plant of IRE processed 4,350 tons of monazite, producing 4,837 tons of rare-earth chloride, 97 tons of rare-earth fluoride, and 24 tons of REO. Sales of rare-earth compounds declined slightly to 4,815 tons, but the value increased almost 11% to \$1,250,000. According to IRE's annual report, the company planned to develop the mineral sand deposits along the Orissa coast. Two Australian firms were preparing a feasibility report on setting up a mineral sand separation plant at Orissa.

1973, p. 3.

In addition to the countries listed, Indonesia and North Korea produce monazite, but information is inadequate to make reliable estimates of output levels.

<sup>&</sup>lt;sup>7</sup> Industrial Minerals. Western Ti in 1972: Beneficiation to Proceed. No. 74, November 1973, pp. 28–29.

<sup>8</sup> Metals Sourcebook. V. 10, No. 22, Nov. 19, 1072 p. 2

Japan.—In 1973 Japanese rare-earth processors consumed increased quantities of bastnaesite concentrate and rare-earth hydrates and reduced amounts of rare-earth chlorides and monazite. Monazite processing continued to diminish because of radioactive pollution problems. Xenotime from Malaysia was the source material for ytt-rium and heavy rare-earth elements.

Production and demand for rare-earth metals and compounds increased substantially. Imports also increased. Yttrium oxide and mischmetal imports were up 48% to 14 and 11.5 tons, respectively; cer-

ium oxide 54% to 150 tons; and lanthanum oxide 180% to 113 tons.9 The consumption pattern of rare earths in Japan differs from that of the United States. No rare earths were used in petroleum catalyst manufacture and very little in steel production. Rare earths, consumed by the iron and steel industry, were used mainly in the production of ductile iron. New Japanese steel furnaces are capable of producing very low sulfur steels that do not require rare-earth treatment. Rareearth consumption in Japan, since 1970, is shown in table 5.

Table 5.—Rare-earth consumption in Japan (Short tons)

|                                                      | 1970  | 1971    | 1972    | 1973 •  |
|------------------------------------------------------|-------|---------|---------|---------|
| Y <sub>2</sub> O <sub>3</sub> : Television phosphors | 18    | 12      | 22      | 19      |
| Eu2O3:do                                             | 1     | .8      | 1.5     | 1.3     |
| La <sub>2</sub> O <sub>3</sub> :                     |       |         |         |         |
| Optical glass                                        | 132   | 66      | 105     | 110     |
| Ceramic capacitors                                   | 66    | 44      | 66      | 77      |
| CeO <sub>2</sub> :                                   |       |         |         |         |
| Decolorizing                                         | 66    | 66      | 99      | 110     |
| Polishing                                            | 518   | 540     | 617     | 639     |
| Mischmetal:                                          |       |         |         |         |
| Lighter flints                                       | 132   | 132     | 143     | 143     |
| Iron and steel                                       | 110   | 110     | 165     | 220     |
| RE fluorides:                                        |       |         |         |         |
| Arc carbon                                           | 77    | 77      | 77      | 77      |
| Iron and steel                                       | 88    | 72      | 88      | 110     |
|                                                      |       |         |         |         |
| Total                                                | 1.208 | 1.119.8 | 1.383.5 | 1.506.3 |

<sup>•</sup> Estimated.

Source: Chemical Economy & Engineering Review. Production and Uses of Rare Earths in Japan. V. 5, No. 8, August 1973, pp. 38-44.

Malawi.—Lonrho Ltd. investigated monazite and strontianite occurrences in the carbonatite veins and dikes at Kangankunde Hill. Subject to satisfactory marketing arrangements, Lonrho planned to develop the deposit which has inferred reserves of more than 15,000 tons of monazite.

Norway.—The Metal Extraction Group (Megon) in association with the Atomic Energy Institute planned to construct a 50-ton-per-year plant at Kjeller, Norway, for commercial production of high-purity yttrium oxide. Trial production in a pilot

plant, based on imported 60% yttrium concentrate, successfully produced high-purity material.<sup>10</sup>

South Africa, Republic of.—A pilot plant was under construction by the Industrial Development Corp. of South Africa Ltd. and KRC Resources S.A. Pty. Ltd., a subsidiary of King Resources, to evaluate the feasibility of exploiting a rare-earth, titanium, and zirconium heavy mineral deposit in the Richards Bay area of Natal.<sup>11</sup> Late in the year, KRC's 49% share in the deposit was sold to Quebec Iron & Titanium Corp. for \$4 million.<sup>12</sup>

#### **TECHNOLOGY**

Research on the uses of rare-earth compounds as potential catalysts in automotive emission control received increasing attention in 1973. In controlled laboratory tests, researchers at Bell Laboratories found that rare-earth lead manganites were effective

<sup>&</sup>lt;sup>9</sup> Japan Metal Journal. Rare Earth Industry in 1973. V. 4, No. 14, Apr. 8, 1974, p. 7.

<sup>&</sup>lt;sup>10</sup> Mining Journal. V. 282, No. 7220, Jan. 11, 1974, p. 25.

<sup>&</sup>lt;sup>11</sup> Engineering and Mining Journal. V. 174, No. 2, February 1973, p. 135.

<sup>&</sup>lt;sup>12</sup> Metals Sourcebook. V. 11, Jan. 28, 1974, p. 4.

in reducing smog-forming nitrogen oxides to harmless nitrogen.13 Preliminary results indicated these rare-earth compounds were stable under the oxidation-reduction conditions and the high temperatures encountered in exhaust systems and, also, had some tolerance to lead, a serious problem in noble metal converters. Several test samples of rare-earth lead manganites have been submitted to automotive companies for evaluation. Another series of rare-earth catalysts, lanthanum cobalt oxides, were also reported to be effective in dealing with nitrogen oxides.14

The Bureau of Mines investigated the catalytic activity of rare-earth oxides for the cathode reaction of a hydrogen-oxygen fuel cell.15 The oxides of cerium, praseodymium, and europium were significantly more active than the other elements tested.

Preliminary testing of rare-earth Bketoenolates as antiknock additives motor fuels indicated they were as effective or better than tetraethyl lead in some applications.16 The most effective compounds contained cerium and the best compound discovered was cerium (2, 2, 6, 5-heptanedionate) 4. 6-tetramethyl-3, extra benefit of the rare-earth additive was reduced noxious hydrocarbon emission.

Rare-earth phosphate catalysts for the production of synthetic cresol and xylenols made Industrial Research's list of the top 100 new products introduced during 1973. The new catalysts, composed of lanthanum or cerium phosphate, cut operating costs and eliminate the corrosion and pollution problems associated with the presently used caustic hydrolysis process.17

A new class of magnetic bubble material, which may greatly increase the storing and processing of computer data, has been discovered. Magnetic bubbles were observed for the first time in thin films of amorphous gadolinium-iron and gadolinium-cobalt. It was claimed that such films not only are easier and less expensive to fabricate than presently used crystalline films but also that they have potentially greater storage capacity estimated at about 1 billion bits per square inch.18 In another computer development, bismuth-thuliumgarnet films were found to contain magnetic bubbles having greater light sensitivity than earlier films. This makes possible optical readout at about 100 times the rate of nonoptical methods.19

Epitaxial films of yttrium-iron garnet and gallium-yttrium-iron garnet for use in magnetic bubble domain applications were grown by chemical vapor deposition at reduced pressure using a system which is simpler and offers more direct control over the process than previous systems.20

A magnetically controlled switch which can modulate light passing through a thin, crystal yttrium-gallium-scandiumiron garnet film has been devised.21 Such a switch may make possible systems where large amounts of information can be transmitted on laser beams.

Bureau of Mines research continued on developing low-cost technology for recovering yttrium and rare earths from apatite in iron ore tailings from New York State. Because an appreciable portion of the yttrium occurs in more soluble hydrated calcium-yttrium silicates in cracks in the apatite grains, more than half of the yttrium present in a concentrate was leachable with dilute H<sub>2</sub>S0<sub>4</sub> without dissolving the apatite itself. Both solvent extraction and ion exchange methods were under investigation to extract the yttrium and rare earths from the leach solution.

High purity magnesium-yttrium alloys containing up to 55% yttrium were prepared by electroreduction of Y<sub>2</sub>0<sub>3</sub> dissolved in YF3-LiF bath.22 A method to electrore-

<sup>13</sup> Voorhoeve, R. J. H., J. P. Remeika, and D. W. Johnson, Jr. Rare-Earth Manganites: Catalysts With Low Ammonia Yield in the Reduction of Nitrogen Oxides. Science, v. 180, No. 4081, Apr. 6, 1973, pp. 62-64.

14 Chemical and Engineering News. V. 51, No. 13, Mar. 26, 1973, p. 17.

15 Nicks, L. J., and D. J. MacDonald. Catalytic Activity of Rare-Earth Oxides for the Oxidation of Hydrogen. BuMines RI 7841, 1973, 9 pp.

16 Chemical and Engineering News. Rare Earths Show Promise as Antiknocks. V. 52, No. 12, Mar. 25, 1974, pp. 27-28.

17 Institute for Atomic Research, Iowa State University, Ames, Iowa. Catalyst Makes Top 100. Rare Earth Information Center News, v. 8, No. 4, Dec. 1, 1973, p. 4.

18 Materials Engineering. Magnetic Bubbles Shrink Computer Memories. V. 77, No. 6, June 1973, pp. 27-29.

19 Institute for Atomic Research, Iowa State University, Ames, Iowa. Bubble Memories. Rare Earth Information Center News, v. 8, No. 4, Dec. 1, 1973, p. 3.

Dec. 1, 1973, p. 3.

<sup>20</sup> Gentilman, R. L. Chemical Vapor Deposition of Epitaxial Films of Yttrium Iron Garnet and Gallium Substituted Yttrium Iron Garnet and a Thermodynamic Analysis. J. Am. Chem. Soc., v. 56, No. 12, December 1973, pp. 623-627.

21 Materials Engineering. Communicate Via

<sup>&</sup>lt;sup>21</sup> Materials Engineering. Communicate Via Light Beams. V. 77, No. 6, June 1973, pp.

<sup>22-28.

22</sup> Aamland, E., D. J. MacDonald, and D. G. Kesterke. Molten Salt Electrowinning of Magnesium-Yttrium Alloys. BuMines RI 7722, 1973, 11

fine yttrium metal from low-melting yttrium-base alloys was investigated. Metallic impurities in the cathode products were substantially less than in the anode material when yttrium was refined from alloys containing Fe, Ni, and Mn.23

A study of thermochemical data on rare-earth reactions in metallurgical processes was completed by the Rare Earth Information Center, Ames, Iowa, under a Molycorp grant. The study contains data on the free energies of formation of various rare-earth oxides and oxysulfides at temperatures up to 2,200° C and data on formation of rare-earth intermetallics with nine other elements 24

Research on rare-earth additives in steelmaking continued to be directed toward improving addition techniques. At the 31st Electrical Furnace Conference in December, the relative merits of using rare-earth silicides versus mischmetal additives<sup>25</sup> and rare-earth additions to electric furnaces at Houston Works of Armco Steel Corp.26 were discussed. In another paper, the differences in benefits obtained when rare earths are added to steels by various methods were examined on the basis of available thermodynamic information.27

The nonmetallic inclusions earth-treated steels were identified.28 The composition, number, size, shape, and hardness of the inclusions affect the properties obtained.

A high-speed laser welder based on a neodymium-yttrium-aluminum garnet was developed to make up to 100 spotwelds per second on a variety of metals.29 A sunpumped, neodymium laser system was under investigation to determine the feasibility of direct optical communications via satellite. The lasing material can be activated by auxiliary lamps when the sun is not visible.30 Researchers at Battelle Memorial Institute were exploring the use of a very high-powered neodymium glass laser as a means of strengthening steel and other metals by shock hardening. Hardening of the metal is caused by laser induced microstructual defects.31

<sup>23</sup> Fleck, D. C., E. K. Kleespies, and D. G. Kesterke. Purification of Yttrium by Electrorefining. BuMines RI 7710, 1973, 12 pp.
<sup>24</sup> Gschneidner, K. S., Jr., N. Kippenhan, and O. D. McMasters. Thermochemistry of the Rare Earths—Oxides, Oxysulfides and Compounds with B, Sn, Pb, P, As, Sb, Bi, Cu, and Ag. Rare Earth Information Center, Iowa State University, Report IS-RIC-6, 1973, 68 pp.
<sup>25</sup> Luyckx, L., and J. R. Jackman. Current Trends in the Use of Rare Earths in Steelmaking. Rare Earth Industries Inc. Pres. at the 31st Electrical Furnace Conf., Cincinnati, Ohio, Dec. 6, 1973.

Electrical Furnace Conf., Cincinnati, Ohio, Dec. 6, 1973.

Mare Earth Additions to Electric Furnaces for Sulfide Shape Control. J. Metals, v. 26, No. 2, February 1974, pp. 21-24.

Milson, W. G. Results From Various Methods of Adding Rare-Earths. Molybdenum Corp. of America. Pres. at the 31st Electrical Furnace Conf., Cincinnati, Ohio, Dec. 6, 1973.

Milson, W. G., and R. G. Wells. Identifying Inclusions in Rare Earth Treated Steels. Metal Prog., v. 104, No. 7, December 1973, pp. 75-77.

January Week. V. 178, No. 6, Aug. 6, 1973, p. 25.

# Rhenium

## By Larry J. Alverson 1

Domestic rhenium production increased 15% and was more than adequate to meet the reduced demand for rhenium, notably in bimetallic platinum-rhenium catalysts. Prices for both metal powder and compounds continued the decline started in

1972. As imports of metal powder and ammonium perrhenate increased significantly during the year, primarily in anticipation of heightened demand for bimetallic catalysts, stocks of rhenium climbed to an all-time high.

Table 1.-Salient rhenium statistics

(Pounds of contained rhenium)

|                                                                                                                  | 1970  | 1971  | 1972   | 1973   |
|------------------------------------------------------------------------------------------------------------------|-------|-------|--------|--------|
| Mine production e. Consumption e. Imports (metal and scrap). Imports (ammonium perrhenate) e. Stocks, Dec. 31 e. | 5,900 | 7,250 | 6,100  | 7,000  |
|                                                                                                                  | 5,100 | 7,600 | r4,800 | 4,400  |
|                                                                                                                  | 210   | 377   | 168    | 1,437  |
|                                                                                                                  | 825   | 3,435 | r1,845 | 3,040  |
|                                                                                                                  | 6,200 | 9,700 | 13,000 | 20,000 |

Estimate. Revised.

#### DOMESTIC PRODUCTION

Production of rhenium, a secondary byproduct material recovered primarily from molybdenite (MoS<sub>2</sub>) associated with southwestern United States and Chilean porphyry copper ores, increased in 1973 to an estimated 7,000 pounds of rhenium contained in rhenium salts. Cleveland Refractory Metals (CRM), a subsidiary of Kennecott Copper Corp., was the leading rhenium producer in the United States. CRM processed domestic MoS<sub>2</sub> concentrate from operations of Kennecott and Magma Copper Co., as well as concentrates from Chilean sources, at their Garfield, Utah, roasting facility.

M&R Refractory Metals, Inc., at its Winslow, N.J., plant produced rhenium salts from the MoS<sub>2</sub> recovered at Magma's San Manuel porphyry copper mine for Engelhard Minerals & Chemical Corp. on a contract conversion basis. Shattuck Chemical Co., Denver, Colo., a division of Engelhard Minerals & Chemical Corp., recovered rhenium salts from Arizona molybdenite concentrate. Molybdenum Corp. of America (Molycorp) sold a 50% interest in its new pollution-free hydrometallurgical proc-

ess for producing molybdenum and rhenium to Cyprus Mines Corp. Cyprus received an undivided interest in worldwide rights to the process, excluding Japan. The two firms formed a new company, Cymoly Process Corp., to handle the process through construction and/or licensing of processing plants worldwide. Continental Rhenium Corp. closed commercial pilot plant at Golden, Colo., in the fall of 1973 after operating for about 2 years. Apparently scale-up problems and the soft rhenium market precipitated the shutdown.

Newmont Exploration Ltd., a subsidiary of Newmont Mining Corp., completed installation of a pilot multihearth furnace at its Danbury, Conn., research center. The furnace was used in a research program undertaken to develop a new method to produce salable rhenium from the molybdenite concentrate recovered at Magma's Arizona copper mine.<sup>2</sup>

<sup>&</sup>lt;sup>1</sup> Industry economist, Division of Ferrous Metals—Mineral Supply.

<sup>2</sup> Newmont Mining Corp. Annual Report, 1973, 32 pp.

## **CONSUMPTION AND USES**

Approximately 75% of the estimated 1973 rhenium metal consumption of 4,400 pounds was used in bimetallic platinum-rhenium catalysts for refining low-lead and no-lead high-octane gasoline. Consumption was down owing mainly to lack of completion of new refineries during the year.

Increases in the compression ratios of automotive engines over the past few years have raised the antiknock requirements of gasoline, resulting in the need for processes to "reform" or improve the octane number of gasoline. One of the most successful of these processes employs a bimetallic platinum-rhenium catalyst. The rhenium inhibits coke formation, making it possible to operate at lower pressures with less frequent catalyst regeneration. Presently, approximately one quarter of all non-Communist countries' bimetallic petroleum reforming catalysts are of the platinumrhenium variety.

A number of older refineries made conversions from straight platinum to platinum-rhenium catalysts during the year. The Lake Charles, La., refinery of Cities Service Oil Co. made the conversion employing 55,000 pounds of Chevron's Rheniforming catalyst with a rhenium content of about 165 pounds. It was reported that the catalyst functioned well and that the results were very good.

The Los Angeles refinery of Union Oil Co. of California was undergoing a \$30 million modification project which included installation of a catalytic reformer employing Universal Oil Products Co.'s R-16 bemetallic platinum-rhenium catalyst for the production of high-octane, lead-free gasoline. Completion was scheduled for sometime in mid-1974.

Standard Oil Co. of California planned to add two large hydrosulfurization units and a catalytic reforming unit to their Richmond, Calif., refinery. Plans called for a 25,000-barrel-per-day Rheniformer aimed at boosting the plant's capacity to produce low-lead gasolines. The project was scheduled for completion in 1976.

The remaining 25% of estimated domestic rhenium consumption was for high-temperature thermocouples, electronic devices, X-ray tubes, electrical contacts, vacuum tube and flashbulb filaments, heating elements, and electromagnets.

CRM sold its X-ray target fabrication facilities to General Electric Co. and sold the rhenium sheet, bar, and tubing fabrication unit to H. Cross of Weehawken, N.J. CRM retained its production facilities for ammonium perrhenate, perrhenic acid, and rhenium metal powder.

Pure rhenium was utilized in filaments for mass spectrographs because it is less affected by many inpurities. Also, if any oxide film forms on the filaments, the conductive rhenium oxide does not increase the filament resistance which would probably lead to overheating and burnouts.

Engelhard Minerals & Chemical Corp. continued to market tungsten-3% rhenium versus tungsten-25% rhenium thermocouples. This couple can accurately measure temperatures up to 2,400° C and is suitable for use in vacuum, hydrogen, and clean inert gases such as argon and helium.

A publication dealing extensively with rhenium was made available during the year by Roskill Information Services, Ltd., of London. It covers information on geology, reserves, producing countries, consumption, uses, prices, and general and specific trends.<sup>3</sup>

A Bureau of Mines publication was issued during the year that discusses rhenium and other metals, primarily from an economic point of view, as byproducts of the copper industry.<sup>4</sup>

#### **PRICES**

Prices paid for rhenium metal powder during the year ranged from about \$900 to \$675 per pound, depending on quantity, decreasing toward the latter by yearend. Prices for perrhenic acid, a starting material used in catalytic applications, ranged from about \$875 to \$625 per pound, de-

pending on quantity, trending toward the latter in second half of the year. These

<sup>&</sup>lt;sup>3</sup> Roskill Information Services Ltd. (London). The Economics of Rhenium. January 1973, 43

pp.
<sup>4</sup> Petrick, A., Jr., H. J. Bennett, K. E. Starch, and R. C. Weisner. The Economics of Byproducts Metals (In Two Parts). 1. Copper System. BuMines IC 8569, 1973, 105 pp.

RHENIUM 1081

price decreases reflected the soft nature of the rhenium market which was due principally to the lack of new refineries that would utilize bimetallic platinum-rhenium catalysts.

#### FOREIGN TRADE

Imports for consumption of unwrought rhenium metal during 1973 increased greatly over those of 1972 and totaled 1,437 pounds valued at \$1,004,676. These imports, all of which represented rhenium metal powder, came from West Germany (78%), the Netherlands (15%), and Belgium-Luxembourg (7%). There were no imports of scrap or wrought rhenium metal during the year. Unwrought rhenium metal imports are believed to have been recovered from byproduct molybdenite obtained from porphyry copper ore mined in Chile and Peru. The average price of the metal imports, excluding U.S. duty, was \$699 per pound, and ranged from \$677 per pound (Belgium-Luxembourg) to \$701 per pound (West Germany).

Imports of ammonium perrhenate (NH<sub>4</sub>ReO<sub>4</sub>) salts, all from Sweden and West Germany, nearly doubled during the year to an estimated 3,040 pounds of contained rhenium valued at \$3,829,000. This

material was imported under the basket classification "Ammonium compounds, not specifically provided for" (TSUS 417.44).

The main reasons for increased imports in the face of decreased consumption were the fulfilling of existing contracts and the stockpilling of rhenium in anticipation of increased demand from the spate of new refineries that were expected to come onstream in 1975–76. Also, as a result of the foregoing, stocks of rhenium were at an alltime high.

The import duty on rhenium metal from non-Communist countries remained at the January 1, 1972 rate of 5% ad valorem for unwrought rhenium metal and scrap, and 9% ad valorem for wrought rhenium metal. The import duty on wrought and unwrought rhenium metal from Communist Bloc countries also remained unchanged at 45% and 25% ad valorem, respectively. The duty on imports of ammonium perrhenate from Communist

Table 2.—U.S. imports for consumption of rhenium (including scrap), by country

(Gross weight)

|                           | 19                   | 70                 | 19                   | 971               | 19                   | 72                  | 19                   | 973       |
|---------------------------|----------------------|--------------------|----------------------|-------------------|----------------------|---------------------|----------------------|-----------|
| Country                   | Quantity<br>(pounds) | Value              | Quantity<br>(pounds) |                   | Quantity<br>(pounds) | Value               | Quantity<br>(pounds) | Value     |
| Belgium-Luxembourg        |                      |                    | 220                  | \$262,278         |                      |                     | 110                  | \$74,500  |
| France                    | 58                   | \$53,789<br>34,373 | 45<br>110            | 49,770<br>140,000 | 25<br>143            | \$23,796<br>101,955 | 1,116                | 782,497   |
| NetherlandsUnited Kingdom |                      | ·                  | $\bar{2}$            | 794               |                      |                     | 211                  | 147,679   |
| U.S.S.R.                  | 73                   | 23,467             |                      |                   |                      |                     |                      |           |
| Total                     | 210                  | 111,629            | 377                  | 452,842           | 168                  | 125,751             | 1,437                | 1,004,676 |

Table 3.—Estimated imports for consumption of ammonium perrhenate by country<sup>1</sup> (Rhenium content)

|               | 19         | 70                        | 19             | 71                        | 19           | 72                        | 19             | 73                        |
|---------------|------------|---------------------------|----------------|---------------------------|--------------|---------------------------|----------------|---------------------------|
| Country       | Pounds     | Value<br>(thou-<br>sands) | Pounds         | Value<br>(thou-<br>sands) | Pounds       | Value<br>(thou-<br>sands) | Pounds         | Value<br>(thou-<br>sands) |
| Germany, West | 115<br>710 | \$115<br>659              | 1,395<br>2,040 | \$1,545<br>2,202          | 845<br>1,000 | \$1,054<br>1,189          | 1,450<br>1,590 | \$1,913<br>1,916          |
| Total         | 825        | 774                       | 3,435          | 3,747                     | 1,845        | 2,243                     | 3,040          | 3,829                     |

Revised. Figures are derived from the basket category "Ammonium compounds not specifically provided for" (TSUS 417.44).

and non-Communist countries was 25% and 4% ad valorem, respectively. The im-

port duty on waste and scrap was suspended until June 30, 1975.

## **WORLD REVIEW**

Australia.—Exploration of a copper-molybdenum deposit at Mt. Mulgine in Western Australia by Minefields Exploration N.L. was reported in 1970 to have produced core samples containing rhenium in "relatively high" concentrations. It was announced that the company proposed to spend \$300,000 by the end of 1973, to investigate the deposit.

Canada.—The sole source of Canadian rhenium production was copper-molybdenum ore from the Island Copper Mine of Utah International, Inc., at Port Hardy, British Columbia. The ore occurs mainly in altered volcanics, and in this respect, differs from the porphyry copper deposits of the United States and Chile. Molybdenite concentrate was first produced in 1972 when shipments were 400 tons and contained about 1,200 pounds of rhenium. In 1973 shipments were about 1,200 tons containing 3,200 pounds of rhenium. To date, molybdenite purchasers have either paid for the contained rhenium or recovered the rhenium on a toll basis and returned it for direct sale by Utah International, Inc.

The rhenium content of a molybdenite concentrate averaging 95.9% MoS<sub>2</sub> obtained from Brenda Mines Ltd. in south-central British Columbia was found to be less than 10 parts per million (ppm) rhenium; too low to warrant economic recovery.<sup>5</sup>

Chile.—Concomitant to expansion of copper production in Chile, byproduct molybdenite and rhenium output will be greatly increased over the next 2 years. Corporación del Cobre (CODELCO) was constructing a new 30,000,000 pound per year molybdenum concentrate plant at Chuquicamata. A new molybdenum concentrating plant was also being constructed at the Río Blanco mine of Companía Minera Andina, S.A. The substantial rhenium content of the concentrate of these two plants will also be recovered. By 1976, Chile should have a yearly rhenium capacity of 11,000 pounds, thus potentially making her one of the world's leading rhenium producers.6

Researchers at the universities of

Concepción and Antofagasta were attempting to develop techniques for the recovery of rhenium from copper ore. Experts calculate that commercial extraction of rhenium could earn Chile an extra \$2 per ton of copper produced. At present no rhenium is recovered from the copper side of the circuit, but is recovered from the molybdenum circuit.

Detailed studies of the newly discovered porphyry copper ore body, San Jose del Abra (El Abra), about 25 miles north of Chuquicamata, have proven 25,000,000 tons of 0.80% to 1.0% soluble oxide copper and indicated 400,000,000 tons of 0.90% sulfide copper. High rhenium values have been discovered in the deposit now under consideration for development by CODELCO. A 16-mile road was being opened to connect El Abra, at 12,500 feet, with Chuquicamata.

Germany, East.—Rhenium is believed to be produced at the Hettstedt plant of VVB Mansfeld where it is extracted from the copper-bearing slates of the Mansfeld mines. Potassium perrhenate is recovered from which rhenium metal is produced.

U.S.S.R.—Rhenium was being recovered in substantial quantities from MoS<sub>2</sub> concentrates obtained from porphyry copper deposits in the U.S.S.R. The main rhenium production was at the Balkhash copper smelter in Kazakhstan, where an estimated 2,500 pounds per year of rhenium was recovered from all rhenium-bearing materials in different operations. Various reports indicated that the large Dzhezkazgan ore body contained important rhenium values, not necessarily associated with molybde-

<sup>&</sup>lt;sup>5</sup> Johnson, A. E. Mineralogical and Textural Study of the Copper-Molybdenum Deposit of Brenda Mines Limited, South-Central British Columbia. Miner. Sci. Div., Mines Branch, Department of Energy, Mines and Resources, Ottawa, Canada, IC 302, 1973, 8 pp.

<sup>&</sup>lt;sup>6</sup> Intermet Bulletin. Chile: From Agony to a New Challenge. V. 3, No. 3, January 1974, pp. 8-15.

<sup>&</sup>lt;sup>7</sup> World Mining. Chile's Copper Now. V. 26, No. 11, October 1973, pp. 36–41. Metals Week. V. 44, No. 51, Dec. 17, 1973, p.

The Northern Miner. World's Largest Copper Reserve Being Developed in Chile. V. 59, No. 26, Sept. 13, 1973, pp. 4-5.

RHENIUM 1083

num, and that recovery of these values were planned in the future.8

A deposit of molybdenite in Transbaikalia was reported to contain economically recoverable quantities of rhenium. A batch of 49 samples was analyzed and shown to contain 21 to 165 ppm of rhenium, the average being 82 ppm. There were other minerals in the deposit, but the rhenium occurred only in the molybdenite.

Yugoslavia.-Ore of the Majdanpek copper mine contains minor amounts of mo-

lybdenum and rhenium, however, they apparently exist in quantities currently insufficient for economical recovery.

Zaire, Republic of.—Copper concentrate from the Katanga copper mines, which contains small amounts of rhenium, was exported to Belgium where the contained rhenium was recovered by Métallurgie Hoboken-Overpelt S.A./N.V. Some of this material was then exported to the United States (110 pounds in 1973) in the form of rhenium metal powder.

#### TECHNOLOGY

The Bureau of Mines pilot plant studies on recovery of molybdenum and rhenium from low-grade molybdenite concentrates were substantially completed during the year. Over-all molybdenum-rhenium recovery using a solvent extraction-carbon absorption system was 98%. Corresponding power consumption ranged between 10 and 13.7 kilowatt hours per pound of molybdenum extracted. A commercial producer of molybdenum and rhenium continued pilot-scale studies of the process.

The Bureau of Mines published the results of a study on extraction of molybdenum and rhenium from low-grade molybdenite concentrates by electrooxidation.9

The Bureau continued its research to improve the selectivity and recovery of molybdenum and rhenium during froth flotation of copper sulfide concentrate from disseminated ores.

A study was undertaken to determine the effects of small rhenium additions on low-temperature ductility of molybdenum and to characterize the mechnical properties of dilute molybdenum-rhenium (Mo-Re) alloys. High-purity Mo-Re alloys had ductile-brittle transition temperatures much lower than those for unalloyed molybdenum in both bend and tensile tests and in both recrystallized and worked conditions. At 1,315° C, an alloy of molybdenum with 5.9% rhenium had a 70% greater tensile strength and a 100% greater creep strength than did the unalloyed molybdenum.10

A study was conducted on doped tungsten-rhenium alloys which identified the source of the unique interlocked elongated grains responsible for the high-temperature sag resistance of these alloys as bubbles

formed by volatilization of potassium during sintering. By pinning grain boundaries, these bubbles raised the recrystallization temperature (from 1,300° to 2,100° C), and their distribution into rows by annealing controlled the recrystallized grain morphology.11

In 1970 it was discovered that copper produced from mine water by cementation with iron, contains small but significant quantities of rhenium. It was found that 90% of the contained rhenium could be selectively leached from the precipitate copper and recovered as purified oxide. A process for production of rhenium from the copper was proven on a semicommercial scale (equivalent to about 350 pounds of rhenium oxide per year) .12

A new method of copper-molybdenum concentration from low-grade porphyry ore (0.005% to 0.006% Mo) was put into practice at the Balkhash dressing plant at Kazakhstan, U.S.S.R. Steam is supplied to each flotation cell tangentially to the impeller, and the temperature is automatically held at the required value. Sodium sulfide (3.7 to 6.6 pounds per ton) is then fed to the cleaning cells. The results of

Sutulov, Alexander. Mineral Resources and the Economy of the U.S.S.R. McGraw-Hill Inc., New York, 1973, 192 pp.
Lindstrom, R. E., and B. J. Scheiner. Extraction of Molybdenum and Rhenium From Concentrates by Electrooxidation. BuMines RI 7802, 1973, 19 pp.

tion of Molybdenum and Rhenium From Concentrates by Electrooxidation. BuMines RI 7802, 1973, 12 pp.

<sup>10</sup> Klopp, W. D., and W. R. Witzke. Mechanical Properties of Electron-Beam-Melted Molybdenum and Dilute Mo-Re Alloys. Met. Trans, v. 4, No. 8, August 1973, pp. 2006–2008.

<sup>11</sup> Simpson, R. P., G. J. Dooley, III, and T. W. Haas. Study of Grain Boundary Fracture Surfaces in Doped Tungsten-Rhenium Alloys. Met. Trans., v. 5, No. 3, March 1974, pp. 585–591.

<sup>12</sup> Amman, P. R., and T. A. Loose. Recovery of Rhenium from Precipitate Copper. Pres. at Ann. Meeting of AIME, Dallas, Tex., Feb. 25, 1974.

the process guarantee average molybdenum recovery in the separation cycle of 93% and a 2.6-fold increase in rhenium content in tailings.13

The Continental Ore Corp. received a patent for recovery of rhenium and molybdenum from MoS2 concentrate. The process comprises preheating finely divided MoS2 concentrate and passing it downward through a vertical reaction zone countercurrently to an upflowing stream of hightemperature oxygen, oxygen enriched air, or oxygen-sulfur dioxide mixture. The rhenium values are collected outside the first oxidation zone and dissolved in water. The process is attractive from a pollution control standpoint because byproduct SO2, ordinarily released to the atmosphere, is produced in the exhaust gases in concentrations high enough to make its recovery economically feasible.14

Molycorp was issued a patent on a solvent extraction process for recovering molybdenum and rhenium from molybdenite. The process involves contacting the solution with an alkyl phosphonate to extract rhenium, organic acids, and other impurities, followed by contacting the extracted solution with an organophosphoric acid and recovering molybdenum and rhenium values by conventional means. The process is applicable to recovery of metal values from leach solutions having a sulfuric acid content of up to 600 grams per liter resulting from nitric acid-oxidation leach of molybdenite.15

A patent was issued to Newmont Exploration Ltd., a subsidiary of Newmont Mining Corp., for the recovery of rhenium from molybdenite. The conventional oxidative roasting of MoS2 concentrate was modified to reduce the dilution of the oxidized rhenium vapor species in the gaseous effluent by substituting a mixture of oxygen and water for air in the roasting reaction, the water serving to maintain roasting zone temperature at about 600° C.16

A number of patents dealing with catalytic cracking, hydrocracking, catalytic reforming, and hydrocarbon conversion, employing rhenium in combination with other metals such as gallium, selenium, tungsten, germanium, and iridium in bitrimetallic and tetrametallic combinations, were issued to various oil and chemical companies.17

<sup>13</sup> World Mining. How Russians Increase Cu-Mo Recoveries at Balkhash. V. 26, No. 5, May 1973, pp. 41–42.

<sup>14</sup> Lake, J. L., J. E. Litz, R. B. Coleman, M. Goldenberg, M. Vojkovie (assigned to Continental Ore Corp., New York). Recovery of Rhenium and Molybdenum Values From Molybdenite Concentrates. U.S. Pat. 3,770,414, Nov. 6, 1973.

<sup>15</sup> Peterson, H. D. (assigned to Molybdenum Corp. of America, Denver, Colo.). Solvent Extraction Process for the Recovery of Molybdenum and Rhenium From Molybdenite. U.S. Pat. 3,751,555, Aug. 7, 1973.

Rhenium From Molybdenite. U.S. Pat. 3,761,595, Aug. 7, 1973.

<sup>18</sup> Lapat, P. E., W. C. Hellyer (assigned to Newmont Exploration Ltd., Danbury, Conn.). Recovery of Rhenium From Molybdenite. U.S. Pat. 3,798,306, Mar. 19, 1974.

<sup>18</sup> Bertolacini, R. J., D. K. Kim (assigned to Standard Oil Co., Chicago, Ill.). Reforming Petroleum Hydrocarbons With Catalysts Promode With Gallium and Rhenium. U.S. Pat. 3,772,184, Nov. 13, 1973.

Hayes. I. C. (assigned to Universal Oil Prod-

Nov. 13, 1973.

Hayes, J. C. (assigned to Universal Oil Products Co., Des Plaines, Ill.). Hydrocarbon Conversion With a Trimetallic Catalytic Composite. U.S. Pat. 3,775,301, Nov. 27, 1973.

Head, B. D., G. R. Martin (assigned to the Dow Chemical Co., Midland, Mich.). Process for Hydrocarbon Cracking Using a Tungsten-Rhenium Catalyst. U.S. Pat. 3,773,656, Nov. 20, 1973.

Mahoney, J. A., T. D. Nevitt (assigned to Standard Oil Co., Chicago, Ill.). Method for Starting Up a Reforming Process Employing a Catalyst Containing a Group VIII Metal, Rhenium, and Selenium. U.S. Pat. 3,793,183, Feb. 19, 1974.

Rai, C. (assigned to Cities Services Oil Co., Tulsa, Okla.). Reforming Catalyst. U.S. Pat. 3,776,860, Dec. 4, 1973.
Rausch, R. E. (assigned to Universal Oil Products Co., Des Plaines, Ill.). Tetrametallic Hydrocarbon Conversion Catalyst and Uses Thereof. U.S. Pat. 3,790,473, Peb. 5, 1974.

Schrepfer, M. W. (assigned to Universal Oil Products Co., Des Plaines, III.). Catalytic Reforming of a Relatively Lean Charge Stock in a Two-Step Process. U.S. Pat. 3,785,961, Jan. 15,

# Salt

## By Charles L. Klingman 1

The quantity of salt used and sold in the United States has not shown any significant movement since 1969. The 1973 figure was 99% of the 1969 quantity. Salt production in 1973 was 95% of the peak production in 1970. Between 1965 and 1970, salt had a growth rate of about 6% per year, so the 1969-73 plateau looked disappointing by comparison.

The largest single factor in the declining salt usage of 1973 was the small requirement for deicing. Rock salt, specified for highway deicing, experienced a 34.6% decline, more than 3 million tons, in the amount sold or used. Stockpiles of salt intended for highway use were large at year-

Another factor significantly influencing salt consumption was the large swing from synthetic (Solvay) soda ash manufacture, a process requiring salt as a raw material, to natural soda ash derived from the mineral trona. There was an 18% decline in salt used to make synthetic soda ash in 1973 compared with that of 1972; a reduction

equivalent to more than 1 million tons of salt. The future outlook for salt in making soda ash is even lower than it was in 1973.

A third influencing factor on 1973 salt production was a shortage of fuel. Evaporated salt made in vacuum pans is the most energy-intensive of the salt-producing processes. In fact, the reduction in vacuumpan salt production was attributed to this energy requirement. However, this loss was offset by greater production of solar salt and open-pan (grainer) salt.

Net imports of salt (imports minus exports) amounted to 2,578,000 tons or 6% of the salt sold and used in the United States in 1973. These figures were almost identical to the net import figures of 1972.

The average unit value of various types of salt, as assigned by the manufacturers when ready for sale, showed a 9% increase in 1973 over that of 1972 for both evaporated salt and brine. Rock salt showed less than a 1% increase in value.

Table 1.-Salient salt statistics (Thousand short tons and thousand dollars)

|                             | 1969    | 1970    | 1971      | 1972      | 1973    |
|-----------------------------|---------|---------|-----------|-----------|---------|
| United States:              |         |         |           |           |         |
| Production 1                | NA      | 46,764  | 44,700    | 44,010    | 44,298  |
| Sold or used by producers 1 | 44.245  | 45,896  | 44,077    | 45,022    | 43,910  |
| Value                       | 287,680 | 304,759 | 303,687   | 296,772   | 306,103 |
| Exports                     | 716     | 423     | 670       | 869       | 609     |
| Value                       | 4.486   | 3,657   | 4.182     | 5,544     | 4.400   |
| Imports for consumption     | 3,302   | 3,536   | 3,855     | 3,463     | 3,187   |
| Value                       | 11.990  | 13,329  | 14,429    | 11.979    | 12,457  |
| Consumption, apparent       | 46,831  | 49,009  | 47,262    | 47,616    | 46,488  |
| World: Production           | 150,495 | 161,081 | r 159,107 | r 162,941 | 165,526 |

<sup>&</sup>lt;sup>1</sup> Physical scientist, Division of Nonmetallic Minerals—Mineral Supply.

Revised. NA Not available.

Excluding Puerto Rico; 32,000 short tons (1969 and 1970), 28,500 short tons (1971), 29,000 short tons (1972 and 1973).

#### **DOMESTIC PRODUCTION**

Sixteen States recorded production of salt in 1973. Two of the States, Louisiana and Texas, accounted for 54% of the salt sold or used, and three other States, New York, Michigan, and Ohio brought the total up to 87%. Eight of the States, accounting for 96% of the national total, sold or used more than 1 million tons each of salt.

There were 52 salt companies operating 95 plants in the United States and Puerto Rico. Ten of these companies produced over 1 million tons each and accounted for 82% of the U.S. salt production. Eighteen other companies, producing between 100,000 and 1 million tons each, brought the total up to 99% of the U.S. output. Twenty-four other companies whose individual production was under 100,000 tons per year supplied the remaining 1% of the salt output.

A secondary shaft at the Cargill, Inc., salt mine on Belle Isle, La., caved in March 1973,2 shutting down production for nearly I year. The cost of repairing the damage was estimated to be enormous and full operations were not scheduled to resume until mid-1976.

PPG Industries, Inc., closed its synthetic soda ash plant at Barberton, Ohio, in April 1973. This plant was capable of consuming up to 1 million tons of salt per year.

The Leslie Salt Co. announced in December 1973 that it would close its large salt plant in Redwood City, Calif., by the end of 1976. Facilities at Redwood City will be shifted to another Leslie plant at Newark, Calif.

Great Salt Lake Minerals & Chemicals

Corp. announced at midyear that it planned to expand operations and that the expansion included facilities for washing and drying 150,000 tons of high quality salt per

Cargill, Inc., purchased two salt companies during the year. They were the Barton Salt Co. near Hutchinson, Kan., and the Cayuga Rock Salt Co., Inc., near South Lansing, N.Y. The Cargill mine at South Lansing, N.Y., was modernized with a new underground electrical system and extensions to the main belt conveyor.

Domtar Chemicals, Ltd., of Montreal, Canada, purchased the Carey Salt Co. operation at Louisa (St. Mary Parish), La., in mid-1973.

The International Salt Co. salt mine at Retsof, N.Y., completely replaced its underground railcar hauling complex with 4 miles of conveyor belts.3 The new conveyor belt installation costing \$3.1 million was projected to be amortized in 3 to 5 years. The system was claimed to reduce labor costs 19%, increase production 21%, and reduce maintenance costs 82% in addition to saving \$3,000 per month in electricity costs.

At international's Cleveland, Ohio mine, feeder-breakers and a 48-inch-belt conveyor were installed in place of loading machines and trucks to reduce costs from \$0.175 per ton to \$0.087 per ton.4

<sup>4</sup> Mining Magazine. Feeder-Breaker for Salt Mine. V. 130, No. 1, January 1974, p. 49.

Table 2.-Salt sold or used by producers in the United States, by method of recovery (Thousand short tons and thousand dollars)

| Recovery method -                    | 19       | 72      | 197      | 73      |
|--------------------------------------|----------|---------|----------|---------|
| recovery method                      | Quantity | Value   | Quantity | Value   |
| Evaporated:                          |          |         |          |         |
| Bulk:                                |          |         |          |         |
| Open pans or grainers                | 388      | 13,225  | 525      | 16.546  |
| Vacuum pans                          | 3,287    | 85,081  | 2.984    | 87.489  |
| Solar                                | 1,799    | 15,115  | 1,924    | 17,299  |
| Pressed blocks                       | 376      | 10,927  | 451      | 14,508  |
| Total 1                              | 5,850    | 124,348 | 5,884    | 135,843 |
| Rock:                                |          |         |          |         |
| Bulk                                 | 14.369   | 88,903  | 12.275   | 75,993  |
| Pressed blocks                       | 66       | 2,138   | 72       | 2,551   |
| Total 1                              | 14,434   | 91.041  | 12.347   | 78.544  |
| Salt in brine (sold or used as such) | 24,737   | 81,383  | 25,680   | 91,717  |
| Grand total 1                        | 45,022   | 296,772 | 43,910   | 306,103 |

<sup>&</sup>lt;sup>1</sup> Data may not add to totals shown because of independent rounding.

<sup>&</sup>lt;sup>2</sup> Engineering and Mining Journal. Large Crater Forces Closure of Belle Isle salt mine. V. 174, No. 5, May 1973, p. 32. <sup>3</sup> Pit and Quarry. Mine Haulage Conversion Boosts Output, Cuts Costs. V. 66, No. 10, April 1974, pp. 95-99, 114.

Table 3.-Salt sold or used by producers in the United States

| State -                       | 197                 | 2                    | 1973           |                       |  |
|-------------------------------|---------------------|----------------------|----------------|-----------------------|--|
|                               | Quantity            | Value                | Quantity       | Value                 |  |
| CaliforniaKansas <sup>1</sup> | 1,621               | 14,860               | 1,507          | 15,533                |  |
|                               | 1,369               | 20,562               | 1,397          | 23,460                |  |
| Louisiana Michigan New York   | 13,514              | 67,464               | 13,152         | 66,211                |  |
|                               | 4,358               | 50,761               | 4,818          | 53,732                |  |
| Ohio                          | 5,604<br>6,147<br>W | 43,866<br>47,710     | 5,202<br>4,657 | 42,364<br>41,643      |  |
| TexasUtah                     | 9,744<br>660        | W<br>36,544<br>4.955 | 10,354<br>717  | 36<br>45,350<br>6.913 |  |
| West Virginia                 | 1,232               | 5,963                | 1,217          | 6,082                 |  |
| Other States <sup>2</sup>     | 771                 | 4,087                | 885            | 4,778                 |  |
| Total 3Puerto Rico            | 45,022              | 296,772              | 43,910         | 306,103               |  |
|                               | 29                  | 580                  | 29             | 580                   |  |

W Withheld to avoid disclosing individual company confidential data; included with "Other States."

1 Quantity and value of brine included with "Other States."

2 Includes Alabama, Colorado, Hawaii, Kansas (brine only), Nevada, New Mexico, North Dakota, and States indicated by symbol W.

3 Data may not add to totals shown because of independent rounding.

Table 4.-Evaporated salt sold or used by producers in the United States

(Thousand short tons and thousand dollars)

| State -        | 19       | 972     | 19       | 73        |
|----------------|----------|---------|----------|-----------|
|                | Quantity | Value   | Quantity | Value     |
| California     | 1,355    | 13,980  | 1,246    | 14.594    |
| Kansas         | 723      | 17,207  | 782      | 19,914    |
| Louisiana      | 269      | 8,840   | 285      | 9,976     |
| Michigan       | 1,169    | 32,562  | 1,129    | 33,359    |
| New York       | 600      | 18,015  | 632      | 19,353    |
| Ohio           | 806      | 22,174  | 777      | w         |
| Oklahoma       | w        | w       | 5        | 36        |
| Other States 1 | 930      | 11,571  | 1,028    | 38,612    |
| Total          | 5.850    | 124.348 | 5,884    | 2 135,843 |
| Puerto Rico    | 29       | 580     | 29       | 580       |

W Withheld to avoid disclosing individual company confidential data; included in "Other States."

Includes Hawaii, Nevada, New Mexico, North Dakota, Texas, Utah, and States indicated by symbol W.

<sup>2</sup> Data does not add to total shown because of independent rounding.

Table 5.-Rock salt sold by producers in the United States

(Thousand short tons and thousand dollars)

|      | Year | Quantity | Value  |
|------|------|----------|--------|
| 1969 |      | 13.397   | 86,452 |
| 1970 |      | 14.170   | 95,291 |
| 1971 |      | 13,700   | 89,321 |
| 1972 |      | 14,434   | 91.041 |
| 1973 |      | 12,347   | 78,544 |

Table 6.-Pressed-salt blocks sold by original producers of salt in the United States

(Thousand short tons and thousand dollars)

| Year | Freevapo<br>sa | rated  |               | rock<br>alt | To            | tal    |
|------|----------------|--------|---------------|-------------|---------------|--------|
|      | Quan-<br>tity  | Value  | Quan-<br>tity | Value       | Quan-<br>tity | Value  |
| 1969 | 369            | 9,622  | 83            | 2,352       | 452           | 11,974 |
| 1970 | 368            | 10,085 | 79            | 2,269       | 447 1         |        |
| 1971 | 367            | 10,532 | 87            | 2.095       | 454           | 12,627 |
| 1972 | 376            | 10,927 | 66            | 2,138       | 442           | 13,065 |
| 1973 | 451            | 14,508 | 72            | 2,551       | 523           | 17,059 |

 $^{\rm 1}\,{\rm Data}$  does not add to total shown because of independent rounding.

## **CONSUMPTION AND USES**

Of the total salt consumed in 1973, 59% was distributed as brine, 27% as rock salt, and 14% as evaporated salt. The production of caustic soda and chlorine required 51% of the total salt output, up from 45% in 1972. The amount of salt going into the manufacture of synthetic soda ash, was 11% of the output compared with 13% in 1972. Other miscellaneous chemicals required 3% of the salt, making the total chemical requirements equal to 65% of the salt used and sold in 1973. This was a significant increase from the 60% required for chemical manufacture in 1972.

The salt sold to various governmental agencies, presumed to be used primarily for highway deicing, was down to 14% of the total from 21% in 1972, more than offsetting the gain in chemicals manufacture. Other uses required about the same amount of salt in 1973 as was needed in previous years.

It will be noted that the consumption totals in tables 7 and 8 differ slightly from those in tables 1 through 5. These differences reflect the point at which consumption is reported by salt companies in various sections of the annual salt survey. The Bureau of Mines made no attempt to reconcile these differences, but reported them as received.

Table 7.-Distribution of salt sold or used by producers in the United States, by use (Thousand short tons)

| Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Tota   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Consumer of use orated variety orated rotal orated rotal orated rotal orated rotal rotal orated rotal rotal orated rotal rotal orated rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rotal rota |
| Chlorine 302 2,100 5,786 5,791 (2) (2) 4,776 4,776 4,780 soda ash                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Soda ash                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Soap (including determent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| determent)         22         5         (*)         W         850         W         1,4           All other chemicals         440         479         117         1,036         W         1,3           Textile and dyeing         132         75         -         207         123         78         -         2           Meatpackers, tanners, and casing manufacturers         266         353         -         619         247         330         -         -         5           Fishing         -         42         4         -         45         (3)         (3)         (3)         (3)         (3)         (3)         (3)         (2)         5         10         (2)         5         10         (2)         2         2         11         11         8         -         11         11         11         8         -         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         2         1         2         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| All other chemicals 440 479 117 1,036 W 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 500 M 50 |
| The tile and dyeing _ 132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Meatpackers, tanners, and casing manufacturers — 266 353 — 619 247 330 — 5   Fishing — 42 4 — 45 (3) (3) (3) — 5   Dairy — 56 24 — 80 58 3 — 2   Canning — 160 68 (2) 228 169 68 (2) — 2   Baking — 110 7 — 117 114 8 — 1   Baking — 10 7 — 117 114 8 — 1    Flour processors (including cereal) — 70 12 (2) 83 75 10 (2)   Charling cereal) — 70 12 (2) 83 75 10 (2)   Cher food processing 483 37 (2) 520 536 W W W    Codd storage companies — 1 2 — 3 (3) (3) (3) (3) (3) (4)   Feed dealers — 933 453 (2) 1,386 880 490 (2) 1,   Feed mixers — 354 223 — 577 427 287 — Feed mixers — 354 223 — 577 427 287 — Wetals — W 175 W 227 W 1777 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W 177 W  |
| and casing manufacturers 266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| facturers 266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Tacturers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Fishing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Dairy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Canning 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Baking 110 7 Flour processors (in- cluding cereal) 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Cluding cereal     70   12   (*)   520   536   W   W   Cluding cereal     70   12   (*)   520   536   W   W   Cluding     3   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)   (*)                |
| Cluding cereal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ice manufacturers and cold storage companies     1     2     -     3     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| cold storage companies     1     2      3     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (3)     (2)     (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| panies 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Feed dealers 354 223 577 427 287 Feed mixers W 175 W 227 W 177 W Ceramics (including                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Feed dealers 354 223 577 427 287 Feed mixers W 175 W 227 W 177 W Ceramics (including                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Feed mixers 354 223 377 W 177 W Metals W 175 W 227 W 177 W Ceramics (including                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Metals W 175 W 221  Ceramics (including - (4) (4) (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Ceramics (including - (1) (4) (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| glass) 4 3 'T' W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Pubber 86 W W 178 W V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 011 47 62 93 202 52 01 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Paper and pulp W 125 W 201 W 120 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Water softener manu-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| fortunana and convice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| companies (2) 1 050 981 411 (2) 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |
| Railroads, bus, and transit companies 1 4 6 (4) (4) (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| transit companies - 4c4 8 787 4 9 255 327 5.751 (2) 6,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Highway use 404 0,101 99 68 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| U.S. Government 200 2060 908 2632 257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Miscellaneous 100 200 200 200 200 200 200 200 200 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Undistributed 10 504 11 11 11 11 11 11 11 11 11 11 11 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Total 1 65,926 615,044 624,664 745,634 65,905 612,024 625,996 743,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

W Withheld to avoid disclosing individual company confidential data; included with "Undistributed."

1 Data may not add to totals shown because of independent rounding.

2 Less than ½ unit, included with "Undistributed."

3 Included with "Other food processing."

4 Included with "Miscellaneous."

<sup>&</sup>lt;sup>5</sup> Includes withheld figures and some exports and consumption in overseas areas administered by

Therefore withher ingules and some experiments of the United States.

6 Differs from totals shown in tables 2, 4, and 5 because of changes in inventory.

7 Differs from totals shown in tables 1, 2, and 3 because of changes in inventory.

SALT 1089

Table 8.-Distribution (shipments) of evaporated and rock salt in the United States, by destination

(Thousand short tons)

| Doublestien          | 197        | 2             | 197          | 3        |
|----------------------|------------|---------------|--------------|----------|
| Destination          | Evaporated | Rock          | Evaporated   | Rock     |
| Alabama              | 50         | 407           | 55           | 320      |
| Alaska               | W          |               | W            | W        |
| Arizona              | 36         | 1             | 33           | 4        |
| Arkansas             | 21         | 97            | 21           | 90       |
| California           | 915        | 146           | 986          | W        |
| Colorado             | 113        | 46            | 90           | W        |
| Connecticut          | 17         | w             | 17           | W        |
| Delaware             | 6          | w             | 6            | W        |
| District of Columbia | 4          | $\mathbf{w}$  | 3            | W        |
| Florida              | 41         | 124           | 51           | 137      |
| Georgia              | 61         | 263           | 62           | 260      |
|                      | w          |               | W            |          |
|                      | 57         | - <u>ī</u>    | 70           | W        |
| Idaho                | 353        | $1.30\bar{4}$ | 365          | 1.046    |
| Illinois             | 159        | 555           | 165          | 459      |
| Indiana              | 200        | 340           | 196          | 329      |
| Iowa                 | 89         | 189           | 94           | 179      |
| Kansas               | 48         | 517           | 49           | 505      |
| Kentucky             |            |               | 52           | 628      |
| Louisiana            | 52         | 449           | 10           | W        |
| Maine                | .9         | W             | 42           | 31       |
| Maryland             | 44         | w             |              |          |
| Massachusetts        | 77         | $\mathbf{w}$  | 42           | 320      |
| Michigan             | 204        | $\mathbf{w}$  | 206          | W        |
| Minnesota            | 150        | 307           | 136          | 290      |
| Mississippi          | 19         | 114           | 22           | 103      |
| Missouri             | 111        | 356           | 113          | 314      |
| Montana              | 58         | 1             | 74           | _1       |
| Nebraska             | 119        | 93            | 127          | 95       |
| Nevada               | 31         | w             | 37           | W        |
| New Hampshire        | w          | w             | $\mathbf{w}$ | 77       |
| New Jersey           | 157        | 408           | 160          | w        |
| New Mexico           | 51         | 45            | 61           | 47       |
|                      | 326        | 2.021         | 322          | 1,192    |
| New York             | 125        | 148           | 122          | 155      |
| North Carolina       | 35         | w             | w            | 5        |
| North Dakota         | 371        | 1,300         | 401          | 1.035    |
| Ohio                 | • 41       | 66            | 54           | 66       |
| Oklahoma             | 41         | w             | 60           | W        |
| Oregon               |            | 996           | 190          | 565      |
| Pennsylvania         | 186        | W             | 15           | W        |
| Rhode Island         | 15         | 21            | 45           | ii       |
| South Carolina       | 40         |               | 60           | 32       |
| South Dakota         | 56         | 28            | 124          | 539      |
| Tennessee            | 122        | 557           |              | 258      |
| Texas                | 322        | 237           | 198          | 250<br>W |
| Utah                 | 108        | $\mathbf{w}$  | 231          | W        |
| Vermont              | 6          | w             | 7            | W.       |
| Virginia             | 99         | 108           | 98           |          |
| Washington           | 120        | (1)           | 116          | (1)      |
| West Virginia        | 23         | 136           | 23           | 140      |
|                      | 178        | 716           | 191          | 483      |
|                      | 29         | 3             | 25           |          |
| Wyoming              | 431        | 2,945         | 279          | 2,301    |
| Other <sup>2</sup>   | 5,926      | 15,044        | 5,905        | 12,024   |
| Total 3 4            |            |               |              |          |

W Withheld to avoid disclosing individual company confidential data; included with "Other."

The use of salt for deicing and in many other industrial processes came under scrutiny in 1973. For example, its use as a deicing agent on highways and walks, a major salt usage, was attacked because it promoted corrosion of automobile bodies, deteriorated concrete, and either inhibited or prevented plant growth along the salted areas. Objections to salt deicing were tempered by applying a "diluted" salt-sand

mixture instead. This mixture not only melted the snow, but the sand embedded itself immediately upon initial melting in the remaining ice forming a continuous skid preventive surface.

The effluent discharged from synthetic (Solvay) soda ash plants into freshwater streams was also contested. These effluents, high in salt and calcium chloride, supposedly affected both the potability of the

Withhest to avoid discussing individual company contacts.

1 Less than ½ unit.

2 Includes shipments to overseas areas administered by the United States, Puerto Rico, exports, some shipments to unspecified destinations, and States indicated by symbol W.

3 Data may not add to totals shown because of independent rounding.

4 Differs from totals in tables 2, 4, and 5 because of changes in inventory.

water and plant growth along the banks. Legislation passed to regulate these effluents were in some instances so stringent that several soda ash plants shut down because of inability to meet the new standards.

The tanning of cattle hides utilizes salt brine to cure and clean the hides, and most of the spent brine is disposed of through sewage treatment plants. Salt is generally not removed by normal sewage treatment and eventually is discharged into freshwater lakes or streams. In 1972, an estimated 260,000 tons of salt was used to

preserve cattle hides and two-thirds of this amount was discharged into fresh waters.<sup>5</sup> This condition could be alleviated by either eliminating salt curing or by partially tanning the hides to produce a "blue, chrome-tanned leather." Regardless, either of the proposed methods, which have not been evaluated, would require changes in processing and marketing of hides and would have an adverse impact on salt consumption.

#### **PRICES**

Salt prices quoted in Chemical Marketing Reporter were unchanged during 1973 because of Government price regulation. The prices per 100 pounds were as follows:

|                                                                  | 1973                          |
|------------------------------------------------------------------|-------------------------------|
| Salt, evaporated, common, in bags, carlots, or truck lots, works | \$1.43<br>1.54<br>.97<br>1.02 |

The average value of the different classes of salt per ton, as assigned by the salt producers, was as follows:

|                 | 1972    | 1973    |
|-----------------|---------|---------|
| Evaporated salt | \$21.26 | \$23.09 |
| Rock salt       | 6.31    | 6.36    |
| Salt in brine   | 3.29    | 3.57    |

#### **FOREIGN TRADE**

In 1973, exports of salt amounted to 609,000 tons or 1% of salt consumption. This was 30% less than exports in 1972 and 9% less than those of 1971. Over 90% of exports went to Canada, and the only other country receiving more than 1% was Japan at 4%.

Total salt imports into the United States were 7% of apparent salt consumption and 8% less than those of 1972. Net imports (imports minus the exports) were almost identical for the past 2 years.

Salt imports in 1973 were five times the tonnage of exports, and the unfavorable balance of trade in salt amounted to \$8.06 million. Thirty-four percent of the salt imports came from Canada, 31% from Mexico, and 27% from the Bahamas. Chile

and the Netherlands Antilles each contributed about 4%.

Table 9.—Salt shipped to the Commonwealth of Puerto Rico and overseas areas administered by the United States

|                   | 19                               | 72                        | 19                               | 973                       |
|-------------------|----------------------------------|---------------------------|----------------------------------|---------------------------|
| Area              | Quan-<br>tity<br>(short<br>tons) | Value<br>(thou-<br>sands) | Quan-<br>tity<br>(short<br>tons) | Value<br>(thou-<br>sands) |
| American          |                                  |                           |                                  |                           |
| Samoa             | 545                              | \$23                      | 505                              | \$24                      |
| Puerto<br>Rico    | 20,055                           | 2,247                     | 17,262                           | 1,543                     |
| Virgin<br>Islands | 478                              | 33                        | 346                              | 18                        |

 $<sup>^5\,\</sup>mathrm{Renderer.}$  Major changes in Store for Tanners. April 1974, pp. 17, 27.

Table 10.-U.S. exports of salt, by country (Thousand short tons and thousand dollars)

1972 1973 Destination Quan-Quan-Value Value tity tity Australia Bahamas 86 118 627 3,780 561 3,383 Canada Costa Rica \_\_\_\_\_ 29 19 Honduras \_\_\_\_\_ 23 1 Jamaica \_\_\_\_\_ Japan \_\_\_\_\_ 220 924 26 102 5 Mexico 68 87 Netherlands Antilles \_\_\_\_\_ New Zealand \_\_\_\_ Panama \_\_\_\_\_ Philippines \_\_\_\_ 69 1 64 1 31 63 7 1 36 1 49 Saudi Arabia \_\_\_\_ South Africa, Republic of \_\_\_\_ 141  $\bar{\mathbf{2}}$ 167 2 17 1 20 Trinidad and (1) Tobago \_ 1 13 15 United Arab Emirates \_\_\_\_\_ 2 44 228 Other \_\_\_\_\_ 284 Total \_\_\_\_\_ 869 5,544 609 4,400

<sup>(</sup>Thousand short tons and thousand dollars) 1972

|                | 197           | 2      | 19            | 73     |
|----------------|---------------|--------|---------------|--------|
| Country        | Quan-<br>tity | Value  | Quan-<br>tity | Value  |
| Bahamas        | 875           | 3,429  | 869           | 3.735  |
| Canada         | 1.001         | 4,581  | 1.079         | 5,421  |
| Chile          | 182           | 493    | 143           | 645    |
| Mexico         | 1,250         | 2.858  | 973           | 2.166  |
| Netherlands    | -,            | _,     |               | -,     |
| Antilles       |               |        | 123           | 440    |
| Panama         | 31            | 84     |               |        |
| Tunisia        | 45            | 131    |               |        |
| United Kingdom | 19            | 160    | (1)           | 2      |
| Venezuela      | 60            | 181    | `             |        |
| Other          | (1)           | 62     | (¹)           | 48     |
| Total          | 3,463         | 11,979 | 3,187         | 12,457 |

Table 11.-U.S. imports for consumption of

salt, by country

Table 12.-U.S. imports for consumption of salt, by class

(Thousand short tons and thousand dollars)

|                      | Year | In bags, sacks,<br>other packages |                   | Bulk<br>(dutiable         | e)                           |
|----------------------|------|-----------------------------------|-------------------|---------------------------|------------------------------|
|                      |      | Quantity                          | Value             | Quantity                  | Value                        |
| 1971<br>1972<br>1973 |      | 27<br>26<br>27                    | 574<br>535<br>559 | 1 3,828<br>3,437<br>3,160 | 1 13,855<br>11,444<br>11,898 |

<sup>&</sup>lt;sup>1</sup> Includes salt brine from Canada through Buffalo customs district 1,000 short tons (\$1,089); Seattle customs district 28,738 short tons (\$198,108).

Table 13.-U.S. imports for consumption of salt, by customs district

(Thousand short tons and thousand dollars)

| Customs district   | 1972     |        | 197      | 1973   |  |  |
|--------------------|----------|--------|----------|--------|--|--|
| Customs district   | Quantity | Value  | Quantity | Value  |  |  |
| Baltimore, Md      | 261      | 863    | 176      | 746    |  |  |
| Boston, Mass       | 213      | 482    | 68       | 152    |  |  |
| Buffalo, N.Y       | 40       | 191    | 19       | 95     |  |  |
| Chicago, Ill       | 61       | 273    | 33       | 169    |  |  |
| Cleveland, Ohio    | 31       | 151    | 122      | 595    |  |  |
| Detroit, Mich      | 559      | 2.752  | 588      | 2,950  |  |  |
| Duluth, Minn       | 43       | 204    | 59       | 329    |  |  |
| Los Angeles, Calif | 194      | 423    | 162      | 409    |  |  |
| Milwaukee, Wis     | 174      | 806    | 234      | 1,151  |  |  |
| Mobile, Ala        |          |        | 17       | 70     |  |  |
| New York City      | 142      | 551    | 201      | 756    |  |  |
| Norfolk, Va        | 12       | 48     | 35       | 147    |  |  |
| Ogdensburg, N.Y    | 4        | 24     | 10       | 31     |  |  |
| Philadelphia, Pa   | 36       | 103    | (1)      | 3      |  |  |
| Portland, Maine    | 396      | 1.724  | ` 194    | 1,140  |  |  |
| Portland, Oreg     | 320      | 745    | 302      | 685    |  |  |
| Providence, R.I    | 28       | 86     | 25       | 76     |  |  |
| St. Albans, Vt     | 53       | 3      | (1)      | 4      |  |  |
| San Juan, P.R      | 200      | 803    | `135     | 541    |  |  |
| Savannah, Ga       | 223      | 827    | 251      | 932    |  |  |
| Seattle, Wash      | 444      | 814    | 497      | 1,002  |  |  |
| Wilmington, N.C    | 29       | 89     | 59       | 442    |  |  |
| Other              | (1)      | 17     | (1)      | 32     |  |  |
| Total              | 3,463    | 11,979 | 3,187    | 12,457 |  |  |

<sup>&</sup>lt;sup>1</sup> Less than ½ unit.

<sup>&</sup>lt;sup>1</sup> Less than ½ unit.

<sup>&</sup>lt;sup>1</sup> Less than ½ unit.

Table 14.-U.S. imports for consumption of salt, by use

(Thousand short tons)

| Use                                             | 1972               | 1973  |
|-------------------------------------------------|--------------------|-------|
| Government (highway use)                        | 1,987              | 1,227 |
| Chemical industry<br>Water conditioning service | 208                | 970   |
| companies                                       | 144                | 129   |
| Other                                           | 493                | 422   |
| Total                                           | <sup>1</sup> 2,831 | 2,748 |

<sup>&</sup>lt;sup>1</sup> Data does not add to total shown because of independent rounding. Disagreement with totals in tables 1, 11, 12, and 13 is because of incomplete data on the uses of imported salt.

#### WORLD REVIEW

Canada.—Canada ranked eighth in world production of salt in 1973. Sixty-nine percent of its production was mined in the form of rock salt, 17% as salt in brine, and the remainder was evaporated. Areawise, 75% of the salt production came from the Province of Ontario, 15% from Nova Scotia, 6% from Alberta, and 4% from Saskatchewan. In Ontario, as many as six salt layers have been identified at depths of 900 to 2,700 feet. The total thickness of all beds may be as much as 700 feet. Test drilling in the Magdalen Islands encountered salt at 450 feet and was still in salt at 2,000 feet when the drilling was terminated. The two major uses for salt in Canada were highway deicing at 42% of the production and industrial chemicals at 33%. Hooker Chemical Div. and Dow Chemical of Canada Ltd. each announced plans for expanding their chlorine-alkali production facilities which, of course, will consume more salt.

China, People's Republic of.—Solar evaporation of seawater remained the mainstay of the world's second largest salt-producing country, the People's Republic of China (PRC).6 The Tung-feng salt Field in Shantung and the Tang-ku Field of Hopeh were major areas for extraction of sea salt. Other salterns were located in Kiangsu, Liaoning, and Hainan Island. Lake salt was treated in Tsinghai where other byproducts such as bromine, borates, potassium and barium salts were also recovered. Rock salt was mined in Yunnan, Kiangsi, and Hunan. Most of the Chinese salt was used in food, but there was an increase in industrial applications. Surplus salt was exported, largely to Japan. During 1973, there were serious negotiations on the price of salt between the PRC and Japan. The Japanese threatened to turn to Australia or Mexico for salt if differences in price could not be resolved.

Japan.—Although Japan produced only 1 million tons of salt in 1973, 7.27 million tons were imported to make the country one of the larger world salt consumers. The three major suppliers of salt to Japan were Australia (44%), Mexico (42%), and PRC (13%). The Australian salt industry was developed primarily to supply the Japanese market. In 1973, Japan produced 3.23 million tons of caustic soda and 1.36 million tons of soda ash, both of which utilize salt as a raw material.

Mexico.—The world's largest solar salt production facility, Exportadora de Sal, S.A., located in the Black Warrior district of Baja California, has been purchased by the Mitsubishi Corp. of Japan for a reported \$20 million. The present capacity of the plant is about 5 million tons per year. Mitsubishi may extract bromine, magnesium hydroxide, and other byproducts as well as salt from these fields.

U.S.S.R.—The U.S.S.R. ranks third in world production of salt, but details of its industry are not well known. One of the most enlightening papers on the subject was presented at the 1969 Symposium on Salt in Cleveland, Ohio.7 The total resources of Soviet salt were placed at 255 trillion (109) tons. Two large salt-producing areas were identified as Lake Elton in the northern part of the Caspian depression and Lake Baskunchak. About 36% of the Soviet salt comes from underground mines

Canadian Mining Journal. Salt. V. 94, No. 1,
 January 1973, p. 25.
 Panteleyev, N. Soviet Salt Industry Proceed-

ings of the Fourth Symposium on Salt.

Table 15.-Salt: World production, by country

(Thousand short tons)

| Country 1                              | 1971            | 1972             | 1973 Þ                |
|----------------------------------------|-----------------|------------------|-----------------------|
| North America:                         |                 |                  |                       |
| Bahamas                                | 1,337           | 890              | 1,236                 |
| Canada<br>Costa Rica                   | 5,542           | 5,417            | 5,327                 |
| Costa Rica<br>Dominican Republic       | 12<br><b>42</b> | 13<br>e 43       | 14                    |
| El Salvador                            | 34              | 32               | ° 48<br>39            |
| Honduras e                             | 30              | 30               | 30                    |
| Martinique <sup>e</sup>                | 330             | 330              | 330                   |
| Mexico                                 | 4,806           | 5,025            | ° 5,100               |
| Nicaragua                              | 20              | r e 17           | e 11                  |
| United States (including Puerto Rico): | 19.700          | 14 40 4          | 10.045                |
| Rock saltOther salt:                   | 13,700          | 14,434           | 12,347                |
| United States                          | 30,377          | 30,587           | 31,564                |
| Puerto Rico                            | 29              | 29               | 29                    |
| South America: Argentina               | r 908           | 1 107            | . 1 110               |
| Brazil                                 | 1,628           | $1,107 \\ 2,400$ | ° 1,110<br>2,044      |
| Chile                                  | 469             | 482              | 380                   |
| Colombia:                              | 100             | 102              | 900                   |
| Rock salt                              | 372             | 384              | 518                   |
| Other salt                             | 331             | 743              | 929                   |
| Peru                                   | 204             | e 210            | ° 210                 |
| Venezuela <sup>e</sup> Europe :        | 290             | 290              | 290                   |
| Austria:                               |                 |                  |                       |
| Rock salt                              | 1               | 1                | 1                     |
| Other salt                             | r 527           | 548              | 600                   |
| Bulgaria                               | 103             | 115              | 120                   |
| Czechoslovakia                         | 237             | 240              | ° 240                 |
| Denmark 2                              | 147             | 337              | e 310                 |
| France: Rock salt and brine salt       | 4,679           | 4,664            | 4,944                 |
| Marine salt                            | 1,378           | 1,109            | e 1,100               |
| Germany:                               | 1,010           | 1,100            | 1,100                 |
| East                                   | 2,448           | 2,411            | e 2,400               |
| West (marketable):                     | 7 407           |                  | 7 707                 |
| Rock salt                              | 7,407           | 6,644            | 7,727<br>• 2,700      |
| Marine salt and other                  | $2,427 \\ 126$  | 2,685<br>• 130   | e 130                 |
| Italy:                                 | 120             | 100              |                       |
| Rock salt and brine salt               | r 3,738         | 3,636            | 4,086                 |
| Marine salt                            | 1,304           | 793              | ° 800                 |
| Malta                                  | 3               | r e 2            | (3)                   |
| Netherlands<br>Poland:                 | 3,491           | 3,090            | 3,355                 |
| Rock salt                              | 1,346           | 1,333            | 1,389                 |
| Other salt                             | 1,916           | 1,985            | 2,005                 |
| Portugal:                              | •               |                  |                       |
| Rock salt                              | 259             | 315              | 332                   |
| Marine salt                            | 178             | 234              | • 230                 |
| Romania                                | 3,250           | 3,469            | • 3,600               |
| Spain:                                 | 1,311           | 1,253            | ° 1,260               |
| Marine salt 4                          | 870             | 731              | • 740                 |
| Switzerland                            | 321             | 282              | ° 290                 |
| U.S.S.R                                | 13,200          | 13,400           | 13,400                |
| United Kingdom:                        |                 |                  |                       |
| Rock salt                              | r 2,044         | 1,430            | • 1,300               |
| Other salt •                           | 8,300<br>387    | 9,300<br>296     | 8,900<br>3 <b>6</b> 5 |
| Yugoslavia<br>Africa :                 | 901             | 290              | 909                   |
| Algeria                                | 128             | 119              | e 120                 |
| Angola                                 | 100             | 138              | 107                   |
| Egypt. Arab Republic of                | 464             | 422              | ° 440                 |
| Ethiopia: <sup>5</sup>                 |                 |                  |                       |
| Rock salt                              | 11              | 11               | 118                   |
| Marine salt                            | 309             | 309<br>• 55      | • 55                  |
| Ghana<br>Kenya                         | 52<br>48        | 31               | 34                    |
| Libya •                                | 18              | 18               | 18                    |
| Malagasy Republic                      | 31              | 23               | e 22                  |
| Mali                                   | 3               | e 3              | • 3                   |
| Mauritius                              | 6               | 6                | • 7                   |
| Morocco                                | 59              | 50               | 30                    |
| Mozambique                             | 31              | 34               | * 34                  |
| Senegal                                | 128             | 149              | e 154                 |
| Somali Republic e                      | 389             | 408              | 431                   |
| South Africa, Republic of              | 909             | 400              | 491                   |

See footnotes at end of table.

Table 15.-Salt: World production, by country-Continued (Thousand short tons)

| Africa—Continued South-West Africa: Marine salt • |                  |          |         |
|---------------------------------------------------|------------------|----------|---------|
| South-West Africa: Marine salt e                  |                  |          |         |
|                                                   | 121              | 121      | 121     |
| Sudan                                             | 64               | 66       | 88      |
| Tanzania                                          | r 41             | e 44     | e 44    |
| Tunisia                                           | 387              | 364      | 391     |
| Uganda                                            | 3                | e 3      | e 3     |
| Asia:                                             |                  |          | _       |
| Afghanistan <sup>5</sup> •                        | 42               | 42       | 42      |
| Bangladesh e                                      | 140              | 350      | 830     |
| Burma                                             | 177              | 174      | 213     |
| China, People's Republic of e                     | 18,200           | 19.800   | 20,000  |
| Cyprus                                            | · 7              | 6        | e 7     |
| India                                             | 5.986            | 7.187    | 7.721   |
| Indonesia                                         | 47               | 198      | e 220   |
| Iran <sup>5</sup>                                 | 430              | 440      | e 440   |
| Iraq                                              | 60               | e 60     | • 70    |
| Israel                                            | 88               | 68       | 68      |
| Japan                                             | 1.043            | 757      | 1.119   |
|                                                   | 26               | 26       | 28      |
| Jordan<br>Khmer Republic                          | 143              | 40       | e 44    |
| Korea, North e                                    | 600              | 600      | 600     |
| Korea, Republic of                                | 397              | 498      | 818     |
|                                                   | e 3              | 450<br>5 | e 6     |
| Kuwait                                            |                  | 9        | 10      |
| Laos                                              | ( <sup>3</sup> ) |          | 44      |
| Lebanon e                                         | 42               | 44       |         |
| Malaysia                                          | NA               | 23       | e 30    |
| Mongolia e                                        | 10               | 11       | 12      |
| Pakistan:                                         |                  |          | 44.5    |
| Rock salt                                         | 380              | 399      | 417     |
| Other salt                                        | 293              | 258      | 112     |
| Philippines                                       | 260              | 242      | 243     |
| Ryukyu Islands                                    | 6                | 6        | . 6     |
| Sri Lanka                                         | 95               | 174      | e 190   |
| Syrian Arab Republic                              | 26               | e 33     | e 33    |
| Taiwan                                            | 738              | 485      | 347     |
| Thailand e                                        | 180              | 180      | 180     |
| Turkey                                            | 730              | e 730    | e 730   |
| Vietnam:                                          |                  |          |         |
| North e                                           | 165              | 165      | 165     |
| South                                             | 132              | 44       | 148     |
| Yemen, Arab Republic of                           | 43               | 81       | 1       |
| Yemen, People's Democratic Republic of            | 73               | e 70     | e 70    |
| Oceania:                                          |                  | ••       |         |
|                                                   | r 4.243          | e 4.400  | e 4,400 |
| Australia<br>New Zealand                          | 48               | 64       | e 70    |
|                                                   | r 159.107        | 162,941  | 165.526 |

e Estimate. P Preliminary. Revised. NA Not available.

1 Salt is produced in many other countries, including Cape Verde Islands, Mauritania, and Niger, but quantities are relatively insignificant or reliable data are not available. 1971 data are sales.

such as the Solotvinsky mine in the Transcarpathia and the Iletsky mine in the Orenburg Region near the Ural mountains. The mines are well mechanized, and the processing plants are located on the surface near the mine shafts. For home use, the salt is crushed and screened to about 1-millimeter particle size and packed in paper packages weighing 1.5 or 2.2 pounds each. The salt industry of the U.S.S.R. employs about 7,000 workmen. About 1.5 million tons of common salt is used by cattle farmers. The amount going to industry is increasing.

United Kingdom.—An excellent publication of the salt industry of the United Kingdom was issued in 1973 by the Min-

eral Resources Consultative Committee.8 It covered the occurrence, reserves, production, industry, uses, trade, prices, technology, and predicted demands for salt. The United Kingdom was the fifth largest salt producer in the world, and its usage pattern was quite similar to that of the United States. Sixty-three percent of the British salt was produced as brine for use primarily in the chemical industry, 19% as evaporated salt for food, agriculture, and other miscellaneous uses, and 18% was mined as rock salt primarily for deicing highways.

<sup>&</sup>lt;sup>2</sup> 19/1 data are sales.

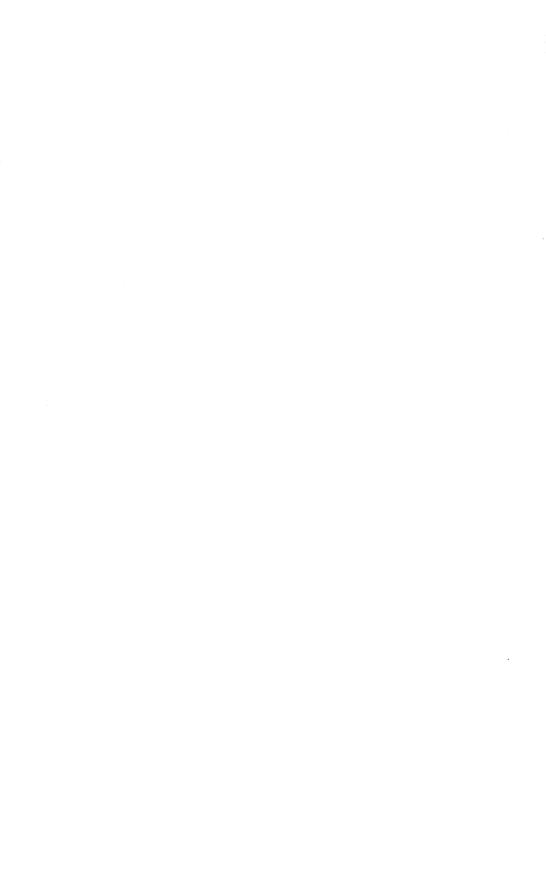
<sup>3</sup> Less than <sup>1</sup>/<sub>2</sub> unit.

<sup>4</sup> Revised to include a small quantity of salts produced from brine springs, also includes an average annual production in the Canary Islands of 15,000 metric tons of marine salt.

<sup>5</sup> Year beginning March 21 of year stated.

<sup>&</sup>lt;sup>8</sup> Notholt, A. J. G., and D. E. Highley, compilers. Mineral Dossier No. 7—Salt. Her Majesty's Stationery Office, London, 1973.

#### **TECHNOLOGY**


It has recently become recognized that salt domes, such as those along the U.S. coast of the Gulf of Mexico, can be practically inexhaustible sources of heat for power generation.9 Salt has an unusually high thermal conductivity and can, therefore, be expected to act as an energy conduit to bring heat up from the interior of the earth. Typical temperatures within a salt dome are 330° F at 10,000 feet; 455° F at 15,000 feet; and 580° F at 20,000 feet. These temperatures can be maintained indefinitely, it is believed, regardless of the heat extracted from the salt dome. One possible method of bringing the heat to the surface would be to inject water into the cavity and to direct the steam, thus created, through a turbine which would turn an electric generator. The condensed steam from the turbine could be recycled into the salt cavity.

A 3-year testing program by the Dow

Chemical Company at Freeport, Tex., has shown that aluminum alloys have exceptional resistance to corrosion caused by hot brine.10 The equipment for the test was a multistage, flash-distillation desalting plant of the Materials Test Center for the Office of Saline Water. The alloys tested displayed excellent performance under conditions of low pH, high temperatures, and high flow rates. The tested metals cost about half of that required for comparable cupronickel commonly used for such purposes. National capacity for desalting seawater and brackish inland water is increasing rapidly, therefore the usage of lower cost aluminum should become immediately applicable.

<sup>&</sup>lt;sup>9</sup> Jacoby, Charles H. and Dilip K. Paul. Salt Domes as a Source of Geothermal Energy. Min-ing Engineering, V. 26, No. 5, May 1974, pp. 34-39. <sup>10</sup> Verink, E. D., Jr. Aluminum Alloys for Saline Waters. Chem. Eng., v. 81, No. 8, Apr. 15,

<sup>1974,</sup> pp. 104-110.



# Sand and Gravel

## By Walter Pajalich 1

Sand and gravel production increased about 7% to 984 million short tons. The value of production increased about 13%. Output from commercial operations was 86% of the total output; Government-andcontractor production was 14%. The production of sand and gravel in the Nation's leading State, California, was the same as in 1972, 117 millon short tons.

## DOMESTIC PRODUCTION

California, with 117 million tons, ranked first in sand and gravel output and produced about twice as much as secondranked Michigan. Other States producing substantial quantities of sand and gravel, in descending order of production, were Ohio, Illinois, Wisconsin, Texas, and Minnesota. Combined production from the seven leading States was 389 million tons, about 40% of the total U.S. output. The value of sand and gravel produced in these seven States was \$526 million, 39% of the Nation's total. The number of commercial plant operations increased from 5,384 in 1972, to 5,681 in 1973. This was due in part to increased coverage of the industry.

Factors that have added to the consumer cost of sand and gravel included increased labor costs, growing land values, cost of land rehabilitation, and longer haulage distances.

There were 4,496 commercial plant operations with production under 200,000 tons per year. These operations accounted for 30% of the total U.S. commercial production. There were 814 plant operations with production between 200,000 and 500,000 tons, and they accounted for 30% of production. The remaining 371 plant operations, with production over 500,000 tons, accounted for 40% of production.

The use of larger operating units, more efficient portable and semiportable plants, versatility of plant capacity, and greater awareness of pollution control and land rehabilitation were the keynotes of progress in 1973.

Dravo Corp. started constructing a \$3.3 million sand and gravel plant at Georgetown, Pa., near the Ohio-West Virginia border. The plant, with an initial capacity of 960,000 tons per year, will process materials dredged from the Ohio River and from the company's 125-acre land deposit in Green Township. The plant will eventually be expanded to 1.5 million tons per year. Reclamation plans for the site include a 100-acre lake and recreation area.2

The first phase of Pennsylvania Glass Sand Corp.'s expansion program at its operation at Columbia, S.C., has been completed. The Columbia plant supplies highquality silica sand for glass, fiberglass, ceramic, and chemical industries in the Southeast. When the \$2.5 million expansion completed, milling capacity will be doubled. The expansion program was to be completed sometime in 1975.3

Modernization of the Martin Marietta Corp. silica sand plant at Oregon, Ill., included new features that are becoming part of the sand and gravel industry. Plans called for expansion that would increase the present 200-ton-per-hour capacity of finished product by 50%. The major feature is the attention given to dust and noise control and the protection of operating personnel from these factors, plus the outstanding routine program of housekeeping.

<sup>1</sup> Mining engineer, Division of Nonmetallic Minerals—Mineral Supply.
2 Rock Products. Rock Newscope. V. 75, No. 10, October 1972, p. 24.
3 Pit & Quarry. Industry News. V. 65, No. 9, March 1973, p. 6.

All dust-generating phases of the processing operation are fully enclosed, and all dust is collected by a high-capacity dust-collecting facility. Dust produced by dried material at delivery points is controlled by wet scrubbers. The processed water is recycled from a holding pond from which no water can flow into the area's natural drainage system.4

The Herbert Materials Co. of Nashville, Tenn., has modernized its main yard with a new system of aggregate storage and reclamation. Now the company can simultaneously load out aggregates for shipment and feed to a pair of ready-mix plants. Sized sand and gravel is delivered by barges from a dredge in the Tennessee River. The firm has two dredges in operation with a total production capacity of 600 tons per hour.5

The problem of clay contamination at the

Arena deposit of Thorstenberg Materials Co. of Texas has been solved by a battery of eight washing-classifying units. The deposit contains 35% gravel. The remainder is sand and clay. The clay occurs in erratic seams throughout the deposit. The process of removing clay includes the use of four spiral washers, a 40-foot sand classifier and three log washers. Push-button controls regulate the processing, blending, and loading. The plant produces 750 tons of products per hour. Primary market area for the products is Houston and Harris Counties, Texas.6

<sup>4</sup>Herod, B. C. Martin Marietta Enlarges and Modernizes Illinois Sand Plant. Pit & Quarry, v. 65, No. 12, June 1973, pp. 62-67.

<sup>5</sup>Trauffer, W. E. Herbert Materials Modernized Nashville Yard and Plants. Pit & Quarry, v. 66, No. 2, August 1973, pp. 64-67, 83.

<sup>6</sup>Robertson, J. L. Washer/Classifier System Solves Clay Problem at Sand & Gravel Plant. Rock Products, v. 76, No. 3, March 1973, pp. 50-54, 96.

Table 1.-Sand and gravel sold or used by producers in the United States, by class of operation and use (Thousand short tons and thousand dollars)

| Class of annual to                | 19        | 972 2       | 10       | 73 2      |
|-----------------------------------|-----------|-------------|----------|-----------|
| Class of operation and use —      | Quantity  | Value       | Quantity | Value     |
| Construction:                     |           | - Turuc     | Quantity | value     |
| Building:                         |           |             |          |           |
| Sand                              | r 187.314 | r 247,784   | 100 505  | 054 00    |
| Gravel                            | r 153,199 | r 237.782   | 192,795  | 271,03    |
| Paving:                           | 100,100   | - 201,102   | 156,782  | 256,22    |
| Sand                              | r 132,465 | r 158,806   | 141,259  | 105 10    |
| Gravel                            | r 280.135 | r 335.142   | 309.254  | 185,46    |
| Fill:                             | 200,100   | - 000,142   | 509,254  | 399,400   |
| Sand                              | r 49.027  | r 33.089    | 56,061   | 20.40     |
| Gravel                            | 43,458    | 29.913      | 41.566   | 39,49     |
| Railroad ballast:                 | 10,100    | 20,010      | 41,500   | 31,189    |
| Sand                              | 1,045     | 1,186       | 876      | 1.032     |
| Gravel                            | 2,229     | 2,332       | 2,743    | 3,66      |
| Other:                            | 2,220     | 2,002       | 2,140    | 3,00      |
| Sand                              | r 9,560   | r 10.274    | 12,066   | 14,75     |
| Gravel                            | 12,880    | 14.247      | 19,715   | 20.157    |
| Total construction 3              | r 871,312 | r 1.070.555 | 933,118  | 1,222,425 |
| ndustrial sand:                   |           | 1,010,000   | 300,110  | 1,222,428 |
| Unground:                         |           |             |          |           |
|                                   |           |             |          |           |
|                                   | 10,828    | 41,259      | 10,158   | 41,485    |
| Molding<br>Grinding and polishing | 7,522     | 24,827      | 7,446    | 25,540    |
| Blast sand                        | 262       | 731         | 359      | 1,152     |
| Fire or furnace                   | 1,072     | 6,278       | 1,195    | 6,133     |
| Engine                            | 703       | 2,243       | 1,005    | 3,214     |
| Engine Filtration                 | 601       | 1,387       | 835      | 2,042     |
| Oil hydrofrac                     | 234       | 1,176       | 283      | 1,368     |
| Other                             | 282       | 1,071       | 352      | 1,778     |
|                                   | 3,514     | 11,868      | 2,748    | 8,940     |
| Total 3                           | 25,018    | 90,840      | 24.381   | 91.648    |
| Ground sand 4                     | 4,512     | 21,546      | 4.593    | 18,418    |
| Total industrial 3                | 29,530    | 112,386     | 28,974   | 110,065   |
| fiscellaneous gravel              | 13,482    | 17,759      | 21,537   | 26,880    |
| Grand total 3                     | r 914.324 | r 1,200,701 | 983,629  | 1,359,370 |
| ommercial:                        | 011,021   | 1,200,101   | 300,023  | 1,000,010 |
| Sand                              | r 379,540 | r 539,202   | 403,928  | 586.919   |
| Gravel                            | r 407.197 | r 549,930   | 442,877  | 627,639   |
| overnment-and-contractor: 5       | ,201      | 0.20,000    | ****,011 | 021,000   |
|                                   |           |             |          |           |
| SandGravel                        | 29,402    | 24.324      | 28,103   | 34,933    |

<sup>&</sup>lt;sup>1</sup> Excludes Puerto Rico.

<sup>2</sup> Data not directly comparable with those of previous years because of changes in industry coverage.

<sup>3</sup> Data may not add to totals shown because of independent rounding.
4 See table 10 for use breakdown.
5 Approximate figures for operations by States, counties, municipalities, and other government agencies under lease.

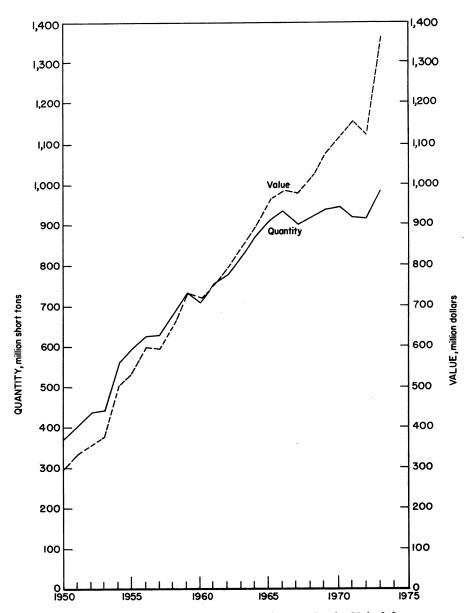



Figure 1.-Production and value of sand and gravel in the United States.

## **CONSUMPTION AND USES**

In 1973, U.S. consumption of sand and gravel amounted to 984 million tons valued at \$1.4 billion. The construction industry, the prime user of sand and gravel, consumed

95% of the tonnage, representing 89% of the value of the sand and gravel output in 1973. Of the amount of sand and gravel consumed by the construction industry, 48% went into paving, 38% into building, about 10% into fill, and 4% into other uses. The principal consumers of higher

priced industrial sand were the glass and foundry industries.

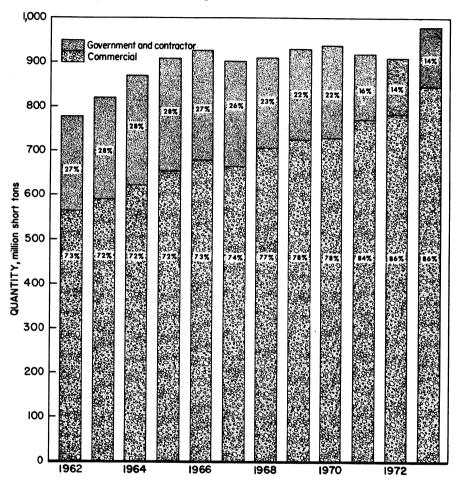



Figure 2.-Sand and gravel sold or used in the United States.

#### **PRICES**

Representative carlot-load prices of sand in 18 cities at the end of 1973 ranged from \$0.95 per ton in Detroit to \$6.45 per ton in Birmingham, according to the Engineering News-Record.<sup>7</sup> The average of the sand prices reported was \$3.55 per ton compared with \$3.14 per ton in 1972. Prices for either 34- or 1½-inch gravel ranged from \$1.60 per ton in Birmingham to \$5.70 per ton in Los Angeles. The average of the 34-inch gravel prices reported for 19 cities was

\$3.66 per ton, compared with \$3.80 per ton in 1972. For 1½-inch gravel, the average for 15 cities was \$3.92 per ton compared with \$3.74 per ton in 1972.

Based on the Bureau of Mines canvass, the average value of sand and gravel sold or used by producer, f.o.b. plant, was \$1.38 per ton; the comparable value in 1972 was \$1.31 per ton.

<sup>&</sup>lt;sup>7</sup> Engineering News-Record. McGraw-Hill Construction Weekly, Dec. 6, 1973, pp. 44-45.

#### FOREIGN TRADE

Canada received 75% of U.S. exports of construction sand, the Bahamas received 24%, and the Netherlands Antilles received less than 1%. The remainder went to 15 different countries. Exports of construction sand total 422,483 short tons valued at \$793,495. Gravel exports totaled 475,894 short tons valued at \$666,693. Total exports of common sand and gravel were 898,377 short tons valued at \$1,460,168. Canada received 86% of U.S. exports of common sand and gravel, the Bahamas received 12%, and Mexico received 1%. Of U.S. exports of industrial sand, which amounted to 845,359 short tons valued at \$7,136,394, Canada received 59%, Mexico 22%, and Japan 13%. The remainder went to 65 different countries.

Most of the crude sand and gravel imported in 1973 was from Canada. Almost all of the imported glass sand was from Australia.

### **WORLD REVIEW**

Denmark.-Hoffman & Sons A/S is one of the suppliers of sand and gravel for the general construction market in the greater Copenhagen area. Mining continues year around despite the rigors of the Danish winter. Fortunately, the material contains only about 2% to 3% moisture and draglines can be used for mining. Average production is 1,000 cubic yards per hour.8

Germany, West .- A new, completely enclosed and weatherproof, sand and gravel plant with a 600-ton-per-hour capacity was erected by Gammerer GmbH of Wolfratshausen on a site east of Munich. Two rod mills are part of the installation to produce additional sand.9

Japan.-The silica sand resources of Japan are located in a central district including Aichi, Gifu, and Mie Prefectures. Total reserves of the deposits are estimated at 68 million tons. The sand occurs intermixed with clay. Processing involves clay removal by breaking, grinding, water washing, and screening, followed by flotation and magnetic separation. The grade of the sand ranges from 93% to 98% silica. In 1973 production was about 5 million tons. About 2.5 million tons was used in the glass industry and 1.6 million in castings. Selling price ranges from \$10 to \$13 per ton. About 330,000 tons of silica sand was imported from Australia, South Vietnam, and the Republic of Korea.10

Switzerland.—At Bardonnex, a few miles south of Geneva, is an extensive deposit of consolidated glacial gravel. There is also a tile factory at this site. The material for this factory comes from a clay deposit above the glacial gravel. The deposit is so consolidated that blasting is required. Because the natural underground water reservoir for the Geneva public water supply system is below the deposit, careful reclamation of the area had to be considered before permission was granted for gravel extraction. Annual production was about 331,000 tons. As it is generally practiced in Switzerland, the plant is located in a single high building. This gives the operation a neat tidy appearance, facilitates maintenance, and minimizes dust and noise nuisance to the public.11

United Kingdom.—Concern has been expressed by the Institute of Geologic Sciences about the size of sand and gravel reserves in the United Kingdom. About 2.5 billion tons has already been excavated. Much of the known reserves are inaccessible. Over the years, construction of new buildings covered up about 49,000 hectares of land around London. This area is estimated to contain about 1 billion tons of sand and gravel. The main concern is the growth in consumption. By contrast, in 1955 annual production was 60 million tons, and in 1973, it was 125 million tons. About 4 million tons of this was exported. Most of the exported material was marine-dredged aggregates. About 12% of the country's sand and gravel is marine dredged, making the United Kingdom the leading country in mining of sand and gravel from the ocean.12

<sup>\*</sup> Ironman, R. Danish Plant Work Pit All Winter. Rock Products, v. 76, No. 2, December 1973, pp. 62-63.

\* Ironman, R. International Report. Rock Products, v. 76, No. 11, November 1973, p. 94.

\* If Kazvo, O. Japan Chemical Week (Tokyo).

December 1973, p. 62.

\* It Cement Lime and Gravel. Gravel for Geneva. The Operation of Bardogaves SA. V. 48, No. 12, December 1973, pp. 251-256.

\* If Cement Lime and Gravel. Mineral Resources Survey of Sand Gravel. V. 48, No. 1, January 1973, p. 15.

A Government-appointed consultative committee suggested the use of other suitable alternative materials, from sources other than natural sand and gravel. One of the materials suggested was pulverized ash from coal-fired power stations.

About 75% of the sand and gravel produced was used in concrete. Housing, including site roads, and industrial building together account for the largest proportion of the concrete used.13

The Queen Mary Reservoir at Staines Middlesex, constructed in the early 1920's, was built over an area that contained a deposit of sand and gravel, under which is a deposit of clay. The area covers 723 acres. Owing to technical considerations, the depth of the water was set at 40 feet. Now equipment is available that assists the thermal circulation of the water from one level to another. This has made it possible to increase the depth of the reservoir. At a safe distance inside the retaining banks, 420 acres of the floor of the reservoir is available for excavation of sand and gravel. An estimated 10 million tons of sand and gravel will be excavated utilizing 3-cubicyard dragline. The plant will process an

average of 180 tons of sand and gravel per hour.14

Kennedy Sand Ltd., one of the largest producers of sand and gravel in northwest England, started a new operation at Whiteley Green, near Bollington, about 3 miles north of Macclesfield. The new mine is primarily a sand producer with a plant capacity of 150 tons per hour. Gravel content is about 10% to 15%. The reserves on the 24 acres are about 2.5 million tons. This will keep the plant in operation for 9 years.15

In Scotland, a loosely cemented quartz conglomerate deposit located at Douglasmuir Milngavie Dumbartonshire has been developed as a sand and gravel deposit by Amalgamated Quarries (Scotland) Ltd., of North Queensferry, Fife. The initial facilities were handling 65 tons of material per hour. Expansion to 200 tons per hour was planned for 1974. The deposit is located only 5 miles from central Glasgow. The plant is soundproof and occupies only 12,000 square feet. Landscaping and planting will hide the workings from the road. Production of sand and gravel in Scotland has been declining. Production in 1971 was only 9.1 million tons.16

#### **TECHNOLOGY**

The use of plastic aggregate in highway and building construction is currently undergoing field test investigation in several parts of the United States. The test site is an industrial plant access road in Jamesburg, N.J. The material, called Styropor, was designed as an insulating subbase to reduce frost action. It is also claimed that the inherent structural strength will permit the use of less subbase in road construction. Styropor is produced in the form of polystyrene beads that contain a foaming agent. The beads expand rapidly to 50 times their original size when exposed to heat, forming perfect closed-cell spheres that trap air inside. The expanded beads are coated with a thin layer of epoxy before being mixed with cement as a cover. The cement hardens in a spherical shape around the expanded beads to develop maximum mechanical strength. Because of its low thermal conductivity, it is claimed that 6 to 9 inches of the new Styropor concrete can replace 24 to 36 inches of gravel road foundation for frost protection.

In one experiment, a 38-pound-persquare-foot density Styropor concrete was laid on a 9-inch-thick bed of subbase instead of a conventional 36-inch thickness of gravel. Therefore, a 12-foot-wide lane in 1 mile of highway would require 910 tons of Styropor concrete (24 tons of Styropor beads) instead of 10,450 tons of gravel. The material is being introduced into the United States by a subsidiary of a large German chemical corporation, which has tested the Styropor aggregate at 13 major sites in northern Europe. The tests were conducted under very cold conditions for several years. The results to date are stated to have been successful.

Developed in Denmark, the synthetic aggregate Synopal produces a light-colored

<sup>13</sup> Ironman, R. International Report. Rock Products, v. 76, No. 7, July 1973, p. 54. 14 Cement Lime and Gravel. Gravel From a Reservoir. V. 48, No. 1, January 1973, pp. 3-10. 15 Cement Lime and Gravel. New Sand Source for the Manchester Area. V. 48, No. 11, No-vember 1973, pp. 229-232. 16 Industrial Minerals. Sand and Gravel Find in Scotland. No. 63, December 1973, p. 39.

asphalt. It was tested for 7 years as a 1-inch overlay on 11/2 miles of U.S. 66 near Pontiac, Ill. The advantages of Synopal are greater light reflectivity, greater hardness, and a more skid-resistant surface texture.

Steel fibers 0.0059 to 0.062 inch in diameter, and 0.25 to 2.5 inches long mixed with any aggregate in amounts varying from 0.2% to 4.0% have been used successfully in concrete. The addition of steel fibers to a mortar or concrete improves the thermal stress and shock resistance, impact strength, abrasion resistance, shear strength, and spalling resistance. These are the findings of numerous applications in various concrete construction projects since 1960 when Battelle Development Corp. took over the development of this material. Battelle Development Corp. of Ohio now holds U.S. patent rights under the trademark Wirand. The U.S. Army Construction Engineers Research Laboratory in Champaign, Ill., tested steel fiber concrete pavement alongside ordinary concrete pavement. The steel fibrous pavement was only one-half as thick as the regular pavement. The results of the test showed the steel fiber concrete pavement was able to withstand twice the load and outlasted the regular pavement.17

Asphalt containing asbestos in addition to sand and gravel dates from 1960 when the mixture was given field trials. Asbestos additives, usually 2% to 3% by weight, permit the use of upwards of 50% more asphalt in mixes. According to experts, this additional asphalt, previously impractical, is desirable because it increases pavement cohesion and flexibility, resists abrasion, reduces low-temperature cracking, and decreases water permeability. The cost of the asbestos asphalt mix is 15% to 20% more than the standard asbestos-free mix. Roads paved in Rockville Centre, N.Y., over 10 years ago, with only a 1/2-inch layer of asbestos asphalt, were claimed to still have 3 to 4 years of use before requiring repaving. Original plans called for repaving these streets every 10 years.18 Asbestos asphalt has been successfully used at locations such as the George Washington Bridge, New Jersey Turnpike, and other roadways in various parts of the country.

Asphalt mixed with latex and sand and gravel is also being used to extend the life of pavement. A combination of rubberized sealant and rubberized asphalt reportedly reduces maintenance costs, particularly during the winter when deicing chemicals are applied.

Finely ground refuse container glass was used instead of limestone dust in producing asphaltic concrete. It was used primarily where extra hard asphalt was needed, such as curbing.19

To replenish the Hawaii beaches, a new system has been developed for mining ocean bottoms using a small vessel and a suction probe that buries itself into thick deposits of sand. The Submarine Sand Recovery System was built and tested under the University of Hawaii's Sea Grant Program. The system is expected to provide more economical and ecologically sound means of recovering offshore sand than the conventional dredging systems. With the aid of scuba divers, a probe with a 6-inch-diameter hose attached to the suction tube is allowed to bury itself about 12 feet into the sand. When suction is applied, a mixture of sand and water enters the inlet valve and is drawn to the surface. Coral or shell fragments, which could obstruct sand flow, are crushed by a 4-inch roller crusher in the probe head.20

The combustion roar of an asphalt aggregate drying plant measuring 115 decibles was successfully reduced to an 85-decible level with a specially built enclosure at the Russell Industries, Inc., McKees' Rocks, Pa., plant. The enclosure was designed to handle 71,000 cubic feet per minute of air at a pressure drop of 11/2 inches of water. A plenum was installed around the burner. The acoustical panels are 4-inch-thick metallic sandwiches with solid outer surface and perforated inner surface. Between the sheets is an inert, durable, noncombustible acoustic fill. In addition to reducing the noise level, the enclosure prevented the atmospheric loss of burner heat, resulting in hotter air being passed to the rotary dryer. This unexpected benefit reduced gas consumption 21 between 4% to 6%.

<sup>17</sup> Roth, L. New Methods/Report 109. Rocky Mountain Construction, v. 54, No. 9, May 1, 1973, pp. 42, 50.

18 Olton, R. C. Asbestos-Asphalt Paving Gives Streets Longer Life. American City Magazine, v. 88, No. 9, 1973.

19 Road & Streets. New Uses for Ground Glass: Asphaltic Concrete. V. 110, No. 9, September 1973, p. 129.

20 Casciano. F. Submarine Sand Recovery Street

 <sup>1973,</sup> p. 129.
 Casciano, F. Submarine Sand Recovery System Developed for Hawaii's Beaches. World Dredging & Marine Construction, v. 9, No. 12, October 1973, pp. 24-27.
 Road & Streets. Noise Control Enclosure Improves Dryer Efficiency. V. 116, No. 9, September 1422 144.

<sup>1973,</sup> pp. 142, 144.

A worked-out sand and gravel pit was successfully turned into a sanitary landfill operation. Rockford Black Top Construction Co., of Rockford, Ill., owners of the pit, first graded and then lined the botttom and side slopes of the pit with 2 inches of hot asphalt mix. An asphalt dike along the inside edge of the pavement prevents the leachate from contaminating soil in unpaved areas. Four peripheral wells monitor the ground water for contamination. The landfill, referred to as the Winnebago County Land Reclamation Site, serves a population of 200,000. When the backfill is completed, the pit will become useful level land.22

<sup>22</sup> Hill, A. D. Pave Old Gravel Pit—Town Gets Sanitary Land Fill. Road & Streets. v. 116, No. 8, August 1973, p. 104.

Table 2.-Sand and gravel sold or used by producers in the United States 1 (Thousand short tons and thousand dollars)

|        |      | San      | nd      | Gra      | vel     | Tot      | al 2      |
|--------|------|----------|---------|----------|---------|----------|-----------|
|        | Year | Quantity | Value   | Quantity | Value   | Quantity | Value     |
| 1969   |      | 380,878  | 465,843 | 556,291  | 603,826 | 937,169  | 1,069,667 |
| 1970   |      | 383,378  | 484,722 | 560,563  | 630,985 | 943,941  | 1,115,705 |
| 1971   |      | 400,759  | 516,749 | 518,833  | 632,226 | 919,593  | 1,148,969 |
| 1972 r |      | 408,942  | 563,526 | 505,382  | 637,175 | 914,324  | 1,200,701 |
| 1973   |      | 432,031  | 621,853 | 551,598  | 737,518 | 983,629  | 1,359,370 |

r Revised.

<sup>&</sup>lt;sup>1</sup> Excludes American Samoa, Puerto Rico, and the Canal Zone.

<sup>2</sup> Data may not add to totals shown because of independent rounding. Data not directly comparable with those of previous years because of changes in industry coverage.

Table 3.-Sand and gravel sold or used by producers in the United States, by State, and class of operation

|                |                 |          | 1972           |              |          |                         |           |         | 1973                      | 50                |          |         |
|----------------|-----------------|----------|----------------|--------------|----------|-------------------------|-----------|---------|---------------------------|-------------------|----------|---------|
| +++            | Commercia       | ercial   | Government-and | ent-and-     | Total    | al 1                    | Commercia | ercial  | Government-and contractor | ent-and-<br>actor | Total    | 1 1     |
| SVB1C          | Quantity        | Value    | Quantity       | Value        | Quantity | Value                   | Quantity  | Value   | Quantity                  | Value             | Quantity | Value   |
|                | 0 10 0          | 0        |                |              | 6 959    | 8 520                   | 9 7 98    | 13.860  | L                         | 10                | 9.805    | 13,870  |
| Alabama        | 6,352           | 8,530    | 9800           | 11 031       | 14 187   | 15.214                  | 4.396     | 7,019   | 10,602                    | 12,893            | 14,999   | 19,913  |
| Alaska         | 4,402<br>99,619 | 29.131   | 2,223          | 3.290        | 24.842   | 32,420                  | 24,610    | 33,029  | 2,830                     | 5,473             | 27,440   | 38,503  |
| Arizona        | 10,007          | 15.045   | 1.571          | 1,514        | 11,574   | 16,558                  | 11,103    | 19,623  | 1,361                     | 1,002             | 12,465   | 20,625  |
| Arkansas       | 104.419         | 154,544  | 12,869         | 8,075        | 117,288  | 162,619                 | 98,819    | 151,442 | 18,591                    | 24,844            | 117,470  | 176,286 |
| Colorado       | 22,211          | 30,285   | 6,106          | 4,346        | 28,318   | 34,631                  | 24,427    | 35,670  | 9,341                     | 9,824             | 33,767   | 45,493  |
| Connectiont    | 5,924           | 9,560    | 839            | 1,710        | 6,763    | 11,270                  | 7,471     | 12,088  | 335                       | 107               | 9,400    | 2,100   |
| Delaware       | 2,257           | 2,660    | 1              | <u> </u>     | 2,257    | 2,660                   | 3,408     | 3,678   | 15                        | 107               | 90.400   | 21 415  |
| Florida        | r 22,318        | г 16,963 | 45             | 45           | r 22,363 | r 17,009                | 20,120    | 21,300  | 4.                        | 43                | 4 976    | 6.781   |
| Georgia        | 3,816           | 4,729    | 18             | ¦°           | 3,816    | 4,729                   | 4,970     | 9,01    | !                         | !                 | 753      | 2,012   |
| Hawaii         | 584             | 1,890    | 625            | 900          | 609      | 10.994                  | 207       | 2,017   | 2.899                     | 2.363             | 8,393    | 10,246  |
| Idaho          | 3,825           | 0,890    | 2,871          | 4,030<br>268 | 39,939   | 61,696                  | 43.170    | 61,559  | 479                       | 470               | 48,649   | 62,029  |
| Talinois       | 96,659          | 29,348   | 1 326          | 943          | 27.978   | 33,290                  | 27,013    | 34,323  | 718                       | 692               | 27,731   | 35,015  |
| Trans          | 15,779          | 19,054   | 1,335          | 1.076        | 17.107   | 20,140                  | 18,661    | 24,373  | 1,289                     | 1,168             | 19,950   | 25,541  |
| Longo          | 9.265           | 9.588    | 2,326          | 1,333        | 11,591   | 10,920                  | 11,074    | 10,938  | 2,187                     | 1,725             | 13,261   | 12,663  |
| Kentucky       | 8.321           | 11,919   | 163            | 48           | 8,485    | 11,967                  | 10,202    | 14,400  | 128                       | 227               | 10,331   | 14,027  |
| Louisiana      | 18.538          | 26,255   | 383            | 740          | 18,920   | 26,996                  | 13,676    | 21,127  | 7.5                       | 3.7               | 18,748   | 10,100  |
| Maine          | 4,126           | 4,394    | 7,692          | 3,140        | 11,818   | 7,535                   | 4,783     | 4,694   | 8,800                     | 0,610             | 13,055   | 10,004  |
| Marvland       | 12,426          | 26,517   | 167            | 40           | 12,594   | 26,557                  | 12,743    | 29,552  | 101                       | 5,00              | 10,040   | 96,020  |
| Massachusetts  | 16,568          | 23,782   | 2,315          | 1,873        | 18,883   | 25,655                  | 17,451    | 24,271  | 1,792                     | 4,009             | 69,407   | 78,979  |
| Michigan       | 54,683          | 63,646   | 4,784          | 1,799        | 59,40    | 99,440                  | 99,009    | 26,217  | 4 479                     | 3,21              | 37.935   | 39,438  |
| Minnesota      | 30,451          | 29,872   | 6,341          | 3,482        | 30,732   | 16.133                  | 14.070    | 17,057  | 181                       | 326               | 14,251   | 17,383  |
| Mississippi    | 18,290          | 10,001   | 124            | 207          | 10.082   | 14.806                  | 10.825    | 16,905  | 54                        | 45                | 10,879   | 16,950  |
| Montene        | 2.138           | 3.022    | 7.977          | 14.126       | 10,116   | 17,149                  | 2,677     | 3,366   | 9,016                     | 10,453            | 11,694   | 13,819  |
| Nehraska       | 12,317          | 13,376   | 1,403          | 1,688        | 13,720   | 15,063                  | 14,396    | 16,492  | 1,509                     | 1,874             | 15,906   | 18,300  |
| Nevada         | 7,722           | 10,691   | 2,359          | 1,945        | 10,081   | 12,636                  | 8,470     | 12,394  | 3,978                     | 2,219             | 12,448   | 2 507   |
| New Hampshire  | 4,815           | 5,951    | 1,204          | 305          | 6,020    | 6,256                   | 10,088    | 6,215   | 1,105                     | 700<br>9          | 19.040   | 43.098  |
| New Jersey     | 17,666          | 38,010   | 13<br>13       | 1 650        | 7,619    | 00,000                  | 7 903     | 10,365  | 3.438                     | 5.388             | 10.641   | 15,753  |
|                | 5,609           | 6,894    | 1,991          | 1,009        | 96,799   | 36,059                  | 27,614    | 40.613  | 1.930                     | 783               | 29,544   | 41,396  |
|                | 24,034          | 126,051  | 2,120          | 1 413        | r 19 893 | r 13 812                | 13.010    | 17,346  | 2,887                     | 1,981             | 15,897   | 19,327  |
| North Carolina | 1.5410          | 4 678    | 1,974          | 1.078        | 6.681    | 5,757                   | 4.285     | 4,807   | 1,726                     | 1,214             | 6,011    | 6,021   |
| Ohio           | 43 276          | 59,702   | 229            | 230          | 43,506   | 59,932                  | 48,748    | 69,733  | 239                       | 249               | 48,987   | 69,982  |
| Oklahoma       | 7,306           | 10,181   | 269            | 957          | 7,901    | 11,138                  | 11,112    | 13,650  | 1,042                     | 1,291             | 12,154   | 14,941  |
|                | 20,736          | 30,462   | 3,753          | 4,519        | 24,489   | 34,981                  | 19,048    | 20,984  | 5, (04                    | 9,100             | 90 K76   | 49,830  |
| Pennsylvania   | 18,757          | 36,804   | 15             | 15           | 18,757   | 86,80<br>8,804<br>8,884 | 20,076    | 3.071   | 182                       | 23                | 2,429    | 3,095   |
|                | 7,000           | 19,191   | <u>.</u>       | - 1          | 7.916    | 12,121                  | 8,159     | 12,608  | 02                        | 02                | 8,179    | 12,628  |
| South Delvote  | 5.772           | 6.423    | 6.976          | 8,869        | 12,748   | 14,793                  | 6,262     | 7,300   | 7,702                     | 9,287             | 18,968   | 16,587  |
| South Parots   | 1               |          | ·              | ,            |          |                         |           |         |                           |                   |          |         |

See footnotes at end of table.

Table 3.-Sand and gravel sold or used by producers in the United States, by State, and class of operation-Continued

| 1               |               |          | 1972                      |                             |                |         |            |           | 1973           | 50           |          |           |
|-----------------|---------------|----------|---------------------------|-----------------------------|----------------|---------|------------|-----------|----------------|--------------|----------|-----------|
| State           | Commercial    | ercial   | Government-and contractor | vernment-and-<br>contractor | Total          | al 1    | Commercial | nercial   | Government-and | ent-and-     | Total    | al 1      |
|                 | Quantity      | Value    | Quantity Value            | Value                       | Quantity       | Value   | Quantity   | Value     | Quantity       | antity Value | Quantity | Value     |
| Tennessee       | 10,441        | 15,157   | 398                       | 172                         | 10,839         | 15.328  | 11.457     | 19.883    | 554            | 9.69         | 12.010   | 20 145    |
| Texas           | 33,036        | 54,658   | 2,115                     | 1,670                       | 35,151         | 56,328  | 35,740     | 58,098    | 2.806          | 2.608        | 38,546   | 60,706    |
| Utan            | 11,652        | 13,989   | 2,967                     | 3,082                       | 14,619         | 17,071  | 12,287     | 12,804    | 3,124          | 3,183        | 15.410   | 15,986    |
| Vermont         | 2,477         | 3,014    | 825                       | 199                         | 3,302          | 3,214   | 2,468      | 3,048     | 1,573          | 533          | 4.041    | 3.581     |
| VIEWINIA        | 13,976        | 21,648   | 109                       | 48                          | 14.085         | 21,696  | 14,359     | 26,186    | 152            | 59           | 14.511   | 26.246    |
| Washington      | 18,264        | 23,440   | 4,801                     | 2,629                       | 23,065         | 26,069  | 22,662     | 26,666    | 5,273          | 3,466        | 27,935   | 30,132    |
| West virginia   | 60,'6         | 15,030   | (°)                       | - :<br>:                    | 5,765          | 15,031  | 5,893      | 16,257    |                | !            | 5,893    | 16,257    |
| W ISCOILSIII    | 24,418        | 24,880   | 12,012                    | 6,443                       | 36,430         | 31,324  | 29,651     | 34,363    | 10,600         | 9.284        | 40.250   | 43.647    |
| w yoming        | 3,678         | 4,142    | 5,419                     | 10,774                      | 9,098          | 14,916  | 3,419      | 4,475     | 2,783          | 7,160        | 6,201    | 11,635    |
| Total 1         | r 786,737 r 1 | ,089,132 | 127,587                   | 111,569                     | r 914,324 r 1, | 200,701 | 846,805    | 1,214,559 | 136,824        | 144,811      | 983,629  | 1,359,370 |
| ruerto Kico e F | 7,246         | 20,446   | 232                       | 792                         | 7,478          | 21,237  | 7,247      | 20,448    | 233            | 795          | 7,480    | 21,243    |

<sup>e</sup> Estimate. P Preliminary. <sup>r</sup> Revised.

<sup>1</sup> Data may not add to totals shown because of independent rounding. Data not directly comparable with previous years because of changes in industry coverage.

<sup>2</sup> Less than ½ unit.

Table 4.—Sand and gravel sold or used by producers in the United States in 1973, by State, use, and class of operation

|                 |                | Building     |               | and, const          |               | Pavir   | ng            |        |
|-----------------|----------------|--------------|---------------|---------------------|---------------|---------|---------------|--------|
| State           | Comp           | nercial      | Governn       | nent-and-<br>ractor | Comn          | nercial | Governme      |        |
|                 | Quan-<br>tity  | Value        | Quan-<br>tity |                     | Quan-<br>tity | Value   | Quan-<br>tity | Value  |
| Alabama         | 2,491          | 2,832        |               |                     | 1,452         | 2,274   | 3             | 4      |
| Alaska          | 301            | 860          | 6             | 47                  | 14            | 55      | 2,881         | 3,615  |
| Arizona         | 4.695          | 8,069        | (1)           | (1)                 | 1,571         | 2,029   | 645           | 884    |
| Arkansas        | 3,010          | 4,621        |               |                     | 1,745         | 3,174   | 305           | 226    |
| California      | 22,276         | 34,924       | (1)           | 1                   | 17,856        | 24,316  | 4,766         | 9,576  |
| Colorado        | 3,587          | 5,765        | 57            | 122                 | 1,760         | 2,375   | 710           | 1,008  |
| Connecticut     | 1,661          | 2,748        |               |                     | 1,498         | 2,754   | 27            | 24     |
| Delaware        | 503            | 880          |               |                     | 230           | 349     |               |        |
| Florida         | 10,299         | 11,522       |               |                     | 2,246         | 2,758   |               |        |
| Georgia         | 3,497          | 3,501        |               |                     | 306           | 543     |               |        |
| Hawaii          | 461            | 1,394        |               |                     | 32            | 27      |               | ==     |
| Idaho           | 852            | 1,431        | 18            | 7                   | 55            | 98      | 36            | 71     |
| Illinois        | 6.960          | 8,829        |               |                     | 9,769         | 12,641  | 12            | 18     |
| Indiana         | 4.682          | 5,613        |               |                     | 6,852         | 7,779   | 28            | 60     |
| Iowa            | 3,227          | 4,320        | 1             | 1                   | 3,414         | 4,366   | 177           | 215    |
| Kansas          | 3,407          | 3,710        |               |                     | 2,629         | 2,784   | 885           | 677    |
| Kentucky        | 4,527          | 6,701        |               |                     | 2,898         | 3,916   | 20            | 81     |
| Louisiana       | 2,918          | 3,986        |               |                     | 2,172         | 2,756   | .==           | . = =  |
| Maine           | 518            | 629          | 5             | 5                   | 1,054         | 1,035   | 171           | 156    |
| Maryland        | 5.791          | 12,702       |               |                     | 735           | 1,753   | 9             | 7      |
| Massachusetts   | 3,589          | 5.209        | 3             | 6                   | 2,091         | 2,451   | 245           | 504    |
| Michigan        | 8,381          | 8.315        | 61            | 45                  | 7,517         | 8,093   | 994           | 712    |
| Minnesota       | 5,675          | 6,084        | 2             | 2                   | 4,060         | 3,362   | 316           | 211    |
| Mississippi     | 2,019          | 2,157        | 59            | 97                  | 2,313         | 2,391   | 29            | 15     |
| Missouri        | 3,953          | 4,887        |               |                     | 1,681         | 1,978   |               |        |
| Montana         | 379            | 728          |               |                     | 69            | 169     | 334           | 299    |
| Nebraska        | 4.006          | 4.301        |               |                     | 1,485         | 1,681   | 315           | 370    |
| Nevada          | 1,214          | 2,212        |               |                     | 198           | 285     | 111           | 149    |
| New Hampshire   | 1,021          | 1,252        |               |                     | 887           | 892     | 514           | 245    |
| New Jersey      | 6,057          | 9,739        |               |                     | 2,973         | 4,138   |               |        |
| New Mexico      | 1,543          | 1,989        |               |                     | 218           | 219     | 564           | 1,552  |
| New York        | 9,751          | 15,174       |               |                     | 2,598         | 4,038   | 9             | 18     |
| North Carolina  | 4,878          | 5,209        |               |                     | 2,401         | 2,697   | 1,284         | 863    |
| North Dakota    | 463            | 633          |               |                     | 110           | 97      | 89            | 56     |
| Ohio            | 7.660          | 10,393       |               | 14                  | 9,785         | 13,074  | 95            | 107    |
| Oklahoma        | 4,418          | 4,831        | 5             | 3                   | 2,468         | 2,655   | 211           | 89     |
| Oregon          | 1.570          | 2.532        |               |                     | 646           | 1,029   | 1,040         | 2,081  |
| Pennsylvania    | 5,366          | 10,747       |               |                     | 3,625         | 7,293   | -,            |        |
| Rhode Island    | 500            | 571          |               |                     | 443           | 574     | 8             | 8      |
| South Carolina  | 4,571          | 3.869        |               |                     | 648           | 425     |               |        |
| South Carolina  | 878            | 1,182        |               |                     | 266           | 351     | 275           | 315    |
|                 | 3,460          | 5,801        |               |                     | 1,501         | 2,782   |               |        |
| Tennessee       | 10,868         | 16,154       |               | ( <del>1</del> )    | 5,465         | 6.647   | 373           | 195    |
| Texas           | 1,546          | 1,901        |               |                     | 446           | 514     | 24            | 18     |
| Utah            | 544            | 790          |               |                     | 561           | 695     | 1.029         | 313    |
| Vermont         | 3,441          | 5,957        |               |                     | 2.769         | 4,146   | 35            | 20     |
| Virginia        | 3,029          | 4,270        |               |                     | 1,190         | 1,431   | 26            | 58     |
| Washington      | 3,029<br>1,685 | 2,895        |               |                     | 596           | 1,106   |               |        |
| West Virginia   | 3,986          | 5.043        |               | - <u>-</u>          | 2,059         | 1,875   | 1,718         | 1,611  |
| Wisconsin       | 3,986<br>437   | 5,045<br>811 |               | 20                  | 371           | 546     | 1,214         | 3,618  |
| Wyoming         | 401            | 311          |               | 20                  | 0.1           | 010     | -,1           | -,520  |
| Undistributed   |                |              | 042           |                     | 110 700       | 155 414 | 91 590        | 30,050 |
| Total 2         | 192,550        | 270,670      |               | 369                 | 119,730       | 155,414 | 21,529        | 30,050 |
| Puerto Rico e p | 2,324          | 6,074        | 190           | 644                 | 1.148         | 3.055   | 42            |        |

See footnotes at end of table.

Table 4.—Sand and gravel sold or used by producers in the United States in 1973, by State, use, and class of operation—Continued

| -                            |                      |                          |                                           | Sand, co          |                  | on—Cont                | inued                   |                    |                         |           |
|------------------------------|----------------------|--------------------------|-------------------------------------------|-------------------|------------------|------------------------|-------------------------|--------------------|-------------------------|-----------|
| State                        | bal<br>(comm         | road<br>llast<br>ercial) | Com                                       | Fil:<br>mercial   | Gover            | nment-<br>nd-<br>actor | Comn                    | Other<br>nercial   | Govern<br>and<br>contra | d-        |
|                              | Quan-<br>tity        | Value                    | Quan-<br>tity                             | Value             | Quan-<br>tity    | Value                  | Quan-<br>tity           | Value              | Quan-<br>tity           | Value     |
| AlabamaAlaska                | $\mathbf{w}$         | w                        | 140<br>W                                  | 102<br>W          | $\bar{3}\bar{4}$ | 30                     | 127                     | 177                |                         |           |
| Arizona                      | $\bar{\mathbf{w}}$   | $\bar{\mathbf{w}}$       | 654                                       | 418               | 35               | 30<br>11               | $\tilde{\mathbf{w}}$    | $\bar{\mathbf{w}}$ |                         |           |
| Arkansas                     | w                    | w                        | 249                                       | 204               | 00               | 11                     | 21                      | 23                 |                         |           |
| California                   | w                    | w                        | 4.395                                     | 3.895             | 875              | 266                    | 88                      | 308                | 69                      | 158       |
| Colorado                     | w                    | w                        | 264                                       | 181               | 1                | 2                      | 376                     | 665                | 2                       | 100       |
| Connecticut                  |                      |                          | 396                                       | 328               | 34               | 34                     | W                       | w                  | $5\overline{4}$         | 34        |
| Delaware                     |                      |                          | 552                                       | 443               |                  |                        |                         |                    |                         |           |
| Florida                      |                      |                          | 6,183                                     | 3,128             |                  |                        | 243                     | w                  |                         |           |
| Georgia                      |                      |                          | 333                                       | 182               |                  |                        | 60                      | 74                 |                         |           |
| Hawaii<br>Idaho              |                      |                          | W                                         | w                 |                  | ==                     | $\mathbf{w}$            | w                  |                         |           |
| Illinois                     |                      |                          | $\frac{125}{2,764}$                       | 112               | 20               | 14                     | W                       | w                  | 12                      | 19        |
| Indiana                      | $\tilde{\mathbf{w}}$ | $\tilde{\mathbf{w}}$     | 1,144                                     | $2,746 \\ 996$    | 1                | 1                      | 513                     | 556                | 1                       | 1         |
| Iowa                         | ẅ                    | w                        | 1,598                                     | 1,231             | (1)              | (1)                    | $\substack{163\\1.007}$ | $145 \\ 1,253$     | 59<br>7                 | 101<br>9  |
| Kansas                       |                      |                          | 2,252                                     | 1,458             | 1                | $\binom{1}{1}$         | 698                     | 611                | 103                     |           |
| Kentucky                     |                      |                          | 407                                       | 358               | •                | ()                     | 110                     | w                  | 109                     | 109       |
| Louisiana                    |                      |                          | 490                                       | 366               | 37               | ĩī                     | w                       | w                  | $\overline{22}$         | 17        |
| Maine                        |                      |                          | 630                                       | 214               | 3                | 1                      | 171                     | 111                | 39                      | 23        |
| Maryland                     |                      |                          | 410                                       | 808               |                  |                        | î                       | w                  | 00                      | 20        |
| Massachusetts                |                      |                          | 613                                       | 460               | 25               | 13                     | 856                     | 1,147              | $\overline{21}$         | 29        |
| Michigan                     | ==                   | ==                       | 2,501                                     | 1,344             | 803              | 437                    | 367                     | 325                | 150                     | 107       |
| Minnesota                    | w                    | w                        | 1,343                                     | 827               | 46               | 33                     | 128                     | 76                 | 14                      | 10        |
| Mississippi<br>Missouri      | w                    | W                        | 35                                        | 23                |                  |                        | $\mathbf{w}$            | $\mathbf{w}$       |                         |           |
| Missouri<br>Montana          | $\bar{\mathbf{w}}$   | $\bar{\mathbf{w}}$       | 613                                       | 571               |                  |                        | 95                      | 165                |                         |           |
| Nebraska                     | w                    | w                        | 80<br>689                                 | 62<br>495         | 2                | 2                      | $\mathbf{w}$            | w                  | 3                       | 9         |
| Nevada                       | **                   | **                       | 585                                       | 385               | 83               | 36                     | w                       | $\mathbf{w}$       | . 1                     | 1         |
| New Hampshire                | $\tilde{\mathbf{w}}$ | $\bar{\mathbf{w}}$       | 1.513                                     | 1.072             | 4                | 36<br>1                | 148                     | W                  | (¹)                     | (1)       |
| New Jersey                   |                      |                          | 933                                       | 651               | *                | 1                      | 54<br>49                | 49                 |                         |           |
| New Mexico                   |                      |                          | 154                                       | 142               | 47               | 36                     | W                       | 107<br>W           | (1)                     | (1)       |
| New York                     | 6                    | 2                        | 2,769                                     | 1,282             | 107              | 31                     | 548                     | 791                | 385                     | 178       |
| North Carolina               |                      |                          | 580                                       | 364               | 754              | 469                    | 63                      | 103                | 398                     | 287       |
| North Dakota                 |                      |                          | 201                                       | 235               | 87               | 40                     | w                       | w                  |                         | 201       |
| Ohio                         | W                    | $\overline{\mathbf{w}}$  | 1,870                                     | 1,610             |                  |                        | 472                     | 641                |                         |           |
| Oklahoma                     |                      |                          | 2,525                                     | 1,246             | 712              | 1,101                  | 71                      | 15                 | 23                      | 5         |
| Oregon                       | 4                    | 6                        | 1,211                                     | 1,100             |                  |                        | w                       | $\mathbf{w}$       |                         |           |
| Pennsylvania<br>Rhode Island |                      |                          | 123                                       | 182               |                  |                        | 1,431                   | 2,221              |                         |           |
| South Carolina               |                      |                          | 56                                        | 64                | ==               | ==                     | $\mathbf{w}$            | $\mathbf{w}$       |                         |           |
| South Dakota                 | $\tilde{\mathbf{w}}$ | $\bar{\mathbf{w}}$       | $\begin{array}{c} 272 \\ 302 \end{array}$ | $\frac{130}{295}$ | 20               | 20                     | w                       | W                  |                         |           |
| Tennessee                    | **                   | **                       | 418                                       | 430               | 1                | 1                      | 12                      | 21                 |                         |           |
| Texas                        | $\tilde{\mathbf{w}}$ | $\bar{\mathbf{w}}$       | 1,279                                     | 861               | 5                | 16                     | W<br>89                 | W<br>120           | 10                      | 55        |
| Utah                         |                      |                          | 895                                       | 286               | 30               | 16                     | w                       | W                  | 13                      | 39        |
| Vermont                      |                      |                          | 55                                        | 40                | 00               | 10                     | 43                      | 45                 | 19                      | <u>16</u> |
| Virginia                     | $\mathbf{w}$         | w                        | 2,216                                     | 1,518             | 108              | 35                     | 86                      | 181                | 19                      | 10        |
| Washington                   | w                    | $\mathbf{w}$             | 2,495                                     | 1,811             |                  |                        | 166                     | 378                | $7\overline{4}$         | 53        |
| West Virginia                |                      |                          | w                                         | w                 |                  |                        |                         |                    |                         | 00        |
| Wisconsin                    |                      |                          | 1,726                                     | 1,066             | 248              | 74                     | $4\overline{49}$        | 495                | 665                     | 372       |
| Wyoming                      | 2==                  | ==                       | 26                                        | 12                | 69               | 207                    |                         |                    | (1)                     | (1)       |
| Undistributed $_{}$          |                      | 1,023                    | 806                                       | 822               |                  |                        | 1,222                   | 2,375              | . /                     | `′        |
| Total 2                      | 876                  | 1,032                    | 51,869                                    | 36,557            | 4,192            | 2,938                  | 9,929                   | 13,181             | 2,137                   | 1,576     |
| Puerto Rico • p              |                      |                          | 657                                       | 714               | ´                |                        |                         | ,                  |                         | _,0.0     |

See footnotes at end of table.

Table 4.—Sand and gravel sold or used by producers in the United States in 1973, by State, use, and class of operation—Continued

| _               |                         |                    | Dai                | nd, indu           |                    |                    |                      |                             | Fire                 |                    |
|-----------------|-------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|----------------------|-----------------------------|----------------------|--------------------|
| State           | G                       | lass               | Molo               | ding               | Grindir<br>polis   |                    | Blast                |                             | or fu                | rnace              |
|                 | Quan-<br>tity           | Value              | Quan-<br>tity      | Value              | Quan-<br>tity      | Value              | Quan-<br>tity        | Value                       | Quan-<br>tity        | Value              |
| Alabama         |                         |                    | 46                 | 159                |                    |                    | $\mathbf{w}$         | w                           | 4                    | 16                 |
| Alaska          |                         |                    |                    |                    |                    |                    | W                    | w                           |                      | -55                |
| Arizona         |                         |                    |                    |                    |                    |                    | w                    | W                           | 210                  | 769                |
| Arkansas        | $\overline{\mathbf{w}}$ | w                  | $\mathbf{w}$       | W                  |                    |                    | W                    | w                           | $\bar{\mathbf{w}}$   | $\bar{\mathbf{w}}$ |
| California      | 1,421                   | 7,154              | w                  | w                  | w                  | w                  | 149                  | 638                         | • • •                | VV                 |
| Colorado        | w                       | w                  |                    |                    |                    |                    | W                    | W                           |                      |                    |
| Connecticut     |                         |                    |                    |                    |                    |                    |                      |                             | `                    |                    |
| Delaware        |                         |                    |                    |                    |                    |                    | 140                  | $1.4\overline{30}$          |                      |                    |
| Florida         | $\mathbf{w}$            | w                  |                    |                    |                    |                    | 148                  | 1,430<br>W                  |                      |                    |
| Georgia         | $\mathbf{w}$            | w                  | w                  | w                  |                    |                    | (1) <b>W</b>         | 1                           |                      |                    |
| Hawaii          |                         |                    |                    |                    |                    |                    | (1)                  | 123                         |                      |                    |
| Idaho           | 46                      | 184                | _ == -             |                    | -==                | $\bar{\mathbf{w}}$ | 31                   | W                           |                      |                    |
| Illinois        | 904                     | 2,450              | 710                | 2,537              | w                  | w                  | w                    | vv                          |                      |                    |
| Indiana         |                         |                    | W                  | w                  |                    |                    | $\bar{\mathbf{w}}$   | $\bar{\mathbf{w}}$          |                      |                    |
| Iowa            |                         |                    |                    |                    |                    |                    | W                    | **                          |                      |                    |
| Kansas          |                         |                    |                    |                    |                    |                    | 11                   | $\overline{54}$             |                      |                    |
| Kentucky        |                         |                    | ==                 | ==                 |                    |                    | 125                  | 750                         |                      |                    |
| Louisiana       | w                       | $\mathbf{w}$       | w                  | w                  |                    |                    |                      |                             |                      |                    |
| Maine           |                         |                    |                    |                    |                    |                    |                      |                             |                      |                    |
| Maryland        |                         |                    |                    | <del></del>        |                    |                    | $\bar{\mathbf{w}}$   | $\bar{\mathbf{w}}$          |                      |                    |
| Massachusetts   |                         |                    | w                  | W                  |                    |                    | w                    | w                           | w                    | $\bar{\mathbf{w}}$ |
| Michigan        | 122                     | 359                | 2,889              | 7,401              |                    |                    |                      |                             |                      |                    |
| Minnesota       | w                       | $\mathbf{w}$       | ==                 | ==                 |                    |                    |                      |                             |                      |                    |
| Mississippi     |                         |                    | W                  | w                  |                    | $\bar{\mathbf{w}}$ | $\ddot{\mathbf{w}}$  | 242                         | $\bar{\mathbf{w}}$   | w                  |
| Missouri        | 707                     | 2,298              | 94                 | 353                | w                  |                    |                      |                             |                      |                    |
| Montana         |                         |                    |                    |                    |                    |                    |                      |                             |                      |                    |
| Nebraska        |                         | _==                |                    | -57                |                    |                    |                      |                             | w                    | w                  |
| Nevada          | W                       | w                  | w                  | w                  |                    |                    |                      |                             | **                   |                    |
| New Hampshire   |                         |                    | 000                | 0 000              | $\bar{\mathbf{w}}$ | $\bar{\mathbf{w}}$ | 116                  | $7\overline{7}\overline{6}$ | w                    | w                  |
| New Jersey      | 2,118                   | 9,798              | 808                | 3,900              | w                  |                    |                      | • • • •                     |                      | •••                |
| New Mexico      |                         |                    | ==                 | 777                |                    |                    |                      |                             |                      |                    |
| New York        | _==                     | -==                | W                  | w                  |                    |                    | $\bar{\mathbf{w}}$   | $\bar{\mathbf{w}}$          | $\bar{\mathbf{w}}$   | w                  |
| North Carolina  | $\mathbf{w}$            | W                  |                    |                    |                    |                    | **                   | **                          | •••                  |                    |
| North Dakota    |                         |                    | 225                | 1,378              |                    | , <del></del>      | $\bar{\mathbf{w}}$   | $\vec{\mathbf{w}}$          | $\bar{\mathbf{w}}$   | w                  |
| Ohio            | -==                     |                    |                    | 1,578<br>W         | $\bar{\mathbf{w}}$ | $\bar{\mathbf{w}}$ | w                    | w                           |                      |                    |
| Oklahoma        | W                       | W                  | W                  | **                 | **                 | **                 | **                   | **                          |                      |                    |
| Oregon          | 777                     | $\bar{\mathbf{w}}$ | $\bar{\mathbf{w}}$ | $\bar{\mathbf{w}}$ | $\bar{\mathbf{w}}$ | $\bar{\mathbf{w}}$ | $\tilde{\mathbf{w}}$ | $\bar{\mathbf{w}}$          | $\tilde{\mathbf{w}}$ | w                  |
| Pennsylvania    | $\mathbf{w}$            | w                  | w                  | w                  |                    |                    | ŵ                    | w                           |                      |                    |
| Rhode Island    | $\ddot{\mathbf{w}}$     | $\bar{\mathbf{w}}$ | w                  | w                  |                    |                    | 28                   | 146                         | w                    | w                  |
| South Carolina  | W                       | VV.                | **                 | **                 |                    |                    |                      |                             |                      |                    |
| South Dakota    | 904                     | $1.4\overline{13}$ | 217                | 689                | $\bar{\mathbf{w}}$ | $\bar{\mathbf{w}}$ | w                    | w                           | w                    | w                  |
| Tennessee       | 304<br>438              | 1,418<br>W         | 119                | 427                |                    |                    | 135                  | 382                         | w                    | W                  |
| Texas           |                         |                    | w                  | w                  |                    |                    | w                    | w                           |                      |                    |
| Utah            |                         |                    |                    |                    |                    |                    |                      |                             |                      |                    |
| Vermont         | $\bar{\mathbf{w}}$      | $\bar{\mathbf{w}}$ |                    |                    |                    |                    | w                    | w                           | W                    | W                  |
| Virginia        | w                       | 95                 |                    |                    |                    |                    |                      |                             |                      |                    |
| Washington      |                         | w                  | w                  | w                  | $\bar{\mathbf{w}}$ | w                  | $\mathbf{w}$         | W                           | w                    | ₩                  |
| West Virginia   |                         | ÿ                  | ŵ                  | w                  |                    |                    | w                    | w                           |                      | _                  |
| Wisconsin       | ••                      | •••                |                    |                    |                    |                    |                      |                             | _===                 | =:                 |
| Wyoming         | 4,099                   | 17,732             | 2,335              | 8,698              | 359                | 1,152              | 454                  | 1,589                       | 790                  | 2,428              |
| Undistributed   |                         |                    |                    | 25,540             |                    | 1,152              | 1,195                | 6,133                       | 1,005                | 3,21               |
| Total 2         | 10,158                  | 41,485             | 7,446              |                    |                    | 1,102              | 1,100                | -,-50                       | _,                   | _                  |
| Puerto Rico * p |                         |                    |                    |                    |                    |                    |                      |                             |                      |                    |

See footnotes at end of table.

Table 4.—Sand and gravel sold or used by producers in the United States in 1973, by
State, use, and class of operation—Continued
(Thousand short tons and thousand dollars)

| -                 |                    |                      | Sand                | , industr           | ial (con      | mercial)           | —Conti             | nued               |                    |                      |
|-------------------|--------------------|----------------------|---------------------|---------------------|---------------|--------------------|--------------------|--------------------|--------------------|----------------------|
| GL-4              | Eı                 | ngine                | Filt                | ration              | Oil (hy       | drofrac)           | Oth                | ier                | Ground             | sand                 |
| State -           | Quan-<br>tity      | Value                | Quan-<br>tity       | Value               | Quan-<br>tity | Value              | Quan-<br>tity      | Value              | Quan-<br>tity      | Value                |
| Alabama           | w                  | w                    |                     |                     |               |                    | w                  | w                  | w                  | w                    |
| Alaska            |                    |                      | ·                   |                     |               |                    |                    | **                 |                    |                      |
| Arizona           |                    |                      | w                   | w                   | $\mathbf{w}$  | w                  | w                  | $\bar{\mathbf{w}}$ |                    |                      |
| Arkansas          |                    |                      | w                   | w                   |               |                    |                    |                    | $\bar{\mathbf{w}}$ | w                    |
| California        | 51                 | 186                  | w                   | w                   | $\mathbf{w}$  | w                  | $\bar{\mathbf{w}}$ | $\bar{\mathbf{w}}$ | 153                | 721                  |
| Colorado          | W                  | w                    | w                   | w                   | W             | $\mathbf{w}$       |                    |                    |                    |                      |
| Connecticut       |                    |                      |                     |                     |               |                    | w                  | w                  |                    |                      |
| Delaware          |                    |                      |                     |                     |               |                    |                    |                    |                    |                      |
| Florida           | _9                 | w                    | 56                  | $\mathbf{w}$        |               |                    | W                  | w                  | 56                 | 82                   |
| Georgia           | $\mathbf{w}$       | $\mathbf{w}$         | w                   | $\mathbf{w}$        |               |                    | w                  | $\mathbf{w}$       |                    |                      |
| Hawaii            |                    |                      |                     |                     |               |                    |                    |                    |                    |                      |
| Idaho             |                    |                      | 1                   | 3                   | _==           |                    | 15                 | 19                 |                    |                      |
| Illinois          |                    |                      |                     |                     | w             | $\mathbf{w}$       | $\mathbf{w}$       | $\mathbf{w}$       | w                  | w                    |
| Indiana           |                    |                      |                     |                     |               |                    | w                  | w                  |                    |                      |
| Iowa<br>Kansas    |                    |                      |                     |                     |               |                    | w                  | $\mathbf{w}$       | $\mathbf{w}$       | w                    |
| Kentucky          |                    |                      |                     |                     |               |                    | W                  | $\mathbf{w}$       | -=                 |                      |
| Louisiana         |                    |                      |                     |                     |               |                    | $\mathbf{w}$       | $\mathbf{w}$       | 5                  | 35                   |
| Maine             | $\bar{\mathbf{w}}$ | 5                    |                     |                     |               |                    |                    | ==                 |                    |                      |
| Maryland          | vv                 | Э                    |                     |                     |               |                    | W                  | w                  |                    | ==                   |
| Massachusetts     | $\bar{\mathbf{w}}$ | $\bar{\mathbf{w}}$   |                     |                     |               |                    | 777                | <del></del>        | W                  | W                    |
| Michigan          | 297                | 720                  |                     |                     |               |                    | w                  | W                  | 16                 | 20                   |
| Minnesota         |                    |                      |                     |                     |               |                    | 564                | 893                | W                  | w                    |
| Mississippi       |                    |                      |                     |                     |               |                    |                    |                    | $\mathbf{w}$       | w                    |
| Missouri          | $\bar{\mathbf{w}}$ | w                    |                     |                     |               |                    | $\bar{\mathbf{w}}$ | $\bar{\mathbf{w}}$ | $\bar{\mathbf{w}}$ | $\bar{\mathbf{w}}$   |
| Montana           | **                 | **                   |                     |                     |               |                    | **7                | 10                 | • • •              | • • •                |
| Nebraska          |                    |                      |                     |                     |               |                    | w                  | w                  |                    |                      |
| Nevada            |                    |                      |                     |                     |               |                    | ẅ                  | w                  | 2                  | -5                   |
| New Hampshire     |                    |                      |                     |                     |               |                    | **                 | **                 | 4                  | 9                    |
| New Jersey        | 17                 | 61                   | w                   | $\bar{\mathbf{w}}$  |               |                    | 299                | 1.085              | $\bar{\mathbf{w}}$ | 2,983                |
| New Mexico        |                    |                      |                     |                     |               |                    |                    |                    | **                 | 2,000                |
| New York          | 43                 | 89                   | w                   | $\bar{\mathbf{w}}$  |               |                    |                    |                    | $\bar{\mathbf{w}}$ | w                    |
| North Carolina    |                    |                      | w                   | w                   |               |                    | $\bar{\mathbf{w}}$ | w                  |                    |                      |
| North Dakota      |                    |                      |                     |                     |               |                    |                    |                    |                    |                      |
| Ohio              | w                  | $\mathbf{w}$         | $\mathbf{w}$        | w                   | $\mathbf{w}$  | w                  | w                  | w                  | w                  | w                    |
| Oklahoma          |                    |                      |                     |                     | $\mathbf{w}$  | $\mathbf{w}$       | $\mathbf{w}$       | w                  | w                  | w                    |
| Oregon            | w                  | w                    |                     |                     |               |                    | 69                 | 137                |                    |                      |
| Pennsylvania      | W                  | $\mathbf{w}$         | w                   | $\mathbf{w}$        | $\mathbf{w}$  | $\mathbf{w}$       | w                  | $\mathbf{w}$       | w                  | W                    |
| Rhode Island      |                    |                      | w                   | W                   |               |                    |                    |                    |                    |                      |
| South Carolina    | w                  | w                    | $\mathbf{w}$        | W                   |               |                    | w                  | $\mathbf{w}$       | w                  | $\mathbf{w}$         |
| South Dakota      |                    | ==                   |                     |                     | _==           |                    |                    |                    |                    |                      |
| Tennessee         | W                  | W                    |                     | ==                  | $\mathbf{w}$  | w                  | 143                | 369                | w                  | W                    |
| Texas<br>Utah     | W                  | W                    | $\mathbf{w}$        | $\mathbf{w}$        | W             | $\mathbf{w}$       | 84                 | 338                | w                  | w                    |
| Vermont           | W<br>W             | W<br>W               |                     |                     |               |                    | W                  | w                  | $\mathbf{w}$       | w                    |
| Virginia          |                    |                      |                     |                     |               |                    | 777                | 777                |                    |                      |
| Washington        |                    |                      |                     |                     |               |                    | w                  | $\mathbf{w}$       | 213                | $\mathbf{w}$         |
| West Virginia     | $\bar{\mathbf{w}}$ | $\tilde{\mathbf{w}}$ | $\ddot{\mathbf{w}}$ | $\ddot{\mathbf{w}}$ |               |                    | $\bar{\mathbf{w}}$ | $\bar{\mathbf{w}}$ | $\bar{\mathbf{w}}$ | $\tilde{\mathbf{w}}$ |
| Wisconsin         | w                  | w                    | w                   | w                   |               |                    | w                  | w                  | 155                | 536                  |
| Wyoming           | •••                | •••                  | **                  | **                  |               |                    | **                 | **                 | 100                | 990                  |
| Undistributed     | 418                | 982                  | $2\bar{2}\bar{6}$   | $1,3\bar{6}\bar{6}$ | 352           | $1,7\overline{73}$ | 1,568              | 6,089              | 3.993              | $14.0\overline{36}$  |
|                   | 835                |                      | 283                 |                     |               |                    |                    |                    | - /                |                      |
| Puerto Rico e p   |                    | 2,042                |                     | 1,368               | 352           | 1,773              | 2,748              | 8,940              | -                  | 18,418               |
| I del to letto ob |                    |                      |                     |                     |               |                    |                    |                    |                    |                      |
|                   |                    |                      |                     |                     |               |                    |                    |                    |                    |                      |

See footnote at end of table.

Table 4.—Sand and gravel sold or used by producers in the United States in 1973, by State, use, and class of operation—Continued

|                                |               | Build   | ing           |                   |               | Pavi     | ng                 |              |
|--------------------------------|---------------|---------|---------------|-------------------|---------------|----------|--------------------|--------------|
| State                          | Comn          | nercial | Governm       | ent-and-<br>actor | Cor           | nmercial | Governme<br>contra |              |
|                                | Quan-<br>tity | Value   | Quan-<br>tity | Value             | Quan-<br>tity | Value    | Quan-<br>tity      | Value        |
| Alabama                        | 1,577         | 2,427   |               |                   | 2,918         | 4,578    | 4                  |              |
| Alaska                         | 815           | 1,820   | 10            | 53                | 1,256         | 2,076    | 7,363              | 9,020        |
| Arizona                        | 8.849         | 9,918   | 58            | 55                | 5,724         | 8,049    | 1,993              | 4,420        |
| Arkansas                       | 2,435         | 4,694   | 50            | 25                | 2,476         | 4,709    | 993                | 74'          |
| California                     | 21,107        | 32,662  | 1             | 2                 | 27,019        | 39,383   | 6,591              | 12,909       |
| Colorado                       | 4,829         | 8,736   | 722           | 1,230             | 11,425        | 14,482   | 4,675              | 5,72         |
| Connecticut                    | 925           | 1.908   |               |                   | 1,489         | 2,692    | 220                | 609          |
| Delaware                       | 117           | 217     |               |                   | $\mathbf{w}$  | w        | <del></del> =      | 7:           |
| Florida                        | w             | w       |               |                   | w             | w        | 47                 | 49           |
| Georgia                        | 32            | 90      |               |                   | 365           | 1,044    |                    |              |
| Hawaii                         | w             | w       |               |                   | w             | w        |                    |              |
| Idaho                          | 1.250         | 1,965   | 144           | 86                | 2,535         | 3,364    | 2,109              | 1,94         |
| Illinois                       | 7.675         | 10,596  |               |                   | 11,320        | 17,701   | 463                | 449          |
| Indiana                        | 4,575         | 6,541   | - <u>ī</u>    | 1                 | 7,519         | 10,799   | 597                | 513          |
| Iowa                           | 1,503         | 2,901   | $31\hat{5}$   | 158               | 6,211         | 7,528    | 663                | 55           |
|                                | 469           | 659     | 75            | 63                | 1.099         | 1,114    | 1.088              | 839          |
| Kansas                         | 934           | 1,312   |               |                   | 1,123         | 1,562    | 108                | 14           |
| Kentucky                       |               | 7,772   |               |                   | 2,843         | 4,112    |                    |              |
| Louisiana                      | 4,381         | 925     | $\bar{10}$    | - <u>-</u>        | 959           | 1,178    | 8,280              | 4,86         |
| Maine                          | 717           |         | 10            | o o               | 384           | 594      | 92                 | -,6          |
| Maryland                       | 3,595         | 9,474   | ==            | 105               | 2,456         | 3,566    | 890                | 1.87         |
| Massachusetts                  | 4,310         | 8,067   | 77            | 195               |               | 21,930   | 2,923              | 2,20         |
| Michigan                       | 8,478         | 13,571  | -=            | - <u>-</u>        | 19,035        |          | 3,442              | 2,33         |
| Minnesota                      | 4,526         | 8,106   | _2            |                   | 14,799        | 13,936   | 3,442<br>19        | 2,00         |
| Mississippi                    | 3,195         | 4,423   | 73            | 204               | 5,662         | 7,438    | 18                 | 1            |
| Missouri                       | 1,613         | 2,516   |               |                   | 999           | 1,095    |                    |              |
| Montana                        | 588           | 918     | 73            | 62                | 1,083         | 951      | 8,151              | 9,768        |
| Nebraska                       | 1,356         | 1,582   | 37            | 30                | 5,665         | 7,241    | 591                | 48           |
| Nevada                         | 1.613         | 2,527   | 12            | 16                | 3,877         | 4,706    | 3,105              | 1,67         |
| New Hampshire                  | 763           | 1.514   |               |                   | 1,563         | 2,630    | 587                | 130          |
| New Jersey                     | 1.876         | 4,129   |               |                   | 1,437         | 2,647    | 4                  |              |
| New Mexico                     | 1,838         | 2,511   | 170           | 178               | 3,005         | 4,864    | 1,107              | 2,30         |
| New York                       | 5,526         | 9.917   | 2             | 1                 | 3,463         | 5,787    | 1,002              | 438          |
| North Carolina                 | 1,408         | 3,015   |               |                   | 2.438         | 3,265    | 385                | 30           |
| North Dakota                   | 611           | 1,252   | 131           | 131               | 2,586         | 2,211    | 1,247              | 90           |
| Ohio                           | 9,377         | 14,446  |               |                   | 14,951        | 22,578   | 125                | 11           |
| Oklahoma                       | 419           | 759     |               |                   | 195           | 264      | 90                 | 9:           |
| Oregon                         | 4.519         | 6.683   |               |                   | 7.307         | 11,273   | 2,614              | 3.62         |
| Pennsylvania                   | 4,520         | 8,862   |               |                   | 2,718         | 5,790    | -,                 |              |
|                                | 542           | 700     |               |                   | 266           | 510      | 16                 | ī            |
| Rhode Island<br>South Carolina | W             | w       |               |                   | w             | w        |                    | _            |
|                                | 475           | 773     | 288           | 207               | 3,590         | 3,963    | 6,773              | $8.5\bar{4}$ |
| South Dakota                   |               | 3,861   | 400           | 201               | 2,036         | 2,703    | 554                | 265          |
| Tennessee                      | 2,462         |         | 25            | 29                | 5.884         | 10.553   | 2,366              | 2,30         |
| Texas                          | 9,669         | 17,863  |               | 78                | 5,575         | 6,412    | 1.612              | 2,22         |
| Utah                           | 2,311         | 2,371   | 70            |                   | 524           | 510      | 525                | 20           |
| Vermont                        | 543           | 796     |               |                   |               | 5.997    | 8                  | 20           |
| Virginia                       | 2,423         | 6,163   | 55            | 17                | 2,549         |          | 3,691              | 3,01         |
| Washington                     | 4,339         | 6,217   | 35            | 17                | 6,795         | 8,129    | 9,091              | 0,01         |
| West Virginia                  | 1,118         | 2,198   | 55            | 75                | 904           | 1,503    | # F01              | 7.07         |
| Wisconsin                      | 5,242         | 6,524   | 92            | 47                | 11,366        | 12,002   | 7,531              |              |
| Wyoming                        | 559           | 960     | 135           | 147               | 1,551         | 1,694    | 1,347              | 3,16         |
| Undistributed                  | 2,171         | 5,367   |               |                   | 2,301         | 2,319    |                    |              |
| Total 2                        | 154,174       | 253,208 | 2,608         | 3,021             | 223,248       | 303,431  | 86,007             | 95,96        |
| Puerto Rico e p                | 2.011         | 7,280   | _,            | -,                | 849           | 3,004    |                    |              |

See footnotes at end of table.

Table 4.-Sand and gravel sold or used by producers in the United States in 1973, by State, use, and class of operation-Continued

| _                       |                 |                    |                | Gr                 | avel, c          | onstruc                 | tion—C        |                    |                         |            |                  |          |
|-------------------------|-----------------|--------------------|----------------|--------------------|------------------|-------------------------|---------------|--------------------|-------------------------|------------|------------------|----------|
|                         | Railr           | hao                |                |                    | Fill             |                         |               | Oth                | er                      |            | Gra              | wol      |
| State                   | balla<br>(comme | ast<br>ercial)     |                | mercial            | ment             | ern-<br>-and-<br>ractor | Comm          |                    | Gove<br>ment-<br>contra | and-       | miscell<br>(comm | aneous   |
|                         | Quan-<br>tity   | Value              | Quan<br>tity   | <sup>-</sup> Value | Quan-<br>tity    | Value                   | Quan-<br>tity | Value              | Quan-<br>tity           | Value      | Quan-<br>tity    | Value    |
| Alabama                 |                 | w                  | 249            | 149                |                  |                         | 313           | 354                |                         |            | . 138            | 130      |
| Alaska                  |                 | 270                | 879            |                    | 29               | 26                      | 269           | w                  | 279                     | 102        |                  | 192      |
| Arizona                 |                 | w                  | 2,086          |                    | 99               | 104                     |               | 945                |                         |            | 150              | 346      |
| Arkansas                | - W             | w                  | 198            |                    | 13               | 4                       | 20            | 61                 |                         |            | 424              | 500      |
| California              | - 313           | 433                | 1,611          | 1,381              | 451              | 170                     | 1,147         | 1,735              | 5,837                   | 1,768      |                  | 1.389    |
| Colorado                |                 | 391                | 522            | 454                | 3,174            | 1,735                   | 447           | 697                | -,                      | _,         | 070              | 1,30     |
| Connecticut             |                 |                    | 589            | 419                | ·                |                         | 111           | 245                |                         |            | 241              | 588      |
| Delaware                |                 |                    | w              | W                  |                  |                         |               |                    |                         |            | •                | W        |
| Florida                 | - W             | w                  | 1              | 13                 |                  |                         |               |                    |                         |            |                  |          |
| Georgia                 |                 |                    | 25             | 99                 |                  |                         | w             | w                  |                         |            | 00               | 78       |
| Hawaii                  |                 |                    | W              | 130                |                  |                         |               |                    |                         |            |                  |          |
| Idaho                   |                 |                    | 329            |                    | 510              | 162                     | 75            | 76                 | 49                      | 55         | 141              | 166      |
| Illinois                | - <b>w</b>      | W                  | 1,526          |                    | 2                | 2                       | 250           | 335                |                         |            | 428              | 609      |
| Indiana                 |                 | $\mathbf{w}$       | 1,196          |                    | 3                | 2                       | 234           | 318                | 31                      | 15         | 366              | 422      |
| Iowa                    |                 | w                  | 331            |                    | 2                | 1                       | 823           | 1,090              | 125                     | 225        | 114              | 160      |
| Kansas                  |                 |                    | 212            |                    | 28               | 22                      | 6             | 10                 | 6                       | 14         |                  | 388      |
| Kentucky                |                 |                    | 100            | 123                |                  |                         | 9             | w                  |                         |            | 49               | 66       |
| Louisiana               |                 | ===                | 76             |                    |                  |                         | 401           | 483                | 12                      | 9          |                  | w        |
| Maine                   |                 | W                  | 294            |                    | 3                | 1                       | 198           | 226                | 289                     | 556        |                  | 226      |
| Maryland                |                 |                    | 695            |                    | ==               |                         | w             | w                  |                         |            | 704              | 2,171    |
| Massachusetts           |                 | W                  | 1,500          |                    | 30               | 19                      | 600           | 704                | 2                       | 3          |                  | 911      |
| Michigan<br>Minnesota   |                 | w                  | 453            |                    | 672              | 364                     | 351           | 750                | 196                     | 154        |                  | 3,964    |
|                         |                 | 103                | 1,135          |                    | 463              | 330                     | 159           | 197                | 186                     | 204        |                  | 726      |
| Mississippi<br>Missouri | - W             | w                  | 566            | 316                | ==               | ==                      | 30            | 30                 |                         |            | 186              | 156      |
| Montana                 |                 | 777                | 265            |                    | 28               | 21                      | 62            | 123                | 8                       | 12         |                  | 999      |
| Nebraska                |                 | w                  | 205            |                    | 355              | 268                     | 130           | 191                | 98                      | 51         |                  | 70       |
| Nevada                  | - 237           | 254                | 70             |                    | 187              | 363                     | 240           | 229                | 379                     | 625        |                  | 629      |
| New Hampshire           |                 | W                  | 355            |                    | 15               | 15                      | W             | w                  | 651                     | 326        |                  | 155      |
| New Jersey              | •••             | W                  | 293<br>767     |                    |                  |                         | 102           | 188                |                         |            | 385              | 350      |
| New Mexico              |                 |                    |                | 660                | 1 5 7 7          | 1 000                   | 153           | 317                |                         |            | 537              | 1,239    |
| New York                |                 | 2                  | $153 \\ 1,553$ | 116<br>1,207       | 1,540<br>387     | 1,302                   | 129<br>149    | 212                | 10                      | 13         |                  | 49       |
| North Carolina          |                 | ŵ                  | 129            |                    | 15               | 86                      |               | 252                | 38                      | 32         |                  | 981      |
| North Dakota            |                 | **                 | 203            | 187                | 164              | 15<br>79                | W<br>37       | w                  | 52                      | 39         |                  | 426      |
| Ohio                    |                 | $\bar{\mathbf{w}}$ | 2,561          | 2,174              | 9                | 14                      | 400           | 105                | 7                       | 2          | 1 000            | 30       |
| Oklahoma                | _ ''            | **                 | 78             | 47                 | ð                | 1.4                     | 11            | 535<br>27          |                         |            | 1,029            | 1,555    |
| Oregon                  |                 | $\overline{19}$    | 1,964          | 1,681              | 48               | 35                      | 775           | 1.070              | 51                      | $\bar{27}$ | 17<br>707        | 25       |
| Pennsylvania            | - <b>w</b>      | w                  | 462            |                    |                  |                         | w             | W                  |                         |            |                  | 1,084    |
| Rhode Island            |                 |                    | w              | W                  |                  |                         | w             | w                  |                         |            | 365<br>144       | 635      |
| South Carolina          |                 |                    | ŵ              | w                  |                  |                         | **            | **                 |                         |            | w                | 112<br>W |
| South Dakota            |                 |                    | 311            | 220                | $1\overline{12}$ | 56                      | 18            | $\bar{\mathbf{w}}$ | 254                     | 166        | 400              | 470      |
| Tennessee               | - w w           | w                  | 301            | 359                |                  | - 00                    | 42            | 93                 | 204                     | 100        | w                | *W       |
| Texas                   |                 | ŵ                  | 332            | 195                | 19               | 10                      | w             | w                  | 5                       | 15         | 708              | 531      |
| Utah                    | - W             | w                  | 502            | 269                | 1,312            | 735                     | 617           | 552                | 75                      | 108        | 73               | 79       |
| Vermont                 | - W             | w                  | 123            | 67                 |                  |                         | w             | w                  |                         |            | 56               | 82       |
| Virginia                | - W             | w                  | 277            | 321                |                  |                         | w             | w                  |                         |            | 94               | 154      |
| Washington              | _ 107           | 136                | 2,977          | 1,821              | 1,335            | 272                     | 671           | 1,227              | 111                     | 50         | 855              | 1,143    |
| West Virginia           |                 |                    | w              | w                  | -,               |                         | -             | -,                 | 111                     | 50         | 000              | 1,140    |
| Wisconsin               | _ W             | w                  | 1,158          | 633                | 320              | 93                      | 705           | 708                | $\overline{18}$         | 7          | 942              | 984      |
| Wyoming                 | _ 90            | 67                 | 138            | 131                | 2                | 2                       | w             | w                  | 6                       | 3          | 244              | 248      |
| Undistributed           |                 | 1,988              | 487            | 401                |                  |                         | 729           | 1,488              |                         | _          | 345              | 356      |
| Total 2                 | 2,743           | 3.663              | 30.237         | 24,883             | 11 320           | 6 306                   |               | 15,574             | 8,777                   | 4 500      | 21,537           |          |
| Puerto Rico e p         |                 | 3,000              | 259            | 324                |                  | 3,000                   | 10,000        | 10,014             | 0,111                   | 4,000      | 41,057           | 20,880   |
|                         |                 |                    | 200            | 024                |                  |                         |               |                    |                         |            |                  |          |

<sup>•</sup> Estimate. P Preliminary. W Withheld to avoid disclosing individual company confidential data, included with "Undistributed."

1 Less than ½ unit.
2 Data may not add to totals shown because of independent rounding.
3 Includes unspecified.

Table 5.-Sand and gravel sold or used by Government-and-contractor producers in the United States, by use 1

|                |      |                | Sand           |                    |                    |                  |                       |                |                        |  |  |  |
|----------------|------|----------------|----------------|--------------------|--------------------|------------------|-----------------------|----------------|------------------------|--|--|--|
|                |      | Building       |                | Paving             |                    | Fill             |                       | Other          |                        |  |  |  |
|                | Year | Quantity       | Value          | Quantity           | Value              | Quantity         | Value                 | Quantity       | Value                  |  |  |  |
| 1969           |      | 1,016          | 1,320          | 32,123             | 28,317             | 6,123            | 3,745                 | 2,168<br>1,632 | 1,014<br>834           |  |  |  |
| $1970 \\ 1971$ |      | r 833<br>1,434 | 1,058<br>1,489 | $43,130 \\ 30,334$ | 41,965<br>r 32,035 | 5,234<br>4,086   | 2,195<br>1,145        | 2,298          | 1,360                  |  |  |  |
| 1972<br>1973   |      | $2,976 \\ 246$ | 1,777 $369$    | $20,218 \\ 21,529$ | 19,845<br>30,050   | $3,996 \\ 4,192$ | $\frac{1,581}{2,938}$ | 2,212<br>2,137 | 1,121<br>1,57 <b>6</b> |  |  |  |

| Year |   | Building Paving |       |          | ing     | Fil      |        | Othe     | er    | Total Gov-<br>ernment-and-<br>contractor<br>sand and<br>gravel <sup>2</sup> |         |
|------|---|-----------------|-------|----------|---------|----------|--------|----------|-------|-----------------------------------------------------------------------------|---------|
|      | _ | Quantity        | Value | Quantity | Value   | Quantity | Value  | Quantity | Value | Quantity                                                                    | Value   |
| 1969 |   | 1.976           | 2,522 | 133,127  | 116,774 | 28,240   | 19,481 | 1,423    |       | r 206,196                                                                   | 174,070 |
| 1970 |   | 1,839           | 1.516 | 141,316  | 137,579 | 16,144   | 6,990  | 1,323    | 1,009 | 211,45 <b>4</b>                                                             | 193,145 |
| 1971 |   | 2,857           | 2,667 | 96,453   | 98,410  | 7,723    | 2,981  | 2,033    | 1,143 | 147,212                                                                     | 141,229 |
| 1972 |   | 2,562           | 2.148 | 79,054   | 79,434  | 14.674   | 4,292  | 1,895    | 1,371 | 127,5 <b>87</b>                                                             | 111,569 |
| 1973 |   | 2,608           | 3,021 | 86,007   | 95,969  | 11,329   | 6,306  | 8,777    | 4,583 | 136,824                                                                     | 144,811 |

r Revised.

Table 6.-Sand and gravel sold or used by Government-and-contractor producers in the United States, by type of producer<sup>1</sup>

(Thousand short tons and thousand dollars)

|                   | 19            | 969     | 19            | 1970    |               | 71      | 19            | 972     | 19            | 73      |
|-------------------|---------------|---------|---------------|---------|---------------|---------|---------------|---------|---------------|---------|
| Type of producer  | Quan-<br>tity | Value   | Quan-<br>tity | Value   | Quan-<br>tity | Value   | Quan-<br>tity | Value   | Quan-<br>tity | Value   |
| Construction and  |               |         |               |         |               |         |               |         |               |         |
| maintenance crews | 65,786        | 45,691  | 67,238        | 39,446  | 58,820        | 30,428  | 62,072        | 36,013  | 60,168        |         |
| Contractor        | 140,403       | 128,377 | 144,214       | 153,699 | 88,395        | 110,800 | 65,515        | 75,556  | 76,654        | 99,726  |
| Total 2           | 206,189       | 174,070 | 211,454       | 193,145 | 147,212       | 141,229 | 127,587       | 111,569 | 136,824       | 144,811 |
| State             | 122,484       | 108,414 | 136,800       | 134,482 | 79,213        | 85,347  | 65,561        | 65,244  | 70,413        | 89,696  |
| Counties          | 52,547        | 39,429  | 58,180        | 37,159  | 56,175        | 38,176  | 52,228        | 35,154  | 52,270        | 40,055  |
| Municipalities    | 3.784         | 4,466   | 3,285         | 3,125   | 2,266         | 2,013   | 2,658         | 2,546   | 2,716         | 2,860   |
| Federal agencies  | 27,374        | 21,761  | 13,189        | 18,379  | 9,558         | 15,693  | 7,141         | 8,624   | 11,424        | 12,199  |
|                   | 206.189       | 174,070 | 211,454       | 193,145 | 147,212       | 141,229 | 127,587       | 111,569 | 136,824       | 144,811 |

<sup>&</sup>lt;sup>1</sup> Excludes American Samoa, the Canal Zone, and Puerto Rico.

<sup>2</sup> Data may not add to totals shown because of independent rounding.

operation and degree of preparation 12 (Thousand short tons and thousand dollars)

|                                                           | 1                   | 972                   | 19                | 73                               |
|-----------------------------------------------------------|---------------------|-----------------------|-------------------|----------------------------------|
|                                                           | Quantity            | Value                 | Quantity          | Value                            |
| Commercial operations: Prepared                           | r 717,193<br>69,544 | r 1,038,358<br>50,774 | 764,554<br>82,251 | 1,151,766<br>62,7 <del>9</del> 3 |
| Total                                                     | r 786,737           | r 1,089,132           | 846,805           | 1,214,559                        |
| Government-and-contractor operations: Prepared Unprepared | 106,986<br>20,601   | 98,679<br>12,890      | 117,372<br>19,452 | 134,624<br>10,187                |
| Total                                                     | 127,587             | 111,569               | 136,824           | 144,811                          |
| Grand total                                               | r 914,324           | r 1,200,701           | 983,629           | 1,359,370                        |

r Revised.

Excludes American Samoa, the Canal Zone, and Puerto Rico.

2 Data may not add to totals shown because of independent rounding.

Table 7.-Sand and gravel sold or used by producers in the United States by class of

Data may not add to totals shown because of independent rounding. Excludes Puerto Rico.

Table 8.-Number and production of domestic commercial sand and gravel plants, by size of operation 1

|                                   |         | 197                 | 72                             |                     |        | 19                  | 73                             |                     |
|-----------------------------------|---------|---------------------|--------------------------------|---------------------|--------|---------------------|--------------------------------|---------------------|
| -                                 | Pla     | nts 2               | Proc                           | luction             | Pla    | nts 2               | Prod                           | luction             |
| Annual production<br>(short tons) | Number  | Percent<br>of total | Thou-<br>sand<br>short<br>tons | Percent<br>of total | Number | Percent<br>of total | Thou-<br>sand<br>short<br>tons | Percent<br>of total |
| Less than 25,000                  | 1,630   | 30.3                | 17,541                         | 2.2                 | 1,655  | 29.1                | 18.054                         | 2.1                 |
| 25,000 to 50,000                  | 850     | 15.8                | 30,508                         | 3.9                 | 884    | 15.6                | 32.244                         | 3.7                 |
| 50,000 to 100,000                 | 957     | 17.8                | 68,788                         | r 8.7               | 1,053  | 18.5                | 75.822                         | 9.0                 |
| 100,000 to 200,000                | 849     | 15.8                | 121,304                        | 15.4                | 904    | 15.9                | 129,084                        | 15.2                |
| 200,000 to 300,000                | 400     | 7.4                 | 97,088                         | r 12.3              | 450    | 7.9                 | 109,976                        | 13.0                |
| 300,000 to 400,000                | 217     | 4.0                 | 75,157                         | 9.6                 | 230    | 4.1                 | 79,468                         | 9.4                 |
| 400,000 to 500,000                | 134     | 2.5                 | 59,757                         | 7.6                 | 134    | 2.4                 | 59,977                         | 7.1                 |
| 500,000 to 600,000                | 79      | 1.5                 | 42,924                         | 5.5                 | 78     | 1.4                 | 42,472                         | 5.0                 |
| 600,000 to 700,000                | r 70    | 1.3                 | r 45,374                       | r 5.8               | 79     | 1.4                 | 51,306                         | 6.1                 |
| 700,000 to 800,000                | 56      | 1.0                 | 41,860                         | 5.3                 | 48     | .8                  | 35,345                         | 4.2                 |
| 800,000 to 900,000                | 26      | .5                  | 22,310                         | 2.8                 | 42     | .7                  | 35,708                         | 4.2                 |
| 900,000 to 1,000,000              | 27      | .5                  | 25,666                         | 3.3                 | 24     | .4                  | 22,635                         | 2.7                 |
| 1,000,000 and over                | r 89    | 1.6                 | r 138,461                      | r 17.6              | 100    | 1.8                 | 154,713                        | 18.3                |
| Total 3                           | r 5,384 | 100.0               | r 786,737                      | 100.0               | 5,681  | 100.0               | 846,805                        | 100.0               |

r Revised.

Table 9.-Sand and gravel sold or used in the United States, by class of operation and method of transportation 12

|                                    | 19                     | 72                  | 1973                   |                     |  |
|------------------------------------|------------------------|---------------------|------------------------|---------------------|--|
|                                    | Thousand<br>short tons | Percent<br>of total | Thousand<br>short tons | Percent<br>of total |  |
| Commercial:                        |                        |                     |                        |                     |  |
| Truck                              | r 709,128              | 77                  | 768,040                | 78                  |  |
| Rail                               | r 44,364               | 5                   | 41.641                 | 4                   |  |
| Waterway                           | 27,050                 | 3                   | 32,686                 | 3                   |  |
| Unspecified                        | 6,195                  | 1                   | 4,438                  | 1                   |  |
| Total commercial                   | r 786,737              | 86                  | 846.805                | 86                  |  |
| Government-and-contractor: Truck 3 | 127,587                | 14                  | 136,824                | 14                  |  |
| Grand total                        | r 914,324              | 100                 | 983,629                | 100                 |  |

r Revised.

Table 10.—Ground sand sold or used by producers in the United States, 2 by use (Thousand short tons and thousand dollars)

1972 1973 Use Quantity Value Quantity Value 2,142 Abrasives Chemicals 204 1,938 235 141 568 76 508 52 525 42 406 172 1,707 1,648 164 2 928 2.318 Foundry use 6 288 6,917 Glass 5.696 726 3,679 1,706 1.042 Pottery, porcelain, tile 221 2,261 Unspecified 362 2,623 1,353 253 \_\_\_\_\_ 3 21,546 Total 4,512 4,593 18,418 -----

<sup>&</sup>lt;sup>1</sup> Excludes Puerto Rico.

<sup>&</sup>lt;sup>2</sup> Includes a few companies operating more than one plant but not submitting returns for individual plants.

<sup>3</sup> Data may not add to totals shown because of independent rounding.

<sup>&</sup>lt;sup>1</sup> Data may not add to totals shown because of independent rounding.

<sup>&</sup>lt;sup>2</sup> Excludes Puerto Rico.
<sup>3</sup> Entire output of Government-and-contractor operations assumed to be moved by truck.

<sup>&</sup>lt;sup>1</sup> Includes Alabama, Arkansas, California, Florida, Georgia (1972), Idaho (1972), Illinois, Indiana (1972), Iowa, Kansas (1972), Kentucky, Maryland (1973), Massachusetts, Michigan, Minnesota, Missouri, Nevada, New Jersey, New York, Ohio, Oklahoma, Pennsylvania, South Carolina, Tennessee, Texas, Utah, Virginia, West Virginia, and Wisconsin.
<sup>2</sup> Excludes Puerto Rico.

<sup>&</sup>lt;sup>3</sup> Data does not add to total shown because of independent rounding.

Table 11.-U.S. imports for consumption of sand and gravel, by class (Thousand short tons and thousand dollars)

|                      | Year | Glass s        | and <sup>1</sup>  | Sand, n.<br>crude or man<br>and gr | ufactured,            | Total             |                         |  |
|----------------------|------|----------------|-------------------|------------------------------------|-----------------------|-------------------|-------------------------|--|
|                      |      | Quantity       | Value             | Quantity                           | Value                 | Quantity          | Value                   |  |
| 1971<br>1972<br>1973 |      | 48<br>49<br>48 | 243<br>201<br>340 | 667<br>712<br>752                  | 984<br>1,178<br>1,236 | 715<br>761<br>800 | 1,227<br>1,379<br>1,576 |  |

 $<sup>^1</sup>$  Classification reads: Sands containing 95% or more silica and not more than 0.6% oxide of iron and suitable for manufacturing glass.



# Silicon

# By E. Shekarchi 1

The energy shortage had a severe effect on the ferrosilicon industry in 1973. From the beginning of the second quarter the gap between the supply of ferrosilicon and demand began to narrow. Supplies of silicon metal and ferrosilicon products became increasingly tight throughout the year and by yearend were allocated on the basis of the customer's previous order pattern.

Domestic plant expansions and/or modernizations continued as ferroalloy producers moved toward plant specialization and compliance with federal and local government antipollution standards which are to become effective by 1975. In the world market, all grades of ferrosilicon and silicon metal appeared to be in short supply. Prices of silicon metal and ferrosilicon on the international market were substantially higher than the controlled prices in the United States.

#### DOMESTIC PRODUCTION

Production and shipments of ferrosilicon, and silicon metal and alloys, paralleling those of steel and aluminum, increased 8% and 20% respectively compared with 1972 figures. Yearend stocks had decreased by 65% when compared with those of 1972. With regard to individual ferrosilicon grades, production of nominal 50% ferrosilicon increased 3.6% whereas production of ferrosilicon containing 71% to 80% silicon increased 16.7%. Production of silicon metal increased 14.7% over that of the previous year. Ferrosilicon and silicon metals were produced at 27 plants by 14 companies as shown in table 2.

Northwest Alloy, Inc., a subsidiary of Aluminum Company of America (Alcoa), received final permission from the State of Washington Department of Ecology to start construction on a \$50 million magnesium and silicon metal plant at Addy, Wash. Originally, construction of the Addy plant was to begin in April 1973, with completion scheduled for early 1975; however, after the delayed start, no new opening date had been set. Most of the plant's annual 40,000-ton silicon production is to be used by Alcoa although some will be available to other metals producers. The Addy plant will be the first of its kind in the United States to employ the megatherm (electrothermal) process with dolomite as raw material. This process, in operation at Marignac, France, since 1964, involves the reduction of calcium dolomite by ferrosilicon at a temperature in excess of 1,500° C.

Table 1.—Production, shipments, and stocks of silvery pig iron, ferrosilicon, and silicon metal in 1973

(Short tons, gross weight)

| Alloy                                 | Silicon<br>content<br>(percent) | Producers'<br>stocks as of<br>Dec. 31, 1972 <sup>r</sup> | Production | Shipments | Producers'<br>stocks as of<br>Dec. 31, 1973 |
|---------------------------------------|---------------------------------|----------------------------------------------------------|------------|-----------|---------------------------------------------|
| Silvery pig iron                      | 5-24                            | w                                                        | w          | w         | w                                           |
| Ferrosilicon (includes briquets)      | 25-55                           | 57,253                                                   | 509,897    | 492,717   | 17.127                                      |
| Do                                    | 56-70                           | 5,322                                                    | 58.318     | 60.126    | 2,400                                       |
| Do                                    | 71–80                           | 80,073                                                   | 128,299    | 155.899   | 9,740                                       |
| Do                                    | 81-95                           | 1,059                                                    | 3,785      | 4,976     | 41                                          |
| Silicon metal (excludes semiconductor |                                 |                                                          | •          | •         |                                             |
| grades)                               | 96-99                           | 7.451                                                    | 133,527    | 119.168   | 4,686                                       |
| Miscellaneous silicon alloys          |                                 | • • • • • • • • • • • • • • • • • • • •                  | ,          |           |                                             |
| (exclusive of silicomanganese)        |                                 | 12,203                                                   | 81,805     | 83,932    | 5,239                                       |
| Other silicon alloys and products     |                                 | 2,844                                                    | 9,497      | 8,646     | 2,005                                       |

r Revised. W Withheld to avoid disclosing individual company confidential data.

<sup>&</sup>lt;sup>1</sup> Physical scientist, Division of Ferrous Metals—Mineral Supply.

Reynolds Metals Co. announced in October plans to more than double the capacity of its silicon plant at Sheffield, Ala. Expansion of the plant, which now produces 7,000 tons of silicon for aluminum casting, is to begin in the fall of 1974 with completion expected by March 1975. Transformer capacity of the new furnace is to be about 1,500 kilovolt-amperes (kVA).

Ohio Ferro-Alloys Corp. announced plans

to build in 1974 a new 46,000 kVA electric furnace at the company's Philo plant in Philo, Ohio. The new covered furnace will be installed in an existing building and will be equipped with a modular-constructed bag-house type collector. The company expects new production to begin early in 1975. The total cost of the project was estimated at \$4 million.

Table 2.-Producers of silicon alloys and/or silicon metal in the United States in 1973

| Producers                                      | Plant location       | Product       |
|------------------------------------------------|----------------------|---------------|
| Airco, Inc., Airco Alloys and Carbide Division | Calvert City, Ky     | FeSi.         |
| Do                                             | Charleston, S.C      | Do.           |
| Do                                             | Mobile, Ala          | Do.           |
| Do                                             | Niagara Falls, N.Y   | Do.           |
| Alabama Metallurgical Corp                     | Selma, Ala           | FeSi,Si.      |
| Chromium Mining & Smelting Corp                | Woodstock, Tenn      | FeSi.         |
| Foote Mineral Co                               | Graham, W. Va        | Do.           |
| Do                                             | Keokuk, Iowa         | Silvery iron. |
| Do                                             | Wenatchee, Wash      | FeSi.Si.      |
| Hanna Furnace Corp                             | Buffalo, N.Y         | Silvery iron. |
| Hanna Nickel Smelting Co                       | Riddle, Oreg         | FeSi.         |
| Interlake Steel Corp                           | Beverly, Ohio        | FeSi.Si.      |
| National Metallurgical Corp                    | Springfield, Oreg    | Si.           |
| Ohio Ferro-Alloys Corp                         | Brilliant, Ohio      | FeSi.Si.      |
| Do                                             | Philo, Ohio          | Do.           |
| Do                                             | Powhatan Point, Ohio | Do.           |
| Do                                             | Tacoma, Wash         | Do.<br>Do.    |
| Reynolds Metals Co                             | Sheffield, Ala       | Si.           |
| Tennessee Alloys Corp                          | Bridgeport, Ala      | FeSi.         |
| l'ennessee Metallurgical Corp                  | Kimble, Tenn         | Do.           |
| Union Carbide Corp. Ferroalloys Division       | Alloy, W.Va          | FeSi.Si.      |
| Do                                             | Ashtabula, Ohio      | FeSi.         |
| Do                                             | Marietta, Ohio       | Do.           |
| Do                                             | Portland, Oreg       | Do.<br>Do.    |
| Do                                             | Sheffield, Ala       | Do.<br>Do.    |
| Woodward Corp                                  | Woodward, Ala        | Do.           |
| Do                                             | Rockwood, Tenn       | Do.<br>Do.    |

#### **CONSUMPTION AND USES**

Silicon metal continued to be used mainly as an additive to aluminum and for the production of silicon chemicals. It was also used in iron and steel, high-temperature alloys, superalloys, copper base alloys and electrical contact materials. Ferrosilicon was used primarily for deoxidizing steel, and producing silicon alloy steels and cast-irons. The greater part of silvery pig iron was consumed by iron foundries and a sizable quantity was used in the manufacture of steel.

World demand for high-purity silicon increased significantly in 1973 and most consumers felt the pinch of the short supply. In the United States large producers and consumers of polycrystalline and high purity silicon (Texas Instruments, Inc., Motorola Inc., Fairchild Camera & Instruments, Corp., and Dow Corning Corp.) operated at full capacity. Dow Corning announced plans to

increase its polycrystalline capacity by another 40% over its 1973 expansion. The new facilities at the company's Hemlock, Mich., plant were scheduled for completion in the latter part of 1975. Monsanto Chemical Co., another polycrystalline silicon producer, planned by 1975 to expand its plant in Missouri.

Demand for polycrystalline silicon in the electronics industry increased with the growing market for personal calculators, and the use of solid state devices in automobiles and in sales and cash registers.

Among more recent developments, polycrystalline silicon furnace tubes and fixtures used in semiconductor processing were found to be much more resistant to high temperatures and sudden temperature changes than those made of quartz.

Table 3.-Consumption, by major end uses and stocks of silicon alloys and metal in the United States in 1973

(Short tons)

|                                                       | ***                 |                           | Silicon con       | tent percent           |                   |                    |                              |
|-------------------------------------------------------|---------------------|---------------------------|-------------------|------------------------|-------------------|--------------------|------------------------------|
|                                                       | Silvery<br>pig iron | Ferrosilicon <sup>1</sup> |                   |                        |                   | Silicon<br>— metal | Miscel<br>laneous<br>silicon |
|                                                       | 5-24                | 25-55                     | 56-70             | 71–80                  | 81-95             | 96-99              | alloys 2                     |
| Steel:<br>Carbon                                      | 3,351               | 118,008                   | 4,375             | 42,265                 | 772               | 1,087              | 13,450                       |
| Stainless and heat<br>resisting<br>Full alloy         | 1,073               | 19,940<br>39,834          | 284<br>1,864      | 9,966<br>12,064        | 214<br>1,190      | 98<br>1,522        | 462<br>1,725                 |
| High-strength low-alloy Electric                      | 2,184               | 9,872<br>350              | (8)<br>(3)<br>(4) | 2,332<br>27,249<br>976 | 141<br>(3)<br>(4) | (3)<br>(3)<br>327  | $1,262$ $1\overline{24}$     |
| Tool                                                  | 276,266             | 2,596<br>252,227<br>297   | 9,396             | 39,831<br>12           | 7,193<br>189      | 85<br>84           | 120,375<br>4                 |
| Alloys (exclude alloy<br>steels and super-<br>alloys) | 243                 | 8,332                     | 8                 | 822                    | 12,015            | 64,662             | 8,840                        |
| Miscellaneous and unspecified                         | 3,857               | 5.391                     | 8                 | 618                    | 142               | 87,838             | 1,586                        |
| Total                                                 | 286,974             | 451,847                   | 15,930            | 136,135                | 21,856            | 105,703            | 147,278                      |
| Consumers stocks,<br>Dec. 31, 1973 -                  | 57,666              | 46,245                    | 1,371             | 13,420                 | 2,860             | 13,061             | 10,790                       |

1 Includes briquets.

- Includes oriquets.

2 Includes magnesium-ferrosilicon and other silicon alloys.

3 Included with "Full alloy steel."

4 Included with "Miscellaneous and unspecified."

#### **PRICES**

The prices of ferrosilicon and silicon metals were increased in the second and fourth quarter of the year as allowed by Phase IV price stabilization rules. The f.o.b. price of 50% ferrosilicon increased from 15 cents per pound in 1972 to 18.5 cents per pound contained silicon, bulk, carload lots in 1973. Metallurgical-grade silicon, 98% minimum silicon, 0.35% maximum iron increased from 25.4 in 1972 to 28.4 cents per pound contained silicon in 1973. Amorphous silicon in 50-pound paper bags, 200 mesh, 90% to 95% silicon was increased to \$27 per ton in 1973 from \$26 per ton in the previous year.

The price increases were attributed to substantially higher costs for scrap iron, metallurgical-grade coal, electric power and to the cost of newly installed devices for environmental control such as bag houses and water purification plants.

# FOREIGN TRADE

Exports of ferrosilicon and silicon metal increased 117% in quantity and about 84% in value; major recipients were Sweden, 9,148 tons; Canada, 3,424 tons; and the Netherlands, 833 tons. Twenty countries received shipments ranging from 1 to 100 tons.

The unfavorable trade imbalance in ferrosilicon that was evident in the United States in 1972 continued through 1973, although ferrosilicon imports for consumption leveled off in the fourth quarter. Imports of ferrosilicon and silicon metal for consumption increased 161% in quantity and 130% in value over those of 1972. Major increases in quantity were in the over 60% but less than 80% ferrosilicon category and the not over 99.7% silicon metal category. Total value of imports amounted to \$32.9 million in 1973 compared with \$14 million in 1972.

Table 4.-U.S. exports of ferrosilicon

|      | Year | Quantity (short tons) | Value<br>(thousands) |
|------|------|-----------------------|----------------------|
| 1971 |      | 25,506                | \$5,603              |
| 1972 |      | 7,367                 | 2,196                |
| 1973 |      | 15,984                | 4,051                |

Table 5.—U.S. imports for consumption of ferrosilicon and silicon metal, by grade and country

| Gross Silicon   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gross   Gros | rade and country                        | _        | Quar                       | ntitu              |        |                |         |         |                 |                      |                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------|----------------------------|--------------------|--------|----------------|---------|---------|-----------------|----------------------|------------------|
| Ferrosilicon:   Over 8% but not over 60% silicon:   Canada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |          | (short tons) Gross Silicon |                    |        |                |         |         | (shor           | t tons)              | Value            |
| Petrosilicon:   Over 8% but not over 50% silicon:   Canada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |          | Gross<br>weight            | Silicon<br>content | sands) |                |         | sanda)  | Gross           | Silicon              | (thou-<br>sands) |
| Canada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rosilicon:                              |          |                            |                    |        |                |         |         |                 |                      |                  |
| Denmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Over 8% but n<br>60% silicon:           | ot over  |                            |                    |        |                |         |         |                 |                      |                  |
| Germany, West 276 127 75 552 305 226 222 Japan 3,587 1,687 1,111 2,466 1,174 736 1,319 Norway 685 304 213 2,205 980 684 1,485 South Africa, Republic of Spain 570 11,975 3,729 2,310 14,525 4,824 3,064 23,979  Over 60% but not over 80% silicon: Belgium- Luxembourg 55 37 23 36 Brazil 55 37 23 36 Brazil 55 37 23 36 Brazil 55 37 23 36 Brazil 55 37 23 36 Brazil 55 37 24 2,934 Denmark 44 26 17 France 2,836 1,744 1,129 4,538 2,806 1,791 7,963 Germany, West 444 270 162 66 35 21 101 Republic of Spain South Africa, 318 246 63 167 120 34 3614 Republic of Spain 3,114 2,807 541 4,901 3,632 1,256 15,622 Turkey 2,211 1,697 367 U.S.S.R 2,224 1,718 559 110 Yugoslavia 2,224 1,718 559 110 Over 80% but not over 90% silicon: Canada 60 51 18 369 Over 90% silicon content: France Norway 40 38 12 - 396 Over 90% silicon content: France 40 38 12 - 396 Over 90% silicon content: France 155 148 47 39 Grand total 24,467 12,683 5,750 39,600 23,154 8,815 99,933  Silicon metal: Not over 99.7% silicon: Belgium- Luxembourg 1681 1,657 584  Italy 1,681 1,657 584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Denmark .                               |          |                            |                    |        |                |         |         | 15,875<br>1,051 | 3,429<br>467         | \$1,137<br>349   |
| Japan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | Vest.    |                            |                    |        |                | 1,245   |         | 2,728           | 1,467                | 1,056            |
| Norway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Japan                                   |          |                            | 1,687              |        |                |         |         | 1.319           | 112<br>631           | 95<br>445        |
| Republic of Spain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MOLMSA                                  |          | 685                        | 304                | 213    | 2,205          |         |         | 1,485           | 659                  | 471              |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Republic                                | of       |                            |                    |        |                |         |         | 1.299           | 492                  | 104              |
| Over 60% but not over 80% silicon:    Belgium-  Luxembourg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |          | 11.055                     | 0.500              |        |                |         |         |                 |                      |                  |
| Belgium- Luxembourg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |          | 11,975                     | 3,729              | 2,310  | 14,525         | 4,824   | 3,054   | 23,979          | 7,257                | 3,657            |
| Luxembourg       55   37   23   36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80% silicon:                            | ot over  |                            |                    |        |                |         |         |                 |                      |                  |
| Canada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Luxembou                                | rg       |                            |                    |        | 55             | 87      | 22      | 96              | 22                   | 15               |
| Denmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |          |                            |                    |        |                |         |         | 850             | 263                  | 71               |
| Germany, West                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Denmark .                               |          |                            |                    |        | 949            | 715     | 240     | 2,934           | 2,210                | 772              |
| Greece                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rrance                                  |          |                            | 1,744              | 1,129  | 4,538          | 2,806   | 1,791   | 7,968           | 4,879                | 3,344            |
| Netherlands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Greece                                  | vest     | 444                        | 270                | 162    |                |         |         |                 | 67<br>2,110          | 56               |
| Norway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Japan                                   |          | 50                         | 38                 | 10     |                |         |         | 2               | 2,110                | 536<br>1         |
| South Africa,   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile   Sile  | Norway                                  |          | 2.569                      | 1.919              | 736    | 2,894<br>9 159 |         |         | 854             | 635                  | 156              |
| Sweden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | South Afric<br>Republic                 | a,<br>of |                            |                    |        |                | 120     | 34      | 614             | 28,565<br><b>470</b> | 6,884<br>152     |
| Taiwan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |          | 3 114                      | 2 207              | 541    | 4 007          | 0 000   | 1 050   |                 | 578                  | 127              |
| U.S.S.R Yugoslavia 2,224 1,718 539 15,566 Total 21,418 8,891 3,419 24,920 18,182 5,714 75,519  Over 80% but not over 90% silicon:  Canada South Africa, Republic of 14 12 3 27 Total 74 63 21 396  Over 90% silicon content:  France Norway 115 110 35 - 396  Over 90% silicon total Sweden 155 148 47 39  Grand total 24,467 12,683 5,750 39,600 23,154 8,815 99,933  Silicon metal:  Not over 99.7% silicon:  Belgium- Luxembourg - 174 173 74 790 780 385 99,933  Silicon metal:  Luxembourg - 121 120 46 1,125 France - 121 120 46 1,125 Germany, West 1681 1,687 584 74  Japan - 248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Taiwan                                  |          |                            |                    |        | 4,501          | 0,002   | 1,200   | 15,622          | 11,599               | 8,953            |
| Yugoslavia         2,224         1,718         539         —         —         —         5,566           Total         12,418         8,891         3,419         24,920         18,182         5,714         75,519           Over 80% but not over 90% silicon:           Canada         60         51         18         —         —         869           South Africa, Republic of         14         12         3         —         —         27           Total         74         63         21         —         —         27           Over 90% silicon content:           France         —         —         40         38         12         —           Norway         —         —         —         40         38         12         —           Sweden         —         —         —         40         38         12         —           Sweden         —         —         —         15         110         35         —           Grand total         24,467         12,683         5,750         39,600         23,154         8,815         99,933           Silicon metal: <td></td> <td></td> <td></td> <td></td> <td></td> <td>2,211</td> <td>1,697</td> <td>367</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |          |                            |                    |        | 2,211          | 1,697   | 367     |                 |                      |                  |
| 12,418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Yugoslavia                              |          | 2,224                      | 1,718              | 539    |                |         |         |                 | 87<br>4,264          | 60<br>1,237      |
| 90% silicon:  Canada 60 51 18 869  South Africa, Republic of 14 12 3 27  Total 74 63 21 396  Over 90% silicon content:  France - 40 88 12 - 396  Norway 115 110 35 - 39  Total 155 148 47 39  Grand total 24,467 12,683 5,750 39,600 23,154 8,815 99,933  Silicon metal:  Not over 99.7% silicon:  Belgium- Luxembourg 121 120 46 1,125  France - 1,681 1,657 584 - 13  Japan 1,681 1,657 584 - 13  Japan 1,681 1,657 584 - 14  Japan 248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |          | 12,418                     | 8,891              | 3,419  | 24,920         | 18,182  | 5,714   |                 | 55,750               | 17,364           |
| South Africa, Republic of 14 12 3 - 27 Total 74 63 21 - 396  Over 90% silicon content: France - 40 38 12 - 396  Norway - 115 110 35 - 397  Sweden - 155 148 47 39  Total - 155 148 47 39  Grand total 24,467 12,683 5,750 39,600 23,154 8,815 99,933  Silicon metal: Not over 99.7% silicon:  Belgium- Luxembourg - 20 Canada 174 173 74 790 780 355 259 France - 121 120 46 1,125  France - 121 120 46 1,125  Germany, West - 1681 1,657 584 - 248  Japan - 248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | ot over  |                            |                    |        |                |         |         |                 |                      |                  |
| Total 74 63 21 396  Over 90% silicon content:  France 40 88 12 3896  Norway 115 110 35 - 39  Total 155 148 47 39  Grand total 24,467 12,683 5,750 39,600 23,154 8,815 99,933  Silicon metal:  Not over 99.7% silicon:  Belgium- Luxembourg 121 120 46 1,125  France - 1,681 1,657 584 18  Japan 1,681 1,657 584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | South Afric                             | a,       |                            |                    |        |                |         |         | 869             | 819                  | 89               |
| Over 90% silicon content:    France                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |          |                            |                    |        |                | 4-      |         |                 | 24                   | 8                |
| France                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                       |          |                            | 63                 | 21     |                |         |         | 396             | 343                  | 47               |
| Norway Sweden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • • • • • • • • • • • • • • • • • • • • | content: |                            |                    |        |                |         |         |                 |                      |                  |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Norway                                  |          |                            |                    |        |                |         |         |                 |                      |                  |
| Grand total 24,467 12,683 5,750 39,600 23,154 8,815 99,933   Silicon metal:  Not over 99.7% silicon:  Belgium- Luxembourg 2Canada 174 173 74 790 780 385 259   France 121 120 46 1,125   Germany, West (1) (1) (1) 18   Italy 1,681 1,657 584   Japan 248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |          |                            |                    |        |                |         |         | 39              | 38                   | 19               |
| Silicon metal:  Not over 99.7% silicon:  Belgium- Luxembourg Canada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |          |                            |                    |        | 155            | 148     | 47      | 39              | 38                   | 19               |
| Not over 99.7% silicon:  Belgium- Luxembourg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         | tal      | 24,467                     | 12,683             | 5,750  | 39,600         | 23,154  | 8,815   | 99,933          | 63,388               | 21,087           |
| Belgium- Luxembourg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |          | •                          |                    |        |                |         |         |                 |                      |                  |
| Luxembourg     92       Canada     174     173     74     790     780     385     259       France                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | ilicon:  |                            |                    |        |                |         |         |                 |                      |                  |
| Canada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Luxembou                                | rg       |                            |                    |        |                |         |         |                 |                      |                  |
| Germany, West (2) (4) (1) 18  Italy 1,681 1,657 584  Japan 248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Canada                                  |          | 174                        | 173                | 74     |                | 780     | 385     |                 | 91<br>256            | 44<br>112        |
| Italy 1,681 1,657 584  Japan 248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | Vest     |                            |                    |        |                |         |         |                 | 1,099                | 499              |
| Japan 248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Italy                                   |          |                            |                    |        | 1,681          |         |         | 18              | 17                   | 11               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Netherlands                             |          |                            |                    |        |                | •       |         | 248             | 244                  | 107              |
| Norway 22 21 8 1 306 1 281 1 413 2 784                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Norway                                  |          | 22                         | 21                 | 8      | r 1.306        | r 1.281 | F 413   |                 | 808<br><b>2,74</b> 7 | 440<br>1.156     |
| Spain 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Spain                                   |          |                            |                    |        |                | -,      |         | 55              | 54                   | 37               |
| Switzerland                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Switzerland                             |          |                            |                    |        |                |         |         |                 | 19<br>379            | 9<br>207         |
| Vugoslavie 2 1 2 276 272 97 755                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | United King                             | dom      | 2                          |                    | 2      |                |         |         | 755             | 748                  | <b>39</b> 8      |
| Total 01 05 18 1,388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |          | 198                        |                    |        |                |         |         |                 | 1,126                | 489              |
| 198 195 84 r 4,285 r 4,165 r 1,543 7,939  See footnotes at end of table.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |          |                            | 190                | 04     | 4,280          | • 4,165 | • 1,543 | 7,939           | 7,588                | 3,509            |

SILICON 1121

|                                                       | by gra          | ue anu             | count           | y—Con           | ımuea              |                 |                 |                        |                  |
|-------------------------------------------------------|-----------------|--------------------|-----------------|-----------------|--------------------|-----------------|-----------------|------------------------|------------------|
|                                                       | 1               | 971                |                 | 19              | 72                 |                 | 19              | 973                    |                  |
| Grade and country                                     |                 | ntity<br>t tons)   | Value           |                 | ntity<br>t tons)   | Value<br>(thou- |                 | antity<br>rt tons) Val |                  |
|                                                       | Gross<br>weight | Silicon<br>content | thou-<br>sands) | Gross<br>weight | Silicon<br>content | sands)          | Gross<br>weight | Silicon<br>content     | (thou-<br>sands) |
| Silicon metal—Continued: Over 99.7% silicon: Belgium- |                 |                    |                 |                 |                    |                 |                 |                        |                  |
| Luxembourg                                            | (1)             | (¹)                | 4               | (¹)             | (¹)                | 88              | 1               | 1                      | 142              |
| Canada                                                |                 |                    |                 | 1               | 1                  | _2              | 21              | 21                     | 14               |
| Denmark                                               | (¹)             | (¹)                | 44              | (¹)             | (¹)                | 73              | 1               | 1                      | 79               |
| France                                                | 2               | 2                  | 92              | 1               | 1                  | 35              | 108             | 108                    | 125              |
| Germany, West                                         | 12              | 12                 | 1.173           | 53              | 53                 | 3,318           | 81              | 81                     | 7,012            |
| Japan                                                 | 17              | 17                 | 607             | 5               | 5                  | 450             | 12              | 12                     | 806              |
| Netherlands                                           |                 |                    |                 | _               |                    |                 | 220             | 220                    | 115              |
| United Kingdom                                        | (1)             | (1)                | (1)             | (1)             | (1)                | 7               | (1)             | (1)                    | 11               |
| Total                                                 | 31              | 31                 | 1,920           | 60              | 60                 | 3,923           | 444             |                        | 8,304            |
| Grand total                                           | 229             | 226                | 2,004           | r 4,295         | r 4,225            | r 5,466         | 8,383           | 8,032                  | 11,813           |

Table 5.—U.S. imports for consumption of ferrosilicon and silicon metal, by grade and country—Continued

#### WORLD REVIEW

India.—The two major ferrosilicon producers in India were the public sector firm, Mysore Iron and Steel, Ltd., at Bhadravati and the private sector firm, Indian Metals and Ferroalloys, Ltd., at Bhubaneshwar, Orissa. Output of ferrosilicon and silicon metal during 1973 was about 35,000 tons, a 75% increase over 1972 production of 20,000 tons. Two new small companies which contributed about 5,000 tons to the 1973 production were Industrial Development Corp., Ltd., with a plant located in Orissa and Ferroalloy Corp. Ltd., with a plant at Andhra Pradesh.

In 1972 India, for the first time, exported ferrosilicon: 3,000 tons to Sweden and smaller tonnages to New Zealand, Bangladesh, and Sri Lanka.

Italy.—Construction work on a new plant in Sicily, which will produce 148,000 tons per year of ferrosilicon, silicon metal, and ferrochrome, continued in 1973. Production is to begin in mid-1974. It was reported that Montecatini Edison S.p.A. is to build a new plant for the production of silicon metal at Sinigo, Italy. Cost of the plant was estimated at \$8.6 million and reportedly production will start in 1975.

Japan.—Production of ferrosilicon and silicon metal in 1973 was reduced 20% due to a severe fuel crisis and several plant shutdowns caused by furnace explosions To overcome the shortage, Japan's steel industry imported 17,000 tons of ferrosilicon from Sweden, Norway, and Yugoslavia. Unless the energy crisis diminishes, Japan is expected to import about 24,000 tons of ferrosilicon in 1974.

Nippon Denko Co., which produced silicon metal in plants at Minamata and Koriyama, announced in 1973 plans to expand production capacity from 20,000 to 28,000 tons per year. The decision was based on Japan's increased aluminum ingot production which consumed most of the silicon metal output.

South Africa, Republic of.—Aluminum Co. of Canada (Alcan) and Foote Mineral Co. of the United States joined with the mining and engineering subsidiary of African Oxygen Co. of South Africa to form a new company—Silicon Smelters (Pty) Ltd. The three partners will have equal shares in the new company. Silicon Smelters will operate a mine and a plant for the manufacture of silicon metal at Pietersburg in northern Transvaal, about 200 miles north of Johannesburg. The plant with an annual capacity of 30,000 tons of silicon metal will cost about \$25 million and is expected to go into production in 1975.

Yugoslavia.—The Yugoslavian Economic Organization's (YEO) Electrobosna Co. in Jajce, central Yugoslavia, commissioned its fifth ferrosilicon electric furnace in the latter part of April 1973. The new furnace has a 480 kVA transformer and will increase the company's ferrosilicon productive capacity by 40%. YEO's Jugobrom Company at Jegunovce, in southern Yugoslavia, was constructing a new 30,000-ton capacity ferrosilicon plant that is to begin production in 1976. Most of the expansion programs were aimed at export markets in Europe.

Total production of ferrosilicon and silicon metals and alloys by Yugoslavia was about 65,000 tons in 1973.

r Revised.

<sup>1</sup> Less than 1/2 unit.



# Silver

# By J. R. Welch <sup>1</sup>

The domestic mine output of silver was 37.8 million troy ounces, nearly 2% higher than in 1972. Imports exceeded exports by 119.5 million ounces, and consumption, including coinage increased 28% to 196.9 million ounces.

There were several significant events in the silver market in 1973. The price of silver set new highs, and industrial consumption, excluding coinage, was greater than in any other single year. The use of silver for all industrial purposes increased sharply, except for use in batteries. Silver used in the manufacture of commemorative medals, embossed bars, and small ingots increased to 21.9 million ounces, 92% more than in 1972. Part of the increase was attributed to coin blanks made for the Canadian Government. Industry stocks (exclusive of trading firms) continued to decline, ending the year at 38.4 million ounces compared with 51.9 million ounces at yearend 1972. Trading volume on the New Commodity Exchange (COMEX) amounted to 12 billion ounces during 1973, a 52% increase over that traded in 1972. During the year, trading on the Chicago Board of Trade increased to 8 billion ounces, more than double the volume traded in 1972. COMEX stocks decreased from 77.6 million ounces at the end of 1972 to 64.3 million ounces at the end of 1973, and during the same time period, Chicago Board of Trade stocks increased from 22.8 million ounces at the end of 1972 to 27.4 million ounces at the end of 1973.

Table 1.-Salient silver statistics

|                                           | 1969      | 1970      | 1971             | 1972      | 1973     |
|-------------------------------------------|-----------|-----------|------------------|-----------|----------|
| United States:                            |           |           |                  |           |          |
| Mine productionthousand troy ounces       | 41,906    |           |                  |           | 37,827   |
| Valuethousands                            | \$75,040  | \$79,697  | <b>\$64,25</b> 8 | \$62,737  | \$96,762 |
| Ore (dry and siliceous) produced:         |           |           |                  |           |          |
| Gold orethousand short tons               | 2,002     |           |                  |           |          |
| Gold-silver oredodo                       | 216       | г 214     | 167              | r 173     |          |
| Silver oredodo                            | 755       | r 720     | т 683            | r 564     | 593      |
| Percentage derived from:                  |           |           |                  |           |          |
| Dry and siliceous ores                    | 36        | г 37      | 37               | г 31      | 30       |
| Base metal ores                           | 64        | r 63      | 63               | т 69      | 70       |
| Refinery production 2thousand troy ounces | 43.769    | 49,451    | 37,242           | 38,366    | 36,494   |
| Exports 3do                               | 88,909    |           |                  | 29,657    | 11,215   |
| Imports, general 3do                      | 71,876    |           | 57,962           | 65,406    | 130,681  |
| Stocks Dec. 31:                           |           |           | •                | -         | •        |
| Treasury 4million troy ounces             | 104       | 25        | 48               | 46        | 45       |
| Industry 5thousand troy ounces            | 198,790   | 210.150   | 185,335          | r 152,255 | 130,111  |
| Consumption:                              | ,         | ,         | ,                | •         | -        |
| Industry and the artsdo                   | 141.544   | 128,404   | 129,146          | 151.063   | 195,941  |
| Coinagedo                                 |           | 709       |                  |           | 920      |
| Price 6per troy ounce_                    |           | \$1.771 — |                  |           | \$2.558  |
| World:                                    | 42        | <b>+</b>  | +                | •         | •        |
| Productionthousand troy ounces            | 295,718   | 300.991   | r 294,713        | 294,159   | 305,916  |
| Consumption: 7                            | 200,120   | 000,002   |                  | ,         | ,        |
| Industry and the artsdo                   | r 350 600 | r 338,900 | r 351.400        | r 391.300 | 463,000  |
| Coinagedo                                 | 40,000    |           |                  |           | 20,000   |

r Revised.

<sup>&</sup>lt;sup>1</sup> Physical scientist, Division of Nonferrous Metals-Mineral Supply.

<sup>&</sup>lt;sup>1</sup> Includes tonnages from which silver is heap leached and vat leached.

From domestic ores.

Excludes coinage.

Excludes silver in silver dollars.

Includes silver in COMEX warehouses and silver registered in Chicago Board of Trade.

Average New York price—Source: Handy & Harman.

Free world only—Source: Handy & Harman.

During the year, the price of silver fluctuated widely and price gains were extensive. A low of 196.2 cents per troy ounce was established on January 24; a high of 328.0 cents per ounce was established on December 27, a difference of 131.8 cents per ounce between the two extremes. As industrial consumption was greater than in any other single year, and this fact, together with the reduction of industry stocks, most probably was one cause for the wide price fluctuations. Another reason for the large price rise during the year was the increasing speculative interest and public desire to own silver and other precious metals.

Net imports of silver rose sharply from 35.7 million ounces in 1972 to 119.5 million ounces in 1973. Most of the imports were in the form of refined bullion, a large percentage of which came from Mexico, Canada, Peru, and the United Kingdom.

During 1973, the Government sold, through the General Services Administration (GSA), 2.0 million ounces of fine silver that had been recovered through reclamation activities of the Department of Defense. The Government also released its stock of uncirculated Carson City silver dollars during 1973.

Stocks (including Chicago and New York exchanges) declined to 130.1 million

ounces, compared with 152.3 million ounces (revised) at the end of 1972.

Legislation and Government Programs.— Legislation was enacted in October 1973 authorizing the issuance, beginning July 4, 1975, of up to 45 million silver-clad coins honoring the bicentennial of United States independence. The coins will be 40% silver by weight in a three-layer composite of which the outer cladding will be 800 parts silver with 200 parts copper, bonded to a core of approximately 215 parts silver and 785 parts copper. The coin will consist of the dollar, half-dollar, and quarter.

On April 12, 1973, the Office of Emergency Preparedness announced a revised stockpile objective of 21.7 million ounces of silver, 117.8 million ounces less than the inventory and previous objective. Although the excess silver became available for disposal, it could not be sold without congressional approval, and the total amount remained in the stockpile at year-end.

Silver remained eligible for exploration assistance up to 75% of approved costs under a program conducted by the Office of Minerals Exploration (OME) in the U.S. Geological Survey. A few contracts were active in 1973.

# **DOMESTIC PRODUCTION**

Domestic mine production of silver was 37.8 million ounces, about 2% higher than in 1972. A 4-month strike at the Sunshine Mining Co. in Idaho limited the rise in production. Base-metal ores provided 70% of the total silver output, silver ores provided 28% and the remainder came from gold and gold-silver production.

Idaho's silver output in 1973 declined 4% from 1972 and was 36% of the U.S. production. The combined production of Idaho, Arizona, Montana, Colorado, and Utah was 87% of domestic production.

The 25 leading silver producers contributed 84% of the total output. Four of the producers mined silver ores alone while the rest were base-metal producers. Eight mines produced over 1 million ounces of silver each, their combined output equalling 55% of the total domestic production. Domestic mine output provided 19% of the total silver consumption by industry and the arts.

In 1973, a 4-month strike reduced materially the Sunshine Mining Co. production. This mine has been the country's leading silver producer for several years. Hecla Mining Co. produced 3.9 million ounces, 14% less than 1972 production. Contributing to Hecla's lower production was the December 1972 closing of the Mayflower mine, operated under lease in Utah. The average selling price for Hecla's silver in 1973 was 255.8 cents per ounce, up from the 168.5 cents per ounce in 1972. Hecla's Lucky Friday mine produced 176,859 tons of ore assaying 15.49 ounces of silver per ton, 11.14% lead, and 1.22% zinc, compared with 192,020 (revised) tons of ore assaying 14.62 ounces of silver per ton, 10.43% lead, and 1.32% zinc produced in 1972. Ore reserves at yearend amounted to 510,000 tons, compared with 584,000 tons at the beginning of 1973. Sunshine Mining Co. is the operator of the Sunshine unit area, which produces from properties owned SILVER 1125

by Hecla Mining Co., Sunshine Mining Co., and Silver Dollar Mining Co. Hecla's 33.25% share of the unit area production was 38,769 tons of ore assaying 25.30 ounces of silver per ton, compared with 33,738 tons of ore assaying 27.32 ounces of silver in 1972. Hecla's share of unit area ore reserves at yearend was 267,000 tons, compared with 258,000 (revised) tons at the beginning of the year.

In addition to the Sunshine mine, Hecla owns a 30% interest in production from the Star-Morning mine. Hecla's share of the 1973 production was 79,734 tons assaying 2.79 ounces of silver per ton, 5.18% lead, and 6.68% zinc, compared with 79,079 tons assaying 2.87 ounces of silver per ton, 5.33% lead, and 7.36% zinc in 1972.

The Bunker Hill Co. produced about 2.6 million ounces of silver in 1973, down from 3.8 million ounces produced in 1972. At the Cresent mine, production of silver was down to 595,000 ounces, which reflected declining ore grades in the lower mine levels. Production in 1972 was 1.53 million ounces. Mine development work underway in the Crescent mine in 1974 was expected to determine future production from this mine.

The Anaconda Company reported silver production of 4.26 million ounces during 1973, up from 4.0 million ounces produced in 1972. The company also reported a partnership in Park City Ventures, owned 60% by Anaconda and 40% by the American Smelting and Refining Co. (ASARCO), which will operate a reactivated lead-silverzinc mine at Park City, Utah, under lease from the United Park City Mines Co. New reserves were developed, and production was expected to begin in 1975 at an estimated annual rate of 1.2 million ounces

of silver and substantial quantities of lead and zinc. A second partnership, on a 50-50 basis, is with Anamax Mining Co. in the operation of the Twin Buttes copper mine in Arizona.

ASARCO operated the Galena mine in the Coeur d'Alene district in Idaho under a lease arrangement from the Callahan Mining Corp. Production from this mine in 1973 was 4.2 million ounces of silver, about the same as 1972. ASARCO also announced an expansion program which included the construction of a new electrolytic copper refinery near Amarillo, Tex. The unit, which was to replace an old refinery at Baltimore, Md., was planned for completion in 1975. The byproducts plant at Amarillo will be capable of producing 60 million ounces of refined silver per year.

Kennecott Copper Corp. reported silver production of 4.2 million ounces of silver in 1973 from the processing of 66.5 million tons of copper ore. This compared with 4.3 million ounces of silver from 58.5 million tons of ore mined in 1972. The average price received for the year was \$2.56 per ounce in 1973 compared with \$1.68 per ounce in 1972.

Day Mines, Inc., of Wallace, Idaho, operates several mines in Idaho and Washington, and has interests in others. During 1973, silver production from all Day Mines sources amounted to 1.3 million ounces, about an 18% increase over that of 1972.

Smelter and refinery reports show that 34.6 million ounces of silver were generated from old scrap and 41.3 million ounces from new scrap in 1973. These were combined with output from foreign and domestic concentrates and ores for a total refinery production of 151.3 million ounces in 1973, about 8% more than in 1972.

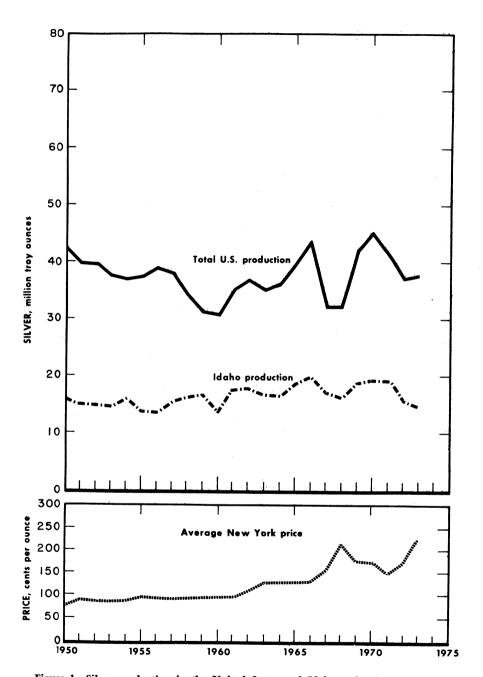



Figure 1.-Silver production in the United States and Idaho and price per ounce.

#### CONSUMPTION AND USES

Silver consumption in industry and the arts, as reported to the Bureau of Mines by manufacturers and consumers, increased 30% over the quantity consumed in 1972. There were significant percentage increases in use in catalysts (75%), miscellaneous (49%), sterling ware (48%), and brazing alloys and solders (45%). Substantial increases were used in photography (36%) and contacts and conductors (10%). Use in commemorative medals and other collector items was estimated at 21.9 million ounces in 1973 compared with 11.4 million ounces in 1972. Excluding coinage from the totals, the following four categories of use consumed more than 77% of the total silver: photography, 27%; contracts and conductors, 21%; sterling ware, 20%; and brazing alloys and solders, 9%. Consumption in jewelry showed a 19% increase. Sharply expanding uses were shown in dental and medical supplies and in mirrors. Silver used in domestic coinage declined to 0.9 million ounces in 1973 compared with 2.3 million ounces used in 1972.

Silver consumed in commemorative medals, embossed bars, and small ingots rose sharply during 1973, and amounted to 11% of total silver consumption. The 21.9 million ounces used contributed to the increases recorded in the sterling ware and miscellaneous categories shown in table 9.

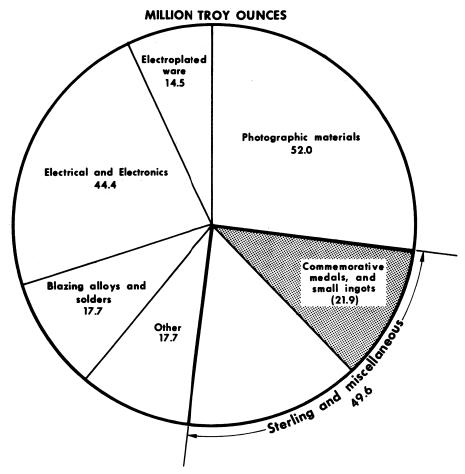



Figure 2.-Silver consumption in the United States, 1973.

#### **STOCKS**

The Treasury bullion stock outflow in 1973 totaled 0.7 million ounces, all of which was consumed in U.S. coinage for the continued production of the Eisenhower 40% silver dollar.

Total yearend visible stocks of silver were estimated at 181.3 million ounces, which consisted of industry stocks, 38.4 million

ounces; Defense Department stocks, 6.1 million ounces; Treasury bullion, 45.1 million ounces; COMEX, 64.3 million ounces; and Chicago Board of Trade stocks, 27.4 million ounces. Total yearend stocks were 25.8 million ounces less, or 12%, than at the end of 1972.

#### **PRICES**

New York prices for silver in 1973, as quoted daily by Handy & Harman, ranged from a low of 196.50 cents per ounce on January 24, 1973, to a high of 328.00 cents per ounce on December 27, 1973. This upward trend extended the advance that began in 1971. Problems of supply and strong industrial demand contributed to the advance. Worldwide inflation and fluctuating international currency values increased the speculative demand for silver. The average price for silver during 1973 was 255.8 cents per ounce in New York.

Prices for spot delivery on the London Bullion Market ranged from a low of 195.5 cents per ounce (U.S. equivalent) on January 23, 1973, to a high of 325.6 cents per ounce on December 31, 1973, and averaged 254.1 cents for the year.

Prices also advanced sharply on the futures markets with increased trading activity. The trading volume on the COMEX increased to 12.4 billion ounces, up from 7.9 billion ounces traded in 1972. A monthly record trading of 1.35 billion ounces took place in December. Silver futures trading was also active on the Chicago Board of Trade, where 8.2 billion ounces were traded in 1973 compared with 3.8 billion ounces in 1972.

### **FOREIGN TRADE**

Silver exports declined sharply in 1973 to 11.2 million ounces, less than half of the total exported in 1972. About 23% went to the Netherlands, 22% to Canada, 17% to West Germany, and 9% each to France and Belgium-Luxembourg. Significant quantities also went to Brazil, the United Kingdom, and Mexico. Exports of waste, scrap, and sweepings went mainly to West Germany, Belgium-Luxembourg, and the United Kingdom; most bullion

went to the Netherlands, Canada, France, and West Germany.

Silver imports increased sharply in 1973 to 130.7 million ounces compared with 65.4 million ounces in 1972. About 62% of the imported silver was in refined bullion. The main sources of imports were Mexico (43%), Canada (28%), the United Kingdom (10%), and Peru (10%). Net imports were 119.5 million ounces in 1973 compared with 35.7 million ounces in 1972.

SILVER 1129

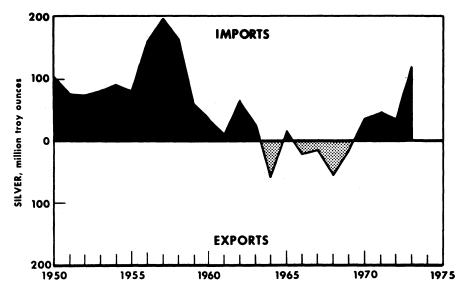



Figure 3.-Net exports or imports of silver, 1950-73.

#### WORLD REVIEW

World output of silver increased 11.7 million ounces to a total of 305.9 million ounces, an increase of 4% over that produced in 1972. The major increase in 1973 was the Canadian gain of 4.1 million ounces. Mexican and Peruvian silver output was also higher than in 1972, and U.S. production rose about 0.6 million ounces. Australian production increased about 0.4 million ounces in 1973. Western Hemisphere output of silver accounted for about 60% of the world production.

World consumption in arts and industry rose sharply to an estimated 463 million ounces, up about 72 million ounces over that consumed in 1972. The United States had the largest increase in consumption, from 151.1 million ounces in 1972 to 195.9 million ounces in 1973. Coinage requirements for the world declined from 36.5 million ounces in 1972 (revised) to 20.0 million ounces in 1973. Total non-Communist silver consumption exceeded production by 77.1 million ounces. This production and consumption gap was met by secondary recovery and reduction of stocks.

Australia.—Silver output of 23.2 million ounces was 2% more than that produced in 1972. The leading Australian silver producer was Mount Isa Mines, Ltd. (49%

owned by ASARCO), which had a 1973 output of 8.8 million ounces, which was slightly below 1972 production. Mount Isa is also a major producer of lead, zinc, and copper.

Canada.—Canada's primary production of silver in 1973 was the highest on record. Reported output of 48.2 million ounces<sup>2</sup> was 3.4 million ounces greater than in 1972. Canada continued as the leading world producer of silver. The increase was mainly attributable to the greater output at several base-metal mines that produce silver as a byproduct, particularly at Mattabi Mines Ltd., which completed its first full year of operation at its zinc-lead-coppersilver property in the Sturgeon Lake area of Northwestern Ontario. Production from the silver-cobalt ores mined in the Cobalt-Gowganda area of northern Ontario was little changed from that of 1972.

Ore production by Texasgulf, Inc. wholly owned subsidiary, Ecstall Mining Ltd., at the Kidd Creek mine in Timmins, Ontario, continued at the rate of 3.6 million tons per year. Work began on plans to expand operations to 5.0 million tons annually. The greatest silver producer in Canada, the

<sup>&</sup>lt;sup>2</sup> George, J. G. Silver. Can. Min. J., February 1974, p. 103.

Kidd Creek mine, produced about 22% of Canada's total 1973 output. Mine output of 10.7 million ounces in 1973 was about 16% below 1972 production. From the start of operations in 1966 and through 1973, the Kidd Creek mine produced a total of 24.9 million tons of ore averaging 1.53% copper, 0.39% lead, 3.73% zinc, and 4.26 ounces of silver per ton; remaining ore reserves above the 2,800-foot level were reported about 95.0 million tons.3

Cominco Ltd., the largest silver producer in British Columbia, derived its output from the lead-zinc-silver ore of its Sullivan mine at Kimberly and from purchased ores and concentrates. Cominco was also one of Canada's leading producers of refined silver and, in 1973 produced 9.6 million ounces at its refinery in Trail, compared with 7.0 million ounces in 1972.

Another mine, in an earlier period (1953–67) was the largest silver producer in Canada. It is owned by United Keno Hill Mines, Ltd. and located in the Yukon Territory. United Keno Hill produced 3.1 million ounces of silver compared with 2.5 million ounces in 1972, with 72% of the production coming from the Husky and No Cash properties. During the year, the Calumet mine, previously a good producer of silver, was closed and the site vacated.

Silver production in the Northwest Territories was significantly higher than in 1972 because of greater output by Echo Bay Mines Ltd. and Terra Mining and Exploration Ltd. Echo Bay, a subsidiary of International Utilities Corp., began operations in 1964. Since then, and operating a 140-ton-per-day mill, it has produced a total of 16 million ounces of silver and a minor amount of copper. It was reported that some of the treated ore had yield values of up to 70 ounces of silver per ton.

Exploration work continued in 1973 by Dynasty Exploration Ltd., and its associate, Atlas Exploration Ltd., on the Plata silver-lead property in the Hess Mountains of the Yukon Territory. In several exposed veins, it was reported that the ore assayed a high percentage of silver and lead.

Dominican Republic.—Rosario Resources Corp. announced it was increasing the production capacity of the gold-silver processing plant, under construction at its Pueblo Viejo mine in the Dominican Republic, from 6,000 to 8,000 tons per day. During 1973, additional exploration increased the estimated oxide ore reserves from 20 mil-

lion to 30 million tons. Annual production at Pueblo Viejo, an open pit mine, was projected to be about 1.5 million ounces of silver and 350,000 ounces of gold. Plant completion was scheduled for the latter part of 1974. The operation is owned by Rosario Resources (40%), J. R. Simplot and Co. (40%), with a 20% equity participation by the Central Bank of the Dominican Republic.

Honduras.—Silver production from the El Mochito mine of Rosario Resources Corp. (formerly New York and Honduras Rosario Mining Co.) was 3.2 million ounces, about the same as in 1972. The mine produced 311,682 tons of ore and the mill processed 311,576 tons of ore averaging 11.9 ounces of silver per ton, with additional amounts of gold, lead, and zinc. Ore reserves in the main area amounted to 1.8 million tons.

Japan.—Mine production of silver in Japan was 8.5 million ounces, a decrease of 15% from 1972 production. Japanese silver consumption rose from 54.4 million ounces in 1972 to 67.5 million ounces in 1973. No silver was used in coinage. With Mexico, Peru, and Australia as its major suppliers in 1973, Japan imported 32.0 million ounces of silver and exported 100,000 ounces. Japanese Government stocks of silver were reported at 16.0 million ounces, unchanged from 1972.4

Mexico.—Silver production in Mexico rose to 38.8 million ounces, 3% higher than in 1972. During the year it was announced that silver output would be increased 10 million ounces in the next 2 years by development of deposits previously disregarded because of low world prices.

Tormex Mining Developers, in which Ducanex Resources and Pure Silver Mines Ltd. (Canadian firms) hold just over 26% interest each, reported that construction was completed on a 500-ton-per-day concentrator at the Encantada mine. The mine is owned by Tormex (40%), and its Mexican partner, Industrias Peñoles, S.A. (60%). It was expected that operators would ship 6,000 tons of concentrate, grading about 40% lead, and 30 ounces per ton of silver, to the smelter each month. This silver-lead property is located in the northern part of the country, 200 miles southeast of Chihuahua.

<sup>&</sup>lt;sup>3</sup> Texasgulf, Inc., 1973 Annual Report. P. 6. <sup>4</sup> Handy & Harman. The Silver Market, 1973. 58th Annual Review. 1973, 16 pp.

SILVER 1131

The surface and underground development work at the Guanajuato, Mexico, silver-gold properties of Pure Silver Mines Ltd. (Canada) and its Mexican partners, Cia. Mineral Fresnillo S.A. and Industrias Peñoles S.A., continued in 1973. An independent feasibility report on the proposed integrated mining and milling operation was expected to be completed by the end of October 1973. The proposed operation, at a rate of 2,000 tons per day, is based on indicated silver-gold ore reserves of approximately 4.4 million short tons at the Mother Lode, Peregrina, and Cebada mines. At the Las Torres mine, the main production shaft was completed to the 2,130-foot level, with most lateral work continuing on the 1,600-foot level. Good values in silver and gold have been reported. At the Peregrina mine, a new 12foot by 14-foot shaft was scheduled for completion to 1,270 feet at the end of August 1973. Deepening of the Cebada shaft to 1,270 feet was completed.

The American Smelting and Refining Co. subsidiary, ASARCO Mexicana, S.A. (49% owned by ASARCO) produced 14.8 million ounces of silver during 1973, a decrease of 5% from 1972 production. Operations at company mines were normal. Ore reserves were maintained except at Parral, where mining operations were being phased out,

with plans to terminate in 1974 owing to exhaustion of ore reserves.

In December 1973 ASARCO reached agreement in principle with the main Mexican stockholders of ASARCO Mexicana to sell an additional 15% of the stock of ASARCO Mexicana to Mexican investors, thus reducing its holdings to 34% of the outstanding stock.<sup>5</sup>

Peru.—Peru was the world's second largest producer of silver in 1973. Output increased to 42.0 million ounces, compared with 40.2 million ounces in 1972. Silver production was primarily a byproduct of base-metal mining.

The largest silver producer and refining company in Peru was the Cerro Corp. Its totally owned subsidiary, Cerro de Pasco Corp., operated six metal mines. The total silver refined in 1973 at Cerro's reduction works at La Oroya from its own and purchased ores was 19.9 million ounces, 47% of the total silver output of Peru. This compared with 23.0 million ounces produced in 1972.

On January 1, 1974, the Peruvian Government expropriated Cerro Corp. holdings in Cerro de Pasco. It was reported that the Peruvian Government would provide compensation for the company's mining, smelting, and refining properties.

# **TECHNOLOGY**

In 1973 the Bureau of Mines reported on its investigation of treating ores in which silver occurs as a sulfide, in jarosite, in iron oxide, and in manganese carbonate-oxide associations.6 Silver ores from the Candelaria District, Nevada, and Round Mountain District, Colorado, were the subjects of study. Leaching these ores with a sulfurous acid-sodium chloride system increased silver extraction up to 61% over that obtained by conventional cyanidation techniques. The Bureau published a report that described two processes for recovering silver and other metals from the magnetic fraction of waste generated by the primary smelting of zinc in horizontal retort distillation furnaces.7

The Calico silver-barite deposits near Barstow, Calif. are a potentially important silver and barite resource. Exploraiton performed in the past by two major mining companies has outlined large tonnages of

ore containing 2 to 3 ounces of silver per ton and 7% to 15% barite. Laboratory beneficiation work was done by the Bureau of Mines on four samples to develop methods for recovering the silver and/or barite. Cyanidation recovered from 47% to 60% of the silver, and from 75% to 90% of the barite was recovered from either the natural ore or from cyanidation residues. Salt roasting followed by cyanidation recovered a higher percentage of the silver but precluded recovery of the barite concentrate from the leach tails.<sup>8</sup>

<sup>&</sup>lt;sup>5</sup> American Smelting and Refining Company. 1973 Annual Report. P. 19.

Scheiner, B. J., D. L. Pool, J. J. Sjoberg, and R. E. Lindstrom. Extraction of Silver From Refractory Ores. BuMines RI 7736, 1973, 11 pp.

<sup>&</sup>lt;sup>7</sup> Powell, H. E. and L. W. Higley. Recovery of Zinc, Copper, Silver, and Iron From Zinc Smelter Residue. BuMines RI 7754, 1973, 15 pp.

<sup>\*</sup> Agey, W. W., J. V. Batty, H. W. Wilson, and W. J. Wilson. Beneficiation of Calico District, California, Silver-Barite Ores. BuMines RI 7730, 1973, 15 pp.

At the Bureau of Mines Intermountain Field Operation center, a study was conducted that gave an economic analysis of copper system byproducts and discussed the identification and classification of byproduct metals, and their supply. The report gave the sources of supply of individual byproduct metals to indicate importance to total supply. The study also included information on the reservesresource base supporting byproduct output, reserve estimates, and the demand aspects of silver.9

The Bureau of Mines continued research on a project entitled, "Extraction of Silver and Other Metals From Refractory Ores, and Mine Wastes." The objective was to develop new or improved extraction processes to recover silver and associated metals from refractory and marginal ores and deposits too small to support amortization of a conventional cyanide plant. Procedures to develop a low-cost pit cyanidation, carbon-in-pulp technique for recovering silver from old mill tailings appeared promising.

Two companies in Japan jointly developed a commercial process for manufacturing the fine silver powder consisting of submicrometer-size particles. The technology involved placing a given metal in a

vacuum oven and heating the metal above its melting point in an inert gas atmosphere. The resulting vapor was condensed to obtain metal powder between 0.01 and 0.02 micrometer in diameter. The process was applicable to silver, copper, aluminum, and various other metals and alloys. Fine metal powders are used in electronics (silver pastes), powder metallurgy, and catalysts.10

Develop Process For Mass Producing Fine Metal Powder. V. 80, No. 136, Aug. 10, 1973, p. 8.

Table 2.-Mine production of recoverable silver in the United States, by month

(Thousand troy ounces)

| Month        | 1972                  | 1973   |  |
|--------------|-----------------------|--------|--|
| January      | 3,405                 | 3,232  |  |
| February     | 3.841                 | 3,215  |  |
| March        | 3,934                 | 3.138  |  |
| April        | 3,755                 | 2,838  |  |
| May          | 3,022                 | 3,331  |  |
| June<br>July | 2,948                 | 2,955  |  |
| A            | 2,517                 | 3,063  |  |
|              | 2,868                 | 3,296  |  |
| September    | 2,746                 | 3,192  |  |
| November     | 2,902                 | 3,197  |  |
| December     | $\frac{2,613}{2,682}$ | 3,097  |  |
| Total        |                       | 3,273  |  |
| 10tal        | 37,233                | 37,827 |  |

Table 3.-Twenty-five leading silver-producing mines in the United States in 1973, in order of output

| Rai | nk Mine           | County and State | Operator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Source of silve  |
|-----|-------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1   | Galena            | Shoshone, Idaho  | American Smelting and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
| 2   | Berkelev Pit.     | Silver Down Mand | Reining Co.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |
| 3   | Sunshine          | Shockers Idek    | Refining Co. The Anaconda Company Sunshine Mining Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Copper ore.      |
| 4   | Lucky Friday      | do               | building to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Silver ore.      |
| 5   | Utah Copper       | Salt Lake That   | necia Mining Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lead ore.        |
| 6   | Bulldog Mountain  | Minoral Cal-     | Kennecott Copper Corp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Copper, gold ore |
| 7   | Bunker Hill       | Shochono Idoha   | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | Suver ore.       |
| 8   | Buick             | Iron Mo          | The Bunker Hill Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lead-zinc ore.   |
| 9   | Pima              | Pima Ania        | Amax Lead Co. of Missouri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lead ore.        |
| .0  | Twin Buttes       | do               | i ma wining Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Copper ore.      |
| .1  | White Pine        | Ontonagon Mich   | White Pine Copper Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Do.              |
| 2   | Burgin            | Iltah Iltah      | White Pine Copper Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Do.              |
| 3   | Sierrita          | Pima Ariz        | White Pine Copper Co Kennecott Copper Co Duval Sierrita Corp The Punker Hill Communication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lead-zinc ore.   |
| 4   | Star Unit         | Shoshone Idaho   | The Partie Corp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Copper ore.      |
|     |                   |                  | The Dunker Hill Co. and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lead-zinc ore.   |
| 5   | Butte Hill Copper | Silver Bow Mont  | Hecla Mining Co. The Anaconda Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                |
| _   | Mines.            | Dow, Mont        | The Anaconda Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Copper ore.      |
| 6   | Tyrone            | Grant, N. Mey    | Phelps Dodge Corp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
| 7   |                   | Cochise, Ariz    | do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Do.              |
|     | Lavender Pit      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Do.              |
| 8   | San Manuel        | Pinal, Ariz      | Magma Copper Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                |
| 9   | Morenci           | Greenlee, Ariz   | Phelps Dodge Corp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Do.              |
| 0   | Mission Unit      | Pima, Ariz       | American Smelting and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Do.              |
|     | ~                 |                  | Refining Co.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Do.              |
| 1   | Crescent          | Shoshone, Idaho  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G.11             |
| Z   | Leadville         | Lake, Colo       | American Smelting and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Silver ore.      |
|     | T                 |                  | Refining Co.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lead-zinc ore.   |
| 3   | Idarado           | Ouray and San    | Refining Co. Idarado Mining Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C                |
| 4   | Minaral Da I      | Miguel, Colo.    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Copper-lead-zinc |
| *   | Milleral Park     | Moharro Anim     | Duval Corp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Copper           |
| 5 . | magma             | Pinal, Ariz      | Magma Copper Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Copper ore.      |

<sup>9</sup> Petrick, A., H. J. Bennett, E. Starch, and R. C. Weisner. The Economics of Byproduct Metals (In Two Parts), Part I, Copper System. BuMines IC 8569, 1973, pp. 39-48. 10 American Metal Market. Nippon Soda, Ulvac

SILVER 1133

Table 4.-Production of silver in the United States in 1973, by State, type of mine, and class of ore, yielding silver, in terms of recoverable metal

|                         | 701                     |                          |                             |                 | Loc        |                        |                |              |                               |
|-------------------------|-------------------------|--------------------------|-----------------------------|-----------------|------------|------------------------|----------------|--------------|-------------------------------|
|                         | Placer<br>(troy         | Gold ore                 |                             | Gold-silver ore |            | S                      | Silver ore     |              |                               |
| State                   | ounces<br>of silver)    | Short tons               | Troy<br>ounces<br>of silver | Shor            | rt tons    | Tro<br>ounc<br>of silv | es Short       | ton          | Troy<br>s ounces<br>of silver |
| Alaska                  | 300                     |                          |                             |                 |            |                        |                |              |                               |
| Arizona                 |                         | w                        | $\mathbf{w}$                | 1 11            | 2,763      | 1 34,1                 | 84             | W            | w                             |
| California              | 237                     | $^{2}$ 3,412             | <sup>2</sup> 13,125         |                 | w          |                        | w              |              |                               |
| Colorado                | 177                     | <sup>2</sup> 13,677      | <sup>2</sup> 21,661         |                 | w          |                        | W              | w            | W                             |
| Idaho                   |                         |                          |                             |                 | 226        | 7                      | 43 436,        | 328          | 7,936,810                     |
| Michigan                |                         |                          |                             |                 |            |                        |                |              |                               |
| Missouri                |                         |                          |                             |                 |            |                        |                |              |                               |
| Montana                 |                         | 948                      | 830                         | 1               | 6,974      | 75,7                   | 30 23,         | 246          | 182,012                       |
| Nevada                  |                         | w                        | w                           |                 | w          |                        | W 2,           | 711          | 42,014                        |
| New Mexico              |                         | w                        | w                           |                 |            |                        |                | w            | W                             |
| New York                |                         |                          |                             |                 |            |                        |                |              |                               |
| Oregon                  |                         | 195                      | 127                         |                 | 648        | 1,1                    | .55            |              |                               |
| South Dakota            |                         | 1,573,763                | 71,939                      |                 |            |                        |                |              |                               |
| Tennessee               |                         |                          |                             |                 |            |                        |                |              |                               |
| Utah                    |                         | w                        | $\bar{\mathbf{w}}$          |                 | w          |                        | w              |              |                               |
| Other States 3          |                         | 61,541                   | 154,045                     |                 |            |                        |                | 39           | 24                            |
| Total                   | 714                     | 1,653,536                | 261,727                     | 13              | 0,611      | 111,8                  | 12 462,        | 324          | 8,160,860                     |
| Percent of              |                         |                          |                             |                 |            |                        |                |              |                               |
| total silver _          | (4)                     |                          | 1                           |                 |            | <b>(4)</b>             |                |              | 22                            |
|                         |                         |                          | Lod                         | e—Co            | ntinue     | d                      |                |              |                               |
| -                       | Copp                    | er ore                   |                             | Lea             | ad ore     |                        | Zi             | nc o         | ·e                            |
| _                       | Short tons              | Troy ounces<br>of silver | Short                       | tons            | Troy of si | ounces<br>lver         | Short tons     |              | oy ounces<br>of silver        |
| Alaska                  |                         | - 400 05                 | :                           | 12              |            | 528                    | _              | -            |                               |
| Arizona                 | 163,879,867             | 7,130,066                | )                           |                 |            | 777                    | -              | -            |                               |
| California              |                         |                          | :                           | W               |            | W                      | -              | -            | w                             |
| Colorado                | w                       | W                        |                             | W               |            | w                      | V              |              | W                             |
| Idaho                   | W                       | W                        |                             | W               |            | $\mathbf{w}$           | v              | V            | w                             |
| Michigan                | 8,884,136               | 850,273                  |                             | 45.4            |            | <b></b>                | -              | -            |                               |
| Missouri                |                         |                          | 7,585                       |                 | 2,05       | 7,732                  | -              | -            |                               |
| Montana                 | 18,976,738              | 4,025,210                |                             | 195             |            | 638                    | -              | -            |                               |
| Nevada                  | 5 11,653,738            | 5 581,141                |                             |                 |            |                        | -              | <del>.</del> | w                             |
| New Mexico              | <sup>1</sup> 26,416,493 | 1 979,961                |                             |                 |            |                        | 200 40         |              |                               |
| New York                |                         |                          | -                           |                 |            |                        | 963,40         | 3            | 54,345                        |
| Oregon                  | ·                       |                          | -                           |                 |            |                        | -              | -            |                               |
| South Dakota            |                         |                          |                             |                 |            |                        | _              | -            |                               |
| Tennessee               | ==                      | ==                       | ;                           |                 |            |                        | _              | -            |                               |
| Utah                    | W                       | W 50 561                 |                             | 500             |            | 266                    | $297.0\bar{2}$ | ā            | 13,32                         |
| Other States 3          | 150,564                 | 20,561                   |                             |                 | 0.05       |                        | 1,260,42       |              | 67,670                        |
| Total                   | 229,961,536             | 13,587,212               | 7,586                       | ,331            | 2,05       | 9,164                  | 1,200,42       | 0            | 01,070                        |
| Percent of total silver |                         | 36                       | i                           |                 |            | 5                      |                |              | (4)                           |

See footnotes at end of table.

Table 4.-Production of silver in the United States in 1973, by State, type of mine, and class of ore, yielding silver, in terms of recoverable metal-Continued

| _              |                            |                                           | Lode—C     | ontinued                   |             |                          |  |
|----------------|----------------------------|-------------------------------------------|------------|----------------------------|-------------|--------------------------|--|
| State          | copper-2                   | d, lead-zinc,<br>zinc, and<br>d-zinc ores | Old tai    | lings, etc.                | . Total     |                          |  |
|                | Short tons                 | Troy ounces<br>of silver                  | Short tons | Troy ounces<br>of silver 6 | Short tons  | Troy ounces<br>of silver |  |
| Alaska         |                            |                                           |            |                            | 12          | 828                      |  |
| Arizona        | 93,284                     | 34,922                                    | 670        | 79                         | 164,086,584 |                          |  |
| California     | 7 3,422                    | 7 12,377                                  | 3          | 30,158                     | 6,837       | 55,897                   |  |
| Colorado       | 8 1,206,714                | 8 3,908,651                               | 7,068      | 11,293                     | 1,227,459   | 3,941,782                |  |
| Idaho          | 9 1,221,650                | 9 5,682,271                               |            |                            | 1,658,204   | 13,619,824               |  |
| Michigan       |                            |                                           |            |                            | 8,884,136   | 850,273                  |  |
| Missouri       |                            |                                           |            |                            | 7,585,624   |                          |  |
| Montana        | <b>32</b> 8                | 4,122                                     | 66,693     | 61,327                     | 19,085,122  | 4.349.869                |  |
| Nevada         |                            |                                           | 32         | 505                        | 11,656,481  | 623,660                  |  |
| New Mexico     | <sup>10</sup> 129,909      | <sup>10</sup> 131,308                     |            |                            | 26,546,402  | 1,111,269                |  |
| New York       |                            |                                           |            |                            | 963,403     | 54.345                   |  |
| Oregon         |                            |                                           |            |                            | 843         | 1,282                    |  |
| South Dakota   |                            |                                           |            |                            | 1,573,763   | 71,939                   |  |
| Tennessee      | 1,322,930                  | 73,104                                    |            |                            | 1,322,930   | 73,104                   |  |
| Utah           | <sup>5</sup> 11 38,597,788 | <sup>5</sup> 11 3,615,728                 |            | 3,310                      | 38,597,788  | 3,619,038                |  |
| Other States 3 | 212,289                    | 6,662                                     |            | 2,167                      | 721,953     | 197,050                  |  |
| Total          | 42,788,314                 | 13,469,145                                | 74,466     | 108,839                    | 283,917,541 | 37,827,143               |  |
| Percent of     |                            |                                           |            |                            | ·           |                          |  |
| total silver _ |                            | 36                                        |            | (4)                        |             | 100                      |  |

W Withheld to avoid disclosing individual company confidential data; included with other ore classes

<sup>1</sup> Includes gold ore and silver ore.

<sup>2</sup> Includes gold-silver ore. <sup>3</sup> Includes Illinois, Maine, Oklahoma, and Washington.

3 Includes Illinois, Maine, Oklahoma, and Washington.

4 Less than ½ unit.
5 Includes gold ore, and gold-silver ores.
6 Includes byproduct silver recovered from tungsten ore in California, fluorspar ore in Colorado and Illinois, and uranium ore in Utah.
7 Includes lead ore.
8 Includes silver ore, copper ore, lead ore, and zinc ore.
9 Includes copper ore, lead ore, and zinc ore.
10 Includes zinc ore.
11 Includes copper ore.

Table 5.-Mine production of recoverable silver in the United States, by State (Troy ounces)

|              | ,          | - ,        |            |            |                     |
|--------------|------------|------------|------------|------------|---------------------|
| State        | 1969       | 1970       | 1971       | 1972       | 1973                |
| Alaska       | 2,030      | 2,189      | 868        | 288        | 828                 |
| Arizona      | 6,141,022  | 7,330,417  | 6,169,623  | 6,652,800  | 7,199,251           |
| California   | 491,927    | 451,150    | 443,761    | 175,467    | 55.897              |
| Colorado     | 2,598,563  | 2,933,363  | 3,389,748  | 3,663,832  | 3,941,782           |
| Idaho        | 18,929,697 | 19,114,829 | 19,139,575 | 14,250,725 | 13,619,824          |
| Maine        | (1)        | 63,227     | 41.193     | 16.251     | (1)                 |
| Michigan     | 1,009,022  | 891,579    | 670,052    | 785,100    | 850,273             |
| Missouri     | 1,442,090  | 1.816.978  | 1,660,879  | 1,971,530  | 2,057,732           |
| Montana      | 3,429,314  | 4.304.326  | 2,747,557  | 3,325,052  | 4,349,869           |
| Nevada       | 884.155    | 718,011    | 601,470    | 595,351    | 623,660             |
| New Mexico   | 465,591    | 781,952    | 782.441    | 1.016.880  | 1.111.269           |
| New York     | 31.755     | 23,830     | 17.928     | 25.070     | 54.345              |
| Oklahoma     | 1 319,718  | 1 325,887  | 1 362,646  | 1 269,262  | 1 197.050           |
| Oregon       | 4,749      | 3.594      | 3,790      | 2,252      | 1,282               |
| Pennsylvania | (1)        | (1)        | (1)        |            | •                   |
| South Dakota | 124.497    | 119,766    | 106,785    | 99.992     | $71.9\overline{39}$ |
| Tennessee    | 78.614     | 94,770     | 131,349    | 83,466     | 73,104              |
| Utah         | 5,953,567  | 6,029,737  | 5,294,477  | 4,299,604  | 3,619,038           |
| Total        | 41,906,311 | 45,005,605 | 41,564,142 | 37,232,922 | 37,827,143          |

<sup>&</sup>lt;sup>1</sup> Production of Maine (1969 and 1973), Oklahoma, Pennsylvania (1969-71), Washington (1969-73), Wyoming (1969), North Carolina (1971), and Illinois (1971-73), combined to avoid disclosing individual company confidential data.

1135 SILVER

Table 6.-Silver produced in the United States from ore, old tailings, etc., in 1973, by State and method of recovery, in terms of recoverable metal

|                |                                                  |                                     | Ore and old tailings to mills         |                                      |                           |                                   |                                                               |                |  |  |
|----------------|--------------------------------------------------|-------------------------------------|---------------------------------------|--------------------------------------|---------------------------|-----------------------------------|---------------------------------------------------------------|----------------|--|--|
|                | Total<br>ore, old<br>tailings,                   | Thou-                               | Recove<br>in bul                      |                                      | smel                      | entrates<br>ted and<br>able metal | Crude ore, old<br>tailings, etc.,<br>to smelters <sup>1</sup> |                |  |  |
| State          | etc.,<br>treated 1 2<br>(thousand<br>short tons) | sand<br>short<br>tons <sup>12</sup> | Amalga-<br>mation<br>(troy<br>ounces) | Cyani-<br>dation<br>(troy<br>ounces) | Concentrates (short tons) | Troy<br>ounces                    | Thou-<br>sand<br>short<br>tons                                | Troy<br>ounces |  |  |
| Alaska         | (3)                                              |                                     |                                       |                                      |                           |                                   | (3)                                                           | 528            |  |  |
| Arizona        | 181,426                                          | 181,033                             |                                       |                                      | 3,405,828                 | 7,067,199                         | 393                                                           | 132,052        |  |  |
| California     | 7                                                | 5                                   |                                       |                                      | 1,572                     |                                   | 2                                                             | 2,642          |  |  |
| Colorado       | 1,297                                            | 1,290                               | 347,109                               |                                      | 171,430                   |                                   | 7                                                             | 27,641         |  |  |
| Idaho          | 1,658                                            | 1.656                               |                                       |                                      | 184,858                   | 13,610,898                        | 2                                                             | 8,926          |  |  |
| Michigan       | 8,884                                            | 8,884                               |                                       |                                      | 246,162                   | 850,273                           |                                                               |                |  |  |
| Missouri       | 7,586                                            | 7,586                               |                                       |                                      | 861,166                   |                                   | (3)                                                           |                |  |  |
| Montana        | 19,085                                           | 18,976                              |                                       |                                      | 405,219                   | 4,029,135                         | 109                                                           | 320,734        |  |  |
| Nevada         | 4 5 24,584                                       | 4 5 24,502                          |                                       | 152,895                              | 372,163                   | 463,634                           | 8 <b>2</b>                                                    | 7,131          |  |  |
| New Mexico     | 26,546                                           | 26,489                              |                                       |                                      | 882,538                   | 1,105,869                         | 57                                                            | 5,400          |  |  |
| New York       | 1,094                                            | 1,094                               |                                       |                                      | 158,042                   | 54,345                            |                                                               |                |  |  |
| Oregon         | 1                                                | _,                                  |                                       |                                      |                           |                                   | <u>-</u>                                                      | 1,282          |  |  |
| South Dakota   | $1,57\overline{4}$                               | 1.574                               |                                       | 71,939                               |                           |                                   |                                                               |                |  |  |
| Tennessee      | 3,458                                            | 3,458                               |                                       |                                      | 170,535                   |                                   |                                                               |                |  |  |
| Utah           | 39,153                                           | 38,993                              |                                       |                                      | 868,754                   | 3,288,391                         | 160                                                           | 330,647        |  |  |
| Other States 6 | 5 721                                            | 5 721                               |                                       | 36,012                               | 74,797                    | 160,913                           | (3)                                                           | 125            |  |  |
| Total          | 317,074                                          | 316,261                             | 347,109                               | 260,846                              | 7,803,064                 | 36,381,366                        | 813                                                           | 837,108        |  |  |

Table 7.-Silver produced at amalgamation and cyanidation mills in the United States and percentage of silver recoverable from all sources

|                                      | Year | Bullion an<br>tates rec<br>(troy o          | overable                                         | Sil                              | all                              | overable<br>sources<br>ercent)            | from                             |
|--------------------------------------|------|---------------------------------------------|--------------------------------------------------|----------------------------------|----------------------------------|-------------------------------------------|----------------------------------|
|                                      |      | Amalga-<br>mation                           | Cyani-<br>dation                                 | Amalga-<br>mation                |                                  |                                           | Placers                          |
| 1969<br>1970<br>1971<br>1972<br>1973 |      | 83,775<br>95,287<br>993<br>2,490<br>347,109 | 49,312<br>24,892<br>106,785<br>99,992<br>260,846 | 0.20<br>.21<br>(²)<br>.01<br>.92 | 0.11<br>.05<br>.26<br>.27<br>.69 | 99.68<br>99.73<br>99.74<br>99.72<br>98.39 | 0.01<br>.01<br>(2)<br>(2)<br>(2) |

Crude ores and concentrates.
 Less than ½ unit.

<sup>&</sup>lt;sup>1</sup> Includes some nonsilver-bearing ore not separable. <sup>2</sup> Excludes tonnages of fluorspar, tungsten, and uranium ores from which silver was recovered

Excludes tonnages of nuorspar, tungsten, and drama as a byproduct.
 Less than ½ unit.
 Includes tonnages from which silver is heap leached.
 Includes tonnages from which silver is vat leached.
 Includes Illinois, Maine, Oklahoma, and Washington.

Table 8.-Silver produced at refineries in the United States, by source

(Thousand troy ounces)

| Source                 | 1972                 | 1973    |
|------------------------|----------------------|---------|
| Concentrates and ores: |                      |         |
| Domestic               | 38,366               | 36,494  |
| Foreign                | 39,151               | 38,877  |
| Total                  | 77,517               | 75,371  |
| Old scrap              | 31,090               | 34,556  |
| New scrap              | 31,815               | 41,348  |
| Total production       | <sup>1</sup> 140,423 | 151,275 |

<sup>&</sup>lt;sup>1</sup> Data does not add to total shown because of independent rounding.

Table 9.-U.S. consumption of silver, by end use

(Thousand troy ounces)

| Final Use                   | 1972    | 1973    |
|-----------------------------|---------|---------|
| Electroplated ware          | 12,716  | 14,542  |
| Sterling ware 1             | 27,163  | 40,100  |
| Jewelry                     | 4.870   | 5,778   |
| Photographic materials      | 38.251  | 51,979  |
| Dental and medical supplies | 1,991   | 3,022   |
| Mirrors                     | 1.225   | 2,579   |
| Brazing alloys and solders  | 12,214  | 17,736  |
| Electrical and electronic   | 12,217  | 11,100  |
| products:                   |         |         |
| Batteries                   | 6,044   | 4.155   |
| Contacts and conductors     | 36.434  | 40,209  |
| Bearings                    | 344     | 375     |
| Catalysts                   | 3.430   | 5.988   |
| Miscellaneous 1 2           | 6,381   |         |
|                             | 0,001   | 9,478   |
| Total net industrial        |         |         |
| consumption                 | 151,063 | 195,941 |
| Coinage                     | 2,284   | 920     |
| Total consumption           | 153,347 | 196,861 |

<sup>&</sup>lt;sup>1</sup> Silver used in commemorative medals estimated at 11.4 million ounces in 1972 and 21.9 million ounces in 1978, distributed partly in sterling ware and partly in miscellaneous.

<sup>2</sup> Includes silver-bearing copper, silver-bearing lead anodes, ceramics, paints, etc.

Table 10.-Value of silver exported from and imported into the United States

(Thousand dollars)

|      | Year | Exports | Imports |
|------|------|---------|---------|
| 1971 |      | 19,798  | 82,225  |
| 1972 |      | 49,260  | 101,580 |
| 1973 |      | 27,638  | 330,456 |

Table 11.-U.S. exports of silver in 1973, by country (Thousand troy ounces and thousand dollars)

| Country            | Ore<br>concen |       | Waste<br>sweep |       | Refined<br>bullion |        |
|--------------------|---------------|-------|----------------|-------|--------------------|--------|
|                    | Quantity      | Value | Quantity       | Value | Quantity           | Value  |
| Argentina          |               |       | 1              | 3     |                    |        |
| Australia          |               |       | •              | ·     |                    |        |
| Belgium-Luxembourg | -5            | -5    | 1,026          | 2.383 | 4                  | 9      |
| Brazil             | -             | 3     | 126            |       | -00<br>1           |        |
|                    | 21            | 32    |                | 355   | 783                | 1,945  |
|                    | 21            | 32    | 48             | 79    | 2,386              | 6,105  |
|                    |               |       |                |       | 23                 | 67     |
| France             |               |       |                |       | 1,063              | 2.126  |
| Germany, West      | 53            | 139   | 1.087          | 2,848 | 806                | 1,772  |
| taly               |               |       | 149            | 347   |                    | 2,     |
| Japan              |               |       | - 6            | 14    | 201                | 545    |
| Mexico             |               |       | v              | 14    | 289                |        |
| Netherlands        |               |       |                |       |                    | 647    |
|                    |               |       | ==             | ==    | 2,590              | 6,975  |
|                    |               |       | 32             | 70    | 64                 | 129    |
| weden              | 11            | 22    | 32             | 70    |                    |        |
| Switzerland        |               |       | 5              | 10    |                    |        |
| United Kingdom     | 47            | 91    | 358            | 850   |                    |        |
| Total              | 137           | 293   | 2,870          | 7,029 | 8,208              | 20,316 |

SILVER 1137

Table 12.-U.S. general imports of silver in 1973, by country (Thousand troy ounces and thousand dollars)

| Country                     | Ore      |        | Waste<br>sweep |        | Dore<br>precip      |        | Refined  | bullion |
|-----------------------------|----------|--------|----------------|--------|---------------------|--------|----------|---------|
|                             | Quantity | Value  | Quantity       | Value  | Quantity            | Value  | Quantity | Value   |
| Argentina                   |          |        |                |        |                     |        | 290      | 569     |
| Australia                   | 2,805    | 6,610  |                |        |                     |        |          |         |
| Belgium-Luxembourg _        |          |        |                |        |                     |        | 1,737    | 4,864   |
| Canada                      | 14,651   | 33,045 | 422            | 933    | 5,670               | 13,885 | 15,321   | 38,269  |
| Chile                       | 620      | 1,599  |                |        |                     |        | 64       | 132     |
| Colombia                    | 28       | 69     |                |        |                     |        |          |         |
| France                      |          |        |                |        | 11                  | 24     |          |         |
| Germany, West               |          |        | (¹)            | (¹)    |                     |        |          |         |
| Greece                      |          |        | `´4            | `´ 1   |                     |        |          |         |
| Guatemala                   |          |        | -              | -      |                     |        | 1,000    | 2,941   |
| Honduras                    | 2,860    | 4,365  |                |        | 292                 | 718    | 1,000    | _,,,,,  |
| Jamaica                     |          |        | - <u>-</u> 2   |        | 202                 | .10    |          |         |
| -                           | 212      | 507    | -              | *      |                     |        | 32       | 61      |
| Japan<br>Korea, Republic of | 212      | 301    |                |        |                     |        | 16       | 29      |
|                             | 1.652    | 3,401  | 3,800          | 10,707 | $5,2\bar{2}\bar{2}$ | 13,450 | 45,253   | 122,207 |
| Mexico                      | 1,002    | 0,401  | 3,000          | 10,101 | 0,222               | 10,400 | 560      |         |
| Netherlands                 |          | 107    |                |        |                     | 55     | 900      | 1,568   |
| Nicaragua                   | 66       | 124    |                |        | 9                   | 20     |          |         |
| Norway                      | 43       | 57     |                | 7=     |                     |        |          |         |
| Panama                      | ==       | ==     | 8              | 17     |                     |        |          | ==      |
| Peru                        | 9,615    | 22,575 | ==             |        |                     |        | 3,846    | 8,967   |
| Philippines                 | 423      | 1,003  | 30             | 65     |                     |        | 24       | 54      |
| Romania                     |          |        |                |        | (¹)                 | 1      |          |         |
| South Africa.               |          |        |                |        |                     |        |          |         |
| Republic of                 | 1,015    | 1,572  |                |        |                     |        |          |         |
| Switzerland                 |          |        |                |        |                     |        | 1        | 4       |
| United Kingdom              | (1)      | (1)    |                |        | 2                   | 7      | 13,075   | 36,032  |
| Total                       | 33,990   | 74,927 | 4,266          | 11,727 | 11,206              | 28,105 | 81,219   | 215,697 |

<sup>&</sup>lt;sup>1</sup> Less than ½ unit.

#### Table 13.-Silver: World production by country 1

(Thousand troy ounces)

| Country 2                                                              | 1971               | 1972           | 1973 Þ          |
|------------------------------------------------------------------------|--------------------|----------------|-----------------|
| North and Central America:                                             |                    |                |                 |
| Canada                                                                 | 46,024             | 44,792         | 48,156          |
| Costa Rica                                                             |                    | .==            | (3)             |
| El SalvadorGuatemala                                                   | 215                | 177            | 123             |
|                                                                        | $\bar{1}\bar{7}$   | 6              | e 7             |
| Haiti e<br>Honduras                                                    | 3,642              | 17<br>3,595    | 17              |
| Mexico                                                                 | 36,657             | 37,483         | 3,152<br>38,788 |
| Nicaragua                                                              | 261                | 357            | 180             |
| United States                                                          | 41,564             | 37,233         | 37,827          |
| outh America:                                                          | ,002               | 01,200         | 01,021          |
| Argentina                                                              | r 3,179            | 2.122          | e 2,500         |
| Bolivia 4                                                              | 5,369              | 5,581          | 5,708           |
| Brazil                                                                 | 624                | 318            | 327             |
| Chile                                                                  | 2,729              | 4,689          | 5,035           |
| Colombia                                                               | 68                 | 70             | 75              |
| Ecuador                                                                | e 70               | 69             | 76              |
| Peru                                                                   | 38,398             | 40,188         | 42,021          |
| rope:                                                                  | 000                | 100            |                 |
| Austria 5                                                              | 220                | 192            | 193             |
| Czechoslovakia •                                                       | 1,100              | 1,100          | 1,100           |
| Finland                                                                | 623<br>- 5,307     | $625 \\ 3.294$ | 793             |
| FranceGermany, East e                                                  | 5,000              | 5,000          | 4,180<br>7,000  |
| Germany, West                                                          | 1,800              | 1,736          | 1,382           |
| Greece 5                                                               | 462                | 1,700          | ° 100           |
| Hungary e                                                              | 6                  | - <u>ē</u>     | 7               |
| Ireland                                                                | 1,432              | 1,553          | 1.839           |
| Italy                                                                  | 1,236              | 2,170          | 1,349           |
| Poland e                                                               | 200                | 210            | 220             |
| Portugal                                                               | 264                | 230            | 108             |
| Romania e                                                              | 1,000              | 1,000          | 1,100           |
| Spain 5                                                                | e 1,640            | e 1,640        | 2,249           |
| Sweden                                                                 | 3,895              | 4,255          | ° 4,500         |
| U.S.S.R.e                                                              | 39,000             | 40,000         | 41,000          |
| Yugoslavia                                                             | 3,354              | 3,582          | 4,302           |
| rica:                                                                  | 222                | - 000          |                 |
| Algeria e                                                              | 200                | r 220          | 157             |
| Kenya                                                                  | r 2,942            | 0.077          | (3)             |
| Morocco                                                                |                    | 3,376<br>126   | 3,518           |
| Rhodesia, Southern 6                                                   | $\frac{91}{3,378}$ | 3,294          | 169<br>3,652    |
| South Africa, Republic ofSouth-West Africa, Territory of <sup>78</sup> | r 1,728            | 1,357          | 1,563           |
| Tanzania                                                               | r (3)              | (3)            | (3)             |
| Tunisia                                                                | 106                | 242            | e 250           |
| Zaire                                                                  | 1.470              | 2,078          | 1,995           |
| Zambia 8                                                               | 194                | 109            | 2               |
| sia:                                                                   |                    |                | _               |
| Burma                                                                  | 685                | 587            | 754             |
| China, People's Republic of e                                          | 800                | 800            | 800             |
| India                                                                  | 121                | 142            | 138             |
| Indonesia                                                              | 285                | 279            | 301             |
| Japan                                                                  | 11,293             | 10,021         | 8,552           |
| Korea, North e                                                         | 700                | 700            | 700             |
| Korea, Republic of                                                     | 1,543              | 1,770          | 1,490           |
| Philippines                                                            | 1,940              | 1,848          | 1,892           |
| Taiwan                                                                 | 73                 | 74             | 93              |
| ceania:                                                                | 91 700             | 22,796         | 23,201          |
| AustraliaFiii                                                          | 21,703<br>r 20     | 22,796         | 23,201          |
| Fiji<br>New Zealand                                                    | 66                 | 24<br>31       | 49              |
| Papua New Guinea                                                       | 19                 | 995            | 1,196           |
|                                                                        |                    |                |                 |
| Total                                                                  | r 294,713          | 294,159        | 305,916         |

e Estimate. Preliminary. r Revised.

Estimate.
 Preliminary.
 Recoverable content of ores and concentrates produced unless otherwise noted.
 In addition to the countries listed Bulgaria, Thailand, Turkey, and several African countries produce silver, but information is inadequate to make reliable output estimates.
 Less than ½ unit.
 Includes production by the State mining company COMIBOL plus the exports of medium and small (private sector) mines.
 Smelter and/or refinery production.
 Output of Inyati mine only.
 Data represents recoverable content of Tsumeb Corp. Ltd. concentrates for year ending June 30, 1971, and calendar year production in 1972 and 1973. Silver production from July 1 to December 31, 1971, was 649,343 troy ounces.
 Includes recovery from copper refinery sludges.

# Slag—Iron and Steel

# By Harold J. Drake 1

Production of processed iron and steel slag, in the aggregate, increased in 1973. Output of iron blast-furnace slag rose 15% in quantity and 18% in value, but output of steel slag decreased 4% in quantity and 2% in value. Nearly all of the increased production of iron slag was accounted for by air-cooled blast-furnace slag. As in past years, a considerable portion of steel slag was recycled to blast furnaces, whereas little, if any, iron slag was so utilized.

Prices of iron and steel slags, continuing the trend of recent years, were stable. The average price for all iron slag was up 2% and that of steel slag was up 3%. Imports of slag declined 13% in quantity and 18% in value. Exports increased 35% in quantity and more than doubled in value, indicating increased shipments of high-value material.

Table 1.-Iron-blast-furnace slag processed in the United States, by type

(Thousand short tons and thousand dollars)

|              |                  | Air-c | ooled        |                | Granulated     |                | Expanded       |                | Total            |                  |
|--------------|------------------|-------|--------------|----------------|----------------|----------------|----------------|----------------|------------------|------------------|
| Year         | Screened         |       | Unscreened   |                | Quantity       | Value          | Quantity       | Value          | Quantity         | Value            |
|              | Quantity         | Value | Quantity     | Value          | Quantity       | Value          | Qualities      | , and          | - Quartery       |                  |
| 1972<br>1973 | 20,968<br>23,692 |       | 910<br>1,279 | 1,135<br>1,512 | 1,657<br>1,999 | 3,059<br>3,667 | 1,518<br>1,852 | 5,529<br>6,936 | 25,053<br>28,822 | 53,375<br>62,852 |

Source: National Slag Association.

## **DOMESTIC PRODUCTION**

Increased production of iron and steel in 1973 resulted in higher output of iron slag. Production of iron-blast-furnace slag totaled 28.8 million tons valued at \$62.9 million. Output of steel slag totaled 9.7 million tons valued at \$10.8 million.

Production of air-cooled blast-furnace slag totaled 25 million tons valued at \$52.2 million, increases of 14% and 17%, respectively, over the levels of the preceding year. Approximately 95% of this material was crushed and screened to specifications; the remainder was crushed and used without screening. Granulated blast-furnace slag production reached 2 million tons val-

ued at \$3.7 million, increases of 21% and 20%, respectively. Production of expanded slag, at 1.9 million tons valued at \$6.9 million in 1973, was up 22% in quantity and 25% in value.

The great bulk of the slag was produced in Ohio, Pennsylvania, Illinois, Indiana, and Michigan. A total of 1,713 plant and yard personnel worked 3,797,000 man-hours during 1973 in 90 air-cooled, 16 expanded, and 12 granulated slag plants. A total of 3,465,000 tons of slag-encrusted magnetic iron was recovered at these operations.

<sup>&</sup>lt;sup>1</sup> Physical scientist, Division of Nonmetallic Minerals—Mineral Supply.

| Year and State | Screened :     | air-cooled                         | All types                        |                                      |  |
|----------------|----------------|------------------------------------|----------------------------------|--------------------------------------|--|
|                | Quantity       | Value                              | Quantity                         | Value                                |  |
| Ohio           | 4,967<br>4,519 | 9,442<br>11,659<br>8,760<br>13,701 | 5,272<br>5,991<br>5,351<br>8,439 | 11,794<br>13,497<br>11,525<br>16,559 |  |
| Total          | 20,968         | r 43,562                           | 25,053                           | 53,375                               |  |
| Ohio           | 5,427          | 12,316                             | 6,904                            | 14,817                               |  |

Table 2.—Iron-blast-furnace slag processed in the United States, by State (Thousand short tons and thousand dollars)

Pennsylvania \_\_\_

5,061 5,945

7,259

23.692

Source: National Slag Association.

#### CONSUMPTION AND USES

Because stocks of process slag are relatively small and constant from year to year, consumption virtually equals production, excluding the quantities that are recycled to blast-furnaces. The principal market has always been the construction industry which, in 1973, accounted for about 95% of the quantities consumed. Agricultural uses, sewage filtering medium, and mineral wool manufacture utilized the small remainder.

Illinois, Indiana, Michigan\_\_\_\_\_Other States 1\_\_\_\_\_

Total\_\_\_\_

Increased consumption of screened ironblast-furnace slag was reported in portland cement concrete construction, bituminous construction, and highway and airport construction. In total, these uses accounted for about 73% of the volume of screened aircooled slag consumed in 1973. Declines in consumption were reported for railroad ballast, roofing granules, and sewage filtering medium. Consumption of unscreened air-cooled slag in highway and airport construction, the principal use, declined slightly. Consumption of granulated and expanded blast-furnace slags was up 21% from 1972. More granulated slag was used in highways and agriculture and less in cement and concrete blocks. Use of expanded slag in concrete blocks increased 23% but decreased 14% in cement manufacture.

Consumption gains were recorded for steel slag in miscellaneous base and fill applications, railroad ballast, bituminous mixes and agriculture, but declines were recorded in highway construction and paved areas.

12,032 12,181

14.208

50.737

6,698 6,799 8,421

28 822

16,129 15,174 16,732

62.852

Use technology was reviewed in a number of important papers in recent years.2

r Revised.

<sup>&</sup>lt;sup>1</sup> Includes, Alabama, California, Colorado, Kentucky, Louisiana, Maryland, Minnesota, New York, Texas, Utah, and West Virginia.

<sup>&</sup>lt;sup>2</sup> National Slag Association. The Case for Superior Base Construction With Slag, NSA Bull. 171–1, 1971, 4 pp.

\_\_\_\_. Use of Slag in Hollow Core Slabs. NSA Bull. 171-6, 1971, 2 pp.

<sup>—.</sup> Fire Resistance and Heat Transmission Properties of Concrete Masonry Made With Blast Furnace Slag Aggregate. NSA Bull. 172-1, 1972,

Pumping Slag Concrete. NSA Bull. 172-4. 1972, 2 pp.

Laboratory Study of Base Course Materials Stabilized With Granulated Slag. NSA Bull. 172-7, 1972, 6 pp.

 $<sup>\</sup>underline{\hspace{1cm}}$ . Slag Used to Stop Erosion. NSA Bull. 172–9, 1972, 2 pp.

\_\_\_\_. Slag for Use in Bituminous Concrete. NSA Bull. 173-1, 1973, 8 pp.

<sup>——.</sup> Air Cooled Blast Furnace Slag Bases. NSA Bull. 173-2, 1973, 8 pp.

NSA Bull. 173-2, 1913, o pp.

\_\_\_\_. Steel Furnace Slag-An Ideal Railroad Ballast. NSA Bull. 173-3, 1973, 2 pp.

\_\_\_\_. Blast Furnace Slag-A Superior Railroad Ballast. NSA Bull. 173-4, 1973, 5 pp.

Table 3.—Shipments of iron-blast-furnace slag in the United States, by method of transportation

| Make a state of the same of the same | 197          | 2        | 1973         |          |  |
|--------------------------------------|--------------|----------|--------------|----------|--|
| Method of transportation             | Quantity     | Percent  | Quantity     | Percent  |  |
|                                      | (short tons) | of total | (short tons) | of total |  |
| Rail Truck Waterway                  | 4,341        | 17       | 5,366        | 19       |  |
|                                      | 19,952       | 80       | 22,640       | 78       |  |
|                                      | 760          | 3        | 846          | 3        |  |
| Total                                | 25,053       | 100      | 28,852       | 100      |  |

Source: National Slag Association.

Table 4.—Air-cooled iron-blast-furnace slag sold or used by processors in the United States, by use

(Thousand short tons and thousand dollars)

|                                |          | 19     | 72         |       | 1973       |        |            |       |  |
|--------------------------------|----------|--------|------------|-------|------------|--------|------------|-------|--|
| Use                            | Screened |        | Unscreened |       | Screened   |        | Unscreened |       |  |
|                                | Quantity | Value  | Quantity   | Value | Quantity   | Value  | Quantity   | Value |  |
| Aggregate in—                  |          |        |            |       |            |        |            |       |  |
| Portland cement concrete con-  |          |        |            |       |            |        |            |       |  |
| struction                      | 2,270    | 5,296  |            |       | 2,450      | 5,882  |            |       |  |
| Bituminous construction (all   |          |        |            |       |            |        |            |       |  |
| types)                         | 4,539    | 9,503  |            |       | 5,232      | 11,442 |            |       |  |
| Highway and airport con-       |          |        |            |       |            |        |            |       |  |
| struction 1                    | 8,123    | 16,945 | 699        | 933   | 9,666      | 20,790 | 676        | 1,022 |  |
| Manufacture of concrete block  | . 514    | 1,264  |            |       | 628        | 1,567  | 1          | 2     |  |
| Railroad ballast               | 3,686    | 5,788  | 5          | 7     | 3,256      | 5,139  |            |       |  |
| Mineral wool                   | . 665    | 1,405  | 39         | 30    | 768        | 1,812  | 46         | 35    |  |
| Roofing slag:                  |          | •      |            |       |            | •      |            |       |  |
| Cover material                 | . 262    | 730    |            |       | 299        | 1,064  |            |       |  |
| Granules                       | . 132    | 953    |            |       | 67         | 530    |            |       |  |
| Sewage trickling filter medium | . 41     | 67     |            |       | <b>3</b> 8 | 68     |            |       |  |
| Agricultural slag, liming      | . 6      | 14     |            |       | 10         | 23     |            |       |  |
| Other uses                     | . 730    | 1,687  | 167        | 165   | 1,278      | 2,420  | 556        | 453   |  |
| Total                          | 20,968   | 43,652 | 910        | 1,135 | 23,692     | 50,737 | 1,279      | 1,512 |  |

 $<sup>^{1}</sup>$  Other than in portland cement concrete and bituminous construction.

Source: National Slag Association.

Table 5.—Granulated and expanded iron-blast-furnace slag sold or used by processors in the United States, by use

(Thousand short tons and thousand dollars)

| Use                                 | 1972          |       |          |       | 1973       |       |              |       |
|-------------------------------------|---------------|-------|----------|-------|------------|-------|--------------|-------|
|                                     | Granulated    |       | Expanded |       | Granulated |       | Expanded     |       |
|                                     | Quantity      | Value | Quantity | Value | Quantity   | Value | Quantity     | Value |
| Highway construction and fill (road |               |       |          |       |            |       |              |       |
| etc.)                               | . <b>9</b> 88 | 1,367 |          |       | 1,397      | 1,920 |              |       |
| Agricultural slag, liming           | . 61          | 130   |          |       | 64         | 140   |              |       |
| Manufacture of cement (all types)   | 444           | 1,258 | 226      | 678   | 232        | 1,112 | 1 <b>195</b> | 585   |
| Lightweight concrete                |               | ·     |          |       |            | ·     | 25           | 80    |
| manufacture                         | 23            | 93    | 1.264    | 4,766 | 15         | 70    | 1,560        | 6,105 |
| Other uses                          | 141           | 211   | 28       | 85    | 291        | 425   | 72           | 166   |
| Total                               | 1,657         | 3,059 | 1,518    | 5,529 | 1,999      | 3,667 | 1,852        | 6,936 |

<sup>&</sup>lt;sup>1</sup> In addition 255,000 tons of air-cooled slag was used in the manufacture of portland cement.

Source: National Slag Association.

Table 6.—Steel slag sold or used by processors in the United States, in 1972, by use <sup>1</sup>
(Thousand short tons and thousand dollars)

| Use                                                                                                                            | 197                          | 72                                                    | 1973                                                  |                                                         |  |
|--------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|--|
| Use                                                                                                                            | Quantity                     | Value                                                 | Quantity                                              | Value                                                   |  |
| Railroad ballast Highway base or shoulders Paved-area base Miscellaneous base or fill Bituminous mixes Agricultural Other uses | 1,779<br>1,925<br>563<br>108 | 1,430<br>3,512<br>1,844<br>2,193<br>821<br>324<br>899 | 1,341<br>3,241<br>1,470<br>2,263<br>889<br>115<br>420 | 1,691<br>3,268<br>1,499<br>2,182<br>1,296<br>336<br>493 |  |
| Total                                                                                                                          | 10,162                       | 11,023                                                | 9,739                                                 | 10,765                                                  |  |

<sup>&</sup>lt;sup>1</sup> Excludes tonnage returned to furnace for charge material.

Source: National Slag Association.

#### **PRICES**

Iron and steel slag encountered strong price competition from mineral aggregates such as crushed stone and sand and gravel in 1973. Prices of most types of slag were only slightly changed from those of 1972. The unit value of all iron-blast-furnace slag was \$2.18 per ton, compared with \$2.13 per ton in 1972. Corresponding figures for steel slag were \$1.11 per ton in 1973 and \$1.08 per ton in 1972.

The price of screened air-cooled blastfurnace slag used for highway and airport construction rose \$0.06 to \$2.15 per ton, for railroad ballast, up \$0.01 to \$1.58 per ton, for bituminous construction, up \$0.10 to \$2.19 per ton, and for portland cement structures, up \$0.07 to \$2.40 per ton. The price of granulated iron slag used in highway and airport construction, the main use, declined slightly to \$1.37 per ton. Prices of steel slag used for highway construction rose \$0.03 to \$1.01 per ton, for paved areas the price declined \$0.02 to \$1.02 per ton, and for miscellaneous base and fill, prices declined \$0.18 to \$0.96 per ton.

Table 7.—Average value of iron-blast-furnace slag sold or used by processors in the United States, by use

(Per short ton)

| Use                            | Air cooled |              |                   |               | ~          |        |          |        |
|--------------------------------|------------|--------------|-------------------|---------------|------------|--------|----------|--------|
|                                | Screened   |              | Unscreened        |               | Granulated |        | Expanded |        |
|                                | 1972       | 1973         | 1972              | 1973          | 1972       | 1973   | 1972     | 1973   |
| Aggregate in—                  |            |              |                   |               |            |        |          |        |
| Portland cement concrete con-  |            |              |                   |               |            |        |          |        |
| struction                      | \$2.33     | \$2.40       |                   |               |            |        |          |        |
| Bituminous construction (all   | •          |              |                   |               |            |        |          |        |
| types)                         | 2.09       | 2.19         |                   |               |            |        |          |        |
| Highway and airport construc-  |            |              |                   |               |            |        |          |        |
| tion 1                         | 2.09       | 2.15         | \$1.33            | \$1.51        | \$1.38     | \$1.37 |          |        |
| Manufacture of concrete block  | 2.46       | 2.50         | 42.00             | 2.00          | r 4.04     | 4.67   | \$3.77   | \$3.91 |
| Lightweight concrete           |            |              |                   |               |            | 2.0.   | 3.03     | 3.20   |
| Railroad ballast               | 1.57       | $1.\bar{58}$ | $1.\overline{40}$ |               |            |        | 0.00     | 0.20   |
| Mineral wool                   | 2.11       | 2.40         | .77               | $.ar{7}ar{6}$ |            |        |          |        |
| Roofing slag:                  | 2.11       | 2.40         |                   | . 10          |            |        |          |        |
| Cover material                 | r 2.79     | 3.56         |                   |               |            |        |          |        |
|                                | 7.22       | 7.91         |                   |               |            |        |          |        |
| Sewage trickling filter medium | 1.63       | 1.79         |                   |               |            |        |          |        |
| A cricultural alas limins      | 12.33      | 2.30         |                   |               | 0 10       | 0 10   |          |        |
| Agricultural slag, liming      |            |              | 55                | 5.5           | 2.13       | 2.19   | 0 55     | 0 01   |
| Other uses                     | 2.31       | 1.89         | . 99              | .81           | r 2.51     | 2.94   | 3.00     | 3.81   |

Revised

Source: National Slag Association.

<sup>1</sup> Other than in portland cement and bituminous construction.

#### **FOREIGN TRADE**

Exports of iron and steel slag totaled 37,117 tons valued at \$734,723, a level well above that of 1972. Canada was the principal export market, receiving 94% of the quantity and 28% of the value of total exports. The United Kingdom received 4% of the quantity and 53% of the value.

Australia, the Netherlands, West Germany, and Italy were the principal recipients of the remainder.

Imports totaled 1,268 tons valued at \$13,914 all of which came from Canada. Imports supply only a very small share of the U.S. market for iron and steel slag.

Table 8.-U.S. exports and imports for consumption of slag, dross and scaling from the manufacture of iron and steel

| G t.                        | 197              | 2                    | 1973               |          |  |
|-----------------------------|------------------|----------------------|--------------------|----------|--|
| Country                     | Short tons       | Value                | Short tons         | Value    |  |
| Imports: Canada             | 1,455            | \$16,867             | 1,268              | \$13,914 |  |
| Exports:                    |                  |                      |                    |          |  |
| Australia                   |                  |                      | 271                | 2,468    |  |
| Belgium-Luxembourg          | 279              | 23,375               |                    |          |  |
| Brazil                      | 7                | 1,159                |                    |          |  |
| Canada                      | 26.533           | 95,250               | 34,768             | 202,293  |  |
| Colombia                    | ,1               | 1,738                | ,                  | ,        |  |
|                             | •                | 1,.00                | $\tilde{79}$       | 720      |  |
|                             | $\bar{26}$       | 9,000                | 100                | 35,859   |  |
| Germany, West               |                  | 3,000                | 106                | 970      |  |
| Guinea                      |                  |                      |                    |          |  |
| Ireland                     | ==               |                      | 51                 | 1,428    |  |
| Italy                       | 22               | 3,400                | 58                 | 20,743   |  |
| Kuwait                      |                  | 3,436                |                    |          |  |
| Mexico                      | 93               | 4,749                |                    |          |  |
| Nansei Islands              | 122              | 1,110                |                    |          |  |
| Netherlands                 |                  | 8,680                | 140                | 70,119   |  |
| Tunisia                     |                  | -,                   | 44                 | 4,032    |  |
|                             | $2\overline{64}$ | $53,2\bar{3}\bar{5}$ | $1.49\overline{5}$ | 388,895  |  |
| United Kingdom<br>Venezuela | 204              | 00,200               | 5                  | 7,196    |  |
| venezueia                   |                  |                      | 9                  | 1,150    |  |
| Total                       | 27,491           | 205,132              | 37,117             | 734,723  |  |

#### **WORLD REVIEW**

France.—Production of iron-blast-furnaces slag in 1972, the latest year for which detailed statistics are available, totaled 15.1 million tons. Approximately 50% was granulated, 36% was air-cooled; the remainder was utilized either by foaming or deposited in stockpiles. The main uses for granulated slag were in the manufacture of cement, 32%, and in roads and highways, 24%. Approximately 13% was exported, 12% stockpiled, and 8% discarded as waste. Air-cooled slag was used mainly for roads and foundations, 59%, with an additional 19% stockpiled. Both types of slag had many minor uses.

United Kingdom.—Production of iron and steel slag in 1972, the latest year for which data are available, totaled 7.8 million tons. Approximately 72% of the slag was used in road construction; the remainder was used in numerous applications. Of

the quantities used in road construction, approximately 58% was used in conjunction with macadam or bituminous materials. More than 96% of the total slag produced was of the air-cooled variety, 3% was foamed, and less than 1% was granulated. Properties, uses, and physical and chemical properties of foamed slag were published.<sup>3</sup>

West Germany.—Production of iron and steel slag in 1972 totaled 11.7 million tons, 50% of which was derived from steel mills. Approximately 80% of that output was used in road building, the remainder for fertilizer, mineral wool, cement, and a few other uses. About 77% of the iron and steel slag was air-cooled, 21% granulated, and 2% foamed.

<sup>&</sup>lt;sup>3</sup> The British Quarrying and Slag Federation, Ltd. Foamed Slag the Lightweight Aggregate. BQSF, INF 5, March 1973, 4 pp.



## Sodium and Sodium Compounds

#### By Charles L. Klingman 1

Total production of soda ash (sodium carbonate) in the United States in 1973 was almost exactly the same as that of 1972, but demand continued to increase at least as much as the historic 3% growth rate. Exports of soda ash were reduced by 55,000 tons and for the first time, there was an importation of 16,000 tons of soda ash. Even though the supply-demand imbalance was not large, soda ash market conditions were chaotic in 1973.

Construction continued toward increasing productive capacity at the Trona mines of Wyoming, but the actual increase (about 16%) was limited by shortages of fuel and skilled production workers. The increase in naturally derived soda ash production was practically nullified by a 472,000-ton reduction in synthetic soda ash outlet. Synthetic soda ash plants were plagued in 1973 by shortages and poor quality of raw materials.

There was a 7.6% increase in 1973 in total sodium sulfate production in spite of a loss of 4.1% in the production of naturally derived salt cake. Metallic sodium output showed a 10.2% increase in 1973 as compared with a historic growth rate of about 2.0% per annum.

Legislation and Government Programs.— There has been a depletion allowance, for Federal income tax purposes, on the mining of trona since 1946; but in 1970 the U.S. Internal Revenue Service gave notice that it wanted to end this allowance. In 1973, a proposal to this effect was on the verge of adoption when the proposal was introduced in the Senate which, in effect, guaranteed continuation of the depletion allowance. Although the U.S. Department of the Treasury strongly opposed the amendment, the Wyoming soda ash producers said that the depletion allowance was essential to the continuation of their plans to increase trona production.

Federal price controls on soda ash and other sodium compounds were scheduled to end April 1, 1974.

#### DOMESTIC PRODUCTION

In 1973 there was a surging demand for soda ash but total production increased by only 0.4%. Therefore, the market was in turmoil throughout the year. The shortfall in soda ash was estimated by one writer to be about 350,000 tons.2

Soda ash producers were forced to allocate their output to present customers on the basis of 1972 usage, and new customers had practically no chance to obtain supplies. Prices were regulated under phases 3 and 4 of the Economic Stabilization Act,

so there was no opportunity for soda ash users to bid against each other for additional shipments. Small tonnages of European soda ash, amounting to 0.2% of U.S. consumption were imported at prices up to four times the prevailing domestic prices. Greater demand also caused a reduction in exports.

Physical scientist, Division of Nonmetallic Minerals—Mineral Supply.
 American Glass Review. Soda Ash Update. V. 94, No. 8, February 1974, pp. 6-7.

| Table | 1Manufactured | and | natural   | sodium     | carbonates    | produced | in | the | United | States |
|-------|---------------|-----|-----------|------------|---------------|----------|----|-----|--------|--------|
|       |               | (Th | ousand sh | ort tons a | nd thousand d | ollars)  |    |     |        |        |

|     | Year | Manufactured soda ash<br>(ammonia-soda<br>process) 1 2 | Natural : |        | Total<br>quantity |
|-----|------|--------------------------------------------------------|-----------|--------|-------------------|
|     |      | Quantity                                               | Quantity  | Value  |                   |
| 969 |      | 4,540                                                  | 2,495     | 50,922 | 7,035             |
| 970 |      | 4,393                                                  | 2,678     | 56.320 | 7,071             |
| 971 |      | r 4,298                                                | 2,865     | 60,774 | 7,163             |
| 972 |      | r 4,310                                                | 3,218     | 71,689 | 7,528             |
| 973 |      | P 3,838                                                | 3,722     | 94,385 | 7,560             |

<sup>p</sup> Preliminary. r Revised.

1 U.S. Bureau of the Census. Current Industrial Reports, Inorganic Chemicals.
2 Includes quantities used to manufacture caustic soda, sodium bicarbonate, and finished light and dense soda ash. <sup>3</sup> Soda ash and trona (sesquicarbonate).

Table 2.-Sodium sulfate produced and sold or used by producers in the United States 1 (Thousand short tons and thousand dollars)

|                                      | Year |                                         | on (manufact<br>d natural) <sup>2</sup> | Sold or used by<br>producers                  |                                 |                                                |
|--------------------------------------|------|-----------------------------------------|-----------------------------------------|-----------------------------------------------|---------------------------------|------------------------------------------------|
|                                      |      | Lower purity <sup>3</sup> (99% or less) | High purity                             | Total _<br>quantity                           | (natural<br>Quantity            | only)<br>Value                                 |
| 1969<br>1970<br>1971<br>1972<br>1973 |      | 730<br>561<br>514<br>526<br>573         | 744<br>812<br>843<br>801<br>848         | 1,474<br>1,373<br>1,357<br>r 1,327<br>± 1,422 | 672<br>598<br>688<br>701<br>672 | 12,427<br>10,932<br>11,008<br>11,396<br>11,597 |

P Preliminary. r Revised.

1 All quantities converted to 100% Na<sub>2</sub>SO<sub>4</sub> basis.
2 U.S. Bureau of the Census. Current Industrial Reports, Inorganic Chemicals.
3 Includes glauber salt.

<sup>4</sup> Data does not add to total shown because of independent rounding.

The three producers of natural soda ash at Green River, Wyo., increased their combined output by about 16%, but this was offset by comparable reductions from synthetic soda ash producers. Texas Gulf, Inc., contracted with Stearns-Roger, Inc. of Denver, Colo., to build a fourth soda ash mine and plant near Green River, Wyo. It is scheduled to start producing in 1976. Construction of new facilities for production of natural soda ash was apparently continuing on schedule, but the anticipated increases were not fully realized because of a shortage of skilled production workers and occasional shortages of fuel. Natural soda ash increased to 49.2% of the total production as compared with 42.7% in 1972.

There was a large drop in production of synthetic (Solvay) soda ash. There were no known plant closings during the year, but all plants seemed to be having trouble, especially with raw materials supplies. The anthracite coal or coke used to convert limestone to lime was reported to be in very short supply, was poor in quality, and

was higher in price. There were also shortages in fuel for steam generation. Approximately 2.8 tons of steam were required to make one ton of soda ash, so fuel costs made up a significant portion of total production costs. All existing Solvay plants were quite old, so maintenance shutdowns were frequently required, were time consuming, and were expensive. It was believed that some of the existing Solvay plants would close as soon as the present shortage of soda ash eases.

Caustic soda, which was interchangeable with soda ash in certain applications, was also in short supply during 1973. This situation was caused, in part, by the shutdown of some mercury-electrode, chlorine-caustic cells which were under attack by environmentalists for pollution of public water courses. Additional capacity for producing caustic soda was under construction but would not be in full production for 1 or 2 years.

Sodium sulfate, or salt cake, showed a 20.7% increase in production of the synthetic product and a 4.1% decrease in output of the natural sulfate, resulting in an overall increase of 7.6%. Historically, synthetic salt cake production had wide yearto-year variations with no significant growth for more than 20 years. Naturally derived sodium sulfate, on the other hand, displayed an annual growth of about 5%, so the 1973 decrease was disappointing, by comparison. Salt cake derived from natural sources declined to 47.0% of the total output in 1973 compared with 52.8% in 1972. Early in 1973, there seemed to be an ample supply of salt cake, but during the last 2 months of the year demand was apparently greater than supply. This could have been caused by a general tightness in the whole sodium market and more substitution of salt cake for soda ash and caustic soda. There was no lack of source material for natural sodium sulfate in the western part of the country.

Metallic sodium output increased to 176,903 tons, an alltime record and 10.6% above the 1972 production. This was a surprise development, since the historic growth rate was only 2.0% per annum; in addition, over 80% of the metallic sodium was utilized in the manufacture of a compound which was supposed to be on the decrease, tetraethyl lead, a gasoline additive.

A list of U.S. producers of natural sodium compounds and metallic sodium follows:

| Product           | Company                                    | Plant location  | State      | Source of sodium       |
|-------------------|--------------------------------------------|-----------------|------------|------------------------|
| Soda ash          | Kerr-McGee Chemical Corp                   | Trona           | California | Dry lake brine.        |
| Do                | Stauffer Chemical Co                       | Westend         | do         | Do.                    |
| Do                | Allied Chemical Corp                       | Green River     | Wyoming    | Underground<br>trona.  |
| Do                | FMC Corp                                   | do              | do         | Do.                    |
| Do                | Stauffer Chemical Co                       |                 | do         | Do.                    |
| Sodium sulfate    |                                            |                 | California | Dry lake brine.        |
|                   | Kerr-McGee Chemical Corp                   |                 |            | Do.                    |
| Do                | United States Borax & Chemical Corp.       |                 | do         | Open pit mining.       |
| Do                | Ozark-Mahoning Co                          | Brownfield      | Texas      | Subterranean<br>brine. |
| Do                |                                            | Seagraves       | do         | Do.                    |
| Do                | Great Salt Lake Minerals & Chemicals Corp. |                 | Utah       | Salt lake brine.       |
| Metallic sodium _ | E.I. du Pont de Nemours                    | Niagara Falls _ | New York   | Salt.                  |
| Do                | do                                         | Memphis         | Tennessee  | Do.                    |
| Do                | Ethyl Corp                                 |                 | Louisiana  | Do.                    |
| Do                | do                                         | Houston         | Texas      | Do.                    |
|                   | Reactive Metals Inc                        |                 | Ohio       | Do.                    |

#### CONSUMPTION AND USES

The Bureau of Mines does not routinely survey consumers of sodium compounds (except salt), so data on utilization of these products were indirectly obtained from production data on related commodities or from the studies made by other agencies. For example, data on production of glass sand indicated that there was an increase in glass output and from the figures it could be calculated that 51.5% of the total soda ash production went to the making of glass. The higher glass output might have been caused by an increase in the manufacture of expendable (nonreturnable) bottles. Shortages of paper and plastic for containers could have required more glass for this end usage.

Required reductions in the phosphate content of dry detergents in 1973 created an

additional outlet for sodium sulfate in these powdered products. In this usage sodium sulfate is not claimed to improve the cleaning characteristics of the detergents but is merely a low-priced extender or diluent for the concentrated detergent. Also, with a decrease in availability of caustic soda and soda ash for the manufacture of pulp and paper, more salt cake might have been required for this specific usage.

Increases in production of tetraethyl and tetramethyl lead did not keep pace with the increased output of metallic sodium, so it might be inferred that the portion of metallic sodium used in tetraethyl and tetramethyl lead manufacture dropped from 83% in 1972 to about 80% in 1973. It also

followed that other uses for metallic sodium such as detergent manufacture and the reduction of metallic ores increased.

As far as is known, the remaining usages of sodium compounds remained about the same in 1973 as they were in 1972.

#### **TRANSPORTATION**

With the shift in soda ash output from that manufactured at plants in the northeast, to that recovered from natural deposits in the far west, transportation and its costs took on increasing significance for soda ash users. There was only one important route for the movement of soda ash from Green River, Wyo., and that was by Union Pacific Railroad. A railroad strike, a shortage of rail cars, or major equipment failure could virtually shutdown the soda ash industry. If the production could be handled by truck, over 1,000 trucks per

day or 42 trucks per hour, each with a 20-ton load, would be required.

A novel soda ash transportation plan was considered by producers. The plan called for a pipeline to convey a water slurry of soda ash from Green River, Wyo., to some central distribution point in the northeast, possibly on a navigable waterway. The pipeline would have to be more than 1,000 miles long and would be expensive, but once installed, would reduce shipping costs, including handling at both ends by perhaps 25%.

#### **PRICES**

Market prices quoted at yearend for sodium carbonate, sodium sulfate, and met-

allic sodium were as follows:

|                                                                                                            | 1972                                            | 1973 1            |
|------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------|
| Sodium carbonate (soda ash):                                                                               |                                                 |                   |
| Light, paper bags, carlots, worksper 100 pounds                                                            | \$2.471/2                                       | \$2.471/2         |
| Light, bulk, carlots, worksdodo                                                                            | $1.77\frac{1}{12}$                              | $1.77\frac{1}{2}$ |
| Dense, paper bags, carlots, worksdo                                                                        | $2.47\frac{1}{2}$                               | $2.47\frac{1}{2}$ |
| Dense, bulk, carlots, worksdo                                                                              | $1.77\frac{1}{12}$                              | $1.77\frac{1}{2}$ |
| Sodium sulfate (100 percent Na <sub>2</sub> SO <sub>4</sub> ):                                             |                                                 | .=                |
| Technical detergent, rayon grade, bags, carlotsper ton_                                                    | 43.00-46.00                                     | 43.00-46.00       |
| Technical detergent, rayon-grade, bulk, worksdo                                                            | 33.00                                           | 33.00             |
| Domestic salt cake, bulk, works 2do                                                                        | 28.00                                           |                   |
| National Formulary (N.F. XII), drumsper pound                                                              | .231/2                                          | .231/2            |
|                                                                                                            | ••                                              |                   |
| Fixed lots 18 000 pounds and more grade                                                                    |                                                 |                   |
| Rulk tank works                                                                                            | .26 1/227 1/2                                   | .26 1227 1/2      |
| Metallic sodium:  Bricks, carlots, worksdo Fused, lots 18,000 pounds and more, worksdo Bulk, tank, worksdo | $.26\frac{1}{2}27\frac{1}{2} \\ .18\frac{3}{4}$ |                   |

<sup>&</sup>lt;sup>1</sup> Chemical Marketing Reporter. Current prices of chemicals and related materials. V. 204, No. 27, Dec. 31, 1973.

<sup>2</sup> East of Mississippi River; price in the west is \$18.50 per ton, f.o.b. producing point.

#### FOREIGN TRADE

In 1973, exports of soda ash dropped to 425,000 tons or 5.6% of production, from 480,000 tons or 6.4% of production in 1972. In 1973, there was also a small import of soda ash for the first time, which reduced net exports to 409,000. Over half of the soda ash exported went to Canada and Mexico and over one-fourth was shipped to South American countries. The soda ash imports came almost entirely from European countries.

In sodium sulfate, the United States imported 320,000 tons or 18.9% of domestic total consumption but exported 45,000 tons or 2.7% of the total consumption. The net

importation was, therefore 275,000 tons or 16.2% of consumption. These figures are quite similar to those of 1972 except that salt cake exports were slightly higher in 1973. Canada supplied about 48.0% of the imports; Belgium-Luxembourg 41.5%; West Germany 4.5%; East Germany 2.9%; and 3.1% other countries.

The value of exports of all sodium compounds exceeded the value of the imports by 11.4 million.

Tariff rates for sodium compounds remained constant throughout the year as shown by the following tabulation:

|                                             | Tariff Jan. 1, 1978<br>(dollars per<br>short ton) |
|---------------------------------------------|---------------------------------------------------|
| Sodium carbonate:                           |                                                   |
| Calcined (soda ash)                         | 2.40                                              |
| Hydrated and sesquicarbonateSodium sulfate: | 2.00                                              |
| Crude (salt cake)                           | Free                                              |
| Anhydrous                                   | .25                                               |
| Crystallized (glauber salt)                 | .50                                               |

Table 3.-U.S. exports of sodium carbonate and sodium sulfate

(Thousand short tons and thousand dollars)

| Year |               | onate<br>ium | Sodium<br>sulfate |       |  |
|------|---------------|--------------|-------------------|-------|--|
| Tear | Quan-<br>tity | Value        | Quan-<br>tity     | Value |  |
| 1971 | 437           | 15,400       | 66                | 1,825 |  |
| 1972 | 480           | r 18,911     | 29                | 926   |  |
| 1973 | 425           | 16,064       | 45                | 2,049 |  |

r Revised.

Table 4.-U.S. imports for consumption of sodium sulfate

(Thousand short tons and thousand dollars)

|                      | Voor | Year Crude (salt cake) 1 |                         | Anhydrous      |                       | Total 1           |                         |
|----------------------|------|--------------------------|-------------------------|----------------|-----------------------|-------------------|-------------------------|
|                      | 1601 | Quantity                 | Value                   | Quantity       | Value                 | Quantity          | Value                   |
| 1971<br>1972<br>1973 |      | 236<br>226<br>240        | 4,108<br>4,082<br>4,054 | 32<br>73<br>80 | 559<br>1,275<br>1,602 | 268<br>299<br>320 | 4,667<br>5,357<br>5,656 |

 $<sup>^{1}</sup>$  Includes glauber salt as follows: 1971, none; 1972, 50 long tons (\$1,491); 1973, 98 long tons (\$2,200).

Table 5.-U.S. imports for consumption of sodium carbonate and bicarbonate in 1973

(Thousand short tons and thousand dollars)

|                    | Quantity | Value |
|--------------------|----------|-------|
| Soda ash           | 10       | 756   |
| Sodium bicarbonate | 6        | 260   |
| Total              | 16       | 1,016 |

#### WORLD REVIEW

Argentina.—The Government of Argentina has exercised controls over the exportation of goods to conserve materials for local utilization if they are in short supply. Specifically mentioned in the order were carbonate and bicarbonate of soda.<sup>3</sup>

The 1971 production of sodium sulfate (mirabilite) was 21,700 short tons.<sup>4</sup> Production in 1973 was estimated at 40,000 tons.

Canada.—Salt cake production in 1973 was 525,000 tons, an increase of 3.6% over that of 1972. Canada consumed 81% of its production, 90% of which went to

the making of pulp and paper. The portion going into the manufacture of synthetic detergents however, showed the largest gain. Exports, primarily to the United States, increased 12%. Production for 1974 was predicted to be about 10% above the present rate.

Six producers of natural salt cake in Saskatchewan and Alberta produced 92%

<sup>&</sup>lt;sup>3</sup> U.S. Embassy, Buenos Aires, Argentina. State Department Telegram, Feb. 15, 1974, p. 1. <sup>4</sup> U.S. Embassy, Buenos Aires, Argentina. State Department Airgram A-240, May 17, 1973, p. 1.

of the country's output. Three smaller companies produced synthetic or byproduct salt cake in Ontario and Nova Scotia. There were two synthetic soda ash plants in Canada, one in Manitoba and one in Ontario. A new chlorine-caustic plant rated at 65,000 tons of caustic soda per year was being built at Becaneour, Quebec. It is scheduled to be onstream by spring 1975.

Chad.—Lake Chad was a good potential source of trona (termed "natron" in reports from Chad), but the 1973 production from this source was only 7,000 tons. The material was collected by hand from incrustations around the naturally alkaline lake and was continually replaced by solar evaporation of the lake water. Modern extraction equipment and rail transportation were necessary for large-scale exploitation of this source of soda ash.

Chile.—Sodium sulfate production figures for 1972 were published during 1973 5 and are as follows in short tons:

|      | natural sources      | 5,413  |
|------|----------------------|--------|
| From | the nitrate industry | 40,938 |
|      | Total                | 46,351 |

The government-owned nitrate monopoly announced that, it hoped to spend \$32.3 million on updating the equipment and plants for producing various chemicals, among them sodium sulfate.6

The Central Bank of Chile devalued the bankers rates for selected exports and imports. The list included sodium sufate.7

Japan.—All of the soda ash produced in Japan was synthetic rather than natural, but its volume, 1,374,000 tons in 1973,8 made it a large contributor to world supply. In spite of this large production, soda ash was in short supply in Japan in 1973. Increase in capacity of the Solvay plants was not planned, but importation of naturally derived soda ash from Wyoming was antici-

Kenva.—There were extensive trona deposits at Lake Magadi and the 1973 production was estimated at 197,000 tons. Only 16% of this was consumed in Africa and the rest was exported primarily to India, Japan, and the Philippines. The company which extracted the trona was called the Lake Magadi Soda Company Ltd., and was a subsidiary of the British firm, Imperial Chemical Industries, Ltd. (ICI). The raw material from the lake was calcined in Kenya before shipment. Trona reserves in Lake Magadi were estimated at 100 million tons.

Mexico.—The apparent consumption of soda ash in Mexico in 1973 was estimated to be 453,100 short tons. There were two soda ash plants in Mexico and a third being planned at Pajaretos, Vera Cruz.

United Kingdom.—A strike of British coal miners had a direct effect on United Kingdom soda ash output since coal, reduced to coke, was used in calcining limestone to reagent lime for the production of soda ash. The cutback was about 25% of the previous rate, and this had a "domino effect" on the glass and paper industries and subsequently on all products which were packaged in paper or glass. Little relief was obtained from abroad because of the worldwide shortage of soda ash.9

The sodium bicarbonate industry of England operated at nearly full capacity throughout 1973.10

The Mond Division of ICI, announced a modernization program of its 47-year-old Solvay soda ash works at Northwich, Cheshire. Total expenditure was reported to be £3.25 million (\$7.7 million U.S.)<sup>11</sup>

#### **TECHNOLOGY**

The Japanese have devised and brought onstream a full-scale plant for producing metallic sodium by an improved method.12 The process features reduced cost because of (1) lower operating temperature; (2) higher current efficiency; (3) lower labor costs; and (4) almost complete elmination of corrosion. The process starts by the creation of a sodium amalgam in a mercury-electrode electrolytic cell in which brine, instead of fused sodium chloride, is the electrolyte. The sodium amalgam is then transferred to a second cell in which this alloy is used as the anode and a perforated iron plate is

<sup>&</sup>lt;sup>5</sup> U.S. Embassy, Santiago, Chile. State Department Airgram A-92, May 9, 1973, p. 1.

<sup>6</sup> U.S. Embassy, Santiago, Chile. State Department Airgram A-38, Feb. 15, 1974, p. 1.

<sup>7</sup> U.S. Embassy, Santiago, Chile. State Department Telegram, June 4, 1973, p. 1.

<sup>8</sup> Symphy: Santiago, Chile. State Department Telegram, June 4, 1973, p. 1.

<sup>&</sup>lt;sup>8</sup> Suzuki, Sentaro. Soda Products. Japa Chemical Review, 1974. December 1973, p. 60. Japan

Chemical Review, 1974. December 1973, p. 60.

<sup>9</sup> Chemical Age. Coke Scarcity Forces ICI Soda
Ash Cut-Back. Mar. 1, 1974, p. 8.

<sup>10</sup> Chemical Marketing Reporter. From the
Cable Desk—Sodium Bicarbonate (Britain). V.
204, No. 12, Sept. 17, 1973.

<sup>11</sup> Chemical Marketing Reporter. Soda Ash
Plant of ICI Slated for Modernization. V. 203,
No. 20, May 14, 1973, p. 29.

<sup>12</sup> Nakamura, T., and Y. Fukuchi. Tekkosha's
New Metallic Sodium Process. J. Metals, v. 24,
No. 8, August 1972, pp. 25–27.

used as the cathode. The second electrolyte is a mixture of fused caustic soda, sodium iodide, and sodium cyanide held at a temperature of about 230° C (446° F) and kept under an atmosphere of hydrogen. The metallic sodium is drawn off continuously and is purified to remove the traces of mercury. Metallic mercury is, of course, recovered and recirculated back to the first electrolytic cell.

Table 6.-Sodium carbonate and sodium sulfate: World production by country 1 (Thousand short tons)

| (2110404114 111010 10110) |                  |         |         |
|---------------------------|------------------|---------|---------|
| Commodity and country     | 1971             | 1972    | 1973 р  |
| Sodium carbonate:         |                  |         |         |
| Natural:                  |                  |         |         |
| Chad                      | 8                | NA      | 8       |
| Kenya                     | 178              | 164     | 217     |
| Sudan 2                   | 160              | 52      | e 50    |
| United States 3           | 2,865            | 3,218   | 3,722   |
| Total                     | 3,211            | 3,434   | 3,997   |
| Manufactured:             |                  |         |         |
| Belgium                   | 344              | e 350   | e 350   |
| Brazil e                  | 120              | 130     | 140     |
| Bulgaria                  | 332              | e 340   | e 340   |
| Chile e                   | 11               | 11      | 11      |
| Colombia e                | 22               | 22      | 22      |
| Czechoslovakia            | 126              | 133     | e 138   |
| Denmark                   | 1                | e 1     | e 1     |
| France                    | 1,566            | 1,573   | 1,685   |
| Germany, East             | 787              | e 825   | e 880   |
| Germany, West             | 1,489            | 1,540   | 1,567   |
| Greece                    | ( <sup>4</sup> ) | e 1     | e 1     |
| India                     | ` <b>52</b> 8    | 536     | 488     |
| Italy                     | 732              | e 733   | e 740   |
| Japan                     | 1.409            | e 1.430 | e 1.480 |
| Mexico                    | 352              | e 355   | e 355   |
| Netherlands 5             | 266              | 284     | e 275   |
| Norway                    | 23               | e 28    | e 28    |
| Pakistan                  | 89               | 75      | 84      |
| Poland                    | 737              | e 750   | e 770   |
| Portugal                  | 53               | 105     | e 110   |
| Romania                   | 662              | 733     | e 750   |
|                           | 382              | 415     | e 420   |
| Spain                     | 1                | e 1     | e 1     |
| Sweden                    | 4.185            | 4.184   | 4.519   |
| U.S.S.R.                  | 4,298            | 4,310   | 3,838   |
| United StatesYugoslavia   | 116              | 129     | 142     |
| Total                     | 18,631           | 18,994  | 19,135  |
| Sodium sulfate, natural:  |                  |         |         |
| Argentina                 | 22               | e 25    | e 28    |
|                           | 482              | 507     | 525     |
|                           | 8                | 5       | e 6     |
| Chile                     | 19               | 20      | e 21    |
| Iran                      | 146              | 141     | 192     |
| Mexico                    | 146              | 139     | e 140   |
| Spain                     | 20               | 33      | e 33    |
| Turkey                    |                  | 701     |         |
| United States             | 688              |         | 672     |
| Total                     | 1,529            | 1,571   | 1,617   |
|                           |                  |         |         |

e Estimate. P Preliminary. NA Not available.

1 Table includes data on production of both natural and manufactured sodium carbonate and natural sodium sulfate; worldwide data on manufactured sodium sulfate production are not sufficiently complete for this category to be added to the table.

2 Production is not reported; figures presented represent exports.

3 Sold or used by producers.

4 Less than ½ unit.

5 Production for sale only; excludes output consumed by producers.



### Stone

### By Harold J. Drake 1

Production of stone in 1973 totaled 1.1 billion tons valued at \$2 billion. The quantity and value were 15% and 19%, respectively, above those of 1972. Most of the rise was attributed to increased output; a lesser share was due to expanded coverage of the crushed stone industry. Production of crushed stone totaled 1.06 billion tons valued at \$1.9 billion compared with 919 million tons valued at \$1.6 billion in 1972. Approximately 69% was used for construction aggregate, 11% for cement manufacture, 4% for agricultural purposes, and 3% for flux stone. Production of dimension stone rose 6% in quantity to 1.6 million tons but declined 5% in value to \$86.0 million. Production of granite rose 15%, and sandstone, quartz, and quartzite, 28%, whereas production of marble was off 32%, and limestone and dolomite declined 10%.

Crushed stone was produced in every State except Delaware. Principal producing States were California, Illinois, Florida, Texas, Ohio, and Missouri, which, in the aggregate, produced 32% of the total U.S. output. Dimension stone was produced in 44 States with Georgia, Indiana, Ohio, Pennsylvania, and Vermont accounting for 55% of the total. Massachusetts, Minnesota, and Wisconsin also accounted for large tonnages.

Price changes for stone were mixed in 1973. The average unit value for all

crushed stone rose \$0.08 to \$1.80 per ton. The corresponding figure for dimension stone was \$54.36, off \$6.55 per ton. The value of imports of stone was up 12% while that of exports was up 18%.

Legislation and Government Programs.-The National Science Foundation (NSF) announced plans to conduct a study of the crushed stone industry to determine the possibility of applying the sophisticated technology of the aerospace industry to traditional industries. The study will be conducted for NSF by the National Crushed Stone Association, Washington, D.C., and Martin Marietta Corp., Baltimore, Md. In the 1972 National Limestone Institute Safety Competition, top safety honors were awarded to Suwannee Mine, Florida Rock Industries, Inc., Live Oak, Fla.; Monroe Quarry, The France Stone Co., Monroe, Mich.; Pitts Quarry, Pitts Quarry Inc., Ashley, Ill.; Custar Mine, Pugh Quarry Co., Custar, Ohio; and Hillview Quarry and Volstad Quarry, Martin Volstad, Carrollton, Ill. These operations had the best safety records in the five categories of plants comprising the contest conducted by the Bureau of Mines, U.S. Department of the Interior, in cooperation with the National Limestone Institute.

Table 1.—Salient stone statistics in the United States <sup>1</sup>
(Thousand short tons and thousand dollars)

|                                 | 1969        | 1970        | 1971        | 1972          | 1973        |
|---------------------------------|-------------|-------------|-------------|---------------|-------------|
| Shipped or used by producers:   |             |             |             |               |             |
| Dimension stone                 | 1.867       | 1,565       | 1,626       | 1,490         | 1,582       |
| Value                           | \$98,547    | \$95,157    | \$93,132    | \$90,763      | \$85,999    |
| Crushed stone                   | 861.021     | 867,628     | 874,497     | r 918.933     | 1,058,541   |
| Value                           | \$1,326,047 | \$1,374,441 | \$1,500,933 | r \$1,581,530 | \$1,904,464 |
| Total stone 2                   | 862,889     | 869,193     | 876,123     | r 920,423     | 1.060.124   |
| Value 2                         | \$1,424,594 | \$1,469,598 | \$1,594,065 | r \$1,672,293 | \$1,990,463 |
| Exports (value)                 | \$10.223    | \$10.396    | \$11,489    | \$11,107      | \$13,063    |
| Imports for consumption (value) | \$30,548    | \$35,674    | \$33,643    | r \$43,436    | \$48,678    |

r Revised.

1 Includes slate.

<sup>&</sup>lt;sup>1</sup> Physical scientist, Division of Nonmetallic Minerals—Mineral Supply.

<sup>&</sup>lt;sup>2</sup> Data may not add to totals shown because of independent rounding.

#### **DIMENSION STONE**

#### DOMESTIC PRODUCTION

Production of dimension stone in 1973 increased 6% in quantity but declined 5% in value from the 1972 levels. The advance in volume was attributed to increased construction activity. Output totaled 1.6 million tons valued at \$86.0 million. Production of granite totaled 713,000 tons valued at \$46 million, rises of 15% in quantity and 8% in value from the preceding year. Dimension limestone and dolomite recorded declines of 10% and 17% in quantity and value, respectively, to 370,000 tons valued at \$11.9 million. Production of sandstone, quartz, and quartzite was up 28% in quantity and 10% in value to 296,000 tons valued at \$8.4 million. Production of marble totaled 48,000 tons valued at \$10.1 million compared with 71,000 tons valued at \$16.5 million in 1972. Production of slate rose both in quantity and value whereas that of other types of dimension stone fell 3% in quantity and 21% in value.

#### **CONSUMPTION AND USES**

Apparent consumption of dimension stone was valued at \$125 million, a level virtually unchanged from the preceding year. A decline in value of domestically produced stone was offset by a 12% increase in the value of imports. The share of the U.S. dimension stone market supplied by U.S. producers was 67%.

In 1973, the domestic market for dimension stone, in terms of value, was divided into 44% granite, 10% limestone and dolomite, 23% marble, 7% sandstone, quartz, and quartzite, and 16% slate and other dimension stone. Apparent consumption of granite totaled \$54.5 million, up 5%, and that of marble was \$28.6 million, down 12%. Considerable quantities of these kinds of dimension stone are also imported annually. Consumption of limestone and dolomite was valued at \$11.5 million, off 20%, and that of sandstone, quartz, and quartzite totaled \$8.4 million, up 10%. U.S. producers normally supply the great bulk of these types of stone. Consumption of slate and other kinds of stone rose 11% and 17%, respectively, from the levels of

The principal uses for domestically produced rough dimension stone were in monumental, architectural, and construction ap-

plications. Consumption of monumental stone totaled \$12.3 million, that of architectural stone, \$6.5 million, and that of construction stone \$4.1 million. The remainder went for flagstone and numerous other uses. Consumption of domestically produced dressed stone was valued at \$61.5 million, most of which consisted of cut stone (\$20.7 million) and monumental stone (\$14.2 million). The value of sawed stone totaled \$4.5 million. Consumption of dressed house stone veneer was valued at \$3.5 million, curbing, at \$7.8 million, and roofing and millstock slate, at \$5.1 million. The remainder was used principally in construction and flagging.

#### **PRICES**

Average values for dimension stone in 1973, as reported to the Bureau of Mines, were as follows, in dollars per ton:

|               | Bui     | lding    | Monu-<br>mental,        | Flag-   |  |
|---------------|---------|----------|-------------------------|---------|--|
| -             | Rough   | Dressed  | rough<br>and<br>dressed | ging    |  |
| Granite       | \$32.12 | \$ 86.55 | \$63.70                 |         |  |
| Marble        | 54.29   | 290.24   |                         |         |  |
| Limestone _   | 19.15   | 51.61    |                         | \$21.50 |  |
| Sandstone _   | 18.16   | 50.19    |                         | 39.33   |  |
| Slate         |         | 145.43   |                         | 34.77   |  |
| Miscellaneous | 14.42   | 60.57    |                         |         |  |

#### **FOREIGN TRADE**

U.S. exports of dimension stone declined 5% to \$2.8 million. The export market has not been a significant outlet for U.S. producers and in 1973 accounted for only 3% of their output. Canada and countries in South America such as Venezuela and Chile have been the principal foreign markets.

Imports of dimension stone supplied a significant share of the U.S. market for dimension stone. In 1973, imports were valued at \$41.5 million, compared with \$37.4 in 1972, and supplied 33% of the U.S. market. Increased shipments were recorded for marble, at \$18.5 million; travertine, at \$3.3 million; slate, at \$6.5 million; other stone, at \$4.5 million; and limestone at \$188,000. Imports of granite, however, declined 9% to \$8.6 million. Imports of marble and travertine, which accounted for 45% of the total value of imports, rose 14%, slate rose 15%, and miscellaneous stone rose 40%. The principal marble item, slabs and paving tiles, rose 20%. Imports of whiting rose 57% to \$1.2 million.

STONE 1155

As in past years, Italy and Portugal supplied most of the marble and travertine imports. Granite was imported principally from Italy and Canada. Numerous other countries supplied the remainder.

#### WORLD REVIEW

Greece.—An estimated 400 to 500 quarries operated by 250 companies produced marble in 1973. Production has averaged

about 200,000 tons in recent years and is expected to be three times greater by 1980. Most of the marble produced goes to the building industry as dimension stone, but some was ground.

United Arab Emirates.-Marble was produced in the Emirate of Ajman not far from the town of Ajman. Output totals about 60 square yards per day but is expected to double during 1974. All of the output is used locally.

#### CRUSHED STONE

#### **DOMESTIC PRODUCTION**

Production of crushed stone in 1973 totaled 1.06 billion tons valued at \$1.9 billion compared with 919 million tons valued at \$1.6 billion in 1972. The new high in output was attributed in part to increased demand and in part to expanded coverage of crushed stone producers.

The sharp gain in total production was led by limestone and dolomite, which increased 15% in quantity and 21% in value. Granite also recorded sharp production gains of 13% and 19% in quantity and value, respectively. Production of traprock rose 9% in quantity and 11% in value, corresponding figures for sandstone, quartz, and quartzite were 13% and 20%. Other types of stone, which accounted for a lesser portion of total output also recorded gains in output. In quantity and value, shell was up 20% and 27%, respectively, and other stone was up 64% and 89%, respectively. In contrast, marble was off 10% and 6% in quantity and value, respectively, and output of marl was off 12% in quantity and 15% in value.

Domestic producers have encountered some difficulties in meeting the heavy demand in recent years for crushed stone. Shortages in labor and of transportation vehicles were common, and high interest rates have delayed construction of new facilities. Zoning laws and conformance with environmental regulations have served, in many instances, to restrict production.

The problems inherent in the steadily increasing demand for crushed stone must be reconciled with societal demands for environmental quality.2 Rapid growth and technological development in recent years have created a need for careful internal appraisal of the industry and its place in society. Management science in planning, operating, and evaluating operations in the aggregate industry is a step in this direction.3 In addition, it is essential to differentiate costs that comprise fixed capital and working capital and how to understand the functions of depreciation for fixed as-

Several studies were made of the utilization of alternative materials and waste materials for aggregate purposes.<sup>5</sup> Successful utilization of a depleted gravel pit as a sanitary landfill operation may lead one company to utilize an abandoned rock quarry in a similar manner.6 Key to the success of the operation was the use of a thin layer of asphalt pavement that prevented liquids from permeating into surrounding soils. Perhaps one of the most significant decisions facing crushed stone producers is land reclamation when quarries are depleted. Early planning for industrial or residential use of mined-out areas can lead to considerable savings in time and money.7

A number of new plants were planned or opened and numerous existing plants underwent modernization and expansion. Ivy Corp., Atlanta, Ga. announced plans for construction of a major new plant and the expansion of existing operations in

<sup>&</sup>lt;sup>2</sup> Fish, B. G. Towards a Strategy for Quarrying, Quarry Managers' J., v. 57, No. 8, August 1973, pp. 275-280.

<sup>3</sup> Romani, R. V. Aggregate Industry and the Management Sciences. Pit & Quarry, v. 66, No. 3, September 1973, pp. 107-109, 119.

<sup>4</sup> Holland, F. A., F. A. Watson, and J. K. Wilkinson. Capital Costs and Depreciation. Chem. Eng., July 1973, pp. 118-121.

<sup>5</sup> Building Research Establishment. Report of Aggregates and Waste Materials Working Group. Current Paper 31-73, November 1973, 12 pp. Gutt, W. Aggregates From Waste Materials. Building Research Establishment. Current Paper 14-72, August 1972, 10 pp.

<sup>6</sup> Hill, A. D. Pave Old Gravel Pit-Town Gets Sanitary Land Fill. Roads and Streets, v. 116, No. 8, p. 104.

No. 8, p. 104.

Stearn, E. W. Put Your Land to Work—Twice. Rock Products, v. 77, No. 4, April 1974, pp. 46-49.

northern Georgia. A new plant opened by Melvin Stone Co., Melvin, Ohio, reportedly uses 40% less labor than its old plant.8 Erie Stone Co. modernized its crushed stone plant at Huntington, Ind., and now produces over 1 million tons per year of crushed limestone.9 Other plant expansions were reported by Maule Industries, Inc., Miami, Fla., Southern Illinois Stone Co., Buncombe, Ill., Marblehead Lime Co., Gary, Ind., Florida Mining and Materials Co., Brookville, Fla., and MCQ Industries, Inc., Columbus, Ohio.

Portable crushed stone plants were used widely by the industry. Ivey Construction Co., Mineral Point, Wis., used a 300-tonper-hour portable crushing and screening plant to service 10 quarries.10 V. H. Collender Co., Pittsfield, Ill., used a completely roadable crushing and screening plant to supply as much as 900,000 tons of crushed limestone per year from several quarries.11 Nesbitt Contracting Co., Mesa, Ariz., mounted crushers and screens on a semitrailer frame and, along with other portable equipment, services as many as a dozen different quarries in a year.12 Gilpatrick Construction Co., Inc., Riverton, Wyo., used specially designed portable equipment to operate at numerous sites.13

Gordon H. Ball, Inc., Black Butte, Calif., used a portable plant to process volcanic lava for use as a construction aggregate.14 Monitoring of portable plants was accomplished using an airplane and a helicopter.15 One of California's largest aggregate producers. Livingston-Graham, Inc., El Monte, Calif., used a minicomputer-based information-control subsystem to improve profits and the utilization of equipment and manpower.16

#### **CONSUMPTION AND USES**

Apparent consumption of crushed stone in 1973 totaled 1.06 billion tons valued at \$1.9 billion. Consumption was equivalent to production inasmuch as imports and exports were about equal. Consumption of limestone and dolomite totaled 774 million tons valued at \$1.3 billion, while that of granite totaled 121 million tons valued at \$216.9 million. Comparable data for 1972 for limestone and dolomite were 672 million tons valued at \$1.1 billion, and for granite, 106 million tons valued at \$182.9 million. Consumption of traprock totaled 84 million tons valued at \$177.7 million, up from 77 million tons valued at \$159.8

million in 1972. In the aggregate, these three types of crushed stone accounted for 92% of total consumption. Consumption of marl totaled 2.3 million tons valued at \$3.0 million, marble, 2 million tons valued at \$23.4 million, and other kinds of stone. 23.5 million tons valued at \$46.2 million. Consumption of shell increased to 19.9 million tons valued at \$37.6 million.

Construction continued to be the principal market for crushed stone. In 1973, approximately 735 million tons, two-thirds of total consumption, was used as aggregate. Roadbase stone accounted for 258 million tons, concrete aggregate, 153 million tons, bituminous aggregate, 102 million tons, and unspecified aggregate, 130 million tons. Consumption in each of the major use categories was well above 1972 levels. Other major uses, apart from aggregate use, recording consumption gains were cement, at 115 million tons, up 6%, agriculture, at 39 million tons, up 39%, lime manufacture, at 34 million tons, up 13%, and fluxstone at 29 million tons, up 12%. The great majority of all other use categories recorded consumption gains.

#### **PRICES**

Quotations in Engineering News-Record for carload lots of 11/2-inch crushed stone in 1973, exclusive of discounts, ranged from \$6.60 per ton in Minneapolis, Minn. and Los Angeles, Calif., to \$1.65 per ton in Birmingham, Ala. The average price reported for 12 major cities was \$3.44 per ton. Prices for 3/4-inch crushed stone ranged from \$6.60 per ton in Minneapolis

ranged from \$6.60 per ton in Minneapolis

\*Trauffer, W. E. Economy, Capacity, Environmental Control Improved by New 400-TPH Plant of Melvin Stone Company, Pioneer Ohio Crushed Stone Producer. Pit and Quarry, v. 66, No. 5, November 1973, pp. 128-132.

\*Robertson, J. L. Century-Old Quarry Produces A Million Tons/Year. Rock Products, v. 76, No. 8, August 1973, pp. 40-43.

\*Robertson, J. L. Portable Plant Serves 10. Quarry Operations. Rock Products, v. 76, No. 8, August 1973, pp. 36-37.

\*Roads and Streets. Roadable Aggregate Plants Pay Off for Contractor. V. 116, No. 3, March 1973, pp. 251-255.

\*\*PRoads and Streets. Small Crushing Plant Managed for Full Productivity. V. 116, No. 3, March 1973, pp. 256-257.

\*\*PROADS AND STREETS. The Productive Firm Builds Business Around Aggregates Supply. V. 116, No. 3, March 1973, pp. 248-250.

\*\*Robertson, J. L. Portable Plant Processes Volcanic Deposit. Rock Products, v. 76, No. 9, September 1973, pp. 46-48.

\*\*Is Robertson, J. L. Aircraft Help Monitor Portable Plants. Rock Products, v. 76, No. 9, September 1973, pp. 43-45.

\*\*Modern Office Procedures. A Subsystem for Profit Improvement. V. 18, No. 9, September 1973, pp. 37-40.

STONE 1157

to \$1.65 per ton in Birmingham. The average price for 12 major cities was \$3.51 per ton. Prices per ton for industrial fillers and extenders, as reported in the American Paint Journal, were as follows, in dollars:

| \$69.00       |
|---------------|
| 20.50-45.40   |
|               |
| 48.00         |
|               |
| 14.25 - 22.00 |
| 50.00-117.00  |
|               |
| 33.00 - 44.00 |
|               |
| 39.00         |
|               |

#### **FOREIGN TRADE**

Exports of crushed stone in 1973 totaled 3.1 million tons valued at \$10.2 million, increases of 11% and 26%, respectively, from the levels in 1972. An increase in shipments of crushed limestone was partially offset by a decline in shipments of other stone. Canada was the principal market with smaller volumes going to countries in Central America.

Imports of crushed stone rose slightly in 1973 to 3.3 million tons valued at \$5 million. Of the two principal kinds of stone comprising imports, crushed limestone declined 6% in quantity, and other crushed stone rose 15% in quantity. Imports of dry-ground whiting rose 28% in quantity and 41% in value to 26,653 tons valued at \$875,000. Precipitated chalk whiting totaled 3,332 tons valued at \$332,000 compared with 1,895 tons valued at \$150,000 in 1972.

#### WORLD REVIEW

Canada.—Production of crushed stone has averaged about 74 million tons valued at \$95 million in recent years. Approximately 88% of the total output was limestone; 6%, granite; and 4%, sandstone. The remainder consisted principally of marble, shale, and slate. Roadstone accounted for about 30% of the total output, concrete aggregate about 15%, asphalt aggregate about 9%, and riprap about 3%. A large number of applications accounted for the remainder. Limestone resources of the Province of Alberta were examined, and it was determined that abundant reserves of highcalcium limestone exist in various parts of the Province.17

Dominican Republic.—Aluminum Company of America (Alcoa) joined with local business interests to form a company, Complejo Industrial Pedernales, to produce agricultural lime. Initial production, expected in early 1974, will total 60,000 tons. The limestone raw material will be supplied by Alcoa from its mine in Cabo Rojo.

Japan.—Limestone deposits of good quality are widely distributed throughout Japan. Resources were estimated to be about 41 billion tons with an additional 987 million tons of dolomite.18 In 1972, the latest year for which detailed statistics were available, 277 companies operated 324 quarries and produced 140 million tons of limestone. Of this production, 61% was used in the manufacture of cement; 18%, for flux; 11%, as aggregate; and 6%, for the manufacture of lime. Numerous other uses accounted for the remainder.

South Africa, Republic of.—Coedmore Quarrier, Durban, Natal, in 1973 completed 50 years of crushed stone production.19 Production, which consisted of quartzite, dolerite, and tillite, was used as concrete aggregate and coarse aggregate for road work. Production in 1972 was about 1.1 million tons.

United Kingdom.—Production of crushed stone aggregate in Great Britain totaled 110 million tons in 1972. Of this tonnage, 35% was used for fill and ballast, 28% for uncoated roadstone, 19% for concrete aggregate, and 18% for coated roadstone. Production of crushed limestone at the Tunstead Quarry owned by Imperial Chemical Industries, Ltd., exceeded 5.5 million tons a year.20 High-calcium lime was produced for use in ammonia-soda plants and in the manufacture of lime and cement, but lower quality stone was used for roadstone and aggregate.

Amey Roadstone Corporation, Ltd., more than doubled capacity at its Black Rock Quarry near Portishead, Somerset, 400,000 tons per year.21 Redland Roadstone, Ltd., and Hoveringham Stone, Ltd., joined together to form R. H. Roadstone, Ltd., to quarry, process, and market dry and coated stone near Nunney, Somerset.22

<sup>17</sup> Holter, M. E. Limestone Resources of Alberta. Can. Min. and Met. Bull., v. 66, No. 731, March 1973, pp. 140-152.

18 The Institute of Limestone Quarry. Limestone Mining Industry in Japan. 1973, 5 pp. 19 Holz, P. South African Quarry Is Modern Efficient. Rock Products, v. 76. No. 10, October 1973; pp. 44-46.

20 Ironman, R. Tunstead Quarry: Largest Outside of U.S. Rock Products, v. 76, No. 4, April 1973, pp. 70-76.

21 The Quarry Managers' Journal. Plant Extensions at a Somerset Limestone Working. V. 57, No. 6, June 1973, pp. 193-198.

<sup>57,</sup> No. 6, June 1973, pp. 193-198.

The Quarry Managers' Journal. Redland Hoveringham Form Joint Limestone Company.

V. 57, No. 10, October 1973, p. 363.

#### **TECHNOLOGY**

A study of surveying techniques in the quarrying industry was published.22 A wide range of methods relating to various situations were outlined to demonstrate the usefulness of minerals surveying. The importance of surge piles between the quarryprimary crushing operation and the remainder of the plant was thoroughly discussed.24

It was suggested that an appropriate strength test be employed in conjunction with polished-stone value to determine the suitability of crushed stone as paving aggregate.25 The aggregate impact test was believed to be the best strength and durability test to use inasmuch as it is simple, rapid, and inexpensive yet is sensitive to variations in fundamental properties of the aggregate. Crushed stone was used to stabilize highway subgrade thus enabling the contractor to use the subgrade as a haul road.26 The crushed stone was thoroughly mixed with silty, unstable subgrade soil and compacted to form a solid impervious foundation that could be used, prior to paving, as a haul road.

Benefits derived from recycling concrete and asphalt rubble in California included lower costs, saving scarce landfill areas, and extending existing aggregate resources.27 A method of pelletizing ground limestone, using special clay binders, was developed to allow agricultural limestone to be spread evenly and utilized immediately.28

Quarry blasting was the subject of a number of studies. One study developed the basic principles, significant variables and procedures for their integration in designing primary blasts from a widely variable combination of possibilities to achieve safe working and economic production.29

Generally accepted rules of thumb on blasting in the quarrying industry and their relationship to hole size and pattern were outlined.30 More precise blasting designs and patterns were presented to provide quarry operators with an uncomplicated, first-approximation method for designing blast patterns.31 In southern Florida, a high water table and drilling difficulties led to the development of a unique explosivesloading technique.32 A metal tube slides down the borehole as it is drilled and remains there until the explosives are loaded, after which it is removed.

Guidelines were set out for selecting primers when blasting with AN-FO.33 Dewatering of blastholes and the cost reductions inherent thereto were examined.34

Factors affecting equipment selection and maintenance were reviewed.35 Use of hydraulic excavators in quarrying operations has expanded considerably in recent years and real benefits have been gained from their use.36

Rippers were used to break up deposits of basaltic and granitic rock,37 and specially designed trucks were used to reduce the number of trucks required, lower maintenance costs, and speed up the movement of crushed and broken stone during mining and processing operations.38

Pit & Quarry, v. 66, No. 6, December 1973, pp. 68-73.

<sup>25</sup> Ramsay, D. M., R. K. Dhir, and J. M. Spence. Reproducibility of Results in the Aggregates Impact Test Quarry Managers' J., v. 57, No. 5, May 1973, pp. 179-181.

<sup>26</sup> Roads & Streets. Crushed Stone Improves Subgrade. V. 116, No. 6, June 1973, pp. 35-38.

<sup>27</sup> Roads and Streets. Recycled Rubble Saves Contractors Money. V. 116, No. 4, April 1973, pp. 80-83.

Contractors Money. V. 116, No. 4, April 1973, pp. 80-83.

28 Trauffer, W. E. Pelletized Limestone—A Brand-New Approach. Pit and Quarry, v. 65, No. 11. May 1973, pp. 68-73.

29 Greenland, B. J. Primary Blasting Practices. Quarry Managers' J., v. 57, No. 12, December 1973, pp. 421-426.

30 Pit and Quarry. Seven Rules of Thumb for Blasting Hard Rock. V. 66, No. 3, September 1973, pp. 72-75.

31 Pugliese, J. M. A Comparison of Calculated Patterns With Plans Used in Quarrying Limestone and Dolomite, With Geologic Considerations. Pit and Quarry, v. 66, No. 2, August 1973, pp. 85-88.

tions. Fit and Quarry, v. vo, ivo. 2, August 2000, pp. 85-88.

32 Pit and Quarry. Blasting—South Florida Style! V. 66, No. 5, November 1973, pp. 94-95.

33 Borg, D. A. Shooting Hard Rock with ANFO? Rock Products, v. 76, No. 9, September 2022. 1973, pp. 80-81.

<sup>34</sup> Dannenberg, J. Blasthole Cuts Costs. Rock Products, v. 76, No. 12, December 1973, pp. 66-

Froducts, v. 10, No. 12, Determine 1010, pp. 60-68.

35 Buchella, F. H., Jr., L. G. Dykers, B. E. Grant, and T. Jancic. Open-Pit Equipment Selection and Maintenance. Min. Eng., v. 25, No. 12, December 1973, pp. 25-30.

35 Tinto, T. D. The Effective Application of Hydraulic Excavators. Quarry Managers' J., v. 57, No. 5, May 1973, pp. 161-168.

Holtz, P. Quarrying Methods at Large South African Plant. Pit and Quarry, v. 66, No. 3, Sentember 1973, pp. 80-82.

37 Robertson, J. L. Ripper Teeth Break Up Tough Aggregate Deposit. Rock Products, v. 76, No. 12, December 1973, pp. 34-37.

Roads & Streets. Rip Basalt With Big Tractor. V. 116, No. 10, October 1973, pp. 144-115.

38 Roads & Streets. Special Trucks Keep Rock Plant Humming. V. 116, No. 8, August 1973, pp. 60-62.

pp. 60-62.

<sup>&</sup>lt;sup>23</sup> Lindsey, H. G. A. Surveying Techniques Applied to the Quarrying Industry. Quarry Man-agers' J., v. 57, No. 6, June 1973, pp. 207-215. <sup>24</sup> Schultz, G. A. To Surge or Not to Surge. Pit & Quarry, v. 66, No. 6, December 1973, pp.

STONE 1159

Table 2.-Stone shipped or used by producers in the United States, by State (Thousand short tons and thousand dollars)

| QL-1                       | 19        | 972                 | 19                  | 73        |
|----------------------------|-----------|---------------------|---------------------|-----------|
| State —                    | Quantity  | Value               | Quantity            | Value     |
| Alabama 1                  | 18,485    | 42,027              | 20,043              | 40,117    |
| Alaska                     | 652       | 3,012               | 5,967               | 12,741    |
| Arizona                    | 4,638     | 8,018               | 4,265               | 9,469     |
| Arkansas                   | 16,317    | 25,020              | 16,223              | 26,209    |
| California                 | 37,213    | 65,811              | 43,838              | 77,175    |
| Colorado                   | 4,507     | 9,599               | 6,357               | 14,008    |
| Connecticut                | 8,719     | 19,695              | 9,682               | 21,305    |
| Florida <sup>1</sup>       | 52,732    | 79,877              | 61,735              | 103,598   |
| Georgia                    | 37,074    | 82,484              | 40,841              | 97,506    |
| Hawaii                     | 1 5,005   | <sup>1</sup> 13,494 | 7,180               | 18,466    |
| Idaho                      | 3,094     | 7,042               | 2,972               | 8,096     |
| Illinois                   | 1 56,260  | 1 94.225            | 66,653              | 114,06    |
| Indiana                    | 27,511    | 50,919              | 1 32,288            | 1 57,652  |
| Iowa                       | 27.457    | 48,642              | 31,541              | 56,918    |
| Kansas 1                   | 14,547    | 23,849              | 18,334              | 33,601    |
| Kentucky 1                 | 34,279    | 59,690              | 38,205              | 70,912    |
| Louisiana 1                | 9,190     | 14,836              | 10,802              | 21.309    |
|                            | 1.078     | 2,996               | 1,212               | 3,329     |
|                            | 19,431    | 41,973              | 18,585              | 46,732    |
|                            | 7,990     | 23,500              | 8,580               | 28,738    |
| Massachusetts              |           |                     | 45.886              | 60,494    |
| Michigan                   | 39,754    | 50,317              | 7,581               | 20.41     |
| Minnesota                  | 5,757     | 16,318              | 1,581<br>1 760      | 1 809     |
| Mississippi                | 1,135     | 1,199               |                     | 79,921    |
| Missouri                   | 42,473    | 1 63,219            | 49,304              |           |
| Montana                    | 4,074     | 5,627               | 5,054               | 9,559     |
| Nebraska                   | 4,251     | 7,645               | 5,368               | 10,958    |
| Nevada                     | 3,329     | 5,926               | 3,595               | 5,429     |
| New Hampshire              | 528       | 3,743               | 1,836               | 5,416     |
| New Jersey 1               | r 15,223  | r 42,044            | 15,902              | 45,58     |
| New Mexico                 | 2,768     | 5,499               | 2,830               | 5,894     |
| New York                   | 38,138    | 77,825              | 44,393              | 94,698    |
| North Carolina             | 32,297    | 62,741              | 38,782              | 80,065    |
| North Dakota               | w         | $\mathbf{w}$        | $\mathbf{w}$        | W         |
| Ohio                       | 48,498    | 90,821              | <sup>1</sup> 55,107 | 1 98,009  |
| Oklahoma                   | 19,448    | 26,574              | 22,316              | 34,999    |
| Oregon                     | 10,915    | 18,380              | 13,411              | 21,843    |
| Pennsylvania               | 67,307    | 124,340             | 78,564              | 150,346   |
| Rhode Island               | 1 329     | <sup>1</sup> 23     | w                   | w         |
| South Carolina             | 12,482    | 21,819              | 14,985              | 24,280    |
| South Dakota               | 2,665     | 10,864              | 2,745               | 11,607    |
| Tennessee                  | 35.942    | 55,512              | 42,742              | 71,116    |
| Texas                      | 49.314    | 1 66,573            | 62,574              | 91,379    |
| Utah                       | 3.384     | 6,005               | 2.848               | 6.318     |
|                            | 3,300     | 26,170              | 1.871               | 19.523    |
| Vermont                    | 39,987    | 74.090              | 43,895              | 82,719    |
| Virginia                   | 14.712    | 1 23,764            | 11.384              | 19,284    |
| Washington                 | 11,649    | 21,293              | 11,732              | 22,82     |
| West Virginia 1            | 19,394    | 29,681              | 23,818              | 36,917    |
| Wisconsin                  | 3,549     | 5.768               | 3.191               | 6,716     |
| Wyoming                    | 1,639     | 11.801              | 2,345               | 11,412    |
| Undistributed $^1$         |           |                     |                     |           |
| Total 2                    | r 920,423 | r 1,672,293         | 1,060,124           | 1,990,468 |
| Pacific Island Possessions | 880       | 2,397               | 1,309               | 3,292     |
| Puerto Rico                | 13,504    | 32,792              | 15,647              | 41,857    |
| Virgin Islands             | 726       | 2,255               | 664                 | 2,860     |

r Revised. W Withheld to avoid disclosing individual company confidential data; included with "Undistributed."

¹ To avoid disclosing individual company data certain State totals are incomplete, the portion not included has been combined with "Undistributed." The class of stone omitted from such State totals is noted in the summary chapter of this volume.

² Data may not add to totals shown because of independent rounding.

Table 3.-Stone shipped or used by producers in the United States, by kind (Thousand short tons and thousand dollars)

| Ye                                   | ar | Quan-<br>tity                                    | Value                                               | Quan-<br>tity                                    | Value                                               | Quan-<br>tity                             | Value                                          | Quan-<br>tity                                       | Value                                                     | Quan-<br>tity                                           | Value                                                         |
|--------------------------------------|----|--------------------------------------------------|-----------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|-------------------------------------------|------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------|
|                                      |    | Gran                                             | nite                                                | Trap                                             | rock 1                                              | Ма                                        | rble                                           |                                                     | tone and<br>omite                                         | Sh                                                      | ell                                                           |
| 1969<br>1970<br>1971<br>1972<br>1973 |    | 75,880<br>86,709<br>93,486<br>106,887<br>121,320 | 160,960<br>183,312<br>194,715<br>225,571<br>262,834 | 78,914<br>77,227<br>75,318<br>F 77,044<br>83,962 | 143,230<br>146,661<br>160,582<br>159,934<br>177,703 | 2,342<br>1,785<br>1,717<br>2,318<br>2,071 | 34,689<br>33,734<br>34,860<br>41,545<br>33,532 | 628,937<br>625,796<br>628,503<br>671,907<br>774,767 | 937,179<br>961,013<br>1,031,211<br>1,105,085<br>1,333,855 | 19,731<br>21,713<br>18,537<br>16,610<br>19,896          | 27,933<br>31,035<br>30,088<br>29,571<br>37,650                |
|                                      |    |                                                  | areous<br>narl                                      | quart                                            | stone,<br>z, and<br>tzite                           | SI                                        | ate                                            |                                                     | Other<br>tone <sup>2</sup>                                | Tota                                                    | ıl s                                                          |
| 1969<br>1970<br>1971<br>1972<br>1973 |    | 2,490<br>1,739<br>3,459<br>2,650<br>2,327        | 2,516<br>1,554<br>4,504<br>3,598<br>3,042           | 27,456<br>24,059<br>30,729<br>27,047<br>30,647   | 64,272<br>59,185<br>84,630<br>65,678<br>78,084      | 1,308<br>1,241<br>1,232<br>1,595<br>1,555 | 13,831<br>13,367<br>13,615<br>14,925<br>15,980 | 25,831<br>28,925<br>23,143<br>14,364<br>23,580      | 39,983<br>39,738<br>39,860<br>26,386<br>47,785            | 862,889<br>869,193<br>876,123<br>r 920,423<br>1,060,124 | 1,424,594<br>1,469,598<br>1,594,065<br>1,672,293<br>1,990,463 |

F Revised.

<sup>&</sup>lt;sup>1</sup> Includes gabbro, basalt, diabase, etc.
<sup>2</sup> Includes mica schist, conglomerate, argillite, various light-colored volcanic rocks, serpentine not used as marble, soapstone sold as dimension stone, etc.
<sup>3</sup> Data may not add to totals shown because of independent rounding.

STONE 1161

Table 4.—Dimension stone shipped or used by producers in the United States by use and kind of stone

(Thousands)

| -                                          |                        | 1972                                     |                 |                | 1973                                     |             |
|--------------------------------------------|------------------------|------------------------------------------|-----------------|----------------|------------------------------------------|-------------|
| Kind of stone and use                      | Short<br>tons          | Cubic<br>feet                            | Value           | Short<br>tons  | Cubic<br>feet                            | Val         |
| GRANITE                                    |                        |                                          |                 |                |                                          |             |
| ough:                                      |                        | F10                                      | 60 100          | 40             | 533                                      | \$2,0       |
| Architectural Construction 1               | 46<br>54               | 513<br>652                               | \$2,139<br>662  | 49<br>113      | 1,236                                    | \$2,0<br>9  |
| Monumental                                 | 287                    | 2,889                                    | 11,266          | 312            | 3,227                                    | 12,2        |
| Flagging <sup>2</sup>                      | (3)                    | 5                                        | 9               | 1              | 12                                       | ,           |
| ressed:                                    |                        |                                          |                 |                | 400                                      | 11.0        |
| Cut                                        | w                      | W                                        | w<br>w          | 36<br>25       | 432<br>293                               | 11,8<br>1,4 |
| Sawed                                      | 14<br>6                | 156<br>71                                | 132             | 5              | 63                                       | 1,7         |
| House stone veneer<br>Construction         | 10                     | 111                                      | 636             | 4              | 54                                       | į           |
| Monumental                                 | 33                     | 402                                      | 10,125          | 30             | 360                                      | 9,8         |
| Curbing                                    | 130                    | 1,537                                    | 6,217           | 136            | 1,610                                    | 7,0         |
| Other dressed stone 4                      | 42                     | 505                                      | 11,455          | 1              | 15                                       |             |
| Total 5                                    | 621                    | 6,842                                    | 42,641          | 713            | 7,834                                    | 45,9        |
| LIMESTONE AND DOLOMITE                     |                        |                                          |                 |                |                                          |             |
| ough: Architectural                        | 175                    | 2,400                                    | 4,070           | 139            | 1,872                                    | 3,0         |
| ArchitecturalConstruction 1                | 56                     | 706                                      | 846             | 66             | 827                                      | - '9        |
| Flagging                                   | 18                     | 220                                      | 246             | 14             | 179                                      |             |
| Other rough stone 6                        | 1                      | 18                                       | 21              | 2              | 20                                       |             |
| ressed:                                    | 40                     | C 4 C                                    | 5,465           | 44             | 598                                      | 4.          |
| Cut                                        | 49<br>30               | $\frac{646}{402}$                        | 1,377           | 32             | 433                                      | 1,          |
| SawedHouse stone veneer                    | 68                     | 894                                      | 2,046           | 60             | 778                                      | ī,          |
| Construction                               | 12                     | 145                                      | 219             | 11             | 136                                      | É           |
| Flagging                                   | 2                      | 25                                       | 50              | 2              | 23                                       |             |
| Other dressed stone 6                      | 1                      | 12                                       | 38              | (3)            | (3)                                      |             |
| Total 5                                    | 411                    | 5,469                                    | 14,378          | 370            | 4,866                                    | 11,         |
| MARBLE                                     | *                      |                                          |                 |                |                                          |             |
| ough:                                      | 9                      | 102                                      | 434             | 5              | 56                                       | :           |
| ArchitecturalConstruction <sup>1</sup>     | w                      | w                                        | w               | 9              | 106                                      |             |
| Other rough stone 7                        | w                      | w                                        | w               | (3)            | 2                                        |             |
| ressed:                                    |                        |                                          |                 |                | 150                                      |             |
| Cut                                        | 21                     | 249                                      | 7,908<br>932    | $\frac{13}{3}$ | $\begin{array}{c} 152 \\ 33 \end{array}$ | 3,          |
| Sawed                                      | 5<br>9                 | $\begin{array}{c} 62 \\ 104 \end{array}$ | 992             | 2              | 29                                       |             |
| House stone veneer                         | -                      |                                          |                 | (w̃            | w                                        |             |
| Monumental                                 | 8 27                   | 316                                      | 6,275           | 115            | 175                                      | 4,          |
| Other dressed stone 9                      |                        |                                          |                 | (3)            | 5                                        |             |
| Total 5                                    | 71                     | 833                                      | 16,541          | 48             | 557                                      | 10,         |
| SANDSTONE, QUARTZ, AND QUARTZITE           |                        |                                          |                 |                |                                          |             |
| ough:                                      | 40                     | ***                                      | 614             | 48             | 637                                      |             |
| Architectural                              | 42<br>74               | 553<br>973                               | 872             | 129            | 1,675                                    | 1,          |
| Construction 1 Flagging                    | 18                     | 218                                      | 894             | 22             | 273                                      | 1,          |
| Uses not specified                         | ĩ                      | 10                                       | 11              | 3              | 33                                       |             |
| ressed:                                    |                        |                                          |                 |                | 061                                      | 1,          |
| Cut                                        | 21                     | 273                                      | $^{1,139}_{23}$ | 20<br>W        | 261<br>W                                 | 1,          |
| Curbing                                    | ( <sup>3</sup> )<br>27 | 5<br>342                                 | 907             | 25             | 338                                      |             |
| House stone veneer                         | 17                     | 207                                      | 472             | 15             | 185                                      |             |
| Flagging<br>Other dressed stone 10         | 32                     | 429                                      | 2,752           | 35             | 478                                      | 2,          |
| Total 5                                    | 231                    | 3,011                                    | 7,684           | 296            | 3,879                                    | 8,          |
| SLATE                                      |                        |                                          |                 |                |                                          |             |
| oofing slate 11                            | 12                     |                                          | 1,369           | 12             |                                          | 1,          |
| fillstock:                                 |                        |                                          | 0.400           | 00             |                                          | 2,          |
| Structural and sanitary purposes           | 14                     |                                          | $2,499 \\ 173$  | 20<br>3        |                                          | z,          |
| Blackboards, etc.12                        | 1<br>4                 |                                          | 641             | w              |                                          |             |
| Billiard tablet tops                       | 19                     |                                          | 3,313           | 23             |                                          | 3,          |
| Total ==================================== | 36                     |                                          | 1,146           | 35             |                                          | 1,          |
| Flagging<br>Flooring                       |                        |                                          |                 | 4              |                                          |             |
|                                            | 14                     |                                          | 1,576           | 14             |                                          | 1,<br>7,    |
| ther uses not listed 13                    | 80                     |                                          | 7,404           | 88             |                                          |             |

Table 4.-Dimension stone shipped or used by producers in the United States by use and kind of stone-Continued

(Thousands)

|                        |               | 1972             |                     |               | 1973          |        |
|------------------------|---------------|------------------|---------------------|---------------|---------------|--------|
| Kind of stone and use  | Short<br>tons | Cubic<br>feet    | Value               | Short<br>tons | Cubic<br>feet | Value  |
| OTHER STONE 14         |               |                  |                     |               |               |        |
| Rough:                 |               |                  |                     |               |               |        |
| Architectural          | 14            | 166              | \$142               | 10            | 123           | \$115  |
| Construction 1         | 43            | 509              | 645                 | 39            | 471           | 583    |
| Flagging               | (3)           | 3                | 4                   | (3)           | 3             | 9      |
| Dressed:               | ` '           |                  |                     | ` '           | _             | -      |
| Cut 15                 | 2             | 20               | 219                 | 5             | 66            | 565    |
| Construction           | 4             | 53               | 70                  | 4             | 59            | 70     |
| Other dressed stone 16 |               |                  |                     | 5             | 54            | 213    |
| Total 17               | 66            | 783              | 1,964               | 5 64          | 776           | 1,555  |
| TOTAL STONE            |               |                  |                     |               |               |        |
| Rough:                 |               |                  |                     |               |               |        |
| Architectural          | 286           | 3,735            | 7.411               | 252           | 3,221         | 6,498  |
| Construction 1         | 239           | 2,991            | 3.172               | 358           | 4.317         | 4.149  |
| Monumental             | 287           | 2,891            | 11.273              | 312           | 3.229         | 12,266 |
| Flagging               | 36            | 447              | 1.169               | 38            | 471           | 1,490  |
| Other rough stone 18   | 2             | 30               | 29                  | 4             | 52            | 52     |
| Dressed:               | 2             | 30               | 23                  | -             | 02            | 02     |
| Cut                    | 117           | 1.476            | 20,442              | 118           | 1.509         | 20,701 |
| Sawed                  | 65            | 845              | 4.814               | 80            | 1.040         | 4.531  |
| House stone veneer     | 110           | 1.424            | 4.106               | 93            | 1.217         | 3,523  |
| Construction           | 32            | 381              | 1.706               | 21            | 265           | 773    |
| Roofing (slate) 11     | 12            |                  | 1.369               | 12            | 200           | 1.469  |
| Millstock (slate)      | 19            |                  | 3,313               | 23            |               | 3,612  |
| Flooring (slate)       |               |                  | 0,010               | 4             |               | 489    |
| Monumental             | 65            | $7\overline{78}$ | $19.5\overline{11}$ | 45            | 534           | 14.157 |
| Curbing                | 130           | 1.543            | 6.241               | 139           | 1.640         | 7,772  |
| Flagging               | 61            | 300              | 1.806               | 54            | 227           | 1,891  |
| Other dressed stone 19 | 31            | 220              | 4,402               | 29            | 198           | 2.627  |
|                        |               |                  |                     |               |               |        |
| Total <sup>5</sup>     | 1,490         | 17,061           | 90,763              | 1,582         | 17,920        | 85,999 |

- r Revised. W Withheld to avoid disclosing individual company confidential data.
- 1 Includes irregular shaped stone and rubble.
- <sup>2</sup> Includes unspecified rough stone for 1972. <sup>3</sup> Less than ½ unit.
- Includes data for dressed flagging, paving blocks and figure where symbol W appears for granite.
- granite.

  <sup>5</sup> Data may not add to totals shown because of independent rounding.

  <sup>6</sup> Data include small amount of monumental stone (1972), and uses not specified.

  <sup>7</sup> Includes data for monumental and flagging (1973).

  <sup>8</sup> Data combined to avoid disclosing individual company confidential data; also include flagging, uses not specified, and figure where symbol W appears for marble.

  <sup>9</sup> Data include construction stone, flagging and uses not specified.

  <sup>10</sup> Data include stone used for construction, sawed, uses not specified, and figure where symbol W appears for sandstone, quartz, and quartzite. 1972 data also include monumental stone, and stone used for structural and sanitary nurposes.
- W appears for sandstone, quartz, and quartzite. 1972 data also include monumental stone, and stone used for structural and sanitary purposess.

  11 Includes small amount of slate used for house stone veneer.

  12 Includes slate used for electrical purposes and where symbol W appears for slate.

  13 Includes slate used for aquarium bottoms, building stone, fireplaces, flooring (1972), and uses not specified (1973).

  14 Produced by the following States in 1973, in order of value of output and with number of quarries: Hawaii (4), Maryland (4), New Mexico (3), Pennsylvania (3), Virginia (7), California (6), New Jersey (1), Oregon (6), and Washington (3).

  15 1972 data include sawed stone and house stone veneer.

  16 Data include sawed stone, house stone veneer, flagging and stone used for structural and sanitary nurposes.
- sanitary purposes
- 17 To avoid disclosing confidential data, 1972 figures include stone used for flagging, and struc-
- tural and sanitary purposes.

  18 Includes small amount of uses not specified.

  19 Data include stone for paving blocks, structural and sanitary purposes (excluding slate), and uses not specified; slate for aquarium bottoms, building stone, fireplaces, and flooring (1972).

Table 5.-Granite (dimension stone) shipped or used by producers in the United States in 1973, by State

| State                                                                                                                                                                   | Active<br>quarries                 | Quantity<br>(short<br>tons)                                                                   | Value<br>(thou-<br>sands)                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| California Georgia Massachusetts Missouri Montana Newada New Hampshire New York North Carolina South Carolina South Carolina South Dakota Virginia Washington Wisconsin | 9 36 8 1 1 1 3 3 11 4 5 7 1 1 7 44 | 7,764 244,468 73,777 1,860 10 W 47,342 11,952 39,309 4,203 12,344 40,438 673 76 8,041 221,070 | \$591<br>6,884<br>5,674<br>W<br>(1)<br>10<br>W<br>2,391<br>448<br>517<br>7,474<br>14<br>2<br>2,231<br>19,728 |
| Other States <sup>2</sup>                                                                                                                                               | 142                                | 713,327                                                                                       | 45,960                                                                                                       |

W Withheld to avoid disclosing individual company confidential data; included with "Other States."

1 Less than ½ unit.

2 Includes quarries in Colorado (2), Connecticut (3), Maine (5), Maryland (1), Minnesota (17), Oregon (3), Texas (5), and Vermont (8).

3 Data may not add to totals shown because of independent rounding.

Table 6.-Limestone and dolomite (dimension stone) shipped or used by producers in the United States in 1973, by State

| State   | Active<br>quarries <sup>1</sup>                              | Quantity<br>(short<br>tons)                                                            | Value<br>(thou-<br>sands)                                        |
|---------|--------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Florida | 1<br>1<br>23<br>4<br>5<br>1<br>3<br>1<br>25<br>22<br>90<br>3 | 676 3,130 216,810 13,470 14,529 420 1,496 85 1,744 1,281 62,871 53,350 369,862 162,213 | \$59<br>61<br>6,828<br>348<br>1,228<br>W<br>38<br>1,347<br>1,980 |

W Withheld to avoid disclosing individual company confidential data; included with "Other States."

1 Count may be duplicated for quarries that produce more than one kind of stone.

2 Includes quarries in Alabama (1), California (5), Colorado (1), Kansas (5), Michigan (3), Missouri (1), Ohio (2), Rhode Island (1), and Texas (3).

3 Data may not add to totals shown because of independent rounding.

| Table 7Sandstone, quartz, and quartzite (dimension stone) | shipped |
|-----------------------------------------------------------|---------|
| or used by producers in the United States in 1973         | **      |

| State          | Active<br>quarries <sup>1</sup> | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands) |
|----------------|---------------------------------|-----------------------------|---------------------------|
| Arizona        | 21                              | F 004                       |                           |
| Arkansas       | 3                               | 5,994                       | \$128                     |
| California     |                                 | 7,115                       | 192                       |
| Colorado       | 4                               | 950                         | 24                        |
| Maryland       | 17                              | 9,048                       | 191                       |
| Missouri       | 4                               | 13,399                      | 313                       |
|                | 1                               | 820                         | 35                        |
| Montana        | 2                               | W                           |                           |
| levada         | 7                               |                             | . 8                       |
| New York       | <u>,</u>                        | 1,040                       | 50                        |
| Ohio           | 9                               | 28,800                      | w                         |
| Pennsylvania   | 24                              | 105,922                     | 2,996                     |
| ennessee       | 19                              | 61,478                      | 964                       |
| Visconsin      | 4                               | 10,228                      | 439                       |
| visconsin      | 8                               | 1,415                       | 30                        |
| Vyoming        | 1                               | 6                           |                           |
| Other States 3 | 28                              | 50.121                      | (2)                       |
| Total          |                                 |                             | 3,067                     |
| 10001          | 146                             | 296,336                     | 8,437                     |

Table 8.-Crushed and broken stone shipped or used by producers in the United States in 1972 and 1973, by kind of stone and use

(Thousand short tons and thousand dollars)

| Kind of stone and use                            | 19                  | 72       | 19       | 73               |
|--------------------------------------------------|---------------------|----------|----------|------------------|
|                                                  | Quantity            | Value    | Quantity | Value            |
| CALCAREOUS MARL 1                                |                     |          |          |                  |
| Agricultural purposes 2                          | 133                 | 166      | 249      | 376              |
| Cement manufacture                               | 3 2,517             | 3 3,431  | 2,025    | 2,585            |
| Other uses *                                     | _,                  |          | 53       | 2,000            |
| Total 5                                          | 2,650               | 3,598    | 2.327    | 3,042            |
| GRANITE                                          |                     |          |          |                  |
| Bituminous aggregate                             | 16.088              | 29,880   | 17.468   | 04.404           |
| Concrete apprepate (coarse)                      | r 18.816            | r 31.648 | 23,670   | 34,434           |
| Dense-graded roadbase stone                      | 37.877              | 66.219   | 40.099   | 44,305<br>70,367 |
| Macadam aggregate                                | 3,966               | 6,499    | 2,724    | 5,112            |
| Surface treatment aggregate                      | 5,696               | 9.837    | 6,763    | 12.734           |
| Unspecified construction aggregate and readstone | 10.048              | 17.024   | 14.805   | 24,871           |
| Riprap and letty stone                           | 4.036               | 7,543    | 2,996    | 5,992            |
|                                                  | 6.162               | 9,169    | 6.271    | 10.056           |
| I outry grit and mineral food                    | w                   | w        | 35       | 10,056<br>W      |
| rilter stone                                     | $\ddot{\mathbf{w}}$ | ŵ        | 413      | 990              |
| F111                                             | 97                  | 88       | w        | w                |
| Other uses 6                                     | r 3,481             | r 5.022  | 5,361    | 8.012            |
| Total 5                                          | 106,266             | 182,930  | 120,606  | 216,874          |
| LIMESTONE AND DOLOMITE                           |                     |          |          |                  |
| Agricultural purposes 7                          | 27.140              | 58,436   | 37.759   | 76 140           |
| Dituinious apprepare                             | 49.977              | 90.520   | 63,237   | 76,140 $118,180$ |
| Concrete aggregate (coarse)                      | 100,173             | 167,746  | 113,244  | 201,979          |
| Dense-graded roadbase stone                      | 139,257             | 210.832  | 176.575  | 277.460          |
| Macausiii aggregate                              | 26,993              | 43,753   | 30,221   | 51,617           |
| Bullace treatment aggregate                      | 38,704              | 65,799   | 42.485   | 76.368           |
| Unspecified construction aggregate and readstone | 71,647              | 117.731  | 81,875   | 134.595          |
| Riprap and letty stone                           | 12,935              | 19,725   | 16.602   | 28,221           |
| Railroad Dallast                                 | 7,250               | 10,913   | 7.552    | 11,985           |
| riter stone                                      | 339                 | 731      | 633      | 1.147            |
| manufactured fine aggregate (stone sand)         | 4.752               | 8,662    | 5.301    | 11,614           |
| Terrazzo and exposed apprepate                   | 124                 | 1,433    | 328      | 4.280            |
| Cement manufacture                               | 101,304             | 118,199  | 106.878  | 137.202          |
| Lime manufacture                                 | 28.858              | 46,818   | 33,135   | 53,770           |
| Dead-purned dolomite                             | 1,670               | 3,029    | 3,402    | 5.775            |
| rerrosucon                                       | 1,030               | w        | 439      | 522              |
| riux stone                                       | 24,728              | 40.422   | 27,664   | 48,409           |
| Refractory stone                                 | 395                 | 1.045    | 442      | 1.208            |
| See footnotes at end of table.                   |                     | -,       |          | 1,200            |

W Withheld to avoid disclosing individual company confidential data; included with "Other States."

1 Count may be duplicated for quarries that produce more than one kind of stone.

2 Less than ½ unit.

3 Includes quarries in Alabama (2), Connecticut (3), Georgia (3), Idaho (1), Indiana (2), Michigan (3), Minnesota (1), New Mexico (1), North Carolina (2), Utah (4), Virginia (3), Washington (2), and West Virginia (1).

STONE 1165

Table 8.—Crushed and broken stone shipped or used by producers in the United States in 1972 and 1973, by kind of stone and use—Continued (Thousand short tons and thousand dollars)

| (220                                                       |                     |                      |                   |                      |
|------------------------------------------------------------|---------------------|----------------------|-------------------|----------------------|
| Kind of stone and use                                      |                     | 972                  | 19                |                      |
| iring of Stone and asc                                     | Quantity            | Value                | Quantity          | Value                |
| LIMESTONE AND DOLOMITE—Continued                           |                     |                      |                   |                      |
| Chemical stone for alkali works                            | 4,199               | 9,205                | 2,943             | 6,529                |
| Chemical stone for alkali worksSpecial uses and products 8 | 876                 | 3,386                | 984               | 3,482                |
| Asphalt filler Whiting or whiting substitute               | 954                 | 4,525                | 795               | 3,951                |
| Whiting or whiting substitute                              | 662                 | 9,252                | 683               | 11,653               |
| Other fillers or extenders                                 | 1,368               | 8,338                | $2,051 \\ 1,181$  | 14,078<br>2,636      |
| Chemicals                                                  | 635<br>4.243        | 1,683<br>4,841       | 1,630             | 2,328                |
| Fill                                                       | 4,243<br>1,794      | 6,827                | 1,724             | 7,268                |
| Glass                                                      | 560                 | 2,310                | 639               | 2,792                |
| Other uses 9                                               | 18,930              | 34,544               | 13,996            | 26,744               |
|                                                            | 671,496             | 1,090,707            | 774,397           | 1,321,932            |
| Total 5                                                    | 071,450             | 1,000,101            | 114,001           | 1,021,002            |
| MARBLE                                                     |                     |                      |                   |                      |
| Agricultural purposes 7                                    | 44                  | 239                  | 14                | w                    |
| Macadam aggregate                                          | 83                  | w                    | 28                | w                    |
| Concrete aggregate (coarse)  Dense-graded roadbase stone   |                     |                      |                   |                      |
| Dense-graded roadbase stone                                |                     |                      |                   |                      |
| Surface treatment aggregate                                | 10 862              | 3,826                | 637               | 3,745                |
| Unspecified construction aggregate and roadstone           | 802                 | 0,020                | 001               | 0,1.20               |
| Riprap and jetty stoneFilter stone                         |                     |                      |                   |                      |
| Manufactured fine aggregate (stone sand)                   |                     |                      |                   |                      |
| Terrazzo and exposed aggregate                             | 203                 | 3,086                | 149               | 2,282                |
| Mineral fillers, extenders, whiting                        | <sup>11</sup> 1,047 | <sup>11</sup> 17,854 | 1,038             | 16,631               |
| Other uses                                                 | 8                   | W                    | <sup>12</sup> 157 | 12 738               |
| Total 5                                                    | 2,247               | 25,005               | 2,023             | 23,395               |
|                                                            |                     |                      |                   |                      |
| SANDSTONE, QUARTZ, AND QUARTZITE 13                        | 1,613               | 3,547                | 2,645             | 5,942                |
| Bituminous aggregate                                       | 2,092               | 4,061                | 2,258             | 5,131                |
| Concrete aggregate (coarse)                                | 8,744               | 14,216               | 7,370             | 12,273               |
| Dense-graded roadbase stone                                | 351                 | 571                  | 98                | 157                  |
| Surface treatment aggregate                                | 951                 | 1,842                | 1,003             | 1,939                |
| Unspecified construction aggregate and roadstone           | 3,290               | 5,975                | 6,758             | 12.143               |
| Riprap and jetty stone                                     | 2,213               | 4,550                | 2,855             | 6,075                |
| Railroad ballast                                           | 1,014               | 1,536                | 914               | 1,635                |
| Filter stone                                               | 52                  | 84                   | 168               | 37 <b>9</b><br>1,603 |
| Manufactured fine aggregate (stone sand)                   | 343                 | 930                  | 567<br>35         | 573                  |
| Terrazzo and exposed aggregate                             | 23                  | $\frac{347}{1,288}$  | 776               | 1,700                |
| Cement and lime manufacture                                | 522<br>227          | 876                  | 192               | 801                  |
| Ferrosilicon                                               | 1,102               | 4,149                | 1,166             | 4,840                |
| Flux stoneRefractory stone                                 | 211                 | 1,746                | 416               | 3,043                |
| Abrasives                                                  | 45                  | w                    | 226               | 1,253                |
| Glass                                                      | 925                 | 3,315                | 1,034             | 4,435                |
| Other uses 14                                              | 3,100               | 8,960                | 1,869             | 5,724                |
| Total 5                                                    | 26,817              | 57,994               | 30,351            | 69,647               |
|                                                            |                     |                      |                   |                      |
| SHELL                                                      | w                   | w                    | 425               | 1,725                |
| Agricultural purposes 7                                    | w                   | w                    | w                 | , w                  |
| Concrete aggregate (coarse)<br>Dense-graded roadbase stone | 1,675               | 2,093                | 4,314             | 8,707                |
| Unspecified construction aggregate and roadstone 15        | 3,281               | 8,135                | 3,964             | 10,931               |
| Cement and lime manufacture                                | 5,675               | 9,301                | 6,687             | 11,163               |
| Other uses 16                                              | 5,980               | 10,042               | 4,506             | 5,124                |
| Total 5                                                    | 16,610              | 29,571               | 19,896            | 37,650               |
|                                                            |                     |                      |                   |                      |
| TRAPROCK                                                   |                     | - 04 - 00            | 14.070            | 99 406               |
| Rituminous aggregate                                       | r 11,203            | r 24,768             | 14,070<br>8,311   | 32,406<br>21,190     |
| Concrete aggregate (coarse)<br>Dense-graded roadbase stone | r 6,849             | r 17,204<br>r 35,817 | 22,058            | 44,857               |
| Dense-graded roadbase stone                                | r 18,566<br>1,438   | 3,048                | 1,426             | 2,917                |
| Macadam aggregate                                          | 5,341               | 9,430                | 4,737             | 9,322                |
| Surface treatment aggregate                                | r 21,805            | r 46,565             | 20,332            | 40,903               |
| Unspecified construction aggregate and roadstone           | r 3,501             | r 6,249              | 4,131             | 8,094                |
| Riprap and jetty stoneRailroad ballast                     | 2,332               | 3,753                | 2,878             | 4,885                |
| Filter stone                                               | 117                 | 287                  | 112               | 253                  |
| Manufactured fine aggregate (stone sand)                   | 231                 | 811                  | 604               | 1,728                |
| TO:11                                                      | 1,686               | 1,018                | 1,799             | 2,591<br>8,527       |
| Other uses 17                                              | 3,966               | r 10.833             | 3,502             |                      |
| Total 5                                                    | r 77,034            | r 159,783            | 83,959            | 177,671              |
|                                                            |                     |                      |                   |                      |
| OTHER STONE                                                | 2,202               | 3,685                | 4,459             | 8,790                |
| Bituminous aggregate                                       | 1,159               | 2,323                | 1,373             | 2,938                |
| Concrete aggregate (coarse)<br>Dense-graded roadbase stone | 3,051               | 5,153                | 7,227             | 15,492               |
| Macadam aggregate                                          | 278                 | w                    | 62                | 132                  |
| On francisco et and of table                               |                     |                      |                   |                      |
| See footnotes at end of table.                             |                     |                      |                   |                      |

Table 8.-Crushed and broken stone shipped or used by producers in the United States in 1972 and 1973, by kind of stone and use-Continued

| (Thousand | short | tons | and | thousand | dollars) |
|-----------|-------|------|-----|----------|----------|
|           |       |      |     |          |          |

| Kind of stone and use                            | 1         | 972       | 1         | 973       |
|--------------------------------------------------|-----------|-----------|-----------|-----------|
| Kind of stone and use                            | Quantity  | Value     | Quantity  | Value     |
| OTHER STONE—Continued                            |           |           |           |           |
| Surface treatment aggregate                      | 591       | 807       | 1.330     | 1.721     |
| Unspecified construction aggregate and roadstone | 2,911     | 5,675     | 3,372     | 6,884     |
| Riprap and jetty stone                           | 1,738     | 2,650     | 1,285     | 2,099     |
| Railroad ballast                                 | ·w        | 1,072     | 654       | 506       |
| Terrazzo and exposed aggregate                   | w         | w         | 38        | 154       |
| Fill                                             | 578       | 741       | 3.044     | 5,803     |
| Other uses 18                                    | 1,789     | 2,317     | 673       | 1,712     |
| Total 5                                          | 14,298    | 24,422    | 23,516    | 46,229    |
| TOTAL STONE                                      |           |           |           |           |
| Agricultural purposes 7                          | r 27.712  | r 62,662  | 38.524    | 78,859    |
| Bituminous aggregate                             | r 82,294  | r 156,411 | 102.262   | 201.175   |
| Concrete aggregate (coarse)                      | r 133,915 | r 228,770 | 153,223   | 280.541   |
| Dense-graded roadbase stone                      | r 209,218 | r 334,455 | 257,778   | 429,453   |
| Macadam aggregate                                | 33,110    | 54,600    | 34,559    | 60,005    |
| Surface treatment aggregate                      | 51.943    | 89.128    | 56,993    | 104,001   |
| Unspecified construction aggregate and roadstone | r 111.400 | r 196,455 | 130,356   | 227,635   |
| Riprap and jetty stone                           | r 24,438  | r 40.792  | 27,932    | 50,806    |
| Railroad ballast                                 | 18,021    | 26,443    | 18.281    | 29,123    |
| Filter stone                                     | 636       | 1.353     | 1,327     | 2,770     |
| Manufactured fine aggregate (stone sand)         | r 5,976   | r 12,929  | 7.748     | 19,182    |
| Terrazzo and exposed aggregate                   | 402       | 5,075     | 566       | 7,542     |
| Cement manufacture                               | 108.857   | 129,743   | 115.487   | 151,225   |
| Lime manufacture                                 | 30,051    | 49,386    | 34,070    | 55,348    |
| Dead-burned dolomite                             | 1,670     | 3.029     | 3,402     | 5,775     |
| Ferrosilicon                                     | 1.257     | 2,904     | 631       | 1,323     |
| Flux stone                                       | 25,830    | 44,571    | 28,829    | 53,249    |
| Refractory stone                                 | 605       | 2.792     | 858       | 4,251     |
| Chemical stone for alkali works                  | 4.199     | 9,205     | 2,943     | 6,529     |
| Special uses and products 8                      | r 965     | r 4.278   | 1,257     | 5,385     |
| Asphalt filler                                   | 1.136     | 5,075     | 977       | 4,404     |
| Whiting or whiting substitute                    | 1.139     | 15,728    | 1.076     | 16,654    |
| Other fillers or extenders                       | 2,148     | 19,783    | 2,902     | 26,459    |
| Fill                                             | 6,630     | 6,713     | 7,262     | 11,519    |
| Glass                                            | 2,718     | 10.142    | 2,759     | 11,703    |
| Expanded slate                                   | 1.270     | 5,715     | 1.092     | 5,954     |
| Roofing aggregates, chips, and granules          | , w       | w         | 4,246     | 10,550    |
| Other uses 19                                    | 31,394    | 63,391    | 21,198    | 43,046    |
| Total 5                                          | r 918,933 | 1,581,530 | 1,058,541 | 1,904,464 |

Total of the produced by the following States in 1973, in order of tonnage: South Carolina, Mississippi, Texas, North Carolina, Michigan, Indiana, and Virginia.

I Produced by the following States in 1973, in order of tonnage: South Carolina, Mississippi, Texas, North Carolina, Michigan, Indiana, and Virginia.

Includes marl used in agricultural limestone, agricultural marl and other soil conditioners and nutrients, and minor amounts of filler.

Data include small amount of fill.

Data include small amount of fill.

Data may not add to totals shown because of independent rounding.

Includes stone used in manufactured fine aggregate, terrazzo, cement manufacture, asphalt filler, drain fields (1972), fill (1973), roofing aggregate, chips, and granules, waste material, uses not specified, and any data represented by the symbol W in granite.

Includes agricultural limestone, agricultural marl and other soil conditioners, and poultry grit and mineral food.

and mineral food.

and mineral food.

§ Includes stone used for abrasives and mine dusting.

§ Data include stone used in acid neutralization, building products, bedding material (1973) disinfectant and animal sanitation, drain fields, dam construction (1972), magnesium metal manufacture, paper manufacture, roofing aggregates, chips, and granules, stucco, waste material, use not specified, and any data represented by the symbol W in limestone and dolomite.

10 Data combined to avoid disclosing confidential data. Includes surface treatment and filter

stone (1972).

stone (1972).

11 Includes a minor amount of stone used in roofing aggregates, chips, and granules and any data represented by the symbol W in marble.

12 Includes bituminous aggregate, roofing aggregates, chips, and granules (1973), and any data represented by the symbol W in marble.

13 Includes ground sandstone, quartz, and quartzite.

14 Includes stone used in poultry grit and mineral food, building products, drain fields (1973), fill, other filler (1973), roofing aggregates, chips, and granules, waste material (1973), and uses not specified. specified.

15 Includes stone used for concrete aggregate (1973), bituminous aggregate, and surface treat-

ment aggregate.

16 Includes stone used for asphalt filler (1973), railroad ballast (1973), riprap and jetty stone (1973), uses not specified and any data represented by the symbol W in shell.

17 Data include stone used for asphalt filler, bedding material (1973), drain fields, other fillers or extenders, roofing aggregates, chips, and granules, terrazzo (1972), waste material (1973), and

uses not specified.

18 Includes stone used for asphalt and other fillers, cement manufacture, roofing aggregates, chips, and granules, manufactured fine aggregate, abrasives, drain fields, waste material, uses not specified, and data represented by the symbol W in other stone.

19 Data include stone used in building products, flour (slate), uses not listed in smaller quantities, and uses not specified.

and uses not specified.

STONE 1167

Table 9.-Number and production of crushed-stone quarries in the United States, by size of operation

|                     |                | 1972                   |                     |                | 1973                   |                     |
|---------------------|----------------|------------------------|---------------------|----------------|------------------------|---------------------|
| Annual production   | Number         | Produ                  | ction               | Number         | Produc                 | tion                |
| (short tons)        | of<br>Quarries | Thousand<br>short tons | Percent<br>of total | of<br>Quarries | Thousand<br>short tons | Percent<br>of total |
| Less than 25,000    | 1,756          | 14.885                 | 1.6                 | 1,600          | 13,603                 | 1.3                 |
| 25,000 to 49,999    | 521            | 18,809                 | 2.0                 | 660            | 24,221                 | 2.3                 |
| 50,000 to 74,999    | 350            | 21,400                 | 2.3                 | 339            | 20,485                 | 1.9                 |
| 75,000 to 99,999    | 245            | 21.316                 | 2.3                 | 253            | 21,941                 | 2.1                 |
| 100,000 to 199,999  | 536            | 76,667                 | 8.3                 | 634            | 90.974                 | 8.6                 |
| 200,000 to 299,999  | 336            | 82,870                 | 9.0                 | 308            | 75,868                 | 7.2                 |
| 300,000 to 399,999  | 225            | 78.252                 | 8.5                 | 233            | 80,946                 | 7.6                 |
| 400,000 to 499,999  | 160            | 71.911                 | 7.8                 | 182            | 80,956                 | 7.6                 |
| 500,000 to 599,999  | 105            | 57,761                 | 6.3                 | 126            | 68,903                 | 6.5                 |
| 600,000 to 699,999  | 84             | 54.051                 | 5.9                 | 98             | 62,730                 | 5.9                 |
| 700,000 to 799,999  | 55             | 41,030                 | 4.5                 | 76             | 56,694                 | 5.4                 |
| 800,000 to 899,999  | 43             | 36,578                 | 4.0                 | 51             | 42.718                 | 4.0                 |
| 900,000 to and over | 211            | r 343,401              | 37.4                | 248            | 418,502                | 39.5                |
| Total 1             | 4,627          | r 918,933              | 100.0               | 4,808          | 1,058,541              | 100.0               |

Revised.

Table 10.—Crushed stone shipped or used in the United States by method of transportation

|                          | 197                    | 72                  | 1973                   |                     |
|--------------------------|------------------------|---------------------|------------------------|---------------------|
| Method of transportation | Thousand<br>short tons | Percent<br>of total | Thousand<br>short tons | Percent<br>of total |
| Truck                    | r 689,782              | 75                  | 830,372                | 78                  |
| Rail                     | r 101.585              | 11                  | 98,771                 | 9                   |
| Waterway                 | 63,156                 | 7                   | 77,741                 | 7                   |
| Other                    | 26,620                 | 3                   | 31,746                 | 3                   |
| Unspecified              | 37,791                 | 4                   | 19,911                 | 2                   |
| Total 1                  | r 918,933              | 100                 | 1,058,541              | 100                 |

r Revised

Table 11.-Granite (crushed and broken stone) shipped or used by producers in the United States in 1973, by State

(Thousand short tons and thousand dollars)

| State          | Quantity | Value  | State          | Quantity | Value   |
|----------------|----------|--------|----------------|----------|---------|
| Alaska         | 225      | 951    | Oregon         | 112      | W       |
| Arizona        | 43       | 77     | South Carolina | 11,096   | 17,738  |
| California     | 6,108    | 10,119 | Texas          | 25       | 236     |
| Colorado       | 1,672    | 2,767  | Utah           | (1)      | (1)     |
| Georgia        | 32,896   | 61,925 | Virginia       | 16,185   | 30,156  |
| Idaho          | 328      | 560    | Washington     | 748      | 970     |
| Maine          | 104      | 302    | Wisconsin      | 1,920    | 783     |
| Minnesota      | 920      | 1,671  | Other States 2 | 14,201   | 22,542  |
| Montana        | 62       | 175    | Total 3        | 120,606  | 216,874 |
| New Jersey     | 2,715    | 5,663  | 10001          | 120,000  | 210,012 |
| North Carolina | 31,246   | 60,241 |                |          |         |

W Withheld to avoid disclosing individual company confidential data; included with "Other States.

Table 12.—Traprock (crushed and broken stone) shipped or used by producers in the United States in 1973, by State

(Thousand short tons and thousand dollars) Value State Quantity Value State Quantity 5,359 9,423 12,315 19,795 California Oregon 9,788 10,460 (1) 18,065 Pennsylvania .... 6,122 Colorado , 8,999 Connecticut \_\_\_\_\_ Virginia 4,872 14,181 1,176 Washington \_\_\_\_\_ Hawaii -----4,966 13,656 8,715 1,660 3,351 Wyoming \_\_\_\_\_ Other States 2 \_\_\_\_\_ 355 28,844 12,067 Massachusetts 5,435 12,974 34 21 Michigan \_\_\_\_\_ Total 3 \_\_\_\_\_ 83,959 177,671 Minnesota 153 358 Puerto Rico \_\_\_\_ Virgin Islands \_\_ w w ------730 879 Montana \_\_\_\_\_\_ 664 2,860

Data may not add to totals shown because of independent rounding.

Data may not add to totals shown because of independent rounding.

 $<sup>^2</sup>$  Less than  $1_2^{\prime}$  unit.  $^2$  Includes Arkansas, Connecticut, Maryland, Massachusetts, Michigan, Missouri, Nevada, New Hampshire, Pennsylvania, Rhode Island, Vermont, and Wyoming.  $^3$  Data may not add to totals shown because of independent rounding.

Worth Carolina, Oklahoma, Texas, Vermont, and Wisconsin.

100 019 Virgin Islands \_\_\_\_\_ 664 2,860

Withheld to avoid disclosing individual company confidential data.

1 Less than ½ unit.

2 Includes Alaska, Arizona, Maine, Maryland, Missouri, New Hampshire, New Mexico, New York, North Carolina, Oklahoma, Texas, Vermont, and Wisconsin.

3 Data may not add to totals shown because of independent rounding.

Table 13.-Limestone and dolomite (crushed and broken) shipped or used by producers in the United States in 1973, by State and use

(Thousand short tons and thousand dollars)

| Total 2                            | y Value  | 27,485  | ≱;     | 4,045   | 9,392    | 37,450     | 9,750      | 1,378       | 103,537 | 15,340  | 3,937      | 450    | 50,774  | 56,437 | 32,254 | 70,912   | ×     | 32,113   | ¥2            | 00,908   | 9,586<br>W  | 76.613   | 2,500   | 10,953   | 4,312  | ×          | 2,555      | 80,144   | × 6                                            | 33.010             | A      | 115,083      | ≱            |
|------------------------------------|----------|---------|--------|---------|----------|------------|------------|-------------|---------|---------|------------|--------|---------|--------|--------|----------|-------|----------|---------------|----------|-------------|----------|---------|----------|--------|------------|------------|----------|------------------------------------------------|--------------------|--------|--------------|--------------|
|                                    | Quantity | 17,966  | ×      | 2,310   | 5,679    | 21,796     | 4,200      | 224         | 61,734  | 6,659   | 1,746      | V 25   | 32,030  | 31.445 | 17,658 | 38,202   | ×     | 13,381   | <b>≱</b> 5    | 45,021   | 6,318<br>W  | 48.750   | 1.400   | 5,368    | 2,403  | ×          | 1,118      | 40,168   | <b>×</b> 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 21.242             | A      | 62,423       | Þ            |
| Miscellaneous and<br>undistributed | y Value  | 9,938   | Α,     | 2,508   | 3,930    | 29,143     | 9,750      | 1,378       | 11,024  | 6,821   | 2,701      | × ?    | 4.736   | 7,447  | 5,456  | 8,950    | ≱     | 10,386   | \$ <b>₹</b>   | 21,205   | * B         | 16.872   | 2.465   | 1,497    | ×      | ×          | A          | 16,353   | > 5                                            | 14.888             | M      | 31,301       | ≱            |
| Miscella<br>undist                 | Quantity | 6,178   | Α,     | 1,717   | 2,873    | 17,054     | 4,200      | 224         | 6,672   | 2,420   | 1,226      | × 600  | 3,920   | 5.250  | 4.111  | 4,763    | ×     | 3,211    | <b>≱</b>      | 19,870   | gg<br>Sg    | 13.028   | 1.398   | 1,339    | ×      | ×          | Α          | 11,369   | ¥                                              | 10.592             | M      | 17,765       | ≱.           |
| Fluxing stone                      | ty Value | 1,264   | 10     | 1,016   | ≱.       | ×          | ×          | ;           | ;       | ;       | 1          | 1 775  | ;,      | ₽      | :      | ×        | ł     | ≱        | 200           | 19,021   | >           | ¦≱       | ×       | : }      | ×      | ×          | ≱İ         | >        | 100                                            | 901.0              | B      | 8,691        | ×            |
| Fluxi                              | Quantity | 656     | 15     | 364     | ≱        | ≱.         | ×          | 1           | !       | ;       | ;          | 190    | 8       | ≱      | :      | ≱        | ł     | ≱        | 8 5           | 15,241   | <b>≥</b>    | B        | ×       | : }      | ≱      | ×          | 13         | >        | 100                                            | 100,0              | ×      | 3,670        | ×            |
| Railroad ballast                   | y Value  | W       | !      | ;       | ;        | ;          | ×          | ij          | 266     | ≱       | !          | 100    | 601     | A      | ₽      | 797      | ł     | 1        | į             | 990      | \$          | 113      | } ;     | 1        | !      | !          | 10         | 396      | 1070                                           | 1,0 <del>4</del> 5 | :      | 1,597        | !            |
| Railros                            | Quantity | W       | 1      | !       | 1        | ì          | ×          | I;          | 295     | ≱       | !          | 100    | 402     | ×      | ×      | 415      | !     | !        | 15            | 240      | ≥≽          | 62       | ! ;     | 1        | 1      | ;          | 10         | 199      | 101                                            | 1,191<br>W         | :      | 871          | 1            |
| Riprap                             | Value    | W       | 1      | ľ       | 18       | 240        | ×          | ×           | ≱       | ≱       | :          | 1 695  | 609     | 451    | 472    | 5,218    | 1     | ≱        | 18            | 219      | 88          | 3 870    | 8       | 1,674    | ≱      | ł          | 19         | 2,013    | Š                                              | 505,               | ; ;    | 1,159        | ;            |
| Rip                                | Quantity | W       | 1      | ;       | ≱        | 158        | ≱          | ×           | ≱       | ≱       | !          | 1140   | 959     | 277    | ×      | 2,332    | ;     | ≱        | 1;            | 411      | 448         | 3 779    | 2       | 747      | ≱      | ŀ          | ij         | 895      | <b>≥</b>                                       | 1,404<br>370       | ; ;    | 623          | ;            |
| gates                              | Value    | 14,966  | ×      | 521     | 4,507    | 7,262      | ≱          | 1           | 87,621  | 7,576   | 1,237      | 000 00 | 41 570  | 43.549 | 25,521 | 52,295   | ×     | 21,726   | ≱;            | 14,624   | 8,393<br>W  | 47.664   | 600     | 6,511    | 257    | 1,594      | 480        | 59,711   | × 5                                            | 17,615             | M      | 65,349       | ŀ            |
| Aggregates                         | Quantity | 10,404  | ×      | 523     | 2,417    | 4,435      | ≱          | !           | 53,342  | 3,858   | 493        | KO 750 | 25,557  | 23,913 | 13,006 | 28,828   | ×     | 10,170   | <b>8</b>      | 10,586   | 5,694<br>W  | 27.381   | A       | 3,095    | ×      | ×          | 305        | 27,357   | × 50                                           | 10.280             | A      | 37,149       | 1            |
| Agriculture 1                      | Value    | 1,317   | ;      | 1       | 936      | 802        | ×          | ×           | 4,326   | 942     | ≱¦         | 7 × ×  | 3.265   | 4.991  | 805    | 3,652    | ×     | ≱        | ≱§            | 1,000    | 416<br>₩    | 8 095    |         | 1,271    | ≱      | ×          | ij         | 1,671    | > 0                                            | 7,000<br>W         | ≽      | 6,988        | ≱            |
| Agric                              | Quantity | 728     | :      | 1       | 390      | 149        | <b>≱</b> į | ×           | 1,425   | 381     | <b>5</b> 6 | 4 899  | 1,842   | 2,005  | 540    | 1,868    | ×     | ≱        | 170           | 000      | 877<br>M    | 4.507    |         | 186      | ×      | ×          | 10         | 348      | > €                                            | 1,429<br>W         | ×      | 2,345        | ≥:           |
| State                              |          | Alabama | Alaska | Arizona | Arkansas | California | Colorado   | Connecticut | Florida | Georgia | Hawaii     | Idano  | Indiana | Iowa   | Kansas | Kentucky | Maine | Maryland | Massachusetts | Michigan | Mississippi | Missouri | Montana | Nebraska | Nevada | New Jersey | New Mexico | New York | North Carolina                                 | Oklahoma           | Oregon | Pennsylvania | Khode Island |

|              |           |        |       |         |          |            |               |           | 8 1,932 | -       |               |                            |             |
|--------------|-----------|--------|-------|---------|----------|------------|---------------|-----------|---------|---------|---------------|----------------------------|-------------|
| 1,66         | 42,47     | 53,73  | 2,04  | 1,10    | 19,98    | 86         | 11,09         | 19.56     | 868     | 763.36  | 11,03         | 1,30                       | 11,63       |
| ₽            | 8,285     | 15,588 | 4,719 | B       | 7,840    | 1,530      | 4,361         | 765       | 1,932   | 300,353 | 37,498        | 250                        | 3,509       |
| ×            | 4,444     | 11,941 | 2,035 | 314     | 4,559    | 903        | 2,259         | 422       | 898     | 186,775 | 14,292        | 136                        | 3,134       |
| !            | ;         | 1.357  | ×     | ;       | 626      | ≱          | 2,469         | ×         | 1       | 42.053  | 6,357         | !                          | ;           |
| ;            | ;         | 584    | ×     | ;       | 363      | ×          | 1,075         | ×         | ;       | 24.324  | 3,339         | !                          | ;           |
| M            | ×         | 891    | 1     | ×       | 428      | ;          | 627           | 231       | ×       | 9.064   | 2,922         | !                          | i           |
| ×            | ×         | 230    | ;     | ×       | 296      | ;          | 504           | 172       | ×       | 5,734   | 1,818         | ;                          | !           |
| 12           | 1,427     | 1,189  | 13    | ≱       | 90       | τĊ         | 86            | 683       | ×       | 25,536  | 2,684         | 20                         | ≱           |
| ∞            | 949       | 168    | 14    | 30      | 99       | -          | 45            | 297       | ×       | 14,777  | 1,827         | 16                         | ×           |
| 1,221        | 53,776    | 53,118 | M     | 1.160   | 21,047   | 88         | 13,513        | 24,397    | M       | 846,479 | 13,721        | 3,021                      | 18,644      |
| 821          | 34.227    | 39,511 | M     | 683     | 13,535   | 61         | 7,131         | 18,050    | ×       | 499,283 | 8,356         | 1,158                      | 8,497       |
| 1            | 4,554     | 672    | ×     | 292     | 2,357    | 67         | 170           | 1.277     |         | 60,951  | 15,189        | ×                          | !           |
| ;            | 2,852     | 339    | ≱     | 77      | 1,165    | 14         | 83            | 625       | !       | 29.214  | 8,543         | ×                          | !           |
| South Dakota | Tennessee | Texas  | Utah  | Vermont | Virginia | Washington | West Virginia | Wisconsin | Wyoming | Total 2 | Undistributed | Pacific Island Possessions | Puerto Rico |

W Withheld to acid disclosing indiidual company confidential data; included with "Undistributed," <sup>1</sup> Includes agricultural limestone, agricultural marl and other soil conditioners, and poultry grit and mineral food. <sup>2</sup> Data may not add to totals shown because of independent rounding.

Table 14.-Shell shipped or used by producers in the United States in 1973, by State

(Thousand short tons and thousand dollars)

| Quantity | Value                                |
|----------|--------------------------------------|
| 10,802   | 21,309                               |
| 143      | 150                                  |
| 6.380    | 11,009                               |
| 1        | w                                    |
| 2,571    | 5,182                                |
| 19,896   | 37,650                               |
|          | 10,802<br>143<br>6,380<br>1<br>2,571 |

W Withheld to avoid disclosing individual company confidential data; included with "Other States."

<sup>1</sup> Includes Alabama, California, Florida, and

Maryland.

<sup>2</sup> Data may not add to totals shown because of independent rounding.

Table 15.—Calcareous marl shipped or used by producers in the United States in 1973 by State

(Thousand short tons and thousand dollars)

| State          | Quantity | Value |
|----------------|----------|-------|
| Indiana        | 41       | 49    |
| Michigan       | 73       | 79    |
| Mississippi    | 617      | 659   |
| North Carolina | 93       | 204   |
| Other States 1 | 1,503    | 2,051 |
| Total          | 2,327    | 3,042 |

1 Includes South Carolina, Texas, and Virginia.

Table 16.-Sandstone, quartz, and quartzite (crushed and broken stone) shipped or used by producers in the United States in 1973, by State

(Thousand short tons and thousand dollars)

| State          | Quantity | Value | State          | Quantity | Value  |
|----------------|----------|-------|----------------|----------|--------|
| Alabama        | w        | 81    | Oregon         | 230      | 483    |
| Arizona        | 1,026    | 3.183 | Pennsylvania   | 5.650    | 11.806 |
| Arkansas       | 3,978    | 6,549 | Texas          | 1,671    | 3,919  |
| California     | 5,736    | 9,440 | Utah           | 111      | 139    |
| Colorado       | 409      | 1.029 | Vermont        | 222      | 420    |
| Georgia        | 107      | w     | Virginia       | 1,644    | 2.927  |
| Idaho          | 575      | 3,190 | Washington     | 417      | 1,323  |
| Kansas         | 576      | w     | West Virginia  | 636      | 1,584  |
| Maryland       | 76       | 552   | Wyoming        | 31       | 18     |
| Montana        | 204      | 533   | Other States 1 | 4,611    | 14,786 |
| New York       | 1.198    | 3.821 | Total 2        | 30,351   |        |
| North Carolina | 93       | 223   | 10tal          | 30,331   | 69,647 |
| Ohio           | 1.149    | 3,641 |                |          |        |

W Withheld to avoid disclosing individual company confidential data; included with "Other States.

Includes Connecticut, Indiana, Kentucky, Maine, Michigan, Missouri, Nevada, New Hampshire,
 Oklahoma, South Dakota, Tennessee, and Wisconsin.
 Data may not add to totals shown because of independent rounding.

Table 17.-Miscellaneous varieties of stone (crushed and broken) shipped or used by producers in the United States in 1973, by State

(Thousand short tons and thousand dollars)

| State      | Quantity | Value                                   | State          | Quantity | Value  |
|------------|----------|-----------------------------------------|----------------|----------|--------|
| Alaska     | 3,779    | 9,009                                   | New Hampshire  | 100      | 100    |
| Arkansas   | · W      | 234                                     | New Mexico     | 967      | 1.624  |
| California | 4.668    | 9,591                                   | Oklahoma       | 679      | 704    |
| Colorado   | 65       | 143                                     | Oregon         | 301      | 516    |
| Hawaii     | 443      | 675                                     | Pennsylvania   | 4,015    | 8,227  |
| Idaho      | 71       | 119                                     | Rhode Island   | w        | 31     |
| Iowa       | 82       | 133                                     | Texas          | 484      | 572    |
| Maryland   | 495      | w                                       | Vermont        | 99       | 115    |
| Michigan   | (1)      | (1)                                     | Other States 2 | 4,567    | 9,011  |
| Montana    | 2.656    | ` '5,330                                | Total 3        |          |        |
| Nevada     | 46       | 93                                      |                | 23,516   | 46,229 |
|            |          | • • • • • • • • • • • • • • • • • • • • | Puerto Rico    | 2,462    | 15,588 |

WWithheld to avoid disclosing individual company confidential data; included with "Other States."

<sup>1</sup> Less than ½ unit. <sup>2</sup> Includes Arizona, Kansas, Louisiana, Maine, Massachusetts, Minnesota, Missouri, New York orth Carolina, North Dakota, South Dakota, Utah, Virginia, Washington, Wisconsin, and North Wyoming.

3 Data may not add to totals shown because of independent rounding.

Table 18.-U.S. exports of stone (Thousand short tons and thousand dollars)

|                      | Building       | and monur             | nental stone        | Crus                    | Crushed, ground, or broken |                     |                         |                       |  |  |
|----------------------|----------------|-----------------------|---------------------|-------------------------|----------------------------|---------------------|-------------------------|-----------------------|--|--|
|                      | Dolon          | nite                  | Other               | Limest                  | one                        | Othe                | er                      | manu-<br>factures     |  |  |
| Year                 | Quantity       | Value                 | (value)             | Quantity                | Value                      | Quantity            | Value                   | of stone<br>(value)   |  |  |
| 1971<br>1972<br>1973 | 87<br>77<br>59 | 1,639<br>1,025<br>652 | 905<br>755<br>1,244 | 1,823<br>1,730<br>2,316 | 3,752<br>3,802<br>5,400    | 585<br>1,035<br>765 | 3,871<br>4,298<br>4,819 | 1,322<br>1,227<br>948 |  |  |

Table 19.-U.S. imports for consumption of stone and whiting, by class

|                                                                                 | 1               | 1972                 |                    | 1973                                            |
|---------------------------------------------------------------------------------|-----------------|----------------------|--------------------|-------------------------------------------------|
| Class                                                                           | Quan-<br>tity   | Value<br>(thousands) | Quan-<br>tity      | Value<br>(thousands)                            |
| Granite:                                                                        |                 |                      |                    |                                                 |
| Monumental, pavings, and building stone:                                        | 100.000         | 41 750               | 044.7790           | <b>#0.109</b>                                   |
| Roughcubic feet_                                                                | 498,360         | \$1,576              | 344,739<br>565,771 | $\begin{array}{c} \$2,183 \\ 6,214 \end{array}$ |
| Dressed, manufactureddo                                                         | 825,697         | 7,610                | 909,771            | 0,214                                           |
| Not manufactured and not suitable for monumental, paving or building stone      |                 |                      |                    |                                                 |
| short tons                                                                      | 1.141           | 25                   | 3,595              | 51                                              |
| Other, n.s.p.f                                                                  | (1)             | 179                  | (1)                | 135                                             |
| Total                                                                           | XX              | 9,390                | XX                 | 8,583                                           |
| Ξ                                                                               |                 |                      |                    |                                                 |
| farble, breccia, and onyx:                                                      | 25,412          | 295                  | 19,124             | 213                                             |
| In block, rough or squaredcubic feet<br>Sawed or dressed, over 2 inches thickdo | 5,347           | 76                   | 3,780              | 104                                             |
| Slabs and paving tilessuperficial feet_                                         | 8,098,013       | r 8,376              | 9,165,049          | 10,033                                          |
| All other manufactures                                                          | (1)             | 7,280                | (1)                | 8,102                                           |
| Total                                                                           | XX              | r 16,027             | XX                 | 18,452                                          |
| =                                                                               |                 |                      |                    |                                                 |
| Travertine stone:  Rough, unmanufacturedcubic feet                              | 7,091           | 28                   | 5,262              | 23                                              |
| Dressed, suitable for monumental, paving                                        | 1,001           |                      | -,                 |                                                 |
| and building stoneshort tons_                                                   | 22,928          | 2,839                | 19,056             | 3,112                                           |
| Other, n.s.p.f                                                                  | (¹)             | 110                  | (1)                | 155                                             |
| Total                                                                           | XX              | 2,977                | XX                 | 3,290                                           |
| -                                                                               |                 |                      |                    |                                                 |
| imestone: Monumental, paving, and building stone:                               |                 |                      |                    |                                                 |
| Roughcubic feet_                                                                | 5,955           | 4                    | 7,394              | 8                                               |
| Dressed, manufacturedshort tons_                                                | 3,385           | 29                   | 2,244              | 58                                              |
| Crude not suitable for monumental.                                              |                 |                      |                    |                                                 |
| paving or building stonedo                                                      | 21,349          | 76                   | 18,864             | 75                                              |
| Other, n.s.p.f                                                                  |                 | 24                   | (1)                | 47                                              |
| Total                                                                           | XX              | 133                  | XX                 | 188                                             |
| Slate:                                                                          |                 |                      |                    |                                                 |
| Roofingsquare feet                                                              | 750             | (2)                  | (1)                | 6.545                                           |
| Other, n.s.p.f                                                                  | (1)             | 5,679                | (1)                |                                                 |
| Total                                                                           | XX              | 5,679                | XX                 | 6,545                                           |
| Quartziteshort tons                                                             | 63,886          | 557                  | 98,137             | 973                                             |
| Stone and articles of stone n.s.p.f.:                                           |                 |                      |                    |                                                 |
| Statuary and sculptures                                                         | (1)             | 354                  | (1)                | 358                                             |
| Stone manufacutured short tons                                                  | 29,978          | 486                  | 22,830             | 1,613<br>9                                      |
| Ruilding stone, roughcubic leet                                                 | 4,220           | 4<br>69              | 3,969<br>3,546     | 147                                             |
| Building stone, dressedsnort tons                                               | 514             | 2,291                | (1)                | 2,358                                           |
| Other                                                                           | (1)<br>VV       |                      | XX                 | 4,485                                           |
| Total                                                                           | XX              | 3,204                |                    | 4,400                                           |
| Stone, chips, spall, crushed or ground:                                         |                 |                      |                    |                                                 |
| Marble, breccia, and onyx chipsshort tons                                       | 11,590          | 150                  | 5,373              | 133                                             |
| Limestone chine and snalls crushed                                              |                 | 0 505                | 1 504 450          | 2,466                                           |
| or grounddodo                                                                   | 1,850,205       | 2,567                | 1,734,479          | 2,400                                           |
|                                                                                 | 1,335,240       | 1,976                | 1,538,342          | 2,356                                           |
| crushed or ground n.s.p.fdo                                                     | 1,000,240       | 1,010                | 1,000,012          | _,                                              |
| Slate chips and spalls and slate                                                | 14              | 5                    |                    |                                                 |
| amahad an grannd do -                                                           | 3,197,049       | 4,698                | 3,278,194          | 4,955                                           |
| crushed or grounddodo                                                           |                 |                      | . , ,              |                                                 |
| crushed or grounddo<br>Total                                                    | 3,131,043       |                      |                    |                                                 |
| Total                                                                           |                 | 691                  | 26 652             | 875                                             |
| Total Whiting: Whiting dry ground or boltedshort tons                           | 20,782          | 621<br>150           | 26,653<br>3 332    | 875<br>332                                      |
| Total                                                                           | 20,782<br>1,895 | 150                  | 3,332              | 332                                             |
| Total Whiting: Whiting dry ground or boltedshort tons                           | 20,782          |                      |                    |                                                 |

r Revised. XX Not applicable.
1 Quantity not reported.
2 Less than ½ unit.

# Sulfur and Pyrites

By Roland W. Merwin 1 and William F. Keyes 2

Conditions in the sulfur industry improved over those of 1972. Production, shipments, and apparent domestic consumption reached alltime highs. The price position of elemental sulfur increased moderately over that of 1972, reversing the downward trend that had prevailed for several years. Most of the price increases were effective the latter part of 1973, with strong indications at yearend that there would be a substantial improvement in domestic prices in 1974. The improved conditions in the sulfur industry resulted from a continuing upsurge in sulfur demand for fertilizer manufacturing.

There was a substantial increase in the production of both Frasch and recovered sulfur over that of the previous year. However, the production of sulfur in other forms decreased moderately. Shipments of sulfur in all forms by domestic producers increased because of increases in domestic consumption. Production of sulfur in all forms exceeded shipments by a moderate amount, with the excess being placed in Frasch producers' stockpiles as a reserve

against forward commitments for this product.

The total value of shipments of sulfur in all forms increased from \$194.6 million in 1972 to \$207.8 million in 1973. The average net shipment value, f.o.b. mine/plant, for Frasch and recovered elemental sulfur, which accounted for 92% of the total shipments of sulfur in all forms in 1973, increased from \$17.03 per long ton in 1972 to \$17.84 per long ton in 1973.

The United States maintained its position as a net exporter of sulfur in all forms in 1973. However, net exports were substantially less than those in the previous year as the result of a moderate decrease in exports and a moderate increase in imports as compared to those in 1972. The maintenance of the export-import balance reflected strenuous efforts on the part of domestic producers to maintain their competitive position in both domestic and world markets in the face of strong foreign competition and low price levels.

Table 1.—Salient sulfur statistics
(Thousand long tons, sulfur content)

|                                           | 1969   | 1970   | 1971     | 1972     | 1973   |
|-------------------------------------------|--------|--------|----------|----------|--------|
| United States:                            |        |        |          |          |        |
| Production:                               |        |        |          |          |        |
| Frasch                                    | 7,146  | 7,082  | 7,025    | 7,290    | 7,605  |
| All forms                                 | 9,545  | 9,557  | 9,580    | r 10,218 | 10,921 |
| Exports, sulfur                           | 1,551  | 1,433  | 1,536    | 1,852    | 1,777  |
| Imports, pyrites and sulfur               | 1,795  | 1,667  | 1,429    | 1,188    | 1,222  |
| Stocks Dec. 31: Producer, Frasch, and re- | -,     | -,     | -,       | •        | -      |
| covered sulfur                            | 3,338  | 3,829  | 4,120    | r 3,796  | 3,927  |
| Consumption, apparent, all forms 1        | 9,169  | 9,227  | 9,173    | r 9,854  | 10,234 |
| World production:                         |        |        |          |          |        |
| Sulfur, elemental                         | 20,785 | 22,162 | r 24,792 | r 28,209 | 31,555 |
| Pyrites                                   | 9.432  | 10.190 | 11,112   | 10,301   | 9,960  |

Revised.

Supervisory physical scientist, Division of Nonmetallic Minerals—Mineral Supply.
 Physical scientist, Division of Nonmetallic Minerals—Mineral Supply.

<sup>&</sup>lt;sup>1</sup> Measured by quantity sold, plus imports, minus exports.

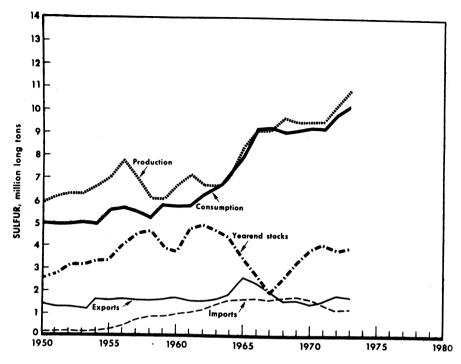



Figure 1.-Trends in the sulfur industry in the United States.

#### **DOMESTIC PRODUCTION**

Frasch Sulfur.—Frasch sulfur accounted for 70% of the domestic production of sulfur in all forms in 1973, compared with 71% in 1972. All of it was produced from Frasch mines in Texas and Louisiana.

In 1973, 12 Frasch mines produced sulfur. The producers and mines in Louisiana were Freeport Minerals Co. at Garden Island Bay, Grand Isle, Grande Ecaille, and Lake Pelto; and Texasgulf, Inc., at Bully Camp. The producers and mines in Texas were Atlantic Richfield Co. at Fort Stockton; Duval Corp. at Culberson; Jefferson Lake Sulphur Co. at Long Point Dome; and Texasgulf, Inc., at Boling Dome, Fannett Dome, Moss Bluff Dome, and Spindletop Dome.

Production of domestic Frasch sulfur increased in 1973, being 4% more than that of 1972 and 2% more than the previous alltime peak production in 1968. This was a reflection of a projected substantial increase in sulfur demand in the domestic fertilizer manufacturing market and an an-

ticipated stable level of demand in foreign markets.

There was a continuing tendency to concentrate production in the larger low-cost mines to counteract the adverse effects of low sulfur prices and increasing production costs. During 1969, 9 producers operated 21 mines. By 1973 this was reduced to 5 producers operating 12 mines. The 12 mines remaining in operation increased their production over that of 1969 by 1,344,000 tons, or 21%. Seven of the mines showed increases in production rates over those during 1969, and the other five registered decreases.

In 1973 the five largest mines, with production rates in excess of one-half million tons per year each, accounted for 78% of the total Frasch sulfur output and 54% of the total production of sulfur in all forms during the year. Three medium-sized mines, with production rates of more than 250,000 tons per year each, contributed an additional 14% of the year's Frasch pro-

duction. The remaining 8% of the Frasch output came from four smaller mines.

Ten mines, operated by Duval Corp., Freeport Minerals Co., and Texasgulf, Inc., accounted for most of the Frasch production. Only a relatively small portion of the output was obtained from the other two producers, operating one mine each.

Producers' shipments of Frasch sulfur decreased 2% from those in 1972, as a result of slight decreases in demand in both the domestic and export markets. Frasch production exceeded shipments by 167,000 tons, or 2%, with the excess production being placed in producers' stocks as a reserve against forward commitments. Approximately 76% of the shipments were for domestic consumption and 24% for export.

Despite a decline in the quantity shipped, the total value of the shipments, f.o.b. mine, increased by 5% over that of 1972. The average reported unit shipping value, f.o.b. mine, was \$18.63 per ton in 1973, compared with \$17.39 per ton in 1972. These increases reflected a substantial improvement in sulfur prices in the latter months of 1973.

Recovered Sulfur.—Recovered elemental

sulfur accounted for 22% of the total domestic production of sulfur in all forms compared with 19% in 1972. This was a reflection of the rapidly increasing importance of recovered sulfur as a source of U.S. sulfur supply.

Production and shipments of this product in 1973 reached alltime highs with increases of 24% and 27%, respectively, over those in 1972. The total value of shipments increased by 26%. However, the average reported shipment value, f.o.b. plant, declined slightly from \$15.60 per ton in 1972 to \$15.45 per ton in 1973.

Recovered sulfur was produced at 132 plants in 28 States. Most of the plants were of relatively small size, with only three of them reporting an annual production exceeding 100,000 tons. The 10 largest plants accounted for 37% of the total output, and the combined production of the 5 leading States amounted to 73% of the total. By source, 57% was produced at refineries or at satellite plants treating refinery gases, and 43% was produced at natural gas treatment plants.

The five largest recovered sulfur producers were Exxon Company, U.S.A., Getty Oil Co., Shell Oil Company, Stand-

Table 2.—Production of sulfur and sulfur-containing raw materials by producers in the United States

| (Thousand | long | tons) |
|-----------|------|-------|
|-----------|------|-------|

|                                                                                | 1970                |                   | 1971                |                   | 1972                |                   | 1973                  |                   |
|--------------------------------------------------------------------------------|---------------------|-------------------|---------------------|-------------------|---------------------|-------------------|-----------------------|-------------------|
| -                                                                              | Gross<br>weight     | Sulfur            | Gross<br>weight     | Sulfur<br>content | Gross<br>weight     | Sulfur<br>content | Gross<br>weight       | Sulfur<br>content |
| Frasch sulfur<br>Recovered elemental sulfur<br>Byproduct sulfuric acid         | 7,082<br>1,457      | 7,082<br>1,457    | 7,025<br>1,595      | 7,025<br>1,595    | 7,290<br>1,950      | 7,290<br>1,950    | 7,605<br>2,416        | 7,605<br>2,416    |
| (basis 100%) produced<br>at Cu, Zn, and Pb plants_<br>Pyrites<br>Other forms 1 | 1,642<br>845<br>161 | 537<br>339<br>142 | 1,585<br>808<br>149 | 518<br>316<br>126 | 1,669<br>741<br>173 | 546<br>283<br>149 | $1,795 \\ 559 \\ 107$ | 600<br>212<br>88  |
| Total                                                                          |                     | 9,557             |                     | 9,580             |                     | r 10,218          |                       | 10,921            |

<sup>&</sup>lt;sup>1</sup> Revised.

Table 3.—Sulfur produced and shipped from Frasch mines in the United States
(Thousand long tons and thousand dollars)

|        | Production                       |                                  |                                           | Shipments                                 |                                                     |
|--------|----------------------------------|----------------------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------------------|
| Year - | Texas                            | Louisiana                        | Total 1                                   | Quantity                                  | Value <sup>2</sup>                                  |
| 1969   | 3,289<br>3,446<br>3,408<br>3,755 | 3,857<br>3,636<br>3,616<br>3,534 | 7,146<br>7,082<br>7,025<br>7,290<br>7,605 | 6,540<br>6,504<br>6,738<br>7,613<br>7,438 | 173,937<br>153,809<br>117,894<br>132,385<br>138,578 |

<sup>1</sup> Data may not add to totals shown because of independent rounding.

<sup>&</sup>lt;sup>1</sup> Hydrogen sulfide and liquid sulfur dioxide.

<sup>&</sup>lt;sup>2</sup> F.o.b. mine.

ard Oil Co. of California, and Standard Oil Co. (Indiana). Together, their 38 plants accounted for 51% of recovered sulfur production.

The production was nondiscretionary as a byproduct from natural gas and petroleum refinery operations. As such, it was produced and marketed regardless of demand or price and generally sold in close proximity to the points of production. As a result of local competitive factors in the regional markets served by recovered sulfur producers, including competition from Canadian sources in northern areas of the Nation, there were wide variations between the unit sales prices, f.o.b. plant, reported in the different regions of the Nation. This was in marked contrast to the more stable marketing of Frasch sulfur.

The States of Alabama, Florida, and Mississippi continued to emerge as major

Table 4.—Recovered sulfur produced and shipped in the United States

(Thousand long tons and thousand dollars)

| Year | Production                                | Shipments                                 |                                                |  |  |
|------|-------------------------------------------|-------------------------------------------|------------------------------------------------|--|--|
| rear | Gross<br>weight                           | Gross<br>weight                           | Value 1                                        |  |  |
| 1969 | 1,422<br>1,457<br>1,595<br>1,950<br>2,416 | 1,408<br>1,471<br>1,582<br>1,927<br>2,451 | 41,037<br>30,725<br>27,483<br>30,060<br>37,873 |  |  |

r Revised.

1 F.o.b. plant.

producers of recovered sulfur. This development was based on the rapidly expanding exploitation of dry sour natural gas and sour natural gas associated with petroleum in the deep Jurassic formations underlying these States. With existing plants increasing their production and with new plants under construction, there was every indication of a substantial increase in recovered sulfur production in this 3-State area within the next few years.

Petroleum refineries, particularly those along the coastal areas of the Nation, continued to install additional sulfur recovery capacity and modify process equipment for the refining of sour crudes in the expectation of increasing imports of this type of petroleum from the Near East. It was anticipated that these actions would sharply increase the production of recovered sulfur from these sources within the next few years.

Byproduct Sulfuric Acid.—The sulfur contained in byproduct sulfuric acid produced at copper, lead, and zinc roasters and smelters during 1973 amounted to 5% of the total domestic production of sulfur in all forms. It was produced at 18 plants in 12 States. Eight acid plants operated in conjunction with copper smelters, and 10 plants operated as accessories to lead and zinc roasting and smelting operations. The five largest acid plants accounted for 57% of the output, and the combined production of five States amounted to 79% of the

Table 5.-Recovered sulfur shipped in the United States, by State

(Thousand long tons and thousand dollars)

| State -                   | 19       | 72       | 1973       |        |
|---------------------------|----------|----------|------------|--------|
|                           | Quantity | Value    | Quantity   | Value  |
| Arkansas                  | 25       | 365      | 24         | 343    |
| California                | 320      | 5.131    | 433        | 4.539  |
| Florida                   | r 92     | w w      | 225        | 3,529  |
| Illinois and Indiana      | 134      | 2.510    | 168        | 3.562  |
| Louisiana and Mississippi | r 74     | 1.415    | 243        | 3,866  |
| Michigan and Minnesota    | 60       | 971      | 53         | 929    |
| New Jersey                | 67       | 1,678    | 82<br>82   | 1,893  |
| New Mexico                | 35       | 336      | 38         | 364    |
| New York                  | 4        | W        | 90         | W      |
| Ohio                      | w        | w        | 4          |        |
| Oklahoma                  | vy<br>1  | VV       | :          | 111    |
| Pennsylvania              | 22       | F 100    | 0 <u>1</u> | 8      |
| Texas                     |          | 532      | 25         | 461    |
| 117                       | r 852    | r 11,174 | 847        | 12,018 |
|                           | 40       | w        | 49         | w      |
| Other States 1            | r 202    | r 5,937  | 252        | 6,250  |
| Total <sup>2</sup>        | r 1,927  | r 30,060 | 2,451      | 37.873 |

r Revised. W Withheld to avoid disclosing individual company confidential data; included with "Other States."

<sup>&</sup>lt;sup>1</sup> Combined to avoid disclosing individual company confidential data; includes Alabama, Colorado, Delaware, Kansas, Missouri, Montana, North Dakota, Ohio (1972), Utah (1973), Virginia, Washington, and Wisconsin (1973).

<sup>&</sup>lt;sup>2</sup> Data may not add to totals shown because of independent rounding.

total. The total output was 10% more than that in 1972, and the value of shipments was 6% more than that in 1972.

The five largest producers of byproduct sulfuric acid were American Smelting and Refining Co., The Bunker Hill Co., Kennecott Copper Corp., Phelps Dodge Corporation, and St. Joe Minerals Corp. Together, their 12 plants produced 79% of the output during 1973.

number of additional byproduct sulfuric acid plants were either under construction in 1973 or in the planning stage. Coupled with increasing production from the existing plants, it was anticipated that this type of production would increase rapidly within the next few years.

Pyrites, Hydrogen Sulfide, and Sulfur Dioxide.—The contained sulfur in these products amounted to 3% of the total domestic production of sulfur in all forms during 1973. Pyrites was produced at three mines in three States, hydrogen sulfide at seven plants in four States, and sulfur dioxide at one plant. Output was 31% less

Table 6.-Byproduct sulfuric acid 1 (sulfur content) produced in the United States

(Thousand long tons and thousand dollars)

| Year | Copper<br>plants <sup>2</sup> | Lead<br>and<br>zinc<br>plants <sup>8</sup> | Total | Value  |
|------|-------------------------------|--------------------------------------------|-------|--------|
| 1969 | 200                           | 317                                        | 517   | 27,508 |
|      | 218                           | 318                                        | 4 537 | 23,744 |
|      | 234                           | 284                                        | 518   | 21,293 |
|      | 295                           | 251                                        | 546   | 22,897 |
|      | 318                           | 282                                        | 600   | 24,175 |

- 1 Includes acid from foreign materials.
- Excludes acid from foreign materials.
   Excludes acid made from pyrites concentrates in Arizona, Montana, Tennessee, and Utah.
   Excludes acid made from native sulfur.
   Data does not add to total shown because of in-
- dependent rounding.

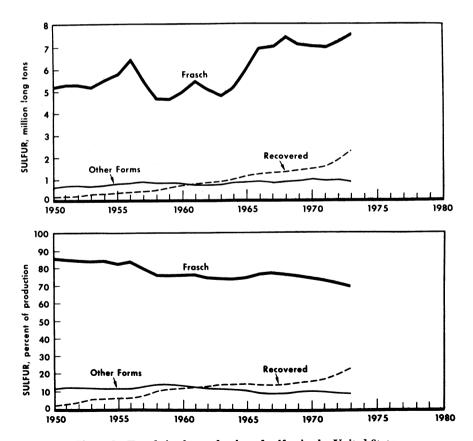



Figure 2.-Trends in the production of sulfur in the United States.

than in 1972. The value of these combined products was 22% less than that in 1972.

The four largest producers of these products were Phillips Petroleum Co. (hydrogen sulfide), Shell Oil Company (hydrogen sulfide), Standard Oil Co. of Cali-(hydrogen sulfide), and Cities Service Co. (pyrites, hydrogen sulfide, and sulfur dioxide). Together, the one mine and seven plants accounted for 97% of the contained sulfur produced in the form of these products.

There was a marked reduction in the production of hydrogen sulfide below that of 1972 as producers found it to be technically and economically more advantageous to directly convert their product to recovered sulfur than to use it as a feedstock to a sulfuric acid plant.

Table 7.-Pyrites, hydrogen sulfide, and sulfur dioxide sold or used in the United States

(Thousand long tons of sulfur content and thousand

| Year | Pyrites | Hydrogen<br>sulfide<br>and<br>sulfur<br>dioxide | Total | Value  |
|------|---------|-------------------------------------------------|-------|--------|
| 1970 | 339     | 142                                             | 481   | 12,214 |
| 1971 | 316     | 126                                             | 442   | 9,530  |
| 1972 | 283     | 149                                             | 432   | 9,227  |
| 1973 | 212     | 88                                              | 300   | 7,188  |

#### CONSUMPTION

Apparent consumption of sulfur in all forms reached an alltime high in 1973, being 4% more than that of 1972. This high level of consumption reflected an improvement in demand by the domestic fertilizer industry. With many new phosphoric acid plants either under construction or in the planning stages, there were indications that this condition would continue to improve during the next several years.

Sulfur for domestic consumption was obtained mainly from domestic sources: Frasch 55%, as compared to 58% in 1972; recovered 24%, as compared to 20% in 1972; and combined byproduct sulfuric

acid, pyrites, hydrogen sulfide, and sulfur dioxide 9%, as compared to 10% in the previous year. The remaining 12% of the sulfur was obtained by imports of Frasch and recovered sulfur, with the percentage of supply being the same as in 1972. The decrease in the domestic Frasch industry's share of the domestic market and the increase by the domestic recovered sulfur industry continued a long-range trend.

The apparent sales of domestic Frasch sulfur to domestic consumers decreased by 100,000 tons, or 2% below those in 1972. Domestic producers of recovered sulfur increased their apparent sales to domestic consumers by 524,000 tons, or 27% over

Table 8.-Apparent consumption of sulfur in the United States 1 (Thousand long tons)

|                 | 1969  | 1970  | 1971             | 1972    | 1973   |
|-----------------|-------|-------|------------------|---------|--------|
| Frasch:         |       |       |                  |         |        |
| Shipments       | 6,540 | 6,504 | 6,738            | 7,613   | 7,438  |
| Imports         | 745   | 539   | 449              | 269     | 302    |
| Exports         | 1,551 | 1,433 | <b>1</b> , $536$ | 1,852   | 1,777  |
| Total           | 5,734 | 5,610 | 5,651            | 6,030   | 5,963  |
| Recovered:      |       |       |                  |         |        |
| Shipments       | 1,408 | 1.471 | 1,582            | r 1.927 | 2,451  |
| Imports         | 930   | 998   | 850              | 869     | 920    |
| Total           | 2,338 | 2,469 | 2,432            | r 2,796 | 3,371  |
| Pyrites:        |       |       |                  |         |        |
| Shipments       | 334   | 339   | 316              | 283     | 212    |
| Imports e       | 120   | 130   | 130              | 50      |        |
| Total           | 454   | 469   | 446              | 333     | 212    |
| Smelter acid    | 517   | 537   | 518              | 546     | 600    |
| Other forms 2   | 126   | 142   | 126              | 149     | 88     |
| _               | 120   | 144   | 120              | 149     |        |
| Total all forms | 9,169 | 9,227 | 9,173            | r 9,854 | 10,234 |

e Estimate. r Revised.

Essumate. - 100 years. 1 Crude sulfur content.
2 Includes consumption of hydrogen sulfide and liquid sulfur dioxide.

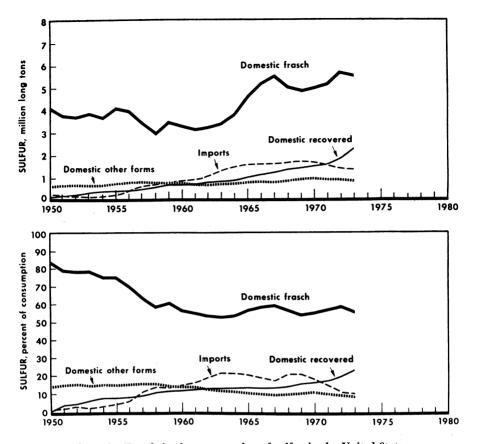



Figure 3.—Trends in the consumption of sulfur in the United States.

those in 1972. The reported sale or use of byproduct sulfuric acid, pyrites, hydrogen sulfide, and sulfur dioxide by domestic producers in the domestic markets decreased by 78,000 tons, or 8%. Imports of elemental sulfur for domestic consumption increased by 34,000 tons, or 3% above imports of elemental sulfur and pyrites for domestic consumption in 1972.

Approximately 90% of the sulfur consumed was in the form of sulfuric acid. The manufacture of fertilizers accounted for approximately 54% of all sulfur con-

sumption. Together, plastic and synthetic products, paper products, paints, nonferrous metal production, and explosives accounted for approximately 21% of demand. The remaining 25% was used for a large number of relatively small individual end uses.

The approximate distribution of consumption was as follows: Southern States (except Florida) 39%; State of Florida 30%; North-Central States 11%; Western States 12%; and Northeastern States 8%.

#### **STOCKS**

Yearend producers' stocks of combined Frasch and recovered sulfur were 3% more than those at yearend 1972 because production of Frasch sulfur exceeded combined shipments to the domestic and export markets by 167,000 tons, with the excess being added to the producers' stockpiles. The combined yearend stocks amounted to approximately a 5-month supply based on the 1973 domestic and export demands for domestically produced Frasch and recovered sulfur.

Table 9.—Producers' yearend stocks
(Thousand long tons)

| Year         | Frasch                | Recovered    | Total            |
|--------------|-----------------------|--------------|------------------|
| 1969         | 3,243                 | 95           | 3,338            |
| 1970         | 3,744                 | 85           | 3,829            |
| 1971         | 4,023                 | 97           | 4,120            |
| 1972<br>1973 | $\frac{3,665}{3.816}$ | r 131<br>111 | r 3,796<br>3,927 |

r Revised.

## **PRICES**

Producers of Frasch and recovered elemental sulfur report the value of their shipments f.o.b. mine or plant. Such values vary widely between different mines or plants, depending upon prevailing selling prices in the markets they individually serve and the transportation costs to these markets.

The values f.o.b. mine or plant do not necessarily reflect the ultimate selling prices because most sales of elemental sulfur, generally in the form of molten sulfur, are made ex-terminal near the point of consumption. Due to the highly competitive nature of the transactions, prices are not generally made available. The trade journal, Sulphur, reported bimonthly on sales prices by areas on the basis of the best information available.

Early in 1973 several major Frasch sulfur producers independently announced increases in the price of liquid sulfur ex-terminals, ranging upward to about \$3 per ton in the Tampa, Fla., area, to be effective as soon as contractual agreements permitted. Additional price increases of about \$3 per ton, under similar conditions, were announced at midyear 1973.

These Frasch sulfur price increases were accepted by major consumers because they recognized that Frasch sulfur production costs had increased, because they were actively seeking assured forward commitments of sulfur to supply large phosphoric acid plants that were either under construction or in the planning stage, and because the greater profitability of the phosphate fertilizer manufacturing industry allowed them to pay higher prices for sulfur.

However, because of contractual agreements, the higher price levels were only partially effective by midyear and did not generally become fully effective until near yearend. As a result, the sales values of shipments of Frasch sulfur f.o.b. mine dur-

ing 1973 increased only \$1.24 per ton, or 7% more than the prices prevailing during 1972.

By the end of 1973, an increasingly strong demand for sulfur by fertilizer manufacturers created a situation in which sulfur was approaching short supply in the major fertilizer-manufacturing areas. It became evident that this situation, coupled with further increasing costs of producing Frasch sulfur, would lead to price increases in Tampa, Fla., and other fertilizer centers in early 1974.

In contrast to the Frasch industry, with a relatively stable marketing pattern, the recovered sulfur industry experienced marketing problems in some areas of the Nation. Because of regional competitive factors, some areas were able to increase their unit shipment values f.o.b. plant, whereas other areas registered sharp decreases. Overall, the reported unit shipment values in 1973 were slightly lower than those reported in 1972.

Table 10.—Reported sales values of shipments of elemental sulfur, f.o.b. mine or plant

(Dollars per long ton)

| Year | Frasch | Recovered | Total |
|------|--------|-----------|-------|
| 1969 | 26.60  | 29.15     | 27.05 |
| 1970 | 23.65  | 20.89     | 23.14 |
| 1971 | 17.50  | 17.37     | 17.47 |
| 1972 | 17.39  | 15.60     | 17.03 |
| 1973 | 18.63  | 15.45     | 17.84 |

r Revised.

Source: Producers' reports.

Table 11.—Sulfur prices, liquid, ex-terminal (Dollars per long ton)

|                                                | Yearend<br>1972                                   | Yearend<br>1973      |
|------------------------------------------------|---------------------------------------------------|----------------------|
| Gulf Coast region<br>Tampa, Fla                | 24-25<br>25                                       | 29-30<br>31          |
| South Atlantic region<br>North Atlantic region | 27-28                                             | 32.50-33.50          |
| North Central States                           | $\begin{array}{c} 29 - 30 \\ 24 - 25 \end{array}$ | 37.50-38.50<br>33-36 |

Source: Sulphur (London).

## **FOREIGN TRADE**

The United States maintained its position as a net exporter of sulfur in 1973. However, net exports were substantially less than in 1972. Exports of sulfur in all forms in 1973 were 4% less than those in 1972, and imports in all forms were 3% more than those in 1972. As a result, total exports of sulfur exceeded total imports by only 555,000 long tons in 1973, as compared to 664,000 tons in 1972, a decrease of 109,000 tons, or 16%.

The maintenance of the export-import balance reflected strenuous efforts on the part of domestic producers to maintain their competitive position in both domestic and world markets in the face of strong foreign competition and low price levels. Favorable factors included limitations on the importation of elemental sulfur from Mexico because of antidumping duties under provisions of the Antidumping Act and a continuing strong demand for sulfur in foreign markets. The European market, in particular, continued to rely upon U.S. Frasch producers as an assured source of supply during a period in which logistic problems limited sulfur exports from Canada, and production problems in Poland made that source of supply uncertain.

Exports were almost entirely in the form of elemental Frasch sulfur. The tonnage of crude sulfur exported during 1973 was 4% less than in 1972. However, the total value increased by 6%, with the average reported value of \$17.55 per ton in 1972 increasing to \$19.38 per ton in 1973. Together, Belgium and the Netherlands received 63% of these exports, mainly for transshipment to other European Community (EC) countries. Brazil, with 13%, was the third largest customer.

Imports of sulfur consisted largely of recovered sulfur from Canada and Frasch sulfur from Mexico. Imports from Canada in 1973 were 4% more than those in 1972. Imports from Mexico were 12% more than those in 1972, but were only 52% of the average imports during the years 1969 through 1971, prior to the imposition of antidumping duties. However, in the latter part of 1973, with higher prices in the Tampa, Fla., market mitigating the effects of the antidumping duties, imports from Mexico into this area began to increase. There were indications that these conditions would lead to substantial increase in imports from Mexico. The total quantity of elemental sulfur imported in 1973 was 7% more than in 1972, and the total value decreased by 9%. The average declared customs value in 1973 was \$12.06 per ton. whereas in 1972 the average was \$14.31 per ton.

There were no imports of pyrites from Canada in 1973; shipments were phased out in 1972 because this product was no longer competitive with low-cost domestic elemental sulfur.

Acting under the provisions of the Antidumping Act, the U.S. Government completed an ongoing investigation of the sales of Canadian elemental sulfur within the United States. The investigation was initiated in early 1972, being mainly based on a complaint that sales of Canadian sulfur were being made at less than cost of production.

On January 17, 1973, the U.S. Department of the Treasury announced a 3month extension of the investigation because certain complex issues had not yet been resolved relating to the treatment of possible sales below cost of production.3

On April 19, 1973, the Department of the Treasury announced two determinations.4 First, the prices at which foreign merchandise is sold in the home market or for exportation to countries other than the United States would be used in determining the "fair value" of such merchandise regardless of whether the prices represented less than the cost of production. Second, it issued a Withholding of Appraisement notice directed against imports of elemental sulfur from Canada on the basis that there were reasonable grounds to believe or suspect that selling prices were below those allowed by the Antidumping Act. The practical effect of these determinations was to limit the investigation to a conventional comparison between purchase prices and home market prices

<sup>&</sup>lt;sup>3</sup> U.S. Department of the Treasury. Sulphur From Canada. Notice of Extension of Time for Investigations. Federal Register, v. 38, No. 13, Jan. 19, 1973, p. 1945.

<sup>4</sup> U.S. Department of the Treasury. Sales Below Cost of Production, Antidumping: Fair Value Determination. Elemental Sulfur From Canada, Withholding of Appraisement Notice. Federal Register, v. 38, No. 77, Apr. 23, 1973, pp. 10026-10027. Register, v. 10026-10027.

rather than to consider the cost of produc-

On July 20, 1973, the Department of the Treasury announced its determination that elemental sulfur from Canada was being, or was likely to be, sold in the U.S. market at less than fair value within the meaning of the Antidumping Act.5 On July 26, 1973, the U.S. Tariff Commission announced that, having received this advice from the Department of the Treasury, it was instituting an investigation to determine whether an industry in the United States was being, or was likely to be, injured or prevented from being established by reason of these imports.6

The Tariff Commission on October 23, 1973, announced that it had determined by a vote of 3 to 2 that an industry in the United States was likely to be injured by reason of the importation of elemental sulfur from Canada that was being, or was likely to be, sold at less than fair value within the meaning of the Antidumping Act.7 On December 12, 1973, the Department of the Treasury announced that it

Table 12.-U.S. exports of sulfur (Thousand long tons and thousand dollars)

|                              | Cr                                        | ude                                            | Refined               |                                       |  |
|------------------------------|-------------------------------------------|------------------------------------------------|-----------------------|---------------------------------------|--|
| Year                         | Quan-<br>tity                             | Value                                          | Quan-<br>tity         | Value                                 |  |
| 1969<br>1970<br>1971<br>1972 | 1,549<br>1,429<br>1,532<br>1,847<br>1,771 | 57,449<br>33,096<br>27,844<br>32,409<br>34,330 | 2<br>4<br>4<br>5<br>6 | 334<br>955<br>1,019<br>1,278<br>1,461 |  |

was adding elemental sulfur from Canada to the list of findings of dumping currently in effect.8 These actions made sulfur imports from Canada subject to antidumping duties.

1973, pp. 29655-29657.

SU.S. Department of the Treasury. Antidumping. Elemental Sulphur From Canada. Federal Register, v. 38, No. 241, Dec. 17, 1973, p. 34655.

Table 13.-U.S. exports of crude sulfur, by country

(Thousand long tons and thousand dollars)

| Destination               | 19'                         | 72               | 1973             |        |
|---------------------------|-----------------------------|------------------|------------------|--------|
| Destination               | Quantity                    | Value            | Quantity         | Value  |
| Argentina                 | 51                          | 962              | 39               | 748    |
| Australia                 | 96                          | 2,126            | 81               | 1,924  |
| Belgium-Luxembourg        | 576                         | 7,832            | 659              | 11,389 |
| Brazil                    | 229                         | 4.291            | 236              | 4,728  |
| Canada                    | 26                          | 725              | 45               | 1,208  |
| Canary Islands            |                             | 120              | 7                | 191    |
| Chile                     | 17                          | $2\overline{94}$ | 36               | 1,120  |
| France                    | - 8                         | 154              | 90               | 1,120  |
| [reland                   | 26                          | 474              | $\bar{2}\bar{6}$ | 448    |
| [srael                    | 33                          | 586              | 40               | 138    |
| [taly                     | 31                          | 640              | 41               |        |
| Korea, Republic of        | 16                          | 307              | 41               | 874    |
| Mexico                    | 2                           | 60               |                  | 1.5    |
| Netherlands               | $57\overset{\cancel{2}}{4}$ |                  | 450              | 49     |
| New Zealand               | 70                          | 10,522           | 453              | 8,422  |
| South Africa, Republic of |                             | 1,543            | 72               | 1,636  |
| Spain                     | 12                          | 268              | (1)              | 1      |
| Spain<br>Switzerland      | 5                           | 108              | 8                | 199    |
|                           | 5                           | 102              | (1)              | (1)    |
| n                         | ==                          |                  | 7                | 202    |
| Tunisia                   | 28                          | 576              |                  |        |
| United Kingdom            | 20                          | 347              | 43               | 757    |
| Druguay                   | 17                          | 332              | 7                | 153    |
| Other                     | 5                           | 160              | 3                | 158    |
| Total                     | 1,847                       | 32,409           | 1,771            | 34,330 |

<sup>1</sup> Less than 1/2 unit.

<sup>&</sup>lt;sup>5</sup> U.S. Department of the Treasury. Elemental Sulphur From Canada. Antidumping: Determination of Sales at Less Than Fair Value. Federal Register, v. 38, No. 141, July 24, 1973, p. 19844. 
<sup>6</sup> U.S. Tariff Commission. Elemental Sulphur From Canada. Notice of Investigation and Hearing. Federal Register, v. 38, No. 146, July 31, 1973, pp. 20381–20382.

<sup>7</sup> U.S. Tariff Commission. Elemental Sulfur From Canada. Determination of Likelihood of Injury. Federal Register, v. 38, No. 206, Oct. 26, 1973, pp. 29655–29657.

Table 14.-U.S. imports of sulfur 1 (Thousand long tons and thousand dollars)

|                                      | Elemental                                 |                                                | Pyri                    | tes 2                |
|--------------------------------------|-------------------------------------------|------------------------------------------------|-------------------------|----------------------|
| Year                                 | Quan-<br>tity                             | Value                                          | Quan-<br>tity e         | Value                |
| 1969<br>1970<br>1971<br>1971<br>1972 | 1,675<br>1,537<br>1,299<br>1,138<br>1,222 | 57,222<br>34,149<br>25,419<br>16,288<br>14,742 | 120<br>130<br>130<br>50 | NA<br>NA<br>NA<br>NA |

e Estimate. NA Not availab <sup>1</sup> Crude sulfur or sulfur content. <sup>2</sup> From Canada. NA Not available.

Table 15.-U.S. imports of elemental sulfur, by country

(Thousand long tons and thousand dollars)

|                                                    | 19                | 72                   | 1973            |                       |  |
|----------------------------------------------------|-------------------|----------------------|-----------------|-----------------------|--|
| Country                                            | Quan-<br>tity     | Value                | Quan-<br>tity   | Value                 |  |
| Canada<br>Germany, West_<br>Mexico<br>Trinidad and | 868<br>(¹)<br>269 | 8,216<br>17<br>8,052 | 905<br>1<br>302 | 8,412<br>113<br>6,013 |  |
| Tobago<br>Other 2                                  | ī                 | -3                   | (¹)             | 202<br>2              |  |
| Total                                              | 1,138             | 16,288               | 1,222           | 14,742                |  |

<sup>&</sup>lt;sup>1</sup> Less than ½ unit. <sup>2</sup> 1971—United Kingdom, Zambia; 1972—Guyana, United Kingdom.

## **WORLD REVIEW**

The world's production of sulfur in all forms increased substantially over that of 1972, mainly because of an increase in the production of Frasch and recovered elemental sulfur. Major increases were shown in the production of Frasch and recovered sulfur in the United States, recovered sulfur in Canada, and Frasch sulfur in Mexico and Poland. Additionally, the U.S.S.R. was reported to have increased its production of sulfur in all forms. For the world as a whole, the production of pyrites remained fairly stable.

World demand for sulfur also increased substantially over that of 1972, primarily because of a continuing upsurge in demand for use in fertilizer manufacturing. However, production exceeded demand by a somewhat wider margin than in 1972 as reflected by an increase in producers' stocks, particularly in the case of Canadian recovered sulfur.

Because of logistic problems that restricted the movement of sulfur from certain major producing areas to world markets, there was more of an effective equilibrium between available supply and consumption than the overall statistics would suggest. These logistic problems, coupled with the increasingly strong demand, created a tight supply position for sulfur in most of the major consuming areas of the world in the latter part of 1973. As a result, sulfur prices began to increase during this period.

There was a continuation of the trend toward a basic restructuring of world sulfur supply sources, with increasingly larger supplies being obtained from secondary

sources such as petroleum refineries and plants treating sour natural gas. However, the Frasch sector of the industry, with its well-established production and distribution facilities and ample stocks on hand, continued to maintain its position with consumers as the most reliable source of supply. The pyrites industry continued to become less attractive to the major sulfurconsuming countries of the world as a source of supply.

There was a continuing trend toward the use of liquid sulfur tank ships in international trade and the installation of liquid sulfur terminal facilities at points of consumption.9 This was being brought about because of environmental problems associated with the storage and shipment of dry bulk elemental sulfur with its associated dust problems, and the preference of consumers for the delivery of liquid sulfur ex-terminals. Further implementation of this method of distribution will require large capital investments by sulfur produc-

Stabilization of conditions in the Middle East and the prospective reopening of the Suez Canal increased the probability that the Persian Gulf area would emerge as a major source of world sulfur supplies. The countries bordering on the Persian Gulf have tremendous reserves of sulfur that could be recovered as a byproduct during the exploitation of their deposits of sour petroleum and sour natural gas. In the past these sulfur resources have only been

<sup>9</sup> Sulphur (London). Seaborne Trade in Liquid Sulphur. No. 108, September-October 1973, pp.

exploited to a limited extent. However, with announced plans for large refinery installations, petrochemical complexes, and natural gas liquefaction plants, it appeared inevitable that the production of recovered elemental sulfur would increase very rapidly. Additionally, the reopening of the Suez Canal would permit the marketing of this sulfur in European markets.

Canada.—The Province of Alberta's production of recovered elemental sulfur increased from 6.5 million long tons in 1972 to 7.0 million tons in 1973 as the result of the completion of several new plants. Alberta's shipments of sulfur increased from 3.1 million tons in 1972 to 3.9 million tons in 1973, mainly because of an increase in offshore shipments through the port of Vancouver, British Columbia. With production continuing to exceed shipments by a wide margin, producers' yearend stocks increased from 8.7 million tons in 1972 to 11.8 million tons in 1973. Although producers announced substantial increases in prices in the latter part of 1973, contractual arrangements did not permit them to become effective until after the close of the year. As a result, the value of the marketed sulfur, f.o.b. plant, remained low, in the range of \$5.50 to \$6.00 per ton for the year as a whole.

With no new major sulfur recovery plant construction currently underway, it appeared that Alberta's recovered sulfur production had leveled off at approximately 7 million tons per year. The rated nameplate capacity of these plants for 1974 was 25,000 tons per day, or approximately 9 million long tons of sulfur per year.10 However, these plants do not operate at full capacity throughout the year because of the cyclic demand for natural gas and downtime for maintenance.

Efforts were underway to solve logistic problems limiting the shipment of Alberta's sulfur to world markets. One development was the shipment of sulfur to the port of Churchill, Manitoba, for transshipment to Europe during the forthcoming summer shipment season on Hudson Bay. Additionally, consideration was being given to shipping to Great Lake ports, also for transshipment to the European market. It was projected that total sales of Canadian sulfur would reach 4.7 million tons in 1974, with stockpiles accumulating at a slower rate than in previous years and leveling off at around 20 million tons in 1980.11

Germany, West.—This nation continued to move toward self-sufficiency in sulfur supply, mainly as the result of an increase in recovered sulfur capacity. Sour natural gas treatment plants in the Ems/Weser zone of northern West Germany at Voigtei, Duste, and Grossenkneten increased production to about 350,000 tons of recovered sulfur per year.12

Iraq.—Production of Frasch sulfur at the Mishraq mine of Iraq National Minerals Co. was being expanded from its initial production of 250,000 tons per year to 1 million tons per year. This sulfur was being shipped by rail to the Iraqi port of Umm Qasr on the Persian Gulf near Basrah.13 While the Mishraq operation is of potential importance as a source of Frasch sulfur supply, inadequate transportation facilities between the mine and the port have been a limiting factor, pending planned improvements to the railroad and port facilities and the purchase of additional liquid tank cars.

Japan.-Following a long-range trend, there was a further restructuring of the Japanese sulfur industry in 1973. Native sulfur ores, formerly a major source of supply, accounted for only an insignificant portion of the nation's sulfur output. Additionally, the pyrites industry was becoming of lesser importance as a source of supply, with a prospect that it would be largely phased out within the next decade. Counterbalancing the declines in the native sulfur ore and pyrites industries has been a very rapid growth in recovered sulfur output at petroleum refineries. Additionally, there has been a rapid growth in the production of sulfuric acid at smelters treating domestic and imported nonferrous sulfide ores and concentrates.

Contrary to general expectations, there was a moderate shortage of sulfur in all forms in 1973. However, it was anticipated that the planned expansion in desulfurization capacity at refineries and pollution control measures would result in an over-

<sup>&</sup>lt;sup>10</sup> Oilweek (Canada). Gas Processing Plant Caacities 1974. V. 24, No. 49, Jan. 21, 1974, pp.

pactites 1974. V. 24, No. 49, Jan. 21, 1974, pp. 30-32.

1 Pearse, G. H. K. Sulphur. Canadian Min. J., v. 95, No. 2, February 1974, p. 33.

2 Sulphur (London). World Trends. West Germany. No. 109, November-December 1973, p. 7.

3 Sulphur (London). World Markets. Iraq. No. 106, May-June 1973, p. 10.

supply situation in the near future. It was proposed to alleviate overproduction by promoting exports to Asiatic markets where the competitive power of Japan's product would be enhanced due to her advantageous position as regards transport costs, 14

Mexico.—Conditions in the Frasch-based sulfur industry improved substantially over those in 1972, with increases in both production and exports. This industry had been adversely affected by the imposition of antidumping duties on the importation of Mexican sulfur into United States; historically, the U.S. market had been Mexico's major customer.

Mexico appeared to have successfully resolved this serious problem by a rather complete reconstruction of its export marketing patterns, with penetrations into the South American and Far East markets. The program was aimed at extending the concept of liquid sulfur transportation to South American markets and possibly to the Far East. Additionally, consideration was given to establishing a sulfur distribution center on the Pacific Coast of Mexico.15

Poland.—Poland continued to improve its position as one of the world's largest

producers and exporters of elemental sulfur. A reorganization of the industry in the form of further decentralization became effective in late 1973. It was anticipated that decentralization would improve Poland's position in the production and marketing sectors of the industry. Poland's export capability was increased by the addition of a third liquid sulfur tank ship. Additionally, plans were being made for the construction of two additional liquid sulfur tankers with the expectation that they would be placed in operation by 1975.16

U.S.S.R.—The production of sulfur in all forms increased substantially over that of 1972. While pyrites was still a substantial source of sulfur production, the U.S.S.R. continued to emphasize the production of native sulfur. The principal native sulfur producing centers continued to be Rozdol and Yavorov (West Ukraine), Gaurdak and Shorsu (Central Asia), and the Volga group of the Kuybyshev sulfur complex. The Rozdol chemical complex was the country's major producer of native sulfur and, with the Gaurdak combine,

Page 40 of work cited in footnote 9.Page 9 of work cited in footnote 12.

Table 16.-Elemental sulfur: World production by country

(Thousand long tons)

| Country 1                     | 1971        | 1972    | 1973 » |
|-------------------------------|-------------|---------|--------|
| Native sulfur:                |             |         |        |
| Frasch:                       |             |         |        |
| Irag                          |             | 135     | 389    |
| Mexico                        |             | 847     | 1,520  |
| Poland •                      |             | 2,559   | 3,051  |
| United States                 | 7,025       | 7.290   | 7,605  |
| Officed boates                | 1,029       | 1,290   | 1,000  |
| Total                         | 10,264      | 10,831  | 12,565 |
| From sulfur ores:             | <del></del> |         |        |
| Argentina                     | 38          | 42      | 32     |
| Bolivia (exports)             |             | 18      | 56     |
| Chile                         |             | 77      | 31     |
| China, People's Republic of 6 |             | 128     | 128    |
| Colombia •                    |             | 32      | A      |
| Ecuador •                     |             | 6       | 6      |
| Indonesia                     | 01          | , o     | 2      |
|                               |             | 2       | • 3    |
| Iran 2                        | 2           |         |        |
| Įtaly                         | 71          | 90      | 79     |
| Japan <sup>3</sup>            |             | 17      | (4)    |
| Mexico                        |             | 21      | -:     |
| Pakistan                      |             | 3       | 3      |
| Poland e                      |             | r 322   | 434    |
| Taiwan                        |             | 4       | 6      |
| Turkey                        | 23          | 21      | 17     |
| U.S.S.Ř.•                     |             | r 2,165 | 2,264  |
| Total                         | r 3,080     | 2,951   | 3,065  |
| Total native sulfur           | r 13,344    | 13,782  | 15,630 |

See footnotes at end of table.

<sup>&</sup>lt;sup>14</sup> Hashimoto, F. Sulfur & Sulfuric Acid. Japan Chemical Review 1974, p. 63. <sup>15</sup> Page 40 of work cited in footnote 9.

Table 16.-Elemental sulfur: World production by country-Continued (Thousand long tons)

| Country 1                                   | 1971            | 1972        | 1973 р |
|---------------------------------------------|-----------------|-------------|--------|
| Other elemental sulfur: Recovered:          |                 |             |        |
| Algeria e 5                                 | 20              | 20          | 20     |
| Austria 6                                   | 3               | e 3         | e 3    |
| Belgium 6                                   | r 24            | 25          | 25     |
| Brazil <sup>5</sup>                         | 9               | 9           | 1      |
| Bulgaria 5                                  | 6               | 7           | e 7    |
| Canada 7                                    | 4.720           | 6,839       | 7,290  |
| China, People's Republic of e 8             | 118             | 118         | 118    |
| Colombia e 5                                | 3               | 3           | - 8    |
| Colombia e 5<br>Egypt, Arab Republic of e 5 | 1               | 1           | 1      |
| Finland                                     | 100             | $11\bar{7}$ | 121    |
| France 9                                    | r 1.773         | 1.703       | 1,775  |
| Germany, East                               | 98              | 103         | 108    |
| Germany, West 6                             | 181             | 216         | 327    |
| Hungary                                     | 3               | š           | e 8    |
| Iran 9                                      | 487             | 655         | • 669  |
| Iraq e                                      | 59              | 108         | 138    |
| Israel e 5                                  | 10              | 10          | 10     |
| Italy 6                                     | $\overline{73}$ | e 74        | e 79   |
| Japan                                       | 10 339          | 10 474      | 4 670  |
| Kuwait <sup>5</sup>                         | 36              | 38          | e 44   |
| Mexico                                      | 64              | 61          | 68     |
| Netherlands 6                               | 32              | 46          | 48     |
| Netherlands Antilles                        | 26              | 73          | 71     |
|                                             | 3               | 3           | 11     |
| Portugal 5                                  | 5<br>5          | 5<br>5      | ē      |
| Saudi Arabia e 5                            | 1               | 6           | e (    |
| Singapore 5                                 | 25              | 24          | 28     |
| South Africa, Republic of 5                 |                 |             |        |
| Spain 11                                    | 3               | 4           |        |
| Sweden                                      | 5               | 5           | Ę      |
| Taiwan 5                                    | e 4             | e 4         | 8      |
| Trinidad e 5                                | 4               | 4           | 4 004  |
| U.S.S.R.e                                   | r 1,575         | r 1,673     | 1,821  |
| United Kingdom 5                            | r 43            | 40          | 28     |
| United States                               | 1,595           | 1,950       | 2,416  |
| Uruguay e                                   | (12)            | (12)        | (12)   |
| Total other elemental sulfur                | r 11,448        | 14,427      | 15,925 |
| Grand total                                 | r 24.792        | 28,209      | 31,555 |

Preliminary. r Revised.

included above (see footnote 4).

11 From distillation of petroleum and lignite and from reduction of SO<sub>2</sub> gas.
12 Less than 1/2 unit.

provided the bulk of the country's sulfur requirements. Output of sulfur at Gaurdak was expected to increase substantially during the next few years.

Increasing attention was also being given

to the recovery of secondary sulfur. This included the production of recovered elemental sulfur at refineries and natural gas processing plants, and the production of sulfuric acid at nonferrous metal smelters.

In addition to countries listed, the Philippines produced less than 100 tons of sulfur annually in 1971 and 1972 from unspecified sources; output in 1973 was reportedly nil.

Year beginning March 21 of year stated.

Includes small quantity of byproduct sulfur recovered from sulfide ores as well as sulfur content of sulfur

<sup>&</sup>lt;sup>4</sup> Available sources do not divide Japanese 1973 sulfur output by type (ore and other elemental); because output from ore has been declining, the total undivided figure has been reported under other elemental.

<sup>5</sup> From petroleum refining.

From petroleum refining and smelting of sulfide ores.

From petroleum refining and smelting of sulfide ores.

From petroleum refining and natural gas processing.

From petroleum refining and natural gas processing.

From petroleum refining and natural gas processing.

Table 17.-World production of pyrites (including cupreous pyrites) (Thousand long tons)

| Country 1                   | 19               | 71                | 19              | 72                | 197              | '3 p              |
|-----------------------------|------------------|-------------------|-----------------|-------------------|------------------|-------------------|
| Country                     | Gross<br>weight  | Sulfur<br>content | Gross<br>weight | Sulfur<br>content | Gross<br>weight  | Sulfur<br>content |
| North America:              |                  |                   |                 |                   |                  |                   |
| Canada (shipments)          | 284              | • <b>12</b> 8     | 112             | e 51              | 120              | e 55              |
| United States 2             | 808              | 316               | 741             | 283               | 559              | 212               |
| Europe:                     |                  |                   |                 |                   |                  |                   |
| Bulgaria •                  | r 150            | 63                | r 150           | 63                | 150              | 68                |
| Czechoslovakia e            | r 350            | r 150             | r 350           | r 150             | 350              | 150               |
| Finland                     | 8 <b>52</b>      | 383               | 843             | 379               | 765              | 344               |
| France                      | 80               | r 43              | 33              | 17                |                  |                   |
| Germany, East •             | r 140            | 57                | r 140           | 57                | 140              | 5′                |
| Germany, West               | 487              | 216               | 415             | 187               | e 537            | e 242             |
| Greece                      | 204              | 92                | 227             | 102               | e 226            | e 10              |
| Hungary e                   | _7               | 3                 | 7               | 3                 | 7                | 1                 |
| Italy                       | r1,479           | r 636             | 1,361           | 612               | 1,151            | 50                |
| Norway                      | 766              | 356               | 782             | 364               | 780              | 36                |
| Portugal                    | r 550            | r 245             | 544             | 239               | 524              | 23                |
| Romania e                   | r 830            | r 350             | r 830           | r 350             | 860              | 37                |
| Spain                       | r 2, 402         | r 1,124           | 2,106           | 985               | 2,153            | 99                |
| Sweden                      | 582              | r 293             | r 479           | r 246             | e 669            | e 34              |
| U.S.S.R.e                   | r6,900           | r 3,200           | r 7,100         | r 3,300           | 7,200            | 3,40              |
| Yugoslavia                  | r 272            | r e 114           | 227             | e 95              | 214              | · • 9             |
| Africa:                     |                  |                   |                 |                   |                  |                   |
| Algeria                     | 27               | 12                | 27              | 13                | e 30             | e 1.              |
| Morocco (pyrrhotite)        | 434              | r 113             | 423             | 131               | 401              | 133               |
| Rhodesia, Southern 6        | 72               | 30                | 72              | 30                | 72               | 3                 |
| South Africa, Republic of   | <b>73</b> 8      | 295               | 432             | 173               | 542              | 21                |
| South-West Africa           | 14               | 6                 |                 |                   | 12               |                   |
| Asia:                       |                  |                   |                 |                   |                  |                   |
| China, People's Republic of | r2,000           | r 900             | r 2,000         | r 900             | 2,000            | 90                |
| Cyprus                      | r 8 <b>99</b>    | r 423             | 685             | 323               | ₃ 391            | 3 18              |
| India                       | 40               | 15                | 30              | 11                | 41               | 1                 |
| Japan                       | 2,306            | 1,092             | 1,555           | 755               | 1,255            | 56                |
| Korea, North                | <del>-</del> 500 | r 200             | r 500           | r 200             | 500              | 20                |
| Korea, Republic of          | NA               | NA                | 1               | (4)               | 1                | (4)               |
| Philippines                 | 235              | 109               | 252             | ``117             | $12\overline{4}$ | `´ • 5'           |
| Taiwan.                     | 45               | e 17              | 30              | e 11              | 11               | e a               |
| Turkey                      | 58               | 26                | 76              | 35                | 43               | 2                 |
| Oceania: Australia          | r 231            | r 105             | 253             | 119               | e 210            | e 10              |
| Total                       | r 24,742         | r 11 . 112        | 22,783          | 10,301            | 22,038           | 9,960             |

#### **TECHNOLOGY**

The energy crisis combined with environmental goals to force a reappraisal of prospects for sulfur recovery from new sources. Most of the reviews and research published during the year were directed towards various scrubbing systems, designed to be added on to existing powerplants, or industrial plants, to reduce SO<sub>2</sub> emissions to levels called for in current regulations. Among these systems, alkaline scrubbing with lime or limestone was far in advance in respect to research performed and experimental installations operating. Nevertheless, it was still beset with severe problems of cost, reliability, and waste disposal; thus recovery systems in which the scrubbing medium is circulated and a useful sulfur product is obtained received increasing attention.

During the year some 26 pilot installations were operated to test lime or limestone scrubbing. Results were inconclusive. Few, if any, of the plants operated with the reliability needed in expensive fullscale units. Utilities companies showed some reluctance to commit large sums of money to scrubbing plants that might be obsolete before they were amortized. The Environmental Protection Agency (EPA), support from environmentalist groups, nevertheless pushed ahead to attain 1977 environmental goals, modified only by temporary reprieves to meet fuels shortages. The Office of Management and Budget, on the other hand, reported that part of energy research funds would be

<sup>&</sup>lt;sup>e</sup> Estimate. <sup>p</sup> Preliminary. <sup>r</sup> Revised. NA Not available. <sup>1</sup> Pyrites is produced in Cuba, but there is too little information to estimate production. <sup>2</sup> Sold and used.

<sup>3</sup> Exports. 4 Less than 1/2 unit.

used to examine the validity of present sulfur emission standards.17

Energy problems, which became more pressing late in the year with the Arab oil embargo, increased the likelihood that coal would be called upon to supply an increasing share of the fuel market to replace, in part, petroleum and natural gas. The increased attention to coal conversion emphasized the attractiveness of sulfur removal from fossil fuels at the time of conversion, rather than from the much larger volumes of stack gas; commercial processes are available to recover sulfur produced as hydrogen sulfide, the form in which most sulfur leaves the fuel conversion vessel.

The Office of Coal Research (OCR) of the U.S. Department of the Interior sponsored research into methods of removing coal before and during sulfur from combustion.18

The solvent-refined-coal (SRC) plant being constructed for OCR at Fort Lewis, Wash., by the Pittsburgh and Midway Coal Mining Co. was almost complete by the end of 1973. Early tests of this process indicated that it would remove all the inorganic sulfur and 60% to 70% of the organic sulfur in the coal. Oklahoma State University was studying the removal of sulfur from coal-derived liquids in the SRC process. At the Colorado School of Mines, the solvent-refining technique was studied. Experiments underway centered around the conditions necessary to maximize the removal of sulfur.

Research on a clean coke process was carried out by the United States Steel Corp. under a continuing OCR contract. According to the process design, raw coal from the mine is split into two approximately equal portions; one portion is carbonized, whereby it is converted to lowsulfur char, and the other is processed in the hydrogenation section where it is converted to a liquid and a gas rich in light paraffins. Gases from the two sections are combined, and sulfur, among other products, is removed. The main products are metallurgical coke and chemicals.

Another successful year of char-oil-energy development (COED) pilot plant operations was completed during 1973 by the FMC Corp. under contract to OCR. The process is a pyrolysis of the coal feed at atmospheric pressure. In 1973 the plant feed consisted of two high-volatile D bituminous coals. The COED process yields synthetic crude and gas with a heating value of approximately 500 Btu per cubic foot. Sulfur can be removed from the gas by commercial processes. The Ralph M. Parsons Co., under separate contract to OCR, started a commercial design for a COED process complex.

Products and Chemicals, worked on a process to remove sulfur from producer gas in a fixed bed of lime or calcined dolomite. Work proceeded on phase I during the year involving the study of limestone to determine the type most suit-

In work on an advanced coal gasification system for electric power generation, the Westinghouse Electric Corp., in a contract with OCR, used a lime sorbent in a recirculating bed devolatilizer and desulfurizer to convert the hydrogen sulfide formed into calcium sulfide, which was removed as the spent sorbent.

The Battelle Memorial Institute continued tests on a fuel gas scrubbing process to remove sulfur dioxide, using a molten mixture of lithium carbonate, sodium carbonate, potassium carbonate, and calcium carbonate as the working fluid.

OCR also requested during the year the reactivation of the Cresap, W.Va., facility for further testing of processes to produce low-sulfur fuel oil from Eastern high-sulfur coals. The Cresap pilot plant was originally sponsored under a contract with Consolidation Coal Co. from 1962 to 1969, being then known as Project Gasoline.

The Federal Bureau of Mines continued development of the citrate system for sulfur dioxide removal from stack gases.19 A pilot plant to test the process was completed in December 1973 at the Bunker Hill Company lead smelter at Kellogg, Idaho. Preliminary test results were encouraging. The same process was tested in a pilot plant at Terre Haute, Ind., by a consortium of Arthur G. McKee & Co., Peabody Engineering Co., and Chas. Pfizer & Co.

<sup>&</sup>lt;sup>17</sup> Coal Mining and Processing. V. 11, No. 1, January 1974, p. 32.

<sup>18</sup> U.S. Office of Coal Research. Coal Technology: Key to Clean Energy. Annual Report, 1973-74, 145 pp.

<sup>19</sup> Rosenbaum, J. B., W. A McKinney, H R. Beard, L. Crocker. and W. I. Nissen. Sulfur Dioxide Emission Control by Hydrogen Sulfide Reaction in Aqueous Solution. The Citrate System. BuMines RI 7774. 1973. 31 pp.

The Bureau of Mines published a survey of the chemistry of sulfur dioxide in various processes tested to remove it from stack gases.20

A major symposium 21 was organized by the EPA to consider the state of the art of flue gas desulfurization. In the keynote address, an EPA official presented data indicating that elevated levels of SO<sub>2</sub> concentration lead to increased morbidity and mortality, and that suspended sulfates also associated with heart and lung ailments.22 Adverse health consequences were stated to be associated with SO2 exposures in the range of 80 to 120 parts per million for 1 or more days.

An analysis was presented of costs of flue gas desulfurization in fossil fuel boiler plants.23 It was concluded that desulfurization can be applied to 75% of existing fossil fuel utility capacity at an annualized cost of 1.5 to 3.0 mills per kilowatt-hour. Regenerative processes, which produce sulfur and recycle the scrubbing medium, are generally less costly than throwaway processes since waste disposal costs about \$3 per ton of wet sludge.

Another limiting factor on the selection of throwaway processes for stack gas desulfurization would be the area needed to dispose of the resultant sludge; if the area is too large, regenerative processes will be mandatory. An estimate was made of this area. Assuming 3.5% sulfur in the coal and 50% solids in the sludge, lime scrubbing was found to require approximately 8,600 acre-feet for each 1,000 megawatts in the course of 20 years of operation; limescrubbing would require about 10,800 acre-feet per 1,000 megawatts in 20 years. It was estimated that 20,000 megawatts could be equipped with scrubbing systems by 1975, and perhaps 50,000 megawatts actually would be equipped by 1977.24 This latter figure would require 3 to 4 square miles of disposal area per year, covered to an average depth of 10 feet. If the entire present U.S. coal generating capacity, about 200,000 megawatts at an average of 2% sulfur in the coal, were controlled in this way, it would require about 10 square miles per year of disposal area.

Additional papers presented discussed the status of various alkaline scrubbing processes in the United States and abroad, including pilot plant experience, and advanced concepts such as scrubbing with ammoniacal solutions, double alkali processes, molten salt scrubbing, and dry adsorption. In summing up, one of the session chairmen concluded that scrubbing technology was feasible in commercial-sized installations, but that certain problems remained to be solved. This conclusion supported that of the Sulfur Oxide Control Technology Assessment Panel (SOCTAP).

SOCTAP, a Federal interagency committee, released its final report.25 It was concluded that sulfur dioxide removal from stack gases is technologically feasible in commercial-sized installations, and that a large fraction of the Nation's coal-fired steam-electric plants can ultimately be fitted with commercially available stack gas cleaning systems. Four processes were considered sufficiently developed to potentially desulfurize flue gas. These were lime/limestone scrubbing, magnesium oxide scrubbing, catalytic oxidation, and wet sodium-base scrubbing with regeneration. An additional process, the double alkali process, was considered potentially important.

A new pilot plant was completed by the Tennessee Valley Authority (TVA) at its generating plant at Colbert, Ala., to test the ammonium sulfate regeneration process in connection with ammonia-based scrubbing of sulfur oxides from stack gases. The ammonium sulfite formed is acidified with ammonium bisulfate, releasing SO2; the ammonia and bisulfate are regenerated from the resultant sulfate with heat.26

The elemental sulfur pilot plant of American Smelting and Refining Co. and Phelps Dodge Corp. at El Paso resumed

<sup>&</sup>lt;sup>20</sup> Haas, L. A. Sulfur Dioxide: Its Chemistry as Related to Methods for Removing It From Waste Gases. BuMines IC 8608, 1973, 19 pp.
<sup>21</sup> Office of Research and Development, National Environmental Research Center, U.S. Environmental Protection Agency (Research Triangle Park, N.C.). Proceedings: Flue Gas Desulfurization Symposium, New Orleans, May 14–17, 1973. EPA-650/2-73-038, December 1973.
<sup>22</sup> Newill, V. A. and J. D. French. Health Rationale for Strict Control of Sulfur Oxide Emissions. Pp. 1-12 of work cited in footnote 21.
<sup>23</sup> Rochelle, G. T. Economics of Flue Gas Desulfurization. Pp. 103–132 of work cited in footnote 21.

sulfurization. Pp. 103-132 of work cited in footnote 21.

<sup>24</sup> Jones, J. W. and R. D. Stern. Waste Products From Throwaway Flue Gas Cleaning Processes-Ecologically Sound Treatment and Disposal. Pp. 187-234 of work cited in footnote 21.

<sup>25</sup> Sulfur Oxide Control Technology Assessment Panel (SOCTAP). Projected Utilization of Stack Gas Cleaning Systems by Steam-Electric Plants. Final report submitted to the Federal Interagency Committee, Evaluation of State Air Implementation Plans, Apr. 15, 1973, 93 pp.

<sup>26</sup> Tennessee Valley Authority, National Fertilizer Development Center. 1973 Annual Report. 21 pp.

operations after replacing the primary reactor. The plant had been closed down since early in 1972.27 The process was designed to produce sulfur from smelter stack gases by direct reduction with natural gas. It is considered to be suitable for stack gases containing about 12% SO<sub>2</sub>, such as those produced in flash smelting or other continuous smelting of base metal ores.

Sulfur recovery from base metal smelter emissions has been hampered by the intermittent nature of such operations. Attention during the year was focused on continuous smelting to alleviate this problem. The Mitsubishi, Worcra, and Noranda processes were basically continuous smelting with strong off gases.28

An experimental sodium-sulfur cell using a beta alumina electrolyte was described.29 Characteristics of the anodic and cathodic reactants allow one to expect batteries with an energy density higher than 150 watt hours per kilogram, which makes them a promising energy source for urban electric vehicles. The average lifetime to date has been 90 ampere hours per square centimeter (A-hr/cm<sup>2</sup>), with an upper limit of 150 A-hr/cm2. It seems necessary to double this figure before a battery in the range of a few hundred watts can be constructed.

The Bureau of Mines developed a rapid quantitative analysis for pyrite in coal by X-ray diffraction with computerized data procession.30 Noncrystalline sulfur is not detected. Pyrite in the usual range of 0.1% to 3% in coal can be detected quantita-

The TVA found that application of molten sulfur in producing sulfur-coated-(SCU) fertilizer substantially improved the coating process. Improvements included better coating efficiency and uniformity, less dust and mist formation, simplified coating drum design, and decreased requirement for preheating the urea. Crop yields continued to show promise for SCU, including more uniform plant growth, lower application costs, and higher yields under some conditions. On certain crops, such as forages and long-season horticultural crops, results of trials showed SCU superior to soluble nitrogen.31

A survey of users of sulfur dioxide and nitrogen oxides monitoring equipment revealed that in recent years high and variable levels of SO2 in stack emissions have been successfully monitored by measurements of the strong ultraviolet light absorption of this compound. Measuring techniques commonly used for ambient monitoring had earlier been applied with marginal success to monitoring.32

The present worldwide oversupply of sulfur, together with the projection that environmental controls would create an even greater oversupply position, was responsible for the expansion of a large number of research programs designed to develop new uses for sulfur of a magnitude that would alleviate this situation. These research projects were largely Government sponsored. Additionally, however, trade organizations, sulfur-producing companies, universities, and independent laboratories pursued programs designed not only to develop novel uses for sulfur, but to investigate the basic properties of sulfur as they might relate to new uses.

The Bureau of Mines continued its broadly based sulfur utilization program covering asphalt-sulfur paving materials, sulfur applications for land pollution abatement, characterization of construction materials containing sulfur, and new metallurgical applications for sulfuric acid. Under one segment of the Bureau's program, the Texas A & M Research Foundation reported on the beneficial use of sulfur in sulfur-asphalt pavements. report, covering the first phase of a research project jointly funded by the Bureau of Mines and The Sulphur Institute, described familiarization and verification of existing technology, literature search and patent review, and preliminary design, construction, and quality control procedures.33

<sup>&</sup>lt;sup>27</sup> Mining Congress Journal. V. 50, No. 12, December 1973, p. 7.
<sup>28</sup> Price, F. C. Copper Technology on the Move. Eng. and Min. J., v. 174, No. 4, April 1973, pp. RR-HHH.
<sup>29</sup> Fally, J. Some Aspects of Sodium-Sulfur Cell Operation J. Electrochem. Soc.: Electrochem. Sci. and Technol., v. 120, No. 10, October 1973, pp. 1292–1295.
<sup>39</sup> Schehl R. P. and R. 4.

<sup>&</sup>lt;sup>30</sup> Schehl, R. R., and R. A. Friedel. Computerized System for Quantitative X-Ray Diffraction Analysis of Pyrite in Coal. BuMines TPR 71, 1973, 9 pp.

<sup>31</sup> Work cited in footnote 26.

<sup>&</sup>lt;sup>31</sup> Work cited in footnote 26.
<sup>32</sup> Barrett, D. F., and J. R. Small. Emission Monitoring of SO<sup>2</sup> and NO<sub>x</sub>. Chem. Eng. Prog., v. 60, No. 12, December 1973, pp. 35–38.
<sup>33</sup> Galloway, B. M., and D. Saylak. Beneficial Use of Sulfur in Sulfur-Asphalt Pavements (in three volumes). Texas A & M Research Foundation, January 1974, 185 pp.

The Sulphur Institute Journal described a number of developments in new uses for sulfur.34 Subject matters covered included the construction of a concrete block structure by the Bureau of Mines, using a sulfur-fiberglass formulation, research on sulfur concretes at the University of Calgary, Canada, the development of sulfurasphalt materials by the Société Nationale des Pétroles D'Aquitaine of France, and the characterization of sulfur coatings on urea by TVA.

The Sulphur Development Institute of Canada initiated a large-scale research program designed to develop new uses for sulfur. Financing in the amount of \$1 million per year for 3 years was provided by the Federal Government of Canada, the Provincial Government of Alberta, and recovered-sulfur producers in Alberta, Canada.

<sup>&</sup>lt;sup>34</sup> Sulphur Institute Journal. V. 9, No. 3-4, Fall-Winter 1973, 21 pp.



# Talc, Soapstone, and Pyrophyllite

By J. Robert Wells 1

Talc-group minerals were produced and consumed in 1973, both in the United States and worldwide, at an annual rate that was substantially greater, measured by both quantity and total value, than any previously recorded. The thriving tone of the industry was notable considering the negative influence of the mostly unjustified health-hazard uncertainties spilling over onto talc because of its acknowledged genetic and geological associations with some of the materials classified as asbestos. One such material is tremolite, which sometimes appears with a fibrous structure similar to that of the true asbestos minerals exemplified by chrysotile, and which may be found as a minor-to-major component in some commercial talc deposits.

The characteristic crystal form of the mineral talc is platy-foliated or tabular with poorly defined rhombic or hexagonal outlines-but talc, in certain deposits that also contain tremolite, may occur to some extent as a pseudomorphic replacement after that mineral. Mixtures of talc with 30% or more tremolite have been found to serve better in some specific applications than pure talc itself, with the result that the terms "fibrous talc" and "tremolitic talc" have become quite firmly implanted in the vocabulary of the industry and even appear without qualification in some mineralogical texts. Illustrative of the confusion that can follow from this imprecise terminology is the following statement taken from an item in a nationally circulated hobbyoriented magazine: "Tremolite, better known as talc, is a soft mineral and has a smooth feel when rubbed between the fingers. Ground, it is used for talcum powder."2

Legislation and Government Programs.— Defense materials inventories prepared by the General Services Administration showed that Government holdings as of December 31, 1973, included 1,170 short tons of talc (steatite, block or lump, purchased in compliance with a stockpile objective at \$390.51 per ton) and 3,900 short tons of talc (steatite, ground, acquired in nonstockpile transactions at a cost of \$59.26 per ton). During calendar 1973, 10 tons of the block, valued at \$3,300, was sold from inventory, and arrangements were made for the disposal of 1,000 tons of the ground material, leaving 1,170 tons of block and 2,900 tons of ground talc listed as uncommitted excess at yearend.

The Office of Minerals Exploration, Geological Survey, offered to grant loans of up to 50% of approved exploration costs for eligible deposits of block steatite talc, but no loans for that purpose were made in 1973. The allowable depletion rates for talc, established by the Tax Reform Act of 1969 and unchanged through 1973, were 22% on production of block steatite talc of domestic origin and 14% on foreign production of the same material, which rate applied also to production of all other classes of talc from all sources.

Under terms of a regulatory ruling proposed by the Food and Drug Administration, U.S. Department of Health, Education, and Welfare, any talc to be approved for use in the manufacture and processing of drugs or in the packaging of foods would have to be tested by a proposed analytical method based on optical microscopy with polarized light (validation pending) and shown to be as nearly free of asbestos particles as is attainable. Quantitatively, talc for these applications that is not shown to be at least 99.9% free of amphibole types of asbestos fibers and at least 99.99% free of chrysotile asbestos fibers would be deemed adulterated in violation of section 501(a) of the Federal Food, Drug, and Cosmetic Act.3

<sup>&</sup>lt;sup>1</sup> Physical scientist, Division of Nonmetallic Minerals—Mineral Supply. <sup>2</sup> Gems and Minerals. Field Trip Vignette: New York. No. 434, November 1973, p. 46. <sup>3</sup> Federal Register. V. 38, No. 188, Sept. 28, 1973, pp. 27076-27081.

Table 1.—Salient talc, soapstone, and pyrophyllite statistics

|   | (Thousand short to |      |      |      |      |   |
|---|--------------------|------|------|------|------|---|
|   |                    | 1969 | 1970 | 1971 | 1972 | _ |
| : |                    |      |      |      |      | _ |

|                         | 1969     | 1970     | 1971     | 1972      | 1973     |
|-------------------------|----------|----------|----------|-----------|----------|
| United States:          |          |          |          |           |          |
| Mine production         | 1,029    | 1,028    | 1.037    | 1.107     | 1.247    |
| Value                   | \$7,508  | \$7,773  | \$7,634  | r \$7,828 | \$9,144  |
| Sold by producers       | 985      | 948      | 979      | 1.084     | 1.184    |
| Value                   | \$26,294 | \$25,980 | \$26,936 | \$33,709  | \$32,226 |
| Exports 1               | 69       | 105      | 136      | 171       | 180      |
| Value                   | \$3,713  | \$5,739  | \$4,844  | \$5.791   | \$6,618  |
| Imports for consumption | 20       | 30       | 17       | 29        | 23       |
| Value                   | \$749    | \$1,294  | \$745    | \$1,669   | \$1,658  |
| Apparent consumption    | 936      | 873      | 860      | 942       | 1,027    |
| World: Production       | 5,162    | 5,316    | r 5,221  | r 5,241   | 5,666    |

r Revised.

Under the sponsorship of the U.S. Department of the Interior, the Bureau of Mines Division of Health, Metal, and Nonmetal Mine Health and Safety, held an open symposium on May 8, 1973, for the purpose of assembling information concerning hazards to workers' health posed by dusts generated in the production and processing of the different varieties of industrial talc. A stated objective of the conference, which was held in the auditorium of the Department of the Interior in Washington, D.C., was to determine whether exposure to these types of dust present health hazards similar to those from the mineralogically related substances

known collectively as asbestos. The session was well attended and featured oral and visual presentations (followed by opportunities for questions, answers, and general discussion) by representatives of the sponsoring agency, the talc industry, and various health-oriented organizations. Publication of the symposium proceedings and attendance roster was postponed because of a Departmental reorganization, in which the functions of the Metal and Nonmetal Mine Health and Safety division were transferred to the Mining Enforcement and Safety Administration (MESA), also an agency of the Interior Department but separate from the Bureau of Mines.

## **DOMESTIC PRODUCTION**

Mine production of crude talc and related minerals in the United States established new records in 1973 in both tonnage and total value, topping by 13% and 17%, respectively, the previous high marks reached in 1972.

Tale-group minerals were produced from a total of 51 mines distributed throughout 14 States. Talc or soapstone was mined at one or more locations in each of those States; domestic production of pyrophyllite was limited, as in 1972, to the output of just six mines, all in North Carolina. The six leaders among the tale-group producing States (Vermont, New York, Texas, Montana, California, and North Carolina, ranked in descending order by tonnage-New York, Montana, California, Vermont, Texas, and North Carolina, by value) jointly supplied 95% of the 1973 total domestic output. New York, the foremost producing State throughout most of the industry's history, remained in first place with regard to total value, but slipped in 1973 to second place in terms of tonnage.

The 10 largest domestic producers of talc-group minerals in 1973, listed alphabetically, were Cyprus Mines Corp., United Sierra Division, with mines in California, Montana, and Texas; Eastern Magnesia Talc Co. in Vermont; International Talc Co., Inc., in New York; Johns-Manville Corp. (successor to L. Grantham Corp.) in California; Pfizer Inc., Minerals, Pigments & Metals Division, in California and Montana; Piedmont Minerals Co., Inc., in North Carolina; Southern Clay Products, Inc., in Texas; R. T. Vanderbilt Co., Inc., in California and New York; Westex Talc Co. in Texas; and Windsor Minerals, Inc., in Vermont. Those firms supplied 85% of the 1973 tonnage (83% of the total value), and the combined outputs of about 20 smaller producers made up the remainder.

Talc minerals were ground for sale or industrial use in 1973 in approximately 35 mills operated by 29 companies in 11 States. Talc or soapstone mined in Nevada and

<sup>&</sup>lt;sup>1</sup> Excludes powders—talcum (in package), face, and compact.

Washington was shipped to other States for grinding, and talc from outside sources was ground in Nebraska, where there was no mine production.

Noteworthy among 1973 events in the

talc industry were major expansions, especially of ultrafine-grinding facilities, on the part of several important producers in the western United States.

Table 2.-Talc, soapstone, and pyrophyllite produced in the United States, by State

|                | 19                    | 72                        | 1973                  |                           |
|----------------|-----------------------|---------------------------|-----------------------|---------------------------|
| State          | Quantity (short tons) | Value<br>(thou-<br>sands) | Quantity (short tons) | Value<br>(thou-<br>sands) |
| California     | 155,155               | \$1,186                   | 179,191               | \$1,501                   |
| Georgia        | 45,842                | 338                       | 38,000                | 114                       |
| North Carolina | 89,334                | 594                       | 95,833                | 1.094                     |
| Texas          | 221,022               | 1,262                     | 232.514               | 1,246                     |
| Vermont        | 180,239               | 1,326                     | 251,087               | 1,497                     |
| Virginia       | w                     | w                         | 4.600                 | 12                        |
| Other States 1 | 415.812               | r 3.122                   | 445,309               | 3,681                     |
| Total          | 1,107,404             | r 7,828                   | 1,246,534             | <sup>2</sup> 9,144        |

r Revised. W Withheld to avoid disclosing individual company confidential data; included with "Other States."

Table 3.-Talc, soapstone, and pyrophyllite sold or used by producers in the United States, by class

(Thousand short tons and thousand dollars)

|      |      | Crude    |       | Ground   |        | Total 1  |        |
|------|------|----------|-------|----------|--------|----------|--------|
|      | Year | Quantity | Value | Quantity | Value  | Quantity | Value  |
| 1969 |      | 81       | 362   | 904      | 25,931 | 985      | 26,294 |
| 1970 |      | 96       | 572   | 852      | 25,407 | 948      | 25,980 |
| 1971 |      | 132      | 789   | 847      | 26,147 | 979      | 26,936 |
| 1972 |      | 90       | 521   | 994      | 33,188 | 1,084    | 33,709 |
| 1973 |      | 118      | 918   | 1,066    | 31,308 | 1,184    | 32,226 |

Data may not add to totals shown because of independent rounding.

## **CONSUMPTION AND USES**

Apparent domestic consumption of crude and ground talc, soapstone, and pyrophyllite (total sales plus imports minus exports) passed an important milestone in 1973, the first 1-million-ton-per-year total under that heading in the history of the industry. Reported 1973 sales of ground material were 7\% more in tonnage than in 1972, but the average unit value declined moderately, and the total value was 6% below that of 1972. Approximately 29% of the total quantity of talc-group minerals sold or used by domestic producers in 1973 was consumed in the manufacture of ceramics, 15% was used in paint, and another 15% was exported. An assessment of talc's future as an ingredient in high-quality paints and the special properties making the mineral virtually irreplaceable in that application were subjects dealt with in two industrial journal articles.4

The 1973 end-use distribution showed a 37% increase in talc utilization for papermaking, 7% of the total, compared with 5% in each of the 2 preceding years. It is no doubt significant in this regard that a number of talc processors in the western United States were pushing up their capacity to supply the ultrafine grades of material especially required by pulp and paper manufacturers for pitch control.

Includes Alabama, Arkansas, Maryland, Montana, Nevada, New York, Oregon, Washington, and States indicated by symbol W.

<sup>2</sup> Data does not add to total shown because of independent rounding.

<sup>&</sup>lt;sup>4</sup>American Paint Journal. Growth for Extender, Filler Pigments Forecast by Kline. V. 58, No. 15, Oct. 29, 1973, pp. 52-53.
O'Brien, G. J. Large Reserves—Good Replacement for Short Extenders. Am. Paint J., v. 58, No. 22 (Convention Daily), Nov. 17, 1973, p. 16.

Table 4.—Pyrophyllite 1 produced and sold by producers in the United States

|      |                            | Total         | sales                     |  |
|------|----------------------------|---------------|---------------------------|--|
| Year | Production<br>(short tons) | Short<br>tons | Value<br>(thou-<br>sands) |  |
| 1969 | 104.347                    | 110.816       | \$1,632                   |  |
| 1970 | 120,077                    | 95,735        | 1,317                     |  |
| 1971 | 101,030                    | 90,477        | 1,155                     |  |
| 1972 | w                          | 90,482        | 1,236                     |  |
| 1973 | W                          | 113,019       | 1,469                     |  |

W Withheld to avoid disclosing individual company confidential data.

<sup>1</sup> Includes sericite schist (1969-70).

Table 5.—Talc, soapstone, and pyrophyllite sold or used by producers in the United States, by use

| (BHOIL KOILS)       |           |           |  |
|---------------------|-----------|-----------|--|
| Use                 | 1972      | 1973      |  |
| Ceramics            | 329,406   | 346,254   |  |
| Paint               | 173,663   | 178,352   |  |
| Toilet preparations | r 40,000  | 40,006    |  |
| Exports             | r 171,007 | 180,102   |  |
| Insecticides        | 65,465    | 43,404    |  |
| Paper               | 58,505    | 79,995    |  |
| Refractories        | 40.119    | 54.384    |  |
| Rubber              | 36,215    | 31,646    |  |
| Roofing             | 32,913    | 30,557    |  |
| Textiles            | 12,010    | 8,193     |  |
| Asphalt filler      | 11,769    | 13,039    |  |
| Other uses 1        | r 113,140 | 178,546   |  |
| Total               | 1,084,212 | 1,184,478 |  |

r Revised.

## **STOCKS**

According to estimates based on data reported by producers, the total quantity of crude, ground, and partly processed talc, soapstone, and pyrophyllite on hand in the United States (that is, mined but not yet sold or used) was approximately 157,000 tons on December 31, 1973, compared with 167,000 tons on that date in 1972.

## **PRICES**

Engineering and Mining Journal, December 1973, quoted prices for domestic ground talc in carload lots, f.o.b. mine or mill, containers included, per short ton, as follows:

| Vermont:                                                    |         |
|-------------------------------------------------------------|---------|
| 98% through 325 mesh, bulk                                  | \$20.00 |
| 99.99% through 325 mesh, bags:                              |         |
| Dry processed                                               | 58.00   |
| Water beneficiated                                          | 86.00   |
| New York:                                                   |         |
| 96% through 200 mesh                                        | 28.00   |
| 99.9% through 325 mesh                                      | 44.50   |
| 100% through 325 mesh, fluid energy                         |         |
| ground\$80.00                                               | 90.00   |
| California:                                                 |         |
| Standard 37.00                                              | - 53.00 |
| Fractionated 37.00                                          | - 71.00 |
| Micronized 62.00                                            | -104.00 |
| Cosmetic-steatite 44.00                                     |         |
| Georgia:                                                    |         |
| 98% through 200 mesh                                        | 14.00   |
| 99% through 325 mesh<br>100% through 325 mesh, fluid energy | 25.00   |
| ground                                                      | 75.00   |

American Paint Journal, December 1973, listed the following prices per ton for paint-grade talcs in carload lots:

| California: 325 mesh, bags, mill:<br>Fibrous, white, high oil ab- |                 |
|-------------------------------------------------------------------|-----------------|
| sorption                                                          | \$34.00-\$37.00 |
| Semifibrous, medium oil absorption                                | 32.00- 73.95    |
| Montana: Ultrafine grind, f.o.b. mill                             | 70.00           |
| New York: Fibrous and semi-<br>fibrous, bags, mill:               |                 |
| 98% through 325 mesh                                              | 31.00           |
| 99.4% through 325 mesh                                            | 40.00           |
| Trace retained on 325 mesh                                        | 80.00           |
| Fine micron talcs (origin not specified)                          | 68.00-111.50    |

The price range quoted in Chemical Marketing Reporter, December 31, 1973, for carload lots of imported Canadian talc, ground, in bags, was from \$20 to \$35 per ton, f.o.b. works.

The equivalents in dollars per short ton of price ranges for steatite talc, c.i.f. main European ports, quoted by Industrial Minerals (London), December 1973, were as follows:

| Norwegian:              |                 |
|-------------------------|-----------------|
| Ground                  | \$24.00-\$29.00 |
| Micronized              | 43.00- 79.00    |
| French: Fine ground     | 39.00- 89.00    |
| Italian: Cosmetic grade | 66.00-103.00    |
| Chinage                 | 40.00 65.00     |

<sup>&</sup>lt;sup>1</sup> Includes plastics, stucco, floor tile, foundry facings, rice polishing, crayons, art sculpture, and other uses.

## **FOREIGN TRADE**

Exports.—The quantity of tale-group minerals exported from the United States in 1973 was 5% more than in 1972, and the total value was 14% higher, establishing new alltime highs in both respects. The largest share of the exported material was shipped to Mexico, followed in descending order by Canada, Belgium, Japan, Venezuela, and the United Kingdom. Shipments to those six destinations accounted for 90% of the 1973 total, and the remaining 10% was distributed among about 50 other countries.

Imports.—The tonnage of unmanufactured talc imported by the United States in 1973 was about one-fifth less than the corresponding figure for 1972, but the total value was only fractionally lower. Noteworthy among 1973 imports was an item in the Census Bureau's classification "Talc, steatite, and soapstone and articles of

these, not specially provided for" that was listed as being valued at \$150,000 and as having originated in the People's Republic of China.

Tariffs.—Schedules applicable throughout 1973 provided for import duties on the various classifications of talc as follows: Crude and not ground, 0.02 cent per pound; ground, washed, powdered, or pulverized, 6% ad valorem; cut or sawed, or in blanks, crayons, cubes, disks, or other forms, 0.2 cent per pound; and other, not specially provided for, 12% ad valorem.

Table 6.-U.S. exports of talc, soapstone, and pyrophyllite, crude and ground

(Thousand short tons and thousand dollars)

|      | Year | Quantity | Value |
|------|------|----------|-------|
| 1971 |      | 136      | 4,844 |
| 1972 |      | 171      | 5,791 |
| 1973 |      | 180      | 6,618 |
|      |      |          |       |

Table 7.-U.S. imports for consumption of talc, steatite or soapstone, by class and country

|                    | Crude and<br>unground            |                           | Ground,<br>washed,<br>powdered or<br>pulverized |                           | Cut and sawed         |                           | Total<br>unmanufac-<br>tured     |                             |
|--------------------|----------------------------------|---------------------------|-------------------------------------------------|---------------------------|-----------------------|---------------------------|----------------------------------|-----------------------------|
| Year and country   | Quan-<br>tity<br>(short<br>tons) | Value<br>(thou-<br>sands) | Quantity (short tons)                           | Value<br>(thou-<br>sands) | Quantity (short tons) | Value<br>(thou-<br>sands) | Quan-<br>tity<br>(short<br>tons) | Value 1<br>(thou-<br>sands) |
| 1971               | 7,577                            | \$190                     | 9,511                                           | \$379                     | 294                   | \$176                     | 17,382                           | \$745                       |
| 1972:              |                                  |                           |                                                 |                           |                       |                           |                                  |                             |
| Canada             | 3,639                            | 37                        | 3,027                                           | 93                        | 7                     | 4                         | 6.673                            | 134                         |
| France             |                                  |                           | 3,652                                           | 135                       |                       |                           | 3,652                            | 135                         |
| Hong Kong          |                                  |                           |                                                 |                           | 171                   | 92                        | 171                              | 92                          |
| India              |                                  |                           |                                                 |                           | 3                     | 1                         | 3                                | 1                           |
| Italy              | 15,102                           | 833                       | <b>74</b> 8                                     | 73                        | , <del>-</del>        |                           | 15,850                           | 906                         |
| Japan              |                                  |                           |                                                 |                           | 502                   | 324                       | 502                              | 324                         |
| Korea, Republic of | -==                              | -=                        | 2,044                                           | 48                        | <b>52</b>             | 28                        | 2,096                            | 76                          |
| Thailand           | 138                              | 1                         |                                                 |                           |                       |                           | 138                              | 1                           |
| Total              | 18,879                           | 871                       | 9,471                                           | 349                       | 735                   | 449                       | 29,085                           | 1,669                       |
| 1973:              |                                  |                           |                                                 |                           |                       | ****                      |                                  |                             |
| Brazil             |                                  |                           | 141                                             | 14                        |                       |                           | 141                              | 14                          |
| Canada             | 4,424                            | 44                        | 3,994                                           | 138                       | 5                     | 1                         | 8,423                            | 183                         |
| France             | 2,536                            | 46                        | 1,821                                           | 98                        |                       |                           | 4,357                            | 144                         |
| Hong Kong          |                                  |                           |                                                 |                           | 190                   | 112                       | 190                              | 112                         |
| India              |                                  |                           |                                                 |                           | 9                     | 5                         | 9                                | 5                           |
| Italy              | 7,507                            | 600                       | 1,080                                           | 129                       |                       |                           | 8,587                            | 729                         |
| Japan              |                                  |                           | _==                                             | ==                        | 433                   | 344                       | 433                              | 344                         |
| Korea, Republic of |                                  |                           | 734                                             | 57                        | 119                   | 70                        | 853                              | 127                         |
| Total              | 14,467                           | 690                       | 7,770                                           | 436                       | 756                   | 532                       | 22,993                           | 1,658                       |

<sup>&</sup>lt;sup>1</sup> Does not include talc, n.s.p.f.: 1971, \$17,997; 1972, \$128,925; 1973, \$230,997.

## **WORLD REVIEW**

Australia.—The Australian Department of Overseas Trade stated that a newly launched enterprise, that of Westside Mines N.L., at a site south of the Murchison River and near Meekatharra in Western Australia, is expected to develop into one of the world's foremost sources of white micaceous talc in grades especially suited for use by the cosmetic, paper, paint, and rubber industries. The Westside deposit's proved reserves of high-quality mineral were said to amount to more than 1 million tons, with at least double that quantity indicated as existing.

Canada.—Talc was produced in 1973 in two provinces-in Ontario by Canada Talc Industries, Ltd., from underground workings at Madoc; and in Quebec by Baker Talc, Ltd., from an underground mine at South Bolton and by Broughton Soapstone & Quarry Co., Ltd., from an open pit facility near Broughton Station. Expectations for a second producer in Ontario received a setback when Canadian Johns-Manville Co., Ltd., terminated an agreement to assist Canadian Magnesite Mines, Ltd., in the installation of a flotation plant for the beneficiation of talc and magnesite ore from a property in the Timmins area. Both of the companies operating in Quebec, in addition to various grades of ground talc, also marketed soapstone in sawed form as metalworker's crayons or blocks for carving. Canada's production of pyrophyllite was confined to Newfoundland where Newfoundland Minerals, Ltd., operated an open pit mine to provide material for use in the manufacture of ceramic tile. The greater part of the talc and soapstone was consumed in Canada, but all the output of pyrophyllite was exported.

Finland.—The only producer of the mineral in Finland, Suomen Talkki Oy., announced that in 1972, in order to meet increased demand from the paper industry and despite intensified competition in filler application from British kaolin, it had been obliged to step up its output of highquality floated talc by one-fourth.

France.—A detailed description was published of the operations of what is probably the world's largest talc mine, that of S.A. des Talcs de Luzenac in the foothills of the French Pyrénées. The Luzenac quarry, at an exposed position on the side of Mount Soularac at 6,000 feet above sea level, can be operated only 6 months of the year but even so supplies nearly half of the annual talc production of the entire European continent.5

Greece.—A magazine article surveyed Greece's situation with regard to a number of nonmetallic minerals including talc.6 Talc deposits are found on the Greek mainland near Larissa in Thessaly and near Thessaloniki in Macedonia, as well as on the islands of Crete and Tinos. The country's most active talc mines at present are those on Tinos, but production there has been sharply curtailed in recent years because of the increasing preference of Greek tile manufacturers for talc imported from Italy.

<sup>&</sup>lt;sup>5</sup> Ironman, R. Pyrenean Talc Deposit Yields 220,000 tpy. Rock Products, v. 76, No. 8, August 1973, pp. 72, 74.

<sup>6</sup> Industrial Minerals (London). Greece: A Wealth of Industrial Minerals. No. 75, December 1072, pp. 9, 57

ber 1973, pp. 9-57.

Table 8.-Talc, soapstone, and pyrophyllite: World production, by country

| Country 1                                  | 1971                    | 1972                 | 1973 P              |
|--------------------------------------------|-------------------------|----------------------|---------------------|
| North America:                             |                         |                      |                     |
| Canada (shipments)                         | 65,562                  | 80.946               | 110 000             |
| Mexico                                     | 1.889                   |                      | 110,000             |
| United States                              | 1,037,297               | 3,450                | 2,324               |
| South America:                             | 1,081,291               | 1,107,404            | 1,246,534           |
| Argentina                                  | r 54.881                | 40.827               | e 44,000            |
| Brazil (talc) e                            | 143,000                 | 143.000              | 143,000             |
| Chile                                      | 1,938                   | 2,021                |                     |
| Colombia                                   | 2,177                   | e 2.477              | 1,938<br>992        |
| Paraguay                                   | 176                     | 243                  |                     |
| Peru                                       | 1.057                   | ° 1.100              | 276                 |
| Uruguay (ground talc)                      | 939                     | 1,458                | e 1,100             |
| Europe:                                    | 203                     | 1,498                | 2,201               |
| Austria                                    | 100,995                 | 01 707               | 101 600             |
| Finland                                    | 110,979                 | 91,725               | 101,638             |
| France                                     | 279,579                 | 99,568               | 120,928             |
| Germany, West (marketable)                 | 32,692                  | 250,548              | 285,363             |
| Greece                                     | 2,045                   | 34,743               | e 33,000            |
| Hungary                                    | 17,600                  | ° 2,200              | ° 2,200             |
| Italy (talc and steatite)                  | r 152,936               | e 17,600             | e 17,600            |
| Norway (ground talc)                       | 85,092                  | 163,607<br>er 85,000 | 161,539             |
| Portugal                                   | 1.405                   |                      | 85,000              |
| Romania e                                  | r 63,000                | 1,327                | 1,224               |
| Spain                                      | 44,911                  | r 63,000             | 66,000              |
| Sweden                                     | 26,505                  | 44,000               | e 44,000            |
| U.S.S.R. •                                 | 420,000                 | 29,107               | e 33,000            |
| United Kingdom                             | 13,228                  | 430,000              | 440,000             |
| Africa:                                    | 15,228                  | 17,637               | e 18,000            |
| Botswana                                   | 143                     |                      |                     |
| Egypt, Arab Republic of                    | 6.968                   | 8,518                | e 8.500             |
| South Africa, Republic of 2                | 12,975                  | 11,926               |                     |
| Swaziland (pyrophyllite)                   | 225                     | 11,926               | 13,055<br>139       |
| Zambia                                     | 160                     | 4.905                | 1.467               |
| Asia:                                      | 100                     | 4,505                | 1,401               |
| Burma                                      | 237                     | e 240                | 141                 |
| China, People's Republic of e              | 165.000                 | 165.000              | 165,000             |
| India                                      | 208,094                 | 209,189              | 228,344             |
| Japan <sup>3</sup>                         | 1.731.827               | 1,661,114            | 1,723,540           |
| Korea, North e                             | 99.000                  | 110.000              | 120,000             |
| Korea, Republic of (talc and pyrophyllite) | 234.185                 | 259,867              | 348,257             |
| Pakistan (soapstone)                       | e 5,200                 | 4.846                |                     |
| Philippines                                | 1,452                   |                      | 4,390               |
| Taiwan (soapstone)                         |                         | 1,110                | 1,801               |
| Tarran (Soapswile)                         | 43,036<br>55            | $27,328 \\ 1,709$    | 25,490<br>• 2,200   |
|                                            |                         |                      |                     |
| Thailand (pyrophyllite)                    |                         |                      |                     |
| Thailand (pyrophyllite)                    | r 52,774<br>r 5,221,214 | 61,891<br>5.240,750  | 62,000<br>5,666,181 |

<sup>2</sup> Includes talc and wonderstone (pyrophyllite).

<sup>3</sup> Includes talc and pyrophyllite: in addition, pyrophyllite clay is produced as follows in short tons: 1971—354,160; 1972—343,180; 1973—355,096.

#### **TECHNOLOGY**

Research papers were published presenting information on properties that may be of assistance in delineating the genetic relationships of the mineral talc and hence possibly also in guiding future exploration in quest of commercial deposits. Scientists at Johns Hopkins University, in studying the stability field of talc at the earth's surface to define the conditions under which the mineral might be expected to form, concluded that the Gibbs free energy of the talc molecule, Mg3Si4O10(OH)2, must be at least 3 to 5 kilocalories per mole

less negative than the previously accepted value. The new figure arrived at was -1.320± 2 kilocalories, a value said to be consistent with observed natural occurrences of talc.7

A British soil laboratory team determined the crystallographic properties of talc, the pure mineral, by a photographic X-ray diffraction procedure supplemented by least-squares mathematical analysis and

Estimate.
 Preliminary.
 Revised.
 In addition to the countries listed, Southern Rhodesia is believed to produce talc, but available information is inadequate to make estimates of output levels.

<sup>&</sup>lt;sup>7</sup> Bricker, O. P., H. W. Nesbitt, and W. D. Gunter. The Stability of Talc. Am. Minerologist, v. 58, Nos. 1-2, January-February 1973, pp. 64-72.

reported that the true crystal form is triclinic and not monoclinic as is stated in many texts.8

The British investigators, confirming the conclusion drawn by a collaboration of workers in the United States several years ago,9 reported that "The layers of the structure have almost monoclinic symmetry but the nearly hexagonal rings of oxygen atoms on the surfaces of the layers, formed by the bases of the silica tetrahedra, are not held in register by interlayer ions as they are in micas but are partly displaced so that the stack of layers forms a triclinic crystal."

Coincidentally, a lecture given at the annual meeting of the American Ceramic Society, Cincinnati, Ohio, April 30, 1973, included the following statement in regard to another of the talc-group minerals: "Until recently, pyrophyllite was regarded as a two-layer monoclinic structure, but in the course of studying the dehydroxylation reaction of this mineral it became necessary to reconsider the accepted structure. After a search for well-crystallized material, which is not easily obtained in the case of pyrophyllite, the structure was found to be a one-layer triclinic form." 10

Exploration of a whole new technological frontier, in which synthesis of diamond has already been achieved and production of superconducting metallic hydrogen looms as a definite possibility for the near future, was the subject of a published essay.11 Advances in this field of investigation, which involves subjecting materials simultaneously to temperatures measured in thousands of degrees and pressures in millions of pounds per square inch, demand the development of increasingly ingenious and sophisticated techniques for bringing forces of such unprecedented magnitudes to an effective focus. Several of the types of apparatus devised for these researches take advantage of the pressure transfer characteristics of pyrophyllite.

An article in an industrial journal compared the properties and mineralogical compositions of platy tales originating in Montana and California with those of the so-called fibrous variety mined in the East (probably New York), explaining on that basis the results observed when substituting western mineral for eastern in established paint formulation practices.12 It was concluded that utilization of a pure, platy talc

to replace the more mineralogically heterogeneous type of material previously used can be accomplished without difficulty by observing two fundamental rules of paint compounding technology: (1) adjustment of paint PVC (pigments volume concentration) to compensate for differences in the absorptivity and void volume of the pigmentation, that is to say in the CPVC (critical pigment volume concentration), and (2) paying particular attention to the wetting/dispersing/stabilizing ingredients in the paint formula. It was further stated that, if these precautions are taken, no more than minor changes in paint properties, mostly arising from particle shape differences, need be anticipated. Appended to the article was a derivation of mathematical expressions for use in calculating numerical values for PVC and CPVC.

Toilet and pharmaceutical preparations, especially cosmetics ("talcum powder") constitute the end uses most familiarly associated with the mineral talc, although the tonnages currently consumed in this way account for no more than a minor fraction of each year's total. In value terms, the commercial significance of these applications is far from minor, however, because only substances of exceptional quality and outstanding purity and biological integrity, which are hence the highest priced, can meet the exacting specifications involved. An updated version was published of what has come to be accepted as the most authoritative treatise available on the technology of the compounding and testing of cosmetics. An extensive review of the new edition appeared in a scientific magazine.13

<sup>&</sup>lt;sup>8</sup> Rayner, J. H., and G. Brown. The Crystal Structure of Talc. Clays and Clay Miner, v. 21, No. 2, April 1973, pp. 103-114.

<sup>8</sup> Ross, M., W. L. Smith, and W. H. Ashton. Triclinic Talc and Associated Amphiboles from Gouverneur Mining District, New York. Am. Minerologist, v. 53, Nos. 5-6, May-June 1968,

Minerologist, v. 53, Nos. 5-6, May-June 1968, pp. 751-769.

10 Brindley, G. W. The World of Clays and Clay Minerals. Am. Ceram. Soc. Bull., v. 52, No. 12, December 1973, pp. 892-895.

11 Spain, I. L., and K. Ishizaki. Materials Under Pressure. Chemtech, v. 3, No. 6, June 1973, pp. 367-378.

12 Todd, B. H. Substitution of Montana Platy Talc for Fibrous Eastern Talcs in Paint Formulations. Am. Paint J., v. 57, No. 55, July 2, 1973, pp. 44-47, 53-57.

13 Harry, R. G. Harry's Cosmeticology, formerly The Principles and Practice of Modern Cosmetics (revised by J. B. Wilkinson, in cooperation with P. Alexander, E. Green, B. A. Scott, and D. L. Wedderburn). Chemical Publishing Co., Inc., New York. Rev. by P. Morrison, Sci. Am., v. 229, No. 4, October 1973, pp. 127-128.

Success in studies aimed at elucidation of possible physiological consequences from absorption of talc into body tissues, whether by routes of ingestion, inhalation, or simple surface contact, hinges on an unequivocal means of identifying and measuring exceedingly minute quantities of the mineral profusely diluted with substances likely to interfere with and obscure the analysis. A British biological research organization developed a procedure for achieving a controlled partial dehydration of pure mineral talc and then replacing the expelled water,  $H_2O$ , with an equivalent quantity of tritium

oxide, T<sub>2</sub>O. It was thought that the presence of the radioactive hydrogen isotope "tag" would then provide an exceptionally sensitive tool for locating, identifying, and quantitatively estimating the tritiated talc after it had become dispersed within a living organism. Work was continued toward application of the new technique in the investigation of suspected cases of talc-induced pathology.<sup>14</sup>

<sup>&</sup>lt;sup>14</sup> Gangolli, S. D., R. F. Crampton, and A. G. Lloyd. Preparation of Tritium-Labelled Tale. Nature (London), v. 242, No. 5393, Mar. 9, 1973, p. 113.



## **Thorium**

## By Roman V. Sondermayer 1

During 1973 primary thorium supplies from two domestic mines, located in Georgia and Florida, and imports, mostly from Malaysia, were more than adequate to meet demand. As in the past, there was no direct mine production of thorium. Monazite, the principal source of thorium, continued to be a byproduct of titanium mining and was recovered for its rare-earth content. Because of low thorium demand, thorium-containing residues from these operations were stored in holding areas for future use. However, during 1973 far lesser quantities of thoriumbearing materials were sent to holding areas than in the past. This change resulted from partial replacement of monazite by other materials as the major source of rare-earth

The weak market continued throughout 1973, but long-range potential for use of thorium was considered good. Energy shortages throughout the industrialized countries stimulated a search for new sources of energy. The existence of large resources of thorium in the United States and in the world encouraged research on the use of thorium as a nuclear fuel and on thorium-fueled reactors. Thorium programs sponsored by the Atomic Energy Commission (AEC) were under review, and more intensive research programs were expected. In contrast to higher demand for thorium as

a nuclear fuel, only slight increases in demand were registered for other, nonenergy applications of thorium.

During 1973 thorium highlights were related to research and to industrial activities. Research started on application of the hightemperature, gas-cooled reactor (HTGR) as a source of industrial heat in production of hydrogen in coal gasification. A new process for utilizing U233 from domestic thorium in light-water-reactors (LWR) was announced. Seven HTGR's with a total capacity of 5,730 megawatts electrical (Mwe) were on order at the end of 1973. One HTGR, at the Fort St. Vrain, Colo., powerplant, with a capacity of 330 Mwe, was scheduled for commercial operation in 1974. In the last quarter, Gulf Oil Corp. and the Royal Dutch-Shell group entered into two 50-50 partnerships. The first, under the name General Atomic Co., will conduct operations in the United States. The second, under the name General Atomic International, will operate elsewhere. Shell companies initially contributed around \$200 million to the partnership and further cash requirements will be provided equally by the partners. The partnership will be engaged primarily in developing, manufacturing, and marketing HTGR's.

One of the two processor's of monazite for thorium stopped production at yearend.

## **DOMESTIC PRODUCTION**

Mine Production.—Two mines, one in Georgia and the other in Florida, were the only producers of thorium in the country. At Humphreys Mining Co., with its operation near Folkston, Ga., output was slightly lower in 1973. The estimated ThO<sub>2</sub> content of monazite was 4%. Mining for titanium and zirconium was the principal activity at Folkston, and recovery of monazite was a byproduct operation. Suction dredges were used to mine the heavy beach sands. Most

of the monazite was sold to W. R. Grace & Co., Chattanooga, Tenn. Ore reserves at the present mining site were expected to be exhausted by mid-1974. The company planned to continue operations by developing another heavy mineral sand deposit in Florida, a few miles south of the Folkston deposit. The heavy mineral sand concentrates from this new deposit will be proc-

<sup>&</sup>lt;sup>1</sup> Physical scientist, Division of Nonferrous Metals—Mineral Supply.

essed at the existing plant near Folkston. Humphreys Mining Co. continued land rehabilitation of the area disturbed by mining. Mill waste was used as fill and, after grading, top soil was respread, and planted with grass.

Titanium Enterprises, jointly owned by American Cyanamid Co. and Union Camp Corp., was the second domestic monazite producer. At this operation, located near Green Cove Springs, Fla., the company mined a Pleistocene beach sand deposit mostly for ilmenite, rutile, and zircon. As in Georgia, monazite was a byproduct, and suction dredges were the principal mining equipment. During the latter part of the year, production of monazite was lower

than mine capacity. Shortages of energy slowed the operation.

Refinery Production.—During 1973 the principal domestic firms processing monazite for thorium were W. R. Grace & Co., Davison Chemical Division, at Chattanooga, Tenn., and Lindsay Rare Earths, affiliated with Kerr-McGee Chemical Corp., West Chicago, Ill. The Lindsay plant stopped operations at yearend because of increased production costs.

A number of thorium-processing companies and dealers maintain stocks of various compounds and of the metal for nonenergy use and for nuclear fuels. Table 1 shows the principal companies.

Table 1.-Companies processing and fabricating thorium, in 1973

| Company                                                                              | Plant location                                      | Operations and products                                                                                  |
|--------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| American Light Alloys, Inc<br>Consolidated Aluminum Corp<br>Controlled Castings Corp | Little Falls, N.J<br>Madison, Ill<br>Plainview, N.Y | Magnesium-thorium alloy. Do. Do.                                                                         |
| Gallard-Schlesinger Chemical Manufacturing Corp.                                     | Carle Place, N.Y                                    | Processes oxide, fluoride, and metal.                                                                    |
| General Electric Co                                                                  | San Jose, Calif                                     | Nuclear fuels. Do.                                                                                       |
| W. R. Grace & Co                                                                     | Chattanooga, Tenn                                   | Processes domestic and imported<br>monazite; produces oxide;<br>stocks of hydroxide and metal<br>powder. |
| Gulf General Atomic Co                                                               | San Diego, Calif                                    | Nuclear fuels.                                                                                           |
| Gulf United Nuclear Fuels Corp                                                       | New Haven, Conn                                     | Do.                                                                                                      |
| Witchcock Industries Inc                                                             | South Bloomington, Minn -                           | Magnesium-thorium alloys.                                                                                |
| Kerr-McGee Chemical Corp<br>Lindsay Rare Earths                                      | West Chicago, III                                   | Nuclear fuels. Processes imported monazite; stocks of thorite; produces oxide, nitrate, and oxalate.     |
| N L Industries, Inc<br>Nuclear Chemicals and Metals                                  | Albany, N.YHuntsville, Tenn                         | Nuclear fuels.<br>Do.                                                                                    |
| Corp. Nuclear Fuel Services, Inc Nuclear Materials & Equipment Corp. (NUMEC).        | Apollo, Pa                                          | Do.<br>Do.                                                                                               |
| Ventron Corporation, Chemicals                                                       | beverly, Mass                                       | Metallic thorium.                                                                                        |
| Div. Wellman Dynamics Corp Westinghouse Electric Corp                                | Creston, IowaBloomfield, N.J                        | Magnesium-thorium alloy. Processes compounds; produces metallic thorium.                                 |
| Do                                                                                   | Columbia, S.C                                       | Nuclear fuels.                                                                                           |

## CONSUMPTION AND USES

In 1973 the estimated apparent consumption of monazite and thorium compounds was about 240 tons of ThO<sub>2</sub> equivalent. This estimate was based on domestic mine production, imports, and changes in domestic stocks of monazite and thorium compounds. Actual industrial demand was substantially lower; the available monazite supply was processed essentially for its rarecarth content and most of the thorium

containing residues entered company holding areas. Nonenergy and energy uses were the two major areas of thorium consumption. Based on sales from Government stocks, and shipments from processors, U.S. industrial demand was estimated at about 130 tons of ThO<sub>2</sub> equivalent. Of the total, some 100 tons of ThO<sub>2</sub> were consumed in nonenergy sectors of the economy. Principal applications were in Welsbach incandescent

gaslight mantles, as a hardener for magnesium-thorium alloys, in dispersion hardening, refractories, electronics, and chemical (catalytic) applications. About 30 tons of ThO<sub>2</sub> equivalent were used for production of nuclear fuels and nuclear research. Table 2 shows the status of HTGR development in the United States.

Philadelphia Electric Co. announced that two 1,160 Mwe HTGR's will be located in Fulton Township, Lancaster County, about 9 miles north of the Conowingo Dam and on the east side of the Susquehanna River. Each of the two reactors will be connected to two Westinghouse turbine generators.<sup>2</sup>

Gulf General Atomic (GGA) has chosen Bechtel Corp. of San Francisco, Calif., to design the plant for a 300-Mwe demonstration gas-cooled fast breeder reactor (GCBR). The cost for balance-of-plant design will be paid for with GGA and utility funds. The work will be coordinated by the Power Technology groups of Bechtel's Scientific Development Division. The GCBR is based on HTGR technology, and fuel and physics technology of the liquid metal fast breeder reactor.3

#### **STOCKS**

The Government stockpile, in the form of thorium nitrate, totaled 1,761 tons ThO2 equivalent on January 1, 1974. During 1973 the thorium stockpile objective was reduced to zero, and all stockpiled thorium was available for disposal. However, only 28 tons of nitrate was sold from stockpile during the year.

Stocks held by industry were estimated in terms of ThO2 equivalent, as follows: In monazite, 80 tons; in compounds, 82 tons; and in metal and alloys, 1 ton.

<sup>2</sup> American Nuclear Society. Philadelphia Electric Sites Its Two HTGR's. Nuclear News, v. 16, No. 10, August 1973, p. 45. <sup>3</sup> American Nuclear Society. Gas-cooled Fast Breeder: Demo Design Moves Ahead. Nuclear News, v. 16, No. 10, August 1973, p. 43.

Table 2.-Status of HTGR development in the United States 1

| State        | Station<br>(plants) | Capacity<br>(megawatts Status<br>electrical)    | Scheduled<br>start of<br>commercial<br>operation |
|--------------|---------------------|-------------------------------------------------|--------------------------------------------------|
| California   | Eastern: Desert 1   | 770 Construction permit appli-                  | ( 1981                                           |
| Do           | Eastern: Desert 2   | 770 cation in preparation.                      | <b>{ 1983</b>                                    |
| Colorado     | Fort St. Vrain      | 330 Fuel loading<br>started in<br>October 1973. | 1974                                             |
| Delaware     | Summit 1            | 770 Construction permit appli-                  | ( 1979                                           |
| Do           | Summit 2            | cation in preparation.                          | { 1982                                           |
| Pennsylvania | Peach Bottom 1      | 40 In operation.                                | 1967                                             |
| Do           | Fulton 1            | 1,160 Construction permit appli-                | ( 1981                                           |
| Do           | Fulton 2            | 1,160 cation in                                 | ₹ 1983                                           |
| Total        | 8                   | 5,770 preparation.                              | Ĺ                                                |

<sup>&</sup>lt;sup>1</sup> At yearend 1973.

## **PRICES**

During 1973 the price of monazite increased on the international market. The average declared value for imported monazite was \$135 per ton compared with \$99 in 1972.

Prices listed by the Davison Chemical Division, W. R. Grace & Co., Chattanooga, Tenn., were in the following ranges, per pound, depending on the quantity of pur-

chase: Nitrate wire grade, 47% ThO<sub>2</sub>, \$2.45-\$2.50; nitrate, mantle grade, 47% ThO<sub>2</sub>, \$2.50-\$2.55; ThO<sub>2</sub>, ceramic grade, 99.9% ThO<sub>2</sub>, \$6-\$10; and ThO<sub>2</sub> refractory grade, 99.9% ThO<sub>3</sub>, \$7-\$11.

Quotations in the American Metal Market on thorium metal in pellets remained steady at \$15 per pound. The pure metal was \$65 per pound.

## **FOREIGN TRADE**

Imports of monazite, mainly for rareearth content, increased above 1972 levels. Malaysia was the principal supplier. Imports of compounds declined, but imports of metal (scrap) increased. European countries and Canada were the main suppliers. Exports statistics for thorium compounds are combined with those for uranium in trade statistics. Although exact data are not available, thorium exports are believed to be minor.

Table 3.-U.S. foreign trade in thorium and thorium-bearing materials (Quantity in pounds unless otherwise specified)

|                                                                | 1971           | 71         | 16        | 1972           |                 | 1973                | Principal sources and destinations.                                                         |
|----------------------------------------------------------------|----------------|------------|-----------|----------------|-----------------|---------------------|---------------------------------------------------------------------------------------------|
|                                                                | Quantity Value | Value      | Quantity  | Quantity Value | Quantity        | Quantity Value      | 1973                                                                                        |
| EXPORTS Ore and concentrate (ThO2 content) Metals and alloys 1 | 65,592         | \$943,930  | 16,624    | \$291,048      | 2,183<br>14,737 | \$13,724<br>269,708 | All to Canada.<br>Italy 12,071; Japan 1,910; Canada 654;<br>West Germany 94; United Kingdom |
| Compounds 1                                                    | 6,021,148      | 38,498,069 | 6,714,148 | 46,614,501     | 4,028,095       | 26,107,130          | Canada, 3,788,776; United Kingdom 195,817; Japan 41,265; Indonesia                          |
| Ore and concentrate.                                           |                |            |           |                |                 |                     | Tion outer core                                                                             |
| Monazite (short tons)                                          | 3,373          | 383,733    | 894       | 88,767         | 1,876           | 254,125             | Malaysia 1,778; Thailand 98.                                                                |
| ThO2 conent a                                                  | 404,800        | 1          | 107,300   | 1 00           | 300,160         | 100                 | 4 T                                                                                         |
| Compounds:                                                     | ł              | !          | 97        | 607            | 70              | 790                 | All Irom Canada.                                                                            |
| Nitrate                                                        | 1,100          | 1,891      | 4,502     | 15,612         | 2,200           | 3,104               | All from France.                                                                            |
| Oxide                                                          | 2,481          | 8,692      | 317       | 1,833          | 1,603           | 5,811               | France 1,600; West Germany 3.                                                               |
| Oxide equivalent, in gas mantles * 2                           | 5,900          | 618,616    | 5,804     | 539,558        | 3,882           | 453,692             | United Kingdom 2,115; Malta 633;<br>Italy 457.                                              |
| Other                                                          | 227            | 28,195     | 151       | 22,811         | 177             | 32,754              | Switzerland 138; United Kingdom 24;<br>West Germany 15.                                     |

 $\bullet$  Estimate. Includes uranium; thorium and uranium are undifferentiated in official statistics. Eased on manufacture of 1,000 gas mantles per pound ThO2.

#### **WORLD REVIEW**

Australia, India, Malaysia, Brazil, and the United States remained the principal thorium producers in the world. As in the United States, most thorium was a byproduct of rare-earth recovery from monazite. Because of the low demand for thorium, a sizable oversupply existed in world markets. Some of the producing countries regulated transactions in thorium metal and compounds because of their nuclear uses.

Australia.—A pilot plant for production of ilmenite and rutile, located 150 miles north of Perth and operated by Allied Eneabba Pty. Ltd., started operation in the spring of 1973. The new plant will also produce monazite, capacity for which was not disclosed.

Brazil.—The Commissão Nacional de Energia Nuclear (CNEN), a Brazilian Government agency, controlled the beach sand industry of Brazil. This industry remained the only producer of monazite in the country.

CNEN, through its Administração da Produção da Monazita (APM), operated workings at Itabapoana (Rio de Janiero) and Cumuruxatiba (Bahia). Monazita e Ilmenita do Brasil (MIBRA), a privately owned company, operated facilities for the production of monazite at Guarapari.

The mixed Government-private company, Cia. Brasileira de Tecnologia Nuclear (CBTN), took control of Orquima, a private company in the city of São Paulo. The new company, named Usina de Santo Amaro (USAM), was operating a pilot plant that separated rare-earth oxides and thorium from monazite. The aim was to develop an effective system for this separation and then market the rare earths and thorium independently. Formerly, USAM furnished only mixed concentrates.

Canada.—There was no official indication that thorium was produced in Canada during 1973. However, some thorium may have been produced because Denison Mines Ltd. reactivated its yttrium circuit at its Elliot Lake mill in Ontario. Production of yttrium requires removal of thorium during the process.

France.—An agreement was signed by GGA, the Commissariat à Énergie Atomique (CEA), and French industry to organize an HTGR nuclear-fuel manufacturing and marketing company. The new company, La

Société de Combustible pour Reacteurs à Haute Température (CORHAT), will be jointly owned by GGA (30%) and a French organization, Cie. Industrielle de Combustibles Atomiques Frittes (70%). This agreement follows a previously signed agreement between GGA and CEA for exchange of HTGR technology.

Germany, West.—The Ministry of Science and Technology announced that reactor development funds, amounting to \$80 million, will be used for the helium-turbine equipped 300-Mwe thorium high-temperature reactor (THTR) under construction at Schmehausen. Construction of this reactor was financed and supervised by Hochtemperatur-Reaktorbau GmbH (HRB), Cologne, West Germany. HRB belongs to the Swiss-controlled Brown, Boverie and Co. Mannheim (55%), and GGA (45%).

India.—Production of monazite decreased during fiscal years 1972 and 1973. The main reasons for the lower output were shortages of electric power and caustic soda, and leaner monazite content of beach sands. Production of thorium hydroxide (dry) was reported at 689 tons. Installed capacity for production of thorium hydroxide was 904 tons annually. Thorium-producing facilities of Indian Rare Earths Ltd. (IRE) were operating at about 76% of installed capacity. The Government of India bought all thorium hydroxide produced by IRE.

IRE continued to operate the thorium plant at Trombay as agent of the Government of India. Construction started on a solvent extraction pilot plant for production of thorium oxide and nitrate at Trombay.<sup>4</sup>

Beach sands of the coastlines of Kerala and Tamil Nadu remained India's most important commercial source of thorium in monazite. The largest concentrations occur at Chavara near Quilon in Kerala and at Manavalakurichi, a coastal village in the Kenyakumari District of Tamil Nadu. Large unmeasured tonnages of monazite also exist in sandstone beds inland from each of the black sand beach areas. Other beach sand areas exist around the southern tip of India and along the east coast of the country through Visakhapatnam to Palmiras Point, southwest of Calcutta. IRE continued as the

<sup>&</sup>lt;sup>4</sup> Indian Rare Earths Ltd. 23rd Annual Report, 1972-73. Bombay, 1973, p. 23.

only mineral sand mining and processing firm in India. The company minerals division with offices at Quilon, Kerala, operated raw material plants at Manavalakurichi and at Chavara. Annual capacities for monazite at these two plants were reported at 4,898 and 645 tons, respectively. The average ThO<sub>2</sub> content of India monazite ranged from 8% to 10%.

India's nuclear planning remained oriented toward self-reliance. Having large resources of thorium, India decided to direct its future nuclear development toward thorium-fueled reactors. An experimental fast breeder reactor, located at Kalpakkam, near Madras, for which planning was underway, will be fitted with oxidal and radial thorium blankets. France has offered aid for construction of this reactor.

Japan.—The Public Utilities Bureau of the Ministry of International Trade and Industry proposed that the Electric Power Development Company (EPDC) should develop the HTGR in Japan. This would be the first reactor built by EPDC. The EPDC was established to develop hydroelectric power but later entered the field of thermal plants.

Japan pushed forward in expanding use of the HTGR. The Government and the iron and steel industry founded research on use of HTGR-generated process heat in production of steel.

The Japan Atomic Energy Research Institute completed a preliminary design for a multipurpose HTGR (power generation and process heat). Kawasaki Heavy Industries operated high-temperature piping in experimental production of iron and steel.

The Science and Technology Agency, established by the Government, released figures on quantities of nuclear fuel materials in Japan at the end of 1973. Stocks of thorium were reported at 565 tons in form of welding rods and lenses.

Table 4.-Monazite concentrate; World production by country

(Short tons)

| Country 1     | 1971               | 1972   | 1973 р |
|---------------|--------------------|--------|--------|
| Australia     | r 4,829            | 5,537  | 4,842  |
| Brazil        | 1,502              | 2,453  | 1,606  |
| India         | <sup>2</sup> 4,664 | 4,504  | 3,858  |
| Malaysia 3    | r 1,622            | 1,927  | 2,200  |
| Mauritania e  | 110                | 110    | 110    |
| Nigeria       | 102                | 11     | 6      |
| Sri Lanka     | 7                  | e 10   | e 10   |
| Thailand      | 123                | 188    | e 220  |
| United States | w                  | w      | w      |
| Zaire         | r 198              | 251    | 252    |
| Total         | r 13,157           | 14,991 | 13,104 |
|               |                    |        |        |

<sup>&</sup>lt;sup>e</sup> Estimate. <sup>p</sup> Preliminary. <sup>r</sup> Revised. W Withheld to avoid disclosing individual company confidential data.

## **WORLD RESOURCES**

Noncommunist world resources of thorium were evaluated by the U.S. Geological Survey 5 as shown in Table 5.

Table 5.—Noncommunist world resources of thorium <sup>1</sup>

(Thousand short tons)

| State                         | Recover-<br>able as<br>byproduct<br>or co-<br>product | Recoverable for grade of 0.1% ThO2 or higher | Recover-<br>able<br>for grade<br>less than<br>0.1% ThO <sub>2</sub> |
|-------------------------------|-------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------|
| Australia                     | _ 50                                                  |                                              |                                                                     |
| Brazil                        | _ 150                                                 | 14.0                                         |                                                                     |
| Canada                        | _ 580                                                 |                                              | -==                                                                 |
| Greenland<br>Rep. of<br>South |                                                       |                                              | 750                                                                 |
| Africa<br>United States       | - 75<br>46                                            | 106.5                                        | 142                                                                 |
| Others                        | 84                                                    |                                              | 10                                                                  |

<sup>&</sup>lt;sup>1</sup> Not shown, because of inadequate data, are resources of Argentina, Sri Lanka, Norway, Uruguay, the U.S.S.R., and several other countries.

<sup>&</sup>lt;sup>1</sup> In addition to the countries listed, Indonesia and North Korea produce monazite, but information is inadequate to make reliable estimates of output levels.

<sup>&</sup>lt;sup>2</sup> Year beginning April 1 of that stated.

<sup>3</sup> Exports.

<sup>&</sup>lt;sup>5</sup>Staatz, Mortimer H., and Jerry C. Olson. Thorium, chapter in United States Mineral Resources. U.S. Geol. Survey Prof. Paper 820, 1973, pp. 468-476.

## **TECHNOLOGY**

During 1973, energy, process heat, metallurgical applications, and isotopes were the principal subjects of research studies related to thorium. Except for some energy-oriented projects, most of the research was basic. Estimates indicated that two-thirds of the thorium research was on energy applications.

Nonenergy.—Most nonenergy research was related to thorium alloys. Metallurgical research was directed toward determining the effect of thorium and thorium compounds on the physical and chemical properties of alloys in different environments. One study indicated that ThO2 dispersion in platinum and gold gives unique properties to these metals. Detailed results were announced on platinum only. Stress-rupture properties of platinum, better than those of the best platinum-rhodium alloys, were obtained when ThO<sub>2</sub> was dispersed. Addition of ThO<sub>2</sub> helped improve strength and durability of the platinum-thorium alloy at elevated temperatures. The platinum-thorium alloys with high corrosion resistance may have applications in the aerospace, electrical and electronic, chemical, and glassmaking industries.6

Another result of metallurgical research showed that ThO2 strengthens oxygen-freehigh-conductivity (OFHC) copper when 0.3% to 3% ThO2 is alloyed with OFHC copper. The Cu-ThO2 alloy retained excellent electrical and thermal conductivity. Application may include use in structural and current-carrying parts of microwave tubes, high-temperature conductors, and die-casing parts.7

A recent investigation was conducted to develop powder preparation and processing methods which could improve the optical perfection of sintered Y2O3 containing various quantities of ThO2 and Nd2O3 in solid solution. The major part of the investigation was related to optical defects in the sintered material. A new process produced powders with a composition of 89%  $Y_2O_3$ , 10% ThO<sub>2</sub>, and 1% Nd<sub>2</sub>O<sub>3</sub> suitable for a sintering approach.8

Y2O3-ThO2 ceramics find use as solid electrolytes. Y<sub>2</sub>O<sub>3</sub>-ThO<sub>2</sub> and zirconia are electrical insulators but, at elevated temperatures, they become electrical conductors. The hightemperature conductivity can be controlled by the amount of stabilizers (CaO and

Y<sub>2</sub>O<sub>3</sub>) used in the formation. Characteristics of Y<sub>2</sub>O<sub>3</sub>-ThO<sub>2</sub> ceramics makes them suitable for new approaches to oxygen measurement, hydrogen production, and nuclear reactors. The Y2O3-ThO2 ceramics are highly resistant to attack by molten sodium. Research was underway to use Y2O3-ThO2 electrolytes for sodium-cooled nuclear reactors.9

Energy.—Energy research was directed mostly toward development of thorium fuels and their use in reactors. The AEC sponsored research and development in the nuclear field. In addition, GGA conducted research on applications of the HTGR gascooled breeder reactor (GCBR) and on a symbiotic relation in use of fuel between the GCBR and the HTGR.

Possibilities for the use of the HTGR as a source of process heat in various industrial fields were examined during 1973. For this use, the reactor remains basically identical to the HTGR used for power generation except for some modification required for generation of heat in the reactor and for application of that heat.

GGA and Stone & Webster Engineering (S&W), a subsidiary of Stone & Webster, Inc., started research on the use of nuclear power for converting coal into pipelinewith the HTGR. The S&W process treats coal as a basic hydrocarbon in which the hydrogen content is increased from approximately 5% in raw material to 25% in the methane product. The process quality gas and clean liquid fuels. The program integrated the S&W gasification process involved a stepwise hydrogenation of coal, first to liquid and then to synthetic gas by hydrogasification. The HTGR is included for power production of large quantities of hydrogen that are essential to the process. S&W will be the project manager of a 2year test program that will cost approximately \$650,000.

There are important advantages in the

<sup>&</sup>lt;sup>6</sup> American Metal Market. Thoria Added to Platinum, Gold Gives Unique Results. V. 80, No. 215, Nov. 6, 1973, p. 26.

<sup>7</sup> Materials Engineering. Material Outlook, Metals. V. 77, No. 1, January 1973, p. 10.

<sup>8</sup> Gereskovich, C., and K. N. Woods. Fabrication of Transparent ThO<sub>2</sub>-Doped Y<sub>2</sub>O<sub>3</sub>. Am. Ceramic Soc. Bull., v. 52, No. 5, May 1973, pp. 473–473.

Ceramic Soc. Bull., v. 52, No. 5, May 1915, pp. 473-478.

<sup>9</sup> Sproule, T. Richard. Zirconia and Yttria-Thoria Ceramics Find New Uses As Solid Electrolytes. Mater. Eng., v. 19, No. 1, January 1074 p. 46 1974, p. 40.

THORIUM 1211

use of a nuclear heat source in the process. The combined process produces about 30% more clean fuel per unit of coal fed through systems using coal for both a source of process heat and feedstock. In addition, HTGR-produced heat reduces the price sensitivity of synthetic gas to changes in the price of coal. Research was expected to take about 3 years. Construction of the commercial plant would take about 5 years after receiving all necessary approvals.

Research on production of hydrogen from water has been conducted by GGA with the HTGR heat source. A new multistep thermochemical process, using heat and chemicals, decomposed water into hydrogen and oxygen. The temperature range of 1,500° to 1,800° F, far lower than expected, is within the HTGR temperature range. Chemicals used in the process can be reprocessed, and only heat and water were consumed.10

The idea of a symbiotic relation between the GCBR and the HTGR was announced

during 1973. Such a relation leads to an advantage in fuel cycle economics. The GCBR can supply fissile feed materials that are the best fuel for the HTGR. Uranium-233, bred in thorium blankets around the GCBR cores, could supplement the recycled supply of this material in the HTGR's fuel feed. One GCBR could supply fissile materials for three HTGR's.

Pacific Nuclear, Inc., in Richland, Wash., has announced development of a new process for utilizing  $U_{233}$ , (converted from Th<sub>232</sub> in the HTGR) in existing LWR's. The new process prevents formation of undesirable U232 whose daughter products emit gamma radiation. This prevention is accomplished by a new core-loading pattern.11

American Nuclear Society. Production of Hydrogen Aim of the GGA Program. Nuclear News, v. 16, No. 15, December 1973, p. 79.
 American Nuclear Society. Process Devised to Burn Th-U-233 in Existing LWR's, Nuclear Industry, v. 20, No. 11, November 1973, p. 48.



## Tin

## By Keith L. Harris 1

The Free World supply of tin trended from oversupply at the beginning of the year to undersupply at yearend with a shortfall of about 23,000 long tons.2 Combined General Services Administration (GSA) shipments and International Tin Council (ITC) buffer stock sales of over 21,000 tons failed to alleviate the tight supply conditions. Prices rose to record levels on the world markets.

World mine production of tin in 1973 was 232,404 tons, down 3% from the 1972 level. U.S. consumption of primary and secondary tin increased 8% for the year, the first increase in U.S. consumption since 1968. The major uses for tin were in solder. 33%; tinplate, 28%; bronze and brass, 13%; chemicals including tin oxide, 6%; and babbitt, 5%. Most of the Nation's tin. in the form of slabs, bars, and ingots, came from Malaysia and Thailand. Less than 100 tons of tin, from mines in Alaska, Colorado, and New Mexico, was mined domestically during the year. About one-fifth of the tin used in the United States in 1973 was reclaimed from scrap at about 85 secondary smelters.

Table 1.-Salient tin statistics

(Long tons)

|                                          | 1969    | 1970    | 1971      | 1972      | 1973    |
|------------------------------------------|---------|---------|-----------|-----------|---------|
| United States:                           |         |         |           |           |         |
| Production:                              |         |         |           |           |         |
| Mine                                     | w       | w       | w         | w         | w       |
| Smelter                                  | 345     | NA      | 4,000     | r 4.300   | 4,500   |
| Secondary                                | 22,775  | 20.001  | 20,096    | 20.180    | 20,477  |
| Exports (including reexports)            | 2,903   | 4,452   | 2,262     | 1.134     | 3,406   |
| Imports for consumption:                 | _,      | -,      | _,        | -,        | 0,100   |
| Metal                                    | 54,950  | 50.554  | 46,940    | 52.451    | 45.845  |
| Ore (tin content)                        | ,       | 4,667   | 3,060     | 4.216     | 4,480   |
| Consumption:                             |         | .,      | -,,,,,    | -,        | -,      |
| Primary                                  | 57,730  | 52,957  | 51.980    | r 53.501  | 58,142  |
| Secondary                                | 23,060  | 20,880  | 17,970    | r 15,700  | 16,498  |
| Price: Straits tin, in New York, average | ,       | ,       |           |           | ,       |
| cents per pound                          | 164.435 | 174,135 | 167.344   | 177.469   | 227,558 |
| World production:                        |         |         |           |           |         |
| Mine                                     | 225,725 | 228,500 | r 231.401 | r 239.610 | 232,404 |
| Smelter                                  | 225,290 | 223,696 | r 232,017 | r 236,473 | 227.251 |

r Revised. NA Not available. W Withheld to avoid disclosing individual company confidential

The only primary tin smelter-refinery operating in the United States in 1973 was the Texas City, Tex., facility of Gulf Chemical and Metallurgical Corp. (GCMC). The major feed to the smelter was tin concentrate from Bolivia's state-owned Corporación Minera de Bolivia (COMIBOL).

The Office of Preparedness (OP) lowered the tin stockpile objective from 232,000 tons to 40,500 tons during the year. GSA sold 19,262 tons of tin from the stockpile through commercial channels.

The average New York price for prompt delivery Straits (Malaysian) tin in 1973 was 227.558 cents per pound, a significant increase from the 1972 average of 177.469 cents per pound.

Physical scientist, Division of Nonferrous Metals—Mineral Supply.
 Unless otherwise specified all units are long

tons of contained tin.

The ITC invoked export controls on member producer nations from mid-January through September. At its September meetings, the ITC revised upwards the floor and ceiling prices of tin by 9% and 6%, respectively.

Legislation and Government Programs.— In April, the OP announced a reduction in the stockpile objective from 232,000 tons to 40,500 tons. A bill was submitted to Congress for authorization to dispose of the excess tin, but by yearend no action had been taken.

On June 7, GSA resumed commercial sales, suspended since July 1, 1968, of 18,253 tons of tin previously authorized for release. A disposal plan formulated by GSA, the Department of State, and the ITC proposed sales of 6,500 tons during the year, with 1,500 tons available through

June and 5,000 tons available for the last half of the year. Demand for tin was so strong in July that the 5,000 tons allocated for the last half of the year was sold by July 11. In August, GSA discovered that an additional 32,000 tons could be released because the original authorization was not repealed in 1969 when Congress raised the objective to 232,000 tons. GSA resumed daily sales in September. A long-term sales program was announced December 5. Sales for the year total 19,262 tons, and shipments totaled 10,144 tons. At yearend, there was an excess of 190,512 tons on hand, of which 31,012 tons was approved for sale.

The Office of Minerals Exploration (OME), U.S. Geological Survey, continued its program of offering participatory loans for tin exploration up to 75% of approved costs.

## **DOMESTIC PRODUCTION**

#### PRIMARY TIN

Mine Production.—Domestic production of tin in 1973 was less than 100 tons. Most of the year's output came from Colorado as a byproduct of molybdenum mining. Some tin concentrate was produced at dredging operations in Alaska and placer operations in New Mexico. Climax Molybdenum Co., a division of American Metal Climax Inc., announced it began preparation for open pit mining at its Climax mine in Colorado. This was in addition to a recently completed underground mining level. Climax recovered about 2 to 3 ounces of tin concentrate from each ton of ore processed. Getman Tin, Inc., began a small tin placer mining operation at Beaverhead, Catron County, N. Mex., in June. The Lost River Mining Corp. continued exploration at its property in the Lost River area of Alaska's Seward Peninsula. Financial arrangements were being negotiated for a \$50 million facility to process 4,000 tons of ore per day from an open pit mine.

Smelter Production.—The only tin smelter in the United States is the Texas City, Tex., facility of GCMC. In 1973, it received 4,464 tons of tin-in-concentrate from Bolivia and 16 tons of tin-in-concentrate from the Republic of South Africa, which formed the base load, together with domestic tin concentrate and secondary

tin-bearing materials. With the liquidation of the United Kingdom's Williams, Harvey & Co., Ltd. smelter, GCMC's major competitor for Bolivian concentrate, GCMC initiated plans to boost production from the present level of 4,500 tons per year to 8,000 tons per year by the end of 1974. Accordingly, GCMC and Bolivia negotiated a 10-year contract in which Bolivia guaranteed to deliver 6,000 tons of concentrate to GCMC in each of the first 3 years of the contract. Details of the remaining 7 years of the contract were not available. GCMC also had its GCMC brand of pig tin approved for delivery on the London Metal Exchange (LME).

#### SECONDARY TIN

The United States is the world's leader in the production of recycled, or secondary, tin. The United Kingdom, the Federal Republic of Germany, Austria, and Australia also produce secondary tin in significant quantities.

Of the tin recycled during 1973, 91% was an alloy constituent of bronzes, brasses, solders, and bearing and type metals. A small amount also remained in chemical compounds. Only 9% of the recycled tin, mostly from new tinplate scrap, found its way to market as metal. This latter volume provided only 3% of the total tin supplied

TIN 1215

to U.S. consumers in 1973, a proportion which does not vary appreciably from year to year.

Secondary tin furnishes about 25% of the total U.S. tin supply each year. In 1973 secondary tin produced in the United States increased 1% over the 1972 level to 20,477 tons.

Five companies in 11 States were engaged in the detinning business in 1973. Normally the raw materials used are tinplate scrap and spent chemicals or tinning solutions.

Table 2.—Secondary tin recovered from scrap processed at detinning plants in the United States

|                                                                              | 1972            | 1973                    |
|------------------------------------------------------------------------------|-----------------|-------------------------|
| Tinplate scrap treatedlong tons                                              | 714,960         | 764,158                 |
| Tin recovered in the form of—  Metaldo  Compounds (tin content)do            | 1,494<br>672    | 1,416<br>677            |
| Total 1do                                                                    | 2,166<br>1,284  | 2,093<br>1,450          |
| Average quantity of tin recovered per long ton of tinplate scrap used pounds | 6.79<br>\$30.15 | 6.13<br><b>\$4</b> 8.90 |

<sup>&</sup>lt;sup>1</sup>Recovery from tinplate scrap treated only. In addition, detinners recovered 371 long tons (551 tons in 1972) of tin as metal and in compounds from tin-base scrap and residues in 1973.

Table 3.—Tin recovered from scrap processed in the United States, by form of recovery

(Long tons)

| Form of recovery                                                | 1972     | 1973      |
|-----------------------------------------------------------------|----------|-----------|
| Tin metal:                                                      |          |           |
| At detinning plants                                             | 2,001    | 1,737     |
| At other plants                                                 | 198      | 275       |
| Total                                                           | 2,199    | 2,012     |
| Bronze and brass: From copper-base scrap From lead and tin-base | 9,281    | 9,428     |
| scrap                                                           | 73       | 59        |
| Total                                                           | 9,354    | 9,487     |
| Solder                                                          | 5,213    | 5,488     |
| Type metal                                                      | 1,232    | 1,052     |
| Babbitt                                                         | 854      | 751       |
| Antimonial lead                                                 | 604      | 948       |
| Chemical compounds                                              | 716      | 727       |
| Miscellaneous 1                                                 | 8        | 12        |
| Total                                                           | 8,627    | 8,978     |
| Grand total                                                     | 20,180   | 20,477    |
| Value (thousands)                                               | \$80,222 | \$104,377 |

<sup>1</sup> Includes foil, cable lead, and terne metal.

# Table 4.-Shipments of metal cans 1

(Thousand base boxes 2)

| Type of can                     | 1972    | 1973 Р  | 1973<br>change<br>(percent) |
|---------------------------------|---------|---------|-----------------------------|
| FOOD AND BEVERAGES              |         |         |                             |
| ruit and fruit juices           | 13,639  | 14.526  | +6.5                        |
| egetables and vegetable juices  | 21,755  | 23,914  | +9.9                        |
| filk, evaporated and condensed  | 2,404   | 2.245   | -6.6                        |
| ther dairy products             | 379     | 298     | -21.4                       |
| oit drinks                      | 31.485  | 36.049  | +14.5                       |
| eer                             | 44,949  | 48,438  | +7.8                        |
| feat and poultry                | 3,683   | 3.681   | ĭ                           |
| ish and other seafoods          | 3,185   | 3,018   | -5.2                        |
| offee                           | 3,595   | 3,713   | +3.3                        |
| ard and shortening              | 1,688   | 1,790   | +6.0                        |
| aby foods                       | 1.460   | 1.345   | -7.9                        |
| et foods                        | 6,694   | 7,121   | +6.4                        |
| ll other foods, including soups | 14.078  | 14,280  | +1.4                        |
| Total                           | 148,994 | 160,418 | +7.7                        |
| NONFOOD =                       |         |         |                             |
| ils                             | 3.095   | 2,726   | -11.9                       |
| aint and varnish                | 5,588   | 5,432   | -2.8                        |
| ntifreeze                       | 566     | 303     | -46.5                       |
| ressure packing (valve type)    | 5.877   | 6.007   | +2.2                        |
| ll other nonfood                | 6.552   | 5.381   | -17.9                       |
| Total                           | 21,678  | 19.849  | -8.4                        |
| <del>-</del>                    |         |         |                             |
| Grand total                     | 170,672 | 180,267 | +5.6                        |
| BY METAL                        |         |         | •                           |
| teel base boxes 2               | 141,228 | 146,625 | +3.8                        |
| Short tons (thousand)           | 5,582   | 5,792   | +3.8                        |
| luminum base boxes              | 29.444  | 33.642  | +14.2                       |

P Preliminary.

1 Includes tinplate and aluminum cans.

2 The base box, a unit commonly used in the tinplate industry, equals 31,360 square inches of plate or 62,720 square inches of total surface area.

Source: U.S. Department of Commerce.

Table 5.-Stocks, receipts, and consumption of new and old scrap and tin recovered in the United States in 1973

(Long tons)

|        |                                                       |                 | Gro               | ss weigh          | t of scr         | ар                 |                 | Tin       | recove           | ered           |
|--------|-------------------------------------------------------|-----------------|-------------------|-------------------|------------------|--------------------|-----------------|-----------|------------------|----------------|
| Type   | of scrap and class                                    | Stocks          | Receipts          |                   | Consump          | tion               | Stocks          |           |                  |                |
| LJPC   | of consumer                                           | Jan. 1          |                   | New               | Old              | Total              | Dec. 31         | New       | Old              | Total          |
|        | r-base scrap:<br>econdary smelters:<br>Auto radiators |                 |                   |                   |                  |                    |                 |           |                  |                |
|        | (unsweated)<br>Brass, composition                     | 2,621           | 52,606            |                   | 51,982           | 51,982             | 3,245           |           | 2,236            | 2,236          |
|        | or red<br>Brass, low (silicon                         | 3,438           | 70,738            | 16,672            | 54,015           | 70,687             | 3,489           | 901       | 2,010            | 2,911          |
|        | bronze)                                               | 603             | 2,683             | 2,271             | 728              | 2,999              | 288             | ==        | 5                | 5              |
|        | Brass, yellow                                         | 4,655           | 54,125            | 6,569             | 47,441<br>20,825 | $54,010 \\ 25,129$ | 4,770<br>1,852  | 24<br>336 | 480<br>1,635     | 504<br>1,971   |
|        | Bronze<br>Low-grade scrap                             | 1,946           | 25,035            | 4,304             | 20,020           | •                  | 1,004           | 330       | 1,000            | -              |
|        | and residues                                          | 8,061           | 56,406            | 44,008            | 8,828            | 52,836             | 11,631          | 25        | 55               | 25             |
|        | Nickel silver                                         | 570             | 4,165             | 520               | 3,660            | 4,180              | 555<br>361      | 4         | 28<br>102        | 32<br>102      |
|        | Railroad-car boxes                                    | 316             | 2,183             | 74,344            | 2,138<br>189,617 | 2,138<br>263,961   | 26,191          | 1,290     | 6,496            | 7,786          |
|        | Total                                                 | 22,210          | 207,941           | 74,544            | 189,017          | 203,901            | 20,191          | 1,290     | 0,450            | 1,180          |
| B      | rass mills: 1 Brass, low (silicon                     |                 |                   | 22 222            |                  | 22.422             | 0.050           |           |                  |                |
|        | bronze)                                               | 5,838<br>15,154 | 20,724<br>307,229 | 22,603<br>303,670 |                  | 22,603<br>303,670  | 3,959<br>18,713 | 223       |                  | 223            |
|        | Brass, yellow<br>Bronze                               | 654             | 5,026             | 4,904             |                  | 4,904              | 776             | 221       |                  | 221            |
|        | Nickel silver                                         | 4,990           | 23,515            | 25,186            |                  | 25,186             | 3,319           |           |                  |                |
|        | Total                                                 | 26,636          | 356,494           | 356,363           |                  | 356,363            | 26,767          | 444       |                  | 444            |
| F      | oundries and other plants: 2                          |                 |                   |                   |                  |                    |                 |           |                  |                |
|        | Auto radiators                                        |                 |                   |                   |                  |                    |                 |           | 400              | 400            |
|        | (unsweated)                                           | 882             | 9,927             |                   | 9,396            | 9,396              | 1,413           |           | 422              | 422            |
|        | Brass, composition<br>or red                          | 951             | 4,684             | 2,366             | 2,565            | 4,931              | 704             | 113       | 121              | 234            |
|        | Brass, low (silicon bronze)                           | 25              | 687               | 288               | 377              | 665                | 47              |           | 6                | 6              |
|        | Brass, yellow                                         | 583             | 4,273             | 2,034             | 2,229            | 4,263              | 593             | 1         | 20               | 21             |
|        | Bronze                                                | 175             | 783               | 155               | 683              | 838                | 120             | 12        | 52               | 64             |
|        | Low-grade scrap<br>and residues                       | 173             | 900               | 205               | 497              | 702                | 371             |           |                  |                |
|        | Nickel silver                                         | 3               | 3                 |                   | 5                | 5                  | 1               |           |                  |                |
|        | Railroad-car boxes                                    | 827             | 5,602             |                   | 6,279            | 6,279              | 150             |           | 298              | 298            |
|        | Total                                                 | 3,619           | 26,859            | 5,048             | 22,031           | 27,079             | 3,399           | 126       | 919              | 1,045          |
|        | Total tin from                                        |                 |                   |                   |                  |                    |                 |           |                  |                |
|        | copper-base<br>scrap                                  | xx              | XX                | xx                | XX               | XX                 | XX              | 1,860     | 7,415            | 9.275          |
|        |                                                       |                 |                   |                   |                  |                    |                 |           |                  |                |
|        | base scrap: Smelters,<br>ners, and others:            |                 |                   |                   |                  |                    |                 |           |                  |                |
| В      | abbitt                                                | 285             | 12,400            |                   | 12,084           | 12,084             | 601             |           | 586              | 586            |
| В      | attery lead plates                                    | 35,089          | 499,431           | 100 100           | 486,105          | 486,105            | 48,415          | 9 900     | 514              | 514            |
| D      | rosses and residues                                   | r 16,980<br>405 | 140,771<br>11,364 | 138,109           | 10,706           | 138,109<br>10,706  | 19,642<br>1,063 | 2,896     | 1,662            | 2,896<br>1,662 |
|        | older and tinny lead<br>ype metal                     | 2,135           | 24,791            |                   | 24,955           | 24,955             | 1,971           |           | 1,186            | 1,186          |
| -      | Total                                                 |                 | 688,757           | 138,109           | 533,850          | 671,959            | 71,692          | 2,896     | 3,948            | 6,844          |
| Tin he | ase scrap: Smelters,                                  |                 |                   |                   |                  |                    |                 |           |                  |                |
|        | ners, and others:                                     |                 |                   |                   |                  |                    |                 |           |                  |                |
| В      | abbitt                                                | 32              | 175               |                   | 179              | 179                | 28              |           | 149              | 149            |
| В      | lock-tin pipe                                         | 15<br>735       | 179<br>2 588      | 3,094             | 163              | 163<br>3,094       | 31<br>229       | 1,571     | 162              | 162<br>1,571   |
|        | rosses and residues _<br>ewter                        | 785             | 2,588<br>16       | ə,U94<br>-        | 14               | 3,094              | 229             | 1,011     | $\bar{1}\bar{2}$ | 1,511          |
| •      | Total                                                 | 782             | 2,958             | 3,094             | 356              | 3,450              | 290             | 1,571     | 323              | 1,894          |
|        | ate and other scrap:<br>inning plants                 |                 | _,                | 764,158           |                  | 764,158            |                 | 2,464     |                  | 2,464          |
|        | Grand total                                           | XX              | XX                | XX                | XX               | XX                 | XX              | 8,791     | 11,686           | 20,477         |
|        | Grand West                                            | AA              | AA                | 21.71             |                  |                    |                 | 0,        | ,,,,,            | ,              |

<sup>&</sup>lt;sup>r</sup> Revised. XX Not applicable.

<sup>1</sup> Brass-mill stocks include home scrap, and purchased-scrap consumption is assumed equal to receipts; therefore, lines and total in brass-mill section do not balance.

<sup>2</sup> Omits "machine-shop scrap."

# CONSUMPTION

The downward trend in tin consumption evident since 1968 was reversed in 1973. Total consumption of tin metal increased 8%, with primary and secondary tin consumption increasing 9% and 5%, respectively. The marked increase in tin used in solder, up 13% over the 1972 level, accounted for the majority of the overall rise. Although delegated to second place in relative importance of total tin consumption, tinplate continued as the most important primary tin consuming sector (37%). Consumption of tin for tinplate

increased 1%, although the average amount of tin per short ton of tinplate continued to decline. An average of 9.7 pounds of tin was used per short ton of tinplate compared with 10.0 pounds in 1972. Most of the increased tinplate production was used in the manufacture of cans. Consumption increased in all sectors except bar tin and type metal. U.S. brass mills consumed 1,045 tons of primary tin, compared with 1,426 tons in 1972. Consumption of secondary tin, at 501 tons, was the same as in 1972.

Table 6.—Consumption of primary and secondary tin in the United States
(Long tons)

|                                                                      | 1969    | 1970   | 1971   | 1972 r | 1973   |
|----------------------------------------------------------------------|---------|--------|--------|--------|--------|
| Stocks Jan. 1 1                                                      | 28,152  | 23,441 | 21,165 | 18,557 | 18,490 |
| Net receipts during year: Primary Secondary Scrap Total receipts     | 55,125  | 52,096 | 51,727 | 55,074 | 59,164 |
|                                                                      | 2,325   | 2,502  | 2,491  | 2,797  | 4,034  |
|                                                                      | 21,624  | 19,748 | 16,179 | 13,892 | 13,713 |
|                                                                      | 79,074  | 74,346 | 70,397 | 71,763 | 76,911 |
| Total available =  Tin consumed in manufactured products:            | 107,226 | 97,787 | 91,562 | 90,320 | 95,401 |
| Primary Secondary Secondary                                          | 57,730  | 52,957 | 51,980 | 53,501 | 58,142 |
|                                                                      | 23,060  | 20,880 | 17,970 | 15,700 | 16,498 |
| TotalIntercompany transactions in scrap                              | 80,790  | 73,837 | 69,950 | 69,201 | 74,640 |
|                                                                      | 2,995   | 2,785  | 3,055  | 2,629  | 2,504  |
| Total processedStocks Dec. 31 (total available less total processed) | 83,785  | 76,622 | 73,005 | 71,830 | 77,144 |
|                                                                      | 23,441  | 21,165 | 18,557 | 18,490 | 18,257 |

r Revised.

Table 7.-Tin content of tinplate produced in the United States

|      | Tinplate waste-                                                  | Tinplate (all forms)         |                           |                                              |  |  |
|------|------------------------------------------------------------------|------------------------------|---------------------------|----------------------------------------------|--|--|
| Year | waste, strips,<br>cobbles, etc.,<br>gross weight<br>(short tons) | Gross weight<br>(short tons) | Tin content 1 (long tons) | Tin per<br>short ton<br>of plate<br>(pounds) |  |  |
| 1969 | 581,594                                                          | 5.944.758                    | 26,886                    | 10.1                                         |  |  |
| 1970 | 625,998                                                          | 5,590,038                    | 25,127                    | 10.1                                         |  |  |
| 1971 | 547,959                                                          | 5,297,970                    | 23,669                    | 10.0                                         |  |  |
| 1972 | 501,996                                                          | 4,706,491                    | 21,070                    | 10.0                                         |  |  |
| 1973 | 522,043                                                          | 4,908,347                    | 21,267                    | 9.7                                          |  |  |

<sup>&</sup>lt;sup>1</sup> Includes small tonnage of secondary tin and tin acquired in chemicals.

<sup>&</sup>lt;sup>1</sup> Stocks shown exclude tin in transit or in other warehouses on Jan. 1, as follows: 1969—1,185 tons; 1970—80 tons; 1971—10 tons; 1972—140 tons; and 1973—970 tons.

1219

Table 8.-Consumption of tin in the United States, by finished product (Long tons of contained tin)

TIN

1973 Pri-Sec-Pri-Secondary Total Total ondary marv marv 1,078 Alloys (miscellaneous) \_\_\_\_\_Babbitt \_\_\_\_\_ 799 279 441 909 468 r 3,135 2,524 705 951 3,475 705 r 2,213 \_\_\_\_\_ 780 116 896 Bar tin \_. 6.470 9,976 Bronze and brass \_\_\_\_\_\_Chemicals including tin oxide \_\_\_\_\_\_Collapsible tubes and foil \_\_\_\_\_\_ r 9,722 3,506 r 6,585 2,852 2,462 1,568 4,030 1,001 1,002 790 16 806 5 952 24,727 370 r 21,961 r 5.048 18,775 r 16,913 \_\_\_\_\_ Solder 237 315 55 44 45 Terne metal \_\_\_\_\_ 192 2,585 2,541 21,2672.461 r 2,540 Tinning \_\_\_\_\_ 21,267 21,070 21,070 \_\_  $\bar{\mathbf{w}}$ 1,459 1,459 1,150 Tin powder \_\_\_\_\_ 840 1,717 80 560 640 103 737 Type metal \_\_\_\_\_\_White metal 2 \_\_\_\_\_ 2,000 103 2,103 1,579 138 318 107 425 183 Other \_\_ 74.640 16.498

r 15,700

r 69,201

r 53.501

Includes secondary pig tin and tin acquired in chemicals. <sup>2</sup> Includes pewter, britannia metal, and jewelers' metal.

#### STOCKS

Stocks of plant-held pig tin were 7% lower than in the corresponding period of 1972. Stocks dropped to a low of 5,050 tons in May, but resumption of commercial sales of pig tin by GSA were reflected by a rise in plant-held stocks to a high of 10,200 tons at the end of August. Drawdown of pig tin stocks continued for the remainder of the year. Tinplate mills held

Total \_\_\_\_\_

4,405 tons of pig tin at yearend. Tin in process and tin in transit in the United States recorded increases from 1972 levels, but the increases were more than offset by declines in stocks held by jobbersimporters and tin afloat to the United States. Total tin stocks at yearend were 23,992 tons, 5% below the yearend 1972 level and the lowest since 1951.

58,142

Table 9.-U.S. industry yearend tin stocks

| (Long to                                                                                                 | ons)                              |                                  |                                  |                                          |                                  |
|----------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------|----------------------------------|------------------------------------------|----------------------------------|
|                                                                                                          | 1969                              | 1970                             | 1971                             | 1972                                     | 1973                             |
| Plant raw materials:     Pig tin:         Virgin         Secondary         In process <sup>1</sup> Total | 12,281<br>253<br>10,907<br>23,441 | 9,451<br>222<br>11,492<br>21,165 | 7,779<br>255<br>10,523<br>18,557 | r 8,152<br>r 254<br>r 10,084<br>r 18,490 | 7,509<br>350<br>10,398<br>18,257 |
| Additional pig tin: In transit in United States Jobbers-importers Afloat to United States Total          | 80<br>1,210<br>5,865<br>7,155     | 10<br>1,635<br>3,500<br>5,145    | 140<br>1,630<br>4,510<br>6,280   | 445<br>2,720<br>3,725<br>6,890           | 970<br>1,135<br>3,630<br>5,735   |
| Grand total                                                                                              | 30,596                            | 26,310                           | 24,837                           | r 25,380                                 | 23,992                           |

Revised.

# **PRICES**

Prices of tin metal on world markets, in general, reflected conditions of supply, which ran the gamut from oversupply during the first 5 months of the year, through a tightening and balance of supply and demand during the next 5 months, to undersupply during the last 2 months. Factors making for market unpredictability included: ITC export controls and buffer stock sales; monetary problems of dollar devaluation and floating of the Malaysian dollar; U.S. tin stockpile sales; liquidation of the Williams, Harvey smelter; upward revision of the ITC buffer stock range and buffer stock restrictions; and the energy crisis.

W Withheld to avoid disclosing individual company confidential data; included with r Revised. Other.

<sup>&</sup>lt;sup>1</sup> Tin content, including scrap.

Average prices for the year reached record highs on all markets. The average price for cash tin on the LME was £1960.44 per metric ton (218.04 cents per pound) compared with £1505.94 per metric ton (167.49 cents per pound) in 1972. The average Penang price for ex-works Straits tin was M\$686.28 per picul 3 (213.55 cents per pound), compared with M\$626.80 per picul (195.04 cents per pound) in 1972.

The Penang price for ex-works Straits tin began the year at M\$625 per picul (194 cents per pound) and in general remained in the M\$630 per picul range through May. The February devaluation of the dollar that moved U.S. and LME prices higher was not reflected in the Penang market. Tin supply tightened at the Penang market in June as Malaysia failed to meet its export quota for the quarter and prices

rose. Malaysia floated its dollar in late June and prices dipped. After early July, the Penang price moved firmly into the upper sector of the buffer stock range. The buffer stock range was revised upward and export controls were dropped in September. The price remained firmly in the revised middle sector until late October when it moved into the upper sector. In November, the price penetrated the ITC ceiling price on its way to a record high in December. The move was caused by tight supply conditions aggravated by the buffer stock exit from the market and speculation. The price reached M\$1,206 per picul (319 cents per pound) on December 10 but dropped off to end the year at M\$815 per picul (254 cents per pound), substantially above the ITC ceiling of M\$760 per picul (236 cents per pound).

Table 10.—Monthly prices of Straits tin for prompt delivery in New York
(Cents per pound)

| _         |         | 1972    |         |         | 1973    |         |
|-----------|---------|---------|---------|---------|---------|---------|
| Month     | High    | Low     | Average | High    | Low     | Average |
| January   | 172,000 | 170,500 | 171.310 | 180.000 | 177.750 | 179.045 |
| February  | 174.000 | 171.000 | 172.000 | 202 500 | 181.250 | 192.014 |
| March     | 183.750 | 175.000 | 179.810 | 210.000 | 201.000 | 205.102 |
| April     | 183.000 | 181.000 | 181.975 | 204.000 | 199.000 | 202.400 |
| May       | 180,000 | 175.250 | 177.920 | 214.000 | 202.000 | 209.114 |
| June      | 176.250 | 173,500 | 175.034 | 218.750 | 207.500 | 212.274 |
| July      | 177.750 | 175.000 | 176,613 | 247.750 | 218.000 | 237.548 |
| August    | 182,250 | 177.500 | 179,120 | 248.500 | 239.000 | 243.565 |
| September | 182.750 | 181.000 | 181.988 | 241.750 | 238,750 | 240.303 |
| October   | 182,000 | 178.000 | 180.400 | 252,000 | 239.000 | 245.909 |
| November  | 178,250 | 176,250 | 177.213 | 284.750 | 252.000 | 262.440 |
| December  | 178.500 | 174.750 | 176.250 | 345.000 | 274.250 | 300.461 |
| Average   | 183.750 | 170.500 | 177.469 | 345.000 | 177.750 | 227.558 |

Sources: American Metal Market for 1972 and Metals Week for 1973.

## **FOREIGN TRADE**

Although GSA sales of surplus stockpiled tin became a source of supply in the middle of the year, as reflected by a 13% drop in metal imports in 1973, the United States continued to rely upon foreign sources for the majority of its pig tin requirements. Of the 45,845 tons of tin metal imported into the United States, Malaysia furnished 62%; Thailand, 17%; and Australia and Indonesia, combined, 10%. The People's Republic of China was the fifth largest supplier of tin metal to the United States in 1973.

Imports of tin-in-concentrate destined for the Texas City, Tex., smelter totaled 4,480 tons in 1973. Bolivia furnished 4,464 tons and the Republic of South Africa, 16 tons. Exports of metal from the United States trebled to 3,406 tons.

Small tonnages of secondary tin enter the United States as alloy constituents in recyclable solders or other alloys, or as tinplate or other scrap, dross, skimmings, and residues. These volumes find their way into consumption figures and account for the differences normally encountered between U.S. production and consumption of secondary tin. Tin that is a constituent alloy in imports and exports of babbitt, solder, type metal, and bronze is shown in the Minerals Yearbook chapters on "Copper" and "Lead." Ferrous scrap exports, including those of tinplate and terneplate scrap, are not classified separately.

 $<sup>^3</sup>$  One Malaysian dollar (M\$) = US\$0.4149; one picul = 133.33 pounds.

Table 11.-U.S. exports and imports for consumption of tin, tinplate, and terneplate in various forms

|                            | Ing                         | ots, pig                   | s, and               | bars                      | Ti                            | nplate ai                    | nd terne                        |                                | strips a                        | te circles<br>nd cobbl    | es, so                          | nplate<br>crap,           |
|----------------------------|-----------------------------|----------------------------|----------------------|---------------------------|-------------------------------|------------------------------|---------------------------------|--------------------------------|---------------------------------|---------------------------|---------------------------------|---------------------------|
|                            | Expo                        | rts                        | Reex                 | ports                     | Exp                           | orts                         | lm                              | orts                           | ex                              | ports                     |                                 | ports                     |
| Year                       | Quan-<br>tity               | Value<br>(thou-<br>sands)  | Quantity (long tons) | Value<br>(thou-<br>sands) | Quantity (long tons)          | Value<br>(thou-<br>sands)    | Quan-<br>tity<br>(long<br>tons) | Value<br>(thou-<br>sands)      | Quan-<br>tity<br>(long<br>tons) | Value<br>(thou-<br>sands) | Quan-<br>tity<br>(long<br>tons) | Value<br>(thou-<br>sands) |
| 1971 -<br>1972 -<br>1973 - | _ 1,821<br>_ 857<br>_ 2,540 | \$6,648<br>2,915<br>12,099 | 441<br>277<br>866    | \$1,620<br>1,055<br>3,236 | 186,151<br>245,355<br>354,393 | \$39,605<br>51,929<br>89,704 | 372,875<br>466,455<br>419,915   | \$80,562<br>107,844<br>105,597 | 8,675<br>4,076<br>21,563        | \$1,186<br>552<br>2,678   | 18,071<br>15,214<br>11,940      | \$546<br>437<br>384       |

Table 12.-U.S. imports for consumption and exports of miscellaneous tin, tin manufactures, and tin compounds

|                      |                                                  | Miscel                                                                    | laneous tin               | and manufa                                        | ctures                                                       |                           |                     |  |
|----------------------|--------------------------------------------------|---------------------------------------------------------------------------|---------------------------|---------------------------------------------------|--------------------------------------------------------------|---------------------------|---------------------|--|
|                      | -                                                |                                                                           | Imports                   |                                                   | Exports                                                      | Exports                   |                     |  |
| Year                 |                                                  | Tinfoil,<br>tin powder,<br>flitters,<br>metallics,<br>tin and<br>manufac- | scrap,<br>and tir         | kimmings,<br>residues,<br>a alloys,<br>.p.f.      | Tin scrap<br>and other<br>tin-bearing<br>material,<br>except |                           | npounds<br>orts     |  |
| 101                  | tures,<br>n.s.p.f.,<br>value<br>(thou-<br>sands) | Quantity (long tons)                                                      | Value<br>(thou-<br>sands) | tinplate _<br>scrap,<br>value<br>(thou-<br>sands) | Quan-<br>tity<br>(long<br>tons)                              | Value<br>(thou-<br>sands) |                     |  |
| 1971<br>1972<br>1973 |                                                  | \$4,472<br>6,501<br>6,956                                                 | 4,125<br>1,304<br>1,281   | \$1,385<br>2,140<br>1,322                         | \$1,780<br>3,392<br>3,262                                    | 91<br>152<br>154          | \$257<br>477<br>645 |  |

Table 13.-U.S. imports for consumption of tin 1 by country

|                             | 1                       | 972                  | 1                       | 973                  |
|-----------------------------|-------------------------|----------------------|-------------------------|----------------------|
| Country                     | Quantity<br>(long tons) | Value<br>(thousands) | Quantity<br>(long tons) | Value<br>(thousands) |
|                             | 2.184                   | \$7,468              | 1,963                   | \$8,261              |
| Australia                   | 2,134<br>71             | 277                  | 118                     | 521                  |
| Belgium-Luxembourg          | 1.104                   | 4,172                | 832                     | 3,821                |
| Bolivia                     |                         | 2,620                | 594                     | 2,676                |
| Brazil                      | 696                     |                      | 25                      | 109                  |
| Canada                      | 274                     | 1,067                | 20                      | 100                  |
| Chile                       | 93                      | 354                  | 1 707                   | 7,801                |
| China, People's Republic of | 160                     | 639                  | 1,727                   | 1,001                |
| France                      | 20                      | 73                   |                         |                      |
| Germany, West               | 99                      | 359                  | .==                     |                      |
| Germany, west               | 20                      | 73                   | 172                     | 720                  |
| Hong Kong                   |                         | 650                  | 10                      | 43                   |
| India                       | 1.997                   | 8,126                | 2,829                   | 12,016               |
| Indonesia                   | 25                      | 91                   | ·                       |                      |
| Japan                       | 32.645                  | 120,780              | 28,255                  | 121,469              |
| Malaysia                    | 32,040                  | 120,100              | 67                      | 136                  |
| Mexico                      | 4 2 2                   | 451                  | 45                      | 241                  |
| Netherlands                 | 163                     |                      | 105                     | 419                  |
| Nigeria                     | 184                     | 691                  | 109                     | 71.                  |
| Peru                        | 128                     | 492                  |                         |                      |
| Singapore                   |                         | 469                  | . = =                   | 4 005                |
| Taiwan                      | 86                      | 324                  | 251                     | 1,085                |
| Taiwan                      | 11,727                  | 44,393               | 7,964                   | 32,164               |
|                             | 4771                    | 1,852                | 888                     | 3,764                |
| United Kingdom              |                         |                      | 45,845                  | 195,246              |
| Total                       | 52,451                  | 195,421              | 40,040                  | 100,21               |

<sup>&</sup>lt;sup>1</sup> Bars, blocks, pigs, grain, or granulated.

## **WORLD REVIEW**

#### INTERNATIONAL TIN AGREEMENT

The International Tin Council (ITC) operating under the Fourth International Tin Agreement (ITA), had an active year trying to control the tin situation. Large buffer stock holdings, a production surplus, and low tin prices forced the adoption of export controls on producer nations for the first quarter of the year. The possibility of unforeseen supply-demand problems developing because of GSA tin sales forced the retention of export controls through September 30. Inflation and an unstable monetary base forced an upward revision of the price range in late September. High demand, failure of some producing nations to meet export quotas, the closure of a major tin smelter, and the energy crisis caused a tight metal supply and led to a yearend shortfall of 23,000 tons between mine production and consumption. Prices rose above the ITC ceiling price to record highs, forcing curtailment of buffer stock operations, the only method available to the ITC for maintaining the ceiling price.

With the price of tin in the lower sector of the price range and over 12,000 tons of tin in the buffer stock, the ITC at its January meeting decided to impose export controls on member producing nations from January 19 to 31.

In March the ITC decided to retain export controls for the second quarter but cut the permissible tonnage 2.5% from the average 1972 export level and extended authorization for the buffer stock manager to operate in the middle sector.

A special session of the ITC met in July to consider revision of the floor and ceiling prices after floating of the Malaysian dollar. Since the value of the Malaysian dollar was only allowed to float upwards while the British pound floated freely, and the U.S. market was under the influence of GSA tin sales, the ITC decided not to revise price levels or the monetary base.

By the time of the ITC's mid-September session, the price of tin was firmly in the upper sector of the price range, GSA had sold its tin allocation for the year but had reentered the market because of the tight metal supply, and the buffer stock contained only 4,744 tons. Export control was dropped as of September 30, and authorization for the buffer stock manager to operate in the middle sector was withdrawn. Effective September 21, the price range was revised upward for the first time since October 21, 1970, after a compromise by the consuming and producing nations. The producing nations desired a 20% increase in the floor and ceiling price to compensate for inflation. The consuming nations felt a 5% increase was sufficient. The price range was revised as follows:

| _             | Previous  | range                           | Revised   | range                           |
|---------------|-----------|---------------------------------|-----------|---------------------------------|
| ,             | M\$/picul | U.S. equiva- lent, cents/ pound | M\$/picul | U.S. equiva- lent, cents/ pound |
| Floor price   | 583       | 181                             | 635       | 198                             |
| Lower sector  | 583-633   | 181-197                         | 635-675   | 198-210                         |
| Middle sector | 633-668   | 197-209                         | 675-720   | 210-224                         |
| Upper sector  | 668 - 718 | 209-223                         | 720-760   | 224-236                         |
| Ceiling price | 718       | 223                             | 760       | 236                             |

In October, the ITC made known its position on U.S. stockpile sales. The ITC wished to be assured the following possibilities would not occur because of U.S. stockpile releases:

- (a) Unacceptably low prices, leading to severe losses in the export earnings of producing countries and the closure of large sections of the mining industry, and consequent unemployment; whole sections of a country's or region's industry could be at risk.
- (b) Breakdown of productive capacity or unwillingness to invest in new capacity, leading eventually to serious shortages of tin and excessively high prices; the larger the scale of the tin disposal program is, the more likely such shortages could eventually be.
- (c) Serious prejudice to the objectives and work of the Council which has been carefully built up over the years; the buffer stock operations and export controls are currently operated in relation to commer-

cial market conditions without extraneous supplies from non-commercial sources.4

By November 10 tin metal supply was so tight that even with combined GSA and buffer stock sales of over 15,000 tons, the price exceeded the ITC ceiling price. The buffer stock manager was released from the responsibility of supporting the ceiling price at the risk of exhausting the buffer stock. The price of tin rose to record highs in early December, and closed the year well above the ITC ceiling price.

During the year, the buffer stock levels continuously fell from 12,282 tons in January to 985 tons in December. The French Government contributed \$3 million to the buffer stock fund. Ireland, Romania, and Turkey joined the Fourth ITA as con-

suming nations and the votes were adjusted as follows:

| Austria       | 10  | Italy         | 58    |
|---------------|-----|---------------|-------|
| Belgium-      |     | Japan         | 214   |
| Luxembourg    | 27  | Korea, Repub- | 211   |
| Bulgaria      | 11  | lic of        | 9     |
| Canada        | 40  | Netherlands   | 42    |
| Czechoslo-    |     | Poland        | 35    |
| vakia         | 30  | Romania       | 24    |
| Denmark       | 10  | Spain         | 30    |
| France        | 82  | Turkey        | 14    |
| Germany, West | 108 | United        |       |
| Hungary       | 15  | Kingdom       | 121   |
| India         | 34  | U.S.S.R       | 64    |
| Ireland       | 6   | Yugoslavia    | 16    |
|               |     | Total         | 1,000 |

The producing nations' votes remained as established on October 1, 1972.

Table 14.—Tin: World mine production, by country <sup>1</sup>
(Long tons)

| Country                                       | 1971      | 1972         | 1973 P       |
|-----------------------------------------------|-----------|--------------|--------------|
| North America:                                |           |              |              |
| Canada                                        | 142       | 161          | e 2 138      |
| Mexico                                        | 471       | 348          |              |
| United States                                 | W         |              | 287          |
|                                               | w         | $\mathbf{w}$ | $\mathbf{w}$ |
| South America:                                | =00       | <b>-</b> 10  |              |
| Argentina                                     | 700       | 542          | e 550        |
| Bolivia 3                                     | 29,533    | 31,056       | 29,825       |
| Brazil                                        | 2,065     | 2,769        | e 2 3,158    |
| Peru (recoverable)                            | r 167     | 130          | 218          |
| Europe:                                       |           |              |              |
| Czechoslovakia                                | 166       | 157          | e 2 162      |
| France                                        | 344       | 308          | e 310        |
| Germany, East e                               | 4 1,000   | 4 1,000      | 1,100        |
| Portugal                                      | 546       | 520          | 525          |
| Spain                                         | 396       | 373          | 323          |
| U.S.S.R. e                                    | 28.000    | 28,500       | 29,000       |
| United Kingdom                                | 1,787     | 3.274        | 3,604        |
| Africa:                                       | -,        | 0,212        | 0,002        |
| Burundi                                       | r e 2 100 | 110          | e 110        |
| Cameroon                                      | r 25      | 24           | e 2 35       |
| Congo e 2                                     | 47        | 47           | 47           |
| Morocco                                       | -8        | - 1<br>8     | 10           |
| Niger                                         | r 79      | 81           | 83           |
| Nigeria                                       | 7.210     | 6.625        | 5,736        |
| Rhodesia, Southern e                          | 600       | 600          | 600          |
| Rwanda e                                      | 1.300     | 1.300        | 1,300        |
| South Africa, Republic of                     |           |              |              |
| South-West Africa, Territory of (recoverable) | 1,997     | 2,125        | 2,634        |
|                                               | 949       | 979          | 779          |
| Swaziland 6 2                                 | 12        | 12           | 12           |
| Tanzania                                      | r 136     | 51           | 23           |
| Uganda                                        | r 128     | 79           | 43           |
| Zaire                                         | 6,354     | 5,799        | 5,453        |
| Zambia e 2                                    | 24        | 24           | 24           |
| Asia:                                         |           |              |              |
| Burma                                         | 672       | 646          | 756          |
| China, People's Republic of e                 | 20,000    | 20,000       | 20,000       |
| Indonesia                                     | 19,411    | 20,992       | 22,135       |
| Japan                                         | 777       | 859          | 796          |
| Korea, Republic of                            | 5         | 1            | 8            |
| Laos                                          | 774       | e 820        | e 900        |
| Malaysia                                      | 74.253    | 75.617       | 71.119       |
| Thailand                                      | 21.346    | 21.723       | e 2 20.232   |
| Oceania: Australia                            | r 9.877   | 11.950       | 10,369       |
|                                               |           |              |              |
| Total                                         | r 231,401 | 239,610      | 232,404      |

<sup>&</sup>lt;sup>e</sup> Estimate. <sup>p</sup> Preliminary. <sup>r</sup> Revised. W Withheld to avoid disclosing individual company confidential data.

<sup>&</sup>lt;sup>4</sup> International Tin Council (London). The International Implications of United States Disposal of Stockpiled Tin. October 1973, p. 27.

<sup>&</sup>lt;sup>1</sup> Data derived in part from the Statistical Bulletin of the International Tin Council, London, England.

<sup>&</sup>lt;sup>2</sup> Estimate by International Tin Council.
<sup>3</sup> Total of COMIBOL output, COMIBOL purchases from lessees operating in COMIBOL mines, and medium and small mines' sales to ENAF plus exports.
<sup>4</sup> Estimate according to the 60th annual issue of Metal Statistics (Metallgesellschaft).

Table 15.-Tin: World smelter production, by country 1

(Long tons)

| Country                       | 1971               | 1972      | 1973 Þ    |
|-------------------------------|--------------------|-----------|-----------|
| North America:                |                    |           |           |
| Mexico                        | 471                | 348       | 287       |
| United States 2               | 4,000              | 4,300     | 4,500     |
| South America:                | <del>-</del>       |           |           |
| Bolivia 3                     | 7,116              | 6,405     | e 7,700   |
| Brazil                        | r e 4 3,370        | 3,526     | e 4 3,600 |
| Europe:                       | •                  |           | •         |
| Belgium                       | 3,878              | 3.861     | 3.611     |
| Germany, East e               | <sup>5</sup> 1,100 | r 5 1.100 | 1,100     |
| Germany. West                 | 1.151              | 845       | 1,024     |
| Netherlands                   | 824                |           | -,        |
| Portugal                      | 476                | 596       | 516       |
| Spain                         | 4.584              | 4.206     | 4.191     |
| U.S.S.R.e                     | 28.000             | 28,500    | 29,000    |
| United Kingdom                | 22,787             | 20,996    | 16,764    |
| Africa:                       | 22,101             | 20,000    | 10,101    |
| Morocco e                     | 12                 | 12        | 12        |
|                               | r 7.232            | 6.637     | 5,889     |
|                               | 600                | 600       | 600       |
| Rhodesia, Southern e          | r 702              | 767       | 860       |
| South Africa, Republic of     | 1.330              | 1.400     | 1.400     |
| Zaire e 4                     | 1,000              | 1,400     | 1,400     |
| Asia:                         | 00.000             | 20.000    | 20.000    |
| China, People's Republic of e | 20,000             |           | 14,401    |
| Indonesia                     | 9,074              | 11,819    |           |
| Japan                         | r 1,263            | 1,329     | 1,329     |
| Laos                          | 696                | r e 817   | e 820     |
| Malaysia 6                    | 85,719             | 89,564    | 81,166    |
| Thailand                      | r 21,399           | 21,929    | * 21,626  |
| Oceania: Australia            | 6,233              | 6,916     | 6,795     |
| Total                         | r 232.017          | 236,473   | 227.251   |

<sup>&</sup>lt;sup>p</sup> Preliminary. r Revised. • Estimate.

Australia.—The Australian Government announced stricter controls on mining development and export prices of all minerals produced in an effort to ensure that Australian mineral wealth would benefit the nation and be sold at reasonable prices. The upward revaluation of the Australian dollar severely affected the Australian mining industry. Tin export controls reduced tin mine production by 13% and metal production by 2%.

Renison Ltd., Australia's largest tin producer, reported a slight drop in output because of a 3-month strike. Although the amount of ore treated was down 20% from that of 1972, the grade of ore rose from 1.30% to 1.49% and the recovery of tin-in-concentrate increased from 66% to 71% so the tonnage of tin-in-concentrate sold decreased only slightly to 3,809 tons compared with 3,845 tons in 1972. Renison announced an increase in tin ore reserves from 7,149,000 tons to 7,928,000 tons, with ore grade increasing from 1.30% to 1.34%. The installation of a heavy-media separation plant, to be completed in mid-1974, will increase mill throughput from 450,000 to 700,000 tons per year and enable treatment of lower grade ore.

The Aberfoyle group, consisting in part of Aberfoyle Ltd., Ardlethan Tin N.L., and Cleveland Tin N.L., reported disappointing earnings for its latest fiscal year because of fluctuating tin prices, increased operating costs, and the failure of the Storeys Creek mine.

Bolivia.—Of the 29,825 tons of tin-inconcentrate produced in 1973, COMIBOL contributed 20,515 tons, the medium miners 6,773 tons, and the small miners 2,537 tons.

Total tin exports were 27,950 tons, down 6% from the previous year's level. The Empresa Nacional de Fundiciones (ENAF), the national smelting company, increased its metallic tin exports from 6,158 tons in 1972 to 6.754 tons in 1973. ENAF sold 300 tons of electrolytic tin to Argentina, which ENAF felt may open the door to an ex-

Data derived in part from the Statistical Bulletin of the International Tin Council, London, England.

<sup>&</sup>lt;sup>3</sup> Includes tin content of alloys made directly from ores.

<sup>3</sup> Tin content of production from Metabol and Pero smelters plus exports by ENAF smelter.

<sup>4</sup> Estimate by International Tin Council.

<sup>&</sup>lt;sup>5</sup> Estimate according to the 60th annual issue of Metal Statistics (Metallgesellschaft).
<sup>6</sup> Includes small production of tin from the smelter in Singapore.

1225

panded Argentine market for Bolivian tin metal.

ENAF obtained a loan from West Germany for plant equipment and machinery to expand the capacity of the Vinto smelter from 7,400 tons to 10,800 tons. The first stage was scheduled for completion by mid-1975 with final expansion to 19,700 to be completed by mid-1976.

Following the liquidation of the Williams, Harvey & Co., Ltd., smelter, which had been smelting the bulk of Bolivia's highgrade tin concentrate, the Bolivian Government contracted with Capper Pass & Son, Ltd., in the United Kingdom to take over smelting program. COMIBOL agreed to ship up to 6,000 tons of tin-in-concentrate per year for the next 3 years. Bolivia accepted a penalty readjustment in smelting fees as compensation for atmospheric contamination and another penalty for arsenic content. Overall, it is expected that smelting under the new contract will cost Bolivia about \$1.3 million more each year than under the old contract. In addition, Bolivia can expect to collect only half of the \$8.25 million debt owed by the Williams, Harvey smelter. Other smelters of Bolivian ore are located in the United States, Brazil, Mexico, Spain, and West Germany.

COMIBOL announced that its output of tin should reach 28,000 tons by 1980. Most of the increase is expected to come from more efficient recovery by extensive use of volatilization plants and new preconcentrating plants and techniques.

W. R. Grace & Co. sold its 75% interest in Estaños Aluviales, S. A. (ESTALSA), which operates a tin dredge and two washing plants, and its 57% interest in the International Mining Co. (IMCO), which operates an underground tin-tungsten mine. Tin production from these operations has been in the 2,000- to 2,300-ton range.

Brazil.—The Brazilian Industry and Trade Ministry concluded studies for the planning and development of Brazil's nonferrous metals industry. The Government will spend \$16 million on a 2-year tin exploration and development program. Projected tin production of at least 7,500 tons per year by 1980 and projected consumption of 6,000 tons per year should allow Brazil to maintain its net export status.

In the Rondônia Area, Mineração Aracazeiro and Mineração Brasiliense (Mibrasa) blasted ore from bedded deposits. The deepest bed discovered so far, near Pôrto Velho, was 125 feet below the surface. W. R. Grace & Co. sold its 50% interest in Mibrasa to Brazilian interests. Tin production by Mibrasa has been about 750 tons per year.

Cia. Industrial Amazonense began operations at its new refinery in Manaus. The plant produces 78 tons of tin metal per month from Rondônian ores.

Canada.—Ecstall Mining Ltd., a subsidiary of Texas-gulf, Inc., installed a \$5.5 million tin concentration circuit at the Kidd Creek mine near Timmins, Ontario. The new plant will recover fine cassiterite from tailings from the main plant. Bartles-Mozley wet gravity concentrator tables preconcentrate the byproduct tin to 0.7% tin. Further upgrading by tabling, flotation, and leaching produces a concentrate assaying 54% tin. Production of concentrate is expected to reach 700 tons per year.

Indonesia.—Even though operating under export controls for most of the year, Indonesia increased tin mine production 5% over the 1972 level to 22,135 tons, the highest level since 1960. Indonesia regained its position as the third largest tin producer, displacing Thailand. Increased output was attributed to the recent modernization by P.N. Timah of its bucket dredges and the introduction of new oredressing methods for improving cassiterite recovery. In accordance with Indonesia's new 5-year plan, tin mine output is targeted at 25,000 tons for 1974.

Two new seagoing bucket dredges, tentatively named Bangka II and Bangka III, were under consideration by P.N. Timah. Design will be similar to that of Bangka I to afford parts interchangeability, but the new dredges will be able to operate at a greater depth than the 130 foot-maximum of Bangka I. Firm financial arrangements have yet to be made.

P.T. Koba Tin, a joint venture owned 25% by the Indonesian Government and 75% by three Australian firms (Colonial Sugar Refining, Blue Metal Industries, and Ready Mixed Concrete, a subsidiary of Blue Metal) was the first overseas joint venture company to commence tin mining in Indonesia since independence in 1945. P.T. Koba Tin operated two gravel pumps and planned to install three more by

early 1974. Production is expected to exceed 800 tons of tin concentrate in 1974.

P.T. Broken Hill Pty. Indonesia began rehabilitating the Kalapa Kampit lode mine on Bilitung. Production prior to its closure in 1942 reached 2,000 tons of tin-inconcentrate per year. After dewatering of a section of the mine, operations will resume at an initial rate of 100 tons of ore per day.

Malaysia.—Malaysia continued to lead the world in production, smelting, and exports of tin in 1973. A total of 71,119 tons of tinin-concentrate was mined, the lowest level since 1966 and down 6% from the previous year's production because of export controls, heavy flooding during May in many mining areas, and low prices of tin during the first half of the year. At yearend there were 58 tin dredges, 873 gravel pump mines, and 43 opencast, underground, and other miscellaneous mines in operation, reflecting a 7% drop in total active mines through the year. The gravel pump mines bore the brunt of the decreased mining activity with a loss of 67 mines during the

Gravel pump operations, worked for the most part by the same families that own the mines, accounted for about 54% of the concentrate produced, while dredging by corporations furnished another 31%. Opencast mines brought in 5% of the ore produced, underground mines accounted for 3%, and the remaining 7% came from miscellaneous sources. The tin-mining labor force declined 9% to 41,744 workers at yearend.

Metal production, at 81,166 tons, was 9% below the 1972 level and the lowest since 1967. Exports of metal declined to 80,397 tons from 86,063 tons in 1972.

Perbadanan Nasional Berhad (Pernas), Malaysia's national mining corporation, was granted tin exploration rights to a concession of over 15,000 square miles offshore from Penang, Perak, and Selangor States. After an initial 3-year exploration period, Pernas can apply for a mining lease for 5% of the area. The remainder of the concession will revert to the Malaysian Government, but Pernas will retain first option on the areas surrendered.

Several new dredges started operations during the year. Conzinc Riotinto Malaysia Sdn. Berhad, a joint venture between Rio Tinto-Zinc (41.25%), Conzinc Riotinto of Australia Ltd. (13.75%), and Bethlehem

Steel Corp. (45%), started dredging for tin at Labohan Dagong, Selangor. The 5,300-ton dredge built by IHC Holland can dig to a depth of 150 feet and has an annual throughput of 10 million cubic yards. The dredge has circular jigs and produces a low-grade concentrate prior to further upgrading onshore. Selangor Dredging Berhad's No. 2 dredge began operation late in 1973. The \$4.7 million 24-cubic-foot bucket dredge is capable of annual throughput of 12 million cubic yards.

Other new dredges were in the planning stage. Selangor State Development Corp. contracted for the design of its first dredge. The \$4.1 million dredge, scheduled to begin mining in 1976, will be operated by the corporation's subsidiary, Syarikat Timah Langat Sdn. Berhad, on a 2,000-acre area at Dengkil in Selangor's Kuala Langat forest reserve.

Berjuntai Tin Dredging Berhad, the largest private tin-mining company in the world, decided to proceed with the construction of its eighth bucket dredge. The new dredge will have 22-cubic-foot-capacity buckets, monthly throughput of 600,000 cubic yards, and a maximum dredging depth of 130 feet. Reserves sufficient for 11 years of operation have been allocated for the dredge. When No. 8 begins production, Berjuntai will close down its No. 1 dredge, which has been mining in Selangor for nearly 50 years. Berjuntai's tin concentrate production was down 366 tons to 4,551 tons for its fiscal year because of the lower grade ground worked by all but the No. 7 dredges. The two newer 20-cubic-foot bucket dredges, Nos. 6 and 7, produced 2,248 tons of concentrate, or about as much as the five older units combined. Output reached 2,467 tons, compared with 2,197 tons for the corresponding period in 1972.

Malayan Tin Dredging Ltd., and Southern Malayan Tin Dredging Ltd., had reduced outputs during the fiscal year 1973. Malayan Tin plans to divert the River Kinto so an additional 368 acres of land on its Kampong Gajah property will be available for dredging. The project is expected to be completed in 1979. The work will proceed in stages so the company's dredges can work systematically through the area.

Ayer Hitam Tin Dredging, Ltd., reported increased output of 3,469 tons in fiscal 1973, compared with 3,109 tons in

TIN 1227

1972. Production during the fiscal year is expected to decrease because lower grade ground is being worked and the No. 2 dredge was temporarily shutdown.

Sungei Besi Mines Ltd., operating three opencast mines in southeastern Selangor, had a record production in fiscal year 1973 of 2,472 tons of concentrate assaying 74.3% tin. Stripping operations continued at the new 3/5 mine, with production scheduled to start in 1974.

Gopeng Consolidated Ltd., produced 2,686 tons of concentrate during the year, slightly less than in 1972. Gopeng purchased 2,167 acres of land, some of which is to be used for dumping tailings. This will ease the company's task in meeting Government water purification requirements prior to returning water to the normal river courses. Gopeng also concluded a lease-purchase agreement for 541 acres of mining land in the Batang Pedang district of Perak.

Pahang Consolidated Co., Ltd., whose mine at Sungei Lembing is the largest lode tin venture in Southeast Asia, produced 2,535 tons of concentrate, slightly less than during 1972. Pahang realized \$3.5 million through the sale of its wholly owned subsidiary, The Kuala Reman Rubber Estates. Some of the funds will be used in sinking the Gakak shaft and installing a new heavy-media separation plant. Ore reserves are estimated at 11,500 tons of contained cassiterite.

Pacific Tin Consolidated Corp., the only U.S. company mining tin in Malaysia, showed decreases in total yardage treated and tin recovered in 1973. The No. 5 dredge was shutdown in February when its minable reserves were exhausted. Dredge No. 8, operating at Batang Berjuntai, dug 56% of the total yardage and produced 43% of the total tin recovered by all plants in 1973. Dredge No. 2 operated on leases along the Selangor River. Four gravel pump mines operated in the Ampang area, but one was closed down in September after allocated reserves were exhausted. Estimated tin ore reserves at yearend were about 8,000 tons.

A new regional tin center will be constructed in Ipoh by the Conference of Asian Nations on Geology. The center will conduct research on better methods of mining and treating tin ore.

Nigeria.-Production of tin in Nigeria

declined for the fifth consecutive year to 5,736 tons, its lowest level since 1959. Over the past several years, spiraling production costs had lowered the profit margin of operators to a point where significant reinvestment and exploration programs had to be curtailed, forcing rapid depletion of minable ore bodies. In May, the Government changed the royalty levied on tin production from 17% to a sliding scale of 11% to 16% based on world price. The new rates were retroactive to April 1. The lower royalty should help encourage reinvestment in the hard-pressed tin industry.

Amalgamated Tin Mines of Nigeria Ltd., the largest tin producer in Nigeria, reported a 7% drop in tin concentrate production to 3,464 tons for the year ending in March, but had higher profits for the year because of improved tin prices. Production was adversely affected by heavy rains. Prospecting activities increased as the company sought extensions of alluvial deposits under the basalt.

Gold & Base Metal Mines of Nigeria Ltd., continued exploration at its Liruie project in Kano State. Five exploratory shafts were sunk to varying depths along a strike length of 4,550 feet. The lode ranges in width from 7 to 8 feet and contains an average of 0.8% tin and 3.42% zinc, calculated over a minimum mining width of 5 feet. Planned throughput was based on 900 tons per day.

South Africa, Republic of.—The two major South African producers, Rooiberg Minerals Development Co. Ltd. and Union Tin Mines Ltd., reported higher tin concentrate recoveries during their fiscal years, partially the result of successful operation of new flotation plants. Rooiberg's output increased 28% to 1,891 tons of tin-in-concentrate. Flotation recoveries by Union Tin increased to 551 tons compared with 205 tons in 1972, but gravity concentrate recoveries dropped to 147 tons from 376 tons in 1972. Total increase in tin concentrate output was about 20%.

Thailand.—Tin production decreased 7% to 20,232 tons in 1973 as heavy monsoon rains, the 3-month breakdown of the sea dredge Temco II, and the diesel oil shortage forced mine closures and production cutbacks. By yearend, about the same number of tin mines were in operation as at yearend 1972, because the number of gravel pump mines that closed was offset

by an increased number of tin-tungsten operations. Of the 656 mines in operation, there were 25 dredges (17 inland, 8 offshore), 266 gravel pump mines, 8 hydraulic mines, 108 ground sluicing operations, 216 tin-tungsten mines, and 33 miscellaneous operations.

Southern Kinta Consolidated Ltd. modified its Takuapa near-shore suction dredge by increasing pumping capacity by 8,000 gallons per minute, enlarging suction dragheads, installing hydrocyclones for dewatering, and adding more swell compensators and longer suction pipes to enable operations to 60-foot depths where necessary. Southern Kinta's output increased 63% over the 1972 level to 856 tons of tin concentrate in 1973.

Tronoh Mines Ltd. reviewed designs of dredging equipment capable of round-theclock operation throughout the monsoon season to determine whether tin deposits discovered on the west coast of Thailand could be economically exploited. Thai Tin & Tungsten Corp., a subsidiary of Pickands-Mather & Co., was acquired by Faber Merlin Ltd. Thai Tin and Pacific Tin Consolidated Corp. had been developing an underground tin-tungsten mine at Sichon in southern Thailand. Faber Merlin expects to bring the Sichon mine to the preproduction mill-testing stage by the end of 1974, with an initial mill throughput of 3,000 atons per month to yield 30 tons of tin and 4 tons of tungsten. Faber Merlin Thailand, 41.4% owned by Faber Merlin Ltd., purchased St. Piran Mining Ltd.'s Thai mining interests comprised of five dredges operated by Siamese Tin Syndicated Ltd. and Bangrin Tin Dredging Co., Ltd.

United Kingdom.—Consolidated Tin Smelters Ltd., announced the voluntary liquidation of the Williams, Harvey & Co., Ltd., smelter as the result of continuing monetary losses. Rundown operations at the smelter, located in Kirkby, continued until the end of December, but efforts to locate a new operator failed. The smelter was the larger of the two United Kingdom smelters, producing about 16,700 tons of primary metal in 1972. The smelter, built at a cost of \$14.7\$ million 4 years ago, was never able to operate at a profit because of the high transportation costs and the difficulty of processing Bolivian concentrate, its main feed source. Capper Pass & Son Ltd., agreed to process the Bolivian concentrate previously sent to Williams, Harvey.

South Crofty, Ltd., a wholly owned subsidiary of St. Piran Mining Co. Ltd., purchased the Pendarves tin mine, which had been placed in receivership early in the year by Camborne Mines Ltd. Operations at the Pendarves mine will be integrated with those of South Crofty. The spare capacity of the South Crofty mill will be used to treat Pendarves ores. The South Crofty mine produced 1,529 tons of tin concentrate in 1973, down slightly from 1972 production.

Wheal Jane Ltd., a subsidiary of Consolidated Gold Fields, Ltd., produced 1,585 tons of tin-in-concentrate during 1973, 185 tons over its initial projected rate of 1,400 tons per year. Deepening and reequipping of the Clemow shaft was completed in January, allowing increased production even though ore grade was running lower than the anticipated 1.25% tin.

Cornwall Tin & Mining Corp. concluded financing arrangements which will enable it to bring its Mount Wellington property into production. The property, situated next to the Wheal Jane mine, has indicated reserves in excess of 5 million tons averaging 1.37% tin with associated copper and zinc.

# **TECHNOLOGY**

Geochemical techniques for tin prospecting in British Columbia and the Yukon Territory in Canada were discussed.<sup>5</sup> The most practical analytical techniques were evaluated, including a spectrophotometric method and geochemical field kit. Suggestions were made for sampling soil horizons and rocks; a simple "heavy minerals collector" for stream sediment sampling was

described; and arsenic, copper, fluorine, lead, molybdenum, tin, and zinc contents of various samples were analyzed by graphical and computer methods.

The metallogenetic basis of tin exploration in the Erzebirge mining district of

<sup>&</sup>lt;sup>5</sup> Barakso, J. H., and J. A. Gower. Geochemical Prospecting for Tin. Western Miner, v. 45, No. 2, February 1973, pp. 37-44.

1229 TIN

East Germany was described.6 Factors and indicators critical in exploration for concealed endogenetic-epigenetic tin deposits were discussed. Leaching and redeposition in the formation of tin deposits were related, and a model concept was developed for the formation of endogenetic-epigenetic tin deposits.

The analytical system used to control the continuous flotation process at the Wheal Jane ore-processing plant allowed profitable mining of the previously uneconomic ore.7 Mineralogical difficulties, such as a high concentration of sulfide minerals in the ore and finely disseminated cassiterite, that had stymied previous operators were overcome by frequent computerized X-ray spectrometer analysis of samples taken at all stages of the process. A description of the flotation methods used by Consolidated Gold Fields Group at its Wheal Jane mine as well as its three other lode tin mines was published.8 A British patent was issued for a technique for gravity concentration of cassiterite from slimes.9 Recoverey of particles in the 5- to 100-micrometer range was said to be possible.

The Australian Defence Standards Laboratories obtained favorable results in its study of antifouling systems of organotins in elastomer-toxicant combinations.10 Compounds investigated were tri-n-butyltin oxide, tri-n-butyltin acetate, and tri-n-butyltin fluoride. Elastomers studied were natural rubber, nitrile rubber, and polychloroprene.

Tri-n-butyltin oxide combined with dieldrin, a chlorinated hydrocarbon, was very effective in protecting wood against termite attack.11

A new class of superconducting alloys consisting of 90% copper and one or two superconducting metals such as columbium and tin was developed.12 The new class is ductile and pliable and can be fabricated into wires, strips, and tubes. Recent developments in the application of centrifugal casting of tin-containing alloys were reviewed.13 Substitution of tin and tin alloys of lead and nickel for gold in the electronics industry became more widespread as the price of gold increased.14 Tin alloyed with silver-antimony and lead-silver was being used by the automotive industry in special bonding preforms for new electronic ignition systems.15

The use of solder preforms in industry was on the increase.18 In most cases, the

preforms are tin-lead alloys of 60% tin and 40% lead or 45% tin and 55% lead. Once in place, the preforms can be joined by conventional heating methods to form perfect solder fillets. A discussion was presented of the influence of component materials on the quality of soldered joints with emphasis on tin and tin-lead coatings applied by hot-dipping or by electrodeposition.17

A study showed that pulse plating was a very effective technique for the electrodeposition of silver-tin alloys of fixed composition.18 It is a particularly effective technique for the preparation of highquality Ag<sub>3</sub>Sn coatings with minimal amounts of elemental silver and tin.

By diffusing a tin coating into a ductile steel sheet, a tin-rich surface can be obtained that improves the corrosion properties of the steel without significantly altering other properties.19

A detailed study was made of the kinetics of the catalytic oxidation of carbon mon-

Trans. (Sec. B), v. 82, No. 795, February 1973, p. B9-B24.

'Lloyd, L. A., and P. Jackson. New Methods of Analysis and Recovery Revitalize Dormant British Tin Mine. Eng. and Min. J., v. 174, No. 2, February 1973, pp. 76-78.

"World Mining. How Gold Fields Floats Cassiterite at Four Mills. V. 9, No. 5, May 1973, pp. 42-44.

"Mozlez R. H. (assigned to National Research

1973, pp. 42-44.

9 Mozlez, R. H. (assigned to National Research Development Corp.). Method and Apparatus for Recovery Values from Cassiterite Slimes. British Pat. 1,327,039, Aug. 15, 1973.

10 Quarterly Review, Tin Research Institute. Tin and Its Uses. Antifouling Systems Based on Organotins: Australian Navy Trials. No. 96, 1973, pp. 7-8.

11 Quarterly Review, Tin Research Institute. Tin and Its Uses. Organotin-Dieldrin Combination Protects Wood Against Termites. No. 97, 1973, pp. 14-15.

173, pp. 14-15.

12 Chemical and Engineering News. V. 51, No.

14, Apr. 2, 1973, p. 8.

13 Blanc, J. P. P. Centrifugal Castings in Tin-Containing Alloys. Tin Internat., v. 46, 1973,

Dip. 73-74.

14 Patton, D. G. T. E. Sylvania Official Says
Use in Electronics Will Decline. Am. Metal
Market, v. 80, No. 232, Nov. 30, 1973, pp. 1, 7.

15 American Metal Market. Say Alloys Turn
On for Auto Ignitions. V. 80, No. 218, Nov. 9,

1973, p. 9.

16 American Metal Market. Call for Mass-Produced Soldered Joints Increasing Use of Lead Alloy Preforms. V. 80, No. 110, June 6,

1973, p. 8.

17 Ainsworth, P. A. Solderable Finishes for

17 Ainsworth, P. A. Solderable Finishes for Electronic Assemblies. Metal Finishing J., v. 19, No. 219, 1973, pp. 114-117.

18 Leidheiser, H., Jr., and A. R. P. Ghuman, Pulse Electroplating of Silver-Tin Alloys and the Formation of AgsSn. J. Electrochem. Soc., v. 120, No. 4, April 1973, pp. 484-487.

19 Thwaites, C. J., and E. A. Speight. Tin Diffusion Coatings on Steel. J. Iron Steel Inst., v. 211, No. 7, 1973, pp. 475-480.

<sup>&</sup>lt;sup>6</sup> Tischendorf, G. The Metallogenetic Basis of Tin Exploration in the Erzebirge. Min. and Met. Trans. (Sec. B), v. 82, No. 795, February 1973,

oxide from automobile exhaust using catalysts obtained by thermal activation of granular hydrous stannic oxide gel in the temperature range of  $200^{\circ}$  to  $500^{\circ}$ C.<sup>20</sup>

In February the Tin Research Institute opened a new office at 2600 El Camino

Real, Palo Alto, California 94306. It will serve more efficiently the interests of tin users in the western United States.

<sup>20</sup> Fuller, M. J., and M. Warwick. The Catalytic Oxidation of Carbon Monoxide on Tin(IV) Oxide. J. Catalysis, v. 29, 1973, pp. 441-450.

# **Titanium**

By F. W. Wessel 1

Production of all titanium commodities increased during 1973. Ore production benefited from a full year's operation by Titanium Enterprises in Clay County, Fla., and the opening of the American Smelting and Refining Company (Asarco) plant at Manchester, N.J. Pigment production increased because of plant expansions, principally that of E. I. du Pont de Nemours & Co. at New Johnsonville, Tenn. Industrial demand for titanium metal rose sharply during the last quarter.

Midyear indications of decreased housing starts had no apparent effect on the demand for pigment. Plastics industry demand was particularly strong, increasing about 35% over the previous year. The paper industry also is trending toward use of more pigment per unit weight of paper.

Worldwide criticism of waste-disposal practices at sulfate-process pigment plants prompted producers to adopt some type of pollution control. One European producer estimated a 15% increase in cost of product as a result. New sulfate-process capacity, accordingly, is being contemplated mainly in the less industrialized nations.

Chloride-process plants, however, were being approached cautiously because of a limited world rutile supply.

Imports of natural rutile decreased about 15%, but imports of synthetic rutile increased appreciably. New or expanded facilities for ilmenite upgrading were under construction or on the drawing board in Australia, Canada, Japan, Taiwan, and the United States as the year ended. Ilmenite imports increased sharply during the year, but imports of Sorel slag and titanium pigment declined, in the latter case because of higher prices outside the United States.

Price increases in all sectors were prevalent and generally substantial. Ilmenite prices were up about 50%, rutile prices increased by 77%, and Sorel slag by more than 20%. Titanium sponge prices were about 8% higher at yearend. Only pigment prices, controlled by the Cost of Living Council, were slow to rise.

The political situation in Australia was such as to inhibit new mining investment;

Table 1.-Salient titanium statistics

|                                                | 1969             | 1970      | 1971      | 1972      | 1973      |
|------------------------------------------------|------------------|-----------|-----------|-----------|-----------|
| United States:                                 |                  |           |           |           |           |
| Ilmenite concentrate:                          |                  |           |           |           |           |
| Mine shipmentsshort tons                       | 893,034          | 920,964   | 713,610   | 743,401   | 813,400   |
| Valuethousands                                 |                  | \$18,626  | \$15,936  | \$17,234  | \$21,041  |
| Importsshort tons_                             |                  | 96,123    | 28,093    | 14.836    | 69,691    |
| Consumptiondo                                  |                  | 972.314   | 898,783   | 786.384   | 807.733   |
| Titanium slag:                                 | 2,000,001        | 0.2,011   | 000,100   | 100,004   | 001,100   |
| Importsdo                                      | 82,329           | 134,996   | 152,661   | 298.259   | 237,248   |
| Consumptiondo                                  | 138,553          | 129,247   | 143,554   | 264,095   | 281,791   |
| Rutile concentrate, natural and synthetic:     | 100,000          | 120,241   | 140,004   | 204,030   | 201,131   |
| Importsdo                                      | 204.898          | 243.259   | 227,784   | 220.535   | 208,808   |
| Consumption                                    | 185.432          | 189,172   | 225,498   | 242,758   | 276,907   |
| Sponge metal:                                  | 100,402          | 105,112   | 220,430   | 242,100   | 210,901   |
| Imports for consumptiondo                      | 5,745            | 5,931     | 9 909     | 9 000     | E 170     |
|                                                |                  |           | 2,802     | 3,808     | 5,172     |
| Consumptiondo<br>Price: December 31, per pound | 20,124<br>\$1.32 | 16,414    | 12,145    | 13,068    | 20,173    |
|                                                | \$1.52           | \$1.32    | \$1.32    | \$1.32    | \$1.42    |
| World production:                              | 0.777.070        | 0 100 151 | 0 045 500 | 0 000 054 | 0 000 100 |
| Ilmenite concentrateshort tons                 |                  | 3,109,151 | 2,845,789 | 2,668,251 | 2,939,192 |
| Titanium slagdo                                |                  | 853,389   | 859,097   | 924,068   | 947,390   |
| Rutile concentrate, naturaldo                  | 436,821          | 459,507   | 423,825   | 356,532   | 367,768   |

<sup>&</sup>lt;sup>1</sup> Physical scientist, Division of Nonferrous Metals—Mineral Supply.

international capital is apparently finding the situation there somewhat less congenial than formerly.

At yearend a commission formed by the European Community was studying titanium pigment operations and seeking a solution to its waste disposal problems.

Legislation and Government Programs.—About midyear the stockpile objectives for both rutile and titanium sponge were revised to zero. Disposal of 17,385 tons of rutile was authorized by Congress; of this quantity, 13,756 tons was sold by yearend

for a total of \$2.75 million. While deliveries of sponge under the 1972 contracts continued, small quantities of older sponge in inventory were released for sale.

Government exploration assistance for rutile, available through the Office of Minerals Exploration, U.S. Geological Survey, remained at 75% of the approved cost of exploration. The depletion allowance for ilmenite and rutile remained at 22% for domestic deposits and 14% for foreign deposits.

## DOMESTIC PRODUCTION

Concentrates.—Production and shipments of titanium-mineral concentrate in 1973 increased 12.9% and 9.4%, respectively; the quantity of TiO2 contained in the shipments increased 11.0%. The average grade of concentrate shipped was 57.4% TiO2, a small increase over 1972 levels. The tonnage increases resulted from a full year's production at the new mine of Titanium Enterprises at Green Cove Springs, Clay County, Fla., and one-half year's production at the Asarco mine, Manchester township, Ocean County, N.J. Production continued at the mines of E. I. du Pont de Nemours & Co., Starke and Highland, Fla.; Humphreys Mining Co., Folkston, Ga.; SCM Corp., Glidden-Durkee Div., Lakehurst, N.J., and NL Industries, Inc., Tahawus. N.Y.

At Asarco's New Jersey property, construction was completed early in spring, and operations began in late June. The sand contains 4% heavy minerals; the concentrates contain 63% TiO<sub>2</sub>. Some zircon and sillimanite are rejected. The sand reportedly contains no rutile. The dredge capacity is 1,200 tons per hour, but normal downtime, moving, etc., will limit daily production to an average of 20,000 tons. Operating capacity is estimated at 165,000 tons of product annually. The mine will probably operate for at least 20 years.

The Humphreys Mining Co. operation at Folkston, Ga., has probably had its last full year of operation at that locality. It is expected that the company will turn its attention to another sand deposit just within the Florida border and close enough to Folkston to permit trucking of the rough heavy-mineral concentrate to the dry plant there.

Ferroalloys.—Production of ferrotitanium increased to 1,156 tons in 1973, about 75% of the total representing the higher titanium-content alloys. Producers continued to be Shieldalloy Corp., Newfield, N.J., Union Carbide Co., Niagara Falls, N.Y., and Foote Mineral Company, Cambridge, Ohio. Scrap and ores were used as raw material

Metal.—Production of titanium sponge was 50% higher than in 1972. Part of this increase was to fulfill General Services Administration contracts to procure the material for the Federal stockpile; shipments were made throughout the year by both producers. There was also a sharp increase in demand from industrial sources during the last 4 months of 1973. Producing companies were Titanium Metals Corp. of Nev., (TMCA), Henderson, America owned by NL Industries, Inc. and Allegheny Ludlum Steel Corp.; and RMI Co., Ashtabula, Ohio, owned by National Distillers & Chemical Corp. and United States Steel Corp.

Production of titanium ingot was 28,932 tons, a 43% increase over 1972 levels. As in 1972, the following nine companies produced ingot.

| Company                                                                                                                                  | Plant location                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Crucible Steel Company of                                                                                                                | Midland, Pa.                                                                                            |
| America. Howmet Corp. Martin Marietta Aluminum, Inc. Oregon Metallurgical Corp. RMI Co. Teledyne Titanium, Inc. Titanium Metals Corp. of | Whitehall, Mich.<br>Torrance, Calif.<br>Albany, Oreg.<br>Niles, Ohio<br>Monroe, N.C.<br>Henderson, Nev. |
| America. Titanium West, Inc TiTech International. Inc                                                                                    | Reno, Nev.<br>Pomona, Calif.                                                                            |

Pigment.—Demand for all grades of titania pigment continued to be strong durTITANIUM 1233

ing 1973. Production increased 7.5% during the year, and shipments about 10.5%. Rutile-type pigment accounted for 72% of total production and was produced by all seven manufacturers. Anatase-type pigment was produced by five companies.

Strikes and mechanical difficulties are estimated to have cost the pigment industry more than 12,000 tons of production. At yearend, companies producing titania pigment, and their plant locations, were as follows: American Cyanamid Co., Savannah, Ga.; Kerr-McGee Chemical Corp., Hamilton, Miss.; E. I. du Pont de Nemours & Co., Antioch, Calif., Edge Moor, Del., and New Johnsonville, Tenn.; NL Industries, Inc., Sayreville, N.J., and St. Louis, Mo.; New Jersey Zinc Co. (a Gulf & Western Industries, Inc. unit), Gloucester, N.J., and Ashtabula, Ohio; SCM Corp., Glidden-Durkee Div., Baltimore, Md.; and Sherwin-Williams Chemical Co., Ashtabula, Ohio.

Du Pont's New Johnsonville plant capacity reached 228,000 tons per year by yearend. Work continued during the year at du Pont's Edge Moor plant, where chloride process capacity was replacing sulfate process units. The chloride-process plant will have 112,000 tons of annual capacity, and startup is scheduled for mid-1974. In April, du Pont's Pigments Department was considering construction of a 100,000-tonper-year pigment plant on Colonel's Island, near Brunswick, Ga. Opposition from environmental groups was strong, however, concerning du Pont's plans for deep-well waste disposal. At last report the company was looking at alternate sites in the southeastern States.

Sherwin-Williams Co. and Rutile and Zircon Mines Ltd. (RZM), an Australian Company have concluded an agreement by which Sherwin-Williams will build 50,000-ton-per-year plant to produce synthetic rutile on the basis of technology furnished by RZM. Completion is projected for late in 1974.

American Cyanamid Co. (Cyanamid) was notified early in January that its titania pigment plant in Savannah, Ga., was not in compliance with Georgia waterquality laws in its practice of discharging sulfate-process sludge into the Savannah River. At a cost of \$80,000, Cyanamid obtained the right to use a process, developed by Ishihara Sangyo Kaisha, Ltd., for neutralizing acid wastes and thereby pro-

Table 2.-Production and mine shipments of titanium concentrates 1 from domestic ores in the United States

| Year                                 | Production<br>(short tons,                          |                                                     | Shipments                                           |                                                  |
|--------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|--------------------------------------------------|
| Tear                                 | gross weight)                                       | Quantity<br>(short tons<br>gross weight)            | TiO <sub>2</sub> content<br>(short tons)            | Value<br>(thousands)                             |
| 1969<br>1970<br>1971<br>1971<br>1972 | 931,247<br>867,955<br>683,075<br>695,727<br>785,268 | 893,034<br>920,964<br>713,610<br>743,401<br>813,400 | 480,918<br>487,298<br>388,802<br>420,887<br>467,091 | \$18,636<br>18,626<br>15,936<br>17,234<br>21,041 |

r Revised.

Table 3.-Titanium metal data (Short tons)

1969 1970 1971 1972 1973 2,802 2,724 19,994 12,145 5,172 Imports for consumption 5,745 5,931 r 3,808 2,516 19,994 1,816 19,994 13,068 1,941 18,706 20,173 Industry stocks
Government stocks (DPA inventories) 1,909 20,385 16,414 7,242 Consumption\_ ,124 Scrap metal consumption \_\_\_\_\_\_Ingot: 2 7,566 6,149 7.802 10.038 Production\_\_\_\_\_ 28,490 24,331 18,387 20,267 Consumption\_ 17,058 11,241 19,499 12,627 25,409 14,530 Net shipments of mill products \*\_\_\_\_\_ 15,940 14,480

<sup>&</sup>lt;sup>1</sup> Includes a mixed product containing rutile, leucoxene, and altered ilmenite.

Revised.

As of June 30 each year.
Includes alloy constituents.
Bureau of the Census, Current Industrial Reports Series BDCF-263.

ducing usable gypsum. In May, the Georgia Ports Authority announced its intent to issue revenue bonds to finance construction of pollution abatement facilities based on the Ishihara process. Ground was broken on September 19, and the treatment complex will be operating by the end of 1974. Universal Gypsum Co. of Georgia, a subsidiary of Universal Chemical and Mineral, Inc., will operate the new plant, the cost of which is estimated at \$20 million.

Table 4.-Titanium pigment data (TiO<sub>2</sub> content)

| Year                                 | Production                                            | Shipn                                          | nents 1                                        |
|--------------------------------------|-------------------------------------------------------|------------------------------------------------|------------------------------------------------|
| 1 ear                                | (short tons)                                          | Quantity<br>(short tons)                       | Value, f.o.b.<br>(thousands)                   |
| 1969<br>1970<br>1971<br>1972<br>1973 | 664,253<br>655,293<br>677,751<br>r718,177<br>r772,392 | 654,490<br>643,746<br>684,698<br>752,025<br>NA | 334,521<br>320,014<br>311,140<br>358,564<br>NA |

Preliminary. r Revised. NA Not available. 1 Includes interplant transfers

Source: Bureau of the Census.

# **CONSUMPTION AND USES**

Concentrates.—Consumption of ilmenite was 3\% greater than in 1972. Consumption of Sorel slag was 7% greater. Consumption of rutile, including the synthetic, increased 14%.

Metal.—Consumption of sponge ingot increased 54% and 30%, respectively. Shipments of mill products gained 15% over those of 1972. Beginning about September 1, an increase in demand for titanium became evident, originating primarily in the industrial sector. As a material of chemical engineering construction, the metal found increased use in petrochemical plants, chlor-alkali cells, and copper-leaching hardware. Scrap consumed for making ingot increased 29% above 1972 levels.

There is some evidence that about 4 million pounds of ingot went into inventories, principally those of consumers, during the year.

Pigments.—Preliminary figures showed a 10.5% increase in shipments. The quantity in excess of the 7.5% increase in production was accounted for, as in 1972, by delivery of imports and of pigment withdrawn from stocks. The plastics industry, consuming pigment at an accelerated rate during 1972 and most of 1973, showed indications of stabilized demand late in the year; the industry was operating near capacity, and some feedstocks were becoming harder to obtain.

Table 5.-Consumption of titanium concentrates in the United States, by product (Short tons)

| Voca and product                                                                    | Ilme                           | nite 1                        | Titanium slag                 |                             | Rutile                             |                                    |
|-------------------------------------------------------------------------------------|--------------------------------|-------------------------------|-------------------------------|-----------------------------|------------------------------------|------------------------------------|
| Year and product -                                                                  | Gross<br>weight                | TiO <sub>2</sub> content •    | Gross<br>weight               | TiO <sub>2</sub> content •  | Gross<br>weight                    | TiO <sub>2</sub> content e         |
| 1969                                                                                | ,003,501<br>972,314<br>898,783 | 541,840<br>519,766<br>486,271 | 138,553<br>129,247<br>143,554 | 98,075<br>91,639<br>101,751 | 185,432<br>189,172<br>225,498      | 178,090<br>181,402<br>215,916      |
| = 1972: Alloys and carbide Pigments Welding-rod coatings and fluxes Miscellaneous 4 | 775,618<br>(2)<br>10,766       | 453,248<br>(2)<br>8,174       | 264,095<br>(³)                | 187,608<br>(³)              | (2)<br>208,704<br>11,022<br>23,032 | (2)<br>199,894<br>10,392<br>21,945 |
| Total                                                                               | 786,384                        | 461,422                       | 264,095                       | 187,608                     | 242,758                            | 232,231                            |
| 1973: Alloys and carbide Pigments Welding-rod coatings and fluxes Miscellaneous 4   | 795,728<br>(²)<br>12,005       | 470,087<br>(2)<br>9,144       | 281,791<br>                   | (³)<br>199,287<br>          | 232,969<br>10,635<br>33,303        | 221,658<br>10,059<br>31,648        |
| Total                                                                               | 807,733                        | 479,231                       | 281,791                       | 199,287                     | 276,907                            | 263,365                            |

e Estimate.

Includes a mixed product containing rutile, leucoxene, and altered ilmenite.

Included with "Miscellaneous" to avoid disclosing individual company confidential data.

Included with "Pigments" to avoid disclosing individual company confidential data.

Includes ceramics, chemicals, glass fibers, and titanium metal.

TITANIUM 1235

Table 6.—Distribution of titanium-pigment shipments, by industry
(Percent)

| Industry                                                        | 1969              | 1970               | 1971              | 1972              | 1973              |
|-----------------------------------------------------------------|-------------------|--------------------|-------------------|-------------------|-------------------|
| Distribution by gross weight:                                   |                   |                    |                   |                   | FO 5              |
| Paints, varnishes, and lacquers                                 | 58.5              | 59.6               | 57.7              | 53.0              | 52.7              |
| Paper                                                           | 17.0              | 17.0               | 17.8              | 20.4              | 19.6              |
| Floor coverings                                                 | 2.3               | 1.8                | $\frac{2.1}{2.7}$ | $\frac{2.1}{3.6}$ | $\frac{1.3}{3.2}$ |
| Rubber                                                          | 2.6               | 2.6                | 2.7               | 3.0               | 3.4               |
| Coated fabrics and textiles (oil cloth, shade cloth, artificial |                   |                    | 1.0               | 1.5               | 1.3               |
| leather, etc.)                                                  | 1.3               | 1.3                | $\frac{1.0}{2.1}$ | $\frac{1.5}{2.1}$ | 2.0               |
| Printing ink                                                    | 2.3               | 2.2<br>.9          | $\frac{2.1}{1.0}$ | .3                | .6                |
| Roofing granules                                                | .9                | 1.8                | $\frac{1.0}{2.0}$ | 2.3               | 2.5               |
| Ceramics                                                        | 2.0               | 1.8                | 2.0               | 4.0               | 2.0               |
| Plastics (except floor covering and vinyl-coated fabrics        |                   | 6.6                | 6.5               | 7.7               | 9.8               |
| and textiles)Other (including export)                           | 6.2               | 6.2                | 7.1               | 7.0               | 7.0               |
| Other (including export)                                        | 6.9               | 6.2                | 1.1               | 7.0               | 1.0               |
| Total                                                           | 100.0             | 100.0              | 100.0             | 100.0             | 100.0             |
| =                                                               |                   |                    |                   |                   |                   |
| Distribution by titanium dioxide content:                       | F4 0              | 55.8               | 54.4              | 52.0              | 52.5              |
| Paints, varnishes, and lacquers                                 | 54.3              |                    | 19.7              | 20.9              | 19.8              |
| Paper                                                           | 19.5              | $\frac{19.3}{2.1}$ | 2.4               | 2.1               | 1.3               |
| Floor coverings                                                 | 2.6               | 3.0                | 3.0               | 3.7               | 3.2               |
| Rubber                                                          | 3.0               | 3.0                | 3.0               | J. 1              | 0.2               |
| Coated fabrics and textiles (oil cloth, shade cloth, artificial | 1.4               | 1.4                | 1.1               | 1.5               | 1.3               |
| leather, etc.)Printing ink                                      | $\frac{1.4}{2.6}$ | $\frac{1.4}{2.5}$  | 2.3               | 2.2               | 1.9               |
| Printing ink                                                    | $\frac{2.0}{1.1}$ | 1.0                | 1.1               | .3                | .6                |
| Roofing granules                                                | $\frac{1.1}{2.4}$ | 2.1                | 2.2               | 2.4               | 2.6               |
| Ceramics                                                        | 2.4               | 2.1                | 2.2               | 2.1               | 2.0               |
| Plastics (except floor covering and vinyl-coated fabrics        | 7.1               | 7.6                | 7.1               | 7.9               | 9.8               |
| and textiles)                                                   | 6.0               | 5.2                | 6.7               | 7.0               | 7.0               |
| Other (including export)                                        | 0.0               | 0.2                |                   |                   |                   |
| Total                                                           | 100.0             | 100.0              | 100.0             | 100.0             | 100.0             |

# **STOCKS**

In 1973, stocks of rutile in the United States continued to decline; yearend inventories were 9% below those at yearend 1972. Slag inventories decreased by 22% but ilmenite in inventories increased by 10% during the year. Yearend stocks of titanium sponge were 1,941 tons, and of titanium scrap 4,447 tons, representing increases of 7% and 2%, respectively. Figures for titanium scrap refer to metal in the hands of ingot and mill shapes producers only. An appreciable but undetermined quantity of scrap was in the inventory of steel and ferroalloy plants. Industry stocks of titanium dioxide declined for the third successive year, from 54,982 tons on January 1 to 34,122 tons at yearend—a 38% decrease.

Table 7.—Stocks of titanium concentrates in the United States, December 31 (Short tons)

|                | Gross<br>weight | TiO <sub>2</sub> content • |
|----------------|-----------------|----------------------------|
| Ilmenite:      |                 |                            |
| 1971           | 645,107         | 383,113                    |
| 1972           | 534.504         | 314,584                    |
| 1973           | 586,714         | 334,441                    |
| Titanium slag: | •               |                            |
| 1971           | 108,265         | 76,741                     |
| 1972 r         | 142,301         | 100,746                    |
| 1973           | 111,014         | 78,373                     |
| Rutile:        | •               |                            |
| 1971           | 236,955         | 225,925                    |
| 1972           | 158,106         | 150,801                    |
| 1973           | 143,181         | 135,546                    |

e Estimate. r Revised.

# **PRICES**

Concentrates.—Published price quotations for ilmenite, \$22 to \$24 per long ton at the beginning of 1973, increased to \$32 on August 17 and to \$38 on December 21. These figures are nominal; almost all domestic production of ilmenite is captive. Australian ilmenite prices increased to A\$11-A\$12 f.o.b. Australian ports. Indian ilmenite remained unchanged at £3.95

f.o.b. Indian west coast ports, and Malaysian ilmenite continued to bring £9.35 to £11.32 per metric ton c.i.f. British ports.

Rutile, bulk, f.o.b. cars at Atlantic and Great Lake ports, was quoted at \$175 per short ton until May 18, when the price went to \$210. On December 14 the price increased to \$310, a 77% increase during the year. Corresponding prices in Australia

were A\$115 to A\$125 per long ton until May, when quotations went to A\$125 to A\$130. In July another small increase became effective; quotations were A\$127 to A\$132 f.i.d. (free in container depot, a new basing point). Additional increases were noted in October and December; the yearend price was A\$147 to A\$152. Rutile released from the Federal stockpile during the last half of 1973 brought prices of \$170 per short ton in August and \$226 in November.

Titanium slag (70% to 71% TiO<sub>2</sub>), quoted at \$50 per long ton f.o.b. plant at Sorel, Quebec, went to \$53 in mid-August and \$60 at the yearend.

Manufactured Titanium Dioxide.—Continued heavy demand for all grades of pigment and increasing raw material costs permitted no relaxation of upward price pressures. In lots of 20 tons minimum, prices at yearend were within the following ranges:

| Anatase:                         | Prices (cents<br>per pound)                         |
|----------------------------------|-----------------------------------------------------|
| Paper gradeOther gradesRutile:   | $24-24\frac{1}{2}$<br>$27\frac{1}{2}-29\frac{1}{2}$ |
| Standard grade<br>Premium grades | 27½-28½<br>28½-30                                   |

Material shipped as slurry was generally 1/2 cent per pound cheaper.

Late in December, one pigment maker announced prices, effective January 1, 1974, to be 301/2 cents per pound for premium-grade rutile and 291/2 cents per pound for standard-grade rutile and the higher anatase grades.

During the first half of 1973, several major European producers increased prices for pigment. The Kronos group of West Germany raised its prices 8% in European markets and 12% in markets outside Europe in March. In May, British Titan, Ltd., increased its prices by £18 per ton (approximately 2 cents per pound).

Metal.—Domestic sponge began the year at \$1.32 per pound. The price increased to \$1.42 to \$1.45 in May, and ended the year at that level, although at the end of the year a further increase seemed imminent. Sponge imported from Japan, priced at \$1.20 to \$1.25 at yearend 1972, went to \$1.34 to \$1.37 in May, to \$1.28 to \$1.33 in August, and finally ended the year in the \$1.36 to \$1.38 range.

# FOREIGN TRADE

Titanium dioxide exports 1973 amounted to 20,769 tons, double the 1972 figure. Of this total, Japan received 20%, other Far East countries 31%, Western Europe 17%, Latin America and the West Indies 16%, and Canada 11%. Exports of unwrought, waste, and scrap titanium were 18% higher than in 1972; 47% went to the United Kingdom, 20% to Italy, and 14% to Belgium. The average valuation was 431/2 cents per pound compared with 31 cents in 1972. Exports of wrought titanium (ingots and mill shapes) were up 33% from 1972 levels. Canada imported 38% of the total, the United Kingdom 23%, and France, West Germany, and Italy a total of 25%.

As a result of changes in the titanium industry product mix over the past few years import statistics for titaniferous raw materials no longer give a clear, complete picture of foreign trade. Six different materials are being imported in significant quantities: Ilmenite, rutile, Sorel slag, synthetic rutile (beneficiated ilmenite), Sorel-

flux, and titaniferous iron ore. There are only three T.S.U.S.A. categories for titaniferous raw materials: 601.5120 Ilmenite and ilmenite sand, 601.5140 Titanium minerals n.e.s., and 603.6200 Titanium slag. In addition, some synthetic rutile is imported under category 603.7 (Other metal-bearing materials).

In 1973, imports as reported by the Bureau of the Census, Department of Commerce, were 216,350 tons of ilmenite and ilmenite sand, 311,153 tons of titanium minerals n.e.s., and 100,327 tons of titanium slag. However, the results of a Bureau of Mines canvass showed consumption of 281,791 tons of slag in 1973, of which only 22,373 tons came from inventory.

Since all slag and the great bulk of titaniferous iron ore was imported from Canada, and since Canada was the sole source of slag and of Sorelflux, the raw monthly data for imports from Canada were analyzed. The governing parameter was the declared valuation in U.S. dollars per short ton. Entries in the \$5 to \$25

TITANIUM 1237

range were reclassified as titaniferous iron ore, which included Sorelflux and material for aggregate. Entries in the \$30 to \$40 range were classified as ilmenite, and those in the \$40 to \$65 range were classified as Sorel slag. These classifications were for Canadian imports only; data for other imports were accepted on the basis of f.o.b. prices in the country of origin.

Synthetic rutile during 1973 bore a declared valuation of \$65 to \$110 per ton. Some entries in this price range were noted in both the 601.5120 and the 601.5140 listings. Valuations higher than \$110 were identified as natural rutile. Entries in the three categories were reclassified accordingly:

| Commodity                      | 601.5120               | 601.5140          | 603.6200 | Total                       |
|--------------------------------|------------------------|-------------------|----------|-----------------------------|
| -                              |                        | (short            | tons)    |                             |
| Ilmenite Titaniferous iron ore | 98,262<br>83,513<br>83 | 136,838           | 100,327  | 98,262<br>83,513<br>237,248 |
| Slag                           | 11,188                 | 161,124<br>13,190 |          | 172,312<br>36,495           |
| Total                          | 216,351                | 311,152           | 100,327  | XX                          |

XX Not applicable.

Of the 98,262 tons of ilmenite tabulated, 28,571 tons was reported from the Bahamas, a country which has no ilmenite production. Deducting this figure pending verification leaves a total ilmenite import of 69,691 tons.

Certain shipments from Japan, India, and Australia, totaling 37,515 tons, were entered under category 603.7000. These shipments met the declared-valuation criterion for synthetic rutile; however, addition of this quantity to the synthetic rutile tabulated above would result in an import volume far in excess of known world productive capacity. Therefore, pending verification, the data will not be used.

The data of table 9 are presented in accordance with the foregoing computa-

Imports of ilmenite from Australia doubled in 1973, the increase presumably coming from the new operations in Western Australia. Imports of Sorel slag from Canada amounted to 237,000 tons, a 20% decrease from the (revised) 1972 figure. Ru-

tile from Australia was 20% less than in 1972, but substantial quantities of synthetic rutile from Japan and India brought the total imports to 209,000 tons, 5% less than the 1972 total. A total of 54,543 tons of off-grade titaniferous iron ore entered the port district of Galveston during the year, presumably intended for use in encasing seabed petroleum pipelines in heavy aggregate.

Imports of unwrought, waste, and scrap titanium increased 59% in 1973. Of the total, 5,172 tons was sponge coming from Japan (2,937 tons); U.S.S.R. (1,628 tons); and the United Kingdom (607 tons). The Japanese material had an average declared valuation of 92.5 cents per pound; the corresponding valuation of the Soviet sponge was 77 cents per pound. France and the United Kingdom were the principal sources of 512,547 pounds of titanium ferroalloys valued at \$177,917.

Imports of pigment reached a total of 60,419 tons, 30% less than in 1972, but still about 7% of total U.S. consumption.

Table 8.-U.S. exports of titanium products, by class (Short tons and thousand dollars)

| Year                 | Ores :                  |                   |                         |                         | Intermediate mill<br>shapes and mill<br>products, n.e.c. |                         | Pigmen<br>oxid             |                          |
|----------------------|-------------------------|-------------------|-------------------------|-------------------------|----------------------------------------------------------|-------------------------|----------------------------|--------------------------|
|                      | Quantity                | Value             | Quantity                | Value                   | Quantity                                                 | Value                   | Quantity                   | Value                    |
| 1971<br>1972<br>1973 | 1,760<br>1,802<br>1,494 | 299<br>394<br>353 | 1,711<br>3,510<br>4,142 | 1,139<br>2,165<br>3,601 | 430<br>562<br>745                                        | 4,788<br>6,265<br>8,748 | 26,759<br>10,335<br>20,769 | 9,378<br>4,882<br>14,021 |

| Table 9U.S. imports for consumption of titanium concentrate | es, by | country 1 |
|-------------------------------------------------------------|--------|-----------|
| (Short tons and thousand dollars)                           | -      | •         |

| Country                 | 19'                 | 71                 | 197                         | 72         | 1973                        |        |
|-------------------------|---------------------|--------------------|-----------------------------|------------|-----------------------------|--------|
|                         | Quantity            | Value              | Quantity                    | Value      | Quantity                    | Value  |
| Ilmenite:               |                     |                    |                             |            |                             |        |
| Australia               | 21,953              | 218                | 14,334                      | 142        | 29,590                      | 378    |
| Canada                  | 5,838               | 122                | 317                         | 11         | 172                         |        |
| Finland                 | 302                 | 18                 | 011                         | 11         | 112                         | 6      |
| India                   |                     | •                  |                             |            |                             | 55     |
| Malaysia                |                     |                    | <sup>2</sup> 185            | 2          | <sup>2</sup> 3 , 360        | 30     |
| Sweden                  |                     |                    | - 100                       | _          | 16,327                      | 224    |
|                         |                     |                    |                             |            | 20,242                      | 236    |
| Total                   | 28,093              | 358                | 14.836                      | 155        | CO CO1                      |        |
| Titanium slag 4         | 152,661             | 6.561              | 298,259                     | 13,124     | 69,691                      | * 875  |
|                         | 102,001             | 0,001              | 230,203                     | 15,124     | 237,248                     | 10,981 |
| Rutile: 5               |                     |                    |                             |            |                             |        |
| Australia               | 196,555             | 21,664             | 220,025                     | 24,041     | 174,754                     | 04.050 |
| Austria 6               | 100,000             | 21,00 <del>1</del> | 220,023                     | 24,041     | 114,104                     | 24,378 |
| Canada 6                |                     |                    | 20                          | 3          | $1\overline{3}\overline{4}$ |        |
| Denmark 6               |                     |                    | 18                          | 2          | 20                          | 18     |
| India                   | $13.1\overline{75}$ | 1.118              | 10                          | _          |                             | 3 070  |
| Japan                   | 10,110              | 1,110              | $4\overline{4}\overline{8}$ | $\bar{25}$ | 28,472                      | 2,272  |
| Malaysia 6              |                     |                    | **0                         | 20         | 5,405                       | 483    |
| Sierra Leone            | $18.05\overline{4}$ | $1.4\overline{72}$ |                             |            | 23                          | 5      |
|                         | 10,004              | 1,412              |                             |            |                             |        |
| Total                   | 227,784             | 24,254             | 220,533                     | 24,074     | 208,808                     | 07 150 |
| Titaniferous iron ore 7 | 134,120             | 2,423              | 82,133                      | 954        |                             | 27,158 |
|                         | 101,120             | 2,420              | 02,100                      | 904        | 83,513                      | 1,395  |

- Data adjusted by Bureau of Mines, U.S. Department of the Interior.
   May have been used in heavy aggregate.
   Data does not add to total shown because of independent rounding.

<sup>4</sup> All from Canada. <sup>5</sup> Includes synthetic rutile.

Country of transshipment rather than country of production.
 Includes materials consumed for purposes other than production of titanium commodities, principally heavy aggregate and steel furnace flux. All from Canada.

Table 10.-U.S. imports for consumption of unwrought titanium and waste and scrap (Short tons and thousand dollars)

| Country                   | 1971     |       | 1972          |       | 1973               |        |
|---------------------------|----------|-------|---------------|-------|--------------------|--------|
| - Country                 | Quantity | Value | Quantity      | Value | Quantity           | Value  |
| Austria                   | 4        | 3     |               |       | 758                | 404    |
| Canada                    | 118      | 128   | 12            | - 9   | 120                | 116    |
| France                    |          |       | 10            | 10    | 17                 | 20     |
| Germany, West             | 41       | 28    | 141           | 147   | 31i                | 492    |
| Italy                     | (1)      | 1     | (1)           | i     | 11                 | 709    |
| Japan                     | 2,523    | 4,375 | <b>2</b> ,345 | 4,255 | $2.9\overline{60}$ | 5,508  |
| Netherlands               | 3        | 3     | 2             | · 2   | 12                 | 17     |
| South Africa, Republic of |          |       | 2             | 1     |                    |        |
| U.S.S.R                   | 214      | 331   | 1,408         | 2,109 | 1,628              | 2,504  |
| United Kingdom            | 120      | 131   | 253           | 420   | 824                | 1,401  |
| Total                     | 3,023    | 5,000 | 4,173         | 6,954 | 6,641              | 10,471 |

<sup>1</sup> Less than 1/2 unit.

Principal suppliers were West Germany and Canada, 23% each, and the United Kingdom and France, 14% each.

Imports of synthetic rutile from all three

producing nations-Australia, India, and Japan-continued during the year. Shipments were reported from both current production and inventory.

# WORLD REVIEW

Australia.-It was announced in August that Australia's Federal budget for 1973-74 for the first time contained no provision for tax concessions to private companies, including mining companies. In addition the Federal Government is restricting ex-

ports of minerals by setting minimum

Restrictions inspired by environmental considerations were reported to have prevented mining of about one-fourth of the known mineral sand reserves on Australia's

TITANIUM 1239

east coast, at an estimated cost of A\$300 million in exports. NL Industries' \$7.5 million beach sand project in Queensland was rejected by State authorities "for environmental reasons" although rehabilitation of the land following beach sand mining is usually successful.

Elsewhere on the east coast, production slowly advanced from the low fourth quarter of 1972. Totals for the year for New South Wales and Queensland were 351,000 tons of rutile and 38,900 tons of ilmenite.

A process by which ilmenite is upgraded to rutile grade, jointly owned by the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and Murphyores Incorporated Pty. Ltd., was being tested jointly by Murphyores and Mitsubishi Chemical Industries, Ltd., in a pilot plant at Kurosaki, Japan. Planning began about midyear for a commercial-scale plant, using the process, to be built in Australia. Successful exploitation will permit expanded use of east coast ilmenites, which were in minimal demand for pigment production because of their chromium and vanadium content.

Mining activity along a 100-mile stretch of the Australian west coast continued at a high level during the year. Expansion of mineral sands production is proceeding from Jurien Bay to Geraldton, where proved and probable reserves exceed 130 million tons of heavy-sand products. Companies involved are Allied Eneabba Pty. Ltd., Ilmenite Pty. Ltd., A. V. Jennings Industries (Australia) Ltd., and Westcoast Rutile Pty. Ltd.

Allied Eneabba formally commissioned its 45,000-ton-per-year pilot plant on April 6. Operations at this scale apparently were successful, since in November it was announced that the company will begin construction of a 350,000-ton-per-year plant at a cost of about \$12.4 million, to be fully operational by late 1975. Anticipated annual production at that time will be 200,000 tons of ilmenite and 50,000 tons of rutile. Leucoxene, zircon, monazite, and kvanite will also be produced in commercial quantities. During the pilot operation it became clear that dredging the deposit from a moving dredge pond was unsatisfactory; future mining will be conducted by dry methods. For the time being, exports will be made from the port of Geraldton, but it is possible that the company will build port facilities nearer the mining operation. A narrow-gage railway is also contemplated.

The litigation concerning 22 mineral claims in the Eneabba beach sands was decided in favor of Western Titanium N.L. A final appeal to the Privy Council in London is being considered. If the decision stands, Allied Eneabba's resources will be reduced to about 8 million tons of mineral concentrates, 0.75 million of which is rutile. However, Eneabba contemplates no change in its plans or the scale of operations.

A. V. Jennings Industries (Australia) Ltd., began processing its sands on a pilot scale in March. Construction of a \$13 million full-scale plant is underway, to be operational in 1974 at the annual rate of 120,000 tons of ilmenite, 35,000 tons of leucoxene, 40,000 tons of rutile, and some zircon.

West Coast Rutile Ltd., a joint-venture company, one-third held by Mining Corp. of Australia Ltd. and two-thirds by Kamilaroi Mines, Ltd., completed a feasibility study on its 54 claims at Jurien Bay. Exploration indicates 3.2 million tons of heavy sands. A potential annual production scale was estimated at 150,000 tons of ilmenite, 19,000 tons of leucoxene, 25,000 tons of rutile, and some zircon and kyanite.

South of Perth, Westralian Sands, Ltd., established a new open pit mine in the Tutunup area, from which most of Westralian's production was coming at the yearend. Mining in the area between Yoganup and the Capel River ceased about midyear. Exploration further northward was undertaken in a joint venture with Tioxide Australia Pty. Westralian's production in the fiscal year ending June 30 exceeded 230,000 tons, 85% of it ilmenite.

Project Mining Corp. drilled nine claims at Hardy Inlet, near Augusta, and has an indicated reserve of 1 million tons of ilmenite. The company will initiate mining as soon as environmental clearance is obtained.

Western Titanium N.L. continued construction of its ilmenite upgrading plant at Capel, near Bunbury. The plant will produce a synthetic rutile of 94% TiO<sub>2</sub> grade and is expected onstream in April 1974. The company reports production of 43,553

tons of upgraded ilmenite between February 1, 1969, and June 30, 1973.

Brazil.—Cia. Vale do Rio Doce and two companies, Ishihara Kaisha, Ltd., and C. Itoh, Ltd., signed an agreement to evaluate anatase resources in a carbonatite formation near Araxá, Minas Gerais. The Departamento Nacional de Produção Mineral (DNPM) evaluated reserves at 1,600 million tons of ore containing 10% TiO2. The same two Japanese companies also signed an agreement with Cia. Brasileira de Tecnologia Nuclear to appraise the possibility of exploiting ilmenite beach sand resources in Espírito Santo to blend with the anatase as feed for a titania pigment plant. Earliest possible target date will be 1976.

Canada.—In December, Quebec Iron & Titanium Corp. announced plans to expand throughput of ilmenite ore at its Sorel, Quebec, plant to 2.2 million tons. The expansion will cost \$8.8 million. An additional \$2.6 million will be invested in pollution abatement at Sorel. Project completion is scheduled for mid-1975. Canadian pigment production was reported at 46,318 tons for the year.

India.—Recent estimates of ilmenite reserves and resources in India were placed at 356 million tons by the Geological Survey of India; by extension, reserves of rutile, monazite, and other associated mineralso are substantial. Indian Rare Earths, Ltd., a government corporation, is the sole beach sand mining entity. Annual capacity of the two company beneficiation plants, one at Manavalakurichi, Tamil Nadu, the other at Chavara, Kerala, totals 175,000 tons of ilmenite, 7,700 tons of rutile, and some zircon, monazite, garnet, and sillimanite. A 30% expansion at Chavara, underway during the year, will bring total ilmenite capacity to more than 200,000 tons.

The synthetic rutile facility of Dhrangadhra Chemical Works, Ltd., based on the Benilite process and obtaining its hydro-

Table 11.-Titanium: World production of concentrates (ilmenite, rutile, and titaniferous slag), by country

(Short tons)

| C ountry 1         | 1971                                   | 1972      | 1973 р    |
|--------------------|----------------------------------------|-----------|-----------|
| Ilmenite: 2        | ······································ |           |           |
| Australia 3        | 914,116                                | 781,324   | 781,493   |
| Brazil 4           | 10,906                                 | 3,849     | 4,599     |
| Finland            | 153,772                                | 164,795   | 175,267   |
| India              | 72,752                                 | 78.774    | • 79,000  |
| Japan              | 2,619                                  | 2,331     | 0 19,000  |
| Malaysia 5         | 171,941                                |           | 2,400     |
| Norway             |                                        | 167,743   | • 167,800 |
| Portugal           | 707,198                                | 670,723   | 803,610   |
| Spain              | 981                                    | 829       | e 880     |
|                    | 26,033                                 | 25,295    | 26,088    |
|                    | 102,396                                | 90,944    | • 93,700  |
| United States 6    | 683,075                                | 681,644   | 804,355   |
| Total <sup>2</sup> | r 2,845,789                            | 2,668,251 | 2,939,192 |
| Rutile:            |                                        |           |           |
| Australia          | 404,233                                | 940 000   | 0.01 400  |
| Brazil 3           | 129                                    | 349,899   | 361,422   |
| India              |                                        | 454       | 46        |
| Sierra Leona       | 3,210                                  | 3,379     | °3,400    |
| Sri Lanka e        | 13,153                                 |           | ==        |
| Sii Daiika         | 3,100                                  | r 2,800   | 2,900     |
| Total              | r 423,825                              | 356,532   | 367,768   |
| Titaniferous slag: |                                        |           |           |
| Canada 7           | 959 000                                | 000 400   | 0.40 700  |
|                    | 853,000                                | 920,400   | 942,700   |
| Japan              | 6,097                                  | 3,668     | 4,690     |
| Total              | 859,097                                | 924,068   | 947,390   |

<sup>&</sup>lt;sup>e</sup> Estimate. P Preliminary. Revised.

<sup>1</sup> In addition to the countries listed, the U.S.S.R. also produces titanium concentrates, but available information is inadequate to make reliable estimates of output levels.

<sup>2</sup> Tritaniferous slag production in Canada and Japan, reported under this heading in previous years, is reported separately in this edition. Ilmenite produced in Canada goes almost entirely into slag production; separate figures are not available.

<sup>3</sup> Includes leviceous.

<sup>3</sup> Includes leucoxene

<sup>&</sup>lt;sup>4</sup> Production of Comissão Nacional de Energia Nuclear only.

 $<sup>^6</sup>$  Includes a mixed product containing ilmenite, leucoxene, and rutile.  $^7$  Contains 70% to 71% TiO2.

TITANIUM 1241

chloric acid from a source adjacent to its location at Sahupuram, Tamil Nadu, was reported to have exported 38,000 tons of product to the United States up to March 31, 1973. The synthetic rutile contains 90%–92% TiO<sub>2</sub>, 0.25% V<sub>2</sub>O<sub>5</sub>, and 0.2% Cr<sub>2</sub>O<sub>3</sub>.

Political difficulties have delayed the authorization to construct a titanium products complex at Chavara, issued originally to Ballarpur Paper and Strawboard Mills in 1968.

Italy.—The sulfate-process pigment plant of Montecatini Edison S.p.A. (Montedison) at Scarlino was the target of much criticism because of its practice of disposing of waste by dumping at sea. Quantities dumped ranged from 2,500 to 3,000 tons per day. Montedison sought temporary solutions by converting a portion of its effluent to ferrous oxide and reclaiming sulfuric acid, and also by disposing of its waste at depths below the normal habitat of most marine life. However, in September a local magistrate ordered seizure of the two ships used to move waste to the dumping grounds. As a long-range solution, Montedison was committed to adopt a process developed by New Jersey Zinc Co. to separate out ferrous sulfate and concentrate the remaining acid sufficiently for reuse. However, the recovery plant will probably be operative no earlier than mid-1976; meanwhile resumption of operations depends on further court action.

Montedison also contracted to build a 100,000-ton-per-year pigment plant in the U.S.S.R., payment to be received in the form of pigment produced at the plant.

Japan.—Ishihara Sangyo Kaisha, Ltd., reported that experience with its synthetic rutile product in making chloride-process titania pigment has been favorable. Kerr-McGee Chemical Corp. uses some of Ishihara's material in the feedstock to its pigment plant at Hamilton, Miss.

Following environmentally-induced shutdowns of pigment plants during 1972, supplies declined to less than domestic demand. As a result, Japan had no pigment available for export, and was offering to import from producing nations at prices somewhat in excess of those current in the United States. The shortfall of Japanese production was estimated at 11,000 tons for the year.

Japanese companies produced 7,173 tons

of sponge and 4,690 tons of slag during 1973. The nominal capacity of Japan's three sponge producers—Osaka Titanium Co., Ltd., Toho Titanium Co., Ltd., and Nippon Soda Co.—is about 14,500 tons. The industry was reported to be in full-capacity production at yearend.

Malaysia.—Pacific Tin Consolidated Corp. was reported in September to be readying a plant to make an ilmenite concentrate as a byproduct of its tin recovery operations.

The Malaysian Titanium Corp. has contracted with Woodall-Duckham, Ltd., of the United Kingdom, for construction of an ilmenite upgrading facility, based on the Benilite process, at Ipoh, Perak. Capacity is stated to be 65,000 tons of product per year. The plant will cost \$9 million, 35% of which will be supplied by an asyet-unnamed company in the United States.

Mexico.—The 23,000-ton sulfate-process pigment plant of Pigmentos y Productos Quimicos, S.A. de C.V., at Altamira, Tamaulipas, was being replaced with a chloride-process plant of 35,000-ton capacity. A chlorine-caustic soda facility to supply the necessary chlorine was also approved for construction at the site. The cost of both plants is estimated at \$8 million.

Norway.—Begun in 1972, current expansion of mining and beneficiating operations of Titania A/S, an NL Industries, Inc., subsidiary, at Hauge-i-Dalane will permit production of over 1 million tons of ilmenite flotation concentrate annually. The scale-up was essentially completed late in 1973. The ilmenite product contains about 45% titanium dioxide, 46.5% iron oxides, 0.16% vanadium pentoxide, and a maximum of 0.075% chromous oxide. The plant also produces annually 40,000 tons of a sulfide concentrate containing over 4% nickel and over 2% copper.

Poland.—In May, the Polish Government placed contracts with Kronos Titan GmbH, Leverkusen, and Krupp Chemieanlagenbau, Essen, West Germany, for construction of a sulfate process pigment plant. The intended annual capacity will be 40,000 tons. The plant is to be built near Stettin, will cost \$25 million, is expected onstream in mid-1976, and will use Norwegian ilmenite.

Sierra Leone.—Ownership of the 60% share of Sierra Rutile, Ltd., was transferred from Armco Steel Corp. to Bethlehem Steel Corp. during the year. Engineering studies, begun in 1972, continued during 1973, and in October Sierra Rutile began to staff key positions. A 100-tonper-day pilot plant was under construction. Full-scale production at 20,000 tons of feed per day is expected by mid-1975; at this scale, 200 tons of rutile per day may be produced.

In September, the Bayer-Preussag Mining Co. resumed operations at the adjacent Bonthe and Moyamba mines, on a limited

Spain.—Pigment from the 30,000-tonper-year sulfate-process plant under construction at Huelva by a joint venture of Union Explosivos Rio Tinto (55%) and British Titan, Ltd. (45%), was expected to come on the market in 1975. The cost of the facility was estimated at \$20 million. Some imports of ilmenite will be necessary at first. New plans called for expansion to 60,000 tons annually by 1976 and 100,000 tons by 1978. Meanwhile du Pont, which early in the year had been considering Spain as the site of a 100,000-ton-per-year

plant, abandoned its interest about midyear.

Taiwan.-Woodall-Duckham, Ltd., undertook construction of a 30,000-ton-peryear synthetic rutile plant for Taiwan Alkali Co. at Kaohsiung. It will use the Benilite process, which is reputed to be pollution free. The sources of the feedstock and the grade of the product were not specified. Laporte Industries, Ltd., reportedly has signed a forward contract for delivery of 2,000-2,500 tons of the synthetic rutile.

U.S.S.R.—Reports indicated that a titaniferous slag containing 83% titanium dioxide is being made at Zaporozhe. The slag is chlorinated; the tetrachloride is purified and fed to Kroll-type reaction furnaces. New sponge-production facilities were said to be under construction during the year.

Yugoslavia.—A sulfate-process pigment plant of 27,000 tons annual capacity was opened June 30 at Celje. The plant, jointly owned by a Yugoslav and an East German corporation in a 51:49 ratio, was to export part of its production to East Germany. On July 7 production at the \$31 million plant was halted by fire. Resumption of full production is expected early in

# **TECHNOLOGY**

Mineral Deposits, Ltd., an Australian company mining rutile and zircon at Seven Mile Beach, New South Wales, installed Reichert cone concentrators as roughing units in its wet separation plant. A quite low operating cost is claimed. Total power consumption is quoted at 1.36 kilowatthours per ton of sand mined.2

Since silicates in certain proportions interfere with the effective chlorination of ilmenite in fluidized bed equipment, a mineral-dressing procedure has been devised by which the silicates may be separated on the basis of their selective wetting by an immiscible liquid and consequent spherical agglomeration.3

A method for using sulfate-process pigment plant effluent constructively, thereby solving a waste disposal problem, is being tried in Western Australia. Laporte Industries, Ltd., has contracted with Hancock & Wright for the latter to locate part of its manganese dioxide pilot plant at Laporte's Bunbury pigment facility. Treat-

ment of lean manganese ore with the ferrous sulfate wastes permits subsequent extraction of high-grade manganese dioxide; ferric hydroxide becomes the waste product and is relatively less toxic and easier to dispose of than the sulfates.4

In spite of the inability of technical observers to find adverse effects in the oceanic dumping areas, pressure against discharging of sulfate-process waste at sea is increasing; the practice soon may no longer be permitted.5 Three courses are open to the sulfate-process pigment producers: (1) Something useful may be made from the effluent; (2) the effluent

<sup>&</sup>lt;sup>2</sup> World Mining. Mining and Concentrating Beach Sands. V. 26, No. 11, October 1973, pp.

Beach Sands. V. 26, No. 11, October 1370, pr. 49-50.

3 Sparks, B. D., and R. H. T. Wong. Selective Spherical Agglomeration of Ilmenite Concentrates. Can. Min. & Met. Bull., v. 66, No. 729, January 1973, pp. 73-77.

4 Industrial Minerals. MnO<sub>2</sub>: TiO<sub>2</sub>'s New Friend? No. 74, November 1973, p. 29.

5 Chemical Week. Heavy Going Ahead for Waste Discharging at Sea. V. 112, No. 26, June 27, 1973, pp. 45-47.

TITANIUM 1243

can be treated to separate something-most probably sulfuric acid-which can be recycled to the process; or (3) the effluent can be filtered and otherwise treated to make a solid having no pollution potential. Gypsum, copperas, iron powders and ferric oxide, and recycle sulfuric acid are most commonly mentioned as end products of effluent treatment.

Ishihara Sangyo Kaisha, Ltd., makes synthetic rutile by treating partially reduced ilmenite with sulfuric acid. The original plant reached its 27,000-ton capacity by the end of 1971, expanding to 40,000 tons by the end of 1973.6 The product has been used experimentally as feed to chlorinators making titanium tetrachloride for conversion to titanium sponge. Toho Titanium Ltd., reported satisfactory results and intends using the material commercially.7

Basing its work on earlier studies by The Dow Chemical Co. and the U.S. Bureau of Mines, Dow and Howmet Corp. are jointly operating a pilot plant to produce, by fused-salt electrolysis, a titanium metal which will be competitive with Kroll-process sponge. The work is being done at Howmet's research center in Whitehall, Mich. Advantages claimed for the process include smaller capital investment, substantially lower energy needs, fewer pollution control problems, and a higher quality product. Some of the metal produced was converted to ingot, which has obtained some consumer acceptance.8

The Wyatt division of U.S. Industries Inc., developed and successfully used a technique by which large sections of titanium metal can be welded in the field. A shield over the welding area permits maintenance of a protective gas atmosphere.9

Airco, Inc., developed a method for con-

verting light titanium 6/4 alloy scrap to a usable secondary alloy. The scrap, formerly wasted, now is cleaned and refined in a hearth-type furnace, where the aluminum and oxygen contents are decreased. The resultant metal has good strength and ductility. Initially Airco will produce a million pounds annually from home scrap. Probable applications will be in process industries hardware, where corrosion resistance at ambient or moderately elevated temperatures is desired.10

A new titanium alloy reportedly was developed by a defense contractor working with the U.S. Air Force. Called Til7, it contains 5% aluminum, 4% each chromium and molybdenum, 2% each tin and zirconium, and small quantities of iron, manganese, and copper. It is said to be 25% stronger than titanium 6/4 and more resistant to crack growth.11

Made necessary by greatly increased mining of ilmenite in Western Australia, a method for determining the chromium content of ilmenite by atomic absorption spectrometry was developed. Sensitivity was in the area of 0.03% to 0.10% chromium.12

<sup>&</sup>lt;sup>6</sup> Kataoka, S., and S. Yamada. Acid Leaching Upgrades Ilmenite to Synthetic Rutile. Chem. Eng., v. 80, No. 7, Mar. 19, 1973, pp. 92–93.

<sup>7</sup> Metal Bulletin. Toho to Use Synthetic Rutile. No. 5778, Feb. 23, 1973, p. 14.

<sup>8</sup> Metals Week. Dow and Howmet in Joint Titanium Venture. V. 44, No. 20, May 14, 1973, p.

<sup>10.

&</sup>lt;sup>9</sup> Iron Age. Process Permits Field Welding of Titanium Plate. V. 211, No. 3, Jan. 18, 1973, p.

<sup>1</sup> Itanium Plate. V. 211, No. 3, Jan. 18, 1973, p. 27.

10 Iron Age. Process Converts Ti Scrap. V. 211, No. 20, May 17, 1973, p. 27.

11 Titanium News. New Ti Alloy to Compete With 6/4? V. 4, No. 1, winter 1973, p. 2.

12 O'Shaughnessy, P. T. Determination of Trace Levels of Chromium in Ilmenite by Atomic Absorption Spectrometry. Anal. Chem., v. 45, No. 11, September 1973, pp. 1946–1947.



# Tungsten

# By Richard F. Stevens, Jr. 1

Although domestic tungsten production, as measured by mine shipments, increased slightly in 1973, mine output decreased 7% to 7.6 million pounds. Most of this material was obtained from two domestic operations, one in California and one in Colorado, which were worked continuously throughout the year. Concentrate consumption rose 9% to 15.4 million pounds. Imports for consumption of tungsten concentrate almost doubled in 1973 and totaled 10.6 million pounds, the highest level in 16 years.

During 1973, the reported price of shipped tungsten concentrate, f.o.b. mines and custom mills, increased 5% and averaged \$43 per short ton unit; the quoted European price averaged about \$40 per short ton unit (about \$44 per short ton unit with U.S. import tariff added).

No tungsten concentrate from Government stockpiles was sold until early in October 1973 when the General Services Administration (GSA) program was revised to a monthly sealed-bid basis. Under this program, almost 1.5 million pounds of tungsten in concentrate was awarded for domestic use (81%) and for export (19%).

Legislation and Government Programs.— On April 12, 1973, the Office of Emergency Preparedness (OEP) significantly reduced stockpile objectives and subobjectives for tungsten and tungsten-bearing materials as indicated by the following tabulation, in pounds of contained tungsten:

| Material                                                           | Old<br>objective | New<br>objective |
|--------------------------------------------------------------------|------------------|------------------|
| Tungsten ore and concentrate                                       | 55,655,500       | 4,234,000        |
| Tungsten carbide powder                                            | 1,900,000        |                  |
| Tungsten metal powder,<br>carbon reduced<br>Tungsten metal powder. | 547,000          |                  |
| hydrogen reduced                                                   | 1,200,000        |                  |

<sup>&</sup>lt;sup>1</sup> Physical scientist, Division of Ferrous Metals Mineral Supply.

Table 1.-Salient tungsten statistics

(Thousand pounds of contained tungsten and thousand dollars)

|                                 | 1969   | 1970          | 1971     | 1972     | 1973   |
|---------------------------------|--------|---------------|----------|----------|--------|
| United States:                  |        |               |          |          |        |
| Concentrate:                    |        |               |          |          |        |
| Production                      | 7,805  | 9,625         | 6,900    | 8,150    | 7,575  |
| Shipments                       | 7,910  | 9,312         | 6,827    | 7,045    | 7,059  |
| Value                           | 18,770 | 23,790        | 20,184   | 18,104   | 19,154 |
| Consumption                     | 13,053 | 16,700        | 11,622   | 14,107   | 15,386 |
| Releases from Government stocks | 38,314 | 15,066        | 1,381    | 3        | 1,498  |
| Exports 1                       | 7.151  | 19,470        | 2,006    | 95       | 90     |
| Imports, general                | 1,534  | 1,299         | 577      | 5.898    | 10,785 |
| Imports from consumption        | 1,503  | 1,284         | 418      | 5.739    | 10.552 |
| Stocks. Dec. 31:                | _,,,,, | _,            |          |          | -      |
| Producers                       | 519    | 787           | 863      | 1,966    | 225    |
| Consumers                       | 1,066  | 1,467         | 2,657    | 2,229    | 1,446  |
|                                 | 570    | 605           | 470      | 510      | 535    |
| Employment 2                    | 010    | 005           | 410      | 010      | -      |
| Primary products:               | 13,334 | 17,605        | 11,730   | 14.090   | 17.096 |
| Production                      |        |               | 11,159   | 13.296   | 17,984 |
| Consumption                     | 16,056 | 15,352        | 11,159   | 15,250   | 11,304 |
| Stocks, Dec. 31:                | 0.000  | 4 500         | 0.700    | 4 600    | 3.523  |
| Producers                       | 3,392  | 4,569         | 3,722    | 4,680    |        |
| Consumers                       | 1,778  | <b>2,69</b> 8 | 2,541    | 2,121    | 2,051  |
| World: Concentrate:             |        |               |          | - 04 450 | 05 000 |
| Production                      | 71,754 | 71,360        | r 78,055 | r 84,470 | 85,320 |
| Consumption                     | 76,650 | 85,638        | r 68,413 | r 76,583 | 84,504 |

F Revised.

<sup>1</sup> Estimated tungsten content.
2 Estimated number of persons at mines and mills, at yearend.

Also in April, "Omnibus" bills (H.R. 7153 and S. 1849) were submitted to the Congress to obtain authorization for disposal of these additional excess tungsten materials. This proposed legislation was reviewed by the American Mining Congress, a trade association of the domestic mining industry, in a detailed report. Another bill (H.R. 1257) was reintroduced early in the year to temporarily suspend the tariff on tungsten concentrate and on other materials in chief value of tungsten (primarily synthetic scheelite). At yearend none of these bills had been acted upon by the Congress.

Under the President's Reorganization Plan No. 1 of 1973, issued January 26, 1973, the stockpile functions of OEP were scheduled for assumption by GSA at the beginning of the new Fiscal Year (July 1, 1973) and Executive Order 11725, issued June 29, 1973, created the Office of Preparedness (OP) within GSA to handle the former OEP stockpile operations.

Following the first half of 1973, GSA ceased offering excess tungsten concentrate

for sale under a two-phase program that (1) offered tungsten as a "shelf-sale" item at \$55 per short ton unit restricted to domestic consumption and (2) offered tungsten for export on a monthly sealed-bid basis. After reevaluating the tungsten market, GSA initiated monthly sealed-bid offerings in September at a rate not to exceed 6 million pounds of tungsten per year. Under this new program (ORES-199), approximately 80% of the sales was allocated for domestic use; the balance was for export. Almost 1.5 million pounds in concentrate was sold during 1973.

During the year, the price paid, excluding duty (ex-duty), for stockpiled tungsten concentrate for domestic use ranged from \$40.65 to \$48.32 per short ton unit. The price paid, ex-duty, for stockpiled concentrate for export ranged from \$40.67 to \$47.27 per short ton unit.

In addition, 51,000 pounds of contained tungsten in excess stockpiled concentrate was assigned for Government use in December.

Table 2.-U.S. Government tungsten stockpile materials inventories and objectives (Thousand pounds, tungsten content)

| Material                                                 | Objec-<br>tive | Inventory by National (strategic) stockpile | DPA<br>inven-<br>tory | Dec. 31, 1973 Supplemental stockpile | -<br>Total       |
|----------------------------------------------------------|----------------|---------------------------------------------|-----------------------|--------------------------------------|------------------|
| Tungsten concentrate: Stockpile grade Nonstockpile grade | 4,234          | 72,319<br>40,083                            | 4,466<br>509          | 3,304<br>1,153                       | 80,089<br>41,745 |
| Total inventoryFerrotungsten                             |                | 112,402<br>2,141                            | 4,975                 | 4,457                                | 121,834<br>2,141 |
| Tungsten metal powder, hydrogen reduced                  |                | 1,219                                       |                       |                                      | 1,219            |
| Tungsten metal powder, carbon reduced                    |                | 717                                         |                       |                                      | 717              |
| Tungsten carbide powder                                  |                | 953                                         |                       | 1,080                                | 2,033            |

# DOMESTIC PRODUCTION

Domestic mine production fell 7% and totaled 7.6 million pounds of tungsten during the year, but mine shipments increased only slightly to less than 7.1 million pounds. Although 28 mines in eight Western States reported production and 25 mines reported concentrate shipments, only two mines operated continuously throughout 1973: The Pine Creek mine and mill of the Mining and Metals Division, Union Carbide Corp., located northwest of Bishop, Calif.; and the Climax mine and mill of Climax Molybdenum Co., a divi-

sion of American Metal Climax, Inc. (AMAX), near Leadville, Colo. The major mineral value recovered at Pine Creek continued to be tungsten along with minor amounts of byproduct molybdenum, copper, silver, and gold. This material was processed on a "straight through" basis to produce ammonium paratungstate (APT), an intermediate processed form of tungsten suitable for ready conversion to tungsten metal powder.

 $<sup>^2</sup>$  American Mining Congress. The Stockpile Problem. Washington, D.C., June 1973, 20 pp.

At Climax, the major mineral value recovered was molybdenum. Concentrates of tungsten, tin, and pyrite were recovered as coproducts and were largely dependent upon the rate of molybdenum producton.

In North Carolina, the Tungsten Queen mine and mill of Ranchers Exploration & Development Corp. near Townsville remained closed and on "standby" status throughout the year.

Table 3.-Tungsten concentrate shipped from mines in the United States

| _                                    | Quantity                                                |                                                     |                                             | Rep                                              | .b. mine 1                                  |                                        |
|--------------------------------------|---------------------------------------------------------|-----------------------------------------------------|---------------------------------------------|--------------------------------------------------|---------------------------------------------|----------------------------------------|
| Year                                 | Short tons<br>60% WO <sub>3</sub><br>basis <sup>2</sup> | Short ton<br>units<br>WO <sub>3</sub> <sup>3</sup>  | Tungsten<br>content<br>(thousand<br>pounds) | Total<br>(thou-<br>sands)                        | Average<br>per unit<br>of WO <sub>3</sub>   | Average<br>per pound<br>of tungster    |
| 1969<br>1970<br>1971<br>1972<br>1973 | 8,312<br>9,785<br>7,173<br>7,401<br>7,418               | 498,706<br>587,088<br>430,427<br>444,145<br>445,051 | 7,910<br>9,312<br>6,827<br>7,045<br>7,059   | \$18,770<br>23,790<br>20,184<br>18,104<br>19,154 | \$37.64<br>40.52<br>46.89<br>40.77<br>43.04 | \$2.37<br>2.55<br>2.96<br>2.56<br>2.71 |

 $^1$  Values apply to finished concentrate and are in some instances f.o.b. custom mill.  $^2$  A short ton of 60% tungsten trioxide (WO3) contains 951.72 pounds of tungsten.  $^3$  A short ton unit equals 20 pounds of tungsten trioxide (WO3) and contains 15.862 pounds of tungsten.

# CONSUMPTION AND USES

The major domestic companies that were engaged in tungsten processing operations during 1973 are listed in table 5.

The application of tungsten in cutting and wear-resistant materials, primarily as tungsten carbide, increased and continued to represent the major form of tungsten product consumption. This use accounted for 56% of the total product consumption, which rose 35% to almost 18.0 million pounds of tungsten in 1973. Other major end-use categories during the year were as follows: Mill products (15%), specialty tool steels (11%), and welding and hardfacing materials (7%).

During 1973, the consumption distribution of intermediate tungsten products used to make end-use items was as follows: Tungsten carbide (including cemented, crushed, and cast), 43%; tungsten metal powder (including carbon- and hydrogenreduced), 35%; and chemicals (including scheelite and scrap for direct addition to steel melts) and ferrotungsten, 11% each.

Two comprehensive reports based on information supplied by industry and Government specialists were published during the year.3 These reports analyzed the tungsten industry and projected anticipated supply-demand relationships through 1987.

Micrograin tungsten carbide cutting tools were used in more high-temperature applications where conventional carbides chip and high-speed steels fail or soften. To eliminate voids, cemented tungsten carbides were produced by hot isostatic pressing.

A study to develop new less expensive, man-made cutting tools was continued by the General Electric Co. (GE) under funding sponsored by the Advance Research Projects Agency (ARPA), Washington, D.C. This study, conducted at GE's research laboratory in Schenectady, N.Y., was monitored by the Air Force Materials Laboratory (AFML) at Wright-Paterson AFB near Dayton, Ohio.

Several special review articles were published during the year that evaluated the application of tungsten metal in hightemperature nuclear applications, evaluated tungsten carbide cutting tools, and reviewed the current and future tungsten supply-demand situation.4

1974, pp. 17-20.

— Tool and Die Report. V. 80, No. 15,
Jan. 22, 1973, pp. 13-28.

— Tungsten Section. V. 80, No. 27,
Sec. 2, Feb. 7, 1973, 16 pp.

— Vacuum Metallurgy. V. 80, No. 125,
Sec. 2, June 27, 1973, 8 pp.

<sup>&</sup>lt;sup>3</sup> National Materials Advisory Board. Trends in Usage of Tungsten. NMAB-309, July 1973, 106 pp.; available from the National Technical Information Service, Springfield, Va., PB 223

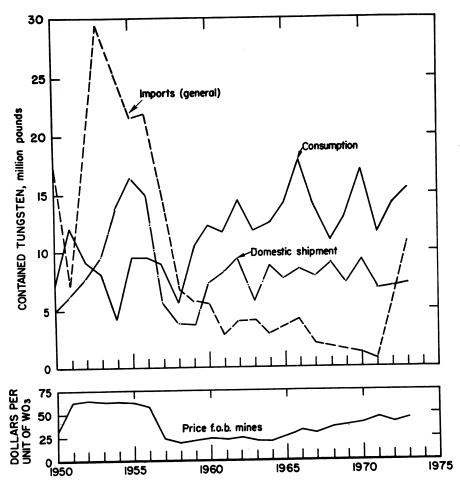



Figure 1.-Domestic shipments, imports, consumption, and average price of tungsten ore and concentrate.

Table 4.-Production, shipments, and stocks of tungsten products in the United States (Thousand pounds of contained tungsten)

|                                         | Hydrogen-<br>and                      |                                 | en carbide<br>wder                 |                             | Other <sup>2</sup> | Total  |
|-----------------------------------------|---------------------------------------|---------------------------------|------------------------------------|-----------------------------|--------------------|--------|
|                                         | carbon-<br>reduced<br>metal<br>powder | Made<br>from<br>metal<br>powder | Crushed<br>and<br>crystal-<br>line | Chemi-<br>cals <sup>1</sup> |                    |        |
| 1972 :                                  |                                       |                                 |                                    |                             |                    |        |
| Gross production during year            | 9,529                                 | 5,062                           | 1,949                              | 13,461                      | 1,000              | 31,001 |
| Used to make other products listed here | 6,220                                 | -,                              | 27                                 | 10,664                      | -,000              | 16,911 |
| Net production                          | 3,309                                 | 5,062                           | 1,922                              | 2,797                       | 1.000              | 14,090 |
| Shipments 3                             | 7,163                                 | 5,016                           | 2,407                              | 7.664                       | 1.031              | 23,281 |
| Producer stocks, Dec. 31                | 1,921                                 | 295                             | 465                                | 1,852                       | 147                | 4,680  |
| Gross production during year            | 12,420                                | 7.798                           | 3,242                              | 4,688                       | 1.520              | 29,668 |
| Used to make other products listed here | 8,405                                 |                                 | 60                                 | 3,945                       | 162                | 12,572 |
| Net production                          | 4,015                                 | 7.798                           | 3.182                              | 743                         | 1,358              | 17.096 |
| Shipments 3                             | 9,727                                 | 7,758                           | 4,461                              | 918                         | 1.320              | 24,184 |
| Producer stocks, Dec. 31                | 1,925                                 | 418                             | 619                                | 254                         | 307                | 3.523  |

<sup>&</sup>lt;sup>1</sup> Data for 1973 not directly comparable to 1972. In 1973 ammonium paratungstate (APT) data was separately reported as equivalent concentrate and was removed from the "Chemicals" category.

<sup>2</sup> Includes ferrotungsten, scheelite (produced from scrap), nickel-tungsten, self-reducing oxide, and pellets.

Includes quantities consumed by producing firms for manufacture of products not listed here.

Table 5.-Major U.S. producers of tungsten concentrate and principal tungsten processors in 1973

| Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Location of mine, mill or processing plant |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--|--|
| Producers of tungsten concentrate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            |  |  |
| Climax Molybdenum Co., a subsidiary of AMAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Climax, Colo.                              |  |  |
| Ranchers Exploration & Development Corp. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Townsville, N.C.                           |  |  |
| Rawhide Mining Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fallon, Nev.                               |  |  |
| Transcon Corp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Mountain City. Nev.                        |  |  |
| Union Carbide Corp. (UCC), Mining & Metals Div.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bishop, Calif.                             |  |  |
| Processors of tungsten: 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dishop, Cam.                               |  |  |
| Adamas Carbide Corp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Kenilworth, N.J.                           |  |  |
| Fansteel Inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | North Chicago, Ill.                        |  |  |
| General Electric Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cleveland and Euclid. Ohio                 |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and Detroit. Mich.                         |  |  |
| GTE Sylvania, Inc., a subsidiary of General Telephone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and Detroit, Mich.                         |  |  |
| & Electronics Corp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Towanda, Pa.                               |  |  |
| Kennametal, Inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Latrobe, Pa., and                          |  |  |
| Temperature and the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the c | Fallon, Nev.                               |  |  |
| Li Tungsten Corp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |  |  |
| Molybdenum Corp. of America (Molycorp)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Glen Cove, N.Y.                            |  |  |
| Teledyne Firth Sterling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Washington and York, Pa.                   |  |  |
| Teledyne Wah Chang Huntsville                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | McKeesport, Pa.                            |  |  |
| Union Carbide Corp., Mining & Metals Division                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Huntsville, Ala.                           |  |  |
| Westinghouse Electric Corp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Niagara Falls, N.Y.                        |  |  |
| Westinghouse Electric Corp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Bloomfield, N.J.                           |  |  |

# **STOCKS**

Stocks of tungsten concentrate held at domestic mines fell substantially at yearend and were 83% less than in 1972, whereas tungsten concentrate stocks held by consumers decreased 35% during the year.

Industry stocks of intermediate tungsten products increased as indicated in tables 1, 4, and 6. Data on domestic stocks of tungsten concentrate held by dealers were not available.

 $<sup>^1</sup>$  On standby status.  $^2$  At its Pine Creek mine and mill in California, UCC processes scheelite ore "straight through" to APT.  $^3$  Major consumers of tungsten concentrate and APT.

Table 6.-Consumption and stocks of tungsten products in the United States, by end use (Thousand pounds of contained tungsten)

|                                          | Ferro-<br>tung-<br>sten <sup>1</sup>    | Tungsten<br>metal<br>powder <sup>2</sup> | Tungsten<br>carbide<br>powder           | Other<br>tungsten<br>materials <sup>3</sup> | Total  |
|------------------------------------------|-----------------------------------------|------------------------------------------|-----------------------------------------|---------------------------------------------|--------|
| 1972:                                    |                                         |                                          |                                         |                                             |        |
| Steel:                                   |                                         |                                          |                                         |                                             |        |
| Stainless and heat resisting             | 105                                     | w                                        |                                         | 68                                          | 173    |
| Alloy                                    | 110                                     | $\mathbf{w}$                             |                                         | 47                                          | 157    |
| Tool                                     | 865                                     | w                                        |                                         | 586                                         | 1.451  |
| Cast irons                               | 2                                       |                                          |                                         | 12                                          | 14     |
| Superalloys                              | 96                                      | 141                                      | w                                       | 192                                         | 429    |
| Alloys (exclude steels and superalloys): | • •                                     |                                          | • • • • • • • • • • • • • • • • • • • • |                                             |        |
| Cutting and wear resistant materials     | w                                       | 1,394                                    | 5.017                                   | 246                                         | 6,657  |
| Other alloys 4                           | 55                                      | 698                                      | 353                                     | 111                                         | 1,217  |
| Mill products made from metal powder     | w                                       | 2,523                                    | 2                                       |                                             | 2,525  |
| Mill products made from metal powder     | • • • • • • • • • • • • • • • • • • • • | •                                        | ĩ                                       | 178                                         | 179    |
| Chemicals and ceramics                   | 5                                       | 368                                      | 120                                     | 1                                           | 494    |
| Miscellaneous and unspecified            |                                         |                                          |                                         |                                             |        |
| Total 5                                  | 1,238                                   | 5,124                                    | 5,493                                   | 1,441                                       | 13,296 |
| Consumer stocks Dec. 31, 1972            | 289                                     | 650                                      | 716                                     | 466                                         | 2,121  |
| 1973:                                    |                                         |                                          |                                         |                                             |        |
| Steel:                                   |                                         |                                          |                                         |                                             |        |
| Stainless and heat resisting             | 134                                     | w                                        |                                         | 77                                          | 211    |
| Alloy                                    | 128                                     | w                                        |                                         | 225                                         | 353    |
| Tool                                     | 1.474                                   | w                                        |                                         | 541                                         | 2,015  |
| Cast irons                               | w                                       |                                          |                                         | 6                                           | 6      |
| Superallovs                              | 152                                     | 136                                      | w                                       | 318                                         | 606    |
| Alloys (exclude steels and superalloys): |                                         |                                          |                                         |                                             |        |
| Cutting and wear resistant materials     | w                                       | 2.546                                    | 7,141                                   | 313                                         | 10.000 |
| Other alloys 4                           | 71                                      | 756                                      | 340                                     | 118                                         | 1,285  |
| Mill products made from metal powder     | w                                       | 2.660                                    | w                                       |                                             | 2,660  |
| Chemical and ceramic uses                | **                                      |                                          | ŵ                                       | 444                                         | 444    |
| Miscellaneous and unspecified            |                                         | $1\overline{25}$                         | 273                                     | ·-i                                         | 404    |
|                                          |                                         |                                          |                                         |                                             |        |
| Total 5                                  | 1,964                                   | 6,223                                    | 7,754                                   | 2,043                                       | 17,984 |
| Consumer stocks Dec. 31, 1973            | 340                                     | 427                                      | 866                                     | 418                                         | 2,051  |

W Withheld to avoid disclosing individual company confidential data, included in "Miscellaneous and unspecified.

nd unspecified."

Includes melting base self-reducing tungsten.

Includes both carbon-reduced and hydrogen-reduced tungsten metal powder.

Includes tungsten chemicals natural and synthetic scheelite, tungsten scrap and other.

Includes welding and hard-facing rods and materials and nonferrous alloys.

Data may not add to totals shown because of individual rounding.

## PRICES AND SPECIFICATIONS

During 1973 the average value of tungsten concentrate shipped from domestic mines as reported to the Bureau of Mines, increased 6% to \$43.04 per short ton unit of WOa. Although there were no Government stockpile sales during the first half of the year, the quoted domestic price (nominal) of tungsten concentrate during this period continued to be \$55 per short ton unit, which reflected the GSA shelf price. Tungsten concentrate was purchased from GSA during the last quarter of 1973 at prices, ex-duty, ranging from \$40.65 to \$48.32 per short ton unit.

As quoted in the Metal Bulletin (London) and in Metals Week the European price of tungsten concentrate, shown in table 7, increased throughout the year from a low in January of £15.70 per metric ton unit (about \$33.44 per short ton unit depending upon the prevailing rate of currency exchange) to a high of £22.20 per metric ton unit (about \$49.03 per short ton unit) in November.

The price of metallurgical-grade APT, delivered to contract customers, was frozen at \$50.50 per short ton unit during the year. A small amount of catalytic-grade APT and "Blue Oxide" was sold during 1973 at a frozen price of \$53 per short ton unit. A conversion fee of about \$11 per short ton unit was charged for "toll" processing tungsten concentrate to APT at a recovery of about 96%.

In January 1974, the price of metallurgical-grade APT was increased 24% to \$62.50 per short ton unit. The price of catalyticgrade APT was increased to \$65 per short ton unit in January, but the "toll" conversion fee remained unchanged.

The quoted price of carbon-reduced tungsten metal powder, as reported in TUNGSTEN

Metals Week, f.o.b. shipping point, was unchanged during the year at \$4.50 per pound of contained tungsten in 1,000pound lots. The price of hydrogen-reduced tungsten metal powder (99.99% purity), f.o.b. shipping point, as quoted in Metals Week, dropped to a range of \$4.97 to \$6.70 per pound of tungsten in 1973. Within this range, the price was primarily dependent upon the tungsten powder particle size (Fisher number).

The quoted price of low-molybdenumcontaining ferrotungsten in lots of 5,000 pounds or more, 1/4-inch lump, packed, destination, continental States, 70% to 80% tungsten, remained

unchanged at \$4.60 per pound of tungsten during 1973. The quoted price of UCAR, the special high-purity ferrotungsten produced by Union Carbide Corp. at its Niagara Falls, N.Y., plant, 90% tungsten, was \$3.98 per pound of contained tungsten during the year. The U.S. dealer price of ferrotungsten during 1973, as quoted in Metals Week, remained unchanged at \$4.50 (nominal) per pound of tungsten.

Although not quoted, the price of scheelite concentrate (calcium tungstate) for direct addition to steel melts was believed to be comparable with data reported in table

Table 7.-Monthly price quotations of tungsten concentrate in 1973

| Month     | Wolfram and scheelite London market, pounds sterling per metric ton unit of WO <sub>3</sub> , 65% basis |        | Equivalent quotations,<br>dollars per<br>short ton unit of WO <sub>3</sub> ,<br>65% basis <sup>1</sup> |         |                      |  |
|-----------|---------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------|---------|----------------------|--|
|           | Low                                                                                                     | High   | Low                                                                                                    | High    | Average <sup>2</sup> |  |
| January   | £15.70                                                                                                  | £16.60 | \$33.44                                                                                                | \$35.55 | \$34.47              |  |
| February  | 15.70                                                                                                   | 16.95  | 33.99                                                                                                  | 37.84   | 35.72                |  |
| March     | 16.50                                                                                                   | 18.75  | 37.42                                                                                                  | 42.08   | 40.06                |  |
| April     | 18.30                                                                                                   | 19.15  | 41.21                                                                                                  | 43.19   | 42.18                |  |
| May       | 17.10                                                                                                   | 19.15  | 39.50                                                                                                  | 43.25   | 41.34                |  |
| June      | 16.00                                                                                                   | 17.50  | 37.35                                                                                                  | 40.74   | 40.00                |  |
| July      | 15.70                                                                                                   | 17.25  | 36.24                                                                                                  | 39.65   | 38.03                |  |
| August    | 17.10                                                                                                   | 17.90  | 38.94                                                                                                  | 40.16   | 39.48                |  |
| September | 17.60                                                                                                   | 18.75  | 39.23                                                                                                  | 41.18   | 40.46                |  |
| October   | 18.25                                                                                                   | 19.80  | 40.06                                                                                                  | 43.86   | 41.80                |  |
| November  | 19.50                                                                                                   | 22.20  | 43.07                                                                                                  | 49.03   | 44.80                |  |
| December  | 20.50                                                                                                   | 22.00  | 43.52                                                                                                  | 46.17   | 44.68                |  |

<sup>1</sup>Equivalent high and low quotations as reported by Metals Week; price dependent upon the prevailing rate of exchange.

2 Arithmetic average of weekly quotations. Equivalent 1973 average price \$40.25; duty \$3.97, equivalent price, duty paid, \$44.22 per short ton unit.

# FOREIGN TRADE

Exports.—All exports of tungsten concentrate in 1973, which decreased 5% compared with that of 1972, represented excess material purchased from GSA stockpiles. Exports of ferrotungsten fell 40%, but exports of APT rose by a factor of four during the year. Exports of mixed tungsten carbides, primarily to Japan (30%) and Canada (28%), decreased 31% during 1973.

Exports of unwrought tungsten metal and alloy in crude form, waste, and scrap increased 68% in 1973 to 672,773 pounds, gross weight, valued at \$1,017,164, and were shipped primarily to West Germany (48%), the Netherlands (25%), Canada (15%), and Belgium-Luxembourg (9%).

Tungsten and tungsten alloy powder exports fell 31% during the year to 356,954 pounds gross weight, value at \$2,316,935. This material was exported primarily to Japan (30%), Canada (28%), West Germany (13%), Belgium-Luxembourg (8%), and Israel (7%).

Exports of tungsten and tungsten alloy wire almost doubled in 1973 to 224,750 pounds, gross weight, valued at \$4,801,413. These exports were shipped primarily to West Germany (21%), Canada (17%), Japan (16%), Belgium-Luxembourg (10%), Brazil (9%), the United Kingdom (8%), and Mexico (7%). Wrought tungsten and tungsten alloy exports rose 75% during the year to 155,073 pounds, gross weight, valued at \$2,153,683. Most of these exports were shipped to Japan (37%), Canada (23%), West Germany (13%), and the United Kingdom (9%).

Imports.—Imports for consumption of tungsten concentrate increased 84% during the year and totaled almost 10.6 million pounds of contained tungsten, the highest import level since 1957. The major sources of concentrate imports in 1973 were Canada (30%), Bolivia (21%), Peru (10%), and Thailand (9%).

During the year, imports of tungsten carbide, primarily from West Germany (84%) and Sweden (14%), decreased 19% and totaled 208,561 pounds of contained tungsten valued at \$1,497,415. Imports of waste and scrap containing over 50% tungsten decreased 25% and totaled 78,711 pounds of tungsten content valued at \$255,199. This material was received primarily from West Germany (44%), the Netherlands (26%), and Japan (14%). Imports of unwrought tungsten (except alloys)

Table 8.-U.S. exports of tungsten ore and concentrate, by country
(Thousand pounds and thousand dollars)

|                                          |                               | 1972                             |                  | 1973            |                       |           |  |
|------------------------------------------|-------------------------------|----------------------------------|------------------|-----------------|-----------------------|-----------|--|
| Country                                  | Gross<br>weight               | Tungsten<br>content <sup>1</sup> | Value            | Gross<br>weight | Tungsten<br>content 1 | Value     |  |
| Ireland<br>Netherlands<br>United Kingdom | ( <sup>2</sup> )<br>116<br>67 | (2)<br>60<br>35                  | (2)<br>161<br>50 | 146<br>28       | 75<br>15              | 204<br>35 |  |
| Total                                    | 183                           | 95                               | 211              | 174             | 90                    | 239       |  |

<sup>&</sup>lt;sup>1</sup> Tungsten content estimated by multiplying the gross weight by a factor of 0.516.

<sup>2</sup> Less than ½ unit.

Table 9.-U.S. exports of ammonium paratungstate, by country
(Pounds)

| ·                         |                             | 1972                               | 1973    |                 |                                               |          |
|---------------------------|-----------------------------|------------------------------------|---------|-----------------|-----------------------------------------------|----------|
| Country                   | Gross<br>weight             | Estimated<br>tungsten<br>content 1 |         | Gross<br>weight | Estimated<br>tungsten<br>content <sup>1</sup> | Value    |
| Canada                    |                             |                                    |         | 21,000          | 14,839                                        | \$60,480 |
| Colombia                  | 1,017                       | 719                                | \$2,033 |                 |                                               |          |
| Ecuador                   | 750                         | 530                                | 2,668   |                 |                                               |          |
| Ethiopia                  |                             |                                    |         | 388             | 274                                           | 775      |
| France                    | $4\overline{3}\overline{7}$ | 309                                | 874     |                 |                                               |          |
|                           | 89.600                      | 63.311                             | 170,039 | 88.026          | 62,199                                        | 174,183  |
| Guatemala                 | 863                         | 610                                | 1.230   | 00,020          | 02,200                                        | ,        |
|                           | 657                         | 464                                | 1.314   |                 |                                               |          |
| Ireland                   | 1.042                       | 736                                | 2.084   | 304.981         | $215.5\overline{00}$                          | 539.034  |
| Japan                     | 250                         | 177                                | 500     | 304,301         | 210,000                                       | 000,004  |
| Mexico                    | 250                         | 111                                | 900     | 890             | 629                                           | 1,780    |
| Peru                      |                             |                                    |         |                 | 59                                            | 518      |
| Philippines               |                             |                                    |         | 84              |                                               | 628      |
| South Africa, Republic of |                             |                                    |         | 400             | 283                                           | 628      |
| Syria                     | 864                         | 611                                | 1,728   |                 |                                               |          |
| Total                     | 95,480                      | 67,467                             | 182,470 | 415,769         | 293,783                                       | 777,398  |

<sup>&</sup>lt;sup>1</sup> Estimated contained weight obtained by multiplying the gross weight by 0.7066.

Table 10.-U.S. exports of ferrotungsten, by country (Pounds)

|                  |                 | 1972                                          |              | 1973            |                                               |                    |
|------------------|-----------------|-----------------------------------------------|--------------|-----------------|-----------------------------------------------|--------------------|
| Country          | Gross<br>weight | Estimated<br>tungsten<br>content <sup>1</sup> | Value        | Gross<br>weight | Estimated<br>tungsten<br>content <sup>1</sup> | Value              |
| Canada<br>Mexico | 20,270          | 16,216                                        | \$81,066<br> | 9,574<br>3,200  | 7,659<br>2,560                                | \$38,298<br>12,175 |
| Venezuela        | 986             | 789                                           | 3,700        |                 |                                               |                    |
| Total            | 21,256          | 17,005                                        | 84,766       | 12,744          | 10,219                                        | 50,473             |

<sup>1</sup> Estimated tungsten content obtained by multiplying the gross weight by 0.80.

TUNGSTEN 1253

| Table | 11U.S. | exports | of  | tungsten | alloy | powder |
|-------|--------|---------|-----|----------|-------|--------|
|       |        | (I      | oui | nds)     |       |        |

|                           | •               | •                                            |           |                 |                                               |           |  |  |
|---------------------------|-----------------|----------------------------------------------|-----------|-----------------|-----------------------------------------------|-----------|--|--|
|                           |                 | 1972                                         |           |                 | 1973                                          |           |  |  |
| Country                   | Gross<br>weight | Estimate<br>tungsten<br>content <sup>1</sup> | Value     | Gross<br>weight | Estimated<br>tungsten<br>content <sup>1</sup> | Value     |  |  |
| Argentina                 | 100             | 78                                           | \$669     |                 |                                               |           |  |  |
| Australia                 | 30,148          | 23,515                                       | 68,364    | 5,078           | 3,961                                         | \$25,321  |  |  |
| Austria                   | 13,968          | 10,895                                       | 67,301    | 18,591          | 14,501                                        | 83,025    |  |  |
| Belgium-Luxembourg        | 4,336           | 3,382                                        | 35,967    | 36,316          | 28,326                                        | 164,025   |  |  |
| Brazil                    | 2,407           | 1,877                                        | 23,447    | 9,042           | 7,053                                         | 43,657    |  |  |
| Canada                    | 237,941         | 185,594                                      | 609,285   | 128,495         | 100,226                                       | 713,162   |  |  |
| Chile                     | 7,792           | 6,078                                        | 1,350     |                 |                                               |           |  |  |
| Costa Rica                | 9,936           | 7,750                                        | 4,126     |                 |                                               |           |  |  |
| Denmark                   | 450             | 351                                          | 1,848     |                 |                                               |           |  |  |
| Finland                   | 50              | 39                                           | 746       | 7,711           | 6,015                                         | 36,161    |  |  |
| France                    | 27,665          | 21,579                                       | 64,548    | 430             | 335                                           | 3,958     |  |  |
| Germany, West             | 62,996          | 49,137                                       | 503,419   | 58,503          | 45,632                                        | 312,960   |  |  |
| India                     | ·               |                                              |           | 895             | <b>69</b> 8                                   | 4,247     |  |  |
| Ireland                   | 22              | 17                                           | 982       | 1,175           | 917                                           | 10,178    |  |  |
| Israel                    | 21,459          | 16,738                                       | 101,875   | 30,259          | 23,602                                        | 142,333   |  |  |
| Italy                     | 29,745          | 23,201                                       | 248,876   | 2,304           | 1,797                                         | 10,89     |  |  |
| Japan                     | 22,656          | 17,672                                       | 62,215    | 137,779         | 107,468                                       | 646,31    |  |  |
| Libva                     | 100             | 78                                           | 608       |                 |                                               | -         |  |  |
| Mexico                    | 129,770         | 101.221                                      | 244,628   | 11,855          | 9,247                                         | 61,502    |  |  |
| Netherlands               | 25,601          | 19,969                                       | 151,027   |                 |                                               | -         |  |  |
| Portugal                  | 60              | 47                                           | 654       |                 |                                               |           |  |  |
| South Africa, Republic of | 1.718           | 1,340                                        | 14,479    |                 |                                               |           |  |  |
| Spain                     | ´               | ´                                            | ·         | 208             | 162                                           | 2,550     |  |  |
| Sweden                    | 13,529          | 10,553                                       | 20,966    | 4,537           | 3,539                                         | 23,082    |  |  |
| Switzerland               | 11,619          | 9,063                                        | 76,869    | 2,121           | 1,654                                         | 19,029    |  |  |
| Taiwan                    | ,               | ,                                            | ,         | 300             | 234                                           | 3,60      |  |  |
| Turkey                    | 90              | 70                                           | 1,373     |                 |                                               |           |  |  |
| United Kingdom            | 8.084           | 6,305                                        | 36,136    | 2,034           | 1,587                                         | 10,94     |  |  |
| Venezuela                 | 800             | 624                                          | 3,680     |                 | ,                                             | ·         |  |  |
| Total                     | 663,042         |                                              | 2,345,438 | 457,633         | 356,954                                       | 2,316,935 |  |  |
|                           |                 |                                              |           |                 |                                               |           |  |  |

<sup>&</sup>lt;sup>1</sup> Estimated tungsten content obtained by multiplying the gross weight by 0.78.

in lump, grain, and powder fell 61% to 55,601 pounds of contained tungsten valued at \$298,561 and were received primarily from West Germany (47%), the United Kingdom (37%), Sweden (12%), and East Germany (3%).

In 1973, imports of unwrought tungsten, n.e.c., totaled 45,509 pounds, gross weight, valued at \$160,101, and were received from West Germany (73%), and France (27%). Wrought tungsten imports tripled during the year and totaled 16,620 pounds, gross weight, valued at \$762,156. This material was imported primarily from Japan (31%), Switzerland (23%), Austria (13%), Brazil (12%), the Netherlands (11%), and Sweden (7%).

Imports of tungsten material classified as "metal-bearing materials in chief value of tungsten" increased by a factor of almost three during 1973 and totaled 266,842 pounds of contained tungsten valued at \$574,156. These imports were received primarily from Thailand (56%) and the Republic of Korea (42%). Most of the material imported under this classification was believed to be synthetic scheelite. In addition, 219,567 pounds of contained tungsten was imported, all from the Republic of Korea, as ammonium tungstate valued at \$608,042. This material was upgraded at the new South Korean tungsten processing facility.

Calcium tungstate imports, almost all from West Germany, increased 35% in 1973 and totaled 36,814 pounds of contained tungsten, value at \$389,527.

During the year the tariff rates on all forms of tungsten imports from non-Communist and Communist countries remained unchanged.

Table 12.-U.S. imports 1 of tungsten ore and concentrate, by country (Thousand pounds and thousand dollars)

|                             |                 | 1972                |        |                 | 1973                |        |
|-----------------------------|-----------------|---------------------|--------|-----------------|---------------------|--------|
| Country                     | Gross<br>weight | Tungsten<br>content | Value  | Gross<br>weight | Tungsten<br>content | Value  |
| Argentina                   |                 |                     |        | 111             | 59                  | 61     |
| Australia                   | 695             | 392                 | 951    | 551             | 320                 | 748    |
| Bolivia                     | 1,568           | 880                 | 1.624  | 3,910           | 2.183               | 4,659  |
| Brazil                      | 223             | 123                 | 251    | 760             | 433                 | 932    |
| Burma                       |                 |                     |        | 56              | 31                  | 54     |
| Canada                      | 2,721           | 1,634               | 3,507  | 5.303           | 3.189               | 7,555  |
| Chile                       |                 | ,                   |        | 132             | 74                  | 131    |
| China, People's Republic of |                 |                     |        | 154             | 81                  | 214    |
| France                      |                 |                     |        | 168             | 56                  | 111    |
| Germany, West               | 975             | 257                 | 588    | 711             | 267                 | 332    |
| Guatemala                   |                 |                     |        | 2,232           | 371                 | 46     |
| Kenya                       | 91              | 54                  | 234    | ´               |                     |        |
| Korea, Republic of          | 641             | 370                 | 734    | 964             | 547                 | 1,145  |
| Malaysia                    | 288             | 166                 | 354    | 568             | 323                 | 685    |
| Mexico                      | 198             | 107                 | 218    | 614             | 333                 | 727    |
| Peru                        | 1,162           | 670                 | 1.162  | 1.742           | 1,039               | 2,064  |
| Portugal                    | 14              | 9                   | 24     | 303             | 176                 | 470    |
| Rwanda                      | 121             | 72                  | 133    | 202             | 108                 | 238    |
| South Africa, Republic of   |                 |                     |        | 151             | 82                  | 199    |
| Spain                       |                 |                     |        | 100             | 56                  | 138    |
| Thailand                    | 1.903           | 1.069               | 2,323  | 1.569           | 843                 | 1.815  |
| Uganda                      |                 |                     | ,      | 22              | 11                  | 32     |
| Zaire                       | 175             | 95                  | 213    | 338             | 183                 | 417    |
| Total                       | 10,775          | 5,898               | 12,316 | 20,661          | 10,765              | 22,773 |

<sup>&</sup>lt;sup>1</sup> Data are "general imports;" that is, they include tungsten imported for immediate consumption plus material entering warehouses.

Table 13.-U.S. imports for consumption of tungsten ore and concentrate, by country

(Thousand pounds and thousand dollars)

|                             |                 | 1972                | 1973   |                 |                     |        |
|-----------------------------|-----------------|---------------------|--------|-----------------|---------------------|--------|
| Country                     | Gross<br>weight | Tungsten<br>content | Value  | Gross<br>weight | Tungsten<br>content | Value  |
| Argentina                   |                 |                     |        | 111             | 59                  | 61     |
| Australia                   | 695             | 392                 | 951    | 551             | 320                 | 748    |
| Bolivia                     | 1,390           | 780                 | 1,443  | 3,912           | 2.183               | 4,659  |
| Brazil                      | 223             | 124                 | 265    | 815             | 465                 | 989    |
| Burma                       |                 |                     |        | 56              | 31                  | 55     |
| Canada                      | 2,721           | 1,634               | 3,507  | 5.303           | 3,189               | 7,555  |
| Chile                       | ·               |                     | ·      | 132             | 74                  | 131    |
| China, People's Republic of |                 |                     |        | 154             | 81                  | 214    |
| France                      |                 |                     |        | 168             | 56                  | 111    |
| Germany, West               | 975             | 257                 | 588    | 711             | 267                 | 332    |
| Kenya                       | 91              | 54                  | 234    |                 |                     |        |
| Korea, Republic of          | 641             | 370                 | 734    | 964             | 547                 | 1.145  |
| Malaysia                    | 288             | 166                 | 354    | 568             | 323                 | 685    |
| Mexico                      | 165             | 90                  | 200    | 646             | 348                 | 745    |
| Peru                        | 1,407           | 814                 | 1,516  | 1,742           | 1,039               | 2,064  |
| Portugal                    | 14              | 9                   | 24     | 303             | 176                 | 470    |
| Rwanda                      | 176             | 100                 | 191    | 202             | 108                 | 238    |
| South Africa, Republic of   |                 |                     |        | 151             | 82                  | 199    |
| Spain                       |                 |                     |        | 100             | 56                  | 138    |
| Thailand                    | 1,581           | 883                 | 1,976  | 1,776           | 954                 | 2,050  |
| Uganda                      |                 |                     |        | 22              | 11                  | 32     |
| Zaire                       | 120             | 66                  | 156    | 338             | 183                 | 416    |
| Total                       | 10,487          | 5,739               | 12,139 | 18,725          | 10,552              | 23,037 |

TUNGSTEN 1255

Table 14.-U.S. imports for consumption of ferrotungsten, by country (Pounds)

|                    |                 | 1972                |           | 1973            |                     |                        |  |
|--------------------|-----------------|---------------------|-----------|-----------------|---------------------|------------------------|--|
| Country            | Gross<br>weight | Tungsten<br>content | Value     | Gross<br>weight | Tungsten<br>content | Value                  |  |
| Austria            | 30,864          | 24,691              | \$64,400  | 405,982         | 333,166             | \$979,121              |  |
| Belgium-Luxembourg |                 |                     |           | 11.023          | 9.310               | 25,352                 |  |
| Canada             | 238,595         | 189,643             | 501.288   | 53.845          | 41,848              | 115,594                |  |
| France             | 12.787          | 10,024              | 27,171    | 33,069          | 25,906              | 73,087                 |  |
| Germany. West      | 114,580         | 88,171              | 228,077   | 197.891         | 157,367             | 406,522                |  |
| Norway             | 9,000           | 6,975               | 19.844    | ,               | ,                   | ,                      |  |
| Portugal           | 126,103         | 104,737             | 275,284   | 94.357          | 78.894              | 209,978                |  |
| Sweden             | 55,115          | 44,935              | 110.019   | 01,001          | 10,002              | 200,010                |  |
| United Kingdom     | 427,980         | 344,746             | 943,143   | 596,131         | 460,016             | $1,295,1\overline{54}$ |  |
| Total              | 1,015,024       | 813,922             | 2,169,226 | 1,392,298       | 1,106,507           | 3,104,808              |  |

Table 15.—U.S. imports for consumption of tungsten and tungsten carbide forms (Thousand pounds and thousand dollars)

| Year   | Ingots, shot, bars,<br>scrap |       | Wire, sheets, other forms, n.s.p.f. |       | Tota     | al .  |
|--------|------------------------------|-------|-------------------------------------|-------|----------|-------|
|        | Quantity                     | Value | Quantity                            | Value | Quantity | Value |
| 1971 r | 227                          | 822   | 236                                 | 1,602 | 463      | 2,424 |
| 1972 r | 467                          | 1,232 | 624                                 | 2,309 | 1,091    | 3,541 |
| 1973   | 730                          | 1,431 | 703                                 | 3,516 | 1,433    | 4,947 |

r Revised.

Table 16.—Tungsten: Estimated world reserves and resources, by major country

(Million pounds of contained tungsten)

| Country            | Reserves | Resources                               |
|--------------------|----------|-----------------------------------------|
| North America:     |          |                                         |
| Canada             | 24       | 28                                      |
| United States      |          | 300                                     |
| South America:     |          | 000                                     |
| Bolivia            | 87       | 105                                     |
| Brazil             |          | 60                                      |
| Europe:            | 20       | • • • • • • • • • • • • • • • • • • • • |
| Portugal           | 22       | 30                                      |
| U.S.S.R.e          | 27       | 35                                      |
| Asia:              | 21       | 99                                      |
|                    | 67       | 00                                      |
| Burma              | 0.1      | 90                                      |
| China, People's    | 0.000    | 0.000                                   |
| Republic of e      |          | 2,000                                   |
| Malaysia           | 32       | 40                                      |
| North Korea •      | 105      | 115                                     |
| Republic of Korea  |          |                                         |
| (South)            | 101      | 110                                     |
| Thailand           | 10       | 20                                      |
| Oceania: Australia | 25       | 30                                      |
|                    | 45       | 97                                      |
|                    |          |                                         |
| Total              | 2,760    | 3,060                                   |

e Estimate.

#### **WORLD RESERVES AND RESOURCES**

At yearend 1973, domestic reserves and resources of tungsten as reported by the U.S. Geological Survey and the Bureau of Mines totaled about 175 million pounds and 300 million pounds of tungsten, respectively.5

Estimated world reserves and resources of tungsten at yearend, totaled 2,750 million pounds and 3,060 million pounds of contained tungsten, respectively, as indicated in table 17.6

<sup>5</sup> Hobbs, S. W., and J. E. Elliott. Tungsten. Ch. in United States Mineral Resources. U.S. Geol. Survey Prof. Paper 820, 1973, pp. 667-678. Work cited in footnote 5.

<sup>6</sup> Business Week. The Scramble for Resources. No. 2286, June 30, 1973, pp. 56-63. Miller, J. R. Metals Resources—Tungsten. J. Metals, v. 25, No. 9, September 1973, pp. 222-224.

Table 17.-Tungsten: World production by country (Thousand pounds of contained tungsten 1)

| Country <sup>2</sup>              | 1971     | 1972        | 1973 P |
|-----------------------------------|----------|-------------|--------|
| North America:                    |          |             |        |
| Canada 3                          | 3.667    | 3.527       | 4.594  |
| Guatemala                         | e 90     | 18          | 348    |
| Mexico                            | 899      | 798         | 767    |
| United States                     | 6.900    | 8.150       | 7,575  |
| South America:                    | 0,900    | 0,100       | 1,515  |
| Argentina                         | r 304    | 154         | e 155  |
|                                   | 4.608    | 4.923       |        |
|                                   |          |             | 4,815  |
|                                   | r 2,989  | 2,515       | 2,097  |
| Peru                              | r 1,673  | 1,887       | 1,753  |
| Europe:                           |          |             |        |
| Austria                           | 99       |             |        |
| France                            | r 163    | 1,237       | 1,532  |
| Portugal                          | 2,176    | 3,093       | 3,333  |
| Spain                             | 897      | <b>79</b> 8 | 789    |
| Sweden e                          |          | 90          | 570    |
| U.S.S.R.e                         | 15,400   | 15,900      | 16,300 |
| United Kingdom                    | 11       | 4           | • 4    |
| Africa :                          |          |             |        |
| Niger                             | e 2      |             |        |
| Nigeria                           | e 2      | e 2         | 9      |
| Rhodesia, Southern 6              | 409      | 333         | 339    |
| Rwanda e                          | 440      | 570         | 570    |
| South Africa, Republic of         | 15       | 1           | 1      |
| South-West Africa, Territory of 7 | 209      | 196         | 49     |
|                                   | r 12     | 6           | 2      |
|                                   | 243      | 240         | e 240  |
| Uganda                            | r 708    | 635         | 531    |
| Zaire                             | - 108    | 000         | 991    |
| Asia:                             | 0.40     | 992         | 1.102  |
| Burma                             | 842      |             |        |
| China, People's Republic of e     | 15,400   | r 16,500    | 17,600 |
| India                             | 33       | 37          | 24     |
| Japan                             | r 1,609  | 1,978       | 2,072  |
| Korea, North e                    | 4,740    | 4,740       | 4,750  |
| Korea, Republic of                | r 4,784  | 4,374       | 4,96   |
| Malaysia                          | 20       | 12          | e 1    |
| Thailand                          | 5,527    | 7,370       | 5,730  |
| Oceania:                          |          |             |        |
| Australia                         | r 3,175  | 3,373       | 2,68   |
| New Zealand                       | r 9      | 17          | . 2    |
| Total                             | r 78.055 | 84.470      | 85,320 |

<sup>&</sup>lt;sup>e</sup> Estimate. 

<sup>p</sup> Preliminary. 

<sup>r</sup> Revised.

<sup>1</sup> Conversion factors: WO<sub>3</sub> to W multiply by 0.7931; 60% WO<sub>3</sub> to W multiply by 0.4758.

<sup>2</sup> In addition to the countries listed, Czechoslovakia reported tungsten production from tinungsten ores in previous years. It is not known if the production had continued to the present.

<sup>3</sup> Producer's shipments; actual production data is not officially reported, but available company figures indicate a substantial difference between actual output and shipments in some years.

<sup>4</sup> Data are the sum of production reported by COMIBOL and export credited to medium and small mines.

small mines. Figures exceed those reported in official Brazilian sources; these sources do not include produc-

tion by small mines, which in aggregate appear to be substantial.

<sup>6</sup> Production from Beardmore mine only, and are for the year ended September 30 of the

year stated.
<sup>7</sup> Data are for South West Africa Co. Ltd. only, and are for the year ended June 30 of the year stated.

TUNGSTEN 1257

## **WORLD REVIEW**

The Committee on Tungsten of the United Nations Conference on Trade and Development (UNCTAD) met in Geneva, Switzerland, late in the fall to discuss methods of stabilizing world prices, obtaining more detailed ore reserve data and evaluating statistical data on tungsten concentrate trade and product consumption. Membership in the Working Group, a subsidiary of the Committee on Tungsten, was further expanded to include Japan, the Netherlands, Thailand, the United Kingdom, and the U.S.S.R. Other members of the Working Group are Australia, Austria, Bolivia, Portugal, the Republic of Korea, Sweden, the United States, and West Germany. The Committee staff continued to canvass, tabulate, and report detailed statistics on tungsten production, consumption, and trade in the quarterly bulletin, "Tungsten Statistics." Copies

of these reports are \$3 each and are available on a standing order basis from the United Nations Sales Section, Geneva, Switzerland, or New York.

A comprehensive evaluation of the present status of tungsten powder metallurgy in Canada, Italy, Japan, Romania, Spain, Sweden, the United Kingdom, the United States, the U.S.S.R., and West Germany was released during the year.8

Australia.-Aberfoyle Ltd. ceased tungsten production from the company's Storeys Creek facilities in Tasmania at mid-year 1973 and the operations were placed on

Table 18.-Tungsten: World concentrate consumption, by country (Thousand pounds of contained tungsten)

| Country 1                                           | 1971     | 1972     | 1973 I  |
|-----------------------------------------------------|----------|----------|---------|
| Actual consumption:                                 |          |          |         |
| Australia                                           | 88       | 88       | e 88    |
| Austria                                             | 3,417    | 3,109    | 2,690   |
| Czechoslovakia                                      | e 2,900  | e 3,000  | • 3,031 |
| France                                              | 2,467    | 2,734    | 3,854   |
| Japan                                               | 4,579    | 5,128    | 7,740   |
| Portugal                                            | 498      | 679      | 728     |
| Sweden                                              | 3,228    | 3.040    | 2,806   |
| United Kingdom                                      | 4.819    | 7,205    | 7,900   |
| United States                                       | 11,622   | 14,107   | 15,386  |
| Apparent consumption, excluding stock variations: 2 | ,        | ,        |         |
| Argentina                                           | 84       | 97       | 115     |
| Belgium-Luxembourg                                  | e 66     | 108      | 145     |
| Brazil                                              | 463      | e 494    | e 52    |
| Bulgaria e 3                                        | 75       | 70       | 68      |
| Canada                                              | e 441    | e 551    | • 560   |
| China, People's Republic of e 3                     | 4,000    | 4,500    | 4.500   |
| Germany:                                            | •        | ,        | •       |
| East e 3                                            | 750      | 700      | 700     |
| West                                                | 5.324    | 5.514    | 7.280   |
| Hungary e 3                                         | 50       | 50       | 50      |
| India                                               | 412      | 423      | 430     |
| Italy                                               | 126      | 104      | 110     |
| Korea:                                              |          |          |         |
| North e 3                                           | 3,500    | 3.500    | 3.500   |
| South 4                                             | -,       | -,       | • 550   |
| Netherlands                                         | 613      | 1.581    | 1.65    |
| Poland                                              | 3,876    | 3,993    | 4.08    |
| Romania e 3                                         | 30       | 30       | 30      |
| South Africa, Republic of                           | e 582    | 794      | 850     |
| SpainSpain                                          | 203      | 284      | 340     |
| U.S.S.R.e 3                                         | 14.200   | 14,700   | 14,800  |
|                                                     |          |          | 84,504  |
| Total                                               | r 68,413 | r 76,583 | 54,504  |

<sup>&</sup>lt;sup>p</sup> Preliminary. r Revised. Estimate.

<sup>&</sup>lt;sup>7</sup> UNCTAD Committee on Tungsten (Geneva, Switzerland). Tungsten Statistics. V. 7, Nos. 1-4,

<sup>&</sup>lt;sup>8</sup> American Powder Metallurgy Institute. (Princeton, N.J.). Internat. J. Powder Metallurgy, v. 9, No. 3, July 1973, 100 pp. (entire

In addition, the following countries may consume tungsten concentrate but specific data are not available: Denmark, Finland, Israel, Norway, Switzerland, and Yugoslavia.

Production plus imports minus exports.

Estimated by author of chapter.

<sup>&</sup>lt;sup>4</sup> Data represents tungsten concentrate consumed to make ammonium paratungstate at new APT plant adjacent to Sangdong mine.

Primary source: UNCTAD Committee on Tungsten quarterly reports "Tungsten Statistics" and Annual Company Reports.

"standby" status.9 Tungsten production from the adjacent tin-tungsten Aberfoyle mine was continued at a rate of 180 to 200 tons per day.

King Island Scheelite, Ltd., a subsidiary of Peko-Wallsend Ltd., continued to develop the Bold Head tungsten ore body in Tasmania.10 Some development ore was available by late 1973, and full production is expected by mid-1975. When full-scale production is achieved, the Bold Head project is expected to have a capacity of about 200,000 tons per year of tungsten ore. King Island Scheelite has also announced plans to construct a plant to recover the molybdenum contained in the scheelite ores.

Canada.—During 1973, Canada Tungsten Mining Corp. Ltd. (CTMC), the country's major tungsten producer, at Tungsten, Northwest Territories, completed open pit mining operations and stockpiled a total of 103,670 tons of ore averaging 1.60% WO3.11

At yearend, ore reserves amounted to 177,600 tons of scarn-type ore grading 1.62% WO<sub>3</sub> and 73,600 tons averaging 0.71% WO<sub>3</sub>. This material could only be mined by using underground methods.

A total of 164,900 tons of ore containing an average of 1.22% WO3 and 0.161% of copper (Cu) were processed during the vear. Total production amounted to 161,430 stu WO<sub>3</sub> (almost 2.6 million pounds of contained tungsten). Overall mill recovery of WO<sub>3</sub> averaged 80.2% for the year. The concentrator operated a total of 90.1% of possible time and treated an average of 452 tons per day. Milling of the lower grade chert ore was discontinued in August when the higher grade skarn-type ore from the open pit became available. This resulted in a more efficient milling operation.

In addition to the scheelite concentrate, 197,861 pounds of byproduct copper concentrate was produced during 1973, a decrease of 12% compared with 1972 production.

At yearend CTMC estimated its chert ore reserves in place to total about 615,000 tons averaging 0.81% WO<sub>3</sub> (about 10 million pounds of contained tungsten). Stockpile balances at December 31, 1973, amounted to 34,460 tons of scarn ore grading 1.73% WO<sub>3</sub> for 59,507 short ton units (0.9 million pounds of contained tungsten) and 63,907 tons of chert ore grading 1.17% WO3 for 74,528 short ton units (almost 1.2 million

pounds of contained tungsten).

CTMC announced plans to commence underground mine production on a steady basis at Tungsten during 1974. The proven underground ore reserves totaled 4,242,000 tons at an average grade of 1.68% WO<sub>3</sub> for 7,106,000 short ton units (almost 113 million pounds of contained tungsten). This material should be sufficient for a 20-year supply at a milling rate of 500 to 600 tons per dav.

The Vancouver Leach Plant of CTMC in North Vancouver, British Columbia, operated well during the year with overall recovery of 96.99%. There were no significant changes in the leach plant opera-

Mining at the Canex Tungsten Division of Placer Development Ltd. near Salmo, British Columbia, was completed in September 1973, and mill operations ceased.12

Underground production decreased as the ore reserves were depleted. Subsequently, the equipment and most of the buildings were sold at public auction. A termination allowance was provided by the company to assist employees put out of work by the closure.

AMAX Exploration Inc., a subsidiary of American Metal Climax Inc., identified a significant scheelite deposit of over 30 million tons of ore averaging 0.9% WO3 in the MacMillan Pass district on the Yukon-Territories border northwest of Whitehorse. Further drilling and evaluation is required to fully outline the deposit.

China, People's Republic of .- The richest and most extensive tungsten deposits in the world are located in the south of China, along the Nan Ling Range. They extend from the southwest to the northeast, roughly parallel to the southwestern coast.13

A Japanese trade association indicated interest in obtaining Chinese tungsten concentrate if the material, which was re-

 <sup>&</sup>lt;sup>9</sup> Aberfoyle Ltd. (Melbourne, Australia). 1972–73 Annual Report. 13 pp.
 <sup>10</sup> Peko-Walland (Sydney, Australia). 1972–73 Annual Report. 32 pp.
 <sup>11</sup> Canada Tungsten Mining Corp. Ltd. (Toronto, Canada). 1973 Annual Report. 9 pp.
 <sup>12</sup> Placer Development Ltd. (Vancouver, Canada). 1973 Annual Report. 32 pp.
 <sup>13</sup> Canadian Mining Journal. CMJ and the Canadian Minerals and Metals Mission to China.
 V. 94, No. 1, January 1973, pp. 19–31.
 Mamen, C. China Report—Part Two: Mines and Plants Visited Can. Min. J., v. 94, No. 3, March 1973, pp. 28–34.
 U.S. Embassy, Ottawa, Canada. Minerals and Metallurgy: Canadian Mission to PRC, Novem-

U.S. Embassy, Ottawa, Canada. Minerals and Metallurgy: Canadian Mission to PRC, November-December 1972. State Department Airgram A-238, May 12, 1973, 36 pp.

TUNGSTEN 1259

portedly far below Japanese standards, were upgraded. It is believed that the Chinese made subsequent efforts to upgrade the quality of their concentrate.

A sample analysis of Chinese tungsten concentrate being sold for export indicated the material to be mostly wolframite, with very little scheelite, containing about 65.6% WO3. In addition, spectrographic analysis showed that the material contained 10% or more of iron, and 1% to 10% of aluminum, manganese, and silicon. Because of the lack of knowledge regarding the methods of processing concentrate, it is recognized that this material does not necessarily represent a true sampling of Chinese tungsten concentrate, but the analysis gives an indication of the type and grade of material available from China.

To promote trade with the People's Republic of China, several reports were prepared.14 To keep abreast of the current activity in the People's Republic of China, a subscription to Translations From the Mainland China Press is available from the National Technical Information Service (NTIS) in Springfield, Va.

Reportedly, the status of powder metallurgy technology in the People's Republic of China is rapidly expanding, and the sintered carbide tools, which China exports to foreign countries, are suppose to be of high quality.15

Guatemala.—A medium sized coproduct mining operation, F. Y. Wellman Co., recovered tungsten and antimony (Sb) semiconcentrates, primarily for export, in the Department of Huehuetenango. Combined mine production (Sb plus WO3) was about 165 short tons per month. In 1973 antimony production rose 63% while production of coproduct tungsten increased by a factor of almost 20. Most of this combined concentrate was shipped by rail through Mexico to the smelter of NL Industries, Inc., at Laredo, Tex., for further processing. At Laredo, a tungsten recovery circuit is scheduled to begin processing the imported tungsten semi-concentrate containing about 22% WO3 in mid-1974 to a commercial grade concentrate (65% to 70% WO<sub>3</sub>).

Japan.—The demand for tungsten in 1973 was extremely strong as Japanese consumption increased about 50% to 7.7 million pounds of tungsten. The Japanese

tungsten utilization ratio was about as indicated in the following:

| Industry                                 | Percent   | Form                       |
|------------------------------------------|-----------|----------------------------|
| Iron and Steel<br>Electronics            | 40        | Ferrotungsten.             |
| (tungsten mill products).                | 30        | Tungsten metal powder.     |
| Tungsten carbide cutting tools. Chemical | 29<br>_ 1 | Tungsten carbide. Ammonium |

Because only about 1.9 million pounds of tungsten was recovered domestically, the remainder of demand comprised imports. In early December, the Japanese Tungsten and Molybdenum Association sent a mission to the People's Republic of China to negotiate purchase of 0.9 million pounds of tungsten for 1974 and to establish a longterm agreement that would give Japan an assured source of supply. In the near future, Japan reportedly plans to recover tungsten from tailings material.

The Uji ferroalloy works of the Awamura Metal Industry Co., in Osaka was the country's only ferrotungsten producer.16 An electric furnace process is used. The three domestic producers of tungsten powder were Japan New Metals, Nakahara Construction, and Japan Heavy Metals. Their combined output was 2,020 tons, up nearly 40% from 1972.

Korea, Republic of.—The Korea Tungsten Mining Co. Ltd., (KTMC), which is owned 15.5% by the Government, continued to be the country's major tungsten producer during 1973 and accounted for 92.1% of the domestic supply.17 As shown in the following tabulation, KTMC's Sangdong mine accounted for 90.6% of Korean production:

<sup>&</sup>lt;sup>14</sup> Driscoll, G. Overseas Business Reports: Basic Data on the Economy of the People's Republic of China. Bureau of International Commerce, OBR 72-047, September 1972, 39 pp.; available from the U.S. Department of Commerce field offices or from the U.S. Government Printing Office. ment Printing Office

ment Printing Office.

Phipps, J., and J. Matheson. Overseas Business Reports: Trading With the People's Republic of China. Domestic and International Business Administration, OBR 73-16, May 1973, 25 pp.; available from the U.S. Department of Commerce, field offices or from the U.S. Government Printing Office.

U.S. Library of Congress. People's Republic of China: International Trade Handbook. Research Aid A 72-38, December 1972, 33 pp.

15 Page 219 of work cited in footnote 8.

16 Metal Bulletin Monthly (London). Ferro-Alloys Review. No. 40, April 1974, 63 pp.

17 U.S. Embassy, Seoul, Korea. Tungsten Stocks. State Department Airgram A-110, May 2, 1974, 1 p.

<sup>1974, 1</sup> p.

| Company                                              | Short tons<br>(gross weight) |
|------------------------------------------------------|------------------------------|
| Bando Mining Co. Ltd                                 | 23                           |
| Kaya Ind. Co., Ltd<br>Korea Tungsten Mining Co., Ltd | 84                           |
| Dalsong mine                                         | 65                           |
| Sangdong mine                                        | 3,909                        |
| Okbang Mining Co., Ltd                               | 203                          |
| Wolak Mining Co., Ltd                                | NA                           |
| Other companies 1                                    | 32                           |
| Total                                                | 4,316                        |

NA Not available.

About 6 mines.

Stocks of tungsten, primarily tungsten concentrate and chemicals, at yearend, fell 79% compared with those of 1972.

Mongolia.—The capacity of the tungsten mine and ore processing plant in Burentsogt, about 100 miles southeast of Ulan Bator, was doubled as a result of expansion and reconstruction conducted with technical and economic assistance from East German specialists. It appears possible that some of the Mongolian tungsten production, previously sent to the U.S.S.R. for further processing, will be exported to East Germany as repayment for technical

Portugal.—Beralt Tin and Wolfram Ltd. transferred all its holding in the Panasqueira, Barroca Grande, and Rio operations to Beralt Tin & Wolfram (Portugal) SARL, a Portuguese incorporated company, for an 80.55% equity interest in the new company.18 Portuguese banking interests subscribed the equivalent of £1 million (about \$2.5 million) for the remaining 19.45%interest. Production of tungsten at the Panasqueira mine increased as higher ore grade was recovered as a result of the recent development program carried out in the southern areas. The development program has been selective, and the resulting improvement in ore reserves will enable a satisfactory grade of tungsten to be mined during the next few years.

The tungsten-tin-copper ore concentration plant at Barroca Grande and the mill at Rio operated satisfactorily throughout the year with slightly improved recoveries.

The local labor supply continued to be unsatisfactory, and high periodic absenteeism created difficulties. Recruitment from the Cape Verde Island continued and the recruitment campaign for local employees was intensified.

Rhodesia, Southern.—During 1973, Rhodesian tungsten continued to be recovered from the Beardmore mine and mill, operated by the Messina (Transvaal) Develop-

ment Co., Ltd., near Bikita.19 An evaluation of Beardmore's stocks indicated that enough material was available to allow underground mining to continue through December. When this material has been mined the company plans to reprocess selected portions of the slime and sand dumps to produce about 100 tons of WO<sub>3</sub> (about 0.2 million pounds of tungsten) contained in concentrate by the end of the current financial year (June 30, 1974) when production is expected to cease.

In close association with the Tribal Trust Land Development Corp. plans for construction of an ion-exchange tungsten refinery to process tungsten from scheelite ore at a 95% recovery factor were reported.20 The refinery, using considerable scheelite from tribal areas, is expected to be built at Ntabazinduna or in the Bulawayo industrial area about 200 miles southwest of Salisbury.

Sweden.—Tungsten concentrate was recovered by AB Statsgruvor at its Yxsjöberg mill in central Sweden. Full scale production has been under way since the beginning of November 1972 when scheelitefluorspar ores were processed at an annual rate of 165,000 short tons of tungsten ore having an average grade of 0.3% WO<sub>3</sub>.21 During 1973 the mill's annual yield was reported to be about 440 tons of first-grade scheelite concentrate containing 73% WO<sub>3</sub> and about 110 tons of second-grade scheelite semiconcentrate containing 40% WO3.

Thailand.—The recovery of tungsten concentrate from large deposits recently discovered at Khao Soon and Doi Mok in the southern peninsula area resulted in the substantial increase in tungsten production during the early 1970's. Mining methods used at these operations by thousands of peasants were extremely dangerous. Following the heavy rains in 1973, landslides caused the Doi Mok mine disaster, which involved several fatalities and closure of the mine. During 1973, Thai tungsten

<sup>18</sup> Beralt Tin and Wolfram Ltd. (London). 1973 Annual Report. 20 pp. Charter Consolidated Ltd. (London). 1973

Annual Report. 50 pp.

Annual Report. 50 pp.

<sup>19</sup> Messina (Transvaal) Development Co., Ltd.
(Johannesburg, Republic of South Africa).

1973 Annual Report. 28 pp.

<sup>20</sup> Chamber of Mines Journal (Salisbury, Southern Rhodesia). \$250,000 Scheelite Refinery Scheme Arouses Wide Interest: New Ion Exchange Process Will be Used. V. 15, No. 2, February 1973, p. 26.

<sup>21</sup> World Mining (International Edition). V. 26, No. 7, June 25, 1973, pp. 184–185.

TUNGSTEN 1261

production decreased 22% to 5.7 millon pounds of contained tungsten, 83% came

from wolframite and 17% came from scheelite ores.

## **TECHNOLOGY**

During the year, studies were continued by Bureau of Mines research scientists at the Salt Lake City Metallurgy Research Center to develop economic methods for recovering tungsten from the low-grade brine deposits of Searles Lake, Calif., which contain an estimated 135 million pounds tungsten. If recoverable, this could almost double the Nation's tungsten reserves. Bureau of Mines research engineers at Salt Lake City also evaluated methods for economically recovering tungsten and associated metals from oxide ores, machining wastes, and alloy scrap. Under this program, about 90% of the electrochemical machining sludges were recycled from the brine electrolyte.

Research metallurgical engineers at the Bureau of Mines Albany (Oregon) Metallurgy Research Center conducted two extensive evaluations of tungsten carbide coal cutters as part of studies on nonsparking steels and on ignition hazards due to frictional sparks.

A comprehensive bibliography of tungtechnology, published quarterly, is available from Climax Molybdenum Co., Greenwich, Conn.22

Studies conducted by Bureau of Mines metallurgists at the Boulder City (Nevada) Metallurgy Research Laboratory evaluated mixtures of sized tungsten carbide (WC) particles and solvent degreased Titanium-Aluminum—4% Vanadium alloys, which were compacted in a hydraulic press.23

A second annual report highlighting Bureau of Mines minerals research and reviewing molybdenum-tungsten research programs was published during the year.24

Studies of chemical vapor deposition (CVD) methods used in tungsten processing techniques were evaluated to determine the optimum conditions of temperature and pressure for hydrogen reduction of tungsten hexfluoride (WF6).25

Although cladding tungsten with a palladium-gold gave only short-term protection against oxidation, the addition of tungsten to a Pd-33% Au alloy resulted in a stable coating for tungsten.26

A Soviet research study indicated that

titanium coatings could be satisfactorily diffusion bonded to tungsten.27

Diffusion bonding and metallic spray coating by explosive bonding, results in a smooth tungsten coating with little oxide.28 The adhesion strength of tungsten coatings prepared in this method is greater than that obtained by other, more conventional, spraying methods.

Tungsten-urania nuclear fuel elements developed for elevated temperature use in nuclear reactors were clad with coarsegrained tungsten to avoid loss of UO2.29

Detailed studies of the electrochemical deposition of sodium tungsten bronzes were conducted during the year.30

<sup>22</sup> Climax Molybdenum Co. Tungsten News. January, April, July, and October 1973, and January 1974, 20 pp. each.

23 Leone, O. Q., and D. E. Couch. Cleaning Titanium Alloy Chips. BuMines RI 7711, 1973,

<sup>24</sup>U.S. Bureau of Mines. Bureau of Mines Research 1972: A Summary of Significant Results in Mining, Metallurgy and Energy. 1973,

<sup>25</sup> Bryant, W. A., and G. H. Meier. Kinetics of the Chemical Vapor Deposition of Tungsten.
 J. Electrochem. Soc., v. 120, No. 4, April 1973, pp. 559-565.
 <sup>26</sup> Materials Engineering. Refractory Metals Fight Heat, Resist Corrosion. V. 77, No. 6, June 1973, pp. 382-41

June 1973, pp. 38-41.

June 1973, pp. 38-41.

27 Shapovalov, V. P., and A. N. Kurasov. Titanium Diffusion Coatings on Refractory Metals. Izvestiya AN SSSR Met., (Moscow, U.S.S.R.), March-April 1973, pp. 234-237.

28 Fukunaga, H., H. Ito, S. Fukuda, and T. Suhara. Metallic Spray Coating by Explosion. Nippon Tungsten Rev. (Tokyo, Japan), No. 6, 1973, pp. 87-95.

29 McDonald, G. E. (assigned to the National Aeronautics and Space Administration). Nuclear Fuel Elements. U.S. Pat. 3,759,787, Sept. 18, 1973.

30 Bockris, J. O'M., and J. McHardy. Electrocatalysis of Oxygen Reduction by Sodium Tungsten Bronze: II. The Influence of Traces of Platinum. J. Electrochem. Soc., v. 120, No. 1, January 1973, pp. 61-66.

McHardy, J., and J. O'M. Brockris. Electrostellusis of Oxygen Reduction by Sodium

McHardy, J., and J. O'M. Brockris. Electrocatalysis of Oxygen Reduction by Sodium Tungsten Bronze: I. Surface Characteristics of a Bronze Electrode. J. Electrochem. Soc., v. 120, No. 1, January 1973, pp. 53-60.

120, No. 1, January 1973, pp. 53-60.

Randin, J. P., Electrochemical Deposition of Sodium Tungsten Bronzes. J. Electrochem. Soc., v. 120, No. 10, October 1973, pp. 1325-1330.

—. Kinetics of Anodic Oxide Growth on Sodium Tungsten Bronzes. J. Electrochem. Soc., v. 120, No. 3. March 1973, pp. 378-381.

Randin, J. P., A. K. Vijh, and A. B. Chughta. Electrochemical Behavior of Sodium Tungsten Bronze Electrodes in Acidic Media. J. Electrochem. Soc., v. 120, No. 9, September 1973. pp. 1174-1184.

# Uranium

# By Walter C. Woodmansee <sup>1</sup>

Following several years of slack demand and soft prices for uranium, the uranium and nuclear industries started an upward trend in 1973. This improved market was expected to gather momentum in 1974. The year 1973 was a good one in terms of new operable commercial power reactors and orders placed for reactor construction licenses. The Atomic Energy Commission (AEC) made progress in expediting the licensing procedure and planned to reduce the lead time required between the start of commercial nuclear reactor construction and operation from 8 to 9 years to 5 to 6

Mine output was slightly reduced from that of 1972 in terms of U<sub>3</sub>O<sub>8</sub> content of ore, but mill output continued an upward trend started in 1971. A number of small mines, mainly in Colorado, and two mills in Texas were closed during the year, but major, new mine-mill complexes were under construction in Wyoming and New Mexico.

Exploration for uranium continued strong, and a small net addition was made to domestic ore reserves, although the discovery rate (per foot drilled) was unfavorable. The Grand Junction, Colo., office of the AEC invited bids for mining leases on AEC-controlled lands, which contain substantial ore reserves. The Grand Junction office also announced the start of a multiyear national survey to evaluate low-grade potential uranium resources.

Table 1.-Salient uranium concentrate (U<sub>3</sub>O<sub>8</sub>) statistics (Short tons U3Os unless otherwise specified)

|                                                             | 1969     | 1970      | 1971      | 1972      | 1973      |
|-------------------------------------------------------------|----------|-----------|-----------|-----------|-----------|
| Production:                                                 |          |           |           |           |           |
| Domestic:                                                   |          |           |           |           |           |
| Mine: 1                                                     |          |           |           |           |           |
| Orethousand tons                                            | 5,904    | 6,324     | 6,279     | 6,418     | 6,537     |
| Content of ore                                              | 12,281   | 12,768    | 12,907    | 13,667    | 13,588    |
| Average grade of ore _percent U <sub>3</sub> O <sub>8</sub> | 0.208    | 0.202     | 0.205     | 0.213     | 0.208     |
| Recoverable e 2                                             | 11,870   | 12,190    | 12,260    | 12,880    | 12,900    |
| Value e 3thousands                                          |          | \$147,569 | \$151,996 | \$162,272 | \$167,700 |
| Mill, concentrate 4                                         | 11,609   | 12,905    | 12,273    | 12,900    | 13,235    |
| World • 5                                                   | 23,083   | 24,161    | r 23,909  | r 25,625  | 25,486    |
| Deliveries of concentrate:                                  |          |           |           |           |           |
| Atomic Energy Commission:                                   |          |           |           |           |           |
| Quantity                                                    | 6,184    | 2,520     |           |           |           |
| Valuethousands                                              | \$72,336 | \$28,078  |           |           |           |
| Price per pound                                             | \$5.85   | \$5.59    |           |           |           |
| Private industry e                                          | 6,200    | 9,300     | 12,800    | 11,600    | 12,100    |
| Imports, concentrate                                        | 1,504    | 665       | 942       | r 2,329   | 5,605     |
| Reserves 6thousand tons_                                    | 204      | 246       | 273       | 273       | 277       |
| Employment 7number of persons_                              | 9,059    | 8,165     | 7,373     | 6,403     | 6,595     |

e Estimate. r Revised.

<sup>1</sup> Receipts at mills; excludes uranium from leaching operations, mine waters, and refinery residues.

<sup>5</sup> Non-Communist only.

At \$8 per pound  $U_3O_8$ .

Sources: U.S. Atomic Energy Commission and Federal Bureau of Mines.

<sup>&</sup>lt;sup>1</sup> Physical scientist, Division of Nonferrous Metals-Mineral Supply.

<sup>&</sup>lt;sup>2</sup> Based on mill recovery factors.

<sup>3</sup> Market value based on recoverable U<sub>3</sub>O<sub>8</sub> content, average AEC price for U<sub>3</sub>O<sub>8</sub>, and estimated average private price for 1969-70; based on estimated average private price only in 1971-73.

<sup>4</sup> Includes marketable concentrate from leaching operations.

<sup>7</sup> In exploration, mining, and milling, at yearend.

Gas-centrifuge development for uranium enrichment progressed and will provide an alternative to gaseous diffusion enrichment technology. It was generally agreed that new enrichment capacity will be needed in the early 1980's, and the AEC initiated programs that offered AEC-developed enrichment technology to private industry for development of enrichment capability.

Development continued on private facilities to produce nuclear fuels, reprocess the burned fuels, and, in conjunction with the AEC, manage the radioactive waste products of this industry. Several sectors of the nuclear industry experienced shortages in supplies and equipment, engineers, and skilled labor.

In July, a basic contract was signed by AEC, Tennessee Valley Authority (TVA), and private industry interests for the Nation's first demonstrator liquid metal fast breeder reactor (LMFBR) to be built in the TVA system, near Oak Ridge, Tenn.2

Exploration.—An industry survey conducted by the AEC's Grand Junction office indicated increased exploratory drilling footage and expenditures in 1973 and ambitious company plans for 1974–75.3 A total of 84 companies reported total exploration expenditures of \$49.5 million and land acquisition of 2.87 million acres for exploration. The number of exploration holes was sharply reduced from the 1972 total, but the average depth per hole was substantially higher. The average cost per foot drilled was \$1.49. About one-half of this footage was drilled in Wyoming, 24% in New Mexico, 17% in Texas, and the remainder in 10 other States. Industry reported plans for drilling 29.1 million feet in 1974 (\$72.5 million) and 33.7 million feet (\$77.8 million) in 1975, a record rate. At yearend, companies held 6.9 million acres for uranium exploration.

The AEC's Grand Junction Office also announced plans for a National Uranium Resource Program. A preliminary overview program for potential resources, covering 62 projects in 42 areas, was started in March and was scheduled for completion in July 1975. A complete evaluation of domestic resource potential will continue until 1978.

Invitations to bid on 43 AEC-controlled tracts totaling 25,000 acres, mainly in the Uravan mineral belt of Colorado but also including acreage in Utah and New Mexico, were issued on October 1.4 These lands

Table 2.-Surface drilling for uranium

|                                            | 1050   | 1050   |
|--------------------------------------------|--------|--------|
|                                            | 1972   | 1973   |
| Type of drilling: 1                        |        |        |
| Explorationthousand feet                   | 11.815 | 10.831 |
| Developmentdo                              | 3,609  | 5,590  |
| Totaldo                                    | 15,424 | 16,421 |
| Number of holes:                           |        |        |
| Exploration                                | 26,909 | 22,557 |
| Development                                | 9,706  | 11,704 |
| Total                                      | 36,615 | 34,261 |
| Average depth per hole:<br>Explorationfeet | 439    | 480    |
| Developmentdo                              | 371    | 478    |

<sup>&</sup>lt;sup>1</sup> Does not include claim validation drilling or underground long-hole and diamond drilling.

Source: U.S. Atomic Energy Commission.

contain uranium resources valued at \$45 million to \$50 million. At yearend, the AEC had issued 230 invitations for bids to interested parties and planned first-bid openings on April 1, 1974.

Shortages of drilling equipment and a tight skilled labor supply posed problems during the year. The larger, heavier drill rigs, needed for deeper drilling, were scarce because of demand for their use in coal and oil exploration.

A large new exploration project was announced for the Powder River Basin, Wyo. In a joint project, Denison Mines (U.S.), Ltd., will drill 510,000 feet on Nuclear Exploration and Development Co. (NED-CO) properties covering 64,000 acres during 1973-76. In addition, Pioneer Nuclear, Inc., will drill an 18,000-acre NEDCO property in the same area.5

Amax Uranium Corp., in an agreement with Weco Development Corp., will drill a 16,000-acre tract in the Ambrosia Lake area. McKinley County, N. Mex. Union Carbide Corp. will drill a 17,600-acre tract held jointly with New Mexico and Arizona Land Co., also in McKinley County. TVA concluded an agreement with United Nuclear Corp. (UNC) for a joint drilling program of UNC properties in Wyoming and New Mexico.

<sup>&</sup>lt;sup>2</sup> U.S. Atomic Energy Commission. Ch. 3, Breeder Reactors. 1973 Annual Report to Congress. V. 1, Operating and Developmental Functions. Jan. 31, 1974, pp. 25–27.

<sup>3</sup> U.S. Atomic Energy Commission, Grand Junction Office. Uranium Exploration Expenditures in 1973 and Plans for 1974–75. GJO-103 (74), April 1974, 9 pp.

<sup>4</sup> U.S. Atomic Energy Commission, Grand Junction Office. AEC Announces Uranium Leasing Program. News Release No. 645, Sept. 19, 1973, 4 pp.

The Northern Miner (Toronto). Big Denison Drill Program for Wyoming Uranium Ground. V. 59, No. 11, May 31, 1973, p. 24.

Resources.—The AEC reported a net increase of 4,000 tons U<sub>3</sub>O<sub>8</sub> in reserves at a cutoff cost of \$8 per pound U<sub>3</sub>O<sub>8</sub>. The yearend total of 277,000 tons, in 129 million tons of ore at 0.21% U<sub>3</sub>O<sub>8</sub>, resulted from newly established reserves of 24,000 tons and depletions of 14,000 tons mined and a 6,000-ton loss due to re-evaluation of exploration data. New Mexico held 49% of this \$8 reserve and Wyoming, 35%. The remainder was in nine States, principally Colorado and Utah.6

Table 3.-Domestic uranium resources in 1973 1

| (Thousand | tong | II-Oo) |
|-----------|------|--------|
|           |      |        |

|           | \$8 <sup>2</sup> | \$10 <sup>3</sup> | \$15 <sup>3</sup> | \$30 s |
|-----------|------------------|-------------------|-------------------|--------|
| Resource  | <br>277          | 340               | 520               | 700    |
| Potential | 450              | 700               | 1,000             | 1,700  |

<sup>1</sup> At yearend.

<sup>2</sup> Cutoff cost; reserves at 1973 costs.
<sup>3</sup> Cutoff cost; higher cost resource includes that at lower cost.

Source: U.S. Atomic Energy Commission.

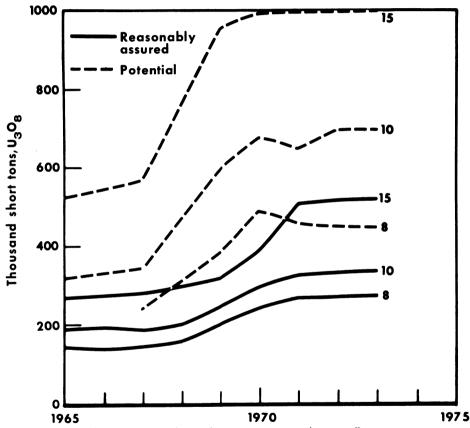



Figure 1.-Domestic uranium resources at various cutoff costs.

#### DOMESTIC PRODUCTION

Mine.—Mine output was higher in 1973 in terms of gross weight of ore produced but was slightly lower in terms of U<sub>3</sub>O<sub>8</sub> content in ore. The number of producing mines, sharply reduced because of the closing of a number of small operations mainly in Colorado, totaled 175 properties, including 122 underground mines (4,974 tons  $U_3O_8$ ), 33 open pits (8,614 tons  $U_3O_8$ ),

6 U.S. Atomic Energy Commission, Grand Junction Office. U.S. Uranium Reserves at 277, 000 Tons UsOs. News Release No. 654, Mar. 27, 1974. 5 pp.

and 20 miscellaneous operations (199 tons U<sub>2</sub>O<sub>8</sub> from mine waters, heap and in-situ leaching, and raffinate). Wyoming was the leading producing State, with nearly 39% of total U<sub>3</sub>O<sub>8</sub> output; New Mexico had 36% of the output. There was no production from South Dakota in 1973.7

New mines were under development, particularly in New Mexico and Wyoming. Kerr-McGee Corp. was sinking a concrete

shaft, 1,850 feet deep and 14 feet in diameter, near Gallup, N. Mex. Production was scheduled for 1975. The ore will go to the company's mill in the Ambrosia district. A 600-foot shaft was being sunk at the L Bar Ranch property, 25 miles east of Grants and north of Laguna, N. Mex., by the Reserve Oil and Minerals Corp.-Sohio Petroleum Co. joint venture. Here, mining was expected to start in 1974.

Table 4.-Recoverable U<sub>3</sub>O<sub>8</sub> mine production. by State <sup>1</sup>

(Thousand pounds U3O8 and thousand dollars)

| State      | 1971     |         | 1972     |         | 1973 °   |         |
|------------|----------|---------|----------|---------|----------|---------|
| - State    | Quantity | Value e | Quantity | Value e | Quantity | Value   |
| Colorado   | 2,536    | 15.725  | 1.877    | 11.825  | 1,920    | 12,480  |
| New Mexico | 10,567   | 65,517  | 10,808   | 68,091  | 9,140    | 59,410  |
| Utah       | 1,445    | 8,959   | 1,496    | 9,425   | 1.940    | 12,610  |
| Wyoming    | 6,986    | 43,311  | 8,544    | 53,827  | 10,060   | 65,390  |
| Other 2    | 2,981    | 18,484  | 3,033    | 19,104  | 2,760    | 17,940  |
| Total      | 24,515   | 151,996 | 25,758   | 162,272 | 25,820   | 167,830 |

In Wyoming, most new mining activity was in the Powder River Basin. Kerr-McGee Corp. was sinking a 950-foot shaft and also planned open pit development 25 miles northwest of Douglas, Converse County. Exxon Corp. started production in 1972 at its nearby Highland open pit and sank a 670-foot shaft which will serve two mines. Production started in September at the open pit of Teton Exploration Drilling Co., Inc., a subsidiary of United Nuclear Corp., near the Highland mine. Teton ore was shipped to the Exxon mill.

In the Crooks Gap district, 10 miles south of Jeffrey City, Wyo., Western Nuclear, Inc., started shaft-sinking for a 1,500-ton-per-day mine. The company reported recoverable reserves at 11.5 million pounds U<sub>3</sub>O<sub>8</sub>.

Numerous small mines were closed in Colorado during the year. Susquehanna Corp. closed its mines and disposed of its uranium interests in Falls City and Ray Point, Tex.

TVA secured interests in two significant mining ventures.8 TVA leased all mining rights of Federal-American Partners in the Gas Hills district, Wyo., and acquired rights to the mill output after existing contracts are completed. TVA also purchased an interest, with options, in United Nuclear Corp.'s properties in Wyoming and New Mexico.

With uranium prices rising, the commercial recovery of byproduct uranium from wet process phosphoric acid (WPPA) fertilizer operations in central Florida approached economic viability. Uranium Recovery Corp. (URC) planned uranium recovery in 1975 from a modular unit adjoining a W. R. Grace & Co. fertilizer plant, 40 miles east of Tampa, and a central processing plant. which would treat the uranium-bearing solution following initial separation, near Mulberry, Fla. Capacity of the first plant would be 300,000 pounds U<sub>3</sub>O<sub>8</sub> per year. In November, United Nuclear Corp. exercised an option to purchase an 85% interest in URC.9 A number of companies were studying the recovery of uranium from WPPA operations. The phosphate rock in central Florida contains 0.01 to 0.02%  $U_3O_8$ , and approximately 1 pound U<sub>3</sub>O<sub>8</sub> is recoverable per ton of P<sub>2</sub>O<sub>5</sub>. Larger WPPA operations could produce 1,500 to 2,000 tons of U<sub>3</sub>O<sub>8</sub> per year. According to the AEC, this uranium would be

<sup>&</sup>lt;sup>6</sup> Estimate.
<sup>1</sup> Based on mill recovery factors and estimated average market price per pound U<sub>3</sub>O<sub>8</sub>. Does not include uranium recoverable in miscellaneous operations (leach, mine waters, and raffinate).
<sup>2</sup> Alaska, South Dakota, Texas, and Washington in 1971 and 1972; Alaska, Texas, and Washington in 1973; combined to avoid disclosing individual company confidential data.

<sup>&</sup>lt;sup>7</sup> U.S. Atomic Energy Commission, Grand Junction Office. Statistical Data of the Uranium Industry. GJO-100(74), Jan. 1, 1974, 67 pp. <sup>8</sup> Atomic Industrial Forum. TVA and Carolina Power and Light in Long-Term Ore Commitments. Nuclear Ind., v. 20, No. 5, May 1973,

p. 26.

<sup>9</sup> Mining Congress Journal. United Nuclear Corp. Has Exercised its Option. V. 59, No. 12, December 1973, p. 12.

commercial at a U<sub>3</sub>O<sub>8</sub> price of \$10 to \$15 per pound and as much as 70,000 tons U<sub>3</sub>O<sub>8</sub> may be produced from Florida phosphates by the year 2000.

Mill.—Mill production increased slightly during 1973, although operable capacity was reduced by the closing of Susquehanna Corp.'s two mills in Texas. At yearend, capacity was 28,550 tons of ore daily and 18,000 tons U<sub>3</sub>O<sub>8</sub> per year. Mill throughput averaged 18,400 tons per day, about 65% of the yearend capacity.10 Rio Algom Mines, Ltd., was considering a mill expansion to 700 tons of ore per day and 1.7 million pounds U<sub>3</sub>O<sub>8</sub> per year. Western Nuclear, Inc., planned to close its mill in Wyoming for expansion to 1,400 tons per day during 1974 and 1975. Exxon's mill in the Powder River Basin, Wyo., may also undergo expansion. New mills were planned by Kerr-McGee Corp. in the Powder River Basin and by Reserve Oil-Sohio Petroleum (1,000 to 1,200 tons per day) at its new mine near Laguna, N. Mex.

Table 5.-Domestic uranium mill statistics in 1973

(Short tons U3O8 unless otherwise specified)

| Operating millsnumber Average daily milling rate | 18     |
|--------------------------------------------------|--------|
| tons of ore                                      | 22.500 |
| Mill receipts, content of ore                    |        |
| Mill feed:                                       |        |
| Content of ore                                   | 13,716 |
| Other 1                                          | 260    |
| Total                                            | 13,976 |
| Recovery ratepercent_                            | 93     |
| Production                                       | 13.235 |
| Shipments                                        | 11,698 |
| Stocks:                                          |        |
| Content of ore, Jan. 1, 1973                     | 271    |
| Content of ore, Dec. 31, 1973                    | 113    |
| Concentrate, Jan. 1, 1973                        | 3,701  |
| Concentrate, Dec. 31, 1973                       | 5,238  |
| In process:                                      | •      |
| Concentrate, Jan. 1, 1973                        | 468    |
| Concentrate, Dec. 31, 1973                       | 328    |

<sup>&</sup>lt;sup>1</sup> Concentrate from leaching operations, mine waters, refinery residues, recycled tailings, and cleanup.

Source: U.S. Atomic Energy Commission.

Nuclear Fuel Materials.—Uranium Hexafluoride.—U<sub>3</sub>O<sub>8</sub> to UF<sub>6</sub> conversion capability was available at two plants—Allied Chemical Corp. at Metropolis, Ill. (14,000 tons uranium per year) and Kerr-McGee Corp. at Sequoyah, Okla. (5,000 tons uranium per year). The latter capacity will be doubled, although dates have not been announced.

Enriched Uranium.—During 1973 the AEC received revenues of \$550.5 million for providing 3.56 million separative work units (SWU) to domestic customers and 12.93 million SWU to foreign customers. At yearend, the AEC had contracts for enrichment services with 32 domestic and 41 foreign customers.11 A total of 10.3 million SWU were produced at the AEC's three gaseousdiffusion enrichment plants in fiscal 1973. This output was at about 60% of rated capacity. The planned Cascade Improvement Program (CIP) will add 5.8 million SWU capacity with no increase in power operating levels, and the Cascade Uprating Program (CUP) will add 4.7 million SWU capacity by increasing the total power level from the present 6,060 megawatts (MW) to 7,380 MW.12 During the year, the AEC contracted for an average of 957 MW per year, and negotiations were underway for the remaining power needed for the full uprated capacity.

Projected CIP-CUP increases in addition to enriched uranium preproduced from the AEC U<sub>3</sub>O<sub>8</sub> stockpile were expected to provide sufficient supplies until 1983.13 Thereafter, new enrichment capacity, probably by private development, will be needed and, because of the long lead time from planning to operation, the commitment to a firm program by 1976 appeared urgent. Decisions would be necessary on contracts with private industry for enrichment plant, construction, the type and capacity of these plants, power sources, and financing in the billions of dollars. The AEC estimated that the capital cost for one 8.75-million-SWU diffusion plant, the minimum commercial size considered feasible, would be in excess of \$1 billion. Other deterrents to private investment in enrichment were; competition from existing AEC facilities and subsidized foreign facilities, the future development of breeder reactors which would reduce demand for enrichment services, and a slow return on investment.14

Amendments to the AEC's Domestic Access Program, designed to encourage private domestic development of enrichment capacity, provide for availability of classified

3, 1973, p. 8.

Atomic Industrial Forum. Nuclear Ind., v. 21, No. 2, February 1974, p. 37.
 Page 96 of work cited in footnote 2.
 U.S. Atomic Energy Commission. The Nuclear Industry. WASH-1174(73), April 1974, pp. 420. 42-49. 13 U.S.

<sup>42-49.

13</sup> U.S. Atomic Energy Commission, Oak Ridge Operations Office. New Enrichment Plant Scheduling. ORO-735, November 1973, 23 pp.

14 Chemical and Engineering News. Who Will Produce Enriched Uranium? V. 51, No. 49, Dec.

| Table 6Domestic uranium milling | companies an | l plants in | 1973 |
|---------------------------------|--------------|-------------|------|
|---------------------------------|--------------|-------------|------|

| Company                                    | Plant location          | Capacity<br>(tons of ore<br>per day) |
|--------------------------------------------|-------------------------|--------------------------------------|
| The Anaconda Company                       | Bluewater, N. Mex       | 3,000                                |
| Atlas Corp                                 | Moab, Utah              | <sup>1</sup> 1,500                   |
| Continental Oil Co.—Pioneer Nuclear, Inc   | Falls City, Tex         | 1,750                                |
| Cotter Corp                                | Canon City, Colo        | 450                                  |
| Dawn Mining Co                             | Ford, Wash              | 500                                  |
| Exxon Co                                   | Powder River Basin, Wyo | 2,000                                |
| Federal Resources Corp.—American           |                         | -,                                   |
| Nuclear Corp                               | Gas Hills, Wyo          | 950                                  |
| Kerr-McGee Corp                            | Grants, N. Mex          | 7.000                                |
| Petrotomics Co                             | Shirley Basin, Wyo      | 1,500                                |
| Rio Algom Mines, Ltd                       | La Sal, Utah            | 500                                  |
| Susquehanna-Western, Inc                   | Falls City, Tex         | 2 1.000                              |
| Do                                         | Ray Point, Tex          | <sup>2</sup> 1.000                   |
| Union Carbide Corp                         | Uravan, Colo            | 1,300                                |
| Do                                         | Natrona County, Wyo     | 1.000                                |
| United Nuclear Corp. Inc.—Homestake Mining | ,,                      | 2,000                                |
| Co                                         | Grants, N. Mex          | 3,500                                |
| Utah International, Inc                    | Gas Hills, Wyo          | 1.200                                |
| Do                                         | Shirley Basin, Wyo      | 1,200                                |
| Western Nuclear, Inc                       | Jeffrey City, Wyo       | 1,200                                |
| Total                                      |                         | 30,550                               |

<sup>&</sup>lt;sup>1</sup> On standby at yearend.

<sup>2</sup> Closed during the year.

Source: U.S. Atomic Energy Commission.

AEC enrichment technology to approved private companies without the commitment of the participant to a research and development program.15 The first permit was granted to Uranium Enrichment Associates (UEA), a joint venture of Bechtel Corp., Union Carbide Corp., and Westinghouse Electric Corp., which planned to evaluate diffusion and centrifuge technology and establish an enrichment plant. For the use of AEC-developed technology, the AEC would receive a 3% royalty on gross receipts during the first 17 years of commercial operation.16

The AEC studied the economics of diffusion and centrifuge technology. For electric power costs at 10 mills per kilowatt-hour and various amortization and other financial assumptions, enrichment services based on the centrifuge range from direct comparability with diffusion technology to cost levels nearly \$20 per SWU lower.17 Under the Centrifuge Development Program, the AEC was building a 25-SWU-per-year test facility at Oak Ridge, Tenn., and planned to spend \$117 million through fiscal 1975. Access to classified data, under the Industrial Participation Program, was granted to seven companies in addition to the UEA joint venture.18 General Electric Co. and Exxon Nuclear Corp. started a three-phase joint study on centrifuge enrichment.19

The AEC's new enrichment contracting policy, sent to the Joint Committee on

Atomic Energy in January, became effective May 9. Contracting was suspended while AEC considered the reactions of domestic and foreign customers. The new fixed commitment contracting procedure replaced the old requirements-type contracts.20 Late in the year, there was a flurry of new contracting activity involving 25 new domestic customers and 36 new foreign customers.

Fabrication.—The AEC reported quantities of enriched UF, shipped to domestic and foreign nuclear fuel fabricators, in thousand SWU, as follows:21

| Fiscal year | Domestic | Foreign |
|-------------|----------|---------|
| 1972        | 1,266    | 356     |
| 1973        | 1,466    | 779     |

This does not include shipments for domestic test reactors and Navy programs.

15 Federal Register. Permits for Access to Re-

Federal Register. Fermits for Access to Restricted Data Concerning the Separation of Uranium Isotopes. V. 38, No. 84, May 2, 1973, pp. 10803–10805.

16 Atomic Industrial Forum. Broad Enrichment Access Instituted; First Applicant Approved. Nuclear Ind., v. 20, No. 5, May 1973, p. 27

pp. 27.

17 Atomic Industrial Forum. Phase I Enrichment Hearings Warn: This Road May Lead Nowhere. Nuclear Ind., v. 20, No. 8, August 1973, pp. 6-9.

18 Chemical and Engineering News. AEC Presses Gas Centrifuge Program. V. 51, No.

1973, pp. 6-9.

13 Chemical and Engineering News. AEC Presses Gas Centrifuge Program. V. 51, No. 24, June 11, 1973, p. 16,

19 American Nuclear Society. Emphasize Gas Centrifuge in Joint Investigation. Nuclear News, v. 16, No. 11, September 1973, p. 65.

20 Atomic Industrial Forum. Radical Changes in Enrichment Contracting Ground Rules. Nuclear Ind., v. 20, No. 1, January 1973, pp. 13-14.

<sup>21</sup> Page 50 of work cited in footnote 12.

The demonstration LMFBR fuel core was expected to have 43,000 fuel pins in 198 fuel assemblies, which had not been ordered at yearend.

The AEC estimated fabrication costs for mixed oxide (U-Pu) FBR fuels at \$6,000 to

\$8,000 per kilogram of contained Pu during the next few years.

Table 7 lists the 14 companies engaged in commercial fabrication of UO2, carbide, special, Pu, and U233 fuels at 21 plants.

Table 7.-Principal nuclear fuel processing and production facilities in 1973

| Company                                                                                 | Location                                                        | Product or service                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Allied Gulf Nuclear<br>Services, Inc<br>Allied Chemical Corp _<br>Babcock and Wilcox Co | Barnwell, S. C<br>Metropolis, Ill<br>Lynchburg, Va              | Reprocessing; <sup>1</sup> conversion enriched U to UF <sub>6</sub> . <sup>1</sup> UF <sub>6</sub> . UO <sub>2</sub> ; <sup>1</sup> UO <sub>2</sub> pellets; <sup>1</sup> fabrication of UO <sub>2</sub> and Pu fuels. |
| Combustion Engineer-<br>ing Co                                                          | Windsor, Conn                                                   | UO2; 1 UO2 pellets; fabrication of UO2 and Pu 1                                                                                                                                                                        |
| Exxon Nuclear Corp                                                                      | Richland, Wash                                                  | fuels.  Reprocessing; UO <sub>2</sub> ; UO <sub>2</sub> pellets; fabrication of UO <sub>2</sub> and Pu fuels; U 1 and Pu scrap. 1                                                                                      |
| General Atomic Co                                                                       | San Diego, CalifYoungsville, N. C2 Morris, IllSan Jose and Val- | Fabrication of carbide and special fuels. Fabrication of carbide and special fuels. Reprocessing; fabrication of Uzss fuels. Reprocessing; conversion enriched U to UF6.                                               |
| Do                                                                                      | lecitos, Calif<br>Wilmington, N. C                              | Fabrication of Pu fuels; U and Pu scrap. UO2; UO2 pellets; fabrication of UO2 fuels; U                                                                                                                                 |
| Goodyear Atomic Corp <sup>3</sup><br>Gulf United Nuclear                                | Portsmouth, Ohio                                                | scrap.<br>Enriched UFs.                                                                                                                                                                                                |
| Fuels Corp                                                                              | Elmsford and Pawling,                                           | Fabrication of carbide and Pu fuels; Pu scrap.                                                                                                                                                                         |
| Do                                                                                      | Hematite, Mo                                                    | UO2; UO2 pellets; fabrication of carbide fuels; depleted U compounds.                                                                                                                                                  |
| Do                                                                                      | New Haven, Conn                                                 | Fabrication of UO <sub>2</sub> and special fuels; depleted U metal.                                                                                                                                                    |
| Kerr-McGee Corp                                                                         | Cimarron, Okla                                                  | UO2; UO2 pellets; fabrication of UO2, carbide, special, and Pu fuels; depleted U metal and compounds; U and Pu scrap.                                                                                                  |
| Do<br>NL Industries, Inc<br>North American Rock-                                        | Sequoyah, Okla<br>Albany, N. Y                                  | UF <sub>6</sub> .<br>Depleted U metal.                                                                                                                                                                                 |
| well Corp., Atomics International Div                                                   | Canoga Park, Calif                                              | Fabrication of carbide, special, and Pu fuels; depleted U compounds and metal; Pu scrap.                                                                                                                               |
| Nuclear Chemical and<br>Metals Corp                                                     | Huntsville, Tenn                                                | Fabrication of carbide fuels; depleted U metal and compounds; U scrap.                                                                                                                                                 |
| Nuclear Fuel Services,<br>Inc                                                           | Erwin, Tenn                                                     | UO2; UO2 pellets; fabrication of carbide, U223, and Pu fuels; depleted U metal and compounds; U and Pu scrap.                                                                                                          |
| Do<br>Nuclear Materials and                                                             | West Valley, N. Y                                               | Reprocessing; enriched U to UFs.1                                                                                                                                                                                      |
| Equipment Corp. (NUMEC)                                                                 | Apollo, Pa                                                      | UO2; UO2 pellets; fabrication of UO2 fuels; de-<br>pleted U compounds; U scrap; highly enriched<br>U to UF6.                                                                                                           |
| Do                                                                                      | Leechburg, Pa                                                   | Fabrication of carbide; special, Uzzz, and Pu fuels; depleted U metal; Pu scrap.                                                                                                                                       |
| Tennessee Nuclear Specialties, Inc Texas Instruments,                                   | Jonesboro, Tenn                                                 | Depleted U metal and compounds.                                                                                                                                                                                        |
| Inc<br>Union Carbide Corp 3_<br>Do 3                                                    | Attleboro, Mass<br>Oak Ridge, Tenn<br>Paducah, Ky               | Fabrication of special fuels.<br>Enriched UFs.<br>Do.                                                                                                                                                                  |
| United Nuclear Corp.                                                                    | Wood River Junction,<br>R. I                                    | U scrap.                                                                                                                                                                                                               |
| United States Nuclear<br>Corp                                                           | Oak Ridge, Tenn                                                 | Fabrication of special fuels.                                                                                                                                                                                          |
| Westinghouse Electric                                                                   | Cheswick, Pa                                                    | UO2 pellets; fabrication of UO2, carbide, and Pu                                                                                                                                                                       |
| Do                                                                                      | Columbia, S. C                                                  | fuels; Pu scrap. UO2; UO2 pellets; fabrication of UO2 fuels; U                                                                                                                                                         |
| Do                                                                                      | Anderson, S. C                                                  | scrap. <sup>1</sup> Fabrication of Pu fuels; <sup>1</sup> Pu scrap. <sup>1</sup>                                                                                                                                       |
| Whittaker Corp.,<br>Nuclear Metals Div_                                                 | West Concord, Mass                                              | Fabrication of special fuels; depleted U metal.                                                                                                                                                                        |
|                                                                                         |                                                                 |                                                                                                                                                                                                                        |

<sup>&</sup>lt;sup>1</sup> Under construction or planned.

<sup>2</sup> Not determined.
3 Contractor for U.S. Atomic Energy Commission.
4 On standby.

Source: U.S. Atomic Energy Commission.

Reprocessing.—Until December 31, 1977, AEC reprocessing facilities will be available for spent fuels from research and test reactors and other reactors for which these services are not available from industry at reasonable terms.

At yearend, three commercial reprocessing plants were under construction, one (Nuclear Fuel Services, Inc., at West Valley. N.Y.) was on standby, and one was planned (by General Atomic Co.) at an undetermined site. Full-scale operation at General Electric's Midwest Fuel Recovery Plant, Morris, Ill., where capacity is 330 short tons of uranium annually, was delayed until 1974. This facility has industry's first waste calciner for high-level materials. Nuclear Fuel Services' plant at West Valley, N.Y., was inactive; it was under modernization and expansion to 830 tons uranium per year and was scheduled for operation in 1977 or 1978. Allied Gulf Nuclear Services, Inc. (AGNS), continued construction on the largest domestic reprocessing plant, at Barnwell, S.C., where annual capacity will be 1,650 tons uranium. AGNS will receive spent fuels in 1974 and start processing in 1975. These companies were seeking contracts for future reprocessing work, but activity was light. Pending problems were short-term spent fuel storage capacity and limited shipping cask capacity. Estimated reprocessing cost was \$40,000 per ton, excluding storage at site and canister shipping costs.22

Waste Management.—Three domestic commercial waste disposal companies and six burial sites were in operation. It was estimated that the volume of low-level wastes available for burial was 1.5 million cubic feet and will reach 2 million cubic feet in 1975, 4 million cubic feet in 1980, and 6 million cubic feet in 1985. AECgenerated solid wastes were accumulating at a decreasing rate because of a program to reduce the volume of wastes. During 1973, as estimated 1.3 million cubic feet of solid wastes were buried at AEC sites. The AEC estimated that approximately 3,899 cubic feet of significant radioactive wastes were generated annually at a 1,000-MW BWR and about 1,000 cubic feet at a 1,000-MW PWR. Shipments of high-level wastes to Federal repositories were expected to start about 1983, following a 10-year cooling and storage period at the reprocessing site. The AEC planned to build a Retrievable Surface Storage Facility for temporary high-level waste storage pending a final decision on permanent storage.23 The objective was to improve the economics of waste management and lessen the necessity for surveillance and maintenance. A pilot plant holding 1,000 canisters will be built in a bedded salt formation. Battelle Pacific Northwest Laboratories, Richland, Wash., continued studies on disposal methods.24 It was estimated that 80,000 waste canisters, measuring 1 by 10 feet, would be in storage by the year 2010.25

# **CONSUMPTION AND USES**

According to the AEC, the use of U<sub>2</sub>O<sub>2</sub> equivalent in domestic commercial reactors totaled 8,200 tons, a slight increase over that of 1972. Commercial reactor startup continued to be slowed by licensing delays, construction problems, technical failures, and growing shortages of supplies, equipment, and skilled labor. Efforts were made to shorten lead time from the present 8 to 10 years to 7 to 8 years in the short term and 5 to 6 years in the long term by reactor standardization and designated siting procedures.26

Although slippages were incurred in commercial reactor plans, new reactor orders and U3O8 buying activity were at record levels. A total of 38 nuclear units (42,670 MW) were ordered, compared with 35 units (38,000 MW) in 1972. At yearend, commercial reactor status was as follows:

| Status                                           | Number of plants | Capacity<br>(megawatts) |
|--------------------------------------------------|------------------|-------------------------|
| Operable<br>Under construction<br>Under contract | 42<br>56         | 25,024<br>53,020        |
| (reactors ordered) _                             | 101              | 109,735                 |
| Total                                            | 199              | 187,779                 |

<sup>&</sup>lt;sup>22</sup> Atomic Industrial Forum. Reprocessors Seek

Atomic Industrial Forum. Reprocessors Seek Work, Utilities Delaying Decisions. Nuclear Ind., v. 20, No. 12, December 1973, pp. 30-33.
 Pages 57-65 of work cited in footnote 12.
 Atomic Industrial Forum. Pittman Reports on Commercial Waste Management Status. Nuclear Ind., v. 20, No. 8, August 1973, pp. 20-22.
 American Nuclear Society. Conference on Reactor Operating Experience. Nuclear News, v. 16. No. 11, September 1973, pp. 96-98.
 Chemical and Engineering News. Quicker Startup of Nuclear Plants Sought. V. 51, No. 48, Nov. 26, 1973, pp. 7-8.

Fifteen additional units were planned at yearend, although reactors had not been ordered. During the year, 13 plants (10,341 MW) became operable, and the AEC issued construction licenses for 14 plants at 9 sites.

An AEC U<sub>3</sub>O<sub>8</sub> market survey of 64 utility companies, 5 reactor manufacturers, and 20 U<sub>3</sub>O<sub>8</sub> producers indicated increased U<sub>2</sub>O<sub>8</sub> purchasing activity.27 U3O8 delivery commitments increased substantially for the 1974-80 period; forward commitments of 120,000 tons U<sub>3</sub>O<sub>8</sub> at yearend were 33,700 tons U<sub>3</sub>O<sub>8</sub> higher than at the beginning of the year. The status, including foreign orders, was as follows, at yearend:

|                                                                                     | UsUs (tons)                  |
|-------------------------------------------------------------------------------------|------------------------------|
| Deliveries and forward<br>commitments, Jan. 1<br>Deliveries and forward             | 129,800                      |
| commitments, Dec. 31<br>Deliveries, through Dec. 31<br>Forward commitments, Dec. 31 | 175,600<br>55,600<br>120,000 |

The survey also revealed that buyers had contracted for only 68% of first core fuels and progressively less for the annual refueling needs.

Table 8.-Current and projected domestic commercial uranium delivery commitments

(Short tons U3O8)

| Year - | Com    | Commitments 1       |  |  |  |  |  |
|--------|--------|---------------------|--|--|--|--|--|
| 1ear - | Annual | Cumulative          |  |  |  |  |  |
| 1973   | 12,100 | <sup>2</sup> 55.600 |  |  |  |  |  |
| 1974   | 13,700 | 69,300              |  |  |  |  |  |
| 1975   | 15,500 | 84,800              |  |  |  |  |  |
| 1976   | 10,900 | 95,700              |  |  |  |  |  |
| 1977   | 11,600 | 107,300             |  |  |  |  |  |
| 1978   | 13,200 | 120,500             |  |  |  |  |  |
| 1979   | 12,100 | 132,600             |  |  |  |  |  |
| 1980   | 10,200 | 142,800             |  |  |  |  |  |

<sup>1</sup> In the post-1980 period through 1994, additional 30,300 tons have been committed addition, 6,700 tons have been committed foreign buyers, of which 5,500 tons were livered prior to yearend 1973.

<sup>2</sup> Pre-1973 deliveries were 43,500 tons.

Source: U.S. Atomic Energy Commission.

Table 9.-Uranium fuel supply arrangements for domestic nuclear reactors 1 (Percent of total nuclear generating capacity)

| Source of Supply      | First |    |    |    |    |    |    | R  | eloa | ds 2 |    |    |    |    |    |    |
|-----------------------|-------|----|----|----|----|----|----|----|------|------|----|----|----|----|----|----|
|                       | core  | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8    | 9    | 10 | 11 | 12 | 13 | 14 | 15 |
| Primary producers     |       |    | 30 |    |    | 18 | 13 | 10 | 8    |      | 3  | 2  | 2  | 2  | 1  | 1  |
| Reactor manufacturers | 31    | 29 | 24 | 23 | 17 | 14 | 11 | 9  | 6    | 4    | 4  | 2  | 2  | 2  | 2  | 2  |
| Total                 | 68    | 62 | 54 | 50 | 38 | 32 | 24 | 19 | 14   | 10   | 7  | 4  | 4  | 4  | 3  | 3  |

 $<sup>^1\,\</sup>mathrm{As}$  of yearend 1973. Includes reactors operating, under construction, and scheduled totaling 188,000 megawatts. Does not include leases from AEC, which are small, comprising less than 0.5% for first cores and for refueling through seventh reload, when they are scheduled to terminate.  $^2\,\mathrm{Refueling}$  estimated on annual basis.

Source: U.S. Atomic Energy Commission.

AEC estimates for projected U<sub>3</sub>O<sub>8</sub> and enriched uranium demands were lower than those of the previous year, owing to the continuing slippages in commercial reactor schedules and to general energy conservation practices. Estimates for probable domestic nuclear capacity, in thousands MW, were as follows:

| Year | 1972  | 1973  |
|------|-------|-------|
| 1980 | 132   | 102   |
| 1985 | 280   | 250   |
| 1990 | 508   | 475   |
| 2000 | 1,200 | 1,090 |

Short-term U<sub>3</sub>O<sub>8</sub> demand, during 1974-80, was correspondingly lower. Cumulative demand in 1980 was nearly 45,000 tons U<sub>3</sub>O<sub>8</sub> below the earlier estimate. Projected demand for enrichment services was also affected by the reduced estimates for operable nuclear capacity, particularly in the short term.

Table 10.-Current and projected domestic U<sub>3</sub>O<sub>8</sub> demand <sup>1</sup>

(Short tons)

|      |         |         | Pro     | bable           |
|------|---------|---------|---------|-----------------|
| Year | Low     | High    | Annual  | Cumu-<br>lative |
| 1973 | 6,800   | 9,600   | 8.200   | 8,200           |
| 1974 | 9,700   | 12,300  | 11,600  | 19,800          |
| 1975 | 11,800  | 14,000  | 14,100  | 33,900          |
| 1976 | 12,700  | 15,900  | 15,200  | 49,100          |
| 1977 | 15,500  | 20,100  | 19,400  | 68,500          |
| 1978 | 20,500  | 26,200  | 23,900  | 92,400          |
| 1979 | 26,300  | 31,600  | 30,400  | 122,800         |
| 1980 | 30,300  | 35,500  | 37,900  | 160,700         |
| 1985 | 55,200  | 70,900  | 60,400  | 397,100         |
| 2000 | 119,200 | 202,700 | 156,900 | 2,186,900       |

1 0.30% tails assay; Pu recycle start 1977.

Source: U.S. Atomic Energy Commission.

Late in the year, Offshore Power Systems Inc., jointly owned by Westinghouse Elec-

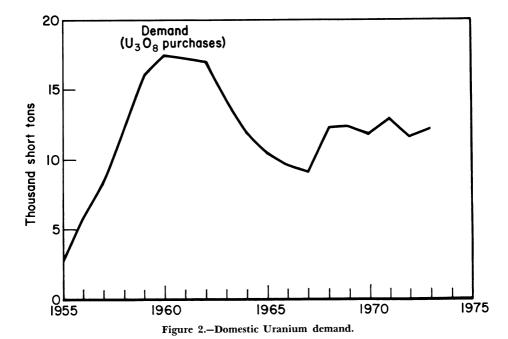
<sup>&</sup>lt;sup>27</sup> U.S. Atomic Energy Commission, Division of Production and Materials Management. Survey of United States Uranium Marketing Activity. WASH-1196(74), 23 pp.

Table 11.-Current and projected domestic demand for separative work 1

(Thousand SWU per year)

| Year |  | r Low High |        | Probable |
|------|--|------------|--------|----------|
| 1973 |  | _ 2,700    | 3,700  | 2,800    |
| 1974 |  | _ 2,500    | 4,600  | 3,400    |
| 1975 |  | _ 5,000    | 5,600  | 5,600    |
| 1980 |  | _ 11,300   | 14,200 | 13,900   |
| 1985 |  | _ 23,000   | 28,500 | 24,600   |
| 2000 |  | _ 57,400   | 97,400 | 75,300   |

 $<sup>^1\,</sup>Domestic$  orders only; 0.30%  $\,U_{225}$  tails assay; Pu recycle start in 1977.


Source: U.S. Atomic Energy Commission.

tric Corp. and Tenneco Inc., was negotiating with suppliers and Government officials for a location site for offshore nuclear powerplant construction facilities. The company had selected a plant site near Jacksonville, Fla., and indicated that orders for six offshore reactor units would justify construction. Four units were ordered during the year-two to be located off the New Jersey coast and two off the Mississippi coast.28 Each complete reactor unit would be barged to its operating site.

In November, the U.S. Maritime Commission received a proposal for construction of a 415,000-deadweight ton, nuclearpowered oil supertanker. The oil industry appeared interested; the proposed tanker could move an estimated 800,000 tons more crude oil per year than the slower conventional tankers of the same capacity.

Late in the year, plans were made to establish a World Nuclear Fuel Market (WNFM), an agency for the buying and selling of uranium and nuclear fuels, with headquarters at Atlanta, Ga. With international competition for uranium and nuclear fuels growing more intense, WNFM would set policies, resolve problems, and provide information on buyers and sellers to its members. Nuclear Assurance Corp. is the founder and coordinator.29

Nuclear Fuel Services, Inc., West Valley, N.Y., was granted a license for a cask, made of depleted uranium and of 50,000-pound capacity, for transporting spent fuel assemblies.30



<sup>&</sup>lt;sup>28</sup> American Metal Market. Offshore Nuclear Plants: An Unusual Contract Goes Shopping. V. 80, No. 195, Oct. 8, 1973, p. 4. <sup>29</sup> Chemical Week. Nuclear Supermarket. V. 114, No. 5, Jan. 30, 1974, p. 15. <sup>39</sup> Chemical and Engineering News. Cask Readied for Spent Nuclear Fuel. V. 51, No. 8, Feb. 19, 1973, p. 35.

#### **STOCKS**

The AEC reported private inventories at the beginning and end of the year, in tons U<sub>3</sub>O<sub>8</sub>, as follows:

|                                                                                                                                               | Jan. 1,<br>1973     | Dec. 31,<br>1973    |
|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|
| In ore at mills In process at mills In concentrate at mills In concentrate held by utility companies and reactor manufacturers (includes UFs) | 271<br>468<br>3,701 | 113<br>328<br>5,238 |
| Total                                                                                                                                         | 18,840              | 25,579              |

On the basis of delivery commitments and forecast demand, inventories were expected to increase to about 28,000 tons U<sub>3</sub>O<sub>8</sub> in 1975-76 and decline thereafter.

#### **PRICES**

Following several years of depressed markets and soft prices for U3O8, the price strengthened during 1973. Whereas spot prices were on the order of \$6 to \$6.25 per pound U<sub>2</sub>O<sub>8</sub> early in the year, they increased to about \$7 per pound U3O8 at yearend and were expected to escalate further during 1974.

The AEC conducted a survey of prices paid by reactor manufacturers and utility companies, as of January 1, 1973, for existing contracts during 1967-72 and for delivery each year during 1973-80.31 The price (1973 dollars) ranged from \$7.10 per pound for delivery in 1973 to \$7.80 for delivery in 1980. The AEC commented that these contracts represented only a small part of projected requirements to 1980, did not reflect higher prices in late 1973, and were not indicative of market prices prevailing throughout the year.

Although domestic and foreign sales contracts were negotiated, sales activity was slow during a period of low prices and an uncertain future. Competitive fixed-price bidding procedures appeared to have ended. Sellers were reluctant to conclude contracts, owing to questions arising on prices at time of future deliveries. Price adjustment clauses and currency shift safeguards were considered in long-term contracts.32 Canada, Australia, the Republic of South Africa, and France, after several international meetings, established a policy of no price quotations for post-1980 delivery.

Higher prices, averaging about \$7 per pound U<sub>3</sub>O<sub>8</sub>, were indicated in Canadian contracts for delivery to Spain in 1974-77 and to Japan in 1977-81. Reserve Oil and Uranium Co. announced a sale of 5 to 6 million pounds U<sub>3</sub>O<sub>8</sub>, valued at approximately \$50 million, for delivery during 1977-81. In November, Kerr-McGee Corp. sold in excess of 12 million pounds U<sub>3</sub>O<sub>8</sub> for more than \$150 million for delivery during 1977-85.33 Western Nuclear Inc. was seeking \$12 per pound U<sub>3</sub>O<sub>8</sub> for delivery in 1979-80, \$14 for delivery in 1981-85, and \$16 for delivery in 1986-90, all subject to escalation clauses.

Kerr-McGee Corp. offered UF, in specified quantities, also subject to escalation, at \$35.95 per pound (equating to \$12.10 per pound (U<sub>3</sub>O<sub>8</sub>) for delivery in 1977 and at \$44.39 per pound (equating to \$15.50 per pound U<sub>3</sub>O<sub>8</sub>) for delivery in 1982. A revised table of base charges for UF, and enriching services was announced by the AEC.34 Effective August 14, 1973, AEC charges for enrichment services were increased from \$32 per SWU to \$38.50 per SWU, the third increase within 21/2 years, for the old requirements-type contracts. The rate was reduced to \$36 per SWU for the new, fixed commitment contracts covering 10 years and for short-term customers. The AEC re-

<sup>31</sup> U.S. Atomic Energy Commission, Grand Junction Office. AEC Surveys United States Uranium Prices. News Release No. 648, Dec. 31 U.S.

Uranium Prices. News Release No. 648, Dec. 4, 1973, 2 pp.

32 Metal Bulletin. Uranium Trade Hotting Up. No. 5830, Sept. 4, 1973, p. 21.

33 Chemical Week. New Power in Nuclear. V. 113, No. 21, Nov. 21, 1973, p. 15.

34 Federal Register. Uranium Hexafluoride Charges, Enriching Services, Specifications, and Packaging: Revisions. V. 38, No. 30, Feb. 14, 1973, pp. 4432-4433.

served the right to increase charges by at least 1% each 6 months after January 1, 1974.35

Urenco Ltd., the European company representing the United Kingdom-the Netherlands-West Germany enrichment project, announced terms and conditions for its enrichment services by gas centrifuge technology. Initial charges were the equivalent of \$48 per SWU, subject to downpayment and price escalation, for minimum 10-year supply contracts.86

## **FOREIGN TRADE**

Larger quantities of U<sub>3</sub>O<sub>8</sub> concentrate and UF, entered the United States for enrichment services and re-export of the enriched product. The AEC had under consideration an amendment to the Uranium Enrichment Services Criteria, established pursuant to subsection 161(v) of The Atomic Energy Act of 1954, as amended.37 The proposed amendment would remove the existing embargo on the use of foreign uranium in domestic reactors on a graduated basis, starting with 10% of the domestic supply permitted from foreign sources in 1977, 80% permitted in 1983, and no restrictions thereafter.

35 Atomic Industrial Forum. AEC Decrees Increase of Basic Enrichment Charge to \$38.50. V. 20, No. 2, February 1973, p. 21. 36 Atomic Industrial Forum. Basic URENCO Contracting Conditions. V. 20, No. 9, September 1973, p. 35. 37 Federal Register. Restrictions on Enrichment of Foreign Uranium for Domestic Use. Notice of Proposed Modification. V. 38, No. 227, Nov. 27, 1973, pp. 32595-32596.

Table 12.-Foreign trade in uranium, uranium-bearing materials, and other nuclear materials, by principal country

|                                                                                                     | 19'                  | 72                      | 19                   | 73                | Principal sources and                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------|----------------------|-------------------------|----------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Product                                                                                             | Quantity             | Value                   | Quantity             | Value             | destinations, 1973                                                                                                                                                                       |
| EXPORTS                                                                                             |                      |                         |                      |                   |                                                                                                                                                                                          |
| Uranium: Ores and concentrates, U <sub>3</sub> O <sub>8</sub> content                               |                      | 0000 040                | 100.094              | \$796 56 <b>0</b> | All to Canada.                                                                                                                                                                           |
| pounds<br>Compoundsdo                                                                               | 151,590<br>6,714,148 | \$626,843<br>46,614,501 | 109,934<br>4,028,095 | 26,107,130        | Canada 3,788,776; United<br>Kingdom 195,817;<br>Japan 41,265; Indo-<br>nesia 1,706.                                                                                                      |
| Metal including alloys <sup>1</sup><br>do                                                           | 16,624               | 291,048                 | 14,737               | 269,708           | Italy 12,071; Japan<br>1,910; Canada 654.                                                                                                                                                |
| Isotopes (stable) and their compounds                                                               | NA                   | 19,053,518              | NA                   | 17,041,107        | Canada \$12,183,242;<br>Switzerland \$3,323,552;<br>West Germany \$371,-<br>851; France \$303,136;<br>Pakistan \$237,215;<br>United Kingdom \$158,-<br>951; Japan \$156,792.             |
| Radioactive materials: Radioisotopes, elements,                                                     |                      |                         |                      |                   |                                                                                                                                                                                          |
|                                                                                                     | 10,409,327           | r 8,733,247             | ·                    |                   | Japan 5,586,251; Canada<br>5,281,299; West Ger-<br>many 1,087,806;<br>Belgium-Luxembourg<br>749,821; United Arab<br>Emirates 698,091.                                                    |
| Special nuclear materials <sup>3</sup>                                                              | NA '                 | 104,014,721             | NA                   | 223,516,224       | Japan \$109,168,561; West<br>Germany \$46,906,450;<br>Sweden \$21,301,132;<br>United Kingdom \$11,-<br>864,572; France<br>\$9,410,428; Switzerland<br>\$8,309,324; Italy<br>\$6,648,105. |
| IMPORTS                                                                                             |                      |                         |                      |                   |                                                                                                                                                                                          |
| Uranium:<br>Oxide (U3O8)<br>pounds                                                                  | 4,568,033            | 30,224,696              | 11,210,066           | 61,442,214        | Canada 9,913,938; Republic of South Africa                                                                                                                                               |
| Other compounds<br>do                                                                               | 10,731,091           | 74,922,171              | 10,914,684           | 82,859,653        | 1,295,554.<br>Canada 4,314,751; Unite<br>Kingdom 3,607,904;<br>France 2,992,025.                                                                                                         |
| Isotopes (stable) and their compounds                                                               | . NA                 | 435,155                 | NA                   | 807,578           | Canada \$290,028;<br>U.S.S.R. \$172,389;<br>United Kingdom<br>\$168,025; Israel<br>\$59,289; France<br>\$39,070.                                                                         |
| Radioactive materials:<br>Radioisotopes, elements,<br>and compounds <sup>4</sup><br>thousand curies |                      | r 4,443,321             | 34,672,001           | 5,536,645         | Canada 31,224,424;<br>Switzerland 2,500,661;<br>United Kingdom 441,<br>111; West Germany<br>194,705; Sweden<br>171,044.                                                                  |

NA Not available.

r Revised. NA Not available.

1 Includes thorium.
2 Includes carbon-14 and cobalt-60.
3 Includes plutonium, uranium-233, uranium-235, and enriched uranium.
4 Includes cobalt-60.

## WORLD REVIEW

International maneuvering continued on a large scale in attempts to negotiate agreements for development of mine, mill, enrichment, and nuclear fuel facilities. New mines and mills were under development or planned in Australia, Canada, Niger, and the Territory of South-West Africa. Progress was made in gas centrifuge technology as an alternative to gaseous diffusion for uranium enrichment. The industrialized uranium-consuming nations conducted negotiations among themselves and with the uranium-producing nations for new enrichment capacity, which will be needed after 1980.

The tripartite project (West Germany, United Kingdom, and the Netherlands) for commercial development of centrifuge enrichment announced plans for two semicommercial-scale plants, each of 200,000 SWU, at Capenhurst (United Kingdom) and Almelo (the Netherlands).38 The estimated initial cost for enrichment services was expected to be \$48 per SWU, considerably higher than current costs. Urenco Ltd., the operating and marketing company, sponsored the Association for Centrifuge Enrichment (ACE), a multinational study group comprising 14 organizations in 11 countries.39

Demand for enriched uranium Western Europe was 2.5 million SWU and was projected at 9 million SWU in 1980 and 21 million SWU in 1985. Urenco capacity was expected to be 2 million SWU in 1980 and 10 million SWU in 1985. Eurodif, an association sponsored by the French and based on gaseous diffusion enrichment, planned capacity of 10 million SWU in 1980,40

European Communities (EC) goals were directed toward reduction of dependence on the USAEC for enrichment services. The EC planned capacity of 3,000 to 4,000 SWU by 1981 as well as Urenco's 10 million SWU in 1985. A standing committee was established to develop a coordinated enrichment industry in Europe through market surveys and technical-economic analysis. The EC's Permanent Council wanted 70% of total requirements for enriched uranium produced within the EC by 1985, when full competitiveness with other producers was anticipated.41 The status of power reactor development among the nine EC member countries, as of January 1. 1973, was as follows: Operable, 10,906 MW; under construction, 15,485 MW; ordered or planned, 17,624 MW, for a total of 44,015 MW.42 Projected EC capacity was 60,000 MW in 1980 and 133,000 MW in 1985. Because of possible future shortages of enriched uranium before sufficient capacity has been developed, the allocation from the United States was increased from 215,-000 SWU to 583,000 SWU in August.

The International Atomic Energy Agency (IAEA) of the United Nations conducted power reactor surveys, sponsored feasibility studies, organized technical meetings, awarded training fellowships, and published a variety of international nuclear industry reports. A nuclear power market survey of developing nations during 1980-90 indicated the possibility of 164 nuclear plants (85,000 MW) in 10 countries as a low estimate and 412 plants (120,000 MW) in 53 countries as a high estimate.43

A study of the worldwide status of nuclear reactor development plans, made by the American Nuclear Society, indicated that 374 installations (262,754 MW) were operation, under construction, ordered, in 26 countries at midyear 1973.44 About 47% of the total number of plants and 61% of the capacity were in the United

The NEA/IAEA Working Party projected non-Communist world nuclear capacity to 1985. Capacity involving 32 nations was expected to increase more than tenfold from 1973 to 1985. The United States, which had 56% of total capacity in 1973, would account for about one-half of total capacity in 1980 and 1985. The five leading nations (United States, Japan, West Germany,

Talks on Centrifuge Plant. Nuclear News, v. 16, No. 13, October 1973, pp. 59-60.

Atomic Industrial Forum. U.S. Firms Can Join European Centrifuge Study's First Phase. Nuclear Ind., v. 20, No. 2, February 1973, pp. 152

Nuclear Ind., v. 20, No. 2, February 1973, pp. 51-52.

The Economist. Now the Heat Is On, Who Will Supply Europes Uranium? V. 249, No. 6782, Oct. 27, 1973, pp. 75-76.

Metal Bulletin. EEC Uranium. Enrichment Plans. No. 5859, Dec. 14, 1973, p. 6.

American Nuclear Society. Nuclear Status for Enlarged Community. Nuclear News, v. 16, No. 2, February 1973, pp. 47-48.

Wilson, J. R. Extended Study of the Poential Market for Nuclear Power in the Developing Countries. State Department Airgram A-633, U.S. Mission, IAEA, October 1973, 42 pp.

pp.
44 American Nuclear Society. World List of Nuclear Power Plants. Nuclear News, v. 16, Nuclear Power P No. 11, pp. 53-66.

Table 13.-World status of nuclear reactor powerplant development 1

|                |                    | _                                          | _                       | -                |                            |                |
|----------------|--------------------|--------------------------------------------|-------------------------|------------------|----------------------------|----------------|
|                | Number             | Reactor                                    | Total capacity          | Deve<br>(num     | lopment s<br>ber of pl     | tatus<br>ants) |
| Country        | installa-<br>tions |                                            | (megawatts<br>electric) | Opera-<br>tional | Under<br>construc-<br>tion | Ordered        |
| Argentina      | 2                  | PHWR                                       | 919                     |                  | 1                          | 1              |
| Austria        | 1                  | BWR                                        | 692                     |                  |                            | 1              |
| Belgium        | 3                  | PWR                                        | 1,650                   |                  | 3                          |                |
| Brazil         | 1                  | PWR                                        | 626                     |                  | 1                          |                |
| Bulgaria       | .4                 | PWR                                        | 1,760                   |                  | 2                          | 2              |
| Canada         | 11                 | PHWR, BWR                                  | 6,084                   | 6                | 4                          | 1              |
| Czechoslovakia | 5                  | PWR, GCHWR                                 | 1,870                   | 1                |                            | 4              |
| Finland        | 3                  | PWR, BWR                                   | 1,500                   |                  | 2                          | 1              |
| France         | 17                 | PWR, GCR,<br>BWR, GCHWR,<br>LMFBR.         | 8,594                   | 11               | 4                          | 2              |
| Germany, East  | 5                  | PWR                                        | 1,835                   | 1                | 4                          |                |
| Germany, West  | 20                 | PWR, BWR,<br>THTR, PHWR,                   | 14,479                  | 7                | 12                         | 1              |
| TT             |                    | GCHWR, LMFBR.                              |                         |                  |                            | _              |
| Hungary        | 2                  | PWR                                        | 880                     |                  |                            | 2              |
| India          | 7                  | PHWR, BWR                                  | 1,388                   | 4                | 2                          | 1              |
| Italy          | 5                  | BWR, PWR,<br>GCR, LWCHR.<br>BWR, PWR,      | 1,427                   | 3                | 2                          |                |
| Japan          | 24                 | BWR, PWR,<br>GCR, HWLWR,<br>LMFBR.         | 15,603                  | 6                | 18                         |                |
| Korea, Rep. of | 1                  | PWR                                        | 564                     |                  | 1                          |                |
| Mexico         | 1                  | PWR                                        | 600                     |                  | 1                          |                |
| Netherlands    | 2                  | BWR, PWR                                   | 505                     | 2                |                            |                |
| Pakistan       | 1                  | PHWR                                       | 125                     | 1                |                            |                |
| Spain          | 10                 | PWR, BWR,<br>GCR.                          | 7,411                   | 3                | 6                          | 1              |
| Sweden         | 10                 | BWR, PWR                                   | 7.349                   | 1                | 5                          | 4              |
| Switzerland    | 6                  | BWR, PWR                                   | 3,676                   | 3                | ž                          | ī              |
| Taiwan         | 4                  | BWR                                        | 3,110                   |                  | 2                          | 2              |
| United Kingdom | 39                 | GCR, AGR,                                  | 11,781                  | 29               | 10                         |                |
| United States  | 174                | HWLWR, LMFBR.<br>PWR, BWR,<br>HTGR, LMFBR, | 159,917                 | 36               | 55                         | 83             |
| U.S.S.R        | 16                 | LGR.<br>LGR, PWR,<br>LMFBR.                | 8,409                   | 10               | 6                          |                |
| World total    | 374                |                                            | 262,754                 | 124              | 143                        | 107            |

<sup>&</sup>lt;sup>1</sup> As of June 30, 1973.

<sup>2</sup> AGR—Advanced Gas-Cooled Reactor; BWR—Boiling Water Reactor; GCHWR—Gas-Cooled Heavy Water Reactor; GCR—Gas-Cooled Reactor; HTGR—High Temperature Gas-Cooled Reactor; HWLWR—Heavy-Water (moderated) Light-Water (cooled) Reactor; LGR—Light (water) Graphite Reactor; LMFBR—Liquid Metal Fast Breeder Reactor; PHWR—Pressurized Heavy Water Reactor; PWR—Pressurized Water Reactor; THTR—Thorium High Temperature Reactor.

Source: American Nuclear Society.

United Kingdom, and France) would have about 80% of total capacity in those years.

Among the nine Communist nations of Eastern Europe, there would be 40,000 MW of nuclear capacity in 1980 and 160,000 MW in 1990. In these nations, nuclear power was expected to provide one-third of the electric power supply in the year 2000.

Australia.—Although there was no production of uranium during the year, a number of major new mines were under development, and new mills for production of uranium concentrate were planned. In the East Alligator River district, annual capacity of 5,000 tons U<sub>3</sub>O<sub>8</sub> was anticipated from three operations by 1980. However, announced new Government policies concerning foreign participation in uranium ventures and uranium exports tended to reduce development activity. The Minister for Minerals and Energy announced plans to fulfill existing contract commitments but prohibited new export contracts, pending a new energy policy. Existing export contracts totaled 11,522 tons U<sub>3</sub>O<sub>8</sub> for delivery during 1974-86 from three mines-Mary Kathleen Uranium Ltd., Ranger Uranium Mines (Pty.) Ltd., and Queensland Mines Ltd. At one point the Government considered supplying uranium for existing contracts from only the Mary Kathleen deposit in Queensland, which has been inactive since 1964 but maintained on a standby basis, and reserving production

| Country        | 1973   | 1974   | 1975   | 1976    | 1977    | 1978    | 1979    | 1980    | 1985    |
|----------------|--------|--------|--------|---------|---------|---------|---------|---------|---------|
| Austria        |        |        |        | 700     | 700     | 700     | 1,400   | 1,400   | 3,000   |
| Australia      |        |        |        |         |         | 500     | 500     | 1,000   | 3,000   |
| Belgium        | 400    | 1.300  | 1.700  | 1,700   | 1.700   | 2,300   | 2,300   | 3,000   | 5,500   |
| Canada         | 2,500  | 2,500  | 2,500  | 3,300   | 4,000   | 4,800   | 5,500   | 6,500   | 15,000  |
| Denmark        | 2,000  | _,,,,, | _,     | -,      |         |         |         | 700     | 1.500   |
| Finland        |        |        |        | 400     | 400     | 400     | 800     | 1.300   | 4,600   |
|                | 2.800  | 3,200  | 3.800  | 4,400   | 6.800   | 8.900   | 10,700  | 13,400  | 32,500  |
| France         | 2,100  | 4,900  | 4,900  | 9.300   | 11,500  | 13,500  | 16,000  | 19,000  | 38,000  |
| Germany, West  | 2,100  | 4,500  | 4,500  | 5,500   | 11,000  | •       |         | 700     | 1,500   |
| Greece         | 600    | 600    | 1 500  | 1.500   | 1,500   | 2,500   | 3,500   | 6.000   | 18,000  |
| Italy          |        | 600    | 1,500  |         | 17,300  | 20,600  | 24,500  | 32,000  | 60,000  |
| Japan          | 3,100  | 5,200  | 8,600  | 12,600  | 500     |         | 1,100   | 1,700   | 3,700   |
| Netherlands    | 500    | 500    | 500    | 500     | 900     | 1,100   | •       |         | 2,000   |
| Norway         |        |        |        |         |         |         |         | 1,000   |         |
| Portugal       |        |        | = =    | ==      |         | 2 2 2 2 | 2 200   | 0.000   | 2,000   |
| Spain          | 1,100  | 1,100  | 1,100  | 2,500   | 4,200   | 6,000   | 6,000   | 8,000   | 12,000  |
| Sweden         | 400    | 2,600  | 3,200  | 3,200   | 4,100   | 5,000   | 6,800   | 8,300   | 16,000  |
| Switzerland    | 1,000  | 1,000  | 1,000  | 1,000   | 1,000   | 1,900   | 1,900   | 2,600   | 8,000   |
| Turkey         |        |        |        |         |         |         |         | 400     | 1,000   |
| United Kingdom | 7,000  | 7,600  | 8.800  | 10,700  | 11,300  | 11,300  | 12,500  | 13,800  | 35,000  |
| United States  | 28,900 | 42,300 | 54,200 | 61,200  | 69,300  | 86,700  | 103,300 | 132,000 | 280,000 |
| Other          | 1,000  | 1,200  | 2,000  | 3,000   | 4,000   | 6,100   | 8,200   | 11,000  | 25,000  |
| Total          | 51,400 | 74.000 | 93,800 | 116,000 | 138,300 | 172,300 | 205,000 | 263,800 | 567,300 |

Table 14.-Projected world nuclear capacity 1 (Megawatts Electric)

Source: OECD Nuclear Energy Agency and International Atomic Energy Agency.

from Northern Territory mines until uranium prices firm up and a more favorable world market exists. Late in the year, the Government proposed development of the Ranger 1 mine in the Northern Territory to meet existing contracts.45

As a result of Government restrictions, Western Mining Corp. Ltd. (WMC) planned no further exploration and development at the Yeelirree deposit in Western Australia. Queensland Mines Ltd. suspended further development at Narbarlek, Northern Territory, because of concern with lease renewal in an aboriginal reserve. The purchase of a 10% interest in the Ranger 1 deposit by Ente Nazionale Idrocarburi (ENI) of Italy was subject to approval by the Government.46

Studies were underway for future uranium enrichment facilities in Australia. Research and development continued on the gas centrifuge. A preliminary feasibility study on a gaseous diffusion plant in Australia, using French technology, was made jointly with the Commissariat à l'Énergie Atomique (CEA). Possible sites, costs, resource requirements, and potential markets were considered. Australia joined the Association for Centrifuge Enrichment.

Canada.—Large uranium resources, a changing world energy market, growing world demand for uranium, and anticipated higher future prices, triggered new legislative policy proposals, limiting foreign ownership of uranium mines. One proposal

Table 15.-Uranium oxide (U3O8) concentrate: World production, by country

(Short tons)

| Country 1     | 1971               | 1972   | 1973 P  |
|---------------|--------------------|--------|---------|
| Argentina     | r 42               | 41     | 42      |
| Canada        | 4.107              | 4,885  | • 4,800 |
| France        | <sup>2</sup> 1.935 | 1.940  | • 1,950 |
| Gabon         | 601                | 577    | 712     |
| Niger         | 474                | 956    | 1,045   |
| Portugal e    | 105                | 105    | 105     |
| South Africa, |                    |        |         |
| Republic of   | 4.189              | 4,000  | 3,411   |
| Spain         | 103                | 141    | 106     |
| Sweden e      | 80                 | 80     | 80      |
| United States | 12,273             | 12,900 | 13,235  |
| Total         | 23,909             | 25,625 | 25,486  |

<sup>&</sup>lt;sup>e</sup> Estimate. <sup>p</sup> Preliminary. <sup>r</sup> Revised. <sup>1</sup> In addition to the countries listed, Czecho-slovakia, Finland, East Germany, West Germany, Hungary, India, Japan, People's Republic of China, and the U.S.S.R. are believed to have produced uranium oxide, but information is inade-quate to make reliable estimates of output levels. <sup>2</sup> Produced in part from imported material.

limited ownership of Canadian enterprises to 10% by single foreign companies and 331/3 % by foreign company groups.

Mine and mill production varied only slightly from that of 1972. Three operations remained active, two in the Elliot Lake district, Ontario and the other at Eldorado, Sasketchewan. A total of 4,660 tons U<sub>3</sub>O<sub>8</sub> concentrate was shipped during the year.47

<sup>1</sup> Total installed capacity at yearend; non-Communist nations only.

<sup>&</sup>lt;sup>45</sup> Metal Bulletin. Re-Sell Ranger Uranium Plan. No. 5858, Dec. 11, 1973, p. 21. <sup>46</sup> Engineering and Mining Journal. ENI to Purchase 10% of Ranger 1. V. 174, No. 6, June 1973, p. 196. <sup>47</sup> Williams, R. M. Uranium. Can. Min. J., v. 95, No. 2, February 1974, p. 110.

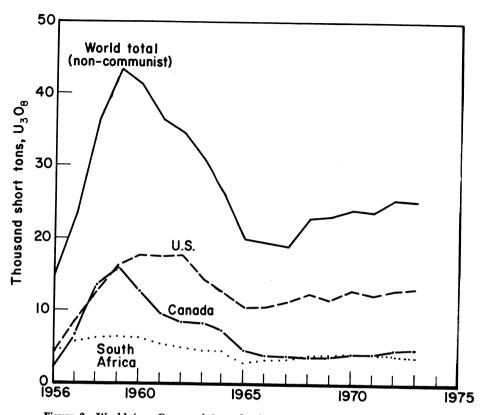



Figure 3.-World (non-Communist) production of uranium concentrate (U<sub>3</sub>O<sub>3</sub>).

Programs were in progress to increase production capacity. Denison Mines Ltd. was developing a new section of its mine and started mill expansion at Elliot Lake, where throughput capacity will be increased from 4,400 to 7,100 tons of ore per day and annual mill capacity to 10 million pounds U<sub>3</sub>O<sub>8</sub>.

Open pit mine development and mill construction was on schedule at Rabbit Lake, northern Saskatchewan, by Gulf Minerals Canada Ltd. (51% interest) and Uranerz Canada Ltd. (49% interest). Production was scheduled for 1975 at a rate of 4.5 million pounds U<sub>3</sub>O<sub>8</sub> per year.<sup>48</sup>

A production rate of 14,000 tons U<sub>3</sub>O<sub>8</sub> per year was planned for 1980. Canada expected to hold about 20% of the world market.49 More than 78,000 tons U3O8 have been committed to domestic and foreign customers since 1966, and 13,000 tons U<sub>3</sub>O<sub>8</sub> have been delivered, according to the Department of Energy, Mines and Resources.

Long-term sales contracts for U2Os were sought with utility companies.

The Canadian Government gave support to a proposal by Brinco Ltd., comprising RTZ Corp., Bethlehem Steel Corp., Japanese interests, and public shareholders, for a \$1 billion enrichment plant, using U.S. gaseous diffusion technology. Brinco was seeking other partners in the venture.50

Late in the year, a \$800 million contract was negotiated with Tokyo Electric Power Co., involving delivery of 40 million pounds U<sub>3</sub>O<sub>8</sub> during 1984-93.51 The contract was subject to final approval by the companies involved and the respective Governments.

<sup>48</sup> Engineering and Mining Journal. V. 174, No. 8, August 1973, p. 148.

49 Atomic Industrial Forum. Canadian Min-

ing Industry Sees Revival of Exploration Activity. Nuclear Ind., v. 20, No. 10, October 1973,

ity. Nuclear Ind., v. 20, No. 10, Uctober 1870, pp. 36-37.

So Metal Bulletin. Brinco Enrichment Plan. No. 5840, Oct. 9, 1973, p. 22.

So The Northern Miner (Toronto). Denison and Tokyo Electric to Sign Record Uranium Deal. V. 59, No. 37, Nov. 29, 1973, pp. 1, 31.

Table 16.-Uranium mills in Canada

| Company                                        | Location                              | Capacity<br>(tons of<br>ore<br>per day) | Status                                                                       |
|------------------------------------------------|---------------------------------------|-----------------------------------------|------------------------------------------------------------------------------|
| Can-Fed Resources Ltd I<br>Denison Mines Ltd I | Bancroft, OntarioElliot Lake, Ontario | 1,500<br>6,000                          | Inactive. Active; expansion to 7,100 tons of ore per day scheduled for 1975. |
| Eldorado Nuclear Ltd                           | Eldorado, Sasketchewan                | 1,800                                   | Active; operating at partia capacity.                                        |
| Gulf Minerals Canada Ltd ]                     |                                       |                                         | Under construction;<br>scheduled completion 1974.                            |
| Preston Mines Ltd J                            |                                       |                                         | Inactive.                                                                    |
|                                                |                                       |                                         | Do.                                                                          |
|                                                | do                                    |                                         | Do.                                                                          |
|                                                |                                       |                                         |                                                                              |
| Quirke                                         | do                                    | _ 4,500                                 | Active; operating at full capacity.                                          |
| Stanrock Uranium Mines Ltd                     | do                                    | _ 3,000                                 | Inactive; partially dismantled.                                              |

Source: Department of Energy, Mines and Resources, Ottawa, Canada.

France.—The CEA continued plans to gradually expand mine and mill production in metropolitan France. Eurodif, a multinational corporation comprising the CEA and Italy, Spain, Belgium, and Sweden announced plans to start construction of a \$2.65 billion gaseous diffusion enrichment plant in 1974 at Pierrelatte. This plant was scheduled to provide enrichment services capacity of 5 million SWU in 1980 and 9 million SWU ultimately.52 The CEA proposed French-Japanese and French-Australian establishment of enrichment facilities in the Pacific area, but no firm agreement was reached.

Péchiney-Ugine-Kuhlmann (PUK), in which Westinghouse holds a 35% interest, formed a nuclear fuel company, Eurofuel, which will provide complete fuel cores and replacement fuels for LWR's and mixed U-Pu fuels.

The 250-MW prototype fast breeder reactor (FBR) Phénix at Marcoule was tested early in the year, went critical in August, reached power production in October, and was operating at full power in the Electricité de France power grid at yearend. The CEA planned a 450-MW type and also a Super Phénix, a 1,200 MW FBR, possibly jointly with West German and Italian participation.53

Germany, West .- According to the Ministry of Science and Technology, Bonn, Steag A.G. negotiated with South African authorities concerning a cooperative agreement on uranium enrichment and proposed a study of the economic feasibility of the South African enrichment process.54

In October, Rheinisch-Westfaelisches Elektrizitaetswerk A.G. (RWE), West Germany's largest utility company, concluded an agreement with the U.S.S.R. in Moscow for 600,000 SWU of enrichment services during 1974-77. Other U.S.S.R.-West German contracts for enrichment services were expected.55

To achieve a goal of 18,000 MW of nuclear power capacity in 1980 and 40,000 MW in 1985, the Government planned to assist in reducing reactor construction time, support German companies in foreign exploration, increase enrichment service purchases, and spend about \$2 billion on nuclear research and development during 1973-76. Emphasis would be placed on an accelerated reactor development program, stressing the FBR.

A \$322 million initial contract was granted for the West German-the Netherlands-Belgium-Luxembourg, 300-MW prototype FBR, SNR-300, to be built at Kalkar. The installation was scheduled for completion in 1979.

India.—The atomic energy program was delayed by a general economic slowdown. Nuclear powerplant construction was 2 to 3 years behind earlier schedules.

Taktomic Industrial Forum. France to Sponsor European Diffusion Plant. Nuclear Ind., v. 20, No. 11, November 1973, pp. 53-54.

Taktomic American Nuclear Society. Phénix Breeder Demo Goes Critical. Nuclear News, v. 16, No. 13, p. 61.

Mining Journal (London). Uranium Enrichment South Africa/German Cooperation. V. 281, No. 7202, Aug. 31, 1973, p. 173.

Engineering and Mining Journal. West German Companies Go the Soviet Way in Uranium Enrichment. V. 174, No. 12, December 1973, p. 23.

FBR research was conducted at Kalpakkam, near Madras, where an infrastructure has been developed for two existing CANDU-type plants. A 15 to 18 MW FBR of the French Rhapsodie type (but modified for electric power generation) was under construction with CEA technical assistance. Radiometallurgical, radiochemical, fuel processing, and fuel fabrication facilities were planned. Engineering designs for a 250- to 500-MW FBR were under study.

Japan.—The Japanese Government and industry were actively engaged in efforts to develop an assured, adequate supply of natural and enriched uranium. According to the annual report of the Japanese Atomic Energy Commission, nuclear power capacity would reach 32,000 MW in 1980 and 60,000 MW in 1985. Utility companies had made arrangements for delivery of 90,000 tons U<sub>3</sub>O<sub>8</sub>, considered adequate for most needs until 1985.

The Japanese budget for fiscal 1973 allotted \$210 million for nuclear research and development, 15% more than fiscal 1972. Included was \$107 million for nuclear power development, mainly the FBR.

Enrichment Survey Committee (ESC), representing the power and nuclear equipment companies, projected uranium enrichment needs at 4 million SWU in 1980, 9 million SWU in 1985, and 15 million SWU in 1990. The ESC proposed Japanese participation in two or three enrichment plants of four to six such plants that would be needed in the non-Communist world during 1980-85. It also was engaged in a feasibility study with Uranium Enrichment Associates, which comprises Bechtel Corp., Union Carbide Corp., and Westinghouse Electric Corp., for the first private enrichment venture in the United States. The Japanese also discussed enrichment ventures with Canada, France, the U.S.S.R., Australia, and the Republic of South Africa.50

A U.S.-Japan agreement assures a 30-year supply for development of 60,000 MW of nuclear capacity. Industrial contracts were subject to negotiations between Japanese utility companies and the AEC. The Japanese planned to rely on U.S. enrichment services to 1980, participate in international enrichment ventures after 1980, and develop a commercial gas centrifuge operation in Japan by 1985.57 Early in the year, Japanese utilities concluded an agreement with the

AEC for 10 million SWU, valued at \$320 million, with full delivery by 1981.58 Nuclear powerplant construction experienced both material and labor shortages. At yearend, 14 plants were under construction and plants were scheduled.

In breeder development, an experimental FBR was scheduled for 1974 and a prototype FBR in 1978.

The Science and Technology Agency decided to establish a semi-Government center responsible for radioactive waste management throughout Japan. The program would include waste storage on land, trial ocean disposal, research and development, and land or sea transport of wastes.

South Africa, Republic of .- The pilot enrichment plant of Uranium Enrichment Corp. of South Africa, Ltd., was scheduled for completion in 1974, and plans were made for a \$825 million commercial operation of 2.4 million SWU per year.59 The company reported that estimated capital investment in the commercial operation would be only 65% of that for a gaseous diffusion plant using U.S. technology because of a higher separation factor and the corresponding need for fewer enrichment stages. However, the South African process apparently requires greater energy consumption per SWU.

South-West Africa, Territory of.-RTZ Corp. concluded a partnership and uranium sales agreement with Total Compagnie Minière et Nucléaire concerning the Rossing mine, near Swakopmund.<sup>60</sup> Total acquired 10% of Rossing Uranium Ltd., the operating company, and will purchase a share of the uranium output after 1980. The open pit mine was scheduled for production in 1976 or 1977.

United Kingdom.—New USAEC contractual terms for enrichment services caused the tripartite nations (United Kingdom jointly with West Germany and the Netherlands) to revise plans for gas centrifuge

<sup>56</sup> Engineering and Mining Journal. Japan Actively Seeking Ways to Forge Ahead With Nuclear Industry. V. 174, No. 6, June 1973, pp. 198-200.

57 Salaff, S. Japan Turns to Uranium. Fareastern Econ. Rev., v. 81, No. 35, Sept. 3, 1973, pp. 48-49.

58 American Nuclear Society. Japan Signs \$320 Million Pact. Nuclear News, v. 16, No. 4, April 1973, p. 50.

50 Atomic Industrial Forum. South Africa Aims to Complete Big Enrichment Plant in Early 80s. Nuclear Ind., v. 20, No. 7, July 1973, p. 33.

Engineering and Mining Journal. Rossing Uranium Gets Partner and Sales Deal. V. 174, No. 8, August 1973, p. 13.

plant development. Scheduled planned pilot-plant capacity may be doubled, reaching 500,000 to 600,000 SWU per year by 1976, and commercial capacity was set at 2 million SWU in 1980 and 10 million SWU in 1985.

The National Nuclear Corp. (General Electric Co. 50%, Government 15%, other private 35%) was organized to assume responsibility for future nuclear powerplant design and construction. Controversy continued over whether to use nuclear plants of U.S. or U.K. design for the next stage of commercial development. The Central Electricity Generating Board announced preference for the LWR steam supply system of U.S. design and proposed ordering 18 reactors in two stages during 1974–83, 9 PWRs of U.S. design during 1974–79, and

9 HTGRs, also of U.S. design, thereafter. U.S.S.R.—Two contracts were concluded for providing 600,000 SWU of enrichment services for first cores at two 1,300-MW reactors in West Germany. The U.S.S.R. also negotiated with the Swedish Nuclear Fuel Supply Co. and the Swedish Nuclear sham utility group for about 300,000 SWU, and options for more, for delivery in 1979–80.

The BN-350 FBR at Shevchenko was the first of commercial size to reach criticality, although it was operated at only partial power.<sup>62</sup>

The Communist nations' Council for Mutual Economic Assistance planned 40,000 MW of nuclear capacity by 1980 and 160,000 MW by 1990 in the Communist nations of Eastern Europe.

# **WORLD RESOURCES**

The Organization for Economic Cooperation and Development reported an increase of 34% in reasonably assured resources at \$10 per pound U<sub>3</sub>O<sub>8</sub>, compared to estimates made in 1970. Total resources (\$10-per-pound category), including estimated additional resources, also increased by approximately one-third. Major new reserves and resources in Australia, Niger, and the Territory of South-West Africa accounted for a large part of these expanded resources.

Table 17.—World resources of uranium <sup>1</sup> (Thousand tons U<sub>3</sub>O<sub>8</sub>)

|                           | Resources             |       |  |  |
|---------------------------|-----------------------|-------|--|--|
| Country                   | Reasonably<br>assured |       |  |  |
| Argentina                 | . 12                  | 18    |  |  |
| Australia                 |                       | 102   |  |  |
| Brazil                    |                       | 3     |  |  |
| Canada                    | - 241                 | 247   |  |  |
| Central African Republic. | . 10                  | 10    |  |  |
| Denmark (Greenland)       | _ 7                   | 13    |  |  |
| France                    |                       | 31    |  |  |
| Gabon                     |                       | 6     |  |  |
| Niger                     |                       | 26    |  |  |
| Portugal                  |                       | 8     |  |  |
| South Africa.             |                       |       |  |  |
| Republic of 2             | _ 263                 | 10    |  |  |
| Spain                     |                       |       |  |  |
| United States             |                       | 700   |  |  |
| Yugoslavia                |                       | 13    |  |  |
| Other                     |                       | 4     |  |  |
| Total                     |                       | 1,191 |  |  |

Non-Communist world only; price range up to \$10 per pound U<sub>2</sub>O<sub>8</sub>; data as of Jan. 1, 1973.
 Includes Territory of South-West Africa.

In Australia, exploration for uranium by national companies and multinational consortia continued at a fast pace, although reduced from the previous year because of announced Government policies. Discoveries were reported in the Northern Territory, South Australia, and Western Australia. Uranium reserves were expected to expand further as exploration and development drilling continued. According to the Australian Atomic Energy Commission (AAEC), reasonably assured resources recoverable at a maximum of \$10 per pound U3O8 had increased to 140,000 tons at midyear.64 The AAEC reported resources, as of June 30, 1973, as follows (in thousand tons U<sub>3</sub>O<sub>8</sub>):

| 1                    | Less than \$10<br>per pound<br>U <sub>3</sub> O <sub>8</sub> | \$10–\$15<br>per pound<br>U <sub>3</sub> O <sub>8</sub> |
|----------------------|--------------------------------------------------------------|---------------------------------------------------------|
| Reasonably assured   | 140                                                          | 83                                                      |
| Estimated additional | 48                                                           | 43                                                      |

In the East Alligator River district, Northern Territory, where a large part of Australia's total uranium resources have

Source: OECD Nuclear Energy Agency and International Atomic Energy Agency.

<sup>61</sup> Metal Bulletin. New U.K. Reactors. No. 5862, Dec. 28, 1973, p. 21.
62 Atomic Industrial Forum. Overseas LMFBRs

Moving on Parallel Courses to Full Power Goal. Nuclear Ind., v. 20, No. 8, August 1973, pp. 39-40.

Nuclear 1110., v. 20, 39-40.

So Organization for Economic Cooperation and Development. Uranium Resources, Production and Demand. A joint report by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. August 1973, 140 pp.

Australian Atomic Energy Commission. Twenty-first Annual Report, 1972-73, August 1973, p. 10.

been discovered in recent years, Peko-Wallsend Ltd. and Electrolytic Zinc Industries Ltd. continued evaluation of the Ranger group, 130 miles east of Darwin. In the Ranger 1 anomaly area, reserves were reported at 51,500 tons U<sub>3</sub>O<sub>8</sub> (Jabiru ore body) and 31,000 tons U3O8 (Jacana ore body). Other localities in the Ranger area were under investigation. Queensland Mines Ltd. reevaluated earlier exploration data and continued exploration in the vicinity of the Nabarlek deposit, where reserves remained unchanged at 10,500 tons U<sub>3</sub>O<sub>8</sub>. Noranda Australia Ltd. continued development drilling at the Koongarra deposit and was participating in other exploration ventures. Pancontinental Mining Ltd., operator in a joint venture with Getty Oil Development Co. Ltd., was evaluating favorable anomalous areas. The Jabiluka 1 deposit was drilled out, and resources were reported at 3,850 tons U<sub>3</sub>O<sub>8</sub>. Jabiluka 2, 1,600 feet from Jabiluka 1, proved to be a substantial ore body, reported at 20,200 tons  $U_3O_8$ .

In South Australia the Petromin-Transoil-Exoil group (PTE) reported resources in the Beverly area, near Lake Frome, at 17,500 tons U<sub>3</sub>O<sub>8</sub>. Other companies were also active in this region.

In Western Australia, WMC completed development plans with auger, rotary, and diamond drilling in the Yeelirree area, where the mineralized area measured 28 by 2 miles along a buried stream channel. The ore is in horizontal beds, generally less than 25 feet below the surface. WMC announced reserves of 50,000 tons U<sub>3</sub>O<sub>8</sub> in ore at 0.15% U<sub>3</sub>O<sub>8</sub>. including 26,000 tons U<sub>3</sub>O<sub>8</sub> in high-grade ore at 0.36% U<sub>3</sub>O<sub>8</sub>.

Canadian uranium resources were higher than previously reported, particularly in the higher price categories. Estimated additional resources were nearly 70% higher than those reported for the NEA-IAEA Working Party in 1970.65

Exploration remained at a low ebb, ow-

ing to the continuing lack of market incentives and the Government attitude concerning restrictions on foreign ownership in the uranium industry. Minor exploration activities were underway in the Mont Laurier area of Quebec and in a few other areas. The main activity was in northern Sasketchewan, where Gulf Minerals conducted exploration in the Rabbit Lake area and planned drilling projects at several prospects. Other companies were also active in this region.66

As a result of continuing exploration and development drilling in Niger, the resource position at \$10 per pound U<sub>3</sub>O<sub>8</sub> improved substantially, particularly for resources moving into the more firmly established category. Reasonably assured sources at \$10 per pound U<sub>3</sub>O<sub>8</sub> reached 52,000 tons U<sub>3</sub>O<sub>8</sub> and were expected to expand further. In addition to the producing Arlit mine and mill, the Government of Niger, the French CEA, and Japanese interests were engaged in a feasibility study of the Akouta deposit, where a substantial reserve has been established. The Niger Government, CEA, and Urangesellschaft m.b.H. of West Germany planned an exploration project at the Djado concession.

For the Republic of South Africa, NEA-ENEA reports of 263,000 tons U<sub>3</sub>O<sub>8</sub> in resources at \$10 per pound U<sub>3</sub>O<sub>8</sub>, a substantial increase over previous estimates, include resources in the Rossing deposit in the Territory of South-West Africa. Actual resources within the Republic, mainly in byproduct uranium from gold mines, have not changed significantly.

Exploration was underway by a number of major companies in the Beaufort West-Fraserburg area, 250 miles east-northeast of Cape Town. Extensive areas of low-grade mineralization (0.05% U<sub>3</sub>O<sub>8</sub>) in sandstones and conglomeratic sandstones were considered of significant potential. The Government planned an airborne survey of a 1,200-square-mile area.

#### **TECHNOLOGY**

A method for uranium identification by neutron activation and X-ray spectrometry was reportedly developed in Israel.67 The neutron activation of a liquid or solid sample takes place in a reactor, and the X-ray spectrometry determines uranium and thorium content in geological materials with accuracy within a few percent. The

Ge Williams, R. M., and H. W. Little. Canadian Uranium Resource and Production Capability. Min. Bull. MR 140, Mineral Development Sector, Department of Energy, Mines and Resources, Ottawa, Canada, 1973, 27 pp. George 111-114 of work cited in footnote 47. George Mantel, M., and S. Amiel. Simultaneous Determination of Uranium and Thorium by Instrumental Neutron Activation and High Resolution X-Ray Spectrometry. Anal. Chem., v. 45, No. 14, December 1973, pp. 2393-2399.

method was considered rapid, using the short half-lives of certain radioisotopes.

The distribution and zoning of uranium and other radioelements in porphyry copper deposits was analyzed by gamma-ray spectrometry. Uranium was found to be concentrated centrally or peripherally in different rock compositions of the porphyry copper deposits in Arizona and New Mexico.68

The presence of dissolved helium in ground water was used as a tool in exploration for uranium ore deposits. Helium flux was considered to be higher near these deposits; measurements near two known uranium deposits in Canada indicated a helium content up to 600 times normal for its solubility equilibrium with the atmosphere.69 Another exploration technique involved the horizontal tracking of gaseous decay products, such as radon, in the atmosphere to source areas by correlation with wind conditions, after the radon had diffused to the surface from uranium deposits and became windborne.70 In another technique using radon emanometric data, soil gas was extracted from drill holes, 2 to 4 inches in diameter and 3 feet deep, by a probe connected to a hand pump, and the radon content was measured in an alpha counting chamber.71 This procedure was employed for roll front sandstone-type uranium deposits but may be used in exploration for other ores where uranium is an accessory mineral.

The AEC's Oak Ridge National Laboratory reported a new procedure for solvent extraction of uranium at WPPA operations. Tetravalent uranium is extracted with dioctyl phenyl phosphoric acid and is then stripped with product acid (54% H<sub>3</sub>PO<sub>4</sub>). The uranium is then oxidized to the hexavalent state with sodium chlorate. In a second stage, uranium is extracted with ethyl hexyl phosphoric acid (EHPA) and trioctyl phosphoric oxide (TOPO) and stripped with sodium carbonate. In an adaptation during WPPA processing, using HCL on the phosphate rock, the pregnant liquor is contacted with a mixture of dioctyl phosphate and dodecane, and the extractant is treated with water, the uranium entering the aqueous phase, which is separated for conventional processing.72

Research continued on health and safety in uranium mines. Filters, with vermiculite as the filtering material, were used in dust and radon control. Total dust, respiratory

dust, and radon daughter collection efficiencies were analyzed statistically. The velocity of ventilation rather than the filter thickness affected radon daughter filtration. Other filter materials were more efficient, but vermiculite was lower in cost, easy to handle, resistant to moisture, and could withstand a large pressure drop.73

A method was proposed for removal of radon and other hazardous gases from a uranium ore body by drilling out the deposit, pumping ground water to establish permeability to gas within the formation, and then pumping the radon gas through the drill holes as the deposit is mined.74

new thermoluminescent (TLD) was considered superior to the photographic film-type badge worn by underground miners for recording radiation exposure. The TLD crystal, composed of lithium or calcium fluoride, calcium sulfate, or lithium borate, absorbs X-ray or gamma-ray energy, causing the capture of electrons by certain crystal impurities, which impart the thermoluminescent properties to the crystal. The TLD is re-usable, more accurate, more sensitive to small radiation dosages, and less affected by temperature and humidity than the film-type

Uranium was recovered from Elliot Lake ores, Ontario, Canada, by vapor-phase

es Davis, J. D., and J. M. Guilbert. Distribu-tion of the Radioelements Potassium. Uranium, and Thorium in Selected Porphyry Copper De-posits. Econ. Geol., v. 68, No. 2, March/April

posits. Econ. Geol., v. 68, No. 2, March/April 1973, pp. 145-150. © Clarke, W. B., and G. Kugler. Dissolved Helium in Ground Water: A Possible Method for Uranium and Thorium Prospecting. Econ. Geol., v. 68, No. 2, March/April 1973, pp. 243-251

Milly, G. H. (assigned to Geomet Mining and Exploration Co.). Method of Prospecting for Uranium Ore, Thorium Ore, and Other Radioactive Ores. Can. Pat. 927,526, May 29,

<sup>1973.

71</sup> Caneer, W. T., and N. M. Saum. Radon
Emanometry in Uranium Exploration. Colo.
School Mines Res. Inst., Golden, Colo., 1974, 18

School Mines Res. Inst., Golden, Colo., 1974, 18 pp.

<sup>72</sup> Ketzin, Z., Y. Volkman, and D. Yakir (assigned to Israel Atomic Energy Commission). Recovery of Uranium Values From Aqueous Liquors Formed During WPPA Processing. British Pat. 1,328.673, Aug. 30, 1973.

<sup>73</sup> Washington, R. A., W. Chi, and R. Regan. The Use of Vermiculite to Control Dust and Radon Daughters in Underground Uranium Mine Air. Can. Min. and Met. Bull., v. 66, No. 731, March 1973, pp. 152-160.

<sup>74</sup> Blackwell, R. J., A. R. Hagedorn, and G. D. Ortloff (assigned to Esso Product Research Co.). Method of Withdrawing Radon or Other Hazardous Gases From an Underground Uranium Mine. U.S. Pat. 3,743,355, July 3, 1973.

<sup>75</sup> Chemical Week. Hot on the Trail of Radioactivity. V. 112, No. 26, June 27, 1973, p. 35.

chlorination.76 Processing costs were considered comparable with those for conventional sulfuric acid leaching. With minus-12 mesh ore at 1,000° C, 340 pounds of chlorine were used per ton of ore, with 95% uranium recovery.

A strong acid leach of uranium afforded advantages over conventional dilute acid leaching for refractory ores. Costs were reduced because less ore grinding was necessary, less acid was consumed, and an agitated slurry leach was not required.77

In other ore-processing research, leaching sulfuric acid was passed upward through the ore bed in a vat. The pregnant solution was removed from above for conventional processing, and the leached ore removed from the bottom of the vat. This procedure required less reagent use and minimized carryover of ore fines in the pregnant solution.78

Bureau of Mines research continued on extraction and elution of uranium from low grade ores and copper leach solutions. Solution flow in a compartmented continuous current ion-exchange column was regulated by an automatic control system. A test based on a solution upflow principle provided better uranium sorption efficiency from low-grade ores. A series of vertical sections in the column, separated by zones of reduced diameter, localized and increased the flow velocity and improved mixing in the higher sections. Uranium recovery from a bulk sample of Chattanooga shale, containing 0.006% U<sub>3</sub>O<sub>8</sub>, was more successful when agitation leaching followed an oxidation roast.

In a uranium heap-leaching operation, the leach solution was applied at the top of the heap for leaching to a desired depth.79 The leached zone was then treated with water for several days or weeks, and the material slurried and moved to a settling basin, where the pregnant solution was recovered for processing. The same procedure may be followed on successive layers of the ore heap.

Uranium may also be recoverable from leach solutions, metallurgical processing solutions, or sea water by adsorption with titanated polyvinyl alcohol and desorption with an aqueous solution of sodium carbonate or ammonium carbonate.80 Another process for recovery of uranium from sea water involved a belt with a layer of activated exfoliated vermiculite, which was moved through a solution, the vermiculite laminae absorbing uranium ions. The belt then moves through an elution station, where the ions are removed with a suitable reagent.81

A new method of gaseous diffusion uranium enrichment, called the shuttle method, was developed in Italy. In ordinary diffusion enrichment, the UF<sub>6</sub> goes through 1,700 to 2,000 diffusion stages. In the new procedure, the in-process material is subjected to repeated cycling through 100 to 200 stages. This required an elaborate system of in-process storage but lower capital investment in plant use and equipment.

Several gas-centrifuge enrichment models evolved from the AEC's Centrifuge Development Program. Four centrifuge prototypes were undergoing performance and reliability testing at Oak Ridge National Laboratory, Oak Ridge, Tenn. The aim was to develop manufacturing technology for component assembly and equipment fabrication. At the AEC laboratories at Livermore, Calif., and Los Alamos, N. Mex., enrichment by laser separation was under investigation. In theory, the isotopes (U235 and U<sub>238</sub>) absorb light at slightly different energy levels. The separation process has proved successful in the laboratory, and commercial application was under study.82

Industrial applications of the high process heat of the gas-cooled reactor were under investigation in the United States and abroad. Gulf General Atomic Co. attempted the production of hydrogen by splitting H and O in ordinary water by a multistep thermochemical cycle using high-temperature, gas-cooled reactor (HTGR) heat in the range of 1,500° to 1,800° F.83 Reactor

The Lapage, R, and J. W. Marriage. Extraction of Uranium from Elliot Lake Ore by Vapor-Phase Chlorination. J. Inst. Min. and Met., v. 182, No. 799, June 1973, pp. C101-C102.

World Mining. Strong Acid Leaching For Uranium Ore. V. 26, No. 12, November 1973, pp. 56

"World Mining. Strong Acid Leaching for Uranium Ore. V. 26, No. 12, November 1973, p. 56.

"8 Mitterer, A. V. (assigned to Continental Oil Co.). Continuous Vat Leaching of Uranium Ore Under Quiescent Conditions. U.S. Pat. 3,777,003, Dec. 4, 1973.

Dankenau, A. S., and J. L. Lake (assigned to Hazen Research, Inc.). Heap Leaching of Uranium Ore and/or Vanadium Ore. U.S. Pat. 3,777,004, Dec. 4, 1973.

Yano, M., I. Yamamoto, and N. Yasuhira (assigned to Kuraray Co. Ltd.). Recovery of Uranium Values From Ore Leach Solutions, Metallurgical Process Solutions, or Sea Water. U.S. Pat. 3,778,498, Dec. 11, 1973.

Si Gerber, A. M. Extraction of Single or Multiple Ions of Uranium and Other Metals From Sea Water or Brine on a Continuous Basis. U.S. Pat. 3,763,049, Oct. 2, 1973.

Si Chemical Week. Laser Separation. V. 114, No. 3, Jan. 16, 1974, p. 29.

Sa American Nuclear Society. Production of Hydrogen Aim of GGA Program. Nuclear News, v. 16, No. 15, December 1973, pp. 79-80.

process heat also was considered for coal gasification, iron reduction, and as a coke substitute in the blast furnace.84 Prototype nuclear steel plants, involving the gas-cooled reactor and a hot-gas direct reduction process, were under development in the United Kingdom, Japan and West Germany.85 In Japan, a 6-year research program was underway on HTGR-generated nuclear heat utilization, which would reduce pollution and coking coal requirements and would save up to 12% in energy consumption.

AEC-sponsored research included studies on LMFBR fuels, materials, physics, components, and systems development.86 Breeder fuels were tested for performance at rated power and operating conditions and for safety in abnormal situations. The objective was the development of high performance U-Pu carbide, nitride, and metal fuels with higher thermal efficiencies, higher fuel densities necessary for better breeding ratios. and reduced fuel fabrication costs and doubling time. The Fast Flux Test Facility at Hanford, Wash., which was re-scheduled for completion in 1977, will provide experience in LMFBR design, construction, operation, and maintenance and in fast flux irradiation of LMFBR fuels and materials.

Deformation studies on stoichiometric UO2 crystals in fuels indicated that the presence of oxygen clusters in the fuel lowers yield stress and promotes cross-slip deformation.87 Creep rates, studied at 1,300° C to 1,500° C and at 2,000 to 6,000 pounds per square inch, were found to be higher in mixed U-Pu carbide fuels than in U carbide fuels tested under similar conditions.88 Grain size and porosity were factors in creep mechanism by grain-boundary sliding. Hot-hardness measurements indicated deformation by dislocation-impurity interactions. In fuels enriched to 1.82% U<sub>225</sub>, tested in a reactor, the strain rate was proportional to the fission rate in a constant structural state, and radiation-induced creep was athermal at temperatures up to 500° C but may become temperature-dependent at higher temperatures.89 Crack healing during grain growth was probably controlled by grain-boundary diffusion, if stress were small or compressive and diffusion not affected by fissioning.90 This healing was of primary concern during initial reactor startup, when cracks may occur in oxide fuel pellets.

Nondestructive testing of LWR and FBR fuel materials by eddy current, penetrant, and ultrasonic methods was followed by radiographic fuel rod inspection and complementary techniques including gamma monitoring, fluoroscopy, and leak tests. The radioisotope Cf<sub>252</sub> was used in neutron activitation analysis of pellet density, pellet enrichment, and fuel geometry.91

A new system of rapid refueling, on a semi-annual rather than annual basis, would permit savings during the refueling operation, due to a lower initial enrichment level needed and reduced downtime. For optimum performance, the fuel enrichment level tended to decrease as the number of refuelings increased.92

A newly developed cask for transporting spent fuel assemblies was licensed by the AEC in January. It consists of a lead gamma shield between two cylindrical steel shells, a compartmented neutron shield tank containing a borated antifreeze solution that serves as a neutron-shield, and multidirectional lightweight impact limiters. The vessel weighs 25 tons and will carry two BWR and one PWR fuel assemblies. It was designed for zero release of coolant solution in any hypothetical accident.98 Another cask in service, the first accommodating the new, longer fuel assemblages, can carry 7 PWR or 18 BWR spent fuels by rail. It is cooled by natural convection and has an auxiliary forced-air circulation sys-

In spent-fuels reprocessing, an electro-

St American Nuclear Society. HTR: Process Heat Source by 1985. Nuclear News, v. 16, No. 10, August 1973, p. 58.

St American Institute of Mining, Metallurgical and Petroleum Engineers. Nuclear Steelworks by 1980. J. Metals, v. 25, No. 10, October 1973, p. 15.

St Pages 27-34 of work cited in footnote 2.

St Yost, C. S., and C. J. McHargue. Model for Deformation of Hyperstoichiometric UO2. J. Am. Ceram. Soc., v. 56, No. 3, March 1973, pp. 161-164.

for Deformation of Hyperstoichiometric UO2. J. Am. Ceram. Soc., v. 56, No. 3, March 1973, pp. 161–164.

Strokar, M. Compressive Creep and Hot Hardness of U-Pu Carbides. J. Am. Ceram. Soc., v. 56, No. 4, April 1973, pp. 173–177.

Soc., v. 56, No. 4, April 1973, pp. 173–177.

Ref VO2. J. Am. Ceram. Soc., v. 56, No. 3, March 1973, pp. 164–171.

Ref Roberts, J. T. A., and B. J. Wrona. Crack Healing in UO2. J. Am. Ceram. Soc., v. 56, No. 6, June 1973, pp. 297–299.

Marcrican Nuclear Society. Radiography and NDT in the Nuclear Industry. Nuclear News, v. 16, No. 11, September 1973, pp. 98–100.

News, v. 10, 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100. ..., 100

lytic dissolver at the AEC's Chemical Processing Plant, National Reactor Testing Station, Idaho, enables faster, more economical processing of stainless-steel-clad fuels. An electric charge is applied to the metal cladding, which is immersed in nitric acid, causing the stainless steel, otherwise inert, to dissolve.

AEC capacity for high-level radioactive waste solidification was expected to be doubled with the 242-S Facility, which went into operation at Hanford, Wash., in November.<sup>94</sup> Waste solutions, steam-heated to 140° F to 165° F. are pumped to an evaporator-crystallizer facility, where the waste is boiled and the vapor collected and condensed at a rate of 40 gallons per minute. The remaining waste slurry is then pumped back to storage for settling of solids.

Two new processes for high-level waste treatment and solidification were also developed at Hanford. A pilot plant will provide engineering data on waste treatment by hot, concentrated sulfuric and nitric acid digestion. It was reported that each 100 kilograms of fuel produced 28

cubic feet of contaminated materials. In solidification, radioactive salt cake from underground storage tanks was converted to a hard insoluble rock-like material with basalt at 1,200° C and with iron oxide, silicon, and sand at 2,000° C.95 The Japanese Atomic Energy Research Institute announced a method for high-level waste solidification by conversion to a glass, using sodium carbonate and other chemicals added to a zeolite.

Slightly radioactive oil generated at enrichment plants, formerly buried in drums, was fed to natural micro-organisms in soil at an Oak Ridge National Laboratory test area. The oil was consumed and dissipated as CO<sub>2</sub>, and chemical contaminants were trapped in the soil. The process appeared effective, with no adverse environmental effects.<sup>56</sup>

October 1973, p. 29.

Standard Hut, V. 20, No. 10, October 1973, p. 29.

Chemical Week. New Approach to Disposal of Slightly Radioactive Oil. V. 113, No. 15, Oct. 10, 1973, p. 22.

 <sup>&</sup>lt;sup>94</sup> Page 118 of work cited in footnote 2.
 <sup>95</sup> Atomic Industrial Forum. Two New Hanford Processes Show Rich Promise in Waste Management. Nuclear Ind., v. 20, No. 10, October 1973, p. 29.



# Vanadium

# By Harold A. Taylor, Jr.1

Domestic demand for vanadium reached an alltime high in 1973, slightly above the previous high of 1969. Overseas demand was also quite strong. Domestic production of vanadium pentoxide was somewhat lower than that in 1972, mostly the result of the Uravan-Rifle complex being partially shut down until May while the vanadium circuit was rebuilt. Exports of ferrovanadium were more than five times those of the previous year. Exports of vanadium ores and oxides also rose significantly above those of the previous year. The Government sold all of its ferrovanadium in the first half of the year.

Legislation and Government Programs.— On April 12, the Office of Preparedness decreased the vanadium pentoxide stock pile objective from 540 short tons of contained vanadium to zero, thereby eliminating the last remaining vanadium objective. Congressional authorization must be obtained before the remaining pentoxide can be sold.

The General Services Administration sold the 1,200 short tons (vanadium content) of ferrovanadium that remained in Government stockpiles. Of the 1,000 short tons sold to producers of ferrovanadium, 69% went to Shieldalloy Corp., 26% to Susquehanna-Western, Inc., and the balance to Gulf Chemical and Metallurgical Corp. Various metal traders bought the remaining 200 tons. No export restrictions were placed on this material.

As of December 31, 1973, the Government had an inventory of 1,231 short tons of vanadium, all in the national stockpile. Of this total, which includes material sold but not delivered, 399 tons was held as ferrovanadium and 832 tons was held as vanadium pentoxide.

Table 1.-Salient vanadium statistics

(Short tons of contained vanadium)

|                                                                    | 1969     | 1970     | 1971     | 1972     | 1973     |
|--------------------------------------------------------------------|----------|----------|----------|----------|----------|
| United States:                                                     |          |          |          |          |          |
| Production:                                                        |          |          |          |          |          |
| Ore and concentrate:                                               |          |          |          |          |          |
| Recoverable vanadium 1                                             | 5,577    | 5,319    | 5,252    | 4,887    | 4,377    |
| Valuethousands                                                     | \$26,334 | \$34,923 | \$37,690 | \$30,867 | \$26,611 |
| Vanadium pentoxide recovered                                       | 5,906    | 5,594    | 5,293    | 5,248    | 4,864    |
| Consumption                                                        | 6,154    | 5,134    | 4,802    | 5,227    | 6,393    |
| Exports:                                                           |          |          |          |          |          |
| Ferrovanadium and other vanadium alloying materials (gross weight) | 644      | 2,155    | 676      | 269      | 1,416    |
| Vanadium ores, concentrates, oxides, and vanadates                 | 258      | 973      | 260      | 176      | 232      |
| Imports (General):                                                 |          |          |          |          |          |
| Ferrovanadium (gross weight)                                       | 449      | 21       | 89       | 578      | 303      |
| Ores, slags and residues                                           | 2,250    | 2,000    | 2,350    | 1,400    | 2,600    |
| World production                                                   | 18,581   | 20,171   | r 18,511 | 20,679   | 21,285   |

r Revised.

<sup>&</sup>lt;sup>1</sup> Physical scientist, Division of Ferrous Metals Mineral Supply.

<sup>&</sup>lt;sup>1</sup>Recoverable vanadium contained in uranium and vanadium ores and concentrates received at mills, plus vanadium recovered from ferrophosphorus derived from domestic phosphate rock.

## **DOMESTIC PRODUCTION**

The principal domestic source of vanadium in 1973 was the vanadium ore of Arkansas. The amount of vanadium recovered from Colorado Plateau uranium-vanadium ores declined, and the amount of vanadium recovered from ferrophosphorus did not change significantly. Some of the mills also processed vanadium-bearing oil residues, spent catalysts, vanadium-bearing residues from titanium dioxide production, and foreign vanadium-bearing slags.

The recovered vanadium pentoxide figures in tables 1 and 3 do not include vanadium recovered from imported vanadium-bearing slag. None of the figures include the vanadium recovered in any operation that produced ferrovanadium directly from slag or residue.

The Hot Springs, Ark., plant of Union Carbide Corp. produced all the vanadium recovered from Arkansas vanadium ore in 1973. The Uravan-Rifle mill complex of Union Carbide Corp. produced almost all the vanadium recovered from uraniumvanadium ores that year. The Soda Springs, Idaho, plant of Kerr-McGee Corp. and the Hot Springs, Ark., plant of Union Carbide Corp. produced all the vanadium recovered from byproduct ferrophosphorus. producers of vanadium from domestic ores and/or residues in 1973 included the Edgemont, S. Dak., mill of Susquehanna-Western. Inc.; the Wilmington, Del., plant of The Pyrites Co., Inc.; and the Moab, Utah, mill of Atlas Corp. Producing states include Arkansas 1971-73, Colorado 1971-73, Idaho 1971-73, New Mexico 1971-73, South Dakota 1972, and Utah 1971-73.

On October 1, the Atomic Energy Com-(AEC) began inviting bids for mining leases on 43 tracts of AEC-controlled land totaling about 25,000 acres. The land, mostly in the Uravan Mineral Belt of western Colorado, contains an estimated \$45 to \$50 million worth of uranium reserves and has good potential for further ore discovery. Included in the areas being offered were some lands mined under Government lease prior to 1962, when the leases were allowed to expire because of reduced procurement requirements for uranium. The leases, to be awarded on the basis of a competitive royalty bid, will have the royalty expressed as a percent of the value per dry ton of ore, this value to include both uranium and vanadium except for two

tracts where the vanadium content of the ore is insignificant. AEC reserved 18 of the tracts for bidding by small business concerns and attached special terms to some of the other tracts. The opening of this new land to mining is expected to significantly prolong the life of the Colorado Plateau uranium-vanadium industry.

Earth Sciences Inc. awarded a \$115,000 contract to the Ralph M. Parsons Co. for an economic feasibility study of a deposit of 15 to 25 million tons of material that is reported to average 0.76% vanadium. Earth Sciences controls the mineral rights to 3,000 acres of land in southeastern Idaho on which the deposit is located. Prior to awarding the contract, the company did some core drilling, some underground mine testing, and some hydrometallurgical testing on bulk samples mined underground.

The Pyrites Co., a subsidiary of Rio Tinto-Zinc Corp. Ltd., discontinued production at its vanadium operation at Wilmington, Del.

Table 2.—Mine production and recoverable vanadium of domestic origin produced in the United States

(Short tons of contained vanadium)

|      | Year | Mine<br>production <sup>1</sup> | Recoverable<br>vanadium <sup>2</sup> |
|------|------|---------------------------------|--------------------------------------|
| 1969 |      | 5.737                           | 5,577                                |
| 1970 |      | 5.793                           | 5,319                                |
| 1971 |      | 5,547                           | 5,252                                |
| 1972 |      | 4,699                           | 4,887                                |
| 1973 |      | 4,117                           | 4,377                                |

<sup>&</sup>lt;sup>1</sup> Measured by receipts of uranium and vanadium ores and concentrates at mills, vanadium content.

Table 3.—Production of vanadium pentoxide in the United States <sup>1</sup>

(Short tons)

| Year | Gross<br>weight | V <sub>2</sub> O <sub>5</sub><br>content |  |
|------|-----------------|------------------------------------------|--|
| 1969 | 12,120          | 10,542                                   |  |
| 1970 | 11,035          | 9,986                                    |  |
| 1971 | 10,492          | 9,448                                    |  |
| 1972 | 10,410          | 9,367                                    |  |
| 1973 | 8,226           | 8,683                                    |  |

<sup>&</sup>lt;sup>1</sup> Includes vanadium pentoxide and metavanadate produced directly from all domestic sources, plus small byproduct quantities from imported chromium ores in 1971 and the preceding years.

<sup>&</sup>lt;sup>2</sup> Recoverable vanadium contained in uranium and vanadium ores and concentrates received at mills, plus vanadium recovered from ferrophosphorus derived from domestic phosphate rock.

# CONSUMPTION AND USES

Domestic consumption of vanadium as reported for all types of material in table 4, or all end-use categories in table 5, rose about 22% in 1973. Increases occurred in all major end-use categories; the increase in consumption in the tool steel and nonferrous alloy categories was especially noteworthy. Consumption was at a fairly uniform high level from month to month during the year.

Westinghouse Electric Corp. received a \$90 million contract for the nuclear reactor portion of the liquid-metal-cooled, fastbreeder reactor demonstration power-plant in Tennessee. Plans call for the plant to be

operated by the Tennessee Valley Authority and to be on line by 1980. If vanadium metal is used as a structural material in this and other such reactors, a sizeable new market would be opened for vanadium.

The Vanadium International Technical Organization was launched during the year by most of the major producers of vanadium raw materials and ferrovanadium. It will sponsor research intended to lead to greater use of vanadium; its immediate objective is to develop vanadium-bearing high-yield steels for application under extreme condi-

Table 4.-Consumption and consumer stocks of vanadium materials in the United States (Short tons of contained vanadium)

|                                                                                  | 19                        | 72                    | 19                        | 73               |
|----------------------------------------------------------------------------------|---------------------------|-----------------------|---------------------------|------------------|
| Type of material                                                                 | Con-<br>sump-<br>tion     | Ending<br>stocks      | Con-<br>sump-<br>tion     | Ending<br>stocks |
| Ferrovanadium <sup>1</sup> Oxide  Ammonium metavanadate Other <sup>2</sup> Total | 4,493<br>189<br>47<br>498 | 623<br>56<br>8<br>101 | 5,600<br>199<br>45<br>549 | 1,135<br>49<br>9 |
| 10001                                                                            | 5,227                     | 788                   | 6,393                     | 1,291            |

Table 5.-Consumption of vanadium in the United States, by end use

(Short tons of contained vanadium)

| End use                                                                                  | 1973  |
|------------------------------------------------------------------------------------------|-------|
| Steel: Carbon Stainless and heat resisting                                               |       |
| Stainless and heat resistingFull alloy                                                   | 68    |
| Full alloyHigh-strength, low-alloy                                                       | 20    |
| High-strength, low-alloyElectric                                                         | 1,544 |
| ElectricTool                                                                             | 2,252 |
| Tool                                                                                     | W     |
| Toolast irons                                                                            | 997   |
| ouperallovs                                                                              | 56    |
| Alloys (excluding steels and superalloys):                                               | 38    |
| Welding and alloy hard-facing rods and materials  Nonferrous alloys                      | w     |
| Nonierrous allows                                                                        | ii    |
| Other alloys 1                                                                           | 527   |
| Shemical and ceramic uses:                                                               | 16    |
| Catalysts                                                                                | 10    |
| CatalystsOther 2                                                                         |       |
| Other <sup>2</sup>                                                                       | 163   |
| Total unspecified                                                                        | W     |
| Iiscellaneous and unspecified                                                            | 76    |
| W Withheld to avoid disclosing individual company confidential data included in (Mic. 1) | 6,393 |

W Withheld to avoid disclosing individual company confidential data, included in "Miscellaneous and unspecified." <sup>1</sup> Includes magnetic alloys. <sup>2</sup> Includes pigments.

<sup>&</sup>lt;sup>1</sup> Includes other vanadium-iron-carbon alloys.

<sup>2</sup> Consists principally of vanadium-aluminum alloy, plus relatively small quantities of other vanadium alloys and vanadium metal.

## **STOCKS**

In addition to the consumers' stocks shown in table 4, producers' stocks of vanadium as fused oxide, precipitated oxide, metavanadate, metal, alloys, and chemicals totaled 2,815 short tons of contained vanadium at yearend 1973, compared with 3,540 tons (revised) at yearend 1972.

### **PRICES**

Prices for vanadium pentoxide were unchanged in 1973. The price quoted by Metals Week for dealer export merchant technical-grade vanadium pentoxide continued to be \$1.50 per pound of contained  $V_2O_5$  for the entire year. The price for domestic 98% fused vanadium pentoxide (metallurgical markets) also remained \$1.50 per pound of contained  $V_2O_5$  in 1973. The price for technical-grade, air-dried vanadium pentoxide stayed at \$2.21 per pound of contained  $V_2O_5$ , f.o.b. plant, for the entire year.

Kerr-McGee tried to increase its 98% fused vanadium pentoxide price on July 1 to \$1.65 per pound of contained V<sub>2</sub>O<sub>5</sub>, a 10% increase from its previous price. The increase followed price increases by Highveld Steel and Vanadium Corp. of South Africa and reflected an improved market for vanadium.

Although the Government's price freeze prevented the implementation of this price increase, it was indicative of the market at the time.

No changes occurred in the U.S. ferrovanadium prices either. The price for U.S. standard grade ferrovanadium remained at \$4.19 per pound of contained vanadium f.o.b. shipping point for the entire year. The price for Carvan stayed at \$3.66 per pound of contained vanadium in 1973. The price for Ferovan continued at \$3.68 per pound of contained vanadium during the year.

Metal Bulletin's United Kingdom price for ferrovanadium containing 50% to 60% V rose over 12% from the beginning of the year to early April, after which it leveled off for the rest of the year.

# **FOREIGN TRADE**

Exports of ferrovanadium were somewhat larger in the latter part of the year, with an especially large shipment leaving in July. Exports of vanadium ores and oxides were concentrated in the middle part of the year. The declared value for exports of ores, concentrates and technical-grade oxides averaged \$1.40 per pound of contained vanadium pentoxide in 1973, compared with \$1.21 in 1972. The declared value for exports of ferrovanadium averaged \$3.08 per pound of alloy, compared with \$2.34 in 1979

Imports classified as vanadium ore and concentrate totaled 31,920 pounds of contained vanadium in 1973. Imports classified

as vanadium carbide totaled 43,190 pounds (gross weight); almost all of it was from the Republic of South Africa. Imports classified as unwrought, waste and scrap vanadium metal, vanadium compounds, and organic vanadium salts totaled 80,203 pounds (gross weight). Imports of vanadium-bearing materials such as ashes and slags, which are classified as metal-bearing residues, were estimated to be about 52 million pounds of contained vanadium in 1973, compared with 2.8 million pounds in 1972. In both years, most of these materials originated in the Republic of South Africa and Chile.

Table 6.-U.S. exports of vanadium, by country

(Thousand pounds and thousand dollars)

| Destination        | vanad         | Ferrovanadium and other vanadium alloying materials containing over 6% vanadium (gross weight)  Wanadium ore, concentrates pentoxide, vanadic acid, vanadium oxide, and vana dates (except chemically pure grade) (vanadium content) |               |       | cid,<br>vana-<br>ally |       |               |       |
|--------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------|-----------------------|-------|---------------|-------|
|                    | 19            | 972                                                                                                                                                                                                                                  | 1             | 973   | 19                    | 72    | 19            | 973   |
|                    | Quan-<br>tity | Value                                                                                                                                                                                                                                | Quan-<br>tity | Value | Quan-<br>tity         | Value | Quan-<br>tity | Value |
| Algeria            |               |                                                                                                                                                                                                                                      | 66            | 198   |                       |       |               |       |
| Austria            |               | ·                                                                                                                                                                                                                                    |               |       | 101                   | 216   | 124           | 310   |
| Belgium-Luxembourg | 74            | 129                                                                                                                                                                                                                                  |               |       |                       |       |               |       |
| Brazil             |               |                                                                                                                                                                                                                                      | 33            | 97    |                       |       |               |       |
| Canada             | 221           | 596                                                                                                                                                                                                                                  | 614           | 1,844 |                       |       | 26            | 57    |
| Colombia           | 2             | 5                                                                                                                                                                                                                                    |               |       |                       |       |               |       |
| Dominican Republic |               |                                                                                                                                                                                                                                      | (1)           | 1     |                       |       |               |       |
| France             |               |                                                                                                                                                                                                                                      |               |       | (1)                   | 1     | 95            | 183   |
| Germany, West      |               |                                                                                                                                                                                                                                      | 349           | 1,080 | 117                   | 247   | 40            | 115   |
| Hong Kong          |               |                                                                                                                                                                                                                                      | 5             | 18    |                       |       |               |       |
| India              | 18            | 34                                                                                                                                                                                                                                   |               |       |                       |       |               |       |
| Jamaica            |               |                                                                                                                                                                                                                                      |               |       |                       |       | (1)           | 1     |
| Japan              | 29            | 57                                                                                                                                                                                                                                   | 78            | 233   |                       |       | 39            | 108   |
| Mexico             | 95            | 231                                                                                                                                                                                                                                  | 13            | 39    | 31                    | 73    | 42            | 110   |
| Netherlands        |               |                                                                                                                                                                                                                                      | 433           | 1.453 |                       |       | 37            | 99    |
| Poland             |               |                                                                                                                                                                                                                                      | 407           | 1,244 |                       |       | ٠.            | -     |
| Spain              | 17            | 42                                                                                                                                                                                                                                   | 401           | 1.207 |                       |       |               |       |
| Sweden             |               |                                                                                                                                                                                                                                      | 314           | 989   |                       |       |               |       |
| Switzerland        | 81            | 162                                                                                                                                                                                                                                  | 96            | 275   | 102                   | 219   |               |       |
| United Kingdom     |               |                                                                                                                                                                                                                                      | 23            | 56    |                       | 210   | 61            | 174   |
| Total              | 537           | 1,256                                                                                                                                                                                                                                | 2,832         | 8,734 | 351                   | 756   | 464           | 1,157 |

 $<sup>^1</sup>$  Less than  $\frac{1}{2}$  unit.

Table 7.-U.S. imports of ferrovanadium, by country

(Thousand pounds and thousand dollars)

|                          |                 | 1972                |       |                 | 1973                |       |  |  |
|--------------------------|-----------------|---------------------|-------|-----------------|---------------------|-------|--|--|
| Country                  | Gross<br>weight | Vanadium<br>content | Value | Gross<br>weight | Vanadium<br>content | Value |  |  |
| General imports:         |                 |                     |       |                 |                     |       |  |  |
| Australia                |                 |                     |       | 66              | 38                  | 116   |  |  |
| Austria                  | 255             | 207                 | 648   | 167             | 134                 | 375   |  |  |
| Belgium-Luxembourg       | 44              | 36                  | 113   |                 |                     |       |  |  |
| Canada                   | 14              | 11                  | 38    | 93              | 73                  | 256   |  |  |
| Germany, West            | 549             | 411                 | 1,194 | 231             | 180                 | 575   |  |  |
| Norway                   | 140             | 67                  | 197   | 48              | 21                  | 63    |  |  |
| Sweden                   | 68              | 55                  | 164   |                 |                     |       |  |  |
| Switzerland              | 85              | 50                  | 151   |                 |                     |       |  |  |
| Total                    | 1,155           | 837                 | 2,505 | 605             | 446                 | 1,385 |  |  |
| Imports for consumption: |                 |                     |       |                 |                     |       |  |  |
| Australia                |                 |                     |       | 66              | 38                  | 116   |  |  |
| Austria                  | 255             | 207                 | 648   | 108             | 99                  | 254   |  |  |
| Belgium-Luxembourg       | 44              | 36                  | 113   |                 |                     |       |  |  |
| Canada                   | 14              | 11                  | 38    | 93              | 73                  | 256   |  |  |
| Germany, West            | 386             | 282                 | 817   | 154             | 120                 | 364   |  |  |
| Norway                   | 56              | 26                  | 76    | 133             | 63                  | 184   |  |  |
| Sweden                   | 68              | 55                  | 164   |                 |                     |       |  |  |
| Switzerland              | 85              | 50                  | 151   |                 |                     |       |  |  |
| Total                    | 908             | 667                 | 2,007 | 554             | 393                 | 1,174 |  |  |

### **WORLD REVIEW**

In addition to the nations shown in table 8, several others produced relatively minor amounts of vanadium, usually from secondary, waste, or byproduct sources. Canada, Japan, and West Germany produced vanadium from several such sources. world market for vanadium was quite strong in 1973, although a little weakening appeared towards the end of the year.

Australia.—The Ralph M. Parsons Co. completed an initial feasibility study for Ferrovanadium Corp. N.L. on the latter's ore deposit at Barrambie, Western Australia. The study recommended a concentrator at the mine site, a pipeline to move the concentrate 300 miles to Geraldton, and an electrometallurgical and chemical plant at Geraldton. Such an operation would cost \$100 million and be able to produce over 3,000 short tons of vanadium as pentoxide, plus other products.

Under terms of an agreement with Ferrovanadium Corp. N.L., Pacminex Pty. Ltd., a subsidiary of CSR, Ltd., made a preliminary examination of the Barrambie project, after which it had the right to acquire 51% of the project. After examination, Pacminex withdrew from the project, explaining that the potential rewards to the company would not justify the expense and risk that would be incurred.

Canada.—The Mines Branch, Department of Energy, Mines and Resources, developed a pyrometallurgical process to recover vanadium and nickel from the fly ash that results from processing Athabasca tar sands. Recovery of these metals may be economically feasible when enough tar sand is being processed to recover over 200,000 barrels of synthetic crude per day; about 60,000 barrels per day is now being recovered.

Finland.—According to Finnish trade statistics, Finland exported 2,690 short tons of vanadium compounds<sup>2</sup> in 1972, of which 761 tons went to Sweden, 712 tons to West Germany, 482 tons to France, 331 tons to the U.S.S.R., and the balance to other European nations and Canada.

Germany, West.—According to official trade statistics, West Germany imported 33,664 short tons (gross weight) of vanadium-containing ashes, residues, and slag in 1973; 5,784 tons came from Hungary, 1,849 tons from France, 655 tons from Belgium-Luxembourg, 600 tons from Mozambique, 592 tons from the U.S.S.R., 255 tons from the Netherlands, 451 tons from other European, North American, and Israeli sources, and the balance from unspecified sources.

India.—Ferrovanadium production was 79 short tons in 1973, compared with 66 tons in 1972 and 52 tons in 1971. India exported 18,715 short tons (gross weight) of low-grade vanadium ore worth \$950,900 in 1973, compared with 811 tons worth \$61,470 in 1972 and 441 tons worth \$24,930 in 1971.

The Geological Survey of India and the Orissa State Directorate of Mines are making a detailed investigation of the vanadiferous magnetite deposits of Orissa and Bihar, including field work. So far, they have proved enough ore to sustain Orissa State's proposed ferrovanadium plant for 10 years.3 The Government of India has decided to include construction of this plant in its Fifth Plan (1974-79).

Dr. M. S. Patel of Bombay was attempting to complete arrangements for building a plant to recover 1,100 tons of vanadium per year as pentoxide from a titanomagnetite ore deposit in Bihar. Ore samples were being tested by a prospective collaborator in the United States.

South Africa, Republic of.—Production of vanadium-bearing slag by Highveld Steel and Vanadium Corp., Ltd., totaled 37,560 short tons (gross weight) in the fiscal year ending June 30, 1973, compared with 31,072 short tons in the previous fiscal year. This large increase reflects the solution of some long-standing problems in the iron plant and the resulting operation of the iron plant at its rated capacity. As a result of improving demand for vanadium pentoxide, the company operated its Vantra Division pentoxide plant at full capacity from the end of 1972 until October 1973, after which output was reduced in response to the reappearance of a weaker market. As a result of record production and sales, the company was able to declare the first dividend on its common stock.

Highveld Steel and Vanadium Corp., Ltd., announced plans to spend R14 million to

<sup>&</sup>lt;sup>2</sup> Although the title of the export class is "vanadium compounds," the material is almost all vanadium pentoxide.

<sup>3</sup> Nanda, A. K. Our Resources of Vanadium Ore. J. of Mines, Metals, and Fuels (Calcutta), v. 21, No. 12, December 1973, pp. 373–376, 387.

VANADIUM 1295

expand vanadium-bearing slag and steel output by 25% at its Witbank plant. This would involve adding a sixth kiln, a fifth submerged arc iron melting furnace, a fourth continuous-casting machine, major modifications in the steel plant, and some expenditures at the Mapochs mine. The additional slag would be exported, as would most of the steel semimanufactures until such time as installation of a rolling mill becomes feasible.

Transvaal Alloys, Ltd., is mining a vanadium ore body near Uitvlugt, Transvaal, under a lease from Bushveld Development (Pty.) Ltd., and is expecting to remove 1.2 million tons of ore by the time the lease expires in February 1974. The company's vanadium pentoxide plant complex near Stoffberg is expected to be onstream in early 1974.

U.S.S.R.—The Kachkanar mining and beneficiation complex is reported to have reached its rated capacity of 36 million short tons of crude titanomagnetite ore per year, from which a concentrate containing about 18,000 tons of vanadium is produced. Rising demand for ferrotitanium has resulted in plans for expanding the capacity to 44 million tons of ore per year by the end of 1975.

Venezuela.-The Venezuelan Ministry of Mines and Hydrocarbons contracted with Gas Development Corp. for an evaluation of the possible development of the Orinoco heavy oils, and their associated vanadium and nickel values. Results of the study indicate that there are good prospects for producing 1 million barrels of oil per day, at which level an estimated 9,500 tons of byproduct vanadium per year could also be recovered. Total heavy oil in place is about 700 billion barrels, recovery of 2% to 10% of which could reasonably be expected. Because the metals contained in the heavy oil contaminate the catalysts used in processing the heavy oil into the final petroleum products, the metals must be removed first. Two types of processes seem most likely to be used for metal removal. one involves concentration of the metals in the asphaltene fraction and subsequent removal and the other involves deposition of the metals on a cheap material (probably a catalyst).4

Table 8.—Vanadium: World production from ores and concentrates, by country (Short tons of contained vanadium)

| Country                                                                                                                                             | 1971     | 1972    | 1973 P  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|---------|
| Chile • Finland (in vanadium pentoxide product) France • 1 Norway •                                                                                 | 660      | 720     | 1,060   |
|                                                                                                                                                     | 1,222    | 1,312   | 1,388   |
|                                                                                                                                                     | 100      | 100     | 90      |
|                                                                                                                                                     | r 1,100  | r 1,060 | 800     |
| South Africa, Republic of: Content of pentoxide and vanadate products * Content of vanadiferous slag product *                                      | 2,470    | 3,370   | 3,530   |
|                                                                                                                                                     | 4,060    | 4,860   | 5,540   |
| Total South-West Africa, Territory of: (in lead-vanadate concentrate)  U.S.S.R. (in slag exports) <sup>2</sup> United States (recoverable vanadium) | 6,530    | 8,230   | 9,070   |
|                                                                                                                                                     | 730      | r 650   | 800     |
|                                                                                                                                                     | 2,917    | 3,720   | * 3,700 |
|                                                                                                                                                     | 5,252    | 4,887   | 4,377   |
| Total                                                                                                                                               | r 18,511 | 20,679  | 21,285  |

<sup>&</sup>lt;sup>e</sup> Estimate. <sup>p</sup> Preliminary. <sup>r</sup> Revised.

#### **TECHNOLOGY**

A considerable volume of research on vanadium was conducted in 1973, most of it dealing with vanadium metal and alloys which could possibly be used as fuel-cladding materials in fast-breeder reactors, with the recovery of vanadium from petroleum, and with the vanadium released into

the atmosphere by petroleum combustion and soil erosion. The research dealing with recovery of vanadium from petroleum received comprehensive coverage at a symposium on vanadium in petroleum held in Venezuela.

The Bureau of Mines made high-purity

<sup>&</sup>lt;sup>4</sup> Reyes, A., J. Huebler, and C. W. Matthews. Metal By-products From Processing Venezuelan Heavy Crudes. Pres. at the International Symposium on Vanadium and Other Metals in Petroleum, Maracaibo, Venezuela, Aug. 19-22, 1973, 11 pp.

<sup>&</sup>lt;sup>1</sup> Byproduct derived from bauxite.

<sup>2</sup> Partial figure representing only that vanadium contained in exported slags; does not include vanadium produced for domestic consumption in any form or for export in any form except slag.

(over 99.8%) vanadium metal by magnesium reduction of vanadium dichloride, obtaining yields of over 98%.5

Vanadium-chromium and vanadium-molybdenum alloys were found to have a lower oxygen solubility than vanadium metal when specimens of the metal and its alloys were exposed to an oxygen-containing coolant-type liquid sodium such as proposed for the fast-breeder reactor.6

Extensive adoption of the Flexicoking process could result in the recovery of large quantities of vanadium from crude residua in oil refineries, as requirements for lowpolluting desulfurized demetallized petroleum products increase. The process combines fluid coking with coke gasification and concentrates 99% of the contained metals into a small purge stream while converting the residua into gas lighter demetallized liquid amenable to further processing. Some of the purge stream product may be too low grade to make recovery worthwhile; this is evidenced by the purge stream product containing under 6% vanadium even when a highmetal Venezuelan feedstock was used. A semicommercial Flexicoking unit is now being built in Texas for startup in early 1974, and three commercial units are now being designed-two for Japan and one for the United States.7

Some other methods for recovering vanadium from petroleum were mentioned at the International Symposium on Vanadium and Other Metals in Petroleum, held August 19-22 in Maracaibo, Venezuela. One method involved extracting the vanadium directly from the petroleum with an aqueous solution of a strong complexing agent. Another possibility would involve removing the asphaltene fraction, which contains almost all of the vanadium, from the crude petroleum by electrodeposition. Vanadium could be recovered from petroleum by being adsorbed on bauxite in either a batch or a flow reactor. Vanadium could be obtained also, along with a synthetic natural gas and benzene, from a Venezuelan-type residuum by hydrogenation in a high-velocity fluidized bed.

The origin of vanadium-containing airborne particulates was determined at various locations. The atmospheric vanadium sampled in Puerto Rico was probably from the soil; the atmospheric vanadium sampled in the San Francisco Bay area appeared to be both from the soil, in the case of the larger particles, and from the combustion of petroleum, in the case of the smaller particles.8 In Japan, vanadium concentration in the atmosphere was closely correlated to the amount of fuel oil burned and to the concentration of sulfur dioxide atmosphere.9

A variety of processes for separating vanadium-bearing solutions, sodium hexavanadate, ferrovanadium, or vanadium metal from various raw materials were patented in 1973. A vanadium-bearing solution can be recovered from a silica-containing titaniferous magnetic ore, such as that found in Tahawus, N.Y., by roasting a mixture of ore, a sodium salt, and cryolite at a temperature under 1,350° C for 30 minutes to 2 hours, and then leaching the mixture.10

Sodium hexavanadate can be recovered from the post-distillation residue which results from fractionating titanium tetrachloride from titanium ore or slag. Steps include uniformly contacting the residue superheated steam in the presence of air, carbon dioxide, and carbon monoxide, treating it with aqueous sodium hydroxide, roasting it, extracting it with water, and filtering it to obtain a precipitate of sodium hexavanadate.11

A ferrovanadium-like alloying additive can be produced from fuel ash residue by leaching the residue, treating the leach solution

<sup>&</sup>lt;sup>5</sup>Campbell, T. T., J. L. Schaller, and F. E. Block. Preparation of High-Purity Vanadium by Magnesium Reduction of Vanadium Dichloride. Met. Trans., v. 4, No. 1, January 1973,

by Magnesium
ide. Met. Trans., v. 4, No. 1, January
pp. 237-241.

<sup>6</sup> Klueh, R. L., and J. H. Devan. The Effect
of Oxygen in Static Sodium on Vanadium and
Vanadium Alloys: I. Unalloyed Vanadium, Vaadium-Chromium, and Vanadium-Molybdenum
Matals. v. 30, No. 1,

nadium-Chromium, and Alloys. J. Less-Common Metals, v. 30, No. 1, January 1973, pp. 9-24.

Pagel, J. F., J. A. Rionda, and F. A. Fuentes. Vanadium Recovery in the Refinery via Flexicoking of Residua. Pres. at the International Symposium on Vanadium and Other Metals in Petroleum, Maracaibo, Venezuela,

via Flexicoking of Residua Pres. at the International Symposium on Vanadium and Other Metals in Petroleum, Maracaibo, Venezuela, Aug. 19-22, 1973, 22 pp.

<sup>8</sup> Martens, C. S., J. J. Wesolowski, R. Kaifer, and W. John. Sources of Vanadium in Puerto Rican and San Francisco Bay Area Aerosols. Environmental Sci. and Technol., v. 7, No. 9, September 1973, pp. 817-820.

<sup>9</sup> Sugimae, A., and T. Hasagawa. Vanadium Concentrations in Atmosphere. Environmental Sci. and Technol., v. 7, No. 5, May 1973, pp. 444-448.

<sup>10</sup> Fox, J. S., and W. H. Dresher (assigned to Union Carbide Corp.). Recovery of Vanadium From Titaniferous Iron Ores. U.S. Pat. 3,733,193, May 15, 1973.

<sup>3,733,193,</sup> May 15, 1973.

1 Sato, M., T. Yano, K. Hara, Y. Nawa, and K. Maruyama (assigned to NGK Insulators, Ltd.). Process for Recovering Vanadium Oxide. U.S. Pat. 3,754,072, Aug. 21, 1973.

VANADIUM

successively with finely divided carbon, ferric chloride, and ammonium chloride to precipitate a complex of vanadium and iron, and reducing the precipitate to get the additive. <sup>12</sup> Vanadium metal can be produced from vanadium ore or oxide by entraining the vanadium-bearing material in flowing methane or propane, introducing the flow axially into an electric arc heater and heat-

ing it sufficiently to get reduction to the metal, and letting the metal blow out of the exhaust port of the heating chamber.<sup>13</sup>

<sup>&</sup>lt;sup>12</sup> Vojkovic, M. (assigned to Continental Ore Corp.). Recovery of Refractory Metal Values. U.S. Pat. 3,758,665, Sept. 11, 1973.

<sup>&</sup>lt;sup>13</sup> Frey, M. G., and G. A. Kemeny (assigned to Westinghouse Electric Corp.). Method of Direct Ore Reduction Using a Short Cap Arc Heater. U.S. Pat. 3,765,870, Oct. 16, 1973.



# Vermiculite

# By Frank B. Fulkerson 1

In 1973 crude vermiculite production increased 8% to the record high of 365,000 short tons. The crude vermiculite, mined in Montana and South Carolina, was shipped to plants in 31 States for exfoliation. The quantity of exfoliated vermiculite

sold and used by producers increased 19%. The exfoliated material was used mainly in the building industry for lightweight concrete aggregate, loose fill insulation, and other purposes.

## **DOMESTIC PRODUCTION**

Crude Vermiculite.—Output increased from 337,000 short tons in 1972 to 365,000 short tons in 1973. The only producers of crude vermiculite were the Construction Products Division, W. R. Grace & Co., with mines near Libby, Mont., and Enoree, S.C., and Patterson Vermiculite Co., Lanford, S.C. W. R. Grace & Co. nearly completed construction on a new \$7 million wet processing plant near Libby. The new plant will produce in excess of 1,000 tons per day of bulk vermiculite concentrate.

Exfoliated Vermiculite.—The tonnage of exfoliated vermiculite sold or used by pro-

ducers increased from 247,000 in 1972 to 293,000 in 1973. Fifty-five plants in 31 States produced the lightweight product. The following five States supplied 41% of the national total: California, Florida, New Jersey, South Carolina, and Texas. W. R. Grace & Co., the leading producer of crude vermiculite, operated 27 exfoliating plants in 22 States. Patterson Vermiculite Co. consumed all its production of crude vermiculite at its Lanford, S.C., exfoliating plant. A quantity of crude vermiculite from the Republic of South Africa was exfoliated in the United States.

Table 1.-Salient vermiculite statistics

|                                             | 1969     | 1970     | 1971     | 1972     | 1973     |
|---------------------------------------------|----------|----------|----------|----------|----------|
| United States:                              |          |          |          |          |          |
| Sold and used by producers:                 |          |          |          |          |          |
| Crudethousand short tons                    | 310      | 285      | 301      | 337      | 365      |
| Valuethousand dollars                       | \$6,805  | \$6,501  | \$7,198  | \$8,092  | \$9,464  |
| Average value per ton                       | \$21.95  | \$22.81  | \$23.91  | \$24.01  | \$25.93  |
| Exfoliatedthousand short tons               | 250      | 221      | 209      | 247      | 293      |
| Valuethousand dollars                       | \$19,916 | \$18,809 | \$20,885 | \$24,777 | \$31,186 |
| Average value per ton                       | \$79.66  | \$85.11  | \$99.93  | \$100.31 | \$106.44 |
| World: Production, crudethousand short tons | 466      | 431      | 459      | 512      | 551      |

#### CONSUMPTION AND USES

By main categories, the use pattern for exfoliated vermiculite was as follows: Aggregates, 47%; insulation, 31%; agriculture, 17%; and miscellaneous, 5%. End uses in

1972 and 1973 are shown in thousand tons in the following tabulation:

<sup>&</sup>lt;sup>1</sup> Industry economist, Division of Nonmetallic Minerals—Mineral Supply.

| Use                  | 1972 | 1973 |
|----------------------|------|------|
| Aggregates:          |      |      |
| Concrete             | 80   | 88   |
| Plaster and cement 1 | 24   | 49   |
| Total                | 104  | 137  |
| Loose fill           | 74   | 82   |
| Block                | 8    | 9    |
| Packing              | 2    | 1    |
| Total                | 84   | 92   |
| Horticulture         | 40   | 40   |
| Fertilizer carrier   | 11   | 9    |
| Other                | 1    | 1    |
| Total                | 52   | 50   |
| Miscellaneous        | 7    | 14   |
| Frand total          | 247  | 293  |

<sup>&</sup>lt;sup>1</sup> Includes vermiculite aggregate for products mixed on site as well as premixes for acoustic and fireproofing purposes, etc.

#### **PRICES**

The Engineering and Mining Journal quoted nominal yearend prices for crude vermiculite as follows: Per short ton, f.o.b. mines, Montana and South Carolina, \$25 to \$38; and c.i.f. Atlantic ports, Republic of South Africa ore, \$55 to \$70.

The average mine value of domestic

crude vermiculite, screened and cleaned, was \$25.93 per short ton, compared with \$24.01 in 1972. The average value, f.o.b. producing plant, of exfoliated vermiculite, was \$106.44 per short ton, compared with \$100.31 in 1972. These values exclude container cost where applicable.

#### **FOREIGN TRADE**

Crude vermiculite was imported duty free into the United States. The Republic of South Africa was the only important source of vermiculite imports. A quantity of crude vermiculite was exported from the United States to Canada; however, tonnage figures were not published.

#### WORLD REVIEW

Canada.—All crude vermiculite exfoliated in Canada was imported from the United States and the Republic of South Africa, with the Libby, Mont. mine of W.R. Grace & Co. supplying most of the tonnage. Five companies exfoliated vermiculite at nine locations in 1972. The plants were in Vancouver, British Columbia (two plants); Edmonton, Alberta; Regina, Saskatchewan; Winnipeg and St. Boniface, Manitoba; St. Thomas, Ontario; and Montreal and Lachine, Quebec. Loose-fill insulation consumed 72% of production and insulating concrete and plaster most of the remainder.<sup>2</sup>

China, Peoples' Republic of.—Vermiculite was mined at 20 locations in Linshu County, Shantung Province. A plant was completed in the county to make heat-insulating bricks and slabs by bonding vermiculite with cement.

South Africa, Republic of.—Principal countries to which crude ore was exported in 1972 were the United Kingdom, 22%; the United States, 19%; Italy, 15%; West Germany, 10%; France, 10%; and Japan, 6%.

<sup>&</sup>lt;sup>2</sup> Stonehouse, D. H. Lightweight Aggregates, 1972. Dept. Energy, Mines, and Resources, Ottawa, July 1973, 4 pp.

VERMICULITE

Table 2.-Republic of South Africa: Exports of vermiculite by country (Short tons)

| Country                 | 1971                   | 1972                     | 1973                   |
|-------------------------|------------------------|--------------------------|------------------------|
| Australia               | 4,616                  | 3,176)                   |                        |
| Belgium                 | 917                    | 1,461                    |                        |
| Canada                  | 6,926                  | 5,103                    |                        |
| Finland                 | 917                    | 1.011                    |                        |
| France                  | 12,771                 | 14,763                   |                        |
| Germany, West           | 13,176                 | 13,941                   |                        |
| Ireland                 | 1,442                  | 1,019                    |                        |
| Israel                  | -,                     | 1,075                    |                        |
| Italy                   | 23,186                 | 20,935                   |                        |
| Japan                   | 9,820                  | 8,522                    | NA                     |
| Netherlands             | 1,251                  | 1,153                    |                        |
| New Zealand             | 668                    | -,                       |                        |
| Spain                   | 4.231                  | 4,938                    |                        |
| Sweden                  | 2,294                  | 2,652                    |                        |
| Switzerland             | 947                    | 1.078                    |                        |
| United Kingdom          | 31,975                 | 31.461                   |                        |
| United States           | 18,130                 | 26,448                   |                        |
| Undisclosed             | 3,023                  | 3,390                    |                        |
| Total                   | 136,290                | r 142.126                | 157 401                |
| Total value 1           | \$3,147,050            |                          | 157,491                |
| Average value per ton 1 | \$3,147,050<br>\$23.09 | * \$3,715,372<br>\$26.14 | \$4,791,597<br>\$30.42 |

Table 3.-Vermiculite: Free world production by country (Short tons)

| Country                                   | 1971      | 1972    | 1973 р  |
|-------------------------------------------|-----------|---------|---------|
| Argentina                                 | 4.727     | 4.572   | e 4.600 |
| Brazil e                                  | 5,000     | 5,000   | 5.000   |
| India                                     | 592       | 1,699   | 3,031   |
| Kenya                                     | 1,498     | 1.027   | 960     |
| South Africa, Republic of                 | 145,582   | 163,035 | 172,469 |
| Tanzania                                  | г 32      | ·       |         |
| United States (sold or used by producers) | 301,483   | 336,798 | 365,000 |
| Total                                     | r 458,914 | 512,131 | 551,060 |

e Estimate. P Preliminary. r Revised.

#### **TECHNOLOGY**

Canadian research showed that exfoliated vermiculite was effective in purifying the air in underground uranium mines by filtering out dust particles and radon daughters. Vermiculite was chosen as the filter medium because of its low cost, low density, and ability to stand high humid-

Revised. NA Not available.
 Converted to U.S. currency at the rate of 1 rand equals U.S. \$1.40.

<sup>&</sup>lt;sup>3</sup> Washington, R. A., W. Chi, and R. Regan. The Use of Vermiculite to Control Dust and Radon Daughters in Underground Uranium Mine Air. Can. Min. and Met. Bull., v. 66, No. 731, March 1973, pp. 152-155.

Table 4.-Vermiculite exfoliating plants in the United States in 1973

| J. P. Austin Assoc., Inc Pet J. J. Brouk & Co., Inc Mi Carolina Wholesale Florists, Inc Mi Certain-teed Products Corp., Building Materials Div. Cleveland Building Materials Supply Co., Cleveland Gypsum Co. Div. W. R. Grace & Co., Construction Products Div. Cal | rkansas                                                           | St. Louis Lee  Hennepin  Cuyahoga  Pulaski Alameda Los Angeles     | Phoenix. Beaver Falls. St. Louis. Sanford. Minneapolis. Cleveland. North Little Rock. Newark. |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| J. P. Austin Assoc., Inc Pet J. J. Brouk & Co., Inc Mi Carolina Wholesale Florists, Inc No Certain-teed Products Corp., Building Materials Div. Cleveland Building Materials Supply Co., Cleveland Gypsum Co. Div. W. R. Grace & Co., Construction Products Div. Cal | ennsylvania issouri orth Carolina innesota inio ckansas ilifornia | Beaver St. Louis Lee Hennepin Cuyahoga Pulaski Alameda Los Angeles | Beaver Falls. St. Louis. Sanford. Minneapolis. Cleveland. North Little Rock. Newark.          |
| J. J. Brouk & Co., Inc                                                                                                                                                                                                                                               | issouri orth Carolina innesota nio rkansas lifornia               | St. Louis Lee  Hennepin  Cuyahoga  Pulaski Alameda Los Angeles     | St. Louis. Sanford. Minneapolis. Cleveland. North Little Rock. Newark.                        |
| Carolina Wholesale Florists, Inc No Certain-teed Products Corp., Building Materials Div. Cleveland Building Materials Supply Co., Cleveland Gypsum Co. Div. W. R. Grace & Co., Construction Products Div. Cal                                                        | orth Carolina innesota nio rkansas lifornia                       | Lee                                                                | Sanford. Minneapolis. Cleveland. North Little Rock. Newark.                                   |
| Certain-teed Products Corp., Building Materials Div. Cleveland Building Materials Supply Co., Cleveland Gypsum Co. Div. W. R. Grace & Co., Construction Products Div.  Co.                                                                                           | innesota                                                          | Hennepin  Cuyahoga  Pulaski  Alameda  Los Angeles                  | Minneapolis. Cleveland. North Little Rock. Newark.                                            |
| Cleveland Building Materials Supply Co., Cleveland Gypsum Co. Div. W. R. Grace & Co., Construction Products Div.  Ar. Cal                                                                                                                                            | nio<br>rkansas<br>llifornia<br>blorado                            | Cuyahoga Pulaski Alameda Los Angeles                               | Cleveland.  North Little Rock.  Newark.                                                       |
| Co., Cleveland Gypsum Co. Div. W. R. Grace & Co., Construction Products Div.  Co.                                                                                                                                                                                    | rkansas                                                           | Pulaski<br>Alameda<br>Los Angeles                                  | North Little Rock.<br>Newark.                                                                 |
| Products Div. Ar<br>Cal                                                                                                                                                                                                                                              | olifornia                                                         | Alameda<br>Los Angeles                                             | Newark.                                                                                       |
| Coi                                                                                                                                                                                                                                                                  | olorado                                                           | Alameda<br>Los Angeles                                             | Newark.                                                                                       |
|                                                                                                                                                                                                                                                                      |                                                                   | Los Angeles                                                        |                                                                                               |
|                                                                                                                                                                                                                                                                      |                                                                   |                                                                    | Los Angeles.                                                                                  |
|                                                                                                                                                                                                                                                                      |                                                                   | Orange                                                             | Santa Ana.                                                                                    |
| Flo                                                                                                                                                                                                                                                                  |                                                                   | Denver                                                             | Denver.                                                                                       |
|                                                                                                                                                                                                                                                                      | orida                                                             | Broward                                                            | Pompano Beach.                                                                                |
|                                                                                                                                                                                                                                                                      |                                                                   | Duval                                                              | Jacksonville.                                                                                 |
| Tile                                                                                                                                                                                                                                                                 | t t                                                               | Hillsborough                                                       | Tampa.                                                                                        |
|                                                                                                                                                                                                                                                                      | inois                                                             | Cook                                                               | Chicago.                                                                                      |
|                                                                                                                                                                                                                                                                      | entucky<br>ouisiana                                               | Campbell                                                           | Newport.                                                                                      |
|                                                                                                                                                                                                                                                                      |                                                                   |                                                                    |                                                                                               |
|                                                                                                                                                                                                                                                                      | assachusetts                                                      | Prince Georges<br>Hampshire                                        | Muirkirk.                                                                                     |
| Mic                                                                                                                                                                                                                                                                  | chigan                                                            | Wayne                                                              | Easthampton.                                                                                  |
| Mir                                                                                                                                                                                                                                                                  | nnesota                                                           | Hennepin                                                           | Dearborn.<br>Minneapolis.                                                                     |
| Mis                                                                                                                                                                                                                                                                  | ssouri                                                            | St. Louis                                                          |                                                                                               |
|                                                                                                                                                                                                                                                                      |                                                                   | Douglas                                                            | Omaha.                                                                                        |
| Ne                                                                                                                                                                                                                                                                   | w Jersey                                                          | Mercer                                                             | Trenton.                                                                                      |
| Ne                                                                                                                                                                                                                                                                   | w York                                                            | Cayuga                                                             | Weedsport.                                                                                    |
|                                                                                                                                                                                                                                                                      | orth Carolina                                                     | Guilford                                                           | High Point.                                                                                   |
| Ore                                                                                                                                                                                                                                                                  | egon                                                              | Multnomah                                                          | Portland.                                                                                     |
| Per                                                                                                                                                                                                                                                                  | nnsylvania                                                        | Lawrence                                                           | New Castle.                                                                                   |
| Sou                                                                                                                                                                                                                                                                  | uth Carolina                                                      | Greenville                                                         | Travelers Rest.                                                                               |
| Too                                                                                                                                                                                                                                                                  | mm                                                                | Laurens                                                            | Enoree.                                                                                       |
| We                                                                                                                                                                                                                                                                   | nnessee<br>ashington                                              | Davidson                                                           | Nashville.                                                                                    |
| Wi                                                                                                                                                                                                                                                                   |                                                                   | Spokane                                                            |                                                                                               |
| Hyzer & Lewellen Per                                                                                                                                                                                                                                                 |                                                                   | Milwaukee<br>Bucks                                                 | Milwaukee.                                                                                    |
| International Vermiculite Co Illi                                                                                                                                                                                                                                    | inois                                                             | Macoupin                                                           | Southampton.<br>Girard.                                                                       |
| Koos, Inc Wis                                                                                                                                                                                                                                                        |                                                                   | Kenosha                                                            | Kenosha.                                                                                      |
| La Habra Products, Inc Cal                                                                                                                                                                                                                                           |                                                                   | Orange                                                             | Anaheim.                                                                                      |
| McArthur Co Min                                                                                                                                                                                                                                                      | nnesota                                                           | Ramsey                                                             | St. Paul.                                                                                     |
| Mica Pellets, Inc Illi                                                                                                                                                                                                                                               | inois                                                             | De Kalb                                                            | De Kalb.                                                                                      |
| B. F. Nelson Manufacturing Co Min                                                                                                                                                                                                                                    | nnesota                                                           | Hennepin                                                           | Minneapolis.                                                                                  |
| Patterson Vermiculite Co Sou                                                                                                                                                                                                                                         | uth Carolina                                                      | Laurens                                                            | Lanford.                                                                                      |
| Robinson Insulation Co Mor                                                                                                                                                                                                                                           | ntana                                                             | Cascade                                                            | Great Falls.                                                                                  |
| Schmelzer Sales Associates, Inc Flo                                                                                                                                                                                                                                  | rth Dakota                                                        | Ward                                                               | Minot.                                                                                        |
| The Schundler Co New                                                                                                                                                                                                                                                 | orida                                                             | Hillsborough                                                       | Tampa.                                                                                        |
|                                                                                                                                                                                                                                                                      | w Jersey<br>w Mexico                                              | Middlesex                                                          | Edison.                                                                                       |
| Strong-Lite Products Arl                                                                                                                                                                                                                                             |                                                                   | Bernalillo                                                         | Albuquerque.                                                                                  |
| Supreme Perlite Co Ore                                                                                                                                                                                                                                               |                                                                   | Jefferson<br>Multnomah                                             | Pine Bluff.<br>Portland.                                                                      |
| Texas Vermiculite CoOk                                                                                                                                                                                                                                               | lahoma                                                            | Oklahoma                                                           | Olylahama City                                                                                |
|                                                                                                                                                                                                                                                                      | xas                                                               | Bexar                                                              | San Antonio.                                                                                  |
|                                                                                                                                                                                                                                                                      |                                                                   |                                                                    | Dallas.                                                                                       |
| Vermiculite of Hawaii, Inc Hawaii                                                                                                                                                                                                                                    | waii                                                              |                                                                    | Honolulu.                                                                                     |
| Vermiculite Industrial Corp Per                                                                                                                                                                                                                                      | nnsvlvanja                                                        |                                                                    | Pittsburgh.                                                                                   |
| Vermiculite-Intermountain, Inc Uta                                                                                                                                                                                                                                   | ah                                                                | Salt Lake                                                          | Salt Lake City.                                                                               |
| Vermiculite Products, Inc Tex                                                                                                                                                                                                                                        | xas                                                               |                                                                    | Houston.                                                                                      |

# Zinc

# By Albert D. McMahon, 1 John M. Hague, 2 and Herbert R. Babitzke 1

In many ways 1973 was an outstanding year for zinc in the United States. Highs and lows for items of supply and demand were established, and unique situations developed. It was the best year on record for slab zinc consumption and the worst year for slab zinc production; it was the lowest and highest year for imports of concentrates and metal, respectively; the highest for stockpile releases and exports of concentrates and metal; and prices rose to record levels in both U.S. and world markets. The Government ceiling price control of zinc, administered by the Cost of Living Council, was on and off twice, and the shortage of zinc continued throughout the year. Of the 98 mines accounting for zinc mine production in the United States, the leading 25 mines produced 93% of the total. Missouri, with its byproduct zinc from lead mines in the fairly new southeast lead belt, became the leading zinc-producing State, while Tennessee and New York fell back owing to strikes and operating problems.

Smelter production of slab zinc declined 11% because of a decrease in zinc concentrate imports and the use of more domestic for American-process concentrates oxide. This loss of raw material for the smelters was partially compensated by acquisitions of slab zinc from the national stockpile for remelting and direct shipment to consumers. Closure of the horizontal retort smelter at Amarillo, was delayed as the Texas Air Control Board rescinded a previous order and issued a variance permitting operations to continue until May 30, 1975. The State of Oklahoma in a similar action extended the variance for the horizontal zinc smelter at Bartlesville, Okla., until June 30, 1975, when it will be replaced by an electrolytic plant. Rehabilitation of the Sauget, Ill., electrolytic plant was completed, and erection of two new plants with a combined

annual capacity of 340,000 tons of slab zinc was being considered.

Demand continued to rise through most of the year at a rate of almost 8%. However, because of a slowdown in the last 2 months, the year ended with only a 6% increase over that of 1972.

The major sources of zinc concentrate imports continued to supply less zinc for domestic smelters, but imports of metal increased 13%. Exports of concentrate and metal increased to take advantage of higher prices in the world market. The lead and zinc flexible-tariff bill and the bill to suspend the duty on imports of zinc concentrates were reintroduced in Congress. Both bills were in the House Ways and Means Committee at yearend.

Under the Administration's plan to reduce objectives for most stockpiled materials, that for zinc was lowered from 560,000 to 202,700 tons, creating an additional surplus of 357,300 tons. New legislation authorizing disposal of this quantity was signed by the President on December 28, 1973.

Phase 3 of the President's economic stabilization program effective January 11, 1973, abolished the Price Commission and established voluntary controls subject to the Cost of Living Council regulations. Prices advanced from a range of 18–18.52 cents per pound to 20.25–21 cents, where they were frozen June 13 by Presidential order. The ceiling prices prevailed until December 6, 1973, when the Cost of Living Council abolished Government price control on zinc. The domestic price advanced immediately to a range of 28–32 cents per pound.

Legislation and Government Programs.— The General Services Administration (GSA)

<sup>&</sup>lt;sup>1</sup> Physical scientist, Division of Nonferrous Metals—Mineral Supply. <sup>2</sup> Mining engineer, Division of Nonferrous Metals—Mineral Supply.

sold 266,315 short tons of zinc from the stockpile during 1973. Government agencies received 117 tons, which was transferred under authorization of Public Law 89-9, leaving a balance of 21,980 short tons. Commercial sales totaled 266,198 tons as authorized by Public Law 92-283 of April 26, 1972. Of the latter amount, 62,477 tons was sold under the set-aside program, and 204,923 tons was sold to the seven participating primary zinc producers under terms of their long-term contracts. At yearend there remained under Public Law 92-283 approximately 30,085 tons of zinc to be released through primary domestic producers and 25,000 tons in the set-aside program. Based on inventory, actual movement of zinc from the stockpile in 1973 was 272,574 tons. This amount includes the drawdown of some of the zinc that was transferred to the Treasury Department in 1970.

By June 30, 1973, all the zinc that was provided for the initial 75,000-ton set-aside program was sold; therefore, on July 1, 1973, the set-aside program was revised upwards to allow releases of 25,000 tons of zinc per quarter as long as zinc remained in the authorization and at the same time allowing the primary producers to draw more zinc. In the revised program, 5,000 tons of Special High Grade zinc was provided, and consumers were limited to purchases of 120 tons of Special High Grade per quarter or 480 tons of High Grade, Intermediate, or Prime Western. On every quarterly allocation the consumers ordered more zinc than what was made available; consequently, the orders were reduced in proportion to what was available.

In April, the stockpile objective for zinc was reduced from 560,000 tons to 202,700 tons, which created a surplus of 357,300 tons. New legislation, Public Law 93–212, authorizing disposal of this quantity was signed by the President on December 28, 1973. This bill provided that 150,000 tons of zinc be sold direct to the consumers, 75,000 tons during the second quarter of 1974 and 25,000 tons each following quarter for the balance. The remaining 207,300 tons was for the participating primary zinc producers.

The President's economic stabilization program entered phase 3 on January 11, 1973, which removed the mandatory price

ceiling on zinc and allowed limited price increases, but on June 13, 1973, phase 4 was established by Presidential order which froze the price of zinc once again. This status remained until December 6, 1973, when the Cost of Living Council was abolished and zinc pricing was decontrolled.

The lead and zinc flexible-tariff bill and the bill to suspend the duty on imports of zinc concentrates were reintroduced in Congress in March 1973. Each incorporated a significant change from the previous bills. The new flexible-tariff bill permitted a larger quantity of zinc metal to enter the United States before the high duties became effective, and the duty suspension bill on zinc concentrates was for 2 years. At yearend, both bills were in the House Ways and Means Committee. Another bill, also in the House Ways and Means Committee, proposed suspension of the duty on imports of zinc metal.

The International Lead and Zinc Study Group held its 17th session in Geneva from November 7-12, 1973, to review developments leading to the current situation and the outlook for these metals. Representatives from 28 of the 30 member countries attended. Representatives of several intergovernmental organizations were also present. The strong growth in zinc consumption featured in 1972 through most of 1973, but a slowdown in the rate of growth was forecast for 1974. The 1973 forecasts for mine and metal production were adjusted to increases of 3% and 5%, respectively, over 1972 production; zinc metal consumption, rising strongly in most countries, was expected to register an increase of 10%, following one of 11% in 1972. Producers' stocks were drawn down to very low levels, and a large statistical deficit developed. This situation was expected to continue into 1974. The various price rulings throughout the world created a complex basis for zinc sales. In the United States domestic production was subject to Government price control, substantially under world markets at 20.25 to 21 cents per pound, but imported metal was sold in the United States at much higher levels. The European producer price increased in stages to 31.54 cents per pound, while the London Metal Exchange quotation increased dramatically

to over 95 cents per pound. The Statistical Committee set up an ad hoc working party to review the importance of secondary materials as a source for lead and zinc. Other topics discussed at the meeting included new mine and smelter projects, consumption trends, trade liberalization, and long-term projections.

Table 1.-Salient zinc statistics

|                                               | 1969             | 1970      | 1971        | 1972                 | 1973      |
|-----------------------------------------------|------------------|-----------|-------------|----------------------|-----------|
| United States:                                |                  |           |             |                      |           |
| Production:                                   |                  |           |             |                      |           |
| Domestic ores, recoverable content short tons | 553,124          | 534,136   | 502,543     | 478,318              | 478,850   |
| Valuethousands_                               | \$161,512        | \$163,650 | \$161,819   | \$169,803            | \$197,861 |
| Valuethousands                                | ψ101,01 <b>2</b> |           | <b>V</b>    |                      |           |
| Slab zinc:                                    |                  |           |             |                      |           |
| From domestic oresshort tons                  | 458,754          | 403,953   | 403,750     | 400,969              | 365,307   |
| From foreign oresdo                           | 581,843          | 473,858   | 362,683     | 232,211              | 176,012   |
| From scrapdo                                  | 70,553           | 77,156    | 80,923      | 73,718               | 87,466    |
|                                               | 1,111,150        | 954,967   | 847,356     | 706,898              | 628,785   |
| Totaldo                                       | 307,714          | 264,074   | 279,399     | r 314,043            | 300,073   |
| Secondary zinc 1do                            | 9,298            | 288       | 13,346      | 4,324                | 14,566    |
| Exports of slab zincdo                        | 0,200            | 200       | 2.0,022     | -,                   |           |
| Imports (general):                            | 602,120          | 525,759   | 342,521     | 254,868              | 199,053   |
| Ores (zinc content)do<br>Slab zincdo          | 324,776          | 270,413   | 319,568     | 522,612              | 588,725   |
| Slab zincdo                                   | 024,110          | 2.0,220   | <b>,</b>    |                      | -         |
| Stocks, December 31: At producer plantsdo     | 65,788           | 98,314    | 41,220      | 21,181               | 20,291    |
| At consumer plantsdo                          | 102,007          | 92,674    | 91,523      | r 124,956            | 114,317   |
| Government stockpiledo                        | 1.142,185        | 1,141,490 | 1,137,937   | 949.583              | 677,009   |
| Reprocessed GSA zinc 2                        | NA<br>NA         | NA        | NA          | 80,403               | 109,333   |
| Consumption:                                  |                  |           |             | •                    |           |
| Slab zincshort tons_                          | 1.385,380        | 1.186.951 | 1,254,059   | 1,418,349            | 1,503,938 |
| All classesdo                                 | 1,814,167        | 1,571,596 | 1,650,694   | r 1,844,023          | 1,931,925 |
| Price: Prime Western 3                        | 1,011,101        | 2,0.2,000 | _,          | , ,                  |           |
| cents per pound                               | 14.65            | 15.32     | 16.13       | 17.75                | 20.66     |
| World:                                        |                  |           |             |                      |           |
| Production:                                   |                  |           |             |                      |           |
| Mineshort tons                                | 5,888,298        | 6,023,488 | r 6,079,365 | r 6,220,6 <b>9</b> 2 | 6,377,392 |
| Smelterdodo                                   | 5,482,489        | 5,320,771 | r 5,228,959 | r 5,645,989          | 5,795,352 |
| Price: Prime Western grade, London            |                  |           |             |                      | 00 77     |
| cents per pound                               | 12.96            | 13.36     | 14.08       | 17.13                | 38.55     |

r Revised.

1 Excludes redistilled slab zinc.
2 Included in total amount withdrawn from Government stockpile.
3 1969-70, East St. Louis price; 1971-73 delivered price.

Table 2.—Zinc statistics, 1900-73 (Short tons except as noted)

|               | Price<br>cents per<br>pound<br>E. St. Louis          | 24.44.46.00.00.00.00.00.00.00.00.00.00.00.00.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | Consumption, ore, direct                             | NAA NAA NAA NAA NAA NAA NAA NAA NAA NAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               | Consumption, tion, slab, apparent primary            | 99, 399<br>141, 679<br>152, 682<br>152, 682<br>220, 731<br>220, 731<br>220, 731<br>220, 731<br>220, 731<br>220, 731<br>220, 731<br>220, 731<br>220, 731<br>234, 531<br>443, 531<br>443, 531<br>443, 531<br>445, 511<br>446, 511<br>446, 511<br>446, 511<br>446, 511<br>446, 511<br>446, 511<br>446, 511<br>446, 511<br>446, 511<br>446, 511<br>446, 511<br>446, 511<br>446, 511<br>446, 511<br>446, 511<br>446, 511<br>446, 511<br>446, 511<br>446, 511<br>446, 511<br>446, 511<br>446, 511<br>446, 511<br>446, 511<br>446, 511<br>446, 511<br>446, 511<br>446, 511<br>446, 511<br>446, 511<br>446, 511<br>446, 511<br>446, 511<br>446, 511<br>446, 511<br>446, 511<br>446, 511<br>446, 511<br>446, 511<br>446, 510<br>510, 000<br>528, 000<br>528, 000<br>528, 000<br>528, 000<br>528, 000<br>528, 000<br>538, 500<br>541, 000<br>541, 000<br>541, 000<br>541, 000<br>610, 000<br>610, 000<br>610, 000<br>610, 000<br>610, 000<br>610, 000<br>610, 000<br>610, 000<br>610, 000<br>610, 000<br>610, 000<br>610, 000<br>610, 000<br>610, 000<br>610, 000<br>610, 000<br>610, 000<br>610, 000<br>610, 000<br>610, 000<br>610, 000<br>610, 000<br>610, 000<br>610, 000<br>610, 000<br>610, 000<br>610, 000<br>610, 000<br>610, 000<br>610, 000<br>610, 000<br>610, 000<br>610, 000<br>610, 000<br>610, 000<br>610, 000<br>610, 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               | Slab zinc produc- tion from secon- dary materials    | NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| tes           | Exports<br>ore,<br>zinc<br>content                   | 42,062<br>44,156<br>39,411<br>30,941<br>30,941<br>30,946<br>27,720<br>26,108<br>27,720<br>26,108<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11,713<br>11                                                                                                                                                          |
| United States | Exports<br>metal                                     | 22,401<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1,531<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | Imports<br>ore<br>zinc<br>content                    | NAA<br>NAA<br>NAA<br>NAA<br>NAA<br>NAA<br>NAA<br>NAA<br>NAA<br>NAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|               | Imports<br>slab<br>zinc                              | 884<br>4488<br>884<br>841<br>1,021<br>1,021<br>1,021<br>1,021<br>1,031<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,044<br>1,                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|               | U.S.<br>mine<br>produc-<br>tion                      | 165,948<br>212,660<br>1184,798<br>222,613<br>224,795<br>224,795<br>2234,523<br>227,112<br>234,526<br>226,423<br>327,712<br>345,260<br>345,260<br>345,260<br>345,260<br>345,260<br>345,260<br>345,260<br>345,260<br>345,260<br>345,260<br>345,260<br>345,260<br>345,260<br>345,260<br>347,77<br>774,63<br>637,977<br>774,63<br>637,977<br>774,63<br>637,977<br>774,63<br>637,977<br>774,63<br>637,977<br>774,63<br>637,977<br>774,63<br>637,977<br>774,63<br>637,977<br>774,63<br>637,977<br>774,63<br>637,977<br>774,63<br>637,977<br>774,63<br>637,977<br>774,63<br>637,977<br>774,63<br>637,977<br>774,63<br>637,977<br>774,63<br>637,977<br>774,63<br>637,977<br>774,63<br>637,977<br>774,63<br>637,977<br>774,63<br>637,977<br>774,63<br>637,977<br>774,63<br>637,977<br>774,63<br>637,977<br>774,63<br>637,977<br>774,63<br>637,977<br>774,63<br>637,977<br>774,63<br>637,977<br>774,63<br>637,977<br>774,63<br>637,977<br>774,63<br>637,977<br>774,63<br>637,977<br>774,63<br>637,977<br>774,63<br>637,977<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,63<br>774,6                                                                                                                                                                                     |
|               | U.S.<br>smelter<br>production<br>(primary)           | 123,886<br>159,219<br>159,219<br>189,219<br>2203,470<br>224,770<br>224,770<br>224,424<br>220,424<br>220,424<br>220,134<br>465,743<br>668,534<br>465,743<br>668,534<br>465,743<br>465,743<br>668,534<br>465,743<br>668,534<br>668,534<br>668,534<br>668,534<br>668,534<br>668,534<br>668,534<br>668,534<br>668,534<br>668,534<br>668,534<br>668,534<br>668,544<br>668,544<br>671,389<br>671,389<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>671,48<br>6                                                                                                                                                                         |
| rld           | World<br>mine<br>production<br>(thousand<br>tons)    | NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| World         | World<br>smelter<br>production<br>(thousand<br>tons) | 528<br>6538<br>6633<br>6633<br>6633<br>6633<br>6633<br>6633<br>664<br>8854<br>8854<br>1001<br>1,001<br>1,005<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1,105<br>1, |
|               | Year                                                 | 1900<br>1900<br>1901<br>1903<br>1904<br>1906<br>1906<br>1906<br>1906<br>1906<br>1910<br>1911<br>1911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| 5.12               | 7.48    | 8.25    | 8.25    | 8.25    | 8.25    | 8.73    | 10.50   | 13.58   | 12.15   | 13.88   | 17.99   | 16.21   | 10.86   | 10.69   | 12.30     | 13.49     | 11.40   | 10.31   | 11.46   | 12.95   | 11.55   | 11.63     | 12.01     | 13.57     | 14.50     | 14.50     | 13.85     | 13.50     | 14.65     | 15.32     | $^{1}16.13$ | 1 17.75   | 1 20.66   |
|--------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-----------|-----------|---------|---------|---------|---------|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-------------|-----------|-----------|
| 84,896             | 134,815 | 115,002 | 114,700 | 142,256 | 130,992 | 133,995 | 145,923 | 132,649 | 88,142  | 134,434 | 133,845 | 109,277 | 118,244 | 99,247  | 118,135   | 113,388   | 110,311 | 94,938  | 108,070 | 88,275  | 97,251  | 101,582   | 104,705   | 105,948   | 122,892   | 126,696   | 114,301   | 124,109   | 126,712   | 124,781   | 119,254     | 118,305   | 129,621   |
| 626,000            | 827,435 | 728,169 | 816,777 | 888,626 | 852,311 | 810,242 | 786,360 | 817,735 | 711,841 | 967,134 | 933,971 | 852,783 | 985,927 | 884,299 | 1.119.812 | 1,008,790 | 935,620 | 868,327 | 956,197 | 877,884 | 931,213 | 1,031,821 | 1,105,113 | 1,207,268 | 1,354,092 | 1,423,666 | 1,250,673 | 1,350,656 | 1,385,380 | 1,186,951 | 1,254,059   | 1,418,349 | 1,503,938 |
| 50,428             | 59,503  | 53,195  | 48,215  | 49,037  | 49,242  | 44,516  | 59,542  | 62,320  | 55,041  | 66,970  | 48,657  | 55,111  | 52,875  | 68,013  | 66,042    | 72,127    | 72,481  | 46,605  | 57,818  | 68,731  | 55,237  | 58,880    | 60,303    | 71,596    | 83,619    | 83,263    | 73,505    | 79,865    | 70,553    | 77,156    | 80,923      | 73,718    | 87,466    |
| 303<br>448         | } }     | ;       | -       | 1       | 1       | 88      | 1,404   | 3,547   | 2,925   | 1,140   | 3,090   | 3,370   | 2.953   |         | 1         | 854       | 2       | 1       | -       | 13      | 1,670   | 136       | 17        | 39        | NA          | NA        | NA        |
| 4,515              | 89,309  | 133,938 | 97,439  | 21,576  | 7,782   | 47,224  | 106,669 | 65,537  | 58,709  | 12,917  | 36,510  | 57,714  | 17,969  | 24,994  | 18,069    | 8,813     | 10,785  | 2,073   | 11,629  | 75,144  | 50,055  | 36,102    | 33,853    | 26,515    | 5,939     | 1,406     | 16,809    | 33,011    | 9,298     | 288       | 13,346      | 4,324     | 14,566    |
| 36,100             | 289,213 | 368,408 | 539,049 | 422,694 | 381,719 | 272,056 | 297,959 | 264,203 | 241,179 | 278,573 | 302,777 | 449,636 | 513,724 | 455,427 | 478,044   | 525,350   | 526,014 | 461,560 | 500,115 | 457,155 | 415,700 | 467,398   | 372,769   | 357,145   | 428,040   | 521,320   | 534,092   | 543,366   | 602,120   | 525,759   | 342,521     | 254,868   | 199,053   |
| 30,898             | 34,554  | 36,394  | 56,155  | 63,626  | 97,116  | 104,743 | 72,312  | 93,232  | 126,925 | 155,974 | 88,043  | 115,705 | 234,576 | 156,858 | 195,696   | 244,978   | 269,007 | 195,199 | 156,963 | 120,767 | 127,562 | 141,957   | 144,757   | 118,340   | 152,990   | 278,175   | 222,112   | 304,576   | 324,776   | 270,413   | 319,568     | 522,612   | 588,725   |
| 583,807<br>665,068 | 749,125 | 768,025 | 744,196 | 718,642 | 614,358 | 574,833 | 637,608 | 629,977 | 593,203 | 623,375 | 681,189 | 666,001 | 547,430 | 473,471 | 514,671   | 542,340   | 531,735 | 412,005 | 425,303 | 435,427 | 464,390 | 505,491   | 529,254   | 574,858   | 611,153   | 572,558   | 549,413   | 529,446   | 553,124   | 534,136   | 502,543     | 478,318   | 478,850   |
| 507,236<br>675,275 | 822,020 | 891,872 | 942,309 | 869,302 | 764,561 | 728,262 | 802,495 | 787,764 | 814,782 | 843,467 | 881,633 | 904,479 | 916,105 | 802,425 | 963,504   | 983,610   | 985,796 | 781,246 | 798,666 | 799,516 | 846,795 | 879,395   | 892,584   | 954,084   | 994,402   | 1,025,066 | 938,830   | 1,020,891 | 1,040,597 | 877,811   | 766,433     | 633,180   | 541,319   |
| 1,972              | 2,284   | 2,308   | 2,224   | 2,270   | 1,781   | 1,745   | 1,950   | 2,048   | 2,105   | 2,370   | 2,600   | 2,850   | 2,940   | 2,930   | 3,200     | 3,430     | 3,470   | 3,370   | 3,440   | 3,680   | 3,845   | 3,930     | 4,036     | 4,440     | 4,742     | 4,942     | 5,330     | 5,484     | 5,888     | 6,023     | 6,079       | 6,221     | 6,377     |
| 1,819              | 1,928   | 1,984   | 2,028   | 1,788   | 1,435   | 1,534   | 1,763   | 1,881   | 2,012   | 2,170   | 2,360   | 2,460   | 2,600   | 2,700   | 2,930     | 3,100     | 3,200   | 3,010   | 3,150   | 3,335   | 3,580   | 3,755     | 3,844     | 4,071     | 4,353     | 4,498     | 4,548     | 5,101     | 5,482     | 5,321     | 5,229       | 5,646     | 5,795     |
| 1939               | 1941    |         | 1943    | •       | •       | •       | •       |         |         | •       | •       |         |         |         |           |           |         | 1958    |         |         |         |           | 1963      | •         | •         | •         | •         | •         | ٠.        | ٠.        | 1971        | 1972      | 1973      |

NA Not available. <sup>1</sup> Delivered.

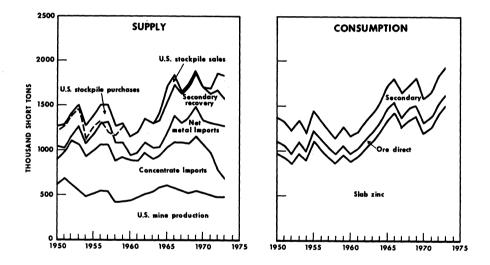



Figure 1.-Trends in supply and consumption in the United States.

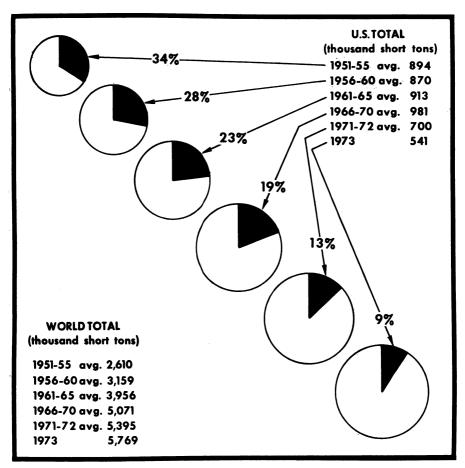



Figure 2.-Trends of United States percentage of World smelter production.

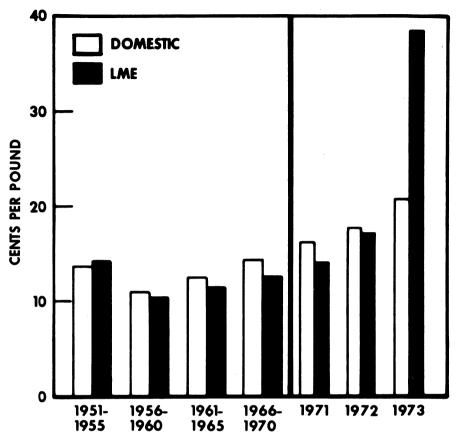



Figure 3.-Trends in foreign and domestic zinc prices.

## **DOMESTIC PRODUCTION**

#### MINE PRODUCTION

Mines in the United States produced 478,850 tons of recoverable zinc, 532 tons more than in 1972 and the first increase since 1969. Production was reported in 18 States. Seven States recorded increases over that of 1972, and 11 States registered decreases. Missouri with its byproduct zinc recovery from lead ores led the Nation in zinc production with 33% more than in 1972. New York moved up into second place with a 34% increase, and Tennessee dropped to third with a decline of 37%. Colorado, Idaho, and New Jersey followed in order, repeating the 1972 pattern. The States east of the Mississippi River ac-

counted for 52% of the U.S. 1973 mine production.

Sources of zinc production for 1973 are shown in table 5 according to the principal metal or combination of metals extracted. The percentage distribution is as follows: Zinc ore, 57%; zinc-lead ore, 19%; lead ores, 18%; copper-zinc and copper-lead-zinc ores, 5%; all other sources, 1%.

The 25 leading mines listed in table 6 accounted for 93% of the domestic recoverable mine production. The five leading mines produced 43%, and the first 10 mined 63%.

Missouri attained first place among the zinc-producing States with a 33% increase

ZINC 1311

over 1972. Byproduct zinc production from St. Joe Minerals Corp.'s four operating lead mines in the New Lead Belt in southeast Missouri (Fletcher, Viburnum, Creek, and Brushy Creek) increased in 1973, and more is expected in 1974. The mills at Fletcher and Brushy Creek are among the most modern in the industry and incorporate computer-controlled processes allowing the entire plant to be operated by only a few employees.3 The Missouri mine-mill-smelter complex, owned jointly by American Metal Climax, Inc. (AMAX) and Homestake Mining Co., benefited from higher production, favorable ore grade, and higher prices. About 1.6 million tons of ore were mined and milled in 1973, an increase of 10% over 1972. Production of zinc concentrate was up 42% to 116,500 tons.4 The Magmont mine at Bixby, Mo., operated by Cominco American Incorporated, a joint venture of Cominco, Ltd. and Dresser Industries, Inc., produced 934,000 tons of ore averaging 8.3% combined lead and zinc compared with 1,034,000 tons of 7.9% ore in 1972. Except for a 1-month strike in June, a high level of production was maintained throughout the year.5

Byproduct zinc output by the Ozark Lead Co. was lower in 1973 because of a 2-month strike which ended on April 30 with agreement on a 3-year labor contract. A shortage of skilled underground maintenance personnel also adversely affected production. In 1973, Ozark Lead Co. was awarded the national Sentinels of Safety trophy for outstanding underground mine safety performance. This award is sponsored by the Bureau of Mines and the American Mining Congress. Ozark was honored for the second consecutive year-the first time a U.S. mine has achieved that distinction since 1928.6

Mine production in New York, all from the Balmat-Edwards mining complex of St. Joe Minerals Corp., increased 34% in 1973, and higher production is expected in 1974. St. Joe has concentrated on exploration and continued the modernization and underground development programs at the Balmat-Edwards mines. Two mills treat 5,000 tons of ore per day and produce a 55% zinc concentrate. The Balmat mill has over 85% of that capacity and is one of the most automated mills in the world.7

Tennessee dropped to third place after ranking first among the mine-producing States for 15 years. The decline of 37%

was due principally to the closure of three mines for 8 months by a strike. Occidental Mineral Corp. (Oxymin), a subsidiary of Occidental Petroleum Corp., increased its leaseholdings in the vicinity of Carthage, Tenn., to a total of 1,300 acres. Further exploration and development are being discussed with several mining companies.8

The New Jersey Zinc Co.'s newest mine, in Elmwood, Tenn., is scheduled to begin initial production in the spring of 1974.9

The Jefferson City mine of New Jersey Zinc Co. and the Zinc Mine Works of United States Steel Corp. in east Tennessee operated throughout the year. American Smelting and Refining Company (ASARCO) started construction on a new concentrator at the Young mine in December. It will be more modern and 20% larger than the Mascot mill.10

Operational problems continued at the industrial chemicals plant at Cities Service Co., at Copperhill, Tenn., which had been revamped and expanded. Zinc concentrate sales increased 71% in 1973 to 18,100 tons.<sup>11</sup>

Production in New Jersey, Pennsylvania, and Virginia by New Jersey Zinc Co. declined for the third straight year to 68,567 tons, 6.4% below that of 1972. This company is continuing an active exploration program for additional minerals with emphasis on zinc-bearing ores. Significant progress was made in deepening the shaft at the Friedensville, Pa., mine.12

In Colorado, mine output decreased in 1973 to 58,339 tons, a decline of 8.6% below that of 1972. The New Jersey Zinc Co. Eagle mine produced the largest tonnage of zinc, although slightly less than in 1972. The Resurrection mine, a joint venture shared equally by Resurrection Mining Co. (a 100% owned subsidiary of Newmont Mining Corp.) and ASARCO, continued operation without interruption during the year. The mine produced only about 75% of its rated capacity of 700 tons of ore per

<sup>&</sup>lt;sup>3</sup> St. Joe Minerals Corp. 1973 Annual Report.

P. 7.

American Metal Climax, Inc. 1973 Annual

<sup>-</sup> American Metal Climax, inc. 1975 Annual Report. P. 16.

<sup>5</sup> Cominco, Ltd. 1973 Annual Report. P. 9.

<sup>6</sup> Kennecott Copper Corp. 1973 Annual Report.
Pp. 11 and 22.

<sup>7</sup> Page 11 of work cited in footnote 3.

<sup>8</sup> Occidental Petroleum Corp. 1973 Annual Report.

Port. P. 17

port. P. 17.

<sup>9</sup> Gulf & Western Industries, Inc. 1973 Annual
Report. P. 31.

<sup>10</sup> American Smelting and Refining Company.

1973 Annual Report. P. 8.

<sup>11</sup> Cities Service Co. 1973 Annual Report. Pp.

in Cities Service Co. 1973 Annual Report. Pp. and 30.

12 Page 31 of work cited in footnote 9.

day, due largely to a manpower shortage. However, because of an increase in ore grade, higher metal prices, and carefully controlled costs, the mine, operated by ASARCO, had a profitable year. The average grade of ore milled in 1973 was 8.95% zinc, 3.96% lead, 2.8 ounces of silver, and 0.07 ounce of gold per ton, compared with 7.6% zinc, 3.9% lead, 2.4 ounces of silver, and 0.07 ounce of gold per ton in 1972. Ore reserves as of January 1, 1974, were estimated at 2,619,000 tons averaging 9.71% zinc, 4.98% lead, 2.53 ounces of silver, and 0.067 ounce of gold per ton, compared with 2,609,500 tons averaging 9.92% zinc, 5.16% lead, 2.53 ounces of silver, and 0.068 ounce of gold per ton at yearend 1972. The Newmont Mining Corp. Idarado mine was the third largest producer in Colorado, and the Sunnyside mine of Standard Metals Corp. ranked fourth. Idarado's 1973 tonnage milled was only slightly below that of 1972. Additional income from higher metal prices in 1973 was offset by higher operating costs and by increased development expenses required to open more stopes and add to broken ore reserves. In 1973, the mill treated 378,150 tons of ore averaging 3.44%zinc, 2.55% lead, 0.56% copper, 1.39 ounces of silver, and 0.052 ounce of gold per ton. This compares with 386,500 tons milled in 1972 averaging 3.74% zinc, 2.74% lead, 0.72% copper, 1.74 ounces of silver, and 0.063 ounce of gold per ton. Ore reserves at the end of 1973 were 3,241,000 tons averaging 4.61% zinc, 3.36% lead, 0.77% copper, 1.77 ounces of silver, and 0.02 ounce of gold per ton, compared with 2,865,000 tons in 1972 containing averages of 4.80% zinc, 3.31% lead, 0.74% copper, 1.75 ounces of silver, and 0.03 ounce of gold per ton.13

Mine production of zinc in Maine increased to 19,640 tons as the Blue Hill mine completed its first full year of operation. The ore body is a difficult one to mine, and at yearend the designed production of 1,000 tons per day had not been attained over a 7-day-per-week basis. Milling throughout the year was restricted to 5 days per week owing to the inability to develop enough ore faces in the mine for a greater production rate. During 1973, 230,200 tons of ore averaging 10.69% zinc and 0.63% copper was milled to produce 885 tons of copper and 23,030 tons of zinc in separate concentrates. Minable ore reserves, including an allowance for dilution and based on past mining experience, on

December 31, 1973, were estimated to be 742,000 tons grading 5.68% zinc and 1.7% copper.14

Mine production of zinc in Idaho for 1973 increased 19% to 46,107 tons. Ore production at the Bunker Hill mine increased about 17%, reflecting greater production of zinc ores from the upper levels of the mine which have been under development for the last 2 years. Zinc metal content of ore increased 25%, while lead and silver remained unchanged from 1972. Ore reserves were nearly the same as in 1972 with the development of new reserves to replace those mined during the year. The intensified mine exploration program, which began in 1973, is on schedule and will continue for 4 more years. Gross production from the Star mine equaled that of 1972, although zinc production was off by 8%. Higher metal prices more than offset rising operating costs, and the mine experienced its first profitable year since 1967. In 1973 production from company owned and controlled mines amounted to 38,000 tons of zinc, 31,000 tons of lead, and 2.6 million ounces of silver.15 The Star-Morning mine, 30% owned by Hecla Mining Co. and 70% owned by the Bunker Hill Co., produced 265,781 tons of ore in 1973 assaying 6.68% zinc, 5.18% lead, and 2.79 ounces of silver per ton compared with 263,595 tons in 1972 containing 7.36% zinc, 5.33% lead, and 2.87 ounces of silver per ton.18 During 1973 an independent contractor operating the Day Mines, Inc., Monitor mine produced 20,674 tons of ore averaging 7.90% zinc, 2.71% lead, and 0.86 ounce of silver per ton from the Gray Rock section. Ore reserves were increased to provide adequate ore for an additional 3 years of production at the current rate.17

Mine production of zinc in Utah declined 23%. Zinc, lead, and silver production at the Kennecott Copper Corp. Tintic Division (Utah) decreased in 1973 owing to a critical shortage of skilled miners and mechanics. Also, adverse underground mining conditions inhibited development work and production.18

<sup>13</sup> Newmont Mining Corp. 1973 Annual Report.

<sup>13</sup> Newmont Mining Colp. 1913 Annual Report. Pp. 1-6.
15 Gulf Resources & Chemical Corp. 1973 Annual Report. P. 7.
16 Hecla Mining Co. 1973 Annual Report. P. 7.
17 Day Mines, Inc. 1973 Annual Report. P. 3.
18 Kennecott Copper Corp. 1973 Annual Report. P. 7.

Zinc mine production in Arizona for 1973 was 17% lower than in 1972. The Bruce mine near Bagdad, Ariz., is operated by the Cyprus Bruce Copper and Zinc Co., a wholly owned division of Cyprus Mines Corp. In 1973, mine output of ore was 93,000 tons with an average grade of 12.7% zinc and 3.68% copper. Concentrates produced contained 3,000 tons of copper and 9,500 tons of zinc. Record earnings were achieved owing to good metallurgical results, acceptable production costs, and high average prices received for copper, 60.8 cents per pound, and zinc, 26.4 cents per pound. Exploration did not add much to known reserves, but surface and underground drilling will continue in 1974. Known ore reserves of 467,000 tons with an average grade of 12.4% zinc and 3.72% copper will sustain the operation for about 5 years.19

In 1973, mine output of zinc in New Mexico declined 3% from that in 1972. At the ASARCO Ground Hog mine, the zinc content of ore produced was 13,500 tons. compared with 14,000 tons in 1972. UV Industries, Inc., anticipates some zinc production from the reopening of the Hanover mine in New Mexico. Byproduct zinc will be recovered from the copper ore processed at the Continental Mill No. 1 at Bayard, N. Mex. A 2-year program will define the extent of the copper, iron, and zinc reserves. 21

In Washington, 1973 mine production dropped slightly to 6,378 tons. Pend Oreille Mines & Metals Co. mined and milled 212,289 tons of ore and produced 10,834 tons of zinc concentrate. Development of the Yellowhead Area is underway with several headings being driven from the Yellowhead Exploration Decline. Several areas of low- to high-grade lead-zinc ore have been intercepted, but continuity of mineralization is still a problem that precludes making an accurate estimate of minable ore reserves.<sup>22</sup>

The Callahan Mining Corp. has resumed work at its zinc-lead property near Colville, Wash., under an agreement reached in the last quarter of 1973 granting United States Borax & Chemical Corp. and the British Newfoundland Exploration Ltd. the right to earn jointly up to 51% interest in the property through work expenditures. The program, which will include geologic work and drilling during 1974, is designed to test potential for increasing ore reserves

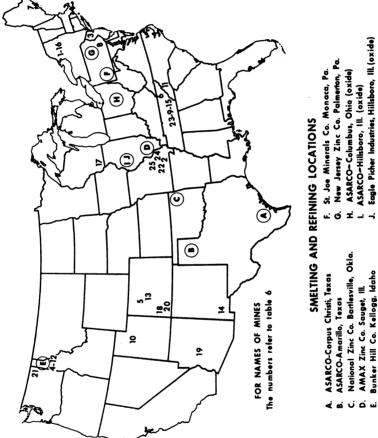
indicated by prior surface drilling and underground test work.23

Wisconsin mine production of zinc increased 26% in 1973. In Illinois and Kentucky production decreased 54% and 85%, respectively.

# SMELTER AND REFINERY PRODUCTION

U.S. slab zinc production at smelters and electrolytic plants was 628,785 short tons in 1973, a decrease of 11% from that of 1972. The decline may be attributed to the closure of the horizontal retort smelter at Blackwell, Okla., the inability of the AMAX plant at Sauget, Ill. to come on full stream during the year, a decrease in imports of zinc concentrates, and the use of more domestic concentrates for American process zinc oxide.

Drawdown of producers' stocks was minor for the year. Ending stocks at producer plants were 20,291 tons. In addition to the slab zinc production, producers purchased 154,327 tons of GSA stockpile zinc during the year; 44,994 tons was shipped directly to customers, and 109,333 tons was remelted for upgrading.


Smelter and refinery capacities were increased 28,000 tons during the year to 749,500 tons. This increased capacity may be attributed to the startup of the AMAX Zinc Co., Inc., at Sauget, Ill., and the expansion of St. Joe Minerals Corp. at Monaca, Pa.

Refined zinc production at primary smelters and electrolytic refineries was derived from the following: Domestic ore, 58%; foreign ore, 28%; and scrap, 14%. Slab zinc produced from domestic and foreign ore decreased 9% and 24%, respectively, from that of 1972, but that produced from scrap increased 19%.

Primary slab zinc produced at electrolytic plants was 19% less than that in 1972 and was 33% of the total slab zinc produced. Smelter production (distilled) was down 11% and made up 53% of the total. Redistilled slab zinc from secondary zinc materials by primary smelters increased 2% and contributed 10% of the total, and redistilled production at secondary plants

Pp. 9-10.
20 Page 20 of work cited in footnote 10.
21 UV Industries, Inc. 1973 Annual Report. P.

<sup>&</sup>lt;sup>22</sup> Pend Oreille Mines & Metals Co. Report to Shareholders. Feb. 14, 1974, p. 1. <sup>22</sup> Callahan Mining Corp. 1973 Annual Report. P. 6.



- Eagle Picher Industries, Hillsboro, III. (oxide)

Figure 4.-Locations of the zinc smelters and the 25 leading zinc producing mines in the United States.

1315 ZINC

more than doubled over that of 1972 and was 4% of the total. Production of all grades of zinc declined except for a 9% increase for Prime Western. Distribution of the total grades was as follows: Special High, 40%; High, 4%; Intermediate, 6%; Brass Special, 10%; and Prime Western,

ASARCO is considering the construction of an electrolytic zinc refinery on 1,400 acres of land on the Ohio River, near Stephensport, Ky. If undertaken, the plant would be completed by 1976 and would produce about 180,000 tons of zinc per year and significant byproduct sulfuric acid cadmium. ASARCO's reasons for choosing the Stephensport area were the availability of rail and river barge transportation at the plant site, and its closeness to both ASARCO Tennessee zinc mines and the principal Midwestern markets for refined zinc and sulfuric acid.24 The cost for construction of the plant was revised upward to \$150 million, up \$50 million from a previous estimate.25

During 1973, ASARCO installed an electric melting furnace at its electrolytic zinc plant in Corpus Christi, Tex., to provide a cleaner and more efficient operation than was possible with the two gas-fired reverberatory furnaces which it replaced. The \$3.7 million program to convert from inplant generation of electric power to purchased power continued and is expected to be completed in 1974. Regarding the Amarillo, Tex., plant, a variance was granted in July by the Texas Air Control Board to allow the plant to operate until May 30, 1975. The operation will be phased out at that time, or shortly thereafter, as the expenditures necessary to meet the applicable air quality standards are not justified at this horizontal retort zinc smelter.26

The Sauget, Ill., electrolytic zinc plant, purchased by AMAX in 1972, underwent extensive rehabilitation with initial production commencing in May 1973. A total of 25,000 tons of refined zinc was produced for the year, and an output of 70,000 tons is expected in 1974. Full capacity of 84,000 tons of zinc should be reached by 1975, and an annual production of 1.35 million pounds of cadmium and 150,000 tons of sulfuric acid is also expected. Completion of preleach facilities late in 1974 will permit the processing of high-magnesiumbearing zinc concentrates. At full production, the Sauget plant will represent about 12% of total U.S. zinc smelter capacity.

By the end of 1973, the planned phaseout of the AMAX Blackwell, Okla., horizontal retort furnaces was completed, although sintering operations were to continue through the first part of 1974. Production in 1973 totaled 39,000 tons of zinc. The change in basic product grade, from Prime Western zinc produced at Blackwell to Special High Grade produced at Sauget, will provide AMAX with additional capability to supply zinc to the die-casting and to other premium markets.27

St. Joe Minerals Corp., the Nation's largest zinc smelter, which provides about one-third of the domestic zinc, produced 231,085 tons of zinc (zinc equivalent) in 1973, slightly less than that of 1972 and under its 245,000-ton capacity. An expansion program has begun at the smelter that will increase the annual capacity by 40,000 tons in 1976. During the year the zinc smelter phased out its production of Special High Grade zinc alloys in order to concentrate its productive capacity on the fast-growing zinc oxide field and on a full line of zinc metal for the galvanizing industry.

Zinc oxide has become an increasingly important product for St. Joe Minerals Corp., now the second largest producer in the United States. Production in 1973 was 62,000 tons and it is expected to go over 70,000 tons in 1974. An expansion program is underway with an investment of approximately \$5 million to increase the zinc oxide facilities to 85,000 tons. The full amount of this capacity should be on line in late 1974.

In 1973 capital expenditures for environmental improvement at the Monaca, Pa., smelter totaled \$5.2 million. An additional \$6 million will be spent in 1974 in the continuing program to keep the zinc smelter in full compliance with Federal and State air and water environmental regulations.28

The New Jersey Zinc Co. reported an increase of 28% to \$130.5 million in net sales for fiscal 1973. Zinc metal production was 103,000 tons, up 6% over that of fiscal

<sup>Engineering and Mining Journal. ASARCO To Build Large Zinc Refinery on Ohio River. V. 174, No. 5, May 1973, p. 24.
Metals Week. Elsewhere in Lead and Zinc. V. 45, No. 17, Apr. 29, 1974, p. 3.
Page 14 of work cited in footnote 10.
Page 18 of work cited in footnote 4.
Pages 3 and 18 of work cited in footnote 3.</sup> 

1972, while pigment production was 177,000 tons, an increase of 20%. The strong demand for zinc metal and oxides, combined with reduced U.S. production capacity, contributed to a maximum level of operations.<sup>29</sup>

The New Jersey Zinc Co. announced that it is considering building an electrolytic zinc refinery and a zinc oxide plant near Clarksville, Tenn., and modernizing its Palmerton, Pa., zinc plant. If undertaken, the Clarksville refinery would begin production in 1977, and by 1979 the plant should have an annual capacity of 160,000 tons. The new plant would use zinc concentrates produced at company mines in Tennessee and Virginia. The modernization program at Palmerton includes improved mix houses, modifications of the roasting and acid plant, mechanization of bagroom oxide handling, revisions of materials handling systems, and new dustcontrol facilities. The modernization program will also increase production capacity for French process and American process zinc oxide.30

The Bunker Hill Co., a division of Gulf Resources & Chemical Corp., of Kellogg, Idaho, produced 98,300 tons of zinc in 1973, down from 101,700 tons in 1972. The annual capacity of the zinc plant is approximately 104,000 tons. The drop in production was caused by a work stoppage and by domestic price controls which made it difficult to compete successfully in world ore markets for quality concentrates. Total net sales in 1973 were \$102.4 million, compared with \$91.9 million in 1972.

The Bunker Hill Co. continued work with the Bureau of Mines on construction of a plant adjacent to the smelter for large-scale testing of the Bureau's citrate process for sulfur dioxide removal from stack gas. The plant was completed, and startup trials have been initiated. The company has budgeted \$2.5 million to maintain compliance with regulations under the Environmental Protection Act. Historically Bunker Hill Co. has expended a grand total of \$22 million on pollution control and related facilities.<sup>31</sup>

National Zinc Co., Inc., at Bartlesville, Okla., was under attack by the Oklahoma Air Pollution Board, but was granted a 1-year variance to secure financing for an \$18 million plant addition to eliminate pollution.<sup>32</sup> The Federal deadline to comply with the pollution law or close down is

July 1, 1975. The State of Oklahoma extended its variance until June 30, 1975.33

The company announced later that it will build a 50,000-ton-per-year electrolytic plant at Bartlesville to replace the 66-year-old horizontal retort smelter. The scheduled completion date was set for May 31, 1975.<sup>24</sup>

In the latter part of 1973, Engelhard Minerals & Chemicals Corp. contracted to purchase for \$4 million the assets of National Zinc Co., Inc. Title to the properties at Bartlesville, Okla., was taken on February 11, 1974. The plan to erect an electrolytic zinc plant at the old site will hold firm. The new installation, estimated to cost approximately \$30 million, should be onstream in early 1976, and the company hopes to continue operation of the retort furnaces until they are replaced by the new electrolytic process, but this will be subject to extension of the existing variances issued by pollution control authorities.<sup>35</sup>

Secondary Zinc Smelters.—Zinc recovered from zinc-bearing scrap was 387,539 tons in 1973, nearly the same as in 1972. Semi-manufactured forms of zinc- and copper-base alloys accounted for 98% of the new and old scrap. New scrap, chiefly zinc- and copper-base alloys from manufacturers and drosses from galvanizing and die casting pots, accounted for 76% of all the scrap processed. Recovery of new scrap decreased, while old scrap increased to replace that which was not recovered in new scrap. The zinc was recovered in alloys, 53%, principally brass and bronze; in metal, 32%; and in chemical products, 15%.

Slag-Fuming Plants.—Slag-fuming plants process hot and cold lead blast furnace slags and residues which contain from 11% to 23% recoverable zinc to produce zinc oxide fume. The oxide is either sent to zinc smelters or electrolytic refineries for recovery of zinc, or sold to the consumers as zinc oxide. During the year three plants were operating: ASARCO at El Paso, Tex.,

<sup>&</sup>lt;sup>29</sup> Page 31 of work cited in footnote 9. <sup>30</sup> American Metal Market. N.J. Zinc Planning 160,000-Ton Smelter. V. 81, No. 133, July 10, 1974, p. 1.

<sup>1974,</sup> p. 1.

31 Page 7 of work cited in footnote 15.

32 Tulsa Tribune. Pollution Agency Grants Extension. V. 79, No. 42, Feb. 21, 1973, p. 9B.

33 Tulsa Tribune. Antipollution Controversy in Bartlesville is Dying Down. V. 79, No. 31, Feb. 8, 1973, p. 21A.

<sup>84, 1973,</sup> p. 21A.

34 Metals Week. National Zinc To Build Zinc Plant in Oklahoma. V. 45, No. 2, Jan. 14, 1974, p. 1.

p. 1.
 <sup>35</sup> Engelhard Minerals & Chemicals Corp. 1973
 Annual Report. P. 3.

ZINC

and East Helena, Mont., and The Bunker Hill Co. at Kellogg, Idaho.

Byproduct Sulfuric Acid.—In 1973, there were nine plants with facilities for roasting zinc sulfide concentrates. Seven plants were equipped with sulfuric-acid-producing facilities, one of which operated solely for producing calcine for subsequent processing to zinc oxide or zinc metal. Two horizontal retort smelters did not have sulfuric-acid-producing facilities, one of

these shut down its zinc smelter in November, but continued to operate the roaster. In 1973, production of byproduct sulfuric acid from the zinc plants and three lead smelters was 966,128 tons, compared with 859,103 tons produced in 1972.

Zinc Dust.—Production of zinc dust decreased 5% from that of 1972 to 56,154 tons in 1973. Zinc dust from distilled scrap accounted for 36,202 tons, 64% of the total zinc dust produced.

# **CONSUMPTION AND USES**

Consumption of slab zinc in the United States in 1973 was 1,503,938 tons, an increase of 6% over that of 1972. The zinc content of the ore and concentrate used directly in galvanizing or to make pigments and salts was 129,651 tons (118,305 in 1972), and the zinc content of secondary materials to make alloys, zinc dust, and compounds totaled 298,336 tons (307,369 in 1972). Total consumption of zinc for all classes was 1,931,925 tons, an increase of 5% over that of 1972.

Slab zinc consumption was reported by 650 users in 1973. Of the total slab zinc consumed, zinc-base alloys accounted for 610,606 tons (41%); galvanizing, 563,837 tons (37%); brass products, 197,650 tons (13%); rolled zinc, 40,763 tons (3%); zinc oxide, 61,734 tons (4%); and other uses, 29,348 tons (2%). Most of the use categories showed gains over last year. The largest gain was in galvanizing, with an increase of 45,633 tons over that of 1972, followed by die casting alloys with a gain of 31,793 tons over 1972. A net gain of 85,589 tons was realized over last year. While gains were recorded for most of the use categories, losses were noted in slush and sand casting alloys, rolled zinc, and other uses.

Distribution of slab zinc consumed by grade in 1973 was as follows: Special High Grade, 739,447 tons (49%); High Grade, 167,466 (11%); Intermediate, 37,384 tons (3%); Brass Special, 132,148 tons (9%); Prime Western, 426,559 tons (28%); and Remelt, 934 tons (less than 0.1%). Compared with 1972, except for the small decline in Remelt, consumption of all grades of slab zinc increased. The largest increase was in Special High Grade with a gain of 41,866 tons.

Slab zinc consumed by rolling mills was 40,763 tons in 1973, a decrease of 10%

from that of 1972. Production of rolled zinc products decreased 5% to 41,301 tons. Strip and foil accounted for 74%, and 20% was used for photoengraving plates. Exports were nearly unchanged from those of last year at 2,480 tons, while imports were cut in half from those of 1972. Nearly 30,000 tons of zinc was rolled from scrap in 1973; therefore, a total of 70,202 tons of rolled zinc was produced during the year, compared with 85,237 tons in 1972.

The leading slab-zinc-consuming States in 1973 were Ohio with 215,106 tons (14%); Pennsylvania, 201,168 tons (13%); Illinois, 195,382 tons (13%); Michigan, 163,602 tons (11%); Indiana, 149,651 tons (10%); and New York, 121,664 tons (8%). These leading six States accounted for almost 70% of the slab zinc consumed. Ohio ranked the highest for galvanizing with 108,241 tons, and Michigan was first in die casting with 140,465 tons.

# ZINC PIGMENTS AND SALTS

Production.—Published data for zinc pigments and compounds include zinc oxide and zinc sulfate. Information for leaded zinc oxide, lithopone, and zinc chloride was withheld in 1971–73 to keep individual company data confidential.

Production of zinc oxide in 1973, 252,500 tons, increased 7% over 1972 production, and shipments were approximately equal to production. Zinc sulfate production, 43,900 tons, showed an increase, but the dry basis (100% ZnSO<sub>4</sub>) was a smaller proportion of the gross weight than in former years.

The source of domestic zinc oxide production was 53% from ore and concentrate (American process), 32% from slab zinc (French process), and 15% from secondary material. Zinc sulfate production came 56%

from secondary material and 44% from ore or intermediate products. Lead-free zinc oxide was produced at 12 plants in the United States, and leaded zinc oxide was produced at only 1 plant. At least eight plants produced zinc sulfate, and five produced zinc chloride.

Production of zinc oxide by The New Jersey Zinc Co. and St. Joe Minerals Corp. were described under Smelter and Refinery Production. A third producer using ores or concentrates as a major source material was ASARCO with plants at Columbus, Ohio, and Hillsboro, Ill. Other major zinc oxide producers, such as the Eagle-Picher Industries, Inc., Hillsboro, Ill., plant and the Sherwin-Williams Coffeyville. Kans., plant, used calcines, fume, and secondary materials as raw materials.

Consumption and Uses.—The apparent consumption of zinc oxide increased by 5% from about 259,000 tons in 1972 to 273,000 tons in 1973. Analysis of domestic shipments by industry usage showed the rubber industry as consuming 51% of U.S. shipments, and reported destinations of imported oxide indicated a still higher percentage of imports going to rubber manufacturers. The second-ranking use was photocopying with a 7% annual increase, and third ranking was chemicals with a 15% annual increase. Use of zinc oxide in paints decreased slightly, probably owing to fewer housing starts in 1973. The use of zinc oxide in agriculture may have been partly concealed in "other" or "chemical" destinations. Agriculture is the chief use for zinc sulfate, with lesser amounts going for rayon, flotation reagents, and chemicals. The use of leaded zinc oxide in rubber and paints increased substantially during 1973, regaining the volume of several years ago. Zinc chloride usage declined slightly but continued to be a significant part of zinc compound consumption; incomplete industry returns precluded analysis of shipments by industry.

Prices.—Zinc oxide and compound prices

tended to follow increases in the price of zinc metal, but the changes were often announced several days after the metal price change. At the beginning of 1973 prices ranged from 15.75 cents per pound for activation-grade zinc oxide through 18.75 cents for French process to 22 cents for U.S.P. grade. On January 29 price increases were initiated that averaged about 2 cents for each grade. On or about April I several companies posted further increases of 1 to 2 cents per pound. By June other suppliers had come up to a scale that ranged from 19 cents for activation grade through 22 cents for French process to 24 cents for U.S.P. grade. Prices remained steady during the period June 13 to December 6, when zinc prices were controlled by the Cost of Living Council. During the second week in December, after release from price control, three companies raised prices about 9 cents per pound so that at yearend most quotations ranged from 30.5 cents for American process lead-free pigment grade through 31.5 cents for French process to 33.5 cents for U.S.P. grade. Leaded zinc oxide was quoted at 17 cents per pound in January 1973 and had risen to 30.25 cents by January 1974. The price of zinc sulfate in June 1973 was reported as \$13 per 100 pounds, granular monohydrate industrial, 36% zinc, bags in car-load lots. By yearend this price had become \$18.50 per 100 pounds.

Foreign Trade.—Exports of zinc oxide increased by 24% during 1973 to a record 7,600 tons, and lithopone exports decreased by 29% to less than 1,000 tons. Imports of almost all classes of zinc compounds increased in 1973 to a total of 36,500 tons, a 40% gain. As in 1972, zinc oxide was the major component of imports of zinc compounds, with a 42% gain to 27,500 tons. The net imports of zinc oxide, 19,850 tons, thus became about 7% of U.S. supply. Mexico, Canada, and France were major sources, and other European Community countries contributed small tonnages.

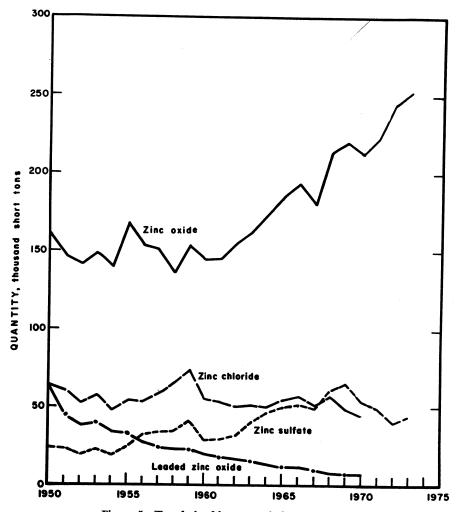



Figure 5.-Trends in shipments of zinc pigments.

## **STOCKS**

**Producer Stocks.**—According to the monthly data reported by producers to the Zinc Institute, Inc., stocks at the beginning of the year were 31,775 tons. By midyear they declined to 22,168 tons, but at yearend they increased to 29,233 tons, just 2,542 tons short of what stocks were at the beginning of the year. The GSA stockpile gave considerable relief; 167,447 tons of zinc passed through the producers either as remelt or direct shipment.

Consumer Stocks.—Slab zinc inventories

at consumer plants, which were 124,956 tons at the beginning of the year, declined 9% to 114,317 tons at yearend. Prime Western zinc stocks accounted for the largest decrease, 23% or 11,516 tons less than that at yearend 1972.

Government Stockpile.—During 1973, the GSA stockpile inventory was reduced from 949,583 tons to 677,583 tons. This indicates that 272,574 tons of slab zinc went into domestic supply from the Government stockpile.

#### **PRICES**

The year began with a three-tier price structure for domestic Prime Western zinc, 18.0, 18.5, and 18.52 cents per pound. Phase 3 of the President's economic stabilization program, effective January 11, 1973, removed the mandatory price ceiling on zinc, and by February 1, the price of Prime Western zinc was increased to 19.0, 19.25, and 19.5 cents per pound. On March 9, another round of price increases began, and by March 28, all the producers but one had increased their price of Prime Western zinc to 20.25 cents per pound. One company, National Zinc Co., Inc., increased its price to 20.5 cents per pound, and on April 19, this same company increased its price to 21 cents per pound while the other producers kept their price at 20.25 cents per pound. During all of this period, the price of Special High Grade zinc was 1 cent per pound higher than that of Prime Western zinc. On June 13, 1973, by Presidential order, the price of zinc was frozen to the last round of increases. Phase 4 of price controls became effective August 12. 1973, when the base price for zinc was set at the price during the last fiscal quarter prior to January 11, 1973, (18 cents per pound). Cost increases were passed through on a dollar-for-dollar basis without the maintenance of profit margins allowed under phases 2 and 3. The Cost of Living Council required a 30-day notice from producers with \$100 million sales or more for any price increases. The ceiling prices prevailed until the Cost of Living Council abolished the control on zinc on December 6, 1973. One company immediately raised its price of Prime Western zinc to 32 cents per pound, and others quoted prices between 28 and 30 cents per pound where they remained to yearend.

The foreign producer price (mostly Canada, Peru, and Australia) was always at least 1 cent per pound higher than the U.S. producer price. Coming into the year, imported zinc (Prime Western equivalent) was 19.5 and 20 cents per pound. This price remained in effect until March 8, when the price became 21 cents per pound, but one

company representing the Australian producers increased the price of zinc to 22.5 cents per pound on March 29 and to 23.5 cents per pound on May 29. Effective June 12. imported zinc (Prime Western equivalent) ranged from 22.3 to 23.5 cents per pound; however, one Canadian firm passed on the 0.7-cent-per-pound tariff to its U.S. customers. A second Canadian company followed suit on June 30, and a third company raised its price but absorbed the tariff. Effective August 1, 1973, imported zinc (Prime Western equivalent) ranged from 24.3 to 27.5 cents per pound. The high price of 27.5 cents per pound was set on July 26 by an Australian firm. On September 20, the spread increased to 24.3 to 31.0 cents per pound, but on October 1 the range narrowed to 27.3 to 31.0 cents per pound. The high side of the price range increased on November 27 to 36.5 cents per pound, and the final increase for the year on December 21, 1973, occurred on the low end of the range with a price of 31.0 cents per pound.

The European producer price for Good Ordinary Brand (GOB) zinc (Prime Western equivalent) was £173 per metric ton (18.5 cents per pound U.S. equivalent) at the first of the year. During the year the European producer price increased five times, as follows: February 28, £190 per metric ton; June 14, £205 per metric ton; July 16, £220 per metric ton; September 24, £250 per metric ton; and on November 27, £300 per metric ton. The last conversion to U.S. equivalent was 31.5 cents per pound and was the price that prevailed to the end of the year.

The London Metal Exchange (LME) price for zinc started the year at a lower level than the U.S. producer price and the European producer price. The monthly average price for zinc in January was 17.5 cents per pound, but during the year the price fluctuated upward until it reached a record high on December 4, 1973, of 99 cents per pound. The price then declined to 63 cents per pound at yearend.

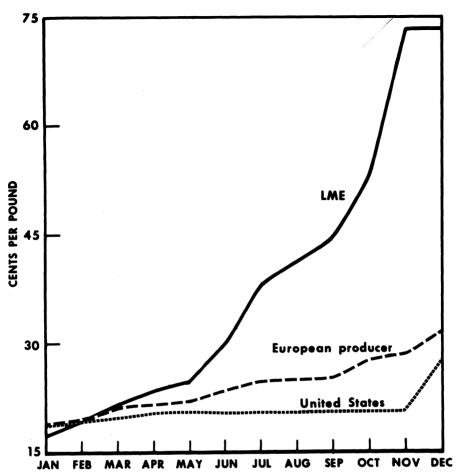



Figure 6.—Average monthly prices in 1973 for U.S. Prime Western zinc and equivalent foreign grade.

## **FOREIGN TRADE**

Exports of slab zinc increased more than three-fold from 4,324 tons to 14,566 tons in 1973, of which 15% went to Brazil, 15% to Japan, 12% to Venezuela, and 11% to Colombia. Exports of rolled zinc products, sheets, plates, strips, etc., increased 3% over those of 1972; Canada received nearly half, 1,201 tons.

General imports of zinc in ore declined 22% to 199,053 tons in 1973, the lowest since 1940. Canada supplied 62%, or 124,261 tons, and receipts from Mexico accounted for 17%, or 33,878 tons. General imports of metal increased 13% to 588,725 tons.

Canada with 344,697 tons, supplied 59%. The other large suppliers were Australia, Belgium-Luxembourg, Japan, and Zaire.

Imports of ore for consumption declined 12% to 153,898 tons in 1973. Since the imports of ores for consumption had been significantly less than general imports of ore for the last 2 years, this suggested that a buildup of ores was taking place at the bonded warehouses. Metal imports for consumption increased 14% over those of 1972 to 587,429 tons in 1973, and were only slightly less than general imports. This was the second year in a row in which imports

of metal exceeded the quantity of zinc in imported ores and concentrates.

No change took place in the tariff rates in 1973. The duties on unmanufactured zinc and zinc-containing materials were as follows: Slab zinc, 0.7 cent per pound; zinc ores, concentrates, and fume, 0.67 cent per pound (on zinc content less specified allowable deductions for processing losses); zinc scrap, including skimmings and drosses,

0.75 cent per pound; and zinc dust, 0.3 cent per pound. The duty rate for unwrought alloys of zinc, which includes diecasting alloys, was 19% ad valorem.

The bill to suspend the U.S. tariff on zinc concentrates (H.R. 6191) passed the House on May 7, 1974, after which it was submitted to the Senate Finance Committee.

#### WORLD REVIEW

World mine production of zinc in 1973 gained about 3% over that of 1972, continuing the slow but steady growth rate apparent in recent years. Zinc metal production also increased, with gains in Europe and Canada more than making up for the loss of production in the United States. The consumption of zinc in the developing countries continued to grow at a faster rate (12%) than the world average (7%) and helped to maintain a worldwide shortage, driving up prices and spurring the use of substitute materials where available. The generally tight supply situation increased interest in secondary materials and concern for gathering information about their availability and use. Byproducts and scrap were used in greater amounts for production of both zinc metal and zinc compounds.

Argentina.—Compañía Minera Aguilar, a subsidiary of St. Joe Minerals Corp., sustained a 2-week strike in November which was settled after the national government intervened and negotiated a 20% wage increase. Production of zinc concentrates in 1973 was 9% less than in 1972 and was estimated to contain about 43,700 tons of zinc. Two zinc smelters affiliated with Aguilar but not affected by the strike produced about 40,900 tons of zinc in 1973.30

Australia.—Mine production of zinc in Australia declined 6% in 1973 to 526,400 short tons of zinc in concentrates. Exports to the United States included 7,281 tons of zinc in concentrates and 42,077 tons of slab zinc, 10% of Australian zinc production.

The decrease in national mine production was due in part to the failure of a stope wall in the New Broken Hill Consolidated Mines at about the No. 17 level during the first week in October. The temporary closure of haulage on the No.

15 level caused a shortfall in production at this most productive Australian zinc mine during the last quarter. Zinc Corp., North Broken Hill, Mount Isa Mines, West Coast Mines, and Cobar mines contributed a normal or slightly reduced zinc production during 1973. Broken Hill South, Ltd., recovered about 8,000 tons of zinc from dumps, partially replacing the loss of production from the closed Broken Hill South mine.

Published ore reserves and announced plans for expansion predicted greater zinc production from Australia in the future. Mount Isa Mines (MIM) was developing the Hilton mine, about 12 miles north of Mount Isa, and was increasing capacity at the Mount Isa concentrator. Both mines have large reserves of zinc-lead-silver ores, 36 million tons at Hilton and 56 million tons at Mount Isa.37 MIM also holds large reserves or resources of zinc-lead ores in the McArthur River area, Northern Territory, estimated to contain 200 million tons assaying 9% zinc.38 E-Z Industries, Ltd., planned to expand zinc capacity at its mines in Tasmania and its smelter at Risdon to a yearly production of 242,000 tons of zinc.

Smelter production in 1973 was 328,000 short tons of zinc: Risdon (E-Z Industries) 213,000, Cockle Creek (Conzinc Rio Tinto of Australia) 65,000, and Port Pirie (BHAS Proprietary, Ltd.) 50,000.

Belgium.—Zinc production increased 9% during 1973 to a total of 309,800 tons. Exports to the United States were about 39,400 tons of slab zinc. Metallurgie Hoboken-Overpelt was constructing a new elec-

<sup>36</sup> Lead and Zinc Statistics, Monthly Bulletin of the International Lead and Zinc Study Group. V. 14, No. 6, June 1974, pp. 16-17.
37 M.I.M. Holdings Ltd. Annual Report for the Year Ending June 30, 1973. P. 7.
38 Mount Isa Mines. Metals Sourcebook. No. 21, Oct. 29, 1973, p. 2.

trolytic zinc refinery at Overpelt scheduled for commissioning in mid-1974; the older zinc retorts were shut down progressively so that zinc production decreased in 1973 from the 1972 output. Société de Prayon, S.A. sustained its first full year of production at its new electrolytic plant at Ehein. Société des Mines et Fonderies de Zinc de la Viellie Montagne, with four plants in Belgium, produced a total of 281,000 tons of ingot zinc, 5% more than in 1972, but plants in France participated in this production.

Brazil.-The two electrolytic zinc plants in Brazil produced 24,600 tons of zinc in 1973, achieving a 43% increase from production in 1972. Both plants are supplied by the silicate and oxide ores from Vazante, Minas Gerais. The Companhia Minera de Metais, one of the two producers, has announced plans to increase production to about 29,000 tons annually by 1977, using a new process developed by Metais and a German firm, Lurgi Chemie und Huettentechnik.

Canada.-Mine production of zinc increased again in 1973 to 1.49 million short tons of zinc content in concentrates. Zinc smelter production increased to 587,000 tons in 1973, a 12% increase from the 525,000 tons in 1972. Canada thus retained by a wide margin its position as the world's largest zinc-mining country and passed the United States to become the third largest zinc-refining country. A substantial part of this production came to the United States. Of a total of 874,900 short tons of zinc in concentrates exported from Canada, 124,300 tons was imported into the United States; of 463,000 tons of metal exported, 345,000 tons came to the United States as general imports. Consumption of zinc in Canada was estimated as 140,000 tons, a 9% increase from 1972 consumption.

In the Northwest Territories, Pine Point Mines Ltd., with Cominco, Ltd., acting as operator, was the major zinc producer mining 3,896,000 tons of ore averaging 6.0% zinc and 2.9% lead. Concentrates from this operation were sold to Canadian refineries, chiefly Cominco, 62%. The remainder was exported with Europe receiving 20%, Japan, 10%, India, 5%, and South America and United States, collectively, 3%.39 Cominco continued exploration of silver-zinc deposits near Bathurst Inlet and at the Polaris lead-zinc deposit on Little Cornwallis Island. Several thousand tons of

high-grade ore (35% to 40% lead-zinc) was shipped from the Polaris mine for metallurgical testing. Texasgulf, Inc., has formed a joint venture with Mineral Resources International Ltd. to study and possibly develop a zinc-lead property on the north shore of Baffin Island. All three of these Arctic deposits will be hampered in their development by a short shipping season, and the logistics of their operations will require careful cost studies; but the high grade of the deposits insures their eventual exploitation.

The major zinc mine in Yukon Territory, Anvil Mining Corp. Ltd. at Faro, took 2,899,000 tons of ore from its open pit operation and produced concentrates containing 118,000 tons of zinc, 112,000 tons of lead, and 2,578,000 ounces of silver.40 The Anvil concentrator capacity was increased from 8,000 to 10,000 tons daily during 1973. Anvil and other companies announced exploration programs in the Yukon Territory for 1974; Anvil planned a regional geochemical survey covering large areas of favorable carbonate rocks, and Barrier Reef Resources Ltd. arranged to have its new discovery 125 miles northeast of Mayo drilled by two coventurers in

British Columbia zinc production increased about 13% in 1973 with the Sullivan mine of Cominco, Ltd., as the major producer. Cominco resumed mining at the H.B. mine near Salmo; its output will replace the concentrates formerly drawn from the Bluebell mine, shut down in 1972. Other mines producing zinc in the province were the Bradina at Houston (suspended operations August 1973), the Silmonac at Sandon, the Reeves MacDonald at Remac, the Highland Bell at Beaverdell, and Western Mines at Buttle Lake. Reeves MacDonald Mines Ltd. announced that mining and milling at its properties would be discontinued on October 1, 1973; exploration has been unsuccessful in locating new reserves but would continue on adjoining properties. Exploration in the Province appeared to fall off during 1973, but Texasgulf continued its drilling program at the Robb Lake lead-zinc prospect and reported encouraging results.41 Several railway extensions were planned to extend service to

<sup>39</sup> Pine Point Mines Ltd. 1973 Annual Report.

P. 3.
40 Page 12 of work cited in footnote 19.
41 Texasgulf. 3rd Quarter Report. Sept. 30,

northern British Columbia and to make a link in southwest British Columbia bypassing the Fraser River Canyon; mineral traffic and the development of new mining areas were primary reasons for the proposed construction. The Cominco smelter at Trail produced 248,000 tons of zinc in 1973; operations were hampered in December by an electrical failure and fire in the roaster control room, but by yearend zinc output had returned to normal.

In Manitoba, Hudson Bay Mining & Smelting Co. Ltd. achieved an 8% increase in zinc production in 1973 to 82,882 tons, and began development work on the new Centennial mine. Nine operating mines in the Flin Flon area produced continuously during the year. Ore reserves in the Flin Flon district at yearend were 18,000,600 tons containing 3.1% copper, 2.9% zinc, 0.03 ounce of gold, and 0.5 ounce of silver per ton.42 Sherritt Gordon Mines, Limited, continued to operate the Fox Lake copperzinc mine and in May began production from the new copper-zinc Ruttan mine. Production of zinc in concentrates at the two mines was 7,060 tons at Fox Lake and 17,130 tons at Ruttan, making Sherritt Gordon a major zinc producer, in addition to its substantial copper production. Concentrates went to Hudson Bay at Flin Flon, to Mitsubishi Metal Corp. in Japan, and to a zinc plant in the United States.43 Freeport Canadian Exploration Co., in a joint venture with Beth-Canada Mining Co., discovered a copper-zinc deposit near Reed Lake, Manitoba; a preliminary estimate of the tonnage and grade was given at 1 million tons with about 2% copper and 4%zinc. The two companies are subsidiaries of Freeport Minerals Co. and Bethlehem Steel Corp., respectively.

The largest zinc producer in Ontario was Ecstall Mining Ltd., a subsidiary of Texasgulf, Inc., with a production of about 295,000 tons of zinc in concentrates from the Kidd Creek mine and 107,100 tons of zinc metal from the nearby zinc plant at Hoyle. Annual capacity of the refinery was to be increased from 120,000 to 150,000 tons per year. Production from the open pit mine will be gradually replaced by underground mining within a few years. During 1973, the Canadian Development Corporation, a Crown Corp., acquired a large share of the stock of Texasgulf, Inc., through a public tender offer.

Other zinc mines active in Ontario were

Mattagami Lake Mines Ltd., Mattabi mine averaging over 3,000 tons per day grading 11.36% zinc, 1.10% copper, 1.06% lead, and 5.30 ounces of silver per ton and Noranda Mines Limited, Geco mine producing 4,880 tons per day grading 4.53% zinc, 1.70% copper, and 1.63 ounces of silver per ton.44 The construction of a 1,200 ton-per-day concentrator and mine was started in the Sturgeon Lake area by Sturgeon Lake Mines Ltd. and Falconbridge Nickel Mines Ltd. At Parham in southeastern Ontario the Long Lake mine, a small mine by modern standards, began operation in March, producing about 7,000 tons of crude ore per month with a 10-man crew running the mine and heavy media plant. The upgraded ore, 4,600 tons per month, is trucked to St. Joe Minerals Corp. at Balmat, N.Y. Lynx Canada Exploration Ltd. and Canadian Reynolds Metals Co. Ltd. share ownership of the mine.

Hudson Bay Mining & Smelting Co. Ltd. began construction of a new zinc oxide plant near Brampton, Ontario. The planned initial capacity was 60 tons, increasing ultimately to 100 tons per day; as production reached capacity, an older plant in Montreal operated by a subsidiary of Hudson Bay, Zochem Ltd., would be gradually closed down.

Mattagami Lake Mines, Ltd., continued to be a major zinc producer in Quebec, milling 1,387,000 tons of ore averaging 7.48% zinc, 0.57% copper and 0.84 ounce of silver per ton. The Orchan Mines mill treated 270,100 tons averaging 7.39% zinc and 0.97% copper from the Orchan mine and 180,130 tons averaging 3.33% zinc and 1.45% copper from the Garon Lake mine. Kerr Addison Mines continued to operate the Normetal Mine and the Joutel Mine, producing 12,500 tons and 13,100 tons of zinc in concentrates, respectively. The Lake Dufault division of Falconbridge Copper Ltd. produced 18,795 tons of zinc in concentrates as a coproduct of copper production from ore that averaged 3.65% copper and 4.41% zinc. Manitou Barvue Mines Ltd. reopened the Louvem silver-zinc mine and operated its mill at a rate of 20,000 tons per month through 1973.

The Sullivan Mining Group Ltd. closed

port. Pp. 10-15.

<sup>42</sup> Hudson Bay Mining & Smelting Co. Ltd. 1973 Annual Report. P. 13. 43 Sherritt Gordon Mines Ltd. 1973 Annual Report. P. 4. 44 Noranda Mines Limited. 1973 Annual Re-

the Weldon mine in June 1973 but continued operations at the Cupra and D'Estrie divisions, both producing zinc concentrates from copper-zinc ores. Development of the Clinton Copper Mines property was started with joint control by Dome Mines, Ltd.; reserves contain minor amounts of zinc. Total production of the Sullivan Group for fiscal year 1972-73 was 9,115 tons of zinc.

Canadian Electrolytic Zinc Ltd., owned by Mattagami Lake Mines, Noranda, Orchan Mines, and Kerr-Addison, announced that its electrolytic zinc plant is to be expanded from the present capacity of 400 tons to 620 tons per day by 1975. The expansion will cost \$30 million to \$45 million and will increase yearly production capacity from 145,000 to 225,000 tons.

In New Brunswick, the Brunswick Mining & Smelting Corp. Ltd. continued to operate the No. 6 and No. 12 mines and the concentrator treated 3,288,000 tons of ore averaging 9.8% combined lead and zinc.45 The conversion of the zinc-lead Imperial-type smelter at Belledune to a lead smelter was completed early in 1973 and zinc concentrates are now shipped overseas. During 1973, Amax Base Metal Group, operating the Heath Steele Mines, produced 1,078,000 tons of ore yielding 78,000 tons of zinc concentrate. An expansion program started in 1972 proceeded toward an eventual increase in mine-mill production of about one-third when completed in 1975.46 The Sullivan Mining Group, Ltd., announced plans to resume its Nigadoo River Mines operations in the Bathurst district, subject to negotiating satisfactory smelter

Nova Scotia was the scene of exploration at a potential zinc-lead property in the Gays River district. The mining division of Imperial Oil Ltd. was drilling on the property of Cuvier Mines with three drill rigs testing zinc-lead mineralization in dolomitized limestone over a wide area. A large tonnage of ore was reported to average 2.75% lead and 3.39% zinc.

A deposit with a similar Appalachiantype environment at Daniel's Harbor in Newfoundland was the subject of a feasibility study by Newfoundland Zinc Mines, Ltd., a subsidiary of Teck Corp., with American Metal Climax, Inc. as a coventurer. A high-grade portion of the ore body was reported to contain 4,400,000 tons averaging 8.8% zinc.

The Buchans mine in Newfoundland, 50% controlled and managed by ASARCO, suffered from a 6-month strike during 1973 but managed to produce 11,500 tons of zinc in concentrates, less than half normal production.47

Canadian zinc smelter production in 1973 and announced plans for future capacity are summarized as follows:

| Company                                    | Production<br>in 1973<br>(short tons) | Planned<br>capacity<br>1974-75<br>(tons per<br>year) |
|--------------------------------------------|---------------------------------------|------------------------------------------------------|
| Canadian Electrolytic                      |                                       |                                                      |
| Zinc Ltd., Valleyfield,<br>Quebec          | 148,800                               | 225,000                                              |
| Cominco, Ltd.,                             |                                       | ,                                                    |
| Trail, British<br>Columbia                 | 248.000                               | 305,000                                              |
| Hudson Bay, Mining &                       | ,                                     | 223,000                                              |
| Smelting Co., Ltd.,<br>Flin Flon, Manitoba | 82,900                                | 80,000                                               |
| Ecstall Mining Ltd.,                       | 02,500                                | 80,000                                               |
| Timmins, Ontario                           | 107,100                               | 150,000                                              |

Finland.—The electrolytic plant at Kokkola produced 89,200 short tons of zinc metal in 1973. The mines at Vihanti, Pyhasalmi and Metsamonttu produced concentrates containing 41,150, 18,348 and 3,899 tons of zinc respectively. The Keretti and Vuonos mines produced 713 and 477 tons, zinc content, as byproduct concentrates from copper ores.

France.—Production of slab zinc in France in 1973 was 284,184 tons, slightly less than in 1972.48 Zinc consumption was estimated to be 320,000 tons with the difference made up from net imports and producers' stocks.

Germany, West.—Production of zinc in West Germany increased in 1973 to 435,433 short tons and includes secondary making maximum use of producing capacities. Five German lead-zinc mines contributed about one-third of the total zinc output. One of the five, the Randsbeck mine, was scheduled for shutdown on January 31, 1974. Consumption of zinc was 511,000 tons, with 37% going into galvanizing.

Honduras.-The El Mochito mine produced during 1973 21,681 tons of zinc and 272 tons of cadmium in zinc concentrates as well as substantial amounts of gold, silver, and lead in lead concentrates.49 A joint venture between Rosario Resources Corp.

<sup>45</sup> Page 12 of work cited in footnote 44.

<sup>46</sup> Page 12 of work cited in footnote 4.

47 Page 20 of work cited in footnote 10.

48 Zinc Institute, Inc. 1973 Annual Review. P. 16.
49 Rosario Resources Corp. 1973 Annual Re-

and ASARCO was formed to drive an exploratory tunnel beneath the old Rosario mine.

India.—Although lead and zinc prospects are known throughout India and Government statistics claim large ore reserves, Indian zinc smelter production in 1973 was only one-third of its rated capacity and accounted for only 16% of its consumption with the balance made up from imports. Hindustan Zinc, Ltd., produced 2,200 tons and has a capacity for 19,800 tons per year, and Cominco Binani Zinc Ltd. produced 11,800 tons but has a capacity for 22,000 tons per year. Hindustan's Debari smelter was shut down for much of the vear because of a breakdown of the melting furnace, and at Cominco Binani labor disputes put the plant out of action for 3 months. Hindustan Zinc announced plans to increase mine capacity in the Zawar area and to expand smelter capacity to 45,000 tons by 1978-79.

Ireland.—Tara Exploration and Development Co. Ltd. started to develop its potentially large mine at Navan, County Meath, in July 1973, with an inclined entry and a 1,000-foot vertical shaft. Commercial production of ores was scheduled to begin in late 1975. The development program proceeded despite a setback by an adverse judicial decision concerning ownership of the northern part of the proposed state mining lease containing about 10 million tons of ore. The balance of the ore body, now under development, was said to contain about 67 million tons grading 10.9% zinc and 2.6% lead. Near the end of 1973, an agreement was negotiated with Noranda Mines Limited under which Noranda would arrange a \$6 million line of credit in return for warrants to purchase 100,000 shares of Tara and other considerations subject to Tara obtaining an acceptable state mining lease. As a result of this association, Tara, together with its controlling parent, Northgate Exploration Ltd., and Noranda, began a joint study as to the feasibility of constructing an electrolytic zinc reduction plant in Ireland.50

Two other major lead-zinc mines in Ireland continued production in 1973. The Tynagh mine of Irish Base Metals Ltd. in County Galway produced 16,500 short tons of zinc, 1,300 tons of copper, and 45,000 tons of lead in concentrates. The mine at Silvermines, County Tipperary, 75% owned by Mogul of Ireland Ltd.,

treated 917,400 tons of ore to produce concentrates containing 59,500 tons of zinc and 17,600 tons of lead.<sup>51</sup>

The Irish Government announced in September 1973 that the 20-year tax holiday on profits of base metal mines was to end. A new tax system, beginning April 1, 1974, will allow prospecting and depreciation deductions with special provisions for companies already in production and relief for marginal mines.

Italy.—Production of slab zinc in Italy reportedly increased from 171,800 tons in 1972 to 209,500 tons in 1973. This reflected the operation during 1973 of the new Imperial Smelting furnace by Ammi Sarda, S.p.a., at Porto Vesme, Sardinia. Italy is still a net importer of zinc, importing about 53,000 tons of metal in 1973.

Japan.—Japan once again achieved world record production with a total of 929,000 tons of zinc metal. Mine production supplied about 291,000 tons of zinc in concentrates. Consumption of zinc increased 14% to 834,800 tons in 1973, and demand for remelted zinc metal increased by 20% to 59,300 tons, making total slab zinc consumption about 894,100 tons.52 Akita Zinc Co. Ltd. reported that the program to double capacity at its Iljima plant to 14,000 tons per month was expected to be completed in the summer of 1974 with full production at the end of the year. At the end of 1973, Mitsui Mining & Smelting Co. Ltd. was increasing the capacity of its Hikoshima refinery from 5,500 to 7,700 tons per month. However, all Japanese zinc producers predicted setbacks in scheduled zinc production in 1974 owing to power restrictions caused by the energy shortage.

Mexico.—Production of zinc from mines in 1973 continued at a rate about the same as in 1972, slightly over 299,000 short tons. Smelter output of primary metal was below that of 1972, 74,000 tons versus 87,500 tons. Exports of zinc concentrates and metal from Mexico to the United States decreased sharply in 1973 from exports in 1972. U.S. general imports of zinc from Mexico were about 33,900 tons of zinc in concentrates and 1,900 tons as slab zinc, compared with 57,300 tons of zinc in con-

Tara Exploration and Development Co. Ltd.
 1973 Annual Report. P. 5.
 International Mogul Mines Ltd. 1973 Annual

Report. P. 4.

<sup>52</sup> Metals Week. Japan's Consumption of Zinc Increased. V. 45, No. 24, June 17, 1974, p. 6.

ZINC 1327

centrates and 8,400 tons of slab zinc in 1972.

Industrias Peñoles, S.A., inaugurated its new electrolytic zinc refinery at Torreón on October 30, 1973. The new plant was expected to produce 115,000 tons of zinc annually as well as 200,000 tons of sulfuric acid and 935 tons of cadmium. The feed to the plant will be mainly Mexican exports of zinc concentrates, thus cutting Mexican exports of zinc concentrates from about 300,000 tons (gross) to 100,000 tons per year and gaining about \$58 million per year in foreign exchange.

Two feasibility studies concerning construction of zinc refineries in Mexico were undertaken during 1973, one conducted by Asarco Mexicana, S.A. and Dowa Mining Co. of Japan and the other by Zincamex, S.A. and Mitsui. The Asarco Mexicana-Dowa study indicated that the proposed smelter would require imports of zinc ores or concentrates from outside Mexico, and thereafter negotiations made little progress.

Netherlands.—Construction of the new electrolytic zinc plant at Budel was substantially completed in 1973, and full production was expected for the third quarter of 1974.<sup>53</sup> The older retort smelter was being gradually phased out. Production of primary zinc in the Netherlands in 1973 was about 33,600 short tons.

Nicaragua.—Neptune Mining Co., owned 51.8% by ASARCO and 36% by Rosario Resources, produced over 12,000 tons of zinc and 138 tons of cadmium in zinc concentrates from the Vesubio mine. Rosario acquired the Rosita copper mine and the Siuna gold mine and announced plans to do exploration work in adjacent areas for base metals as well as gold and silver.

Peru.—The Cerro de Pasco Corp. properties in Peru were expropriated by the Peruvian government effective January 1, 1974, after talks, carried on during the second half of 1973, concerning a partial takeover, were unsuccessful. However, operations were still under Cerro control throughout 1973 and resulted in a high level of zinc output. Refined zinc produced by the Cerro smelter was 73,959 short tons, and zinc concentrates and calcines produced for export amounted to 115,728 tons of zinc content. Compania Minerales Santander, Inc., a subsidiary of St. Joe Minerals Corp., produced 69,725

tons of zinc concentrates in 1973, slightly less than in 1972. The total production of Peruvian ores and concentrates for export contained 379,300 tons of zinc, which when added to metal, powder, and sulfate production gives a total zinc output of 456,000 tons. Of this, only about 13,000 tons of zinc in concentrates and 19,000 tons of zinc as metal came to the United States.

Poland.—Production of zinc in Poland was estimated to be 259,000 short tons in 1973, making Poland the largest source of zinc in Europe outside Soviet Russia. Metal production approached the target of the 1971–75 5-year plan, 260,000 tons per year. Poland could be self-sufficient in zinc concentrate production, but has been importing about 30,000 to 40,000 tons per year of concentrates from nonsocialist countries. Poland has traditionally sold zinc on the international market and in 1973 exported about 38,000 tons to Western countries in addition to about 56,000 tons to Communist countries, mainly Soviet Russia.

Spain.—The Cartagena plant of Española del Zinc planned a new electrozinc refinery that would increase capacity from 33,000 to 82,000 tons per year by the middle of 1975. Asturiana del Zinc S.A. prepared to increase capacity from 88,000 tons to 132,000 tons per year with a new roasting plant using the Lurgi-Vieille Montagne process; the new installations were scheduled for completion late in 1974. Spanish mines produced 193,000 tons of concentrates in 1973 containing 104,000 tons of zinc, and metal production from two plants was 117,900 tons of zinc.

Sweden, Norway, and Denmark.-Production of slab zinc in Norway was 88,700 short tons in 1973; mine production of zinc in Sweden was 126,400 tons and in Norway was 21,300 tons. The Black Angel mine in Greenland (Denmark) began production late in the year and reported a production of 50,800 tons with a planned annual production of 94,000 tons of zinc. Cominco, Ltd., was a 61.5% owner of Vestgron Mines Ltd. which operated the Black Angel mine through a Danish subsidiary, Greenex, A/S. The deposit was reported to contain 4,100,000 tons of 20% combined lead and zinc and I ounce of silver per ton.

 <sup>&</sup>lt;sup>53</sup> Rio Tinto Zinc Corp. 1973 Annual Report and Accounts. P. 29.
 <sup>54</sup> Cerro Corp. 1973 Annual Report. P. 17.

Yugoslavia.—Zinc metal production in Yugoslavia in 1973 was 60,820 short tons, an increase of 13% over that of 1972. Three plants were the major contributors, the electrolytic plant of Trepča at Zvecán, the electrolytic plant at Sabac-Zorka, and the new imperial furnace smelter at Zletovo (Titov Veles) which started production in the summer of 1973. The annual capacity of the Titov Veles smelter should eventually become 72,000 tons of zinc and 39,000 tons of lead, all destined for export. Two new lead and zinc concentrators at Kriva Feja and Leposavci in Serbia were completed in 1973. Concentrates will go to the Trepča smelter. The Trepča Enterprise was renovating or developing several mines in Serbia and one in Montenegro in a program to increase lead and zinc mine production. Yugoslavian mine production of zinc was estimated as 110,000 tons of zinc in concentrates in 1973.

#### **TECHNOLOGY**

Research at the Bureau of Mines Rolla Metallurgy Research Center was conducted to develop a workable means for separating and recovering zinc and lead from flue dusts, slags, and other metallurgical processing wastes. The project included construction and operation of a continuous system for the recovery of zinc and lead from electric furnace steelmaking dusts. An evaluation of other zinc-bearing waste such as lead blast furnace slag will also be made. Another project at Rolla was to develop low-cost hydrometallurgical processes for recovering zinc and elemental sulfur from sphalerite concentrate with minimum evolution of sulfur oxides, hydrogen sulfide, or other pollutants. A project on reduction of zinc sulfide with iron was underway at the Albany Metallurgy Research Center. The objective was to determine the practicability of winning zinc from sulfide concentrates by direct reduction with iron, thereby bypassing sulfurous gas formation. The Reno Metallurgy Research Center was conducting a research project to develop an aqueous chlorine or anodic oxidation leaching process for extracting metal values from lead-zinc sulfide concentrates, and to develop techniques for recovering metal values from leaching solution in a marketable form.

Results of several research investigations or studies were published by the Bureau of Mines and Geological Survey.55

Gulf & Western Industries, Inc., and Occidental Petroleum Corp. were engaged in a \$10 million joint venture to perfect a practical zinc chloride rechargeable battery system that would power urban and recreational vehicles.56

The International Lead-Zinc Research Organization (ILZRO) sponsored numerous projects in 1973 to develop fundamental data on particular applications of zinc or zinc-containing materials. Progress reports of these projects are released annually by means of the ILZRO Research Digest.

Work during the year involved an ILZRO Prototype House which illustrates a variety of zinc applications, improvement of diecasting processes, galvanizing, alloy development, and plating.57

A comprehensive coverage of zinc-related investigations and an extensive review of current world literature on the uses of zinc and its products are contained in monthly issues of the 1973 Zinc Abstracts published by the Zinc Institute. Inc., 292 Madison Avenue, New York, N.Y. 10017, and provided free of charge.

or Zinc on Some Ceramic Materials and Metals. J. Testing and Evaluation, JTEVA, v. 2, No. 1, January 1974, pp. 40-43.

McMahon, A.D., C.H. Cotterill, J.T. Dunham, and W.L. Rice. The U.S. Zinc Industry: A Historical Perspective. BuMines IC 8629, 1974, 76

<sup>55</sup> Kelly, J.E., and H.M. Harris. Contact Angle

torical Perspective. BuMines IC 8629, 1974, 76 pp.
Petrick, A., Jr., H.J. Bennett, K.E. Starch, and R.C. Weisner. The Economics of Byproduct Metals (in Two Parts). 2. Lead, Zinc, Uranium, Rare-Earth, Iron, Aluminum, Titanium, and Lithium Systems. BuMines IC 8570, 1973, 99 pp. Powell, H.E., and L.W. Higley. Recovery of Zinc, Copper. Silver, and Iron from Zinc Smelter Residue, BuMines RI 7754, 1973, 15 pp. Wedow, H., Jr., T.H. Kilsgard, A.V. Heyl, and R.B. Hall. Zinc. Ch. in United States Mineral Resources. U.S. Geol. Surv. Prof. Paper 820, 1973, pp. 697-711.

56 Page 15 of work cited in footnote 9.
57 Pages 1-27 of work cited in footnote 47.

ZINC 1329

Table 3.—Mine production of recoverable zinc in the United States, by State (Short tons)

| State        | 1969    | 1970    | 1971    | 1972    | 1973    |
|--------------|---------|---------|---------|---------|---------|
| Arizona      | 9,039   | 9,618   | 7,761   | 10,111  | 8,427   |
| California   | 3,327   | 3,514   | 3,003   | 1,202   | 20      |
| Colorado     | 53,715  | 56,694  | 61,181  | 63,801  | 58,339  |
| Idaho        | 55,900  | 41,052  | 45,078  | 38,647  | 46,107  |
| Illinois     | 13,765  | 16,797  | 12,706  | 11,378  | 5,250   |
| Kansas       | 1,900   | 1,186   |         |         |         |
| Kentucky     | 4,988   | 4,189   | 5,268   | 1,780   | 273     |
| Maine        | 7,639   | 9,114   | 5,850   | 5,820   | 19,640  |
| Missouri     | 41,099  | 50,721  | 48,215  | 61,923  | 82,350  |
| Montana      | 6,143   | 1,457   | 361     | 12      | 73      |
| Nevada       | 941     | 127     | 71      |         |         |
| New Jersey   | 25,076  | 28,683  | 29,977  | 38,096  | 33,027  |
| New Mexico   | 24,308  | 16,601  | 13,959  | 12,735  | 12,327  |
| New York     | 58,728  | 58,577  | 63,420  | 60,749  | 81,455  |
| Oklahoma     | 2,744   | 2,650   | ·       |         |         |
| Pennsylvania | 33,035  | 29,554  | 27,438  | 18,344  | 18,857  |
| South Dakota |         | 1       |         | ·       |         |
| Tennessee    | 124,532 | 118,260 | 119,295 | 101,722 | 64,172  |
| Utah         | 34,902  | 34,688  | 25,701  | 21,853  | 16,800  |
| Virginia     | 18,704  | 18,063  | 16,829  | 16,789  | 16,683  |
| Washington   | 9,738   | 11,956  | 5,782   | 6,483   | 6,378   |
| Wisconsin    | 22,901  | 20,634  | 10,645  | 6,873   | 8,672   |
| Other States | ·       | ·       | 3       |         |         |
| Total        | 553,124 | 534,136 | 502,543 | 478,318 | 478,850 |

Table 4.—Mine production of recoverable zinc in the United States, by month (Short tons)

| Month    | 1972   | 1973   | Month        | 1972    | 1973     |
|----------|--------|--------|--------------|---------|----------|
| January  | 37.747 | 40,807 | August       | 40.130  | 40.911   |
| February | 40,087 | 36.881 | September    | 38,262  | 42,721   |
| March    | 45,579 | 39,218 | October      | 40,880  | 43,275   |
| April    | 41.704 | 37.204 | November     | 38,079  | 41,006   |
| May      | 44,007 | 40,086 | December     | 33,609  | 38,656   |
| June     | 41,905 | 37,731 | <del>-</del> | ·       | <u>-</u> |
| July     | 36,329 | 40,354 | Total        | 478,318 | 478,850  |

Table 5.—Production of zinc and lead in the United States in 1973, by State and class of ore, from old tailings, etc., in terms of recoverable metals

(Short tons)

|                  |                                   | Zinc ore             |                      | ]                                 | Lead ore             |                      | Zinc-lead ore                     |                      |                      |
|------------------|-----------------------------------|----------------------|----------------------|-----------------------------------|----------------------|----------------------|-----------------------------------|----------------------|----------------------|
| State            | Gross<br>weight<br>(dry<br>basis) | Zinc<br>con-<br>tent | Lead<br>con-<br>tent | Gross<br>weight<br>(dry<br>basis) | Zinc<br>con-<br>tent | Lead<br>con-<br>tent | Gross<br>weight<br>(dry<br>basis) | Zinc<br>con-<br>tent | Lead<br>con-<br>tent |
| Arizona          |                                   |                      |                      |                                   |                      |                      |                                   |                      |                      |
| California       |                                   |                      |                      | 222                               | 8                    | 34                   | (1)                               | (¹)                  | (¹)                  |
| Colorado         | 224,942                           | 21,313               | 2,600                | 692                               |                      | 5                    | 471,903                           | 25,520               | 14,752               |
| Idaho            | 9,270                             | 423                  | 9                    | 244,660                           | 2,045                | 26,084               | 874,256                           | 42,871               | 34,639               |
| Illinois         | (2)                               | (2)                  | (2)                  |                                   |                      |                      |                                   |                      |                      |
| Kentucky         |                                   |                      |                      |                                   |                      |                      |                                   |                      |                      |
| Maine            | 230,172                           | 19,640               | 204                  |                                   |                      |                      |                                   |                      |                      |
| Missouri         |                                   | ·                    |                      | 7,585,647                         | 82,350               | 487,143              |                                   |                      |                      |
| Montana          |                                   |                      |                      | 195                               | <b>.</b> 3           | 11                   | 328                               | 11                   | 13                   |
| New Jersey       | 193,402                           | 33,027               |                      |                                   |                      |                      |                                   |                      |                      |
| New Mexico       | 128,367                           | 12,035               | 2.484                |                                   |                      |                      | 1,542                             | 64                   | 68                   |
| New York         | 1,093,838                         | 81,455               | 2,304                |                                   |                      |                      |                                   |                      |                      |
| Pennsylvania     | 382,511                           | 18,857               |                      |                                   |                      |                      |                                   |                      |                      |
| Tennessee        | 2,134,789                         | 59,570               |                      |                                   |                      |                      |                                   |                      |                      |
| Utah             | _,101,.00                         |                      |                      |                                   |                      |                      | 188,311                           | 16,800               | 13,733               |
| Virginia         | 577,348                           | 16,683               | 2,637                |                                   |                      |                      |                                   |                      |                      |
| Washington       | 011,010                           | 10,000               | _,                   | 500                               |                      | 5                    | 212,289                           | 6,376                | 2,211                |
| Wisconsin        | 379,014                           | 8,672                | 844                  |                                   |                      |                      |                                   | -,                   | -,                   |
| Other States     | 0.0,022                           | 0,01-                |                      | 12                                |                      | 6                    |                                   |                      |                      |
|                  | F 959 C59                         | 271,675              | 11,082               | 7,831,928                         | 84,406               | 513,288              | 1,748,629                         | 91,642               | 65,416               |
| Total<br>Percent | 5,353,653                         | 211,015              | 11,082               | 1,001,940                         | 04,400               | 010,200              | 1,140,029                         | 31,042               | 00,410               |
| of total         |                                   |                      | _                    |                                   |                      |                      |                                   |                      |                      |
| zinc-lead _      |                                   | 57                   | 2                    |                                   | 18                   | 85                   |                                   | 19                   | 11                   |

See footnotes at end of table.

Table 5.—Production of zinc and lead in the United States in 1973, by State and class of ore, from old tailings, etc., in terms of recoverable metals—Continued

(Short tons)

Copper-zinc, All other sources 3 copper-lead and Total copper-zinc-lead ores State Gross Gross Gross Zinc Lead Zinc Lead Lead Zinc weight weight weight conconconconconcon-(dry (dry (dry tent tent tent tent tent tent basis) basis) basis) 61,571,820 571  $^{1}$  10Arizona 93,284 8,407 192 20 61,665,104 8,427 763 5,479 1,195,393 1,440,645 1 12 California \_\_\_\_\_ 1 5,257 107,502 20 44 Colorado \_\_\_\_\_ 390.354 10.310 8.818 1,196  $1.9\bar{37}$ 58,339 28.112 Idaho 312,459 768 1,012 46,107 61,744 -----2 66,848 2 5,250 Illinois <sup>2</sup>541 66,848 5,250 541 ------Kentucky 273 --Maine \_\_ Missouri 230,172 19,640 204 --7,585,647 26,209 Missouri \_\_\_\_\_ Montana \_\_\_\_\_ 82,350 487,143 25,686  $\bar{59}$  $1\overline{52}$ 73 176 New Jersey \_\_\_\_\_ 193,402 33,027 ------4 New Mexico 2,803,668 228 2,933,577 12,327 2,556 ----\_\_\_ New York 81,455 18,857 1,093,838 2,304 --\_\_\_ --Pennsylvania \_\_\_\_\_ 382,511 3,457,719 --1,322,930 4,602 Tennessee \_\_\_\_\_ 64,172 188,311 16,800 13,733 ---------Virginia \_\_ 577,348 16,683 2,637 ------\_\_  $\bar{2}$ Washington \_\_\_\_\_ 1 61.372 274,161 6.378 2,217 --Wisconsin 379,014 8,672 844 Other States --12 Total 1,806,568 23,319 9,010 64,954,612 7,808 4,228 81,695,390 478,850 603,024 Percent of total zinc-lead \_\_ \_\_ 5 1 1 1 100 100

Table 6.—Twenty-five leading zinc-producing mines in the United States in 1973, in order of output

| Rank | Mine Mine       | County and State   | Operator                                   | Source of zinc                     |
|------|-----------------|--------------------|--------------------------------------------|------------------------------------|
| 1    | Balmat          | St. Lawrence, N.Y  | St. Joe Minerals Corp                      | Zinc ore.                          |
| 2    | Buick           | Iron, Mo           | AMAX Lead Co. of Mo                        | Lead ore.                          |
| 3    | Sterling        | Sussex, N.J        | New Jersey Zinc Co                         | Zinc ore.                          |
| 4    | Bunker Hill     | Shoshone, Idaho    | Bunker Hill Co                             | Lead-zinc ore.                     |
| 5    | Eagle           | Eagle, Colo        | New Jersey Zinc Co                         | Zinc ore.                          |
| 6    | Zinc Mine Works | Jefferson, Tenn    | U.S. Steel Corp                            | Do.                                |
| 7    | Blue Hill       | Hancock, Maine     | Kerramerican Inc                           | Do.                                |
| 8    | Friedensville   | LeHigh, Pa         | New Jersey Zinc Co                         | Do.                                |
| 9    | New Market      |                    | American Smelting and                      | Do.                                |
| 10   | <b>n</b> .      | TT. 1 TT. 1        | Refining Company.                          |                                    |
| 10   | Burgin          | Utah, Utah         | Kennecott Copper Corp                      | Lead-zinc ore.                     |
| 11   | Austinville and | 777 13 77          |                                            |                                    |
|      | Ivanhoe         | Wythe, Va          | New Jersey Zinc Co                         | Zinc ore.                          |
| 12   | Star Unit       | Shoshone, Idaho    | Bunker Hill Co. and<br>Hecla Mining Co.    | Lead-zinc ore.                     |
| 13   | Leadville       | Lake, Colo         | American Smelting and<br>Refining Company. | Do.                                |
| 14   | Ground Hog      | Grant, N. Mex      | do                                         | Do.                                |
| 15   | Jefferson City  | Jefferson, Tenn    | New Jersey Zinc Co                         | Zinc ore.                          |
| 16   | Edwards         | St. Lawrence, N.Y  | St. Joe Minerals Corp                      | Do.                                |
| 17   | Shullsburg      | Lafayette, Wisc    | Eagle-Picher Industries, Inc.              | Do.                                |
| 18   | Idarado         |                    | Idarado Mining Co                          | Copper-lead-zinc                   |
| 19   | Bruce           | Yavapai, Ariz      | Cyprus Mines Corp                          | ore.                               |
| 20   | Sunnyside       | San Juan, Colo     | Standard Metals Corp                       | Copper-zinc ore.<br>Lead-zinc ore. |
| 21   | Pend Oreille    | Pend Oreille, Wash | Pend Oreille Mines &                       |                                    |
| 21   | rend Oreme      | rend Oreme, wash   | Metals Co.                                 | Do.                                |
| 22   | Ozark           | Reynolds, Mo       | Ozark Lead Co                              | Lead ore.                          |
| 23   | Young           | Jefferson, Tenn    | American Smelting and                      | Zinc ore.                          |
| 24   | Magmont         | Iron Mo            | Refining Company. Cominco American Inc     | Lead ore                           |
| 25   |                 | Washington, Mo     |                                            | Do.                                |

<sup>&</sup>lt;sup>1</sup> Zinc-lead ore, and ore from "other sources" combined to avoid disclosing individual company confidential data.

<sup>&</sup>lt;sup>2</sup> Zinc ore and ore from "other sources" combined to avoid disclosing individual company confidential data.

<sup>3</sup> Lead and zinc recovered from copper, gold, silver, and fluorspar ores, and from mill tailings and miscellaneous cleanups.

Table 7.—Primary and redistilled secondary slab zinc produced in the United States <sup>1</sup>
(Short tons)

|                                              | 1969                | 1970              | 1971              | 1972              | 1973              |
|----------------------------------------------|---------------------|-------------------|-------------------|-------------------|-------------------|
| Primary:                                     |                     |                   |                   |                   |                   |
| From domestic ores                           | 458,754             | 403,953           | 403,750           | 400.969           | 365,307           |
| From foreign ores                            | 581,843             | 473,858           | 362,683           |                   | 176,012           |
| TotalRedistilled secondary                   | 1,040,597<br>70,553 | 877,811<br>77,156 | 766,433<br>80,923 | 633,180<br>73,718 | 541,319<br>87,466 |
| Total (excludes zinc recovered by remelting) | 1,111,150           | 954,967           | 847,356           | 706,898           | 628,785           |

<sup>&</sup>lt;sup>1</sup> Excludes processed GSA stockpile zinc.

Table 8.-Distilled and electrolytic zinc, primary and secondary, produced in the United States, by method of reduction

| Method of reduction                      | 1969      | 1970    | 1971    | 1972    | 1973    |
|------------------------------------------|-----------|---------|---------|---------|---------|
| Electrolytic primary                     | 453,539   | 393,280 | 321,517 | 259,816 | 210,468 |
|                                          | 587,058   | 484,531 | 444,916 | 373,364 | 330,851 |
| At primary smeltersAt secondary smelters | 60,607    | 65,776  | 68,612  | 63,034  | 64,485  |
|                                          | 9,946     | 11,380  | 12,311  | 10,684  | 22,981  |
| Total                                    | 1,111,150 | 954,967 | 847,356 | 706,898 | 628,785 |

Table 9.-Distilled and electrolytic zinc, primary and secondary, produced in the United States, by grade

(Short tons)

| Grade                                                      | 1969                                              | 1970                                              | 1971                                             | 1972                                             | 1973                                             |
|------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
| Special high High Intermediate Brass special Prime western | 468,792<br>136,416<br>57,180<br>89,306<br>359,456 | 401,273<br>109,025<br>52,480<br>71,811<br>320,378 | 367,609<br>73,314<br>58,240<br>71,100<br>277,093 | 310,074<br>44,782<br>43,353<br>76,954<br>231,735 | 251,406<br>25,900<br>38,239<br>60,034<br>253,206 |
| Total                                                      | 1,111,150                                         | 954,967                                           | 847,356                                          | 706,898                                          | 628,785                                          |

Table 10.—Primary slab zinc produced in the United States, by State where smelted (Short tons)

| State                                                           | 1969                                                           | 1970                                                          | 1971                                                         | 1972                                               | 1973                                             |
|-----------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------|
| Idaho Illinois Montana Oklahoma Pennsylvania <sup>1</sup> Texas | 105,700<br>131,243<br>174,034<br>143,575<br>286,164<br>199,881 | 95,637<br>110,835<br>148,697<br>124,811<br>222,096<br>175,735 | 94,012<br>46,389<br>115,480<br>126,908<br>228,651<br>154,993 | 101,743<br>69,754<br>114,162<br>210,860<br>136,661 | 98,321<br>25,163<br>76,823<br>199,224<br>141,788 |
| Total                                                           | 1,040,597                                                      | 877,811                                                       | 766,433                                                      | 633,180                                            | 541,319                                          |

<sup>&</sup>lt;sup>1</sup> Prior to 1972, included West Virginia.

Table 11.-Primary slab zinc plants by group capacity in the United States in 1973

| Type of plant                                                                                                           | Plant location                                                                    | Slab zine<br>capacity<br>(short tons) |
|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------|
| Electrolytic plants: Amax Zinc Co., Inc American Smelting and Refining Company Bunker Hill Co Horizontal-retort plants: | Sauget, Ill<br>Corpus Christi, Tex<br>Kellogg, Idaho                              | 279,000                               |
| American Smelting and Refining Company                                                                                  | Amarillo, Tex  Blackwell, Okla Bartlesville, Okla  Palmertown, Pa  Josephtown, Pa | 470,500                               |

<sup>&</sup>lt;sup>1</sup> Zinc operations ended November 1973.

Table 12.-Secondary slab zinc plants, by group capacity in the United States in 1973

| Company                                                                                                         | Plant location                                                                      | Slab zine<br>capacity<br>(short tons |  |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------|--|
| W. J. Bullock, Inc<br>Gulf Reduction Co<br>Hugo-Neu-Proler Co<br>Pacific Smelting Co<br>Prolerized-Shibo-Neu Co | Fairfield, Ala Houston, Tex Terminal Island, Calif Torrance, Calif Jersey City, N.J | 40,100                               |  |

Table 13.—Stocks and consumption of new and old zinc scrap in the United States in 1973
(Short tons, gross weight)

| ~ · · · · · · · · · · · · · · · · · · ·             | a. 1                          |                     | Consumption  |                  |                                  |                   |
|-----------------------------------------------------|-------------------------------|---------------------|--------------|------------------|----------------------------------|-------------------|
| Class of consumer and<br>type of scrap              | Stocks<br>Jan. 1 <sup>1</sup> | Receipts            | New<br>scrap | Old<br>scrap     | Total                            | Stocks<br>Dec. 31 |
| Smelters and distillers:                            |                               |                     |              |                  |                                  |                   |
| New clippings                                       | 63                            | 696                 | 708          |                  | 708                              | 51                |
| Old zinc                                            | 474                           | 5,688               |              | 5,659            | 5,659                            | 503               |
| Engravers' plates                                   | 248                           | 1,755               |              | 1,853            | 1,853                            | 150               |
| Skimmings and ashes                                 | 7,482                         | 63,180              | 64,657       |                  | 64,657                           | 6,005             |
| Sal skimmings                                       | 70                            | 261                 |              |                  |                                  | 331               |
| Die-cast skimmings                                  | 2,125                         | 7,243               | 6,830        |                  | 6,830                            | 2,538             |
| Galvanizers' dross                                  | 16,620                        | 59,809              | 63,531       |                  | 63,531                           | 12,898            |
| Diecastings                                         | 2,128                         | 40,088              |              | 38,698           | 38,698                           | 3,518             |
| Rod and die scrap                                   | 107                           | 1,935               |              | 2,011            | 2,011                            | 31                |
| Flue dust                                           | 1,430                         | 4,033               | 4,705        |                  | 4,705                            | 758               |
| Chemical residues                                   |                               | 15,320              | 15,320       |                  | 15,320                           |                   |
| Total                                               | 30,747                        | 200,008             | 155,751      | 48,221           | 203,972                          | 26,783            |
| Chemical plant, foundries, and other manufacturers: |                               |                     |              |                  |                                  |                   |
| New clippings                                       | 2                             | 21                  | 21           |                  | 21                               | 2                 |
|                                                     | í                             | 12                  |              | 4                | 4                                |                   |
| Old zinc                                            |                               | 12                  |              | *                | *                                |                   |
| Engravers' plates<br>Skimmings and ashes            | 4,670                         | $10.3\overline{13}$ | 12,397       |                  | $\boldsymbol{12.3\overline{97}}$ | 2,586             |
| Skimmings and asnes                                 | 6.942                         | 4.645               | 6.256        |                  | 6,256                            | 5,331             |
| Sal skimmings<br>Die-cast skimmings                 | 0,342                         | •                   | 0,200        |                  | -                                | 0,001             |
|                                                     |                               |                     |              |                  |                                  |                   |
| Galvanizers' dross                                  | 37                            | 140                 |              | $1\overline{56}$ | 156                              | 21                |
| Diecastings                                         | 4                             | 65                  |              | 66               | 66                               | 3                 |
| Rod and die scrap                                   | 230                           | 4.445               | 4,425        |                  | 4,425                            | 250               |
| Flue dust                                           | 496                           | 28.289              | 27,822       |                  | 27,822                           | 963               |
| Chemical residues                                   |                               |                     |              |                  |                                  |                   |
| Total                                               | 12,382                        | 47,930              | 50,921       | 226              | 51,147                           | 9,165             |
| All classes of consumers:                           |                               |                     |              |                  |                                  |                   |
| New clippings                                       | 65                            | 717                 | 729          |                  | 729                              | 53                |
| Old zinc                                            | 475                           | 5,700               |              | 5,663            | 5,663                            | 512               |
| Engravers' plates                                   | 248                           | 1,755               |              | 1,853            | 1,853                            | 150               |
| Skimmings and ashes                                 | 12,152                        | 73,493              | 77,054       |                  | 77,054                           | 8,591             |
| Sal skimmings                                       | 7,012                         | 4,906               | 6,256        |                  | 6,256                            | 5,662             |
| Die-cast skimmings                                  | 2,125                         | 7,243               | 6,830        |                  | 6,830                            | 2,538             |
| Galvanizers' dross                                  | 16,620                        | 59,809              | 63,531       |                  | 63,531                           | 12,898            |
| Diecastings                                         | 2,165                         | 40,228              |              | 38,854           | 38,854                           | 3,539             |
| Rod and die scrap                                   | 111                           | 2,000               |              | 2,077            | 2,077                            | 34                |
| Flue dust                                           | 1,660                         | 8,478               | 9,130        |                  | 9,130                            | 1,008             |
| Chemical residues                                   | 496                           | 43,609              | 43,142       |                  | 43,142                           | 963               |
|                                                     |                               |                     |              |                  |                                  |                   |

<sup>&</sup>lt;sup>1</sup> Figures partly revised.

Table 14.—Production of zinc products from zinc-base scrap in the United States
(Short tons)

| Products                            | 1969   | 1970   | 1971   | 1972     | 1973   |
|-------------------------------------|--------|--------|--------|----------|--------|
| Redistilled slab zinc               | 70,553 | 77,156 | 80,923 | r 73,718 | 87,466 |
| Zinc dust                           | 33,747 | 29,605 | 29,095 | 40,569   | 36,531 |
| Remelt zinc                         | 3,978  | 3,494  | 1,590  | 5,850    | 1,096  |
| Remelt die-cast slab                | 16,979 | 16,686 | 18,339 | 13,555   | 12,595 |
| Zinc-die diecasting alloys          | 4,401  | 4,361  | 3,316  | 3,927    | 4,786  |
| Galvanizing stocks                  | 1,849  | 762    | 633    | 872      | 670    |
| Secondary zinc in chemical products | 45,298 | 42,238 | 45,312 | 50,047   | 56,591 |

r Revised.

Table 15.-Zinc recovered from scrap processed in the United States, by kind of scrap and form of recovery

| Kind of scrap  | 1972    | 1973    | Form of recovery 1972         | 1973    |
|----------------|---------|---------|-------------------------------|---------|
| New scrap:     |         |         | As metal:                     |         |
| Zinc-base      | 145,620 | 137,671 | By distillation:              |         |
| Copper-base    | 158.834 | 152,190 | Slab zinc 1 r 73,718          | 87,466  |
| Aluminum-base  | 3,649   | 4,035   | Zinc dust 40,123              | 36,202  |
| Magnesium-base | 281     | 306     | By remelting 6,674            | 1,737   |
| Total          | 308,384 | 294,202 | Total r 120,515               | 125,405 |
| Old scrap:     |         |         | In zinc-base alloys 16,480    | 16,362  |
| Zinc-base      | 42.998  | 50.301  | In brass and bronze r 192,647 | 180,674 |
| Copper-base    | 32,456  | 38,494  | In aluminum-base alloys 7,638 | 7,961   |
| Aluminum-base  | 3,854   | 4,436   | In magnesium-base alloys 434  | 546     |
| Magnesium-base | 69      | 106     | In chemical products:         |         |
| Total          | 79,377  | 93.337  | Zinc oxide (lead-free) 25,897 | 29,289  |
| 10041          | 10,011  | 30,331  | Zinc sulfate 11,076           | 9,444   |
| Grand total    | 387.761 | 387.539 | Zinc chloride 11,126          | 16,639  |
|                | ,       | ,       | Miscellaneous 1,948           | 1,219   |
|                |         |         | Total r 267,246               | 262,134 |
|                |         |         | Grand total 387,761           | 387,539 |

Table 16.-Zinc dust produced in the United States

|      | 0                           | Value                     |                         |  |  |
|------|-----------------------------|---------------------------|-------------------------|--|--|
| Year | Quantity<br>(short<br>tons) | Total<br>(thou-<br>sands) | Average<br>per<br>pound |  |  |
| 1969 | 55,055                      | \$21,361                  | \$0.194                 |  |  |
| 1970 | 51.136                      | 20,045                    | .196                    |  |  |
| 1971 | 50,259                      | 19.691                    | .196                    |  |  |
| 1972 | 59.358                      | 24,669                    | .208                    |  |  |
| 1973 | 56.154                      | 29,279                    | .261                    |  |  |

Table 17.-Consumption of zinc in the United States

(Short tons)

|                                                                                   | 1969                            | 1970                            | 1971                            | 1972                              | 1973                            |
|-----------------------------------------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|-----------------------------------|---------------------------------|
| Slab zincOres (recoverable zinc content) 1 Secondary (recoverable zinc content) 2 | 1,385,380<br>126,712<br>302,075 | 1,186,951<br>124,781<br>259,864 | 1,254,059<br>119,254<br>277,381 | 1,418,349<br>118,305<br>r 307,369 | 1,503,938<br>129,651<br>298,336 |
| Total                                                                             | 1,814,167                       | 1,571,596                       | 1,650,694                       | r 1,844,023                       | 1,931,925                       |

r Revised.

1 Includes zinc content of redistilled slab made from remelt die-cast slab.

r Revised.
 l Includes ore used directly in galvanizing.
 Excludes redistilled slab and remelt zinc.

Table 18.—Slab zinc consumption in the United States, by industry use (Short tons)

| Industry and product  Galvanizing: Sheet and strip | 1969      | 1970      | 1971      | 1972      | 1973      |
|----------------------------------------------------|-----------|-----------|-----------|-----------|-----------|
|                                                    |           |           |           |           |           |
| Sheet and strip                                    |           |           |           |           |           |
|                                                    | 268,682   | 253,155   | 255,335   | 294,205   | 321,927   |
| Wire and wire rope                                 | 32,348    | 30,857    | 29,895    | 30,769    | 34,315    |
| Tubes and pipe                                     | 65,898    | 64,479    | 65,122    | 64,549    | 68,048    |
| Fittings (for tube and pipe)                       | 11,418    | 9,498     | 10,240    | 11,106    | 11,969    |
| Tanks and containers                               | 5,561     | 3,924     | 2,759     | 3,645     | 2,941     |
| Structural shapes                                  | 19,454    | 18,761    | 18,589    | 20,302    | 21,714    |
| Fasteners                                          | 5,536     | 5,318     | 5,159     | 4,310     | 4,782     |
| Pole-line hardware                                 | 9,409     | 9,938     | 8,358     | 8,437     | 8,193     |
| Fencing, wire, cloth, and netting                  | 17,984    | 18,114    | 20,232    | 21,995    | 25,418    |
| Other and unspecified uses                         | 57,091    | 60,205    | 59,063    | 58,886    | 64,530    |
| Total                                              | 493,381   | 474,249   | 474,752   | 518,204   | 563,837   |
| Brass products:                                    |           |           |           |           |           |
| Sheet, strip, and plate                            | 90,777    | 61,672    | 78,929    | 105,405   | 109,582   |
| Rod and wire                                       | 56,989    | 41,459    | 46,514    | 63,143    | 63,164    |
| Tube                                               | 10,928    | 9,086     | 9,399     | 8,886     | 10,858    |
| Castings and billets                               | 5,958     | 4,606     | 4,479     | 6,840     | 6,000     |
| Copper-base ingots                                 | 13,642    | 9,946     | 10,440    | 7,137     | 6,895     |
| Other copper-base products                         | 1,175     | 978       | 725       | 736       | 1,151     |
| Total                                              | 179,469   | 127,747   | 150,486   | 192,147   | 197,650   |
| Zinc-base alloy:                                   |           |           |           |           |           |
| Diecasting alloys                                  | 565,839   | 453,490   | 504,823   | 566,932   | 598,725   |
| Dies and rod alloy                                 | 504       | 87        | 270       | 56        | 111       |
| Slush and sand-casting alloy                       | 10,048    | 10,059    | 11,018    | 12,773    | 11,770    |
| Total                                              | 576.391   | 463,636   | 516.111   | 579,761   | 610,606   |
| Rolled zinc                                        | 48,650    | 41.065    | 38,852    | 45,216    | 40,763    |
| Zinc oxide                                         | 41,447    | 43,829    | 40,043    | 51,992    | 61,734    |
| Other uses:                                        |           |           |           |           |           |
| Light-metal alloys                                 | 7,562     | 3,985     | 4,575     | 6,300     | 7,466     |
| Other 1                                            | 38,480    | 32,440    | 29,240    | 24,729    | 21,882    |
| Total                                              | 46,042    | 36,425    | 33,815    | 31,029    | 29,348    |
| Grand total                                        | 1,385,380 | 1.186.951 | 1.254.059 | 1,418,349 | 1,503,938 |

<sup>&</sup>lt;sup>1</sup> Includes zinc used in making zinc dust, wet batteries, desilverizing lead, bronze powder, alloys, chemicals, castings, and miscellaneous uses not elsewhere mentioned.

Table 19.—Slab zinc consumption in the United States in 1973, by grade and industry use (Short tons)

| Industry         | Special<br>high<br>grade | High<br>grade | Inter-<br>mediate | Brass<br>special | Prime 1<br>western | Remelt | Total     |
|------------------|--------------------------|---------------|-------------------|------------------|--------------------|--------|-----------|
| Galvanizing      | 40,242                   | 31,745        | 16,235            | 125,083          | 350,054            | 478    | 563,837   |
| Brass and bronze | 43,745                   | 113,421       | 86                | 6,795            | 33,568             | 35     | 197,650   |
| Zinc-base alloy  | 595,867                  | 13,739        | 14                | 269              | 388                | 329    | 610,606   |
| Rolled zinc      | 16,553                   | 479           | 20,462            |                  | 3,269              |        | 40,763    |
| Zinc oxide       | 25,930                   | 2.876         | 195               |                  | 32,733             |        | 61,734    |
| Other            | 17,110                   | 5,206         | 392               | 1                | 6,547              | 92     | 29,348    |
| Total            | 739,447                  | 167,466       | 37,384            | 132,148          | 426,559            | 934    | 1,503,938 |

<sup>&</sup>lt;sup>1</sup> Includes select grade.

Table 20.-Rolled zinc produced and quantity available for consumption in the United States

| -                                                                        |                                      | 1972                      |                         |                                  | 1973                      |                         |  |
|--------------------------------------------------------------------------|--------------------------------------|---------------------------|-------------------------|----------------------------------|---------------------------|-------------------------|--|
|                                                                          |                                      | Va                        | lue                     |                                  | Val                       | ue                      |  |
|                                                                          | Short<br>tons                        | Total<br>(thou-<br>sands) | Average<br>per<br>pound | Short<br>tons                    | Total<br>(thou-<br>sands) | Average<br>per<br>pound |  |
| Production: 1 Photoengraving plate Sheet zinc less than 0.375 inch thick | 13,418                               | \$10,118                  | \$0.377                 | 8,379                            | \$6,401                   | \$0.382                 |  |
| Strip and foil Total rolled zinc 2                                       | 28,189                               | 17,100                    | .303                    | 30,362                           | 19,869                    | $.3\overline{27}$       |  |
| Exports Imports Available for consumption                                | r 43,473<br>2,419<br>485<br>r 41,314 | 28,820<br>2,138<br>310    | r.332<br>.442<br>.320   | 41,301<br>2,480<br>236<br>37,801 | 28,524<br>2,100<br>159    | .345<br>.423<br>.339    |  |

Table 21.-Slab zinc consumption in the United States in 1973, by industry and State (Short tons)

| State         | Galvanizers  | Brass mills        | Other 3              | Total              |              |
|---------------|--------------|--------------------|----------------------|--------------------|--------------|
| Alabama       | 51,320       | 777                |                      |                    | 10001        |
|               | W W          | $\mathbf{w}$       |                      | $\mathbf{w}$       | 53,44        |
| Arkansas      | vv           |                    |                      | $\mathbf{w}$       | ĺ W          |
| Camorina      | 38,269       |                    |                      | w                  | Ŵ            |
| Colorado      |              | 3,032              | 17,018               | 2,541              | 60.86        |
| Connecticut   | w            | W                  | $\mathbf{w}$         | w                  | 4.20         |
| Delaware      | 3,647        | 42,172             | $\mathbf{w}$         | w                  | 49,996       |
| Florida       | W            | $\mathbf{w}$       | $\mathbf{w}$         |                    | ¥0,000       |
| Georgia       | $\mathbf{w}$ |                    | $\mathbf{w}$         |                    | 5,332        |
| Hawaii        | $\mathbf{w}$ |                    | w                    |                    | 5,552<br>W   |
| daho          | $\mathbf{w}$ |                    |                      |                    | w            |
| llinois       |              |                    | $\tilde{\mathbf{w}}$ | $\bar{\mathbf{w}}$ | W            |
| llinois       | 54,753       | 27,431             | 100,634              | 12,564             |              |
| ndiana<br>owa | 62,295       | w                  | W                    | 12,304<br>W        | 195,382      |
|               | W            | •••                | **                   | w                  | 149,651      |
| Cansas        |              | $\bar{\mathbf{w}}$ | $\bar{\mathbf{w}}$   | vv                 | 1,280        |
| rentucky      | w            | w                  | w                    |                    | w            |
| ouisiana      | 1.758        | ••                 | w                    | $\mathbf{w}$       | w            |
| taine         | W            |                    | w                    | $\mathbf{w}$       | 1,900        |
| faryland      | 27,389       |                    |                      |                    | w            |
| iassachusetts | 2,530        | $\bar{\mathbf{w}}$ |                      |                    | 27,389       |
| uchigan       | 5,681        | w                  | 4.40.455             | $\mathbf{w}$       | 6,100        |
| linnesota     | 2.841        | w                  | 140,465              | $\mathbf{w}$       | 163,602      |
| ussissippi    | <b>W</b>     |                    |                      |                    | 2.841        |
| ussouri       | 8.018        | ==                 |                      |                    | w            |
| ebraska       |              | $\mathbf{w}$       | $\mathbf{w}$         | $\mathbf{w}$       | 14.500       |
| ew Jersev     | w            | w                  |                      | w                  | 4,256        |
| ew York       | 2,026        | 6,672              | $\mathbf{w}$         | w                  | 17,133       |
| orth Carolina | 14,356       | $\mathbf{w}$       | 81,163               | w                  | 121,664      |
| hio           | 77           |                    | w                    | ŵ                  | W            |
|               | 108,241      | $\mathbf{w}$       | 94.988               | ŵ                  | 215,106      |
| klahoma       | 8,013        |                    | W                    | ŵ                  | 15.624       |
| regon         | 1,060        | $\mathbf{w}$       | w                    | w                  |              |
| ennsylvania   | 83,334       | $\mathbf{w}$       | 35,043               | w                  | 2,727        |
| hode Island   | W            |                    | •                    | w                  | 201,168      |
| outh Carolina | W            |                    |                      | VV                 | w            |
| innessee      | W            |                    | $\bar{\mathbf{w}}$   |                    | $\mathbf{w}$ |
| exas          | 13.721       | $\bar{\mathbf{w}}$ | w                    | w                  | w            |
| tah           | W            | ŵ                  | vv                   | $\mathbf{w}$       | 50,088       |
| rginia        | w            | w                  |                      | ==                 | w            |
| ashington     | 919          | VV                 | $\mathbf{w}$         | w                  | 269          |
| est virginia  | w            | $\bar{\mathbf{w}}$ | <del></del>          | 2,049              | 2,968        |
| isconsin      | 1,275        |                    | W                    | W                  | 33,151       |
| ndistributed  | 71.913       | W                  | 12,544               | w                  | 17,926       |
| Total 4       |              | 118,308            | 128,422              | 114,599            | 84,446       |
| 10tal         | 563,359      | 197.615            | 610,277              | 131.753            | 1,503,004    |

W Withheld to avoid disclosing individual company confidential data; included with "Undistributed."

1 Includes brass mills, brass ingot makers, and brass foundries.
2 Includes producers of zinc-base alloy for diecastings, stamping dies, and rods.
3 Includes slab zinc used in rolled zinc products and in zinc oxide.
4 Excludes remelt zinc.

r Revised.

<sup>1</sup> Figures represent net production. In addition, 41,764 tons in 1972 and 28,901 tons in 1973 were rerolled from scrap originating in fabricating plants operating in connection with zinc-rolling mills.

<sup>2</sup> Includes other plate over 0.375 inch thick, and rod and wire; Bureau of Mines not at liberty to publish these data separately.

Table 22.-Production and shipments of zinc pigments and compounds 1 in the United States

|                              |                         | 19'                         |                           |                       |                   | 1973<br>Si        | hipments                  |                       |
|------------------------------|-------------------------|-----------------------------|---------------------------|-----------------------|-------------------|-------------------|---------------------------|-----------------------|
|                              | Produc-                 | Shipments                   |                           | Value 2 Produc-       |                   | Quantity -        | Valu                      |                       |
| Pigment or compound          | tion<br>(short<br>tons) | Quantity<br>(short<br>tons) | Total<br>(thou-<br>sands) | Average<br>per<br>ton | (short<br>tons)   | (short<br>tons)   | Total<br>(thou-<br>sands) | Average<br>per<br>ton |
| Zinc oxide 3<br>Zinc sulfate | 237,015<br>38,897       | 245,867<br>39,595           | \$84,244<br>5,220         | \$343<br>132          | 252,475<br>43,866 | 252,833<br>45,197 | \$88,378<br>5,510         | \$350<br>122          |

<sup>&</sup>lt;sup>1</sup> Excludes leaded zinc oxide, lithopone, and zinc chloride; figures withheld to avoid disclosing individual company confidential data.

<sup>2</sup> Value at plant, exclusive of container.

<sup>3</sup> Zinc oxide containing 5% or more lead is classed as leaded zinc oxide.

Table 23.-Zinc content of zinc pigments 1 and compounds produced by domestic manufacturers, by source

|                            |                  | 1972         | 2                               |                                        |                  |                                                 | 1973                            |                                        |  |  |
|----------------------------|------------------|--------------|---------------------------------|----------------------------------------|------------------|-------------------------------------------------|---------------------------------|----------------------------------------|--|--|
| _                          | Zinc in pig      | ments and    | d com-                          | Total<br>zinc in                       | Zinc in p        | nc in pigments and com-<br>ounds produced from— |                                 |                                        |  |  |
| Pigment or compound        | Ore              | Slab<br>zinc | Sec-<br>ondary<br>mate-<br>rial | pig-<br>ments<br>and<br>com-<br>pounds | Ore              | Slab<br>zinc                                    | Sec-<br>ondary<br>mate-<br>rial | pig-<br>ments<br>and<br>com-<br>pounds |  |  |
| Zinc oxide<br>Zinc sulfate | 109,133<br>5,113 | 52,117       | 31,106<br>8,280                 | 192,356<br>13,393                      | 112,638<br>6,339 | 67 <b>,4</b> 57                                 | 31,821<br>8,226                 | 211,91 <b>6</b><br>14,565              |  |  |

<sup>&</sup>lt;sup>1</sup> Excludes leaded zinc oxide, zinc sulfide, and lithopone; figures withheld to avoid disclosing individual company confidential data.

Table 24.-Distribution of zinc oxide shipments, by industry 1

(Short tons)

| (                                                                 |                                                                           |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                    |
|-------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1969                                                              | 1970                                                                      | 1971                                                                                                       | 1972                                                                                                                                                                                                                                                                                                                                                                 | 1973                                                                                                                                                                                                               |
| 115,988<br>25,170<br>9,469<br>22,775<br>4,007<br>27,566<br>14,748 | 111,421<br>21,894<br>9,011<br>19,435<br>2,246<br>31,850<br>17,426         | 124,472<br>24,990<br>8,125<br>18,901<br>1,615<br>34,504<br>14,896                                          | 129,170<br>27,244<br>10,702<br>22,781<br>1,101<br>36,190<br>18,679<br>245,867                                                                                                                                                                                                                                                                                        | 129,462<br>26,115<br>11,678<br>26,187<br>2,044<br>38,724<br>18,623<br>252,833                                                                                                                                      |
|                                                                   | 1969<br>115,988<br>25,170<br>9,469<br>22,775<br>4,007<br>27,566<br>14,748 | 1969 1970  115,988 111,421 25,170 21,894 9,469 9,011 22,775 19,435 4,007 2,246 27,566 31,850 14,748 17,426 | 1969         1970         1971           115,988         111,421         124,472           25,170         21,894         24,990           9,469         9,011         8,125           22,775         19,435         18,901           4,007         2,246         1,615           27,566         31,850         34,504           14,748         17,426         14,896 | 115,988 111,421 124,472 129,170<br>25,170 21,894 24,990 27,244<br>9,469 9,011 8,125 10,702<br>22,775 19,435 18,901 22,781<br>4,007 2,246 1,615 1,101<br>27,566 31,850 34,504 36,190<br>14,748 17,426 14,896 18,679 |

<sup>&</sup>lt;sup>1</sup> For information on leaded zinc oxide shipments prior to 1971, refer to the 1970 Minerals Yearbook.

Table 25.-Distribution of zinc sulfate shipments, by industry

(Short tons)

|                          | <br>Agriculture                                    |                                              | Oth                                            | Other 1                                        |                                                | al                                             |
|--------------------------|----------------------------------------------------|----------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|
| Year                     | <br>Gross<br>weight                                | Dry<br>basis                                 | Gross<br>weight                                | Dry<br>basis                                   | Gross<br>weight                                | Dry<br>basis                                   |
| 969<br>970<br>971<br>972 | <br>19,029<br>17,213<br>16,268<br>10,496<br>13,909 | 16,424<br>14,803<br>13,812<br>8,602<br>8,353 | 45,563<br>36,856<br>33,035<br>29,099<br>31,288 | 33,861<br>26,572<br>28,690<br>25,935<br>24,902 | 64,592<br>54,069<br>49,303<br>39,595<br>45,197 | 50,285<br>41,375<br>42,502<br>34,537<br>33,255 |

<sup>&</sup>lt;sup>1</sup> Includes rayon; Bureau of Mines not at liberty to publish these data separately.

Table 26.—Stocks of slab zinc at zinc-reduction plants in the United States, December 31 (Short tons)

| Stocks                                                    | 1969          | 1970          | 1971          | 1972            | 1973          |
|-----------------------------------------------------------|---------------|---------------|---------------|-----------------|---------------|
| At primary reduction plantsAt secondary distilling plants | 64,903<br>885 | 97,576<br>738 | 40,745<br>475 | 19,956<br>1,225 | 19,574<br>717 |
| Total                                                     | 65,788        | 98,314        | 41,220        | 21,181          | 20,291        |

Table 27.-Consumers stocks of slab zinc at plants, December 31, by grade

| Date            | Special<br>high<br>grade | High<br>grade | Inter-<br>mediate | Brass<br>special | Prime<br>western | Remelt | Total            |
|-----------------|--------------------------|---------------|-------------------|------------------|------------------|--------|------------------|
| Dec. 31, 1972 r | 46,696                   | 9,552         | 570               | 17,267           | 50,776           | 95     | 124,95 <b>6</b>  |
| Dec. 31, 1973   | 47,775                   | 9,703         | 2,296             | 14,314           | 39,260           | 969    | 114,3 <b>1</b> 7 |

r Revised.

Table 28.—Average monthly U.S., LME, and European producers' prices for Prime Western Zinc and equivalent

(Metallic zinc, cents per pound)

|                  |                  | 1972                     |                      |                  | 1973                     |                      |  |  |
|------------------|------------------|--------------------------|----------------------|------------------|--------------------------|----------------------|--|--|
| Month            | United<br>States | LME <sup>1</sup><br>cash | European<br>producer | United<br>States | LME <sup>1</sup><br>cash | European<br>producer |  |  |
| January          | 17.00            | 17.21                    | 17.49                | 18.66            | 17.53                    | 18.49                |  |  |
| February         | 17.00            | 17.66                    | 17.71                | 19.28            | 19.12                    | 19.05                |  |  |
| March            | 17.30            | 17.99                    | 17.81                | 19.85            | 21.50                    | 21.31                |  |  |
| April            | 17.74            | 17.90                    | 17.76                | 20.32            | 23.25                    | 21.41                |  |  |
| Мау              | 17.88            | 17.51                    | 17.78                | 20.39            | 24.88                    | 21.81                |  |  |
| June             | 18.00            | 16.77                    | 17.48                | 20.31            | 29.71                    | 23.45                |  |  |
| July             | 18.00            | 16.49                    | 17.75                | 20.34            | 38.09                    | 24.58                |  |  |
| August           | 18.00            | 16.48                    | 17.78                | 20.34            | 41.43                    | 24.71                |  |  |
| September        | 18.00            | 16.69                    | 17.72                | 20.31            | 44.20                    | 25.00                |  |  |
| October          | 18.00            | 16.48                    | 17.38                | 20.37            | 52.65                    | 27.55                |  |  |
| November         | 18.00            | 17.16                    | 17.31                | 20.35            | 73.31                    | 28.42                |  |  |
| December         | 18.11            | 17.00                    | 18.40                | 27.37            | 73.29                    | 31.54                |  |  |
| Average for year | 17.75            | 17.13                    | 17.73                | 20.66            | 38.55                    | 24.00                |  |  |

<sup>&</sup>lt;sup>1</sup> London Metal Exchange.

Source: Metals Week.

Table 29.-U.S. exports of slab and sheet zinc, by country

| -                       | 19                          | 71                        | 19                          | 72                        | 19                          | 1973                      |  |
|-------------------------|-----------------------------|---------------------------|-----------------------------|---------------------------|-----------------------------|---------------------------|--|
| Destination             | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands) | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands) | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands) |  |
| labs, pigs, blocks:     |                             |                           |                             |                           |                             |                           |  |
| Belgium-Luxembourg _    |                             |                           |                             |                           | 221                         | \$89                      |  |
| Brazil                  | 1                           | \$1                       | - <u>-</u> -                | \$1                       | 2,123                       | 1,492                     |  |
| Canada                  | 233                         | 63                        | 349                         | 70                        | 509                         | 101                       |  |
| Chile                   | 8                           | 3                         | 10                          | 5                         | 459                         | 608                       |  |
| Colombia                |                             |                           |                             |                           | 1.651                       | 891                       |  |
| Costa Rica              |                             |                           |                             |                           | 607                         | 188                       |  |
| El Salvador             |                             |                           |                             |                           | 528                         | 277                       |  |
| Guatemala               |                             |                           |                             |                           | 220                         | 87                        |  |
| Italy                   |                             |                           |                             |                           | 110                         | 44                        |  |
| Japan                   |                             |                           |                             |                           | 2,151                       | 1,325                     |  |
| Laos                    |                             |                           |                             |                           | 110                         | 95                        |  |
| Malaysia                |                             |                           |                             |                           | 108                         | 75                        |  |
| Netherlands             |                             |                           |                             |                           | 1,488                       | 610                       |  |
| Panama                  |                             |                           | 3                           | - <u>-</u> 2              | 209                         | 85                        |  |
| Philippines             |                             |                           |                             | -                         | 769                         | 458                       |  |
| Switzerland             |                             |                           |                             |                           | 964                         | 328                       |  |
| Turkey                  | $3.0\bar{24}$               | $7\overline{38}$          |                             |                           |                             | 020                       |  |
| United Kingdom          | 10,005                      | 1,501                     | 3,786                       | 568                       | $1\overline{10}$            | 109                       |  |
| Venezuela               | 10,000                      | 1,001                     | 110                         | 42                        | 1,817                       | 1.138                     |  |
| Other                   | $\frac{-75}{75}$            | $\bar{31}$                | 65                          | 26                        | 412                         | 259                       |  |
| _                       |                             |                           |                             |                           |                             |                           |  |
| Total                   | 13,346                      | 2,337                     | 4,324                       | 714                       | 14,566                      | 8,259                     |  |
| heets, plates, strips,  |                             |                           |                             |                           |                             |                           |  |
| or other forms, n.e.c.: |                             |                           |                             |                           |                             |                           |  |
| Algeria                 |                             |                           |                             |                           | 22                          | 23                        |  |
| Argentina               | 51                          | 34                        | 32                          | 23                        | 28                          | 21                        |  |
| Australia               | 85                          | 75                        | 51                          | 42                        | 24                          | 23                        |  |
| Canada                  | 1,065                       | 946                       | 1,329                       | 1,194                     | 1,201                       | 986                       |  |
| Chile                   | 2                           | 2                         | 23                          | 16                        | 26                          | 21                        |  |
| Colombia                | 4                           | 4                         | 7                           | 5                         | 24                          | 26                        |  |
| Costa Rica              | 14                          | 13                        | 12                          | 11                        | 11                          | 11                        |  |
| Dominican Republic      | 51                          | 20                        | 15                          | 12                        | 21                          | 17                        |  |
| Ecuador                 | 8                           | 8                         | 8                           | 8                         | 27                          | 29                        |  |
| Egypt                   |                             |                           |                             |                           | 36                          | 25                        |  |
| El Salvador             | 14                          | 13                        | 10                          | 10                        | 15                          | 14                        |  |
| France                  | (1)                         | (1)                       | 33                          | 39                        | 49                          | 61                        |  |
| Hong Kong               | `′1                         | `´ 4                      | 6                           | 5                         | 49                          | 38                        |  |
| Ireland                 | 16                          | 17                        | 20                          | 23                        |                             |                           |  |
| Israel                  | 28                          | 19                        | 84                          | 60                        | 82                          | 64                        |  |
| Jamaica                 | 13                          | 10                        | 26                          | 23                        | 9                           | 13                        |  |
| Japan                   | í                           | ĭ                         | 20                          | 18                        | 38                          | 30                        |  |
| Lebanon                 | •                           | -                         | 41                          | 31                        | 34                          | 27                        |  |
| Mexico                  | 43                          | $\bar{36}$                | 81                          | 65                        | 17                          | 17                        |  |
| New Zealand             | 2                           | ĩ                         | 14                          | 9                         | 62                          | 43                        |  |
| Peru                    | 4                           | 5                         |                             |                           | 20                          | 21                        |  |
| Philippines             | 1                           | í                         |                             |                           | 62                          | 50                        |  |
| South Africa,           | -                           | •                         |                             |                           | - <b>-</b>                  |                           |  |
| Republic of             | 101                         | 90                        | 166                         | 145                       | 132                         | 131                       |  |
|                         |                             |                           |                             |                           | 70                          | 59                        |  |
| Spain                   |                             |                           |                             |                           | 39                          | 24                        |  |
| Sweden                  |                             |                           | 4                           | 3                         | 40                          | 31                        |  |
| Taiwan                  |                             |                           | 22                          | 13                        | 66                          | 38                        |  |
| Thailand                | $1\overline{19}$            | $1\overline{24}$          | 156                         | 169                       | 2                           | 7                         |  |
| United Kingdom          |                             | 32                        | 120                         | 106                       | 97                          | 101                       |  |
| Venezuela               | 34                          |                           | 139                         | 108                       | 177                         | 149                       |  |
| Other                   | 29                          | 31                        |                             |                           |                             |                           |  |
| Total                   | 1.686                       | 1.486                     | 2.419                       | 2.138                     | 2,480                       | 2,100                     |  |

 $<sup>^1</sup>$  Less than  $\frac{1}{2}$  unit.

Table 30.-U.S. exports of zinc, by class

|                      | Slabs, pigs,<br>or blocks |                             |                           | plates,<br>or other<br>, n.e.c. | Zinc ser<br>dross (zinc   |                             | Semifal<br>forms          |                             |                            |
|----------------------|---------------------------|-----------------------------|---------------------------|---------------------------------|---------------------------|-----------------------------|---------------------------|-----------------------------|----------------------------|
|                      | Year –                    | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands) | Quantity<br>(short<br>tons)     | Value<br>(thou-<br>sands) | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands) | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands)  |
| 1971<br>1972<br>1973 |                           | 13,346<br>4,324<br>14,566   | \$2,337<br>714<br>8,259   | 1,686<br>2,419<br>2,480         | \$1,486<br>2,138<br>2,100 | 2,000<br>1,446<br>7,032     | \$504<br>431<br>2,717     | 6,042<br>6,052<br>15,077    | \$2,709<br>3,076<br>10,565 |

Table 31.-U.S. exports of zinc pigments

|            | 197      | 2       | 1973     |         |  |
|------------|----------|---------|----------|---------|--|
| Kind       | Quantity | Value   | Quantity | Value   |  |
|            | (short   | (thou-  | (short   | (thou-  |  |
|            | tons)    | sands)  | tons)    | sands)  |  |
| Zinc oxide | 6,172    | \$2,306 | 7,638    | \$3,083 |  |
| Lithopone  | 1,395    | 458     | 986      | 357     |  |
| Total _    | 7,567    | 2,764   | 8,624    | 3,440   |  |

Table 32.-U.S. imports for consumption of zinc, by country

|                           | 197                         | 1                         | 197                         | 2                         | 197                         | 3                         |
|---------------------------|-----------------------------|---------------------------|-----------------------------|---------------------------|-----------------------------|---------------------------|
| Country                   | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands) | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands) | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands) |
| ORES 1                    |                             |                           |                             |                           |                             |                           |
| Australia                 | 3,188                       | \$720                     | 926                         | \$186                     | 1.248                       | \$181                     |
| - 11 1                    | 4.738                       | 696                       | 77                          | 21                        | 5                           | φ101<br>]                 |
|                           | 4,100                       | 090                       |                             | 21                        | 97                          | 1                         |
| Brazil<br>Canada          | 257.555                     | 38,588                    | $\boldsymbol{109,720}$      | 15,874                    | 88.433                      | 15,199                    |
| Germany. West             |                             |                           | 1.162                       | 260                       | 848                         | 147                       |
|                           | 3,517                       | 528                       | 1,102                       | 200                       | 673                         | 101                       |
| Guatemala                 | 22.486                      | 2.934                     | 3.680                       | 547                       | 15.987                      | 2.32                      |
| Honduras                  |                             |                           |                             |                           |                             | 402                       |
| Ireland                   | 1,965                       | 310                       | 2,175                       | 368                       | 2,021                       | 4.314                     |
| Mexico                    | 121,016                     | 14,925                    | 39,282                      | 4,530                     | 30,802                      | 4,514                     |
| Morocco                   | 8,531                       | 868                       |                             |                           | 1 000                       | 155                       |
| Nicaragua                 | ==                          |                           | 0.000                       | 1 007                     | 1,330                       |                           |
| Peru                      | 44,256                      | 3,088                     | 8,000                       | 1,304                     | 12,451                      | 1,827                     |
| South Africa, Republic of | 100                         | 19                        | 9,041                       | 1,185                     |                             | (9)                       |
| Other                     | 16_                         | 2                         |                             |                           | 3                           | (2)                       |
| Total                     | 467,368                     | 62,678                    | 174,063                     | 24,275                    | 153,898                     | 24,667                    |
|                           |                             |                           |                             |                           |                             |                           |
| BLOCKS, PIGS, OR SLABS    | 37.096                      | 11,634                    | 41,079                      | 14,863                    | 41.415                      | 18,892                    |
| Australia                 |                             | 2,701                     | 39,616                      | 13,998                    | 39,412                      | 20,789                    |
| Belgium-Luxembourg        | 9,365                       | 2,701                     | 29,010                      | 10,990                    | 221                         | 199                       |
| Bulgaria                  | $149.7\overline{00}$        | 42.698                    | 272.493                     | $92.25\overline{5}$       | 344,697                     | 148.235                   |
| Canada                    | 149,700                     | 42,698                    |                             |                           | 121                         | 140,200                   |
| Ecuador                   | 00 415                      | 0.050                     | 909                         | 301                       |                             | 5.581                     |
| Finland                   | 32,417                      | 9,270                     | 5,102                       | 1,416                     | 14,183                      |                           |
| France                    | 2,211                       | 752                       | 11,825                      | 4,225                     | 10,671                      | 5,667                     |
| Germany, West             | 6,138                       | 1,772                     | 31,358                      | 11,551                    | 8,203                       | 4,562                     |
| Japan                     | 8,705                       | 2,308                     | 30,072                      | 10,968                    | 42,668                      | 19,039                    |
| Mexico                    | 10,130                      | 2,442                     | 8,394                       | 2,276                     | 1,913                       | 732                       |
| Netherlands               | 18,745                      | 5,849                     | 14,001                      | 5,096                     | 3,036                       | 1,997                     |
| Norway                    | 2,205                       | 329                       |                             | ==                        | 220                         | 300                       |
| Peru                      | 24,412                      | 7,283                     | 30,625                      | 9,760                     | 19,343                      | 7,171                     |
| Poland                    | 2,508                       | 729                       | 4,418                       | 1,584                     | 13,277                      | 8,927                     |
| South Africa, Republic of | 4,740                       | 1,422                     |                             |                           | 329                         | 264                       |
| Spain                     | 5,071                       | 1,475                     | 1,102                       | 381                       | 11                          | 10                        |
| Taiwan                    |                             |                           |                             |                           | 221                         | 112                       |
| U.S.S.R                   |                             |                           |                             |                           | 3,599                       | 2,777                     |
| United Kingdom            | 745                         | 196                       | 1,553                       | 563                       | 8,254                       | 5,254                     |
| Yugoslavia                | 138                         | 39                        | 1,543                       | 589                       | 6,792                       | 6,984                     |
| Zaire                     | 8,898                       | 2,444                     | 22,493                      | 6,860                     | 28,440                      | 12,488                    |
| Zambia                    | 315                         | 91                        |                             |                           | 273                         | 140                       |
|                           |                             |                           | 0.0                         | 21                        | 190                         | 47                        |
| Other                     | 716                         | 194                       | 60                          | 21                        | 130                         | 41                        |

¹ Does not include zinc ores and concentrates for refining and export, as follows: 1971—Canada 11,791 short tons (\$1,816,250); Mexico 14 short tons (\$2,723); Peru 1,657 short tons (\$298,278); Ireland 10 short tons (\$981); Republic of South Africa 82 short tons (\$7,450). 1972—Canada 4,787 short tons (\$735,225); Mexico 171 short tons (\$27,437); Ireland 176 short tons (\$17,439); the Netherlands 98 short tons (\$17,955); Belgium-Luxembourg 16 short tons (\$2,690). 1973—Canada 3,979 short tons (\$790,625); Mexico 11,816 short tons (\$1,832,675); Honduras 875 short tons (\$126,607); Nicaragua 5,431 short tons (\$363,030); Peru 1,287 short tons (\$516,447); Ireland 156 short tons (\$15,467).

² Less than ½ unit.

Table 33.-U.S. general imports of zinc, by country

|                                  | 197                         | 1                         | 197                         | 2                         | 197                         | 3                         |
|----------------------------------|-----------------------------|---------------------------|-----------------------------|---------------------------|-----------------------------|---------------------------|
| Country                          | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands) | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands) | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands) |
| ORES                             |                             |                           |                             |                           |                             |                           |
| Australia                        | 2,857                       | \$201                     | 5.871                       | \$239                     | 7.282                       | \$288                     |
| Canada                           |                             | 30.027                    | 135.534                     | 19.483                    | 124.261                     | 22,057                    |
| Germany, West                    |                             | ,                         | 1,162                       | 260                       | 848                         | 147                       |
| Guatemala                        | 138                         | 13                        | 723                         | 130                       |                             |                           |
| Honduras                         | 21.512                      | 3.230                     | 17.370                      | 2,415                     | 6.029                       | 539                       |
| Ireland                          | 3,975                       | 657                       | 5,978                       | 885                       | 2,001                       | 401                       |
| Japan                            | 0,010                       |                           | 0,0.0                       |                           | 519                         | 93                        |
| Mexico                           | 89,845                      | 11,099                    | 57.315                      | 7.106                     | 33.878                      | 5,057                     |
| Nicaragua                        |                             | ,                         | 10,960                      | 1,163                     | 11.244                      | 1,324                     |
| Peru                             | 15.025                      | 2.375                     | 15,256                      | 2,007                     | 12,981                      | 1,812                     |
| South Africa, Republic of        |                             | 11                        | 4,690                       | 779                       | 12,001                      | _,                        |
| Other                            | 24                          | 3                         | 2,000                       | (¹)                       | 10                          | (1)                       |
| Total                            | 342,521                     | 47,616                    | 254,868                     | 34,467                    | 199,053                     | 31,718                    |
| BLOCKS, PIGS, OR SLABS           |                             |                           |                             |                           |                             |                           |
| Australia                        | 38,552                      | 12,056                    | 39,623                      | 14,441                    | 42,076                      | 19,256                    |
| Belgium-Luxembourg               |                             | 2,701                     | 39,616                      | 13,998                    | 39,908                      | 21,186                    |
| Bulgaria                         |                             | ·                         |                             |                           | 221                         | 199                       |
| Canada                           |                             | 43,050                    | 271.130                     | 91,826                    | 344,697                     | 148,23                    |
| Ecuador                          |                             |                           | 909                         | 301                       | 121                         | 40                        |
| Finland                          | 31,702                      | 9.348                     | 8,583                       | 2,572                     | 14.183                      | 5.581                     |
| France                           |                             | 752                       | 11,825                      | 4,225                     | 10,727                      | 5,70                      |
| Germany. West                    |                             | 1.085                     | 31,358                      | 11,551                    | 8,203                       | 4,562                     |
| Japan                            | 1/111                       | 2,308                     | 30.072                      | 10,968                    | 42,668                      | 19.039                    |
| Mexico                           |                             | 2,442                     | 8,394                       | 2,276                     | 1,913                       | 732                       |
| Netherlands                      |                             | 4,220                     | 14,001                      | 5.096                     | 3,229                       | 2.09                      |
| Norway                           |                             | 329                       | 22,002                      | 0,000                     | 220                         | 300                       |
| Peru                             | 00'0-0                      | 7.132                     | 30,625                      | $9.7\bar{60}$             | 19.343                      | 7.171                     |
| Poland                           |                             | 764                       | 4.199                       | 1.514                     | 13,168                      | 8,878                     |
|                                  |                             | 354                       | 5,526                       | 1,603                     | 10,100                      | 0,016                     |
| RomaniaSouth Africa, Republic of |                             | 1,422                     | 0,020                       | 1,000                     | 329                         | 264                       |
|                                  |                             | 1.475                     | $1.10\bar{2}$               | 381                       | 11                          | 10                        |
| Spain                            |                             | 1,410                     | 1,102                       | 301                       | 3,599                       | 2.777                     |
| U.S.S.R.                         |                             | $2\bar{1}\bar{0}$         | 1 550                       | 563                       | 8,474                       | 5,365                     |
| United Kingdom                   |                             |                           | $1,553 \\ 1,543$            | 589                       | 6.792                       | 6,984                     |
| Yugoslavia                       |                             | 39                        |                             |                           |                             |                           |
| Zaire                            |                             | 2,444                     | 22,493                      | 6,860                     | 28,440                      | 12,488                    |
| Zambia                           | . 315                       | 91                        |                             |                           | 273                         | 140                       |
| Other                            | 1,212                       | 332                       | 60                          | 21                        | 130                         | 47                        |
| Total                            | 319,568                     | 92,554                    | 522,612                     | 178,545                   | 588,725                     | 271,055                   |

<sup>&</sup>lt;sup>1</sup> Less than ½ unit.

Table 34.-U.S. imports for consumption of zinc, by class

|                      |                             | Ore<br>(zinc content)     |                              |                               | s, pigs,<br>abs                | Sheets, plates, strips, other forms |                                   |
|----------------------|-----------------------------|---------------------------|------------------------------|-------------------------------|--------------------------------|-------------------------------------|-----------------------------------|
| Year                 |                             | ntity<br>rt tons)         | Value<br>(thousands)         | Quantity<br>(short tons)      | Value<br>(thousands)           | Quantity<br>(short tons             | Value<br>(thousands)              |
| 1971<br>1972<br>1973 | . 17                        | 7,368<br>4,063<br>3,898   | \$62,678<br>24,275<br>24,667 | 324,255<br>516,643<br>587,429 | \$93,628<br>176,707<br>270,213 | 509<br>485<br>236                   | \$237<br>310<br>159               |
|                      | Old and v                   | vorn out                  |                              | oss and<br>mmings             | Zinc                           | dust                                | Total                             |
|                      | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands) | Quanti<br>(short<br>tons)    |                               | Quantity<br>(short<br>tons)    | Value<br>(thou-<br>sands)           | value <sup>1</sup><br>(thousands) |
| 1971<br>1972<br>1973 | 1,114<br>814<br>1,537       | \$147<br>235<br>583       | 853<br>2,068<br>2,515        | \$140<br>r 357<br>491         | 8,184<br>9,197<br>4,671        | \$2,949<br>3,822<br>2,298           | \$159,779<br>r 205,706<br>298,411 |

r Revised.  $^1$  In addition, manufactures of zinc were imported as follows: 1971—\$1,346,752; 1972—\$2,040,029; 1973—\$3,406,781.

Table 35.-U.S. imports for consumption of zinc pigments and compounds

| _                       | 19                       | 72                   | 19                       | 73                   |
|-------------------------|--------------------------|----------------------|--------------------------|----------------------|
| Kind                    | Quantity<br>(short tons) | Value<br>(thousands) | Quantity<br>(short tons) | Value<br>(thousands) |
| Zinc arsenate           | 1                        | \$10                 |                          |                      |
| Zinc oxide              | 19,349                   | 5.647                | 27.488                   | \$11,256             |
| Zinc sulfide            | 534                      | 206                  | 854                      | 428                  |
| Lithopone               | 84                       | 17                   | 84                       | 29                   |
| Zinc chloride           | 1.490                    | 257                  | 2.054                    | 536                  |
| Zinc sulfate            | 3,944                    | 475                  | 4,410                    | 699                  |
| Zinc cyanide            | 93                       | 70                   | 102                      | 52                   |
| Zinc hydrosulfite       | 20                       | ž                    | 20                       | 9 <u>4</u>           |
| Zinc compounds, n.s.p.f | 419                      | 202                  | 1.467                    | 785                  |
| Total                   | 25,934                   | 6,891                | 36,479                   | 13,792               |

Table 36.-Zinc: World mine production (content of ore), by country (Short tons)

| Country 1                         | 1971        | 1972       | 1973 Р   |
|-----------------------------------|-------------|------------|----------|
| orth America:                     |             |            |          |
| Canada 2                          | 1,397,246   | 1,409,388  | 1,489,33 |
| Guatemala (exports)               | 558         | 340        | 30       |
| Honduras                          | 25,236      | 25,678     | 21,68    |
| Mexico                            | 292,081     | 299,656    | 299,13   |
| Nicaragua                         | 4,471       | 19,285     | 12,22    |
| United States                     | 502,543     | 478,318    | 478,85   |
| outh America:                     |             | •          |          |
| Argentina                         | r 48,351    | 49,318     | 44,86    |
| Bolivia 3                         | 49,689      | 46,372     | 56,20    |
| Brazil                            | r 18,651    | 19,600     | e 32,0   |
| Chile                             | r 2,185     | 1,281      | 1,7      |
| Chile                             | 123         | r e 95     | N        |
| Colombia                          | 139         | 54         | -;       |
| Ecuador                           | r 350,615   | 415,020    | 456.0    |
| Peru                              | . 990,019   | 410,020    | 400,0    |
| urope:                            | 00.000      | 22,575     | 24,4     |
| Austria                           | 23,229      | r e 88,000 | e 88.0   |
| Bulgaria                          | r 88,000    |            |          |
| Czechoslovakia                    | 9,440       | 10,210     | e 11,0   |
| Finland                           | 56,093      | 54,998     | 64,5     |
| France                            | 16,689      | 14,650     | 14,7     |
| Germany, East e                   | 11,000      | r 8,800    | 6,6      |
| Germany, West                     | 145,487     | 134,188    | 135,3    |
| Greece                            | 15,664      | 18,739     | 23,0     |
| Greenland                         | ,           | ·          | 50,8     |
| Hungary 6                         | 5,300       | 5,300      | 5,3      |
| Hungary                           | 96,500      | 104,500    | 75,8     |
| Ireland                           | 116,700     | 113,075    | 85.9     |
| Italy                             | 11,813      | 17,562     | 21,3     |
| Norway                            | 213.400     | 215,000    | e 230.0  |
| Poland                            |             | 1,971      | 200,0    |
| Portugal                          | 2,255       | 44,000     | 46.0     |
| Romania (recoverable) e           | 43,900      |            | 104,0    |
| Snain                             | 96,496      | 98,612     | 126,4    |
| Consider                          | 109,176     | 125,364    |          |
| TIQQ P e                          | 717,000     | 717,000    | 740,0    |
| Yugoslavia                        | 108,791     | 106,628    | 110,0    |
| Africa:                           |             |            |          |
| Almonia                           | 17,413      | 16,400     | 15,9     |
| Congo, Republic of (Brazzaville)  | r 698       | 2,373      | e 2,4    |
| Morocco                           | 13,600      | 21,500     | 20,      |
| South Africa, Republic of         | 174         | 2,215      | 18,      |
| South-West Africa, Territory of 4 | r 48.167    | 38,296     | 41,      |
|                                   | 13,000      | 11,200     | 8,       |
| Tunisia                           | r 120,400   | 110,500    | 97,      |
| Zaire                             | 62,904      | 66,711     | 58,      |
| Zambia (smelter)                  | 02,004      | 00,111     |          |
| Asia:                             | r 4,413     | 4,428      | 4.       |
| Burma                             | 110,000     | 110,000    | 110,     |
| China, People's Republic of e     | 9,089       | 9.776      | 13,      |
| India                             |             | 66,000     | 66.      |
| Tran e 5                          | 64,000      |            | 290,     |
| T                                 | 324,541     | 309,911    | 160,     |
| Korea. North e                    | 149,000     | 154,000    | 53,      |
| Vonce Penublic of                 | 31,042      | 39,600     |          |
| Philippines                       | 4,271       | 5,074      | 5,       |
| Thailand 6                        | (7)         | (7)        |          |
|                                   | 26,705      | 27,155     | 24,      |
|                                   | ,           |            |          |
| Oceania:                          | r 498,957   | 558,155    | 526,     |
| Australia                         | r 2,170     | 1.821      | 1,       |
| New Zealand                       | r 6.079,365 | 6,220,692  | 6,377,   |
|                                   |             |            |          |

<sup>\*</sup> Estimate. P Preliminary. Revised. NA Not available.

1 In addition to the countries listed, North Vietnam also produces zinc, but available information is inadequate to make reliable estimates of output levels.

2 Zinc content of concentrates.

3 Sum of production by COMIBOL and exports by medium and small mines.

4 All data for 1971 are for fiscal year ending June 30, 1971; data for 1972 and 1973 are a summation of company figures for calendar year 1972 and 1973 for Tsumeb Corp. Ltd. and for fiscal year ending June 30, 1972, and June 30, 1973, for Rosh Pinah mine and Berg Aukas mine. Output of Tsumeb Corp. Ltd. for period July 1, 1971, through December 31, 1971 (which is not otherwise covered in this table), was 3,161 short tons.

5 Year beginning March 21 of year stated.

6 Contained in zinc concentrates. Additional quantities of zinc may be contained as a byproduct in lead concentrates produced, but information is inadequate to make reliable estimates of such production, if any.

7 Revised to zero.

Table 37.-Zinc: World smelter production by country (Short tons)

| Country 1                     | 1971        | 1972           | 1973 р    |
|-------------------------------|-------------|----------------|-----------|
| North America:                |             |                |           |
| Canada                        | 410,030     | <b>524,885</b> | 587,038   |
| Mexico                        | 85,828      | 87,499         | 74,112    |
| United States                 | 766,433     | 633,180        | 541,319   |
| South America:                |             |                |           |
| Argentina                     | r 36,900    | 43,200         | 40,896    |
| Brazil                        | r 17,930    | 17,149         | 24,582    |
| Peru                          | 63,048      | 74,032         | 73,959    |
| Europe:                       |             |                |           |
| Austria <sup>2</sup>          | 17,603      | 18,604         | 18,738    |
| Belgium <sup>2</sup>          | r 234,475   | 283,700        | 309,847   |
| Bulgaria 2                    | 86,400      | 88,200         | 88,200    |
| Finland                       | 70,219      | 89,393         | 89,206    |
| France                        | 241,027     | 288,271        | 284,184   |
| Germany, East e 2             | 17,000      | 17,000         | 20,000    |
| Germany, West                 | r 121,700   | 235,500        | 265,560   |
| Italy                         | r 153,132   | 171,807        | 209,530   |
| Netherlands                   | 45,600      | 55,400         | 33,600    |
| Norway                        | 68,963      | 80,851         | 88,740    |
| Poland 2                      | 242,500     | 251,300        | 259,000   |
| Romania e                     | 43,900      | 44,000         | 46,300    |
| Spain                         | 94,436      | 109.854        | 117,860   |
| U.S.S.R. 6                    | 717.000     | 717,000        | 740,000   |
| United Kingdom                | 128,379     | 81,379         | 92,385    |
| Yugoslavia 2                  | 58.543      | 53,617         | 60,821    |
| Africa:                       |             |                |           |
| South Africa, Republic of     | r 47.800    | 52,000         | 58,533    |
| Zaire                         | r 69.085    | 73,139         | 74,678    |
| Zambia                        | 62,904      | 61,711         | 58.814    |
| Asia:                         | ,           | ,              |           |
| China, People's Republic of e | 110,000     | 110,000        | 110,000   |
| India                         | 23,443      | 27,808         | 14,010    |
| Japan                         | 789,660     | 887.114        | 928,984   |
| Korea, North e                | 110,000     | 132,000        | 143,000   |
| Korea, Republic of            | r 9,856     | 11,576         | 13,878    |
| Oceania: Australia            | r 285,165   | 324,820        | 327,578   |
|                               | r 5.228.959 | 5,645,989      | 5,795,352 |
| Total                         | - 0,440,999 | 0,040,000      | 0,100,002 |

<sup>&</sup>lt;sup>e</sup> Estimate. <sup>p</sup> Preliminary. <sup>r</sup> Revised.

<sup>1</sup> In addition to the countries listed, North Vietnam also produces zinc, but available information is inadequate to make reliable estimates of output levels.

<sup>2</sup> Includes production from reclaimed scrap.



# Zirconium and Hafnium

## By Sarkis G. Ampian 1

Zircon production and sales by domestic mining companies were over 20% higher in 1973 than in 1972. Zircon exports increased 67% from 17,360 tons in 1972 to 28,921 tons in 1973 while imports increased 45% from 67,537 tons in 1972 to 98,023 tons in 1973. Exports of zirconium oxide rose in 1973 while zirconium metal, and zirconium alloy exports declined. Production of zirconium-bearing compounds for chemicals and refractories also increased. Zircon consumption by foundries increased slightly from 92,000 tons in 1972 to 92,500 tons in 1973.

The 1973 worldwide zircon supply-demand picture was characterized by a diminishing supply coupled with an unprecedented demand. Domestically, zircon reflected the worldwide situation and also was in tight supply because of an increased demand, mainly in manufacturing specialized refractories and abrasives. This in-

creased domestic zircon demand was sufficient to offset the increased supply brought about by the return of zircon imports to normalcy and advances in domestic production.

Legislation and Government Programs.— The Statistical Supplement to the Stockpile Report to Congress, December 31, 1973, showed no objectives for zirconium and hafnium materials. Stocks of 15,998 tons of Brazilian baddeleyite and 1 ton of zirconium metal powder were in excess. The U.S. Atomic Energy Commission (AEC) had an inventory as of June 30, 1973, of approximately 1 ton of zirconium crystal bar and scrap; 937 tons of zirconium sponge; 84 tons of Zircaloy ingot and shapes; 2 tons of hafnium scrap; 47 tons of hafnium oxide; one-half ton of hafnium sponge and shapes; and 39 tons of hafnium crystal bar.

Table 1.—Salient zirconium statistics in the United States
(Short tons)

| Product                                                                                                                     | 1969                                 | 1970                                      | 1971                                 | 1972                                       | 1973                                  |
|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------|--------------------------------------|--------------------------------------------|---------------------------------------|
| Zircon: Production Exports Imports Consumption e 1 Stocks, yearend, dealers and consumers 2 - Zirconium oxide: Production 3 | 5,395<br>95,414<br>160,000<br>53,000 | W<br>4,335<br>94,759<br>145,000<br>52,000 | 9,429<br>96,387<br>166,000<br>42,500 | W<br>17,360<br>67,537<br>168,000<br>44,500 | 28,921<br>98,023<br>175,000<br>51,500 |
| Producers' stocks, yearend 3                                                                                                | $\frac{5,702}{1,005}$                | 4,957<br>1,050                            | 10,770<br>680                        | 12,020<br>942                              | 14,300<br>648                         |

Estimate. W Withheld to avoid disclosing individual company confidential data.
 Includes baddeleyite: 1969—383 tons; 1970—355 tons; 1971—871 tons; 1972—385 tons; 1973—2 Excludes foundries.

### **DOMESTIC PRODUCTION**

E. I. du Pont de Nemours & Co. and Titanium Enterprises, Inc., were the only major producers of zircon mineral concentrate in the United States. Zircon was re-

covered from mineral sands at the dredging and milling facilities owned by du Pont at Starke, Fla.; by Humphreys Mining Co. for du Pont, near Folkston, Ga.;

<sup>&</sup>lt;sup>1</sup> Physical scientist, Division of Nonmetallic Minerals—Mineral Supply.

<sup>&</sup>lt;sup>3</sup> Excludes oxide produced by zirconium metal producers.

and Titanium Enterprises at Green Cove Springs, Fla. Production data were withheld from publication to avoid disclosing individual company confidential data. The combined zircon capacity of these three plants is estimated to be 135,000 tons per year.

Statistical data on production of zirconium sponge, ingot, and scrap and on hafnium sponge and oxide are also withheld to avoid disclosure of company confidential data. However, it was estimated that the total domestic sponge metal capacity was increased 50% in 1973 to approximately 7 million pounds per year to accommodate the demand for publicly announced ordnance purchases. The U.S. consumption of zirconium metal during the year was an es-

timated 6 million pounds, with 1.5 million pounds consumed in other free economies.<sup>2</sup>

Approximately 5,000 tons of alloys containing from 3% to 70% zirconium was produced in 1973.

Three firms produced 49,000 tons of milled (ground) zircon, an increase of 9% from the reported 1972 production. Six companies, excluding those that produce metal, produced 14,300 tons of zirconium oxide. Oxide production in 1973 increased nearly 12% over that reported in 1972.

Hafnium crystal bar, produced by several firms, amounted to 41 tons, compared with 40 tons in 1972.

<sup>2</sup> Couch, G. R. Zirconium—Nuclear Market Will Fuel Demand Growth. Eng. & Min. J., v. 175, No. 3, March 1974, pp. 135-136.

Table 2.—Producers of zirconium and hafnium materials in 1973

| Company                                                                                                                                                                                                                                   | Location                                                                                                                                                                    | Materials                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| ZIRCONIUM MATERIALS                                                                                                                                                                                                                       |                                                                                                                                                                             |                                                                                                 |
| AMAX Specialty Metals Corp                                                                                                                                                                                                                | Akron, N.Y<br>Parkersburg, W. Va                                                                                                                                            | Sponge, metal                                                                                   |
| Associated Metals and Minerals Corp  Barker Foundry Supply Co The Carborundum Co C. E. Refractories, Div. of Combustion Engineering, Inc. Continental Mineral Processing Corp Corhart Refractories Co Do Do E. I. du Pont de Nemours & Co | New York, N. Y<br>Los Angeles, Calif<br>Falconer, N. Y<br>St. Louis, Mo<br>King of Prussia, Pa<br>Sharonville, Ohio<br>Buckhannon, W. Va<br>Corning, N. Y<br>Louisville, Ky | chloride, oxide. Zircon. Milled zircon. Refractories. Do.                                       |
| Foote Mineral Co Do A. P. Green Refractories Co., Remmey Division — Harshaw Chemical Co., Inc Hercules, Inc                                                                                                                               | Cambridge, Ohio<br>Exton, Pa<br>Philadelphia, Pa<br>Mount Union, Pa                                                                                                         | mixes. Alloys. Do. Refractories. Do. Oxide, ceramics. Ceramics, milled zircon.                  |
| O. Hommel Co Ionarc/TAFA Lava Crucible Refractories Leco Corp M & T Chemicals, Inc Magnesium Electron, Inc N L Industries, Inc., Titanium Alloy                                                                                           | Bow, N. H<br>Zelienople, Pa<br>St. Joseph, Mich<br>Andrews, S. C                                                                                                            | Milled zircon. Oxide. Refractories. Do. Milled zircon. Alloys, chemicals. Milled zircon, oxide, |
| Manufacturing Div. (TAM).  Norton Co  Nuclear Materials & Equip. Corp Ohio Ferro-Alloys Corp Ronson Metals Corp Sherwood Refractories Co Shieldalloy Corp The Charles Taylor Sons Co                                                      | Leechburg, Pa Brillant, Ohio Newark, N. J Cleveland, Ohio Newfield, N. J                                                                                                    | Baddeleyite (oxide).                                                                            |
| Do Teledyne Wah Chang Albany Corp                                                                                                                                                                                                         | South Shore, My                                                                                                                                                             | Do. Oxide, chloride, sponge, ingot, pow-                                                        |
| Titanium Enterprises, Inc Tizon Chemical Corp Transelco, Inc                                                                                                                                                                              | Flemington, N. J                                                                                                                                                            | Oxide, other chemicals.                                                                         |
| T. R. W., Inc Do Union Carbide Corp                                                                                                                                                                                                       | Cleveland, Ohio<br>Minerva, Ohio                                                                                                                                            | ceramics.<br>Zircon cores.                                                                      |

Table 2.-Producers of zirconium and hafnium materials in 1973-Continued

| C                                                                                                              |                                     | 575—Continued                                                   |  |
|----------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------|--|
| Company                                                                                                        | Location                            | sponge.                                                         |  |
| ZIRCONIUM MATERIALS—Continued Ventron Corp  Zedmark, Inc Zirconium Corp. of America  HAFNIUM MATERIALS         | - · ·                               |                                                                 |  |
| AMAX Specialty Metals Corp  Do  Nuclear Materials & Equipment Corp R. M. I. Co  Teledyne Wah Chang Albany Corp | Parkersburg, W. Va<br>Leechburg, Pa | Sponge, crystal bar,<br>ingot, scrap.<br>Oxide.<br>Crystal bar. |  |

## **CONSUMPTION AND USES**

Zircon consumption in the United States in 1973 was estimated at 175,000 tons. Consumption of zircon concentrate and milled zircon was 92,500 tons for foundries, 27,000 tons for refractories, 22,000 tons for zirconium oxide, 3,500 tons for zirconium alloys (excluding zirconium-base alloys), and 30,000 tons for all other uses. Foundries consumed approximately one-half of the domestic zircon production, with the remaining half consumed by refractory, abrasive, ceramic, metal, and other industries. Domestic zircon was also marketed in proprietary mixtures for use as weighting agents, zircon TiO2 blends for welding rod manufacture, and zircon-refractory heavy mineral (kyanite, sillimanite, and staurolite) sand blends, for foundry sand and sandblasting applications. The zircon-bearing foundry sand was reportedly designed to provide consistent high-quality performance at low cost for critical casting applications.

Imported Republic of South Africa baddeleyite ore in 1973 was used principally in the manufacture of alumina-zirconia abrasives and also in ceramic colors, refractories, and for other uses.

Preliminary Bureau of the Census figures for 1973 showed that shipments of zircon and zirconia brick and shapes, composed mostly of these materials, totaled 2.3 million brick, expressed in terms of equivalent 9-inch brick, valued at \$8.8 million. In 1972, final figures for shipments were 2.0 million brick valued at \$8.3 million.<sup>3</sup>

Dealers and other firms reported shipments of milled zircon and concentrate in 1973 to the following markets: Foundry use, 46,000 tons; refractory and chemical use, 57,000 tons; chemical, metal, alloying, compounds, and other uses, 4,300 tons.

Zirconium metal was used in nuclear reactors, in chemical plants for corrosion-resistant material, in refractory alloys, and in photography for flashbulbs. AMAX and Wah Chang enlarged flat product mill capacities in 1973. AMAX began rolling zirconium metal in its Cleveland refractory metals mill: the mill was acquired from the General Electric Co. (G.E.). Wah Chang was planning to install Fansteel's Schloemann mill, recently acquired, at its Albany Oreg., plant.

Zirconium compounds, natural and manufactured, were used in refractories, glazes, enamels, welding rods, chemicals, and sandblasting. Zirconium chemicals were finding increasing applications in the paint, textile, and pharmaceutical industries. Ionarc/TAFA streamlined its pilot commercialscale ZrO2 plant. This new plant has a projected capacity of 1 million pounds per year of its unique plasma-produced zirconia. This highly reactive zirconia, readily soluble in sulfuric acid, was reported to be particularly suited for zirconia-based colors, chemicals, and polishes. Magnesium Electron, Inc. (MEI), purchased the Tizon Chemical Corp. facility in Flemington, N. J. MEI planned to add zirconium chemicals to its line of magnesium-zirconium casting alloys. Tizon will continue furnishing its proprietary polishing mixtures containing zirconium chemicals.

Hafnium metal, alloys, and compounds continued to have few uses. The metal was used for nuclear reactor control rods, in special refractory alloys, and in photographic flashcubes. The nonnuclear hafnium metal uses were reportedly increasing.

<sup>&</sup>lt;sup>3</sup> U.S. Department of Commerce, Bureau of the Census, Refractories. Quarterly, 1973.

Table 3.-Zircon consumption in selected zirconium materials as reported by producers in the United States in 1973

| Use                                                                                                                         | • | Quantity                                      |
|-----------------------------------------------------------------------------------------------------------------------------|---|-----------------------------------------------|
| Zircon refractories <sup>1</sup> AZS refractories <sup>2</sup> Zirconia <sup>3</sup> Alloys <sup>4</sup> Other <sup>5</sup> |   | 14,000<br>13,000<br>22,000<br>3,500<br>30,000 |
|                                                                                                                             |   |                                               |

<sup>&</sup>lt;sup>1</sup> Dense and pressed zircon brick and shapes. <sup>2</sup> Fused cast and bonded alumina-zirconia-

producers.

<sup>4</sup> Excludes alloys above 90% zirconium.

<sup>5</sup> Includes chemicals, metallurgical-grade zirconium tetrachloride, sandblasting, and welding

Table 4.-Zirconium oxide 1 consumption in selected zirconium materials as reported by producers in the United States in 1973

(Short tons)

| Use                       | Quantity                    |
|---------------------------|-----------------------------|
| AZ abrasives <sup>2</sup> | _ 3,000<br>_ 4,000<br>_ 300 |

<sup>&</sup>lt;sup>1</sup> Excludes oxide produced by zirconium metal producers

<sup>2</sup> Alumina and zirconia-based abrasives.

<sup>3</sup> Fused cast and bonded.

Table 5.-Yearend stocks of zirconium and hafnium materials

(Short tons)

| Item                                                                 | 1972   | 1973   |
|----------------------------------------------------------------------|--------|--------|
| Zircon concentrate held by dealers and consumers excluding foundries | 40,000 | 43,200 |
| Milled zircon held by dealers and consumers, excluding foundries     | 4,500  | 8,300  |
| Zirconium:                                                           | 1.300  | 648    |
| Oxide 1                                                              | 471    | 520    |
| OxideSponge                                                          | w      | 342    |
|                                                                      | 722    | 840    |
| IngotScrap                                                           | 285    | 1,190  |
| AlloysRefractories                                                   | 9,585  | 9,395  |
| Hafnium:                                                             | 25     | 28     |
| SpongeCrystal bar                                                    | 6      | 10     |

W Withheld to avoid disclosing individual company confidential data. <sup>1</sup> Excludes oxide held by zirconium metal producers.

#### **PRICES**

Published prices for domestic and foreign zircon rose \$5 and \$30, respectively, from those of 1972. The prices of zirconium oxides and chemicals, zirconium hydride, zirconium metal powder and sponge, and hafnium metal products were relatively unchanged. The baddeleyite price was furnished by Ronson Metals Corp.

silica-base refractories. <sup>3</sup> Excludes oxide produced by zirconium metal

Table 6.-Published prices of zirconium and hafnium materials in 1973

| Specification of material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Price                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Zircon: Domestic, f.o.b. Starke, Fla. (Folkston, Ga.), bags, per short ton <sup>1</sup> Domestic, 75% minimum quantity zircon and aluminum silicates, Starke,                                                                                                                                                                                                                                                                                                                                                                    | \$59.50 -\$60.50                      |
| Fla. (Folkston, Ga.), bags, per short ton<br>Imported sand, containing 65% ZrO <sub>2</sub> , c.i.f. Atlantic ports, bags, per                                                                                                                                                                                                                                                                                                                                                                                                   | 40.00                                 |
| long ton <sup>2</sup><br>Domestic, granular, 30-ton lots, from works, bags per pound <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                | 95.00 -100.00<br>.0475                |
| Domestic, milled, 15-ton lots, from works, bags, per pound 3Baddelevite imported concentrate: 4                                                                                                                                                                                                                                                                                                                                                                                                                                  | .050                                  |
| 98% to 99% ZrO <sub>2</sub> , minus 100-mesh, c.i.f. Atlantic ports, per pound<br>99 + %, minus 325-mesh, c.i.f. Atlantic ports, ton lots, per pound<br>Zirconium oxide: 3                                                                                                                                                                                                                                                                                                                                                       | .1620<br>.4863                        |
| Powder, commercial-reactor grade, drums, from work, per pound <sup>3</sup><br>Chemically pure white ground, barrels or bags, works, per pound <sup>3</sup><br>Electric fused, lump, bags, works, per pound<br>Milled, bags, 5-ton lots, from works, per pound <sup>3</sup><br>Glass-polishing grade, 100-pound bags, 85% to 90% ZrO <sub>2</sub> , works, per                                                                                                                                                                    | 6.50 - 8.00<br>1.50<br>.505530<br>.64 |
| pound <sup>3</sup> Opacifier grade, 100-pound bags, 85% to 90% ZrO <sub>2</sub> , per pound <sup>3</sup> Stabilized oxide, 100-pound bags, 91% ZrO <sub>2</sub> , milled, per pound <sup>3</sup> ZrO <sub>2</sub> milled, per pound <sup>3</sup> ZrO <sub>2</sub> milled, per pound <sup>3</sup> ZrO <sub>2</sub> milled, per pound <sup>3</sup> ZrO <sub>2</sub> milled, per pound <sub>2</sub> Zroconium oxychloride: Crystal, cartons, 5-ton lots from works, per pound <sub>2</sub> Zroconium acetate solution: <sup>3</sup> | .80 - 1.10<br>.515                    |
| 21rconium acetate solution: " 13% ZrO <sub>2</sub> , drums, carload lots, from works, per pound 22% ZrO <sub>2</sub> , same basis                                                                                                                                                                                                                                                                                                                                                                                                | .22                                   |
| Zirconium tydride: 3 Electronic grade, powder, drums, from works, per pound _<br>Zirconium:                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14.50 - 16.00                         |
| Powder, per pound <sup>5</sup><br>Sponge, per pound <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.00<br>5.50 - 7.00                  |
| Sheets, strip, bars, per pound 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.00 - 17.00                          |
| Sponge, per pound<br>Bar and plate, rolled, per pound                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 75.00<br>120.00                       |
| Nitrided                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 34.25                                 |

E. I. du Pont de Nemours & Co. Price List. December 1973.
 Metals Week. V. 44, No. 28, July 9, 1973, p. 4.
 Chemical Marketing Reporter. V. 204, No. 2, July 9, 1973, p. 39.
 Ronson Metals Corp. Baddeleyite Price List. Jan. 1, 1973.
 American Metal Market. V. 80, No. 183, Oct. 4, 1973, p. 19.

#### **FOREIGN TRADE**

Exports of zirconium ore and concentrate and zirconium oxide rose in 1973 compared with 1972 figures. Exports of all forms of zirconium metal and alloys, in general, were lower in 1973 than in 1972.

Zirconium ore and concentrate, exported to 13 countries in 1973, increased from 34,-719,653 pounds valued at \$940,347 in 1972 to 57,842,328 pounds valued at \$2,288,128. The quantity exported increased 67% over that shipped in 1972, but the value rose 43%. Both the 1973 quantity and value were alltime highs. The average value of the zirconium ore and concentrate exported in 1973, \$79.12 per ton, represented an increase from the 1972 value of \$54.17. This increase was attributed to larger amounts of higher cost granular and milled zircon shipped. The increase in the amount of higher cost zircon shipped also indicates a return to the normal zircon exporting pattern. Exports in 1972 consisted of a larger than normal percentage of lower cost zircon sand. The major recipients of the exported zirconium ore and concentrate were Japan, 39%; the Netherlands, 30%; Mexico 12%; Brazil, 11%; and Canada, 7%.

Exports of zirconium oxide increased from 1,304,352 pounds valued at \$931,867 in 1972 to 2,055,000 pounds valued at \$1,402,-167 in 1973. Export quantity and value increased 58% and 50%, respectively, in 1973. These zirconium oxide shipments were made to 21 countries. The five major recipients in 1973 were Japan, 32%; West Germany, 17%; Mexico, 15%; Canada, 13%; and Brazil, 7%.

Total exports of other classes of zirconium decreased nearly 23%, from 1,314,219 pounds in 1972 to 1,016,437 pounds in 1973. The value of this material rose 8% in 1973 to \$12,424,733 from the 1972 value of \$11,508,858. Of the three categories listed, only zirconium and zirconium alloy foil and leaf increased in both value and quantity in 1973. The zirconium and zirconium alloys, wrought class decreased 14% in the pounds exported but increased 21% in value, and exports of zirconium and zirconium alloys, unwrought, and waste and scrap decreased 54% in quantity and declined 51% in value.

Imports for consumption of zirconium ores in 1973 rose to 98,023 short tons, a 45% increase compared with the 67,537 short tons in 1972. The 1973 figure represents an alltime high tonnage of ore imported. Zirconium ore imports from the Republic of South Africa were chiefly baddeleyite (ZrO<sub>2</sub>). The remaining zirconium ore imports were believed to be Australian zircon.

The average value of imported zircon at foreign ports increased 11% in 1973 to \$51.76 per short ton, compared with \$46.79

in 1972. The Republic of South Africa baddeleyite value in 1973 of \$386.65 per short ton decreased slightly from the 1972 value of \$387.01. The tonnage imported rose 165% in 1973.

Imports for consumption of zirconium and hafnium in 1973 increased both in quantity and value in all categories: Zirconium, wrought; zirconium, waste and scrap and unwrought; zirconium alloys, unwrought; zirconium compounds, n.e.c.; zirconium oxide; and hafnium, unwrought and waste and scrap. Wrought hafnium imports resumed in 1973.

Table 7.-U.S. exports of zirconium ore and concentrate, by country

| Dutterstie     | 19         | 72      | 1973       |           |  |
|----------------|------------|---------|------------|-----------|--|
| Destination —  | Pounds     | Value   | Pounds     | Value     |  |
| Argentina      | 44,600     | \$4,207 | 10,400     | \$1,292   |  |
| Brazil         | 3,231,931  | 84,856  | 6,604,182  | 618,234   |  |
| Canada         | 3,284,383  | 181,203 | 4,034,229  | 243,319   |  |
| Chile          | 66,922     | 5,306   |            |           |  |
| Colombia       | 6,000      | 660     | 6.000      | 1.786     |  |
| France         | 12,000     | 1.646   | 26,880     | 5,240     |  |
| Guatemala      |            |         | 113,400    | 6,079     |  |
| Ireland        | 144,553    | 8,995   | 74,646     | 3,907     |  |
| Israel         | 1,143      | 617     |            |           |  |
| Italy          |            |         | 75,000     | 4,200     |  |
| Japan          | 79.728     | 9.675   | 22,432,164 | 622,172   |  |
| Mexico         | 5,700,660  | 208,588 | 6.989.077  | 288,503   |  |
| Netherlands    | 13,231,733 | 280,708 | 17.461.750 | 491,354   |  |
| United Kingdom | 8.916.000  | 153.886 | 2,000      | 1,065     |  |
| Venezuela      |            |         | 12,600     | 977       |  |
| Total          | 34,719,653 | 940,347 | 57,842,328 | 2,288,128 |  |

Table 8.-U.S. exports of zirconium by class and country

| Country                                       | 1                   | 972                | 1973                |                     |
|-----------------------------------------------|---------------------|--------------------|---------------------|---------------------|
| Country                                       | Pounds              | Value              | Pounds              | Value               |
| Zirconium and zirconium alloys, wrought:      |                     |                    |                     |                     |
| Australia                                     | 102                 | \$704              | 21                  | \$568               |
| Austria                                       | 61                  | 730                |                     |                     |
| Belgium-Luxembourg                            | 144                 | 2,095              | 16,177              | 581,474             |
| Brazil                                        | 648                 | 6,474              | 266                 | 1,778               |
| Canada                                        | 571,109             | 4,602,989          | 236,909             | 3,298,357           |
| Denmark                                       |                     |                    | 112                 | 1,208               |
| France                                        | 879                 | 6,805              | 13,016              | 439,210             |
| Germany, West                                 | 125,448             | 838,697            | 213,515             | 1,788,895           |
| India                                         | 2,266               | 97,080             | 4,234               | 38,794              |
| Italy                                         | 2,863               | 76,950             | 806                 | 20,626              |
| Jamaica                                       | 1,168               | 13,895             |                     | ·                   |
| Japan                                         | 102,677             | 2.094,776          | 99,117              | 2,400,364           |
| Netherlands                                   | 3,179               | 39,704             | 1.068               | 8.313               |
| Norway                                        | 19,146              | 177,740            | 6.144               | 59,541              |
| Poland                                        | ,                   | ,                  | 48                  | 570                 |
| Portugal                                      | $4\overline{43}$    | $5.3\overline{16}$ | 300                 | 4.367               |
| Sweden                                        | 58,328              | 564,202            | 70.932              | 684.688             |
| Switzerland                                   | 1,001               | 4,785              | 15,132              | 724,127             |
|                                               | 9,039               | 196,169            | 99.247              | 512,547             |
| United Kingdom                                | 898.501             | 8,729,111          | 777.044             | 10,565,412          |
|                                               | 030,001             | 0,123,111          | 111,044             | 10,505,412          |
| Zirconium and zirconium alloys, unwrought and |                     |                    |                     |                     |
| waste and scrap:                              |                     |                    |                     |                     |
| Australia                                     | 708                 | 3,170              | 23                  | 536                 |
| Belgium-Luxembourg                            | 1,758               | 20,035             | 3,241               | 38,660              |
| Canada                                        | 8,270               | 68,070             | 4,797               | 32,665              |
| France                                        | 8,218               | 64,705             | 2,120               | 9,498               |
| Germany, West                                 | 78,072              | 471,506            | 23,830              | 143,400             |
| Haiti                                         |                     |                    | 336                 | 1,746               |
| India                                         | 172                 | 2,713              | 37                  | 1,203               |
| Italy                                         | 1,718               | 27,565             | 451                 | 10,900              |
| Japan                                         | 102,725             | 638,530            | 32,206              | 252,009             |
| Korea, Republic of                            |                     |                    | 160                 | 1,810               |
| Netherlands                                   | 969                 | 4.340              |                     |                     |
| Norway                                        | 1,148               | 9,329              | 3,275               | 31.936              |
| Sweden                                        | 75                  | 1,000              | 12,360              | 105,502             |
| Switzerland                                   | 10.349              | 59,108             | 4,959               | 22,212              |
| Thailand                                      | 179                 | 1,084              | 2,000               |                     |
| United Kingdom                                | 169.764             | 916,761            | $89,7\overline{65}$ | 465,822             |
| Yugoslavia                                    | 27                  | 696                | 05,105              | 400,022             |
| Total                                         | 384,152             | 2.288.612          | 177.560             | 1.117.899           |
|                                               | 304,132             | 2,200,012          | 177,500             | 1,111,000           |
| Zirconium and zirconium alloy foil and leaf:  |                     |                    |                     |                     |
| Belgium-Luxembourg                            | 2,118               | 35,462             | 2,743               | 38.086              |
| Canada                                        | 16,096              | 305,295            | 10,481              | 148,807             |
| Germany, West                                 |                     |                    | 39,045              | 440,653             |
| Israel                                        |                     |                    | 47                  | 558                 |
| Italy                                         | $2.1\overline{92}$  | 41.678             | 5.995               | 78,020              |
| Japan                                         | 2,102               | 11,010             | 2.432               | 23,724              |
| Sweden                                        | $10.8\overline{78}$ | $103.7\bar{17}$    | 4,704               | 20,124              |
| United Kingdom                                | 282                 | 4,983              | $1.0\overline{90}$  | $11.5\overline{74}$ |
|                                               | 31,566              | 491.135            |                     |                     |
| Total                                         | 91,966              | 491,135            | 61.833              | 741.422             |

Table 9.-U.S. exports of zirconium oxide, by country

| <b>a</b>                  | 19        | 72       | 1973                 |           |
|---------------------------|-----------|----------|----------------------|-----------|
| Country                   | Pounds    | Value    | Pounds               | Value     |
| Argentina                 | 66,962    | \$54,233 | 45,481               | \$40,949  |
| Australia                 | 600       | 900      | 3,000                | 2,570     |
| Austria                   | 22,000    | 16,324   | 24,000               | 17,808    |
| Belgium-Luxembourg        | 14,612    | 9,790    | 6,309                | 4,403     |
| Bolivia                   | 500       | 740      | ·                    |           |
| Brazil                    | 136,805   | 96,235   | 144.993              | 102,024   |
| Canada                    | 152,986   | 99,018   | 277,165              | 186,959   |
| Chile                     | 2,000     | 1.530    | 400                  | 592       |
| Dominican Republic        | ·         | ,        | 1,049                | 1,492     |
| France                    | 49.382    | 47.357   | 60,111               | 45,783    |
| Germany, West             | 344,319   | 243,131  | 344,471              | 249,178   |
| Greece                    | 1.500     | 1.200    | 3,500                | 2,971     |
| Hong Kong                 | 1,804     | 1,560    | 7.450                | 6,858     |
| India                     | 2,060     | 1,380    | .,                   | -,        |
| Israel                    | 3,543     | 3,033    | 600                  | 546       |
| Italy                     | 173,321   | 146.120  | 17,491               | 17.186    |
| Japan                     | 86,639    | 53,636   | 652,999              | 400,236   |
| Mexico                    | 92,285    | 63,581   | 311,753              | 200,776   |
| Netherlands               | 83,960    | 52,139   | 37.546               | 25,620    |
| Peru                      | 635       | 853      | 635                  | 896       |
| South Africa, Republic of | 500       | 666      | 3,667                | 2.457     |
| Sweden                    | 53.819    | 28,226   | -,                   | _,        |
| United Kingdom            | 13,520    | 9,327    | $111.2\overline{80}$ | 91,235    |
| Venezuela                 | 600       | 888      | 1,100                | 1,628     |
| Total                     | 1,304,352 | 931,867  | 2,055,000            | 1,402,167 |

Table 10.-U.S. imports for consumption of zirconium ores, by country

|                              | 19                       | 71                   | 1972                     |                      | 19                       | 1973                |  |
|------------------------------|--------------------------|----------------------|--------------------------|----------------------|--------------------------|---------------------|--|
| Country                      | Quantity<br>(short tons) | Value<br>(thousands) | Quantity<br>(short tons) | Value<br>(thousands) | Quantity<br>(short tons) | Value<br>(thousands |  |
| Australia<br>Austria 1       | 93,402                   | \$3,328              | 66,064<br>49             | \$3,081              | 90,353                   | \$4,747             |  |
| Canada 1                     | $2,1\bar{1}\bar{4}$      | $\overline{49}$      | 844                      | 49                   | 1,179                    | (2)<br>82           |  |
| Japan 1                      |                          |                      | 168                      |                      | $4\overline{45}$         | $\overline{15}$     |  |
| South Africa,<br>Republic of | 871                      | 279                  | 385                      | 149                  | 1,019                    | 394                 |  |
| United Kingdom 1             |                          |                      | $\bar{2}\bar{7}$         | - <u>-</u> 2         | 5,003<br>23              | $^{175}_{2}$        |  |
| Venezuela<br>Total           | 96.387                   | 3.656                | 67,537                   | 3,291                | 98,023                   | 5,415               |  |

ののでは、 一般などの一般をあるというのとは、

 $<sup>^1</sup>$  Believed to be country of shipment rather than country of origin. rather than country of origin.  $^2$  Less than  $^{1\!\!/}_2$  unit.

Table 11.-U.S. imports for consumption of zirconium and hafnium 1973

| Country                                     | Pounds    | Value          |
|---------------------------------------------|-----------|----------------|
| Zirconium, wrought:                         |           |                |
| Canada                                      |           | \$8,000        |
| France                                      | 133,715   | 1,127,417      |
| Germany, West                               | 783       | 20,890         |
| Israel                                      |           | 550            |
| Norway                                      | . 29      | 628            |
| Total                                       | 136,476   | 1,157,485      |
| Zirconium, unwrought and waste and scrap:   |           |                |
| Canada                                      |           | 15,320         |
| Germany, West                               | 39,050    | 23,178         |
| Japan                                       | 264,030   | 826,834        |
| Switzerland                                 |           | 17,249         |
| United Kingdom                              | 18,597    | 19,008         |
| Total                                       | 369,075   | 901,589        |
| Zirconium alloys, unwrought: United Kingdom | 9,443     | 3,717          |
| Zirconium oxide:                            |           |                |
| Canada                                      | 6,261     | 4,383          |
| France                                      |           | 23,269         |
| Germany, West                               |           | 3,841          |
| Japan                                       |           | 6,880          |
| Switzerland                                 |           | 1,062          |
| U.S.S.R                                     |           | 125,444        |
| United Kingdom                              |           | 52,056         |
| Total                                       | 484,885   | 216,935        |
| Zirconium compounds, n.e.c.:                |           |                |
| France                                      | 130,403   | 46,877         |
| Germany, West                               | 172,578   | 78,324         |
| Japan                                       | 61,200    | <b>⋄</b> 5,862 |
| South Africa, Republic of                   |           | 1,355          |
| United Kingdom                              |           | 981,494        |
| Total                                       | 3,273,651 | 1,113,912      |
| Hafnium, unwrought and waste and scrap:     |           |                |
| France                                      |           | 90,533         |
| United Kingdom                              | 25        | 634            |
| Total                                       | 2,429     | 91,167         |
| Hafnium, wrought: France                    | 87        | 4,221          |

#### WORLD REVIEW

Australia.—Allied Eneabba Pty. Ltd., a joint venture of E. I. du Pont de Nemours & Co. and Allied Minerals N.L. on the latter's rutile prospect in Western Australia, revealed details of its future plans. Du Pont reportedly will provide both technical and financial assistance in constructing a pilot plant designed to produce 7,000 tons per year (tpy) of rutile, 15,000 tpy of zircon, and 28,000 tpy of ilmenite.4

Construction of a full-scale plant capable of producing 50,000 tpy of rutile, 200,000 tpy of ilmenite, 100,000 tpy of zircon, and unspecified quantities of monazite, leucoxene, and kyanite, was scheduled for completion in 1974. Du Pont has contracted to purchase 200,000 tons of ilmenite annually over a 15-year period.<sup>5</sup> It was estimated that the Allied Eneabba mineral field contains, in million tons, 14.0 of ilmenite, 6.3 of zircon, 2.2 of rutile, and 0.2 of monazite.<sup>6</sup>

Westralian Sands Ltd., a Western Australia mineral sands producer, announced

setting up of a new open pit operation and a mill in the Yoganup Extended area, South of Capel, to meet increased demand. The mill includes a mobile concentrator and screening plant. Westralian Sands planned to begin mining at its Tutunup area properties upon cessation of its current mining operation between Yoganup and the Capel River. Exploration from Boyanup (between Capel and Bunbury) northwards has been undertaken in a joint venture with British Titan Products' subsidiary, Tioxide Australia Pty. Ltd., to develop the area if warranted, by a new subsidiary. Westralian Sands has also been exploring for heavy mineral sands north of Perth in association with Lennard Oil NL.7

<sup>&</sup>lt;sup>4</sup> American Paint Journal. V. 58, No. 26, Dec. 10, 1973, p. 54.

<sup>&</sup>lt;sup>5</sup> Industrial Minerals. No. 64, January 1973, p. 27.

<sup>&</sup>lt;sup>6</sup> Allied Eneabba Pty. Ltd. (Subiaco, Western Australia). Company brochure. 1973, 12 pp.

<sup>7</sup> Work cited in footnote 5.

| ,                                                                                                                                                   |                                                                           |                                                                      |                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------|
| Country                                                                                                                                             | 1971                                                                      | 1972                                                                 | 1973 р                                                         |
| Australia Brazil <sup>1</sup> India <sup>2</sup> Malagasy Republic Malaysia South Africa, Republic of <sup>3</sup> Sri Lanka Thailand United States | r 455,195<br>4,956<br>9,924<br>3<br>2,803<br>r 1,091<br>153<br>1,682<br>W | 397,042<br>5,046<br>° 12,000<br>15<br>2,216<br>745<br>33<br>403<br>W | 393,336  ° 5,100  ° 12,000  ° 15  ° 2,200  2,180  31  ° 440  W |
| Total                                                                                                                                               | r 475,807                                                                 | 417,500                                                              | 415,302                                                        |

Table 12.-Zirconium concentrate: Non-Communist world production, by country (Short tons)

Estimate. Preliminary. Revised. WWithheld to avoid disclosing individual company confidential data.

1 Figure for 1971 includes 4,594 short tons of zircon and 362 short tons of baddeleyite; similar breakdown for 1972 and 1973 not available.

2 Output of Indian Rare Earths Ltd. for year beginning April 1 of year stated.

3 Official South African production figures are not reported; data presented are total recorded imports of zirconium ores and concentrates reported by the United States, Japan, and West Germany. As such, listed figures may be only a part of total output.

The Government of Western Australia was investigating the possibility of coordinated export facility at the Geraldton depot for the four new and existing mineral sand producers. Presently, Allied Eneabba was the first major producer to go onstream with a projected annual capacity of 350,000 tpy. A second producer, A. V. Jennings Industries (Australia) Ltd., was scheduled to begin production in 1974 with an initial capacity of 240,000 tpy of heavy minerals. The third party, Ilmenite Pty. Ltd., was planning to prove and test its reserves southwest of Eneabba by the end of 1974, prior to finalizing development plans. The fourth company, Westcoast Rutile Pty. Ltd. has located two deposits in the Jurien Bay area and hopes to complete a feasibility study for their development in the latter part of 1974.

This expansion in heavy mineral sand production is taking place along a 100-mile stretch of coast between Geraldton and Jurien Bay. This stretch of coast has proved and probable heavy mineral reserves exceeding 140 million tons.8

Mining Corp. of Australia (MCA), a company organized by Kamilaroi Mines Ltd. and Westcoast Rutile for exploiting their Jurien Bay properties, has revised its heavy mineral reserve estimates. The reserves now are 2 million tons of proved ore; 470,000 tons of probable reserves; and 600,-000 tons of possible reserves. MCA also stated that the grade of ore is 8% to 9% heavy mineral at a cut-off grade of 3%.9

Canada.—Chase Brass Division of Kennecott Copper Corp. and Noranda Metals Corp. announced plans to construct two tubular production plants near Ottawa, capable of producing zirconium fuel cladding. These plants will use zirconium alloys supplied by both AMAX and Teledyne Wah Chang.10

France.—The diversified St. Gobain-Pontà-Mousson group was expected to gain control of Sté. Générale des Produits Réfractaires S.A. (SGPR), one of France's major manufacturers, by acquiring Péchiney-Ugine-Kuhlmann's holdings. SGPR produces a wide range of clay and nonclay refractories. St. Gobain also increased its shareholdings in l'Electro-Réfractaire (fused cast refractories), in 1972, by purchasing shares held by Corning Glass, Co. U.S.A., and formed a partnership with the Italian company, Montedison, Refradige S.p.A., to produce fused cast refractories in Italy.11

India.—The capacity of the Chavara dry plant, operated by the Indian Rare Earths Ltd., near Quilon, was being expanded to yield over 200,000 tpy of ilmenite with proportionate increases in the output of zircon.12 The other company plant at Manavalakurichi, Kerala State, underwent an expansion to 40,000 tpy a few years ago. The two principal destinations for Indian heavy minerals were Japan and Czechoslovakia.13

W Withheld to avoid disclosing individual <sup>e</sup> Estimate. p Preliminary. r Revised. com-

<sup>&</sup>lt;sup>8</sup> Industrial Minerals. No. 67, April 1973, p. 28.

<sup>&</sup>lt;sup>9</sup> Industrial Minerals. No. 74, November 1973, p. 20.

<sup>10</sup> Work cited in footnote 2.

<sup>11</sup> Page 28 of work cited in footnote 5 12 Industrial Minerals. No. 69, June 1973, p.

<sup>&</sup>lt;sup>13</sup> Engineering and Mining Journal. This Month in Asia. V. 174, No. 4, April 1973, p.

The Industrial and Investment Corp. of Mahrashtra was examining the State's beach sand deposits for feasibility of producing beneficiated titanium products and associated heavy minerals.14

Sierra Leone.—Heavy mineral sand operations at the Bonthe and Moyamba mines, relinquished by Sherbro Mining Ltd. 2 years ago, were reopened by a subsidiary of two West German companies, the Bayer-Preussag Mining Co. Details regarding rutile and zircon production were unannounced.15

South Africa, Republic of.—A pilot plant to recover titaniferous and zircon-bearing heavy minerals from the dune area sands north of Richards Bay, Natal, has been put onstream by the Industrial Development Corp. of South Africa, in association with King Resources S.A. Pty. Ltd. The pilot plant was to provide sufficient information to decide if full-scale exploitation is possible.16 The Phosphate Development Corp. Ltd. (FOSKOR) was undergoing expansion to enable an eventual twofold increase in the production capacity for its unique baddeleyite concentrates. The baddeleyite concentrates, pure and ultrapure were favorably received by the abrasive and ceramic industries. Palabora Mining Co. Ltd. (PMC), mining a contiguous deposit in the Palabora igneous complex, was also undergoing an expansion. A market survey conducted earlier by PMC indicated a strong demand for its stockpiled baddeleyite. The baddeleyite concentrates are coproducts from copper, phosphate, and iron operations.

Tanzania.—The Tanzania State Mining Corporation reported coastal deposits containing zircon, ilmenite, rutile, and other heavy minerals.

#### **TECHNOLOGY**

The Office of Coal Research (OCR), U.S. Department of the Interior, completed negotiations with the U.S.S.R. for joint reon the magnetohydrodynamic (MHD)17 method of generating electricity.18 In further MHD research the OCR also let a contract to G.E., Philadelphia, Pa.,19 and announced a cooperative effort with the U.S. Air Force.20

The joint U.S.-U.S.S.R. MHD research will capitalize on the experience gained from the minimally operating 25-megawatt MHD pilot plant in Moscow. An exchange of scientific MHD data should prove mutually beneficial in achieving the rapid commercialization of MHD generating systems. The contract with GE was awarded to improve high-temperature operations required by advanced systems for generating electricity from coal. G.E. was to provide for the experimental work at its Space Sciences Laboratory, Valley Forge, Pa. The work involves construction and operation of a pilot heat exchanger to determine its effectiveness towards increasing the temperatures for coal gas fired, closed cycle MHD systems. The U.S. Air Force and OCR cooperative effort was to be done at the Air Force's Arnold Engineering Development Center, Tullahoma, Tenn., and was to

demonstrate the higher efficiency of a coalbased MHD generator compared with conventional steam-generating plants. The Air Force was providing both the research facilities and the MHD generator. This effort, started at yearend, was to be done by ARO, Inc., a civilian operating contractor for the Arnold Center.

<sup>14</sup> Industrial Minerals. No. 72, October 1973,

<sup>15</sup> Engineering and Mining Journal. This Africa. V. 174, No. 12, Month in Mining-In-Africa. December 1973, p. 114.

Industrial Minerals. No. 72, September 1973,

pp. 32-34.

16 Mining Magazine (London). V. 129, No. 5,
November 1973, p. 463.

17 MHD involves generating electricity without rotating parts associated with the less efficient conventional steam turbine generating systems. Coal-fired MHD systems are fired at high temperatures and pressures and the resulting gases are forced through a duct at high velocities. The gases move through a magnetic field surrounding the duct, resulting in the generation of an electric current. The ultra-high-temperature MHD systems are more efficient than lower temperature MHD systems and use stabilized zirconia electrodes and insulator materials in the ducts.

<sup>&</sup>lt;sup>18</sup> U.S. Department of the Interior. Interior Announces Cooperative MHD Research With

Amounces Cooperative MHD Research With Soviet Union. Press Release July 20, 1973, 1 p. <sup>19</sup> U.S. Department of the Interior. OCR Awards \$94,853 Contract to Improve MHD Systems. Press Release, Nov. 30, 1973, 1 p. <sup>20</sup> Coal Mining and Processing V.

<sup>20</sup> Coal Mining and Processing. V. 11, No. 6, June 1974, p. 22.

Bureau of Mines research efforts were directed towards zirconium electrowinning technology and developing advanced molybdenum-zirconium alloys. The zirconium electrowinning research goals were twofold. The initial goal was to lower the cost of producing electrowon zirconium Bureau-developed process and the second goal was to operate a 1,000-ampere cell for meaningful upscaling evaluations. Bureau Mines electrolytic process uniquely produces a high-purity metal remarkably low in interstitial contaminants. The advanced molybdenum-zirconium alloy research consists of three integrated phases: 1. Castability of alloys; 2. Stable oxide coatings; and 3. Casting oxidation resistance metal protective coatings. The compositions included in this research were TZM (Mo-0.5Ti-0.08Zr-0.015C) and binary molybdenum alloys containing various levels of zirconium and hafnium.

Bureau of Mines research in the K2HfF6-K<sub>2</sub>ZrF<sub>6</sub>—1.25 weight-percent HF systems revealed even though hafnium enrichment can be obtained in recrystallized liquors, the existence of hydrates coupled with the slopes of their connecting solubility curves precludes the suitability of this system in separating high-purity K2HfK6 from K2HfF6-K<sub>2</sub>ZrF<sub>6</sub> mixtures.<sup>21</sup>

The history, geology, mining, and processing methods, along with shipping and quality control particulars, of the Allied Eneabba western Australian deposit, were related to present and future mining operations.22 A detailed discussion of the Richert cone concentrator, a high-capacity, low-cost gravity pinch sluice-type, developed by Mineral Deposits Ltd. of Southport, Queensland, Australia, was published.23 The detailed discussion includes not only flowsheets for several Australian heavy sand operations but also flowsheets for recovering cassiterite, baddeleyite, and magnetite from sand and nonsand ores.

The solid-liquid interfacial parameters of the zircon-sodium oleate (soap) system were experimentally determined by absorption measurements, zeta-potential, and infrared studies and correlated with parallel flotation experiments on high-purity zircon. The studies, mutually supporting, showed that the adsorption of sodium oleate on zircon is due mostly to a van der Waals-type attraction between the hydrocarbon chains of the fatty acid soap.24 The completion of this theoretical study, directly applicable to

soap-floating zircon from beach and other sands, was reported.25 This work, devoted to determining the effects of pH on the flotation recovery of zircon from different sodium oleate concentrations, discovered the antagonistic role of hydroxyl ions with increasing pH. Recoveries of 100% zircon were experienced between the pH range of 6 to 9 at sodium oleate concentrations of 6.58 times 10-4 mole per liter. Zircon recoveries at other concentrations and pH were markedly lower.

Semicrystalline glazes, containing zirconia to improve opacity and acid resistance, compatible with low expansion cordierite white bodies were developed.26 These glazes, reportedly attractive with a satin finish, consist of low expansion crystals dispersed in a vitreous or glassy matrix; they are suitable for application to the popular new dinnerware and cookware. Instability of reheated plasma-sprayed zircon coatings were attributed to the destabilization of the resulting dense cubic zirconia to the less dense monoclinic variety. The cubic zirconia crystallites, dispersed in a glassy silica matrix, on heating, undergoes a polymorphic transformation which results in a destructive pore contraction and/or shrinkage phenomenon.27

An article evaluated the considerations in selecting coreless induction furnace refractories. Vibrated monolithic silica linings, although dry, are preferable for these furnaces; circumstances are stressed in which brick or composite linings, such as zircon, zirconia, alumina, and magnesia, would be the better choice. Physiochemical and eco-

<sup>&</sup>lt;sup>21</sup> Rhoads, S. C. The K<sub>2</sub>HfF<sub>6</sub>-K<sub>2</sub>Z<sub>7</sub>F<sub>6</sub>—1.25 Percent HF Systems at 40° C with Other Solubility Curves From 25° to 75° C. BuMines RI 7785, 1973, 20 pp.

Work cited in footnote 6.

23 Graves, R. A. The Richert Cone Concentractor—an Australian Innovation. Min. Cong.
J., v. 59, No. 6, June 1973, pp. 24-28.

24 Dixit, S. G., and A. K. Biswas. Studies on Zircon-Sodium Oleate Flotation System: 1-Solid-Liquid Interfacial Parameters. Inst. Min. Met., v. 82, No. 802, September 1973, pp. C140-C144.

<sup>&</sup>lt;sup>26</sup> O'Conor, E. F., and R. A. Eppler. Semi-crystalline Glazes for Low Expansion Whiteware Bodies. Bull. Am. Ceram. Soc., v. 52, No. 2, February 1973, pp. 180–184.

<sup>&</sup>lt;sup>27</sup> Whittemore, Jr., O. J., and D. A. Sullivan. Pore Changes on Reheating of Plasma-Sprayed Zircon. J. Am. Ceram. Soc., v. 56, No. 6, June 1973, p. 347.

nomic considerations are also weighed.<sup>25</sup> The occurrences of known Canadian mineral deposits suitable for clay and nonclay refractories production, irrespective of economics, were highlighted. The majority of the reported zircon occurrences were in Ontario.<sup>29</sup>

The lanthanum modified lead zirconatelead titanate (PLZT) polycrystalline bodies, aside from their usefulness as electrooptic (electric switching and/or memory application) materials, when suitably hot-pressed have especially useful light optical transparency at near theoretical densities. However, the development of commercially acceptable light transparent PLZT bodies have been hampered because of reduced light transparency or opaqueness due to deviations from their theoretical density. These deviations were traced to the presence of pores or voids which contributed to opaqueness by a light-scattering mechanism. Methods to both calculate the expected transparency and relate it to deviations from theoretical density were advanced. This calculating technique should hasten the development of commercial bodies.30 Mechanisms and systems, including improvements in atmospheric sintering processes were used successfully in fabricating transparent PLZT plates over 8.4 centimeters in diameter. A combined cold- and hot-pressing scheme, limiting the rate of lead oxide volatilization, proved to be the most reliable process for atmospherically sintering these large transparent PLZT ceramics.31

In another related PLZT work, contributing to a better understanding of these ceramics, the low-temperature phase relations were determined as a function of lanthanum content and temperature. Dielectric and piezoelectric measurements and X-ray data were used to locate and identify the critical phase transitions. Laser-induced Raman spectra of pure powder and multidomain single crystals of lead zirconate, a component used in PLZT body synthesis, was added to the literature. These spectra, previously unavailable, should lead to more efficient PLZT synthesis. 28

The fracture toughness of a partially stabilized ZrO<sub>2</sub> (PSZ) in the system CaO-ZrO<sub>2</sub> was studied to determine the mechanisms of crack propagation.<sup>34</sup> PSZ ceramics in the system CaO-ZrO<sub>2</sub> are superior to conventionally prepared fully stabilized zirconia in thermal-shock properties. Solid solutions

of ZrO<sub>2</sub> and Y<sub>2</sub>O<sub>3</sub>, prepared by decomposing coprecipitates, were adversely affected by atmospheric CO<sub>2</sub>. The atmospheric CO<sub>2</sub> reportedly forms a carbonate complex during preparation which is only partially drivenoff during sintering.<sup>35</sup> The remaining CO<sub>2</sub> stabilizes an amorphous phase which encourages crystal nucleation and growth during sintering for oxygen potential probes.

Phase transformation of monoclinic ZrO<sub>2</sub> single crystals, prepared by flux and hydrothermal methods, were studied primarily by DTA. A histogram plot of the transformation temperatures determined from heating and cooling experiments from approximately 60 single crystals revealed two distinct temperature ranges. The transformation temperatures on heating were in the range 1,160° to 1,190° ± 3° C and on cooling, 1,070° to 1,100° ± 3° C.3° A new binary conducting phase, Ce<sub>2</sub>Zr<sub>3</sub>O<sub>10</sub>, was discovered in the system CeO<sub>2</sub>·ZrO<sub>2</sub>·3° Cerium zirconates are prime candidates as MHD electrodes because of their resistance to alkali attack at elevated temperatures in air.

The pseudobinary Ti-ZrO<sub>2</sub> system was investigated by metallographic, X-ray diffraction, electron probe, and melting-point techniques. This investigation revealed a

<sup>&</sup>lt;sup>28</sup> Foundry. Refractory Practice for Coreless Induction Melting-Iron. V. 101, No. 4, April 1973, pp. 56-59.

<sup>&</sup>lt;sup>29</sup> Palfreyman, M. Canadian Minerals for Refractories. Bull. Can. Min. Met. (CIM), August 1973, pp. 65-73.

<sup>30</sup> Erneta, M., and H. A. Stöckler. Light Scattering by Pores in Ceramics (Pb, La) (ZrTi) O<sub>3</sub>. J. Am. Ceram. Soc., v. 56, No. 7, July 1973, pp. 394-395.

<sup>&</sup>lt;sup>31</sup> Snow, G. S. Improvements in Atmosphere Sintering of Transparent PLZT Ceramics. J. Am. Ceram. Soc., v. 56, No. 9, September 1973, pp. 479-485.

 <sup>32</sup> O'Bryan, Jr., H. M. Phase Relations in (Pb, La) Zro.65 Tio.85 03. J. Am. Ceram. Soc., v. 56, No. 7, July 1973, pp. 385-388.

<sup>33</sup> Pasto, A. E., and R. A. Condrate, Sr. Raman Spectrum of PbZrO<sub>3</sub>. J. Am. Ceram. Soc., v. 56. No. 8, August 1973, pp. 436-438.

<sup>&</sup>lt;sup>34</sup> Green, D. J., P. S. Nicholson, and J. D. Embury. Fracture Toughness of a Partially Stabilized ZrO<sub>2</sub> in the System CaO-ZrO<sub>2</sub>. J. Am. Ceram. Soc., v. 56, No. 12, December 1973, pp. 619-623.

<sup>35</sup> Thompson, M. A., D. R. Young, and E. R. Mc Cartney. Influence of Precipitating Atmosphere on Sintering of ZrO<sub>2</sub> + 12 Mol % Y<sub>2</sub>O<sub>3</sub>. J. Am. Ceram. Soc., v. 56, No. 12, December 1973, pp. 648-654.

<sup>&</sup>lt;sup>36</sup> Mitsuhashi, T., and Y. Fujiki. Phase Transformation of Monoclinic ZrO<sub>2</sub> Single Crystals. J. Am. Ceram. Soc., v. 56, No. 9, September 1973, p. 493.

<sup>&</sup>lt;sup>37</sup> Longo, V., and D. Minichelli. X-Ray Characterization of Ce<sub>2</sub>Zr<sub>3</sub>O<sub>10</sub>. J. Am. Ceram. Soc., v. 56, No. 11, November 1973, p. 600.

similarity to the Zr-ZO<sub>2</sub> system and also presented the phase relations in the Ti-ZrO<sub>2</sub> section between 600° and 2,000° C.38 Phase relations were also proposed for the HfO<sub>2</sub>-rich portion of the system Hf-HfO<sub>2</sub>.39 Phases in the Ti-ZrO<sub>2</sub> and Hf-HfO<sub>2</sub> systems are potentially valuable as refractory cermets. Zirania, a new family of zirconium oxide titanium ceramics, was recently developed by United Technology Research, Inc., Hauppauge, N.Y. Zirania, developed for the U.S. Air Force, reportedly can withstand repeated intensive shock at temperatures to 4,000° F without melting or cracking.40 Zirania may be the answer for a high-temperature substrate to support the platinum or palladium catalysts in automobile catalytic convertors.

The AMAX Zr-Hf Newsletter listed approximately 900 reference abstracts devoted to zirconium and hafnium technology in 1973. Many of these articles were devoted to the use of zirconium and hafnium as metal alone, in alloys and as alloying elements, not only in nuclear applications but also in refractory and oxidation- and corrosion-resistance technology.

AMAX Specialty Metals and Titanium Metals Corp., in a joint effort, succeeded in producing high-purity electrolytic zirconium in a prototype production-size cell. Tests were currently underway on converted wrought shapes for comparison with Krollprocess zirconium.41

The major domestic and foreign nuclear fuel fabricators and zirconium metal suppliers participated in a Symposium on Zirconium in Nuclear Application sponsored by the American Society for Testing and Materials, Portland, Oreg., August 21 to 24, 1973. The participants reviewed zircaloy testing methods and procedures and concluded that zircaloy continued to be superior to any other material for the cladding of nuclear fuel in the water-moderated nuclear reactors.

<sup>38</sup> Domagala, R. F., S. R. Lyon, and R. Ruh. The Pseudobinary Ti-ZrO<sub>2</sub>. J. Am. Ceram. Soc., v. 56, No. 11, November 1973, pp. 584-587.

38 Ruh, R., and V. A. Patel. Proposed Relations in the HfO<sub>2</sub>-Rich Portion of the System Hf-HfO<sub>2</sub>. J. Am. Ceram. Soc., v. 56, No. 11, November 1973, pp. 606-607.

40 Research Development. V. 24, No. 9, September 1973, pp. 18-19.

41 AMAX Specialty Metals Corporation, Metals Division, Akron, N.Y. Zr-Hf Newsletter. September 1973, 18 pp.

## Minor Metals

## By Staff, Division of Nonferrous Metals-Mineral Supply

#### **CONTENTS**

|                     | Page |           | Page |
|---------------------|------|-----------|------|
|                     | 1050 | Scandium  | 1365 |
| Arsenic             |      | Selenium  | 1366 |
| Cesium and rubidium |      |           | 1369 |
| Germanium           | 1362 | Tellurium | 1371 |
| Indium              |      | Thallium  | 13/1 |
| Radium              | 1365 |           |      |

### ARSENIC 1

Domestic Production.—Arsenic trioxide was produced in the United States solely as a byproduct of base-metal ores, primarily copper ore, and only at the Tacoma, Wash., plant of the American Smelting and Refining Company. Production figures cannot be published but output was only slightly below that in 1972. Shipments exceeded production and yearend stocks were substantially below yearend 1972 inventories.

Consumption and Uses.—Apparent consumption of arsenic, essentially all as white arsenic  $(As_2O_3)$ , increased 29% over that in 1972. Calcium and lead arsenate were the major end products; minor quantities of arsenic were used in sodium arsenate and other chemical compounds. About 3% of the arsenic consumed was used as metal quantities of high-purity arsenic were used in the manufacture of gallium and indium arsenides for semiconductors.

Arsenic was used primarily for its toxic qualities in the agricultural industry for insecticides, selective plant killers, defoliants, and for parasitic control in chicken feed. Under the cattle fever tick eradication program, 240,000 cattle were dipped in a 0.22% arsenious oxide solution prior to entry into the United States.

Wood preservation continued as an important use for arsenical compounds. Consumption of chromated copper arsenate (CCA compounds) has grown from 1,165

tons in 1967 to 4,874 tons in 1972. Chromated copper arsenate solutions were used to treat more than 35% of the lumber and timbers treated in 1972. The use of fluor chrome arsenate phenol (Wolman salts and osmosalts) has dropped from 2,671 tons in 1967 to 957 tons in 1972. Until 1969, Wolman salts was the principal wood preservative.

Prices.—The price of refined white arsenic, 99.5%, at New York docks, in barrels, small lots, has been unchanged at 6½ to 6¾ cents per pound since July 6, 1968. This quotation held through March 8, 1973; thereafter, quotations were listed as nominal. Refined white arsenic in bulk carload lots at Laredo, Tex., was \$120 per ton, and crude white arsenic was quoted at \$94 per ton at Tacoma, Wash. Lead arsenate in 50-pound bags was quoted at 26 to 29 cents per pound throughout 1973.

Arsenic metal was quoted in London at £690 per metric ton (75.1 cents per pound) until January 18 when it rose to £800 per metric ton (87.1 cents per pound). On June 21 the price was quoted at a range of £800 to £1,000 per metric ton (87.1 to 108.9 cents per pound) where it remained through yearend.

Foreign Trade.—No exports of arsenic metal or white arsenic were reported.

Imports of white arsenic decreased for the third successive year. Receipts were

<sup>&</sup>lt;sup>1</sup> Prepared by Gertrude N. Greenspoon, mineral specialist.

16% below those in 1972 and the lowest since 1958. Mexico was the chief supplier with 49% of the total imports, followed by Sweden with 36% and France with 11%.

Sweden supplied 590 tons of the 643 tons of arsenic metal imported in 1973. The United Kingdom and Belgium-Luxembourg furnished 20 tons each. The remainder came from Canada, West Germany, Japan, and the Netherlands.

Tariff.—Arsenic oxide (white arsenic) enters the United States duty free. A 1.2cent-per-pound duty was applicable to arsenic metal.

World Review.—Philippines.—Shipments of high arsenic-bearing copper concentrate by Lepanto Consolidated Mining Co. to the Tacoma, Wash., smelter were reduced from 7,000 to 4,500 tons per month because of antipollution curbs placed on the

Table 1.-U.S. imports for consumption of white arsenic (As2O3) content, by country

|                                                                                                | 19                                                | 71                                          | 1972                                       |                                             | 1973                                             |                                          |
|------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------|--------------------------------------------|---------------------------------------------|--------------------------------------------------|------------------------------------------|
| Country                                                                                        | Quantity<br>(short<br>tons)                       | Value<br>(thou-<br>sands)                   | Quantity<br>(short<br>tons)                | Value<br>(thou-<br>sands)                   | Quantity<br>(short<br>tons)                      | Value<br>(thou-<br>sands)                |
| Australia Belgium-Luxembourg France Germany, West Mexico Peru South Africa, Republic of Sweden | 25<br>1,425<br>(¹)<br>8,316<br>68<br>196<br>7,276 | \$9<br>180<br>(1)<br>980<br>27<br>23<br>968 | 1,556<br>11<br>3,552<br>24<br>285<br>8,184 | \$7<br>184<br>4<br>462<br>27<br>44<br>1,228 | 21<br>1,281<br>11<br>5,605<br>25<br>409<br>4,144 | \$3<br>190<br>4<br>760<br>1<br>50<br>706 |
| Total                                                                                          | 17,306                                            | 2,187                                       | 13,613                                     | 1,956                                       | 11,496                                           | 1,714                                    |

<sup>1</sup> Less than 1/2 unit.

Table 2.-U.S. imports for consumption of arsenicals, by class

|                                                                                                                                               | 19'                         | 71                                        | 1972 1978                   |                                     | 3                           |                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------|-----------------------------|-------------------------------------|-----------------------------|-------------------------------|
| Class                                                                                                                                         | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands)                 | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands)           | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands)     |
| White arsenic (As <sub>2</sub> O <sub>3</sub> )<br>Metallic arsenic<br>Sulfide — Sodium arsenate<br>Lead arsenate — Arsenic compounds, n.e.c. | $1ar{2}ar{4}$               | \$2,187<br>1,260<br>\$\bar{35}<br>1<br>26 | 13,613<br>665<br>1<br>240   | \$1,956<br>1,790<br>(1)<br>69<br>19 | 11,496<br>643<br>2<br>263   | \$1,714<br>2,630<br>414<br>74 |

<sup>1</sup> Less than ½ unit.

Table 3.-White arsenic (arsenic trioxide) 1: World production, by country (Short tons)

| (2 not vons)                      |              |            |              |
|-----------------------------------|--------------|------------|--------------|
| Country 2                         | 1971         | 1972       | 1973 р       |
| Brazil                            | 163          | 181        | 76           |
| Canada                            | 50           | 30         | 10           |
| France                            | 8.844        | r e 10.000 | 10,000       |
| Germany, West                     | 40           |            | * 520        |
| Japan                             | 1.054        | 491        |              |
| Mexico                            | 1,004        | 471        | * 500        |
| Peru                              | 12,658       | 5,618      | 4,828        |
| Portugal                          | 723          | 1,123      | • 1,200      |
| South West Africa, Territory of 3 |              | 15         | 22           |
| Sweden                            | 44,080       | 2,612      | 8,981        |
|                                   | 19,290       | 17,857     | • 18,200     |
|                                   | 7,880        | 7,940      | 7,990        |
| United States                     | $\mathbf{w}$ | W          | $\mathbf{w}$ |
| Total                             | r 54.987     | 46.338     | 52.317       |
|                                   | . 04,301     | 40,000     | 04.011       |

<sup>°</sup> Estimate. r Revised. Preliminary. W Withheld to avoid disclosing individual company confidential data.

<sup>&</sup>lt;sup>1</sup> Including calculated trioxide equivalent for output reported as elemental arsenic and arsenic compounds

<sup>1</sup> Including calculated trioxide equivalent for output reported as discontinuous content than trioxide.

2 In addition to the countries listed, Argentina, Austria, Belgium, the People's Republic of China, Czechoslovakia, East Germany, Finland, Hungary, Southern Rhodesia, the United Kingdom, and Yugoslavia have produced arsenic and/or arsenic compounds in previous years, but information is inadequate to ascertain whether such output has continued, and if so at what levels.

3 Output of Tsumeb Corp. Ltd. only.

4 Production for year ended June 30, 1971. Output during July 1, 1971, to December 31, 1971, was 2,988 short

smelter. The company was attempting to find an alternate smelter to avoid a 35% production cutback.

Sweden.—Arsenic production rose 2% in 1973. The low output in 1972 resulted from lower arsenic content of the ores and

to changes in the refining plant. Production of arsenic metal rose as an additional unit went into operation. The current capacity of 1,500 tons annually for the metal plant can be increased if market conditions warrant expansion.

## **CESIUM AND RUBIDIUM** <sup>2</sup>

Domestic Production.—There was no domestic production of cesium or rubidium ores in 1973. All domestically produced cesium and rubidium compounds were processed from imported pollucite or AL-KARB (a residue from the processing of lithium ores).

Total production of cesium chemical compounds declined slightly in 1973, whereas the output of rubidium chemical compounds tripled. Cesium and rubidium compounds were produced by Kawecki Berylco Industries, Inc., Revere, Pa.; Kerr-McGee Corp., Trona, Calif.; and Rocky Mountain Research, Inc., Golden, Colo. There was no reported production of cesium or rubidium metal during the year; however, small quantities of cesium and rubidium metals were shipped from stocks.

Consumption and Uses .- Data, relating to the consumption and use pattern of cesium and rubidium metals and compounds, were not available. However, major uses were thought to be in research and development of new power-generating systems, biological sciences, and other technical areas. Cesium and rubidium found commercial application in the manufacture of pharmaceuticals, ultracentrifuge separation of organic compounds, ionic propellant engines for space-flight applications, and electronic apparatus such as scintillation counters, photomultiplier tubes, and photoelectric cells. Cesium, rubidium, and their compounds can be substituted for each other in some end uses.

Any potential for a large-scale increase in the demand for cesium and rubidium continued to be contingent on the commercial development of magnetohydrodynamic (MHD) electric power generators and thermionic converters. The Office of Coal Research, U.S. Department of the Interior, continued to fund MHD research.

Prices.—During the year, the American Metal Market quoted a nominal price for pollucite, containing about 20% Cs, in minimum lots of 10 tons delivered to an

entry point, at \$300 per short ton. The Metal Bulletin also quoted the nominal price for pollucite concentrates, containing minimum 24% Cs<sub>2</sub>O, f.o.b. source, at \$11.08 per metric ton unit (22.046 pounds of Cs<sub>2</sub>O). The American Metal Market quotation on cesium metal, 99+% purity, remained unchanged at \$100 to \$375 per pound. The quotation on rubidium metal, 99.5+% purity, also remained unchanged at \$300 per pound.

Table 4.—Prices of selected cesium and rubidium compounds

|                                         | Base price p       | er poun                  |
|-----------------------------------------|--------------------|--------------------------|
| Item                                    | Technical<br>grade | High-<br>purity<br>grade |
| Cesium bromide                          | \$28               | \$65                     |
| Cesium carbonate                        |                    | 67                       |
| Cesium calbonate                        |                    | 68                       |
| Cesium fluoride                         |                    | 75                       |
| Cesium hydroxide                        |                    | 75                       |
| Rubidium carbonate                      |                    | 75                       |
| Rubidium carbonate                      |                    | 76                       |
| Rubidium chloride                       | - 5:               | 8 <b>3</b>               |
| Rubidium fluoride<br>Rubidium hydroxide |                    | 83                       |

<sup>&</sup>lt;sup>1</sup> Excludes packaging cost, 50- to 100-pound quantities, f.o.b. Revere, Pa.

Source: Kawecki Berylco Industries, Inc.

Foreign Trade.—Only small quantities of pollucite were imported from Canada during the year, but data on the quantity and value of imports of cesium and rubidium ores were not available. Imports of cesium compounds declined greatly from 12,048 pounds, valued at \$330,691 in 1972 to 3,159 pounds, valued at \$111,631 in 1973. No rubidium metal was imported during 1973. No other data were available on imports or exports of cesium and rubidium products.

World Review.—During 1973, the Tantalum Mining Corp. of Canada, Ltd., produced about 300 tons of pollucite. Of this

<sup>&</sup>lt;sup>2</sup> Prepared by Benjamin Petkof, physical scientist.

quantity, 250 tons was shipped to the U.S.S.R.

Although Southern Rhodesia has not officially reported pollucite production since its independence in 1966, the Bikita Minerals Ltd. Mining Lease No. 1, near Glen Cova in the Victoria District was listed as an operating mine as of January 1, 1973, and presumably remained in operation throughout the year.

No information was available on the 1973 status of the mining properties in the Karibib area of the Territory of South West Africa, which were in operation

through 1967, the last year for which official data were published.

Table 5.-U.S. imports for consumption of cesium compounds, by country

| Country                                         | Cesium chloride |                   |                   | n com-<br>, n.s.p.f.       |
|-------------------------------------------------|-----------------|-------------------|-------------------|----------------------------|
|                                                 | Pounds          | Value             | Pounds            | Value                      |
| Germany, West_<br>Netherlands<br>United Kingdom |                 | \$55,246<br>3,035 | 1,502<br>48<br>62 | \$47,409<br>4,438<br>1,503 |
| Total                                           | 1,547           | 58,281            | 1,612             | 53,350                     |

#### **GERMANIUM** 3

Domestic production and consumption of germanium in 1973 was little changed from that of the last 3 years with the use germanium in optics increasing to where it nearly equals that used in semiconductors.

Legislation and Government Programs. -On June 26, 1973, the Tariff Commission received advice from the Treasury Department that germanium point contact diodes from Japan were being or were likely to be sold at less than fair market value within the meaning of the Antidumping Act of 1921. Accordingly, the Commission instituted an investigation. A public hearing was held August 10, 1973, and on the basis of evidence supplied to the Commission, it concluded that a domestic industry was not being injured by reasons of importation of germanium point contact diodes from Japan at less than fair market value.

**Production.**—Production germanium from domestic sources was estimated at 27,000 pounds in 1973, with an additional 10,000 pounds recovered from germanium-containing zinc concentrates imported from other countries. No new residues were recovered from the treatment of ores from the Kansas-Missouri-Oklahoma zinc-bearing region, most of the germanium was obtained from such smelter residues that had been stockpiled. Primary production is supplemented by recycled waste or new scrap, which returns from 65% to 80% of that metal used in semiconductors.

All the primary germanium was produced by Eagle-Picher Industries, Inc.,

from stockpiled zinc smelter residues at its Quapaw, Okla. plant. Eagle-Picher also reprocessed new scrap. Other producers of secondary germanium were GTE Sylvania, Inc., Towanda, Pa.; Kawecki Berylco Industries, Revere, Pa.; and Atomergic Chemetals Co., Long Island, N.Y.

Consumption and Uses.—Apart from germanium's specialized uses in the realm of transistors and solid state physics, germanium has important applications in metallurgy, chemotherapy, polymer chemistry, and optical instrumentation. Since germanium-containing glass has a high refractive index, it finds use in wide-angle camera lenses and microscope objectives. Other uses are for making special glasses for spectroscopes and infrared devices, high-temperature technology as a stabilizer for zirconium against phase changes, and in the fabrication of fuel elements in atomic reactors. Semiconductors and optics account for approximately 90% of the domestic use of germanium.

There is currently a great deal of interest in organogermanium compounds as polymers and therapeutic agents. Certain of these compounds have been found to have marked antimicrobial activity combined with low mammalian toxicity. Of greater interest is the possible use of germanium compounds for treating carcinoma and leukemia.4

<sup>&</sup>lt;sup>3</sup> Prepared by Herbert R. Babitzke, physical sci-

entist.

Bannerjee, N. N., H. S. Rao, and A. Lahiri.
Germanium in Indian Coals. Quarterly Bulletin
of the Central Fuel Research Institute, India. V.
23, Nos. 1-2, March-June 1973, pp. 24-26.

Medicines containing carboxyethylgermanium sesquioxide have been developed for domestic animals. The organic germanium medicines are effective in curing and preventing various animal diseases caused by viruses, bacteria, and protozoans.<sup>5</sup>

A new medicinal toothpaste containing GeO<sub>2</sub> was highly effective for control of periodontopathia. Gingivostomatitis was cured 4 months after application of the prepared toothpaste.6

Research and development is continuing in the use of platinum-germanium catalysts. Gasoline is reformed with hydrogen over a bimetallic catalyst with continuous halogen additions. The catalyst is platinum metal and a germanium compound on a porous carrier.<sup>7</sup>

Superconductors continued to receive researchers' attention. Investigations have revealed that niobium-germanium films remain superconducting up to 22.3° K. The high critical temperature of the films was attributed to the formation of a more nearly perfect stoichiometric Nb<sub>3</sub>Ge compound that had not been attained before.8

New diamondlike semiconductor materials have been developed that show promise for infrared, nonlinear optical and electroluminescent applications. One of the ternary materials, ZnGeP<sub>2</sub>, has the potential to emit light at the proper wavelength, which makes it important to the field of optical communications.<sup>9</sup>

The Bureau of Mines has employed handheld scanners in investigations to detect abnormal surface temperatures on dumps of flood-generated trash near Wilkes-Barre, Pa.10, and in coal mines to detect failure in roof and ribs of an underground opening.11 The scanner, which was originally developed for military use as a night vision device, has a lens configuration consisting of two germanium components and one silicon component. The operator views a thermal image of the target area in which the contrast in the image is proportional to the magnitude of the temperature differences on the target. In a normal operation mode, hot areas are bright in the image.

Table 6.-U.S. imports for consumption of germanium, by country

| Country                                                                                                        | Quantity<br>(pounds)                         | Value                                                        |
|----------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------|
| Unwrought and waste and scrap:  Belgium-Luxembourg Czechoslovakia Denmark Germany, West U.S.S.R United Kingdom | 1,995<br>110<br>160<br>4,206<br>7,696<br>538 | \$674,351<br>5,750<br>10,002<br>226,603<br>449,532<br>32,509 |
| Total                                                                                                          | 14,705                                       | 1,398,747                                                    |

Prices.—The prices of domestic zone refined (intrinsic) germanium and domestic germanium dioxide remained at \$293 and \$167.50 per kilogram, espectively, through 1973. These prices have been in effect since June 8, 1970. The selling price of imported germanium metal and germanium dioxide was increased by about 13% to reflect the devaluation of the dollar. The increases, effective February 14, 1973, brought the price of germanium metal to \$260 per kilogram from \$229 and germanium dioxide to \$136 per kilogram from \$120.

Foreign Trade.—U.S. imports of germanium metal (unwrought and waste and scrap) was 14,705 pounds valued at \$1,398,747 in 1973, nearly a threefold increase in quantity and a twofold increase in value over 1972 imports. The U.S.S.R. supplied 52% of the germanium imports, West Germany supplied 29%, and Belgium-Luxembourg supplied 14%.

World Review.—World production of primary germanium was estimated at 165,000 pounds in 1973.

<sup>&</sup>lt;sup>5</sup> Yasutoshi, T. Medicines Containing Carboxyethylgermanium Sesquioxide for Animals. Japanese Pat. 73 16,167, May 19, 1973, 4 pp.

<sup>6</sup> Shigato, T., and N. Kiyoshi. Dentrifrices for Control of Periodontopathia. Japanese Pat. 73 52,949, July 25, 1973, 5 pp.

<sup>&</sup>lt;sup>7</sup> Hayes, John C. Catalytic Reforming with a Catalyst and with Halogen Addition. U.S. Pat. 3,745,111, July 10, 1973.

<sup>\*</sup> Gavaler, J. R. Superconductivity in Niobium Germanium Films Above 22° K. Appl. Physics Letters, v. 23, No. 8, 1973, pp. 480–482.

<sup>&</sup>lt;sup>9</sup> Metal Progress, Optical Applications Envisioned for Ternary Semiconductor. V. 105, No. 1, January 1974, p. 50.

<sup>&</sup>lt;sup>10</sup> Stateham, R. M. Detecting Hot Areas in Dumps With a Handheld, Infrared Scanner. BuMines TPR 68, 1973, 12 pp.

<sup>&</sup>lt;sup>11</sup> Stateham, R. M. Field Studies on an Unsupported Roof, York Canyon Coal Mine, Raton, N. Mex. BuMines R.I. 7886, 1974, 18 pp.

#### INDIUM 12

Domestic Production.—The only domestic production of primary indium metal reported during the year was by the American Smelting and Refining Company (Asarco) at its Denver, Colo., and Perth Amboy, N.J., plants. Other companies processed or refined imported material and domestic stocks to produce high-purity metal components, alloys, and compounds. Domestic production of indium is a small fraction of U.S. consumption.

Uses.—The pattern of indium usage was estimated to be divided among several industries: 25% in solders and low-meltingpoint alloys, 20% in forming junctions with semiconductors and other electronic components, 20% in bearing alloys to increase hardness and resist corrosion, 10% in lamps and other optical devices, 12% in silver alloys used in atomic reactor control rods, 13% for research and other uses.

Stocks.—Producer stocks are estimated to have decreased considerably from those held several years ago.

Prices.—Indium pricing is based on the standard-grade metal (99.97% pure): higher purity grades (99.999% plus) are available at a premium. In 1972 and earlier years, sticks in lots of less than 100 ounces and ingots of 100 ounces were quoted at prices above the base price, but since December 1972, the only producer quotation published in Metals Week has been for ingots in lots of 10,000 ounces or more. Throughout the year, to December 10, 1973, this quotation was \$1.75 per ounce. Asarco raised the price to \$2 per ounce on December 10, after the Cost of Living Council had released most nonferrous metals from price controls.

During 1973, indium of Soviet origin was apparently withdrawn from the European market, and prices that had been considerably below the U.S. producer price began to approach this price as a tighter supply situation developed.

Foreign Trade.—Imports of indium continued to increase, rising 29% over 1972 imports to 811,527 troy ounces. The main sources of imports were Canada (41%), U. S. S. R. (14%),Belgium-Luxembourg (13%), and the United Kingdom (12%).

The duty effective in 1973 on unwrought and waste and scrap indium was 5% ad

valorem and on wrought indium was 9% ad valorem for most favored nations. Duties on waste and scrap were suspended until June 30, 1975. The statutory duty for the Soviet Union was 25% ad valorem on unwrought indium and 45% ad valorem on wrought metal.

Table 7.-U.S. imports for consumption of indium, by country

| Country                        | Quantity<br>(troy<br>ounces) | Value    |
|--------------------------------|------------------------------|----------|
| Unwrought and waste and scrap: |                              |          |
| Belgium-Luxembourg             | 104,796                      | \$54,164 |
| Canada                         | 333,231                      | 377,240  |
| Germany, West                  | 3,084                        | 4,406    |
| Japan                          | 6,412                        | 7,301    |
| Netherlands                    | 59,572                       | 75,012   |
| Peru                           | 87,089                       | 145,064  |
| Switzerland                    | 58                           | 1,322    |
| U.S.S.R.                       | 115,164                      | 110,650  |
| United Kingdom                 | 95,691                       | 198,658  |
| Total                          | 805,097                      | 973,817  |
| Wrought:                       |                              |          |
| Netherlands                    | 6,410                        | 9,171    |
| Switzerland                    | 12                           | 1,905    |
| United Kingdom                 | - 8                          | 1,109    |
|                                | 0                            | 1,105    |
| Total                          | 6,430                        | 12,185   |

Technology.—Researchers in England investigated the photoluminescence of indium phosphide in light-emitting diodes and results were published in a trilogy of papers.13 The use of indium-111 in radionuclides to diagnose and possibly to treat tumors was described.14 The thermodynamic properties of indium in low-melting alloy systems was investigated at United States and Indian universities. 15

<sup>12</sup> Prepared by J. M. Hague, mining engineer.
13 Williams, E. W., W. Elder, M. G. Astles, M.
Webb, J. B. Mullin, B. Straughan, and P. J.
Tufton. Indium Phosphide. Parts 1, 2, and 3, J.
Electrochem. Soc., v. 120, No. 12, pp. 1741-1760.
14 Chemical and Engineering News. Indium Radionuclide Helps Detect Cancers. V. 51, No. 14, Apr. 2, 1973, pp. 12-13.

<sup>15</sup> Masson, D. B., and S. S. Pradhan. Measurement of Vapor Pressure of Indium Over α Ag-In Using Atomic Absorption. Met. Trans., v. 4, No. 4, April 1973, pp. 991–995.

Servis, H. J., and Z. A. Munir. Thermodynamic Properties of Liquid Indium-Cadmium Alloys. J. Less-Common Metals, v. 34, No. 2, February 1974, pp. 293–299.

Singh, H. P., and S. Misra. On the Thermodynamic Properties of the Mercury-Indium System. J. Less-Common Metals, v. 32, No. 2, August 1973, pp. 227-235.

#### RADIUM 16

A downtrend in the use of radium continued during 1973. Radium was used primarily in therapeutic treatment of cancer. In medical and industrial applications, radium was more frequently replaced by cheaper and less hazardous radioisotopes.

Domestic Production.—There was no production of radium in the United States during the year. The small domestic demand was met by imports or withdrawals from dealers' stocks. Radium Chemical Co., Inc., New York, was the main dealer in the United States.

Consumption and Uses .- Radium, in small quantities expressed in milligrams, was used in treatment of cancer and in luminous compounds, static eliminators, and neutron sources. Based on manufacturers' sales data, about 1,300 to 1,600 curies of radium have been sold in the United States through 1973. Approximately 330 to 360 curies, contained in 50,000 to 60,000 sources, were in use in medical applications during 1973. Nonmedical uses accounted for 250 curies, and the rest was involved in luminous compounds and other uses.17

Several curies are added annually to the total radium in use in the United States. The aftereffects of gamma radiation in medical applications and the price of radium have lead to substitution by other radioisotopes. This trend was also apparent in other uses of radium.

Prices.—Radium prices, per milligram, were quoted by Radium Chemical Co., as follows: Less than 100 milligrams, \$24; 200 to 499 milligrams, \$20; 500 milligrams to 4.99 grams, \$18; over 5 grams, \$17.

Foreign Trade.-Data on trade in radium was not published; in most cases, the radium data was included with that for other items in trade statistics. Belgium remained the principal source of radium imported into the United States.

World Review.—Information on radium in world markets was not readily available. The Belgian company, Union Minière S.A., was the largest radium producer and supplier in the noncommunist world. In addition, small quantities of radium were apparently produced in Canada and the United Kingdom. Czechoslovakia, with its long tradition in uranium mining, and the U.S.S.R. probably also produced some radium. Throughout the world, uses of radium were similar to those in the United States.

Technology.—The Federal Bureau of Mines, Salt Lake Metallurgy Research Center, Salt Lake City, Utah, completed a study to develop techniques for recovering radium from uranium ores, tailings, and processing solutions to eliminate this radioactive contaminant.

The U.S. Atomic Energy Commission sponsored a research program studying the distribution of radium and 13 other metallic elements. This distribution was quantitatively compared by distributing a radiotracer of the element of interest between an aqueous phase and an organic phase. From the ratio of activity in the organic phase to activity in the aqueous phase, distribution coefficients were calculated as function of pH.18

#### SCANDIUM 19

Research activities led to a few new industrial applications for scandium, although only small quantities of scandium were involved. The small domestic supply of scandium was provided by one producer of the metal and oxide, which were derived from imported raw materials. Supply was adequate to meet demand.

Domestic Production.—There was no scandium mine production in the United States during 1973. The small output of scandium metal, measured in a few tens of pounds and derived from imported raw

materials, was at approximately the same level as in 1972. Research Chemicals, a division of Nucor Corp., Phoenix, Ariz., remained the only domestic producer.

<sup>16</sup> Prepared by Roman V. Sondermayer, physical scientist.
17 Data on uses are estimates based on partial

The parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the parameter of the pa Chem., v. 45, No. 12, 2125-2129. 10 Prepared by Roman V. Sondermayer, physical

Consumption and Uses .- Scandium was used in research and in a few industrial applications. Research was aimed at better understanding the properties and behavior of scandium in different environments. Researchers studied scandium radioisotopes and investigated alloying, electrical, and chemical properties of the metal, compounds, and products.

The main industrial applications of scandium were in high-intensity lamps for lighting outdoor events to be televised in color and in radioactive tracers for controlling flow of underground fluids in petroleum production. Small quantities of scandium were also consumed in magnesium alloys and in the electronics and chemical industries.

Prices.—The price of scandium oxide, 99.9% Sc<sub>2</sub>O<sub>3</sub>, as quoted by Research Chemicals, remained unchanged from that of 1972 at \$2.80 per gram in lots of 100 to 453 grams; the price of scandium metal in ingots and distilled grades was \$8 and \$15 per gram, respectively; whereas that of powder and chips remained unchanged at \$10.35 per gram. Prices for scandium sheet foil were \$17.85 to \$105 per square inch for 51- to 100-square-inch lots, ranging from 0.001 to 0.1 inch in thickness. For most items, larger quantities were available at lower prices.

Trade.—Official U.S. Foreign foreign trade statistics did not report trade in scandium as such but included scandium with other minerals and metals. However, based on available information, Australia and the Communist countries, probably the U.S.S.R., were the principal suppliers of scandium-bearing raw materials.

World Review.—Information on scandium-related activities in foreign countries was not readily available. The industrialized nations were involved in scandium research and used small quantities of scandium in industrial applications.

Technology.—A magnetically controlled switch, which can modulate light, was developed in Bell Laboratories. The switch consists of a thin film of single-crystal yttrium-gallium-scandium iron garnet, a small electric circuit, and two prisms that guide the light beam into and out of the garnet. Electric current creates a magnetic field, which causes the light beam to change its polarization and direction. Development of the new light switch permits use of laser beams instead of wire conductors, coaxial cables, and microwaves in future communication systems.20

Because of good hydrogen absorption properties of scandium, a new scandium detector was developed for use with a gas chromatograph. The device can operate at temperatures up to 325° F. The new detector has successfully analyzed residues of pesticides in samples of vegetable crops at the 0.1-part-per-million level.21

Scientists of the Australian Atomic Energy Commission at Lucas Heights, New South Wales, developed an instrument that employs gamma radiation from radioactive scandium oxide tracers to measure the density of wood and locate termite colonies. Termites were fed with the radioactive tracer, which was later excreted and used to build nest walls. A portable Geiger counter would locate these nests by indicating areas of anomalous radioactivity,22

#### SELENIUM 23

Domestic production of selenium from primary materials was 627,000 pounds in 1973, a 15% decrease from 1972 production. Shipments by domestic producers decreased 10% with the difference supplied by stocks, which were reduced 55,000 pounds to 106,000 pounds at yearend. World production decreased 9% 2,458,000 pounds. Congress authorized disposal of selenium held in the national stockpile on August 11, 1971, and during 1971 and 1972 a total of 16,090 pounds of metal was sold or traded. During 1973 a

total of 329,790 pounds of selenium was sold or exchanged for strategic commodities needed for the national stockpile. At the end of 1973, the national stockpile contained 128,894 pounds of uncommitted selenium.

<sup>&</sup>lt;sup>20</sup> Institute for Atomic Research, Iowa State University, Ames, Iowa. Garnet Switch Modulates Light. Rare Earth Information Center News, v. 8, No. 1, Mar. 1, 1973, p. 4.

<sup>21</sup> Institute for Atomic Research, Iowa State University, Ames, Iowa. Sc<sup>2</sup>H Detector. Rare Earth Information Center News, v. 8, No. 2, June 1, 1973, p. 2.

<sup>22</sup> Industrial Week. Emerging Technologies. V. 114, No. 1, January 1974, p. 23.

<sup>23</sup> Prepared by Lyman Moore, mining engineer.

| Table  | 8.—Salient   | selenium    | statistics |
|--------|--------------|-------------|------------|
| (Thous | and pounds o | f contained | selenium)  |

| (Thousand)                                                                                                                                                                                 | boamas or c.                                        | 011                                                  |                                                  |                                                    |                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|--------------------------------------------------|----------------------------------------------------|---------------------------------------------------------|
|                                                                                                                                                                                            | 1969                                                | 1970                                                 | 1971                                             | 1972                                               | 1973                                                    |
| United States: Production Shipments to consumers Imports for consumption Stocks, Dec. 31, producers Producers average price per pound commercial and high-purity grades World: Production. | 1,247<br>1,429<br>546<br>240<br>\$7-\$8.50<br>2,834 | 1,005<br>1,056<br>454<br>189<br>\$9-\$10.50<br>2,883 | 657<br>663<br>395<br>182<br>\$9-\$11.50<br>2,506 | 1739<br>1761<br>430<br>161<br>\$9-\$11.50<br>2,687 | 1 627<br>1 682<br>553<br>106<br>\$9.25-\$12.36<br>2,458 |

<sup>&</sup>lt;sup>1</sup> In addition, an estimated 30,000 pounds of selenium was refined from secondary sources.

Domestic Production.—Primary selenium was produced at four plants operated by the following major electrolytic copper refiners: American Metal Climax, Inc., Carteret, N.J.; American Smelting and Refin-Baltimore, Md.: Company, Anaconda Company, Perth Amboy, N.I.; and Kennecott Copper Corp., Garfield, Utah. Crude materials containing primary selenium were transferred to these plants from copper refineries operated by Inspiration Consolidated Copper Co., Magma Copper Co., and Phelps Dodge Corp. An estimated 30,000 pounds of selenium was recovered by domestic secondary refineries from purchased electronic scrap. Considerable selenium home scrap was reused by manufacturers after outside reprocessing under toll contracts. Some domestic selenium-containing material was shipped to foreign plants for refining. High-purity selenium and various selenium compounds were produced by primary and other processors from commercial-grade metal.

In September the American Smelting and Refining Company began constructing a 420,000-ton-per-year electrolytic copper refinery near Amarillo, Tex., that will eventually replace a plant of 312,000-ton capacity at Baltimore, Md. The new, larger plant will recover byproducts, including selenium, and its completion will increase domestic selenium production capacity.

Consumption and Uses.—Apparent selenium supply and consumption, consisting of producer shipments, net imports, and stockpile releases, increased about 34% over that in 1972. Selenium demand, as indicated by dealer prices, increased moderately during the first 10 months of the year and increased sharply in November and December. Most of the increased use occurred in electronic applications. Major uses were electronic components, 45%; ceramics and glass, 34%; chemicals, 13%; and other, 8%.

Consumption of selenium in xerography increased during 1973, and this use now consumes over one-fourth of the primary metal shipped. More efficient use of selenium in xerographic copying machines and reclaiming of home scrap have kept the consumption of primary selenium in xerography from increasing as fast as the use of xerographic copying machines. However, new applications in this field promise a larger future demand. Selenium consumption for rectifiers, photoelectric cells, and other electronic applications increased, although more slowly than industrial production of these items owing to more efficient use of selenium. These uses consumed about one-fifth of the selenium marketed. Use of selenium in glass manufacturing increased because of increased glass production.

Small proportions of selenium compounds are added to glass melts to neutralize the green coloration caused by iron. Larger proportions are used to produce gray and bronze tinted window glass that reduces glare and heat transmission and to produce red- and amber-colored glass for signals and decorative uses. Demand for selenium in pigments and steel alloys increased significantly. Other chemical, pharmaceutical, and miscellaneous uses increased slightly over those in 1972.

Prices.—The producers' price remained at \$9 per pound for commercial-grade selenium and \$11.50 per pound for high-purity metal from the start of 1973 until April 2 when one producer increased the price of each metal grade by \$1 per pound. Other producers did not change their price, and the split quotation continued until June and was then frozen by the Cost of Living Council. Selenium prices were decontrolled on December 10, and domestic producers increased their prices to \$11 and \$12 per pound for commercial

grade and \$14 per pound for high-purity grade and continued these quotations to the end of the year.

Domestic dealer prices of commercialgrade selenium were about \$8.40 per pound at the start of 1973. The average price received at Government stockpile sales was \$8.50 per pound on February 14; \$9.10 per pound on June 25; \$9.68 per pound on August 27; and \$12.88 per pound on November 15. At the end of December, dealer selenium prices were \$17 to \$17.50 per pound for commercial-grade metal.

Canadian producers priced commercial-grade selenium at \$9 per pound from January to late March, at \$10 per pound from late March to late October, and at \$11 per pound for the remainder of the year. European dealer prices for the commercial grade increased from \$9 to \$10 per pound during the first half of the year, increased further to \$11.50 per pound in late September, and to \$17.50 per pound in late October, with this price continuing the remainder of the year.

In August principal European metal dealers formed the Minor Metals Traders Association, open to dealers in minor metals including selenium. The association plans to set up standard sales contracts for minor metals and possibly establish a minor metal trading ring and arbitration panel.

Foreign Trade.—Selenium exports increased about 20% from those of 1972; the largest shipments were made to West Germany, the Netherlands, and the United Kingdom.

Selenium imports for consumption increased 29%, and the value of imports increased 32%. Canada continued to be the main supplier.

World Review.—World refinery production is shown in table 10. Japan was the leading selenium producer, U.S. was second, and Canada was third. These three countries accounted for 82% of world production (excluding the U.S.S.R.).

Zambia.—Sludges and slimes from electrolytic copper refineries are treated outside Zambia for recovery of selenium and other byproducts. In 1973, plans were made to build a plant in Zambia to recover the byproducts. The plant will be

Table 9.—U.S. imports for consumption of selenium, by country

(Thousand pounds and thousand dollars)

| Country                                         | Quantity              | Value                   |
|-------------------------------------------------|-----------------------|-------------------------|
| Unwrought and waste and scrap:                  |                       |                         |
| Canada<br>Chile<br>Ireland<br>Japan             | 476<br>8<br>(1)<br>16 | 4,759<br>73<br>3<br>150 |
| Mexico<br>Sweden                                | (1)                   | 76                      |
| Total                                           | 510                   | 5,062                   |
| Oxide (selenium content): Canada United Kingdom | 40<br>3               | 525<br>31               |
| Total                                           | 43                    | 556                     |

1 Less than 1/2 unit.

located near the Ndola Copper Refinery and is expected to be operational in 1976.

Technology.—The Selenium-Tellurium Development Association, Inc., continued sponsorship of research programs designed to increase selenium utilization.

On April 27, 1973, the Food and Drug Administration (FDA) proposed that animal feed regulations should be amended to allow the addition of selenium as a nutrient in the feed of chickens, turkeys, and swine. The FDA set the minimum dietary requirement for available selenium in feed at 0.1 part per million (ppm) for swine and for chickens up to 16 weeks in age, and at 0.2 part per million for turkeys. A dietary intake of less than these amounts may result in a variety of debilitating, or even fatal, afflictions such as exudative diathesis, and degeneration of organs and musculature. The selenium content of corn grown in the Midwestern States varies from 0.01 to 2.03 parts per million selenium with the median being 0.05 part per million. Thus the addition of selenium is desirable to feed grown in most States. Studies made for the FDA established that the addition of the recommended quantities of selenium to animal and poultry feed would not cause a significant increase in the selenium content of animal tissue consumed by humans. The present human dietary intake of selenium in the United States was shown to be adequate for good nutrition and safely below the toxic level for selenium ingestion.24

<sup>&</sup>lt;sup>24</sup> Food and Drug Administration. Selenium in Animal Feed. Federal Register, v. 38, No. 81, Apr. 27, 1973, pp. 10,458–10,460.

World refinery production, by country 1 Table 10.—Selenium: (Thousand pounds)

| Country <sup>2</sup>                                                                   | 1971                                                            | 1972                                                        | 1973 »                                                                |
|----------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------|
| Australia ° Belgium-Luxembourg ³ Canada Finland Japan Mexico Peru Sweden United States | 7<br>r 121<br>886<br>14<br>524<br>115<br>16<br>112<br>657<br>54 | 7<br>147<br>720<br>11<br>738<br>97<br>18<br>10<br>739<br>90 | 8 106<br>4 598<br>• 12<br>789<br>• 18<br>• 18<br>• 120<br>627<br>• 94 |
| Yugoslavia<br>Total                                                                    | r 2,506                                                         | 2,687                                                       | 2,45                                                                  |

estimates of output levels.

Increasing fuel and energy costs resulting from the petroleum shortage stimulated interest in greater use of selenium-tinted window glass to reduce heat-transfer rates. Increasing interest was also shown in direct conversion of sunlight to electricity with photogalvanic cells. A new analytical method was developed at North Carolina State University to rapidly determine small quantities of mercury and selenium in coal and other materials. A new low-energy photodetector is used to improve the neutron activation method. Instrumental errors of less than 0.1 part per million are indicated.25

## TELLURIUM 26

Domestic tellurium production of 241,000 pounds in 1973 was 6% below that of 287,000 shipments of Domestic pounds were the highest on record and were 6% above those of 1972. Producer stocks were drawn down 46,000 pounds to 56,000 pounds, the lowest inventory since before World War II. Imports decreased to a normal 71,000 pounds from the unusually high 1972 receipts.

Domestic Production.—Production of tellurium was reported by the following major electrolytic copper or lead refiners: American Metal Climax, Inc., Carteret, N.J.; American Smelting and Refining Company, Baltimore, Md.; The Anaconda Company, Perth Amboy, N.J.; and United States Smelting Lead Refinery, Inc., East Chicago, Ind., a division of UV Industries, Inc. Electrolytic refinery sludges containing primary tellurium were also produced at refineries operated by Inspiration Consoli-

26 Prepared by Lyman Moore, mining engineer.

Table 11.-Salient tellurium statistics (Thousand pounds of contained tellurium)

|                                                                                                                                                   | 1969 | 1970                                  | 1971                                    | 1972                                   | 1973                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------|-----------------------------------------|----------------------------------------|-----------------------------------------|
| United States: Production Shipments to consumers Stocks, Dec. 31, producers Imports Price per pound, commercial grade (average) World: Production |      | 158<br>209<br>128<br>64<br>\$6<br>367 | 164<br>163<br>116<br>30<br>\$6<br>7 320 | 257<br>271<br>102<br>146<br>\$6<br>384 | 241<br>287<br>56<br>71<br>\$6.05<br>420 |

r Revised.

e Estimate. P Preliminary. r Revised.

1 Insofar as possible, data relate to refinery output of elemental selenium only; thus countries that produce selenium in copper ores and concentrates, blister copper, and/or refinery residues but do not recover elemental selenium have been excluded to avoid double counting.

2 In addition to the countries listed, West Germany and the U.S.S.R. are known to produce refined selenium, and Zaire and Zambia may produce refined selenium, but available information is inadequate to make reliable actimates of output levels.

 <sup>\*</sup> Exaports.
 4 Recoverable selenium content of blister copper treated at domestic refineries plus refined selenium from domestic raw materials, but excludes other unspecified materials that provide a portion of total refined selenium output. Corresponding figures for previous years in thousand pounds are 1971—719; 1972—655.

<sup>&</sup>lt;sup>25</sup> Weaver, J. N. Determination of Mercury and Selenium in Coal by Neutron Activation Analysis. Anal. Chem., v. 45, No. 11, September 1973, pp. 1950–1952.

dated Copper Co., Kennecott Copper Corp., Magma Copper Co., and Phelps Dodge Corp. High-purity tellurium, tellurium master alloys, and tellurium compounds were produced by primary and intermediate processors from commercial-grade metal and tellurium dioxide.

Production of tellurium was terminated at the United States Smelting Lead Refinery, Inc., during the year because of the exhaustion of unrefined tellurium inventories accumulated during a previous operating period when large quantities of primary lead containing tellurium refined. Two copper refinery expansions were begun or announced that will result in the future recovery of larger quantities of tellurium-containing electrolytic-copperrefining sludge. Plans were also announced for future byproduct tellurium production from gold telluride deposits in which development has been resumed following the rapid increase in the price of gold.

Consumption and Uses .- Apparent consumption, as indicated by shipments plus imports for consumption, was 358,000 pounds, a reduction of 14% from that in 1972. However, actual consumption probably increased during 1973 with dealer and fabricator inventories being drawn down as were producer inventories. About 65% of tellurium consumed in 1973 was used as a free-machining agent in carbon and stainless steel and as a chilling agent in cast iron. In 1973 carbon steel production increased 20%, stainless steel 22%, and iron and steel castings 12%. Tellurium consumption in iron and steel products showed a similar increase. About 17% of the tellurium consumed was used in free-

machining copper. Consumption of copper ingots and ingot bars increased about 3% with about the same increase being made in tellurium usage. Rubber manufacturing consumed about 10% of all tellurium used, chemicals about 6%, and electronic and other uses 2%. Small increases in tellurium consumption were made in these indus-

Prices.—The producer price for commercial-grade powder and slab remained at \$6 per pound from 1962 until December 10, 1973, when, following decontrol of tellurium prices by the Cost of Living Council, producers increased their price to \$7 per pound and continued this quotation to the end of the year. Merchant prices remained close to producer prices throughout the year. Prices for high-purity grades of tellurium ranged from \$10 to \$32 per pound.

Foreign Trade.—Imports in 1973 totaled 71,000 pounds, compared with an unusually high import of 146,000 pounds in 1972. The average import during the past 5 years has been 85,000 pounds. Canada and Peru continued to supply nearly all of the U.S. imports.

Table 12.-U.S. imports for consumption of tellurium, by country

(Thousand pounds and thousand dollars)

| Country                        | Quantity | Value |
|--------------------------------|----------|-------|
| Unwrought and waste and scrap: |          |       |
| Canada                         | 30       | 200   |
| Germany, West                  | (1)      | - 2   |
| Japan                          | 9        | 8     |
| Netherlands                    | (1)      | ĭ     |
| Peru.                          | 38       | 220   |
| United Kingdom                 | ĭ        | 3     |
| Total                          | 71       | 434   |

<sup>1</sup> Less than 1/2 unit.

Table 13.-Tellurium: World refinery production, by country 1 (Thousand pounds)

| Country <sup>2</sup>                              | 1971                    | 1972                 | 1973 p                    |
|---------------------------------------------------|-------------------------|----------------------|---------------------------|
| Canada <sup>3</sup> Japan Peru Peru United States | r 24<br>79<br>53<br>164 | 46<br>77<br>4<br>257 | 45<br>• 94<br>• 40<br>241 |
| Total                                             | r 320                   | 384                  | 420                       |

e Estimate Preliminary. r Revised.

Insofar as possible data relate to refinery output only, thus countries that produce tellurium in copper ores and concentrates, blister copper, and/or refinery residues but do not recover refined tellurium are excluded to

and concentrates, blister copper, and/or rennely residues but to all additional double counting.

<sup>2</sup> In addition to the countries listed, Australia, Belgium, West Germany, and the U.S.S.R. are known to produce refined tellurium, and other countries such as Zaire and Zambia may produce refined tellurium, but available information is inadequate to make reliable estimates of output levels.

<sup>3</sup> Includes recoverable tellurium content of blister copper treated at domestic refineries plus refined tellurium content of blister copper treated at domestic refineries plus refined tellurium content of blister copper treated at domestic refineries plus refined tellurium content of blister copper treated at domestic refineries plus refined tellurium content of blister copper treated at domestic refineries plus refined tellurium content of blister copper treated at domestic refineries plus refined tellurium content of blister copper treated at domestic refineries plus refined tellurium content of blister copper treated at domestic refineries plus refined tellurium content of blister copper treated at domestic refineries plus refined tellurium content of blister copper treated at domestic refineries plus refined tellurium content of blister copper treated at domestic refineries plus refined tellurium content of blister copper treated at domestic refineries plus refined tellurium content of blister copper treated at domestic refineries plus refined tellurium content of blister copper treated at domestic refineries plus refined tellurium content of blister copper treated at domestic refineries plus refined tellurium content of blister copper treated at domestic refineries plus refined tellurium content of blister copper treated at domestic refineries plus refined tellurium content of blister copper treated at domestic refineries plus refined tellurium content of blister copper treated at domestic refineries plus refined tellurium content of blister copper treated at domestic refineries plus refined tellurium content of blister

World Review .- The United States continued to lead the world in tellurium output; Japan was second, and Canada was

## THALLIUM 27

Thallium is a highly toxic metallic element that is limited in its use and size of market.

Domestic Production.—Thallium is recovered as a byproduct from flue dust and residue produced in the smelting of base metals, principally zinc. American Smelting and Refining Company Globe Plant at Denver, Colo., was the only domestic producer of thallium and thallium compounds. Production and shipments were nearly the same as those for 1972. Domestic and world identified resources of thallium from zinc, lead, and iron sulfides were 266 tons and 1,390 tons, respectively. Additional U.S. and world resources contained in coal ash are 119,000 and 715,000 tons, respectively.28

Uses.—Estimates of world consumption of thallium approximates 30,000 pounds annually. U.S. requirements are about one-fifth of the world requirements.

The current uses of thallium are primarily in electronics and metallurgical processing; minor applications are in glass, agriculture, medicine, and explosives. Some thallium compounds are extremely photosensitive, especially to light of low intensity. This unique property of specific compounds promises new and interesting applications. Uses and demand are limited by the need for comprehensive research into its complete physical and chemical properties and into its potential uses. The highly toxic nature of thallium salts is a deterrent, and substitutes are available for some of its present applications.

Storage batteries with silver thallium iodide solid electrolyte were under investigation in Japan. Mixed crystals of AgI-T1I were prepared. Results after testing indi-

cated very small changes in voltage and current after 8 hours of discharging.29

Thallium sulfate, a highly toxic pesticide, is still turning up in the marketplace after 7 years of warning of its dangers. The Environmental Protection Agency requested all retail outlets to surrender all supplies. Continued sale subjects the dealer to civil and criminal penalties.30

Prices.—The price of thallium in 25pound lots has been \$7.50 per pound since December 1957.

Foreign Trade.—U.S. imports for consumption in 1973 were 541 pounds of unwrought and waste and scrap thallium valued at \$1,730. The amount was only about one-third of that imported in 1972. Thallium compounds imported were 258 pounds valued at \$4,030.

Table 14.-U.S. imports for consumption of thallium, by country

| Country of origin                                  | Compo     | ounds<br>reight) | Unwro<br>and was<br>sera | te and         |
|----------------------------------------------------|-----------|------------------|--------------------------|----------------|
|                                                    | Pounds    | Value            | Pounds                   | Value          |
| Belgium-<br>Luxembourg<br>Germany, West<br>U.S.S.R | 50<br>208 | \$785<br>3,245   | 100<br>441               | \$500<br>1,230 |
| Total                                              | 258       | 4,030            | 541                      | 1,730          |

<sup>&</sup>lt;sup>27</sup> Prepared by Herbert R. Babitzke, physical

scientist.

28 Robinson, K. Thallium. Ch. in United States Mineral Resources. U.S. Geol. Survey Prof. Paper 820, 1973, pp. 631–636.

20 Saito, S. Storage Batteries With Silver Thallium Iodide Solid Electrolyte. Japanese pat. 73 45,831, June 30, 1973, 3 pp.

30 Chemical Marketing Reporter. EPA Warns Stores To Halt Sales of Thallium Sulfate. V. 203, No. 13. Mar. 26, 1973, p. 26.



# Minor Nonmetals

## By Staff, Division of Nonmetallic Minerals—Mineral Supply

#### **CONTENTS**

| Greensand  Iodine  Lithium  Meerschaum | 1373 | Quartz Crystal<br>Staurolite<br>Strontium<br>Wollastonite | Page<br>1378<br>1380<br>1381<br>1383 |
|----------------------------------------|------|-----------------------------------------------------------|--------------------------------------|
| Meerschaum                             | 20.0 |                                                           |                                      |

## GREENSAND 1

Greensand (glauconite) continued in 1973 to be produced only by the Inversand Co., Clayton, N.J., a subsidiary of Hungerford and Terry, Inc. Production and sales data are withheld to avoid disclosure of company confidential data. Production in 1973 was approximately at the same rate as in 1972.

Most of the product was treated and used by the parent company in its line of water conditioning equipment. Crude greensand was also used as a soil conditioner in agriculture.

A cooperative agreement continued between the Federal Bureau of Mines and the Geological Survey of the State of Delaware to develop new uses for greensand. Possible use in treating industrially polluted water was being considered, and various water samples were analyzed to determine the basic chemistry involved.

#### **IODINE** 2

scientist.

Consumption of crude iodine did not change appreciably from 1972, and there was a continued supply surplus for most of 1973. Industry stocks were still high in late 1973, although lower than a year ago. Domestic output, which represented a small part of overall supply, decreased considerably as compared with 1972, whereas imports showed no great change.

Crude iodine production in non-Communist countries dropped by possibly 400,000 pounds or 2%, almost all accounted for by Japan. Output by Chile, the world's second ranking iodine producer, was close to the 1972 level. Japan increased the price of its iodine from \$1.86 per pound to \$2.06, and was virtually the sole supplier of iodine to the United States for the second straight year. Chile cut the price of its iodine from \$2.27 to \$2.06 per pound in the hope of meeting Japanese competition. Domestic iodine was still quoted at \$2.27, and there

seemed to be some difficulty in selling at this price. The price of Japanese iodine went up abroad, directly as a result of the upward evaluation of the yen which subsequently declined slightly by yearend.

Legislation and Government Programs.—On December 31, 1973, the Government strategic stockpile contained 2,955,842 pounds of crude iodine and the supplemental stockpile 5,055,972 pounds for a total of 8,011,814 pounds. The stockpile objective for iodine, established by the Office of Preparedness, was reduced from 7.4 million pounds to nothing in early 1973. However, there were no disposals of iodine from the Government stockpile in 1973, because of the lack of Congressional approval.

<sup>&</sup>lt;sup>1</sup> Prepared by William F. Keyes, physical scientist.
<sup>2</sup> Prepared by K. P. Wang, supervisory physical

Table 1.-Crude iodine consumed in the United States

|                                                                                                   |                          | 1972                               |                           |                          | 1973                                |                       |
|---------------------------------------------------------------------------------------------------|--------------------------|------------------------------------|---------------------------|--------------------------|-------------------------------------|-----------------------|
| Products                                                                                          | Crude iodine consumed    |                                    |                           | Crude                    |                                     |                       |
| Doguhii                                                                                           | of plants                | Thousand<br>pounds                 | Percent<br>of total       | Number<br>of plants      | Thousand pounds                     | Percent<br>of total   |
| Resublimed iodine. Potassium iodide. Sodium iodide. Other inorganic compounds. Organic compounds. | 6<br>10<br>4<br>14<br>19 | 600<br>1,514<br>90<br>983<br>2,071 | 11<br>29<br>2<br>19<br>39 | 6<br>10<br>4<br>17<br>19 | 689<br>1,568<br>W<br>1,059<br>2,454 | 1<br>2<br>V<br>1<br>4 |
| Total                                                                                             | 1 30                     | 5,258                              | 100                       | 1 32                     | 5 770                               | 10                    |

W Withheld to avoid disclosing individual company confidential data; included with "Other inorganic

<sup>1</sup> Nonadditive total because some plants produce more than one product.

Domestic Production.—The Dow Chemical Co., the only domestic producer, recovered crude iodine from well brines at Midland, Mich., as a coproduct with bromine, calcium and magnesium compounds, and potash. The process employed has been used since the start of operations in 1964. Compared with 1972, ouput decreased by approximately 20%.

Consumption and Uses.—Based upon a Bureau of Mines canvass, approximately 5.77 million pounds of crude iodine was consumed by 32 firms in 13 States. Leading iodine-consuming States in 1973, in descending order of magnitude, were Missouri, New York, Pennsylvania, and New Jersey which together accounted for more than four-fifths of the total crude iodine consumption.

The above information is indicative of the consumption pattern, but is not necessarily completely comprehensive. Iodine and iodides used as catalysts and "dissipative" uses in general, particularly in making synthetic rubber, are not well covered. Imports alone have been consistently higher than reported consumption, with net differences as follows, in thousand pounds: 1970, 981; 1971, 2,473; 1972, 949; and 1973, 348. A more exact estimate of apparent consumption cannot be published, as U.S. production figures for crude iodine cannot be revealed.

Iodine consumed in making immediate downstream products, such as resublimed iodine, potassium iodide, sodium iodide, and organic iodine-containing compounds, have not shown any radical changes in recent years. As for ultimate downstream uses, the major categories for 1973 were roughly as follows, in order of descending

importance as consumers of iodine: Catalysts (in rubber), food supplements, stabilizers (in nylon), inks and colorants, pharmaceuticals, sanitary uses, and photographic uses. Iodine was also consumed in making high-purity metals, motor fuels, iodized salt, photographic chemicals, smog inhibitors, swimming pool sanitizers, and lubricants.

Prices.—The price of Japanese iodine went up to \$2.06 per pound around mid-February 1973. U.S. iodine was quoted at \$2.27 all year, whereas Chilean iodine was brought down from the U.S. price to the Japanese level in mid-1973. As usual, prices had little to do with supply and demand, since an oversupply situation was accompanied by high prices. Quoted prices for iodine and iodine compounds at yearend 1973 were as follows:

| Crude iodine, drums<br>Resublimed iodine, U.S.P., drums,<br>f.o.b. works<br>Calcium iodate, drums, delivered<br>Calcium iodide, 35-pound drums, f.o.b. | Per pound<br>\$2.06-\$2.27<br>3.97- 4.00<br>2.50- 2.80 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Potassium iodide, U.S.P., crystals,                                                                                                                    | 5.98                                                   |
|                                                                                                                                                        | 2.60- 3.15                                             |
| Sodium iodide, U.S.P., crystals, 300-<br>pound drums, freight equalized                                                                                | 3.50- 3.91                                             |

Source: Chemical Marketing Reporter.

Foreign Trade.—Crude iodine imported into the United States in 1973 declined by 1.4% in quantity as compared with 1972, but total value increased 3.0%. The average value (f.o.b. originating country) of imported crude iodine rose from \$1.64 per pound in 1972 to \$1.71 in 1973, reflecting primarily changes in Japanese prices and discounts during actual transactions. About 6.1 million pounds of crude iodine was im-

Table 2.-U.S. imports for consumption of crude iodine, by country

(Thousand pounds and thousand dollars)

| (Th     | ousand pounds  | and thousa     | ind donars,         |                     |          |        |
|---------|----------------|----------------|---------------------|---------------------|----------|--------|
|         | 197            | 1              | 197                 | 2                   | 197      | 3      |
|         |                |                | Quantity            | Value               | Quantity | Value  |
| Country | Quantity       | Value          | Quarter             |                     | 88       | 160    |
|         | 2,950<br>4,325 | 5,679<br>5,831 | $6,2\bar{0}\bar{7}$ | $10,1\overline{84}$ | 6,030    | 10,324 |
| Chile   | 4,325          |                |                     | 10,184              | 6.118    | 10,484 |
| Japan   | 7,275          | 11,510         | 6,207               | 10,101              |          |        |
| Total   |                |                |                     |                     | _        | G1 mai |

ported, almost all from Japan. In an oversupply situation, high-priced Chilean iodine was hardly attractive in the U.S. market. Imports of resublimed iodine were nominal as compared with imports of crude iodine.

World Review.—Chile.—Production of crude iodine in 1973 as a byproduct of nitrates probably was less than 2,500 short tons. Output was on the low side for Chile, but even the upper limit would not be much greater, since iodine extraction is primarily controlled by nitrate production. The change in Chile's Government, marketing difficulties, and operating problems were factors holding back production.

Chile's three iodine plants, namely, Valdivia, Victoria, and Elena, were all owned by Sociedad Química y Minera de Chile S.A. (SOQUIM). The two latter plants were run at full capacity during most of the year. However, Valdivia, the most modern and largest plant, had not yet totally recovered from a major fire in late 1971 and may not be able to produce as much as previously without basic repairs requiring large additional investment.

Chile priced itself out of the U.S. market during all of 1972 and most of 1973, shipping almost completely to European and Latin American countries and the People's Republic of China. Lowering iodine price from \$2.27 per pound to \$2.06 did not result in immediate better sales, although small shipments started to arrive in the United States near yearend.

China, People's Republic of.—An estimate of China's iodine output is not possible, although the quantity is known to be small. Some iodine reportedly has been produced at the Haifang seawater salt processing plant in Amoy, Fukien Province, and the Peihai chemical plant of the Pingkuei Mining Administration in Kwangsi Province. Recently recovery of iodine and bromine from complex salts was started at the Yuncheng salt basin in southern Shansi

Province at the "Chin Chien-cheng Chemical Industry Base." China is short of iodine, making up the deficiency mainly through imports from Chile with whom trade agreements specify shipments of approximately 660,000 pounds annually. Exports from Japan to China were only 8,800 pounds in 1972 and 29,000 pounds during 1973.

Indonesia.—Abundant supplies of brackish water in many localities of Indonesia represent a significant potential source of iodine. Japanese and European firms both have been interested in these possibilities. In the fall of 1973, Ise Chemical Industries, Ltd., of Japan announced that it had applied to the Indonesian Government for approval to establish a joint venture with Mitsui & Co. and Indonesian interests.4 Ownership would be 55% for the Japanese during the first 10 years and changing to 55% for the Indonesians thereafter. Specific locations were not mentioned, but development would take 3 or 4 years and eventual annual output may reach 1 million pounds of iodine.

Japan.—Japan continued to be the world's foremost iodine producer during 1973. Its output of 8,038 short tons of crude iodine, a decline of about 2.5% from the 8,240 tons produced in 1972, was still more than three times that of Chile, the only other major non-Communist nations producer. Over four-fifths of the Japanese production was exported, mainly to the United States which took about 3,015 short tons in 1973. Japan's other iodine markets included European Community countries, India, Switzerland, the U.S.S.R., and Canada.

Natural gas brines are the source of Japan's iodine which is recovered along with

<sup>\*</sup>Ta-kung-pao (Peking). May 28, 1972, p. l.

4 Japan Chemical Week (Tokyo). Ise Chemical
Eyes Joint Iodine Venture in Indonesia. V. 14,
No. 699. Sept. 20, 1973, pp. 1, 5.

natural gas. Eighteen plants owned by five manufacturing groups provide the entire output. Except for one in Niigata in northwest Honshu, all iodine plants are located around Kujikurihama in Chiba Peninsula east of Tokyo. Only about onethird of the plants have been built in the last few years, and the older ones are having some operating problems.

Although Japan's crude iodine capacity was about 9,000 short tons per year at yearend 1973, possibly a third of this may not be operable in the near future because of ground subsidence difficulties related to withdrawal of brines and not pumping solutions back. Ise Chemical Industries, Ltd. (Ise Chemical), was the leading firm, with roughly half of the country's capacity and most of the best plants. In addition to its own seven plants, Ise Chemical runs a plant for Teikoku Oil Co. Ltd (Teiseki) and another one for United Resources (Godo). Godo, with two plants, had about one-fifth of Japan's capacity. Nippon Tennen (Nitten) with three plants and Kantoh Tennen (Kanten) with four plants each had just over one-tenth of the total capacity. Two sister companies, Nippon Chemical Industries and Nippon Halogen, have one plant each. At least three other firms, Teiseki, Tokyo Gas Co., and Fuji Boring Co., have been extracting natural gas in the Chiba City area, and they have agreed to abandon their wells by 1976.

The pattern of Japanese iodine produc-

tion started to undergo basic changes in 1973. Japan's Environment Agency, the Ministry of International Trade and Industry, and Chiba Prefectural authorities initiated a series of stringent measures to protect the highly-populated area of Chiba from further ground subsidence and tidal wave flooding brought about in part by withdrawal of brines.5 New wells will be prohibited except in special cases, existing wells will be abandoned if shown to be causing subsidence, water will be recycled if possible, water discharge will be controlled, and drilling will be coordinated. The net result means that Japan's iodine production capacity will decrease in the next few years, and an upturn will not take place until the second half of the 1970's. Ise Chemical's facilities in Chiba will suffer the least, and more new iodine operations will be developed by Teiseki and Ise in northeastern Honshu.

U.S.S.R.—Iodine apparently is produced at the Neftechlinski field, the Slavyansko-Troitskoe area near the Black Sea, and at a plant in the Baku area. Soviet iodine output may have tripled between 1966 and 1971, to 3.3 million pounds in the latter year.6 Unknown, but probably not too large, quantities of iodine are presumably imported from Chile. Soviet iodine imports from Japan were about 250,000 pounds in 1972 and 330,000 pounds from January to October 1973.

## LITHIUM 7

Domestic output of lithium minerals and lithium carbonate from brines increased substantially over that of 1972, and was the largest ever reported. Imports for consumption of lithium minerals were 5 times the quantity imported in 1972.

Legislation and Government Programs. -The General Services Administration (GSA) sold 950 short tons of lithium hydroxide monohydrate during 1973. At yearend 5,540 short tons of lithium hydroxide monohydrate were held by GSA under the Federal Property Act.

Domestic Production.—Foote Co. mined and milled spodumene from Mineral pegmatites at Kings Mountain, N.C., and also recovered lithium carbonate from brines at Silver Peak, Nev. Lithium Corp. of America, a subsidiary of Gulf Resources

and Chemical Corp., mined and milled spodumene near Bessemer City, N.C.; Kerr-McGee Corp. recovered lithium carbonate from brines at Trona, Calif.

Lithium Corp. of America completed an expansion of their mine and plant at Bessemer City, N.C., early in the year.

Processors of lithium raw materials to lithium primary products were Foote Mineral Co., Sunbright, Va., and Silver Peak, Nev., Kerr-McGee Corp., Trona, Calif., and Lithium Corp. of America, at Bessemer

<sup>&</sup>lt;sup>5</sup> Japan Chemical Week (Tokyo). Iodine Production Hard Hit by Subsidence of the Ground in Chiba. V. 14, No. 705, Nov. 1, 1973, p. 2.

<sup>6</sup> Chemical Marketing Reporter (New York). Iodine Supply, Now Plentiful, Looks Destined to Tighten Up Over the Coming Three Years. V. 203, No. 10, Mar. 5, 1973, p. 3 and p. 23.

<sup>7</sup> Prepared by Donald C. Wininger, physical scientist.

City, N.C. Production data were not available for publication.

Consumption and Uses.—Domestically produced lithium minerals were processed into numerous lithium chemicals for a wide variety of applications. Major uses were in primary aluminum production, ceramics, greases, air conditioning, alloying, welding and brazing, swimming pool sanitation, and organic synthesis.

Although consumption of most lithium compounds increased during the year, sales of lithium carbonate to the aluminum industry continued to show the most significant increase. A special grade of high-purity lithium carbonate is being used in the production of photochromic optical glass. This is a specialized but growing market.8

Prices.—Domestic prices of lithium minerals are usually determined by direct negotiation between buyer and seller and are seldom published. However, Ceramic Industry, in January 1973, listed prices for spodumene supplied to the ceramic industry ranging from \$77 to \$89.50 per ton, unchanged from the previous year.

Prices for the major lithium compounds at yearend were quoted in the Chemical Marketing Reporter as follows:

|                                                                                                                              | Per pound               |
|------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Lithium metal, 1,000-pound lots or more delivered                                                                            | <b>\$</b> 8. <b>1</b> 8 |
| Lithium bromide, anhydrous, drums, ton                                                                                       | 1.70                    |
| Lithium carbonate, powder, carlots,                                                                                          | . 555                   |
| Lithium chloride, annydrous, carlots,                                                                                        | .94                     |
| Lithium fluoride, carlots, truck loads,                                                                                      | 1.63                    |
| Lithium hydride, carlots, truck loads, delivered                                                                             | 8.05                    |
| Lithium hydroxide, monohydrate, carlots, truck loads, delivered, in drums                                                    | . 63                    |
| Lithium nitrate, technical 100-pound lots, in drums                                                                          | 1.25-1.55               |
| lots, in drums Lithium stearate, 50-pound cartons, carlots, works, freight allowed Lithium sulfate, 100-pound lots, in drums | .6164<br>1.20-1.30      |

Foreign Trade.—Exports of lithium hydroxide declined from 1,097,175 pounds valued at \$595,232 in 1972 to 1,043,459 pounds valued at \$604,730 in 1973. Quantitative data on exports of lithium minerals and lithium metal, alloys, and other compounds were not available. Domestic imports of lithium minerals were 5 times the 1972 level. Brazil supplied 87% of all

the imports. Imports of lithium compounds were 22,298 pounds valued at \$82,312, principally from France (83%) and the United Kingdom (14%) with small amounts from Canada and West Germany.

World Review.—Canada.—In Manitoba the Chemalloy Minerals subsidiary, Tantalum Mining Corp., began production of lithium concentrates from a 150-ton-perday pilot mill at its Bernic Lake mine site in early May.<sup>9</sup> If the results of this work are favorable, the plant will be expanded to between 350 and 450 tons per day.

Technology.—Lithium battery development work continued at a high level during the year. A number of articles in the Journal of the Electrochemical Society during the year reported on the results of various phases of the research.

Table 3.—U.S. imports for consumption of lithium ore, by country of origin and U.S. customs district

|                              | 19                    | 1972                      |                                  | 73                        |
|------------------------------|-----------------------|---------------------------|----------------------------------|---------------------------|
| Country and customs district | Quantity (short tons) | Value<br>(thou-<br>sands) | Quan-<br>tity<br>(short<br>tons) | Value<br>(thou-<br>sands) |
| Baltimore district:          | _ 1,215               | \$33                      |                                  | 57                        |
| Brazil                       |                       | ·                         | 5,303                            | \$334                     |
| South Africa,<br>Republic of |                       |                           | 565                              | 47                        |
| Pembeina: Canada.            |                       |                           | 205                              | 51                        |
| Total                        |                       | 33                        | 6,073                            | 432                       |

GTE Laboratories Inc. announced the development of an experimental lithium battery which is said to produce 8 times more energy than a conventional flashlight cell and has a life of more than 2 years. "Initial applications may be in flashlights, portable radios, calculators, cameras, hearing aids, wrist watches and other portable battery powered products." 10

<sup>&</sup>lt;sup>8</sup> Williams, T. A. Lithium. Min. Eng., v. 25, No. 2, February 1974, p. 114.

<sup>&</sup>lt;sup>9</sup> The Northern Miner. Lithium on Stream at Tantalum Mining. V. 59, No. 13, June 14, 1973, p. 1.

<sup>&</sup>lt;sup>10</sup> American Metal Market. Longer Life, High Energy Content Claimed for New Lithium Battery. V. 80, No. 165, Aug. 23, 1973. p. 7.

Table 4.-Lithium minerals: World production by country

(Short tons)

| Country 1 Mineral produced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |                               |                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------|-------------------------------|
| Argontine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1971                               | 1972                          | 1973 р                        |
| Argentina         Not specified           Australia         do           Brazil 2         do           Canada 2         Spodumene           Mozambique         Lepidolite           Portugal         do           Rhodesia, Southern 3         Not specified           South 44         Not specified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 89<br>1,846<br>5,292<br>772<br>827 | 54<br>1,180                   | ° 1,200<br>5,303<br>205       |
| South Africa, Republic of Spodumene Od Not specified Spodumene Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Specified Not Speci | 67,000<br>1<br>r 5,035<br>W        | 1,323<br>67,000<br>4,130<br>W | 1,102<br>67,000<br>5,914<br>W |

W Withheld to avoid disclosing individual company conr Revised. fidential data.

fidential data.

1 In addition to the countries listed, others (notably the U.S.S.R.) may produce lithium minerals, but available information is inadequate to make reliable estimates of output levels.

2 U.S. imports from listed producing country.

3 Output has not been reported since 1964, but presumably has continued. Figures given are simply the 1964 output level rounded to the nearest thousand tons, and are presented only to indicate order of magnitude of 1964, total reported production was distributed as follows by mineral, in short tons: Eucryptite—806; lepidolite—22,943; petalite—36,449; spodumene—6,965.

4 Output has not been reported since 1966, but presumably has continued, inasmuch as a number of countries record imports from "South Africa." Estimates given represent total reported imports from South Africa. Estimates given represent total reported imports from South Africa by These quantities, however, may include significant amounts originating in Southern Rhodesia (see footnote 3) by mineral, in short tons: Amblygonite—30; lepidolite—365; petalite—1,344.

## MEERSCHAUM 11

No imports of crude meerschaum were reported in 1973. The United States does not produce meerschaum and is dependent upon foreign sources. Historically, over a 53-year period, 1920-72, the United States has imported approximately 722,400 pounds of crude meerschaum, valued at approximately \$1.46 per pound. Primary domestic

use of the meerschaum has been in smoking articles, such as pipes and cigarrette holders.

Meerschaum from Turkey has accounted for about 80% of the total 722,400 pounds exported to the United States. Other sources have been Austria, Belgium and Luxembourg, France, Italy, India, Iran, Japan, Kenya, Somali Republic, and the Republic of South Africa.

## QUARTZ CRYSTAL 12

#### **ELECTRONIC-GRADE**

Total raw natural and manufactured crystal consumption increased 32% over that of 1972. Consumption of manufactured quartz exceeded that of natural quartz, but consumption of both categories increased. Domestic manufactured quartz production increased significantly. Imports of natural quartz and exports of natural and manufactured quartz also increased. Production of finished crystals showed a small increase.

Legislation and Government Programs. —During 1973 the Government reduced the stockpile objective from 320,000 pounds 209,000 pounds of electronic-grade quartz crystal. The GSA continued to sell excess stockpiled quartz crystal. The Defense Materials Inventory declined from

4.34 million pounds of stockpile-grade and 352,960 pounds of nonstockpile-grade material at the end of 1972 to 4.05 million pounds of stockpile-grade material and 175,096 pounds of nonstockpile-grade material at the end of 1973.

Domestic Production.—There was no reported domestic production of natural electronic-grade quartz crystal during 1973. At yearend six companies reported production of manufactured quartz for use by the quartz crystal cutting industry. These companies were P.R. Hoffman Co., Carlisle, Pa.; Motorola, Inc., Chicago, Ill.; Quality Crystals, Inc., Cortland, Ohio; Sawyer Research Products, Inc., Eastlake,

<sup>&</sup>lt;sup>11</sup> Prepared by Arthur C. Meisinger, industry economist. <sup>12</sup> Prepared by Benjamin Petkof, physical scien-

Thermodynamics Corp., Shawnee Mission, Kans.; and Western Electric Co., Inc., North Andover, Mass. The firms producing manufactured quartz remained unchanged from the previous year. Manufactured quartz production increased 30% from the quantity reported in 1972 to 207,541 pounds.

As of May 1, 1973, all the outstanding shares of Sawyer Research Products, Inc. were purchased by Brush Wellman, Inc., of Cleveland, Ohio. Brush Wellman, Inc., announced an expansion of Sawyer's facilities to meet the increasing demand for quartz crystal.

Table 5.-Salient electronic- and optical-grade quartz crystal statistics

(Thousand pounds and thousand dollars unless otherwise noted)

| •                                                                         | 1971           | 1972            | 1973          |
|---------------------------------------------------------------------------|----------------|-----------------|---------------|
| Production of manufactured quartz                                         | 110            | 160             | 208           |
| Imports of electronic- and optical-grade natural quartz crystal  Quantity | 35             | 65              | 104           |
| Value                                                                     | 76             | 78              | 92            |
| Exports of electronic- and optical-grade quartz crystal  Quantity         | 174            | 149             | 287           |
| Value                                                                     | 1,626          | 1,228           | 3,283         |
| Natural:<br>Quantity                                                      | 113            | 90              | 205           |
| Value                                                                     | 833            | 587             | 1,933         |
| Manufactured: Quantity                                                    | 61             | 59              | 82            |
| ValueConsumption of raw electronic-grade quartz crystal                   | 793<br>133     | 641<br>189      | 1,350<br>249  |
| Natural                                                                   | 62             | 87              | 99            |
| Manufactured Production piezoelectric units, number thousands             | $71 \\ 20.924$ | $102 \\ 25,555$ | 150<br>27,006 |

and Uses.-Total raw Consumption quartz crystal consumption increased from 189,078 pounds in 1972 to 248,929 pounds in 1973. Consumption of natural quartz increased 14% from 87,157 pounds in 1972 to 99,395 in 1973. Manufactured quartz consumption increased 47% from 101,921 pounds to 149,534 pounds in 1973. The consumption of manufactured quartz exceeded that of natural quartz for the third consecutive year. The number of finished crystal units fabricated from raw quartz (natural and manufactured) consumed during the year reached 27 million units. The 1973 consumption data reported in table 5 are based on reports received from 32 crystal cutters in 13 States. Finished piezoelectric units were produced by 28 of the cutters, the remainder produced only semifinished blanks. Of these, two consumed natural quartz only, 19 cut manufactured quartz only, and 11 cut both natural and manufactured quartz. Thirteen consumers in four States accounted for 86% of the raw quartz crystal consumption. Pennsylvania was the leading quartzconsuming State with 42% of the total, followed by Illinois, Kansas, and Massachu-

Piezoelectric units were manufactured by 36 producers in 16 States. Nine of these producers worked from partially processed quartz crystal blanks and consumed no raw quartz (natural or manufactured). Fourteen plants in four States, Kansas, Illinois, Pennsylvania, and Massachusetts, supplied three-fourths of the total output of finished crystal units. Oscillator plates comprised 82% of production. The remainder included filter plates, telephone resonator plates, and other miscellaneous items.

Stocks.—At yearend, stocks of raw quartz crystals held by consumers totaled 114,205 pounds. Of this total 90,886 was natural material and 23,319 was manufactured quartz.

Foreign Trade.—U.S. exports of natural quartz crystal increased 128% from 90,246 pounds in 1972 to 205,420 pounds in 1973. Exports of manufactured quartz increased 40% from 58,914 pounds in 1972 to 82,241 pounds in 1973. The average price of natural quartz crystal exported was \$9.43 per pound; that of manufactured quartz was \$16.46 per pound.

Imports of electronic- and optical-grade natural quartz crystal, valued at more than \$0.50 per pound, increased in both quantity and value in 1973 to 103,569 pounds and \$92,258, respectively. This was an increase of 59% in quantity and 18% in value from the previous year's totals. The

average value of imports was \$0.89 per pound, a decline of 26% from the previous year's average value of \$1.20 per pound. Brazil supplied 90% of the total imports of electronic-grade natural quartz. The remainder was supplied by the United Kingdom, France, West Germany, Japan, Malagasy Republic, and the Republic of South Africa.

A total of 961,205 pounds of lasca, valued at \$271,332 was imported in 1973, an increase of 40% in quantity and 7% in value from 1972 data. The average value of imported material was \$0.28 per pound. Lasca was used to manufacture fused quartz and as a nutrient material in the production of manufactured quartz crystal. Brazil provided 96% of total lasca imports, and the remainder was received from Japan.

World Review.—Brazil.—The Nation was the dominant world producer of natural quartz crystal. Exports of quartz crystal for electronic use totaled 783,000 pounds valued at \$429,000 in 1973. In addition, 2 million pounds of lasca, valued at \$1.4 million was exported.

Technology.—A device, using a coated piezoelectric crystal (quartz), has been developed for the detection and measurement of sulfur dioxide. The response of the device was observed as a function of sample size, weight of substrate application to the crystal, sulfur dioxide concentration, and sample volume. The instrument is rugged, portable, low cost and amenable to automation.<sup>13</sup>

Single crystals of ferroelectric lithium tantalate were grown as an alternate material for quartz crystal in the manufacture of piezoelectric resonator and filter devices. The lithium tantalate crystals were grown by the Czochralski crystal pulling technique.14

A paper was presented describing the hydrothermal synthesis of quartz and the manufacturing facility of a major producer. The advantages of manmade quartz, industry facts, the recent industry developments were discussed.<sup>15</sup>

#### **STAUROLITE 16**

Staurolite is a complex hydrated ferrous-aluminosilicate mineral, some properties of which may differ from one specimen to another, implying some variability of composition. The mineral most commonly occurs as opaque reddish-brown to black crystals with a specific gravity ranging from 3.65 to 3.77 and between quartz and topaz in hardness (7 to 8 on Moh's scale). Aside from a small rock-shop trade in cruciform-twinned crystals from some deposits ("fairy crosses") that are sold as curiosities or amulets, staurolite is produced commercially in the States only in the form of a magnetic fraction from heavy-mineral concentrates recovered by E. I. du Pont de Nemours & Co. from a deposit of ice age beach sand in Clay County, Fla.

Formerly the staurolite fraction so obtained was used mostly in portland cement mixtures, but more recently this product (with minor admixtures of several other minerals) is being marketed by Du Pont under two trade names, "Starblast" for use as a sandblast abrasive, and "Biasil" for

mixing with bentonite and other substances to serve as a foundry sand in some specialized molding applications. Increasing industrial demand for these products can be inferred from the observation that the ratio of staurolite shipments to staurolite production, which had averaged around 1:2 in the 1965 to 1969 period, has been well over 1:1 in every year since, pointing to a substantial movement of previously stockpiled material. Quantitative data are not released for publication, but the 1973 production of staurolite was 60% greater than that of 1972, while shipments increased 22% in tonnage and 37% in total value.

<sup>&</sup>lt;sup>13</sup> Frechette, M. W., and James L. Fashing. Simple Piezoelectric Probe for Detection and Measurement of SO<sub>2</sub>. Environmental Sci. and Tech. v. 7, No. 13, December 1973, pp. 1135–1137.

<sup>&</sup>lt;sup>14</sup> Rudd, D. W., and A. A. Ballman. Growth of Lithium Tantalate Crystals for Transmission Resonator and Filter Devices. Solid State Tech., v. 17, No. 1, January 1974 pp. 52–55.

<sup>&</sup>lt;sup>15</sup> Lias, N. C. Hydrothermal Synthesis of Quartz: A Growing Industry. Soc. Mining Eng. of AIME., Preprint 73-H-59, 1973, 21 pp.

<sup>&</sup>lt;sup>16</sup> Prepared by J. Robert Wells, physical scientist.

## STRONTIUM 17

Domestic consumption of strontium on a strontium carbonate basis was estimated at 33,000 short tons in 1973, representing a 5% increase over the previous year. Although imports of strontium minerals declined for the second year, imports of strontium chemicals, primarily from Canada, increased ninefold compared with 1972.

Legislation and Government Programs.—The Government sold 8,010 short tons of stockpile-grade celestite during 1973. Government stockpiles contained 4,052 tons of stockpile-grade and 14,408 tons of non-stockpile-grade celestite at yearend.

Domestic Production.—Strontium minerals have not been produced commercially in the United States since 1959. However, a number of firms produced various strontium compounds from imported celestite.

Consumption and Uses.—Domestic consumption of celestite in the manufacture of various strontium chemicals declined from the 1971 high. Quantitative information concerning consumption is incomplete, however, one leading company reported a slight increase in 1973 over 1972. Sales of domestically produced strontium carbonate to manufacturers of glass for color television picture tubes declined considerably from 1972. The trend of celestite consumption in the manufacture of chemicals for pyrotechnics was not clear.

Miscellaneous applications for strontium compounds included ferrites, greases, ceramics, plastics, toothpaste, pharmaceuticals, paint, electronic components, welding fluxes, and high-purity zinc. Small quantities of imported strontium metal were used primarily by research companies.

Table 6.-Major producers of strontium compounds, 1973

| Company                                                                                                                                                                                                             | Location          | Compounds                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------|
| Atomergic Chemetals Co. J. T. Baker Chemical Co. Barium & Chemicals, Inc. Chemical Products Corp. E. I. du Pont de Nemours & Co., Inc. FMC Corp. Hercules, Inc. King Laboratories Inc. Mallinckrodt Chemical Works. | Phillipsburg, N.J | Carbonate. Nitrate. Carbonate, hydrate, nitrate. Chromate. Metal alloys. Various compounds. Chromate, molybdate. |

Prices.—At yearend, prices quoted in The Chemical Marketing Reporter were as follows: Strontium carbonate—technical, bags, carlots, works, at 13 to 21 cents per pound; strontium nitrate—bags, carlots, works, at \$15 per 100 pounds, unchanged from the previous year. Prices for strontium minerals are usually determined by direct negotiation between buyer and seller and are seldom published. The average value of imported strontium minerals at foreign ports was \$24.63 per short ton.

Foreign Trade.—Imports of strontium minerals totaled 27,040 tons, a 12% decline from 1972. The material was imported from Mexico, Spain, and Guatemala. Imports of strontium compounds increased 9 times over those of 1972 with most of the material coming from Canada (94%). In addition to the items listed in table 8, 4,189 pounds of organic strontium salts

Table 7.-U.S. imports for consumption of strontium minerals, by country

|                              | 1972                        |                           | 1973                        |                           |  |
|------------------------------|-----------------------------|---------------------------|-----------------------------|---------------------------|--|
| Country                      | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands) | Quantity<br>(short<br>tons) | Value<br>(thou-<br>sands) |  |
| Guatemala<br>Mexico<br>Spain | 27,791<br>27                | \$72 <u>1</u>             | 78<br>22,558<br>4,409       | \$2<br>558<br>100         |  |
| United<br>Kingdom            | 2,886                       | 109                       |                             | _                         |  |
| Total                        | 30,677                      | 830                       | 27,040                      | 65                        |  |

<sup>&</sup>lt;sup>1</sup> Strontianite or mineral strontium carbonate and celestite or mineral strontium sulfate.

valued at \$4,229 from the United Kingdom and 50 pounds of strontium metal valued at \$375 from Canada were imported during 1973. Quantitative data on U.S. exports of strontium compounds were not available.

<sup>17</sup> Prepared by Donald C. Wininger, physical scientist.

Table 8.-U.S. imports for consumption of strontium compounds, by country

| Country                                        | 1972             |          | 1973       |                 |
|------------------------------------------------|------------------|----------|------------|-----------------|
|                                                | Pounds           | Value    |            |                 |
| Strontium carbonate, not precipitated: Austria |                  | Value    | Pounds     | Value           |
| Canada                                         |                  |          | 1,666      | .01 1           |
| Germany, West                                  | 68,300           | \$43,703 | 848 000    | \$1,18<br>90,18 |
|                                                |                  | 3,700    | 5,512      | 2.68            |
| Total                                          | 78,398           | 47,403   |            |                 |
| Strontium carbonate, precipitated:             |                  | 21,400   | 855,178    | 93,99           |
|                                                |                  |          |            |                 |
| Canada<br>Italy                                | 105 050          |          | 79.366     | 19,42           |
| Italy                                          | 405,850          | 40,802   | 9,392,385  | 1,026,83        |
| Total                                          |                  |          | 342,431    | 82,10           |
| Total                                          | 405,850          | 40,802   | 9,814,182  | 1 100           |
| Strontium chromate:                            |                  | -0,002   | 3,014,182  | 1,128,35        |
| Canada                                         |                  |          |            |                 |
| Germany, WestUnited Kingdom                    | F 004            | 4 .57    | 616,000    | 408,57          |
| United Kingdom                                 | 5,004<br>4,409   | 2,471    | ·          | 200,01          |
|                                                | 4,409            | 2,250    |            | -               |
| Total                                          | 9,413            | 4.721    | 616,000    | 400 ==          |
| Strontium nitrate:                             |                  |          | 010,000    | 408,57          |
| Canada<br>Germany. West                        | 005 444          |          |            |                 |
| Germany, West                                  | 605,100          | 76,580   | 76,596     | 10,437          |
| United Kingdom                                 | $^{1,000}_{441}$ | 1,029    | 1,761      | 729             |
| Total                                          | 441              | 254      |            |                 |
| Total                                          | 606,541          | 77,863   | 78,357     |                 |
| trontium compounds, n.s.p.f.:                  |                  |          | 10,391     | 11,166          |
|                                                |                  |          |            |                 |
|                                                | 4,409            | 6,828    | 2,205      | 4,258           |
| Japan United Kingdom                           | 179,361          | 39,734   | 255,735    | 57,140          |
| United Kingdom                                 |                  |          | 1          | 1,770           |
| Total                                          |                  |          | 2,070      | 5,040           |
| Total                                          | 183,770          | 46,562   | 260,011    | 60 600          |
| Grand total                                    |                  | ,        | 200,011    | 68,208          |
|                                                | 1,283,972        | 217.351  | 11,623,728 | 1,710,298       |

Table 9.-Strontium minerals: World production by country (Short tons)

| (2-010 0011)                     |         |         |                   |
|----------------------------------|---------|---------|-------------------|
| Country 1                        | 1971    | 1972    | 1070 -            |
| Algeria                          |         | 1314    | 1973 р            |
| Argentina                        | r 397   | 2,084   | .0.10             |
| Argentina.<br>Canada e<br>Iran 2 | 2,356   | 1,208   | ° 2,100           |
| Iran <sup>2</sup>                | 60,000  | 65,000  | • 1,210<br>65,000 |
| Italy                            | 330     | • 330   | • 33(             |
| Mexico                           | 920     | 810     | • 810             |
| PakistanSpain                    | 38,650  | 26,923  | 20,143            |
| Spain                            | r 440   | 378     | 20,140            |
| Spain<br>United Kingdom          | 9,370   | 8,818   | • 8,800           |
|                                  | 10,746  | 4,850   | 4,782             |
| Total                            |         |         | ¥,102             |
| Total                            | 123,209 | 110,401 | 103,189           |
| Estimate. Preliminary. Revised.  |         |         |                   |

Estimate.
 Preliminary.
 Revised.
 In addition to the countries listed, West Germany, Poland, and the U.S.S.R. produce strontium minerals, but available information is inadequate to make reliable estimates of output levels.
 Year beginning March 21 of that stated.

World Review.—Canada.—Kaiser Strontium Products Ltd. marketed strontium chemicals worldwide from its plant at Point Edward, Cape Breton Island, Nova Scotia. Technical problems, however, continued to delay commercial-scale production of glass-grade strontium carbonate.

Technology.—A report of experimental work was published on the purification of strontium metal by reactive distillation.18

A paper was published presenting the results of studies on the characterization and sintering behavior of barium and strontium ferrites.19

<sup>&</sup>lt;sup>18</sup> Kaldis, E., J. Muheim, J. Evers, and A. Weiss. Purification of Strontium by Reactive Distillation. J. Less-Common Metals, v. 31, No. 1, April 1973, pp. 169–173.

<sup>19</sup> Reed, James S., and Richard M. Fulrath. Characterization and Sintering Behavior of Ba and Sr Ferrites. J. Am. Ceram. Soc., v. 56, No. 4, April 1973, pp. 207–211.

A process for the purification of celestite, to obtain a glass- or ceramic-grade stron-

Ť

tium carbonate analyzing about 99% pure was patented.20

## **WOLLASTONITE** 21

Wollastonite, which is a metasilicate of calcium that theoretically consists of 48.3% lime combined with 51.7% silica and varies in structure from massive to tabular to fibrous, occurs chiefly as a contact mineral along certain igneous rock-limestone interfaces and often in association with some variety of garnet. Wollastonite from selected deposits has found increasing use as an ingredient in ceramic mixes for glazes and enamels and especially for floor and wall tile; in the building industry for the production of mineral wool and cold-setting insulation foams, as a pigment and extender for paints, and to enhance the cross-rupture strength of cement-asbestos siding, shingles, and drainpipe; as a filling and felting agent for plastics, rubber, and asphalt products; in agriculture as a fertilizer and soil conditioner; in some glassmaking formulations; and in a wide variety of other applications still developed.

Wollastonite was produced in the United States in 1973 from one underground mine operated by Interpace Corp. at Willsboro, Essex County, N.Y.; output tonnage was 25% greater than in 1972, and the corresponding total value was 28% higher, new alltime highs for both figures. Notably, the 1973 tonnage also surpassed that of 1966, the record year hitherto, by 12%.

Wollastonite has been mined in California intermittently since 1933, but no commercial production has been reported in that State since 1969. A new firm, Western American Minerals Co., was organized in early 1973 with the announced aim of

mining and processing wollastonite from a deposit near Hunter Mountain in California's Inyo County. Adverse weather, specifically an unprecedented heavy snowfall on access roads, was blamed for delaying the start of operations beyond the target date.

Chemical Marketing Reporter quoted wollastonite prices in bags, carlots, works, at \$43.80 per ton for paint grade, fine, and \$33.00 per ton for paint grade, medium, unchanged (both quotations) December 1971 through December 1973. The average unit value reported for production, all grades, advanced twice, however, in that same period. American Paint Journal, December 31, 1973, reported the following prices for wollastonite, paint grade: Extra gliders, bolted, \$35.00 to \$50.50 per ton; medium, carlots, f.o.b. plant, \$29.00 per ton. Ceramic Industry Magazine, January 1974, listed wollastonite prices in the range from \$22.50 to \$37.00 per ton. It is to be understood, however, that actual sales of wollastonite were arranged as usual at negotiated prices not publicly disclosed.

A report was issued that presented reported or estimated figures for wollastonite production in Kenya, India, Finland, Mexico, and the United States in the years 1967 through 1971.22

<sup>&</sup>lt;sup>20</sup> Trew, L. J. (assigned to Kaiser Aluminum & Chemical Corp.). Purification of Celestite To Obtain a Glass or Ceramic Grade Strontium Carbonate. U.S. Pat. 3,743,691, July 3, 1973.

<sup>21</sup> Prepared by J. Robert Wells, physical scientist

Resources Division. Statistical Summary of the Mineral Industry—World Production, Exports and Imports 1967–1971. Her Majesty's Stationery Office (London), 1973, p. 401.

